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Abstract
Background: Olfactory receptors work at the interface between the chemical world of volatile
molecules and the perception of scent in the brain. Their main purpose is to translate chemical
space into information that can be processed by neural circuits. Assuming that these receptors have
evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight
in how to encode chemical information in an efficient way.

Results: We mimicked olfactory coding by modeling responses of primary olfactory neurons to
small molecules using a large set of physicochemical molecular descriptors and artificial neural
networks. We then tested these models by recording in vivo receptor neuron responses to a new
set of odorants and successfully predicted the responses of five out of seven receptor neurons.
Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach
for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited
for response prediction vary for different receptor neurons, implying that each receptor neuron
detects a different aspect of chemical space. Finally, we demonstrate that receptor responses
themselves can be used as descriptors in a predictive model of neuron activation.

Conclusion: The chemical meaning of molecular descriptors helps understand structure-response
relationships for olfactory receptors and their "receptive fields". Moreover, it is possible to predict
receptor neuron activation from chemical structure using machine-learning techniques, although
this is still complicated by a lack of training data.
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Introduction
Olfactory Receptors (ORs) encode chemical stimuli in
neuronal activity. The gene family of ORs consists of G-
protein coupled receptors (GPCRs) and was first
described for rats [1]. In Drosophila, the organism we con-
sidered in this study, as well as in mammals and verte-
brates in general, each Olfactory Receptor Neuron (ORN)
carries one type of OR [2], such that the response of each
ORN to a chemical substance is mainly determined by the
receptor it expresses [3].

The fact that there is no crystal structure available for any
OR hampers structure-based approaches such as auto-
mated molecular docking to examine ligand binding char-
acteristics. Although attempts have been made to use
models based on homology to rhodopsin [4-6], these
approaches suffer from the cumbersome creation of such
a model and the remaining errors inherent to homology
modeling [7,8].

Araneda and cowokers pursued a ligand-based approach
to characterize the rat's I7 OR [9]. By testing a large
number of ligands, they were able to establish a verbal
characterization of preferred I7 ligands in terms of func-
tional groups and carbon chain length and rigidity. Such
an approach however only provides qualitative data for a
limited number of odorants. It does not describe ORN
tuning in quantifiable parameters that can be determined
for any chemical.

Here we present a method providing an objective way of
predicting ORN responses to arbitrary odorants. We have
developed a model that uses a distinct set of physico-
chemical parameters to describe the structure of odor
molecules and predict their activity at Drosophila recep-
tors.

We followed a classic approach to derive Structure-Activ-
ity-Relationships (SARs) by calculating molecular descrip-
tors and training Artificial Neural Networks (ANNs), as it
has been applied in other studies to characterize ligand
affinity to specific receptors [10-12]. Similar techniques
were previously used to model human psychophysical
data, i.e. odor and aroma characteristics [13-16]. How-
ever, odor percepts are the result of a nonlinear transfor-
mation of ORN inputs in the brain and do not necessarily
reflect OR properties [17]. By contrast, we restricted our
study to modeling receptor responses, because these are
more likely to be dominated by physicochemical proper-
ties of the odorants, assuming OR activation is the result
of ligand-receptor binding through intermolecular inter-
actions.

In addition, we suggest that quantifying the molecular
properties relevant for activating olfactory receptors

reveals how chemical space is encoded by the receptor
repertoire of a specific organism. One may assume that
such an array of ORs has evolved to provide a useful rep-
resentation of chemical space through an efficient coding
scheme. Determining the actual properties of the chemi-
cal world that are detected by ORs may thus provide an
efficient way to represent molecules in a computational
framework in general.

Results and discussion
The goal of our study was twofold: First, we aimed at pre-
dicting ORN responses from molecular structure. Second,
we wanted to describe structure-activity relationships
between the odorant and the activated receptor.

