TY - THES A1 - Martin, Janosch T1 - Membrane Mimics und Licht in Kombination mit nativer Massenspektrometrie als vielseitiges Werkzeug zur Analyse von nicht-kovalent gebundenen Proteinkomplexen N2 - Biomoleküle, insbesondere Membranproteine (MPs), sind oftmals sehr sensitiv gegenüber ihrer chemischen Umgebung, wie pH-Wert, Puffer, Salzkonzentration und vielen weiteren Faktoren. MPs stabil und funktional in Lösung zu halten ist nicht trivial. Sie stellen deshalb eine besondere Herausforderung bei der Analyse von biologischen Systemen dar. Aus diesem Grund wurden und werden nach wie vor sogenannte membrane mimicking-(MM-) Systeme, wie beispielsweise Nanodiscs (NDs) oder styrene-maleic acid lipid particles (SMALPs), untersucht und entwickelt, um MPs eine naturähnliche Umgebung in Form einer Lipid-Doppelschicht zu bieten und sie so in ihrer natürlichen Konformation und natürlichen Funktionsweise/Aktivität in Lösung zu halten. Laser induced liquid bead ion desorption (LILBID) Massenspektrometrie (MS) hat sich als hervorragende analytische Methode herausgestellt, um MPs in Kombination mit MM-Systemen zu untersuchen. LILBID-MS bietet nicht nur die Möglichkeit Proteine an sich zu identifizieren, sondern ermöglicht ebenfalls eine zerstörungsfreie Analyse von nicht-kovalent gebundenen Proteinkomplexen, sowie die Detektion einzelner Subkomplexe eines Proteinkomplexes. Auch die Analyse von Protein-Ligand-Wechselwirkungen ist möglich. Bei der LILBID-Ionisationsmethode werden kleine Tröpfchen erzeugt, die einen wässrig gelösten Analyt enthalten. Die Analyt-Tröpfchen werden anschließend mittels IR-Laser bestrahlt, wodurch der Analyt freigesetzt und massenspektrometrisch analysiert werden kann. Diese Dissertation beschäftigt sich zum einen mit der Analyse des Lyse-Proteins ΦX174-E der Bakteriophage ΦX174, zum anderen mit Untersuchungen zur Histidinkinase SpaK aus B. subtilis in Kombination mit MMs. Weiterhin wird die Frage geklärt, ob und wie gut sich LILBID-MS zur Analyse von Saposin-Nanopartikel-(SapNPs)-solubilisierten MPs eignet. Darüber hinaus wird in dieser Dissertation die Darstellung von SapNP-solubilisierten MPs mittels zellfreier Proteinsynthese näher charakterisiert und untersucht welche Parameter aus präparativer Sicht optimiert werden können. In vorausgegangenen Analysen von ND-solubilisierten MPs mittels LILBID-MS zeigte sich, dass manche in Verbindung mit NDs genutzten Lipide unerwünschte Signale im Spektrum zur Folge haben, die aus massiven Lipid-Anhaftungen am MSP oder dem Analyten resultieren. Überlappungen der m/z-Signale verschiedener Analyt- und/oder Komplexkomponenten mit diesen Lipid-Cluster-Signalen kann wiederum zum Verlust von Informationen führen. Daher beschäftigt sich ein weiterer Teil dieser Arbeit mit der Frage, ob durch den Einsatz von UV-schaltbaren Lipiden der Anwendungsbereich und/oder die Auflösung von LILBID-MS erweitert und verbessert werden kann. Um biologische Prozesse zu verstehen ist es ebenfalls wichtig die zeitlichen/kinetischen Aspekte einer Reaktion zu untersuchen/kennen, sowie molekulare Prozesse gezielt zu kontrollieren. Licht hat sich hierbei als ein hervorragendes Werkzeug in der Analytik, sowie in der molekularen Prozesskontrolle etabliert. Licht bietet den Vorteil sehr selektiv eingesetzt werden zu können und sowohl orts- als auch zeitaufgelöst Informationen liefern zu können. Das gezielte Triggern einer Reaktion oder einer Protein-Protein-Interaktion kann beispielsweise durch sog. photo-cleaving von photolabilen Schutzgruppen ermöglicht werden. Bisweilen bietet die native MS nur wenig Möglichkeiten schnelle Reaktionen zu analysieren und kinetische Informationen zu gewinnen. Daher beschäftigt sich ein weiterer Teil dieser Dissertation damit zu untersuchen, ob und wie sich lichtgesteuerte Reaktionen im LILBID-Ionisationsprozess induzieren und gegebenenfalls auch zeitlich analysieren und charakterisieren lassen können. KW - Massenspektrometrie Y1 - 2022 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/68636 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-686367 CY - Frankfurt am Main ER -