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1. Introduction

In the ultrarelativistic heavy ion collisions at RHIC the total number of the produced particles
exceeds several thousands, therefore one can expect that the produced system behaves as a "mat-
ter" and generates collective effects. Indeed strong collective flow patterns have been measured at
RHIC, which suggests that the hydrodynamical models are well justified during the intermediate
stages of the reaction: from the time when local equilibriumis reached until the freeze out (FO),
when the hydrodynamical description breaks down. During this FO stage, the matter becomes so
dilute and cold that particles stop interacting and stream towards the detectors freely, their momen-
tum distribution freezes out. The FO stage is essentially the last part of a collision process and the
main source for observables.

In simulations FO is usually described in two extreme ways: A) FO on a hypersurface with
zero thickness, B) FO described by volume emission model or hadron cascade, which in principle
requires an infinite time and space for a complete FO. At first glance it seems that one can avoid
troubles with FO modeling using hydro+cascade two module model [1], since in hadron cascades
gradual FO is realized automatically. However, in a such a scenario there is an uncertain point,
actually uncertain hypersurface, where one switches from hydrodynamical to kinetic modeling.
First of all it is not clear how to determine such a hypersurface. This hypersurface in general may
have both time-like and space-like parts. Mathematically this problem is very similar to hydro to FO
phase transition on the infinitely narrow FO hypersurface, therefore for example all the problems
discussed for FO on the hypersurface with space-like normalvectors will take place here. Another
complication is that while for the post FO domain we have mixture of non-interacting ideal gases,
now for the hadron cascade we should generate distributionsfor the interacting hadronic gas of all
possible species, as a starting point for the further cascade evolution. The volume emission models
are based on the kinetic equations [2, 3] defining the evolution of the distribution functions, and
therefore these also require to generate initial distribution functions for the interacting hadronic
species on some hypersurface.

In this paper we present a simple kinetic FO model, which describes the freeze out of particles
from a Bjorken expanding fireball [4]. The important featureof the proposed scenario is that
physical freeze out is completely finished in a finite time, which can be varied from 0 (freeze out
hypersurface) to∞. In the other words our freeze out happens in a layer, i.e. in adomain restricted
by two parallel hypersurfacesτ = τ1 and τ = τ1 + L (τ is the proper time). The present model
describes simultaneously freeze out and Bjorken expansion, and thus, it is more physical extension
of the oversimplified FO models without expansion [3, 5, 6, 7,8]. In Ref. [6] authors have also
adopted kinetic gradual FO model to Bjorken geometry, but combined it with Bjorken expansion on
the consequent, not on the parallel basis: system expands according to Bjorken hydro scenario, but
when it reaches beginning of the FO process system stops expansion and gradually freezes out in a
fixed volume. It was shown in [6] that although such a model allows to obtain analytical results, it
is not physical, the simultaneous modeling of expansion andfreeze out is required in order to avoid
decreasing of the total entropy. And now we propose such a generalized model.
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2. Finite layer freeze out description

Let us briefly review gradual FO model, which we are going generalize including expansion.
Many building blocks of the model are Lorentz invariant and can be applied to both time-like and
space-like FO layers, so at the beginning we will write thesein general way. Starting from the
Boltzmann Transport Equation, introducing two componentsof the distribution function,f : the
interacting, f i , and the frozen out,f f ones, (f = f i + f f ), and assuming that FO is a directed
process (i.e. neglecting the gradients of the distributionfunctions in the directions perpendicular to
the FO direction comparing to that in the FO direction) we canobtain the following system of the
equations [7, 9]:

d f i

ds
= −Pesc

τFO
f i +

feq(s)− f i

τth
,

d f f

ds
=

Pesc

τFO
f i . (2.1)

The FO direction is defined by the unit vectordσµ . FO happens in a layer of given thicknessL
with two parallel boundary hypersurfaces perpendicular todσµ , ands= dσµxµ is a variable in the
FO direction. We work in the reference frame of the front, where dσµ is either(1,0,0,0) for the
time-like FO, or(0,1,0,0) for the space-like FO. TheτFO is some characteristic length scale, like
mean free path or mean collision time for time-like FO. The rethermalization of the interacting
component is taken into account via the relaxation time approximation, wherefi approaches the
equilibrated Jüttner distribution,feq(s), with a relaxation length/time,τth. The system (2.1) can be
solved semi-analytically in the fast rethermalization limit [7].

The basis of the model, i.e. the invariant escape rate withinthe FO layer of the thicknessL,
for both time-like and space-like normal vectors is given as(see Refs. [7, 8, 10] for more details)

Pesc=

(

L
L−s

)(

pµdσµ

pµuµ

)

Θ(pµdσµ) , (2.2)

where pµ is a particle four-momentum,uµ is the flow velocity. In fact the model based on the
escape rate (2.2) is a generalization of a simple kinetic models studied in Refs. [3, 5, 6], which
can be restored in theL → ∞ limit. Here we will concentrate on the time-like case only, where the
aboveΘ function is unity.