To achieve the first aim, we trained artificial neural net-
work models on an existing dataset of ORN responses,
using selected subsets of chemical descriptors for odorant
representation. We then recorded the responses of these
same ORNs to a new set of chemicals to test whether the
models we generated can be used to predict an odorant's
activity.

With the second aim in mind we analyzed the set of dis-
criminative descriptors in order to characterize chemical
properties that favor activation of each ORN.

Modeling ORN response and testing
We trained ANNs to model the activity of seven Drosophila
ORNs in response to stimulation with odorant molecules.
As training data we used the responses of Drosophila ORNs
to 47 odorants that were measured by electrophysiologi-
cal in vivo recordings in a previous study [18]. Structure
drawings of these 47 odorants are depicted in the supple-
mental material [see Additional file 1], as well as their
names and the activity values (in spikes/s) [see Additional
file 2]. We defined thresholds in activity such that a given
compound can be classified as either "active", "inactive",
or "uncertain", depending on the spike rate it elicits in the
ORN. Compounds with uncertain activity were not used
for training the ANNs for that specific ORN. After selecting
relevant descriptors for each ORN (cf. next section), we
trained 30,000 ANN models per ORN, selected those with
the highest predictive power, and used them to predict
ORN responses to 21 compounds, which were subse-
quently tested in vivo (in the following referred to as "test
data"). We also assayed ten compounds that had already
been tested in the previous study [18]. The compounds in
the test data set are depicted in the supplement [see Addi-
tional file 3].

For analysis of the results we transformed spike rates using
the same thresholds as we used for the training data. As in
the training data, molecules with spike rates between the
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upper and lower threshold were excluded from the analy-
sis for the respective ORN.

We assessed prediction performance using the Matthews
Correlation Coefficient for binary data (MCC, eq. 4).
Table 1 shows the MCC for the training data and the
tested data. We excluded ethyl-3-hydroxybutyrate at ab2B
and butyl acetate at ab3A from the calculation of the MCC
of the test set, since these molecules were used to select the
best models (see Experimental section for details). These
compounds have entered the modeling process prior to
testing and hence are not valid "test" compounds for
those ORNs.

Five out of seven models succeeded in correctly predicting
the training data. The predictions for the ab3B and 6A
neuron show imperfect performance, but still correlate
with the activity in the training data. The prediction of
ORN response to novel molecules shows a mixed picture:
For the ab3A ORN, the model achieved an MCC of 0.85,
providing reliable prediction. For the ab1D, 2A, 5B and
6A ORNs, the MCCs range from 0.66 to 0.69, still indicat-
ing good performance. In contrast, the models showed
only weak performance predicting activity for the ab2B
(MCC = 0.17) and 3B ORNs (MCC = 0.34).

The discrepancy between performance on the training
data and the test data for some receptors may have several
causes. First, although we used cross-validated training
and in some cases additional activity data for model selec-
tion, due to the large number of models we built, it is pos-
sible that some models perfectly predict all training data,
albeit by chance. Second, descriptor selection was per-
formed on the whole data set instead of a cross-validated
procedure, possibly "over-optimizing" descriptor space
for the training data. However, because of the data split-
ting necessary for cross-validation, the number of data
instances in one part of the data would have been too
small for the statistical test we used to select descriptors.
In both cases, the performance on the independent test set
reveals the actual quality of prediction. This set contained
only substances that did not enter the model creation at
any point and is thus not affected by the above issues.

The supplement gives detailed insight into the com-
pounds we used for testing and the results of the screen-

ing, in comparison with the predictions [see Additional
file 4]. It should be noted that one compound (cyclohex-
anone) was inactive at ab3A in the training data (3 spikes/
s), but active in the test data (33 spikes/s). A similar obser-
vation was made for 4-methylphenol at the ab1D neuron:
its activity was uncertain in the training data (22 spikes/s),
but it was inactive in test data (5 spikes/s). These differ-
ences may be a consequence of the effect that minimal
variations in concentration may suffice to elicit a response
[18].

