TY - THES A1 - Kurz, Christian Georg T1 - Synthesis and optimization of pyrazolo[1,5-α]pyrimidine-based macrocyclic kinase inhibitors T1 - Synthese und Strukturoptimierung von makrozyklischen Pyrazolo[1,5-α]pyrimidin basierten Kinaseinhibitoren N2 - Die Beteiligung an Schlüsselfunktionen in zellulären Signalwegen macht Kinasen zu einem vielversprechenden Ansatzpunkt in der Wirkstoffentwicklung bei verschiedenen menschlichen Erkrankungen wie z.B. Krebs oder auch Autoimmun- und Entzündungskrankheiten. Die Prävention von post-translationalen Modifikationen durch Phosphorylierung und somit die Regulierung der nachgeschalteten Signalwege ist das Ziel von Kinaseinhibitoren. Die katalytische Aktivität von Kinasen ist abhängig von ATP, welches im hochkonservierten aktiven Zentrum bindet. Bedingt durch diese kinomweite hohe Konservierung stellt die Entwicklung von hoch selektiven ATP-mimetischen Inhibitoren eine Herausforderung dar. Typische ATP-Mimetika sind flach und die oft hydrophoben Moleküle weisen meist eine große Zahl an frei rotierbaren Bindungen auf. Um das aus dieser Flexibilität hervorgehende Problem der teils mangelnden Selektivität zu umgehen, kann eine bioaktive Konformation des Inhibitors durch Makrozyklisierung fixiert werden. Als Konsequenz dieser konformationellen Einschränkung können die entropischen Kosten während des Bindens reduziert werden und folglich zu einer gesteigerten Affinität gegenüber der Kinase führen. Der Grundstein dieser Arbeit war der makrozyklische Pyrazolo[1,5-a]pyrimidin basierte FLT3 Kinaseinhibitor ODS2004070 (37). Im Rahmen eines kinomweiten Screenings konnten hohe Affinitäten zu verschiedensten Kinasen detektiert werden, was 37 zu einer guten Leitstruktur für das Design von potenten und selektiven Kinaseinhibitoren machte. Im Rahmen dieser Arbeit blieb das literaturbekannte Pyrazolo[1,5-a]pyrimidin basierte ATP-mimetische Bindemotiv sowie das makrozyklische Grundgerüst 37 bis auf einige wenige Variation unverändert. Strukturelle Optimierungen zur Fokussierung der Selektivität wurden am sekundären Amin zwischen Bindemotiv und Linker als auch über die freie Carbonsäure durchgeführt. Mit einer Anzahl von mehr als 430 identifizierten Phosphorylierungsstellen ist die pleiotropisch und konstitutiv aktive Casein Kinase 2 (CK2) an verschiedensten zellulären Prozessen wie dem Verlauf des Zellzyklus, der Apoptose oder der Transkription regulatorisch beteiligt. Die Fehlregulation von CK2 wird häufig mit der Pathologie von Krankheiten wie zum Beispiel Krebs assoziiert, was CK2 zu einem vielversprechenden Ziel klinischer Untersuchungen macht. Im Rahmen des CK2-Projekts war es möglich, durch spezifische Modifikationen an 37, die hoch selektiven und potenten CK2-Inhibitoren 47 und 60 zu entwickeln. Ebenfalls gezeigt wurde, dass kleine strukturelle Veränderungen, wie z.B. Makrozyklisierung, einen signifikanten Effekt auf Selektivität und Potenz des Inhibitors haben kann. Weiter Untersuchungen der Verbindungen lenkten den Fokus weiterer Arbeiten u.a. auf die Serin/Threonin Kinase 17A (STK17A) oder auch death-associated protein kinase-related apoptosis-inducing protein kinase 1 (DRAK1) genannt. Sie ist Teil der DAPK Familie und gehört zusammen mit anderen Kinasen zu den weniger erforschten Kinasen. Bis heute ist nicht viel über ihre zellulären Funktionen und die Beteiligung an pathophysiologischen Prozessen bekannt. Berichtet wurde jedoch eine Überexpression in verschiedenen Formen von Hirntumoren des zentralen Nervensystems (Gliom). Strukturelle Modifikationen, unter Erhalt des makrozyklischen Grundgerüsts 37, führten zu dem hoch selektiven und potenten DRAK1 Inhibitor 121, der alle Kriterien für eine chemical probe Verbindung erfüllt. Ein weiteres Ziel dieser Arbeit war die AP-2-assoziierte Protein Kinase 1 (AAK1) aus der NAK Familie, bestehend aus AAK1, BIKE und GAK. Sie ist als potenzielles therapeutisches Ziel für viele verschieden Krankheiten wie z.B. neuropathische Schmerzen, Schizophrenie und Parkinson identifiziert. Durch die Regulierung der Clathrin-mediierten Endozytose ist AAK1 an intrazellulären Bewegungen verschiedener nicht zusammenhängenden RNS- und DNSViren, wie beispielsweise HCV, DENV oder EBOV, beteiligt. Ebenfalls berichtet wurde eine mögliche Assoziation mit dem SARS-CoV-2 Virus, was das Interesse an neuen selektiven AAK1 Inhibitoren verstärkte. Die Entwicklung der hochpotenten und selektiven AAK1 Inhibitoren 61 und 63 basierte ebenfalls auf dem makrozyklischen Grundgerüst 37, das bereits im CK2- und DRAK1-Projekt verwendet wurde. Zusammenfassend lässt sich sagen, dass es im Rahmen dieser Arbeit gelungen ist, ausgehend von einem höchst unselektiven makrozyklischen Grundgerüst, hochpotente und selektive Kinaseinhibitoren für CK2, DRAK1 und AAK1 zu entwickeln und zu charakterisieren. Im Zuge von Untersuchungen verschiedener Struktur-Wirkungsbeziehungen wurde gezeigt, dass es durch geringfügige strukturelle Modifikationen möglich ist, die kinomweite Selektivität zu variieren und auf eine Kinase zu fokussieren. Diese Arbeit brachte nicht nur die erwähnten Inhibitoren hervor, sondern bildet auch die Grundlage für weitere Projekte zur Entwicklung von hoch potenten und selektiven Verbindungen als potenzielle chemische Werkzeuge für den Einsatz in der Forschung. Y1 - 2022 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/68695 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-686954 CY - Frankfurt am Main ER -