The important feature of the escape rate in the form (2.2) is that physical freeze out is com-
pletely finished whens= L, i.e. it requires finite space/time. Furthermore, now we canvary this
layer thickness,L, from 0 (freeze out hypersurface) to∞ and study how the post FO distribution
depends on the layer thickness. Interesting and unexpectedresult was found in [7, 8, 10], for both
space-like and time-like FO layers, namely that ifL is large enough, at least severalτFO, then post
FO distribution gets some universal form, independent on the layer thickness.

Simple semianalytically solvable FO models studied in [3, 5, 6, 7, 8] are missing an important
ingredient - the expansion of the freezing out system. The open question is whether the discussed
above features of the FO will survive if the system expansionis included. In this work we are going
to build a model, which includes both gradual FO and Bjorken-like expansion of the system, and
answer this question.

3. Bjorken expansion with gradual freeze out

Let us first remind the reader the basics of the Bjorken model 3.1. Bjorken model is one-
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dimensional in the same sense as discussed before eq. (2.1) -only the proper time,τ =
√

t2−x2,
gradients are considered. Here the reference frame of the front, dσ µ = (1,0,0,0), is the same as
the local rest frame,uµ = (1,0,0,0). The evolution of the energy density and baryon density is
given by the following equations:

de
dτ

= −e+P
τ

,
dn
dτ

= −n
τ

, (3.1)

whereP is the pressure. The initial conditions are given at someτ = τ0: e(τ0) = e0, n(τ0) = n0.
This system can be easily solved:

e(τ) = e0

(τ0

τ

)1+c2
o
, n(τ) = n0

(τ0

τ

)

, (3.2)

whereP = c2
oe is the equation of state (EoS) in general form.

It is important to remember that if we want to have a finite volume fireball, we need to put
some boarders on the system. Here we assume that our system, described by the Bjorken model, is
situated in the spacial domain|η | ≤ ηR or what is the same|z| ≤ zR(τ) = τ sinhηR (η = 1

2 ln
(

t+z
t−z

)

is pseudorapidity). Within this boarder system is uniform along τ = consthyperbolas; outside we
have vacuum with zero energy and baryon densities as well as pressure. Thus, we have a jump, a
discontinuity on the border, which stays there during all the evolution. Certainly, to prevent matter
expansion through such a border (due to strong pressure gradient) some work is done on the border
surface [11]. One can find about it as about putting some effective pressure to the vacuum, exactly
the one which would remove discontinuity, then this the workdone by the expanding system against
some pressure. As system expends the volume of the fireball increases as

V(τ) = 2AxysinhηRτ , (3.3)

whereAxy is the transverse area of the system. Work done by the expanding system,W, is given by

dW = PdV ⇒ W(τ) = e0V0

(

1−
(τ0

τ

)c2
o
)

, (3.4)

where we denoteV0 = V(τ0). One can easily check then the energy conservation:

Etot = e(τ)V(τ)+W(τ) = e0V0 = const. (3.5)

Applying our FO model to such a system, we obtain:

d f i(τ ′) = − dτ ′

τFO

L
L− τ ′ f i(τ ′)+

dτ ′

τth

[

feq(τ ′)− f i(τ ′)
]

, (3.6)

d f f (τ ′) = +
dτ ′

τFO

L
L− τ ′ f i(τ ′) , (3.7)

where FO begins atτ = τ1 and τ ′ = τ − τ1. Taking the fast rethermalization limit, similarly to
what is done in [6], we can obtain simplified equations forf i, which is a thermal distribution
f i(τ) = feq(τ), f f as well as forei ,ni andef ,nf :

dei

dτ ′ = − ei

τFO

L
L− τ ′ ,

dni

dτ ′ = − ni

τFO

L
L− τ ′ , (3.8)
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def

dτ ′ = +
ei

τFO

L
L− τ ′ ,

dnf

dτ ′ = +
ni

τFO

L
L− τ ′ . (3.9)

Now the idea is to create a system of equations which would describe a fireball which simulta-
neously expands and freezes out. Let us put our two components (e= ei +ef ) into the first equation
of (3.1) and do some simple algebra:

dei

dτ
+

def

dτ
= −ei +Pi

τ
− ef

τ
− ei

τFO

L
L− τ ′ +

ei

τFO

L
L− τ ′ , (3.10)

where last two terms add up to zero; the free component, of course, has no pressure. So far our
eq. (3.10) is completely identical to the first equation of (3.1). Our assumption is that our system
evolves in such a way that eq. (3.10) is satisfied as a system oftwo separate equations for interacting
and free components [12]:

dei

dτ
= −ei +Pi

τ
− ei

τFO

L
L+ τ1− τ

, (3.11)

def

dτ
= −ef

τ
+

ei

τFO

L
L+ τ1− τ

. (3.12)