A possible source of error in the predictions is that it is not
always certain that the compound actually arriving at the
receptor neuron did not undergo degradation, or that
traces of other compounds contaminated the stimulus, for
example as by-products from synthesis or as remnants
after purification. These effects cannot be addressed by
this study, but would require analysis of the air stream in
parallel to the measurements, for example by gas chroma-
tography [19,20].

One point of discussion is the threshold setting for activity
assignment, in that it followed no algorithmic procedure.
However, these thresholds proved to be sensible choices,
and appeared reasonable to us according to the data. First
of all, the application of thresholds was necessary to sim-
plify the data. As in any modeling study, simplifications
have to be introduced in order to focus on the most rele-
vant features, especially when the amount of data is lim-
ited. In this case, we chose to discard the quantitative
activity data in favor of a binary active/inactive prediction.
Although our threshold settings may have enhanced the
aforementioned difference in activity assignment, these
were more likely due to changes in the experimental
setup, or variance in the Drosophila stock between the
measurements of the training and test sets. Further, the
models do not take into account the different vapor pres-
sures of the compounds or effects of dose dependency of
the responses, because the required data was not available
for all compounds. We also did not address any possible
effects of modifiers of OR activity such as Olfactory Bind-
ing Proteins (OBPs). These proteins populate the aqueous
lymph surrounding olfactory dendrites and have been
shown to be involved in olfaction. Drosophila mutants
devoid of the LUSH OBP have defects in avoiding high
alcohol concentrations [21] and lack response to a phe-
romone [22]. It has also been suggested that OBPs are
involved in shuttling hydrophobic odorants through the
lymph [23]. The model, being trained on the activation
data of ORNs in their "native surround" (i.e. the lymph),
implicitely treats everything between the odorant and
ORN activation as a "black box" and hence also contains
effects of OBPs, if present.

Table 1: Matthew's Correlation Coefficient (MCC) for training 
and test. The upper row refers to the performance on the 
training data, the lower row to performance on the test data

ORN ab1D ab2A ab2B ab3A ab3B ab5B ab6A

MCC training 1.00 1.00 1.00 1.00 0.77 1.00 0.86
test 0.69 0.69 0.17 0.85 0.34 0.68 0.66
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Interpretation of descriptor selection
As stated above, we selected subsets of descriptors that are
best suited for separating active from inactive compounds
prior to ANN training. In addition to reducing the "noise"
introduced into the data by unsuitable descriptors, the
ranked list of descriptors can also give insight into the SAR
of the ORNs. Since each descriptor represents a molecular
feature, descriptors in the selected subset point to poten-
tially preferred molecular features detected by an ORN.
The sum of preferred features determines an ORN's
"receptive field".

The descriptor rankings were produces using the p-value
from a Kolmogorov-Smirnov test (KS-test) for significant
difference between two data sets (inactive vs. active com-
pounds), separately for each ORN. Descriptors with the
lowest p-values were ranked highest. The ranked lists of
descriptors including their associated p-values are given in
the supplement [see Additional file 5].

We observed that the set of highest ranking descriptors is
different for each ORN. This may correspond to a different
SAR for each ORN, in that different chemotypes are recog-
nized by different receptors. In the following, we describe
how the descriptor rankings relate to the SARs of the
ORNs in this study. For the sake of brevity, we refer to
individual descriptors by their abbreviations. More elabo-
rate explanations of all descriptors that appear here and in
the ranked lists are provided in the supplement [see Addi-
tional file 6].

