TY - THES A1 - Waitz, Markus T1 - Untersuchung der Photoelektronen-emissionswinkelverteilung bei Einfach- und Doppelionisation des Wasserstoffmoleküls N2 - Die vorliegende Arbeit präsentiert die wissenschaftlichen Erkenntnisse, welche im Rahmen dreier verschiedener Messreihen gewonnen wurden. Kernthema ist in allen Fällen die Ionisation von molekularem Wasserstoff mit Photonen. Im Rahmen der Messung sollte eine 2014 veröffentlichte Vorhersage der theoretischen Physiker Vladislav V. Serov und Anatoli S. Kheifets im Experiment überprüft werden. Ihren Berechnungen zufolge kann ein sich langsam vom Wasserstoff Molekülion entfernendes Photoelektron durch sein elektrisches Feld das Mutterion polarisieren und dafür sorgen, dass beim anschließenden Aufbruch in ein Proton und ein Wasserstoffatom eine asymmetrische Emissionswinkelverteilung zu beobachten ist [SK14]. Diese Vorhersage konnte mit den Ergebnissen der hier vorgestellten Messung zweifelsfrei untermauert werden. Für drei verschiedene Photonenenergien, welche im relevanten Reaktionskanal Photoelektronenenergien von 1, 2 und 3 eV entsprechen, wurden die prognostizierten Symmetrien in den Messdaten herauspräpariert. Es zeigte sich, dass diese sowohl in qualitativer wie auch in quantitativer Hinsicht gut bis sehr gut mit den Vorhersagen übereinstimmen. Im zweiten Teil dieser Arbeit wurde erneut die Dissoziationsreaktion, allerdings bei deutlich höheren Photonenenergien, untersucht. Ziel war es, den in Zusammenarbeit mit den Physikern um Fernando Martin gelungenen theoretischen Nachweis der Möglichkeit einer direkten Abbildung von elektronischen Wellenfunktionen auch im Experiment zu vollziehen. Der überwiegende Teil aller Veröffentlichungen im Vorfeld dieser Messung fokussierte sich bei den Untersuchungen der Wellenfunktion entweder auf die rein elektronischen Korrelationen - so zum Beispiel in Experimenten zur Ein-Photon-Doppelionisation, wo Korrelationen zwischen beiden beteiligten Elektronen den Prozess überhaupt erst möglich machen - oder aber auf den Einfluss, welchen das Molekülpotential auf das emittierte Elektron ausübt. Die wenigen Arbeiten, die sich bis heute an einer unmittelbaren Abbildung elektronischer Wellenfunktionen versuchten, gingen meist den im Vergleich zu dieser Arbeit umgekehrten Weg: Man untersuchte hier das Licht höherer Harmonischer, wie sie bei der lasergetriebenen Ionisation und anschließenden Rekombination eines Photoelektrons mit seinem Mutterion entstehen. In dieser Arbeit wurde ein Ansatz präsentiert, der zwei überaus gängige und verbreitete Messtechniken geschickt kombiniert - Während das Photoelektron direkt nachgewiesen und seine wesentlichen Eigenschaften abgefragt werden, kann der quantenmechanische Zustand des zweiten, gebunden verbleibenden Elektrons über einen koinzident dazu geführten Nachweis des ionischen Reaktionsfragments bestimmt werden. Dieser Vorgang stützt sich wesentlich auf Berechnungen der Gruppe um Fernando Martín, welche eine Quantifizierung der Beiträge einzelner Zustande zum gesamten Wechselwirkungsquerschnitt dieser Reaktion erlauben. Diese unterscheiden sich je nach Energie der Fragmente signifikant, so dass über eine Selektion des untersuchten KER-Intervalls Kenntnis vom elektronischen Zustand des H2 +-Ions nach der Photoemission erlangt werden kann. Die experimentellen Daten unterstützen die Theorie von Martin et al. nicht nur mit verblüffend guter Übereinstimmung, die gemessenen Emissionswinkelverteilungen stehen darüber hinaus auch in sehr gutem Einklang mit ihren theoretisch berechneten Gegenstücken. Die Ergebnisse wurden zwischenzeitlich in der renommierten Fachzeitschrift Nature Communications veröffentlicht [WBM+17]. Die dritte Messreihe innerhalb dieser Arbeit beschäftigt sich mit der Photodoppelionisation von Wasserstoff. Im Rahmen des selben Experiments wie die weiter vorn beschriebene Dissoziationsmessung bei 400 eV Photonenenergie aufgenommen, belegen die Ergebnisse auf wunderbar anschauliche Art und Weise, dass die Natur in unserer Umgebung voller Prozesse ist, die ursprünglich als rein quantenmechanische Laborkonstrukte angesehen wurden. Es konnte zweifelsfrei gezeigt werden, dass die beiden Elektronen, die bei der Photodoppelionisation freigesetzt werden, als ein Quasiteilchen aufgefasst werden können. Sie befinden sich in einem verschränkten Zweiteilchenzustand, und nur eine koinzidente Messung beider Elektronen vermag es, Interferenzeffekte in ihren Impulsverteilungen sichtbar zu machen - betrachtet man beide hingegen individuell, so treten keinerlei derartige Phänomene auf. Es gelang dabei zudem, eine beispielhafte Übereinstimmung zwischen den gemessenen Daten und einer theoretischen Berechnung der Kollegen um Fernando Martín zu erreichen. Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/48433 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-484337 CY - Frankfurt am Main ER -