Similarly we can obtain equations for baryon density [12]:

dni

dτ
= −ni

τ
− ni

τFO

L
L+ τ1− τ

, (3.13)

dnf

dτ
= −nf

τ
+

ni

τFO

L
L+ τ1− τ

. (3.14)
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Figure 1: Evolution of the temperature of the interacting matter for different FO layers.Ti(τ0 = 0.05 f m) =

835MeV, TFO = 180MeV. "No Freeze Out" means that we used standard Bjorken hydrodynamics even in
phase II.

Thus, finally, we have the following simple model of fireball created in relativistic heavy ion
collision.
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Initial state, τ = τ0 e0, n0

Phase I, Pure Bjorken hydrodynamics, τ0 ≤ τ ≤ τ1

e(τ) = e0

(τ0

τ

)1+c2
o
, n(τ) = n0

(τ0

τ

)

(3.15)

Phase II, Bjorken expansion and gradual FO, τ1 ≤ τ ≤ τ1 +L
Solving Eqs. (3.11,3.13) we obtain:

ei(τ) = e0

(τ0

τ

)1+c2
o
(

L+ τ1− τ
L

)L/τFO

, (3.16)

ni(τ) = n0

(τ0

τ

)

(

L+ τ1− τ
L

)L/τFO

. (3.17)

The difference with respect to the pure Bjorken solution (3.15) is in the last multiplier, and we see
that, as expected, the interacting component completely disappear thenτ reachesτ = L+ τ1.

With these last equations we have completely determined evolution of the interacting compo-
nent [12]. Knowingei(τ) and EoS we can find temperature,Ti(τ). Due to symmetry of the system
uµ

i (τ) = uµ(τ0) = (1,0,0,0). Finally, f i(τ) is a thermal distribution with givenTi(τ), ni(τ), uµ
i (τ).

However for us the more interesting is free component, whichis the source of the observables.
Eqs. (3.12,3.14) give us the evolution of theef andnf , and one can easily check that these two
equations are equivalent to the following equation on the distribution function:

d f f

dτ
= − f f

τ
+

f i

τFO

L
L+ τ1− τ

. (3.18)

The measured post FO spectra are given byf f (L+ τ1).

4. Solution of the model for massless boson gas

Aiming for a qualitative illustration of the FO process we show below the results for the mass-
less ideal gas without conserved charges with Jüttner equilibrated distribution [13]:

f i(τ ,p) =
1

(2π)3 e−|p|/Ti (τ) , (4.1)

Pi = ei/3, ei =
3

π2 T4
i . (4.2)

We have taken the following values of the parameters:ηR = 5.41, Axy = πR2
Au, whereRAu = 7.685

fm is the Au radius, τ0 = 0.05 f m, Ti(τ0) = 835 MeV; τ1 = 5 f m, Ti(τ1) = TFO = 180 MeV;
τFO = 0.5 f mand we present results for different values of FO timeL.

Fig. 1 shows the evolution of the temperature of the interacting matter (Ti(τ) = π2

3 (ei)1/4), and
Figs. 2 present the evolution of the energy densities for theinteracting and free components (these
satisfy the energy conservationV(τ)(ei(τ)+ef (τ))+W(τ) = e0V0). We can analytically solve eqs.
(3.11) and (3.12) also inL → ∞ limit:

ei(τ) = e0

(τ0

τ

)1+c2
o
e−

τ1−τ
τFO , (4.3)
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Figure 2: Evolution of the energy densities for the interacting (upper plot) and free (lower plot) components
for different FO layers during phase II.Ti(τ0 = 0.05 f m) = 835MeV, TFO = 180MeV.

what is also shown in the Figs 1 and 2.

As it was already shown in [6, 8] the final post FO particle distributions, shown on Fig. 3, are
non-equilibrated distributions, which deviate from thermal ones particularly in the low momentum
region. By introducing and varying the thickness of the FO layer, L, we are strongly affecting the
evolution of the interacting component, see Fig. 1, but the final post FO distribution shows strong
universality: forL > 2τFO it already looks very close to that for an infinitely long FO calculations
- see Fig. 3. The inclusion of the expansion into our consideration does not smear out this very
important feature of FO. "No Expansion" curve is given by theanalytical expression:

f f (p) = − 4
(2π)3 Ei(− |p|

TFO
) , (4.4)

1We choose the limiting pseudorapidity for our fireball to be equal to the rapidity of the colliding nuclei in Lab
frame at RHIC for

√
s= 100 GeV/nucl.
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Figure 3: Final post FO distribution for different FO layers as a function of the momentum in the FO
direction,p = px in our case (py = pz = 0). The initial conditions are specified in the text. "No Expansion"
curve is given by the analytical expression from Ref. [6], eq. (4.4).

from Ref. [6], where gradual freeze out and Bjorken expansion were combined on the consequent,
not on the parallel basis: system expands according to Bjorken hydro scenario, but when it reaches
beginning of the FO process system stops expansion and gradually freezes out in a fixed volume.
Although such a scenario is unrealistic2, but due to this universality of the final post FO distribution,
it gives rather good description of the final spectrum.