ab1D
For ab1D, the highest ranked descriptor is std_dim3, a 3D
shape descriptor that describes the standard deviation
along the principal component axis of the atom coordi-
nates. Typical activators of ab1D (methyl salicylate, ace-
tophenone, phenylacetaldehyde) have disk-like shape in
common due to their aromatic ring systems (see Figure 1).
Hence, they will have small values for this descriptor, dis-
criminating them from the other molecules in the data set.
This descriptor does not feature strongly in the rankings of
other ORNs that respond to aliphatic compounds. Fur-
thermore, the high ranking of several descriptors for
charge distribution on the molecular surface (such as
PEOE_VSA_FPNEG, Q_VSA_FNEG, FCASA-) reflect the
exposed carbonyl groups in most activators of ab1D, cre-
ating a focused negative partial charge distribution on the
molecular surface (cf. Figure 1). Charge distribution
descriptors feature high on the list of several ORNs.

ab2A
A strong effect of partial charge can also be observed for
the activators of the ab2A ORN (ethyl acetate, 2,3-butane-
dione, propanone, ethyl propionate), which are all com-
parably small and bear a focused negative partial charge

on the molecular surface (cf. Figure 2). The focused charge
is again represented in the highest scoring
PEOE_VSA_FPNEG descriptor. The high rank of a_ICM
can be related to the small molecule size. It describes the
mean atom information content, which reflects the
entropy, used by its information-theoretical meaning, in
atom composition. For two equal-sized molecules, the
one which is composed of more different atom types will
have the higher entropy. Accordingly, for two molecules
with the same number of different atom types, the smaller
one will have higher entropy. Now the high scoring mol-
ecules incorporate only two atom types, namely O and C,
as well as the majority of the remaining molecules in the
data set. Thus, the smaller molecule size likely is the dis-
criminating feature. Several connectivity descriptors
(chi1v_C, chi1_C etc.) also reflect the importance of mol-
ecule size.

ab2B and ab3A
The AM1_HOMO descriptor, which is an index for "reac-
tivity", yields a high rank for the ab3A neuron. Moreover,
the MNDO_HF descriptor (heat of formation) correlates
well with ab3A spike rate change (Pearson correlation
coefficient: -0.55, p < 10-4). Also, the ionization potential
(reflected in the AM1_IP, PM3_IP and MNDO_IP descrip-
tors) yields a high rank. All these descriptors relate to the
reactivity of a molecule and are negatively correlated with
activity. This seems evident if one considers that most acti-
vators of ab3A are esters, which are less reactive than for
example aldehydes and primary alcohols, two groups to
which many of the non-activators belong.

Similar observations can be made for ab2B, where four of
the five activators of the ab2B ORN (ethyl butanoate, hex-
anol, γ-valerolactone, ethyl-2-methylbutanoate) have a
slightly elevated ionization potential according to the
AM1_IP descriptor, compared to non-activators (e.g. 3-
methylthio-1-propanol, benzaldehyde or linalool), as
well as a high ranking of the AM1_HOMO descriptor.

ab5B
For the ab5B ORN, the highest ranked descriptors are
related to molecular shape, expressed by the descriptors
developed by Kier & Hall descriptors [24] (KierA3, KierA1,
KierA2, KierFlex, Kier2, Kier3). In combination with the
high ranked b_1rotR descriptor (the relative number of
rotatable bonds in the molecule), this reflects ab5B's pref-
erence for larger, flexible ligands, such as pentyl acetate, 2-
heptanone and 3-octanol.

ab6A
Finally, for the ab6A ORN the κ3 and κ2 descriptors
described by Kier & Hall [24] rank highest (Kier3 and
Kier2). κ2 encodes information about the "spatial density
of atoms" in a molecular graph, while κ3 encodes the
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"centrality of branching"; κ3 values are larger when
branching is located at the extremities of the molecular
graph or when no branching happens in the molecule,
and they are smaller when branching is located near the
center of the molecule [25]. Interestingly, the single ANN
model that was selected for prediction of ab6A activity
only used these two descriptors. Considering that the
descriptor values of activators all lie inside a very small
range in which no non-activators are present (data not
shown), and the fact that the selected ANN model has two
hidden neurons, the network simply "cut out" the value
range in which the activators of ab6A lie, a typical effect of

overