TY - THES A1 - Giang, Daniel T1 - Performance Studie zur Messung von J/ψ-Mesonen in p+Au Kollisionen mit dem CBM Experiment N2 - Das CBM Experiment konzentriert sich auf die Untersuchung des Phasendiagramms von stark wechselwirkender Materie im Bereich moderater Temperaturen, aber hoher Netto-Baryonendichte. Dabei sollen unter anderem Proben aus dem frühen und hochdichten Stadium des Quark-Gluon Plasmas detektiert werden. Ein Beispiel dafür ist das J/ψ-Meson. Das Vektormeson gilt wegen seiner Eigenschaften und Interaktion mit dem QGP als eine der wichtigen Proben stark wechselwirkender Materie. In dieser Arbeit wird die Performance der Detektoren anhand einer Simulation in Hinsicht auf die Messung des J/ψ-Mesons studiert. Es werden hierfür unterschiedliche Simulationsansätze verglichen. Die Simulation wird im FairRoot und CbmRoot Framework durchgeführt. Es werden Proton+Gold Kollisionen bei einer Strahlenergie von 30 GeV pro Proton simuliert. Dabei verwenden wir das Standard-Setup des SIS100 für Elektronen. Das J/ψ-Meson wird über den e+e−-Zerfallskanal rekonstruiert. Bei der J/ψ-Rekonstruktion werden zuerst Schnitte gesetzt, mit der ein großer Teil der Teilchenspuren, die nicht aus J/ψ-Zerfällen stammen, aussortiert werden und so der Untergrund verringert wird. Die Effizienz für Elektronen im Detektor-Setup RICH+TRD+TOF beträgt 65 Prozent. Für das J/ψ-Meson erhalten wir mit den gleichen Detektoren eine Effizienz von 25 Prozent. Das invariante Massenspektrum, das wir aus einer Simulation mit 8,5 Millionen Ereignisse bilden, zeigt uns, dass der hauptsächliche Anteil des Untergrunds aus Pion-Elektron-Kombinationen besteht. Es folgen im e+e−-Zerfallskanal unkorrelierte Elektron-Positron-Kombinationen als der zweitgrößte Beitrag zum Untergrund. Die Statistik ist bei der Full Simulation zu gering, um das J/ψ-Signal extrahieren zu können. Eine Integration liefert uns ein J/ψ Signal von 0,021 bei 8,5 Millionen Ereignisse, d.h. für die Detektion eines J/ψ-Mesons werden ca. 1010 Ereignisse benötigt. Die Fast Simulation Methode ermöglicht uns in kürzerer Zeit eine größere Menge an Ereignissen zu simulieren. Dazu werden Information aus der Full Simulation entnommen, die als Antwort-Funktionen bezeichnet werden. Die Antwort-Funktionen werden der Fast Simulation übergeben, um so zeitintensive Prozesse in der Simulation überspringen zu können. Zum Zeitpunkt der Arbeit fehlen Pionen, Protonen und Kaonen in den invarianten Massenspektren der Fast Simulation. Das Problem soll in Zukunft behoben werden. Folglich haben wir ein invariantes Massenspektrum mit 85 Millionen simulierten Ereignissen, jedoch ohne Pionen, Protonen und Kaonen. Wir erhalten daher ein signifikantes J/ψ-Signal, allerdings mit einem unrealistisch hohen S/B-Verhältnis. Ein weiteres Ziel, nach der Implementierung der fehlenden Teilchen, soll die nochmalige Extrahierung des J/ψ-Signals mit korrektem Untergrund sein. Y1 - 2018 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/67337 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-673371 UR - https://www.uni-frankfurt.de/96679693/Bachelorarbeit_Daniel_Giang.pdf EP - 37 PB - Johann Wolfgang Goethe-Universität, Fachbereich 13, Institut für Kernphysik CY - Frankfurt am Main ER -