TY - JOUR A1 - Priesemann, Viola A1 - Wibral, Michael A1 - Valderrama, Mario A1 - Pröpper, Robert A1 - Le Van Quyen, Michel A1 - Geisel, Theo A1 - Triesch, Jochen A1 - Nikolić, Danko A1 - Munk, Matthias Hans Joachim T1 - Spike avalanches in vivo suggest a driven, slightly subcritical brain state T2 - Frontiers in systems neuroscience N2 - In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy. KW - self-organized criticality KW - human intracranial recordings KW - spike train analysis KW - highly parallel recordings KW - spiking neural networks KW - multiunit activity KW - cortex KW - monkeys Y1 - 2014 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/51525 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-515253 SN - 1662-5137 N1 - Copyright: © 2014 Priesemann, Wibral, Valderrama, Pröpper, Le Van Quyen, Geisel, Triesch, Nikolić and Munk. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. VL - 8 IS - Art. 108 SP - 1 EP - 17 PB - Frontiers Research Foundation CY - Lausanne ER -