If we makeL very small,L < 0.5τFO, then the final post FO distribution is practically a thermal
distribution: Fig. 3 lower plot. Here the FO process does nothave enough time to distort the thermal
shape of the distribution. More results can be found in [12].

In our opinion these results may justify the use of FO hypersurface in hydrodynamical models
for heavy ion collisions, but with a proper non-thermal postFO distributions. If the FO layer is
thick enough, sayL > 2τFO, then it doesn’t matter how thick was FO layer, we do not need to
model the FO dynamics in details. Once we have a good parameterization of the post FO spectrum

2The necessity of the expansion was proven in Ref. [6] based onnon-decreasing entropy condition.
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(still asymmetric, non-thermal), for example analytical post FO distribution obtained in Ref. [6]
(see Fig. 3), then the parameters of this distribution can befound from the conservation laws, as
it is usually done for sharp FO, with some volume scaling factor to effectively account for the
expansion during FO.

5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
τ
1
 = 5.0 fm/c, τ

FO
=0.5 fm/c

τ, [fm]

s i [f
m

−
3 ]

L = 2τ
FO

L = 3τ
FO

L = 6τ
FO

L −−> ∞

5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
τ
1
 = 5.0 fm/c, τ

FO
=0.5 fm/c

τ, [fm]

s f [f
m

−
3 ]

L = 2τ
FO

L = 3τ
FO

L = 6τ
FO

L −−> ∞

Figure 4: Evolution of the entropy densities for the interacting (upper plot) and free (lower plot) components
for different FO layers during phase II. The initial conditions are specified in the text.

It is important to always check the non-decreasing entropy condition [12, 14] to see whether
such a process is physically possible. Figs. 2 present the evolution of the entropy densities for
the interacting and free components, but the total entropy,S(τ), is not a sum of these two densi-
ties multiplied by volume of the system, but it should be calculated based on the full distribution
function, f (p) = f i(p)+ f f (p):

s(τ) =

∫

d3p f(τ)
[

1− ln
(

(2π)3 f (τ)
)]

, S(τ) = s(τ)V(τ) . (4.5)

Evolution of the total entropy versus initial entropy,S0 = S(τ0), is shown on Fig. 5. As expected
during pure Bjorken phase total entropy is constant, but then FO starts the total entropy makes a
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wiggle: first decreasing and then increasing until FO is finished. From this figure we can make two
very important conclusions. The first one is that long gradual freeze out produces entropy. In our
simulation for the FO layer as thick as 2.5-5 fm/c the total entropy production reaches 5-10%. The
second important conclusion is that thin FO layers, withL≤ 3τFO are physically forbidden, because
this would lead to entropy decrease. And this put as into theL region, where the universality of the
final post FO distribution really takes place.
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Figure 5: Evolution of the total entropy for different FO layers. The initial conditions are specified in the
text.

5. Conclusions

In this paper we presented FO model with Bjorken like expansion in our FO model, in contrast
to the older versions [3, 5, 6, 7, 8], which allows us to study FO in a layer of any thickness,L, from
0 to ∞. Another good feature of the proposed model is that it connects the pre FO hydrodynamical
quantities, like energy density,e, baryon density,n, with post FO distribution function in a relatively
simple way, and furthermore allows analytical analyses forthe simplest systems such as pion gas.

The results show that the inclusion of the expansion into FO model, although strongly affects
the evolution of the interacting component, does not smear out the universality of the final post FO
distribution, observed already in Refs. [6, 7, 8]: forL > 2τFO it already looks very close to that for
an infinitely long FO calculations - see Fig. 3. Furthermore the non-decreasing entropy condition
tell us that only relatively thick FO layers,L ≥ 3τFO, are physically allowed. In one of the older
works, Ref. [6], authors obtained the analytical expression for the final post FO spectrum, which is
in a good agreement with the results obtained in more advanced model presented here. Thus, our
consideration advises to try to fit experimental data using non-equilibrated distributions, given by
eq. (4.4).

Another conclusion of this work, stressing once again the importance to always check the
non-decreasing entropy condition [12, 14], is that long gradual freeze out may produce substantial
amount of entropy, as shown on Fig. 5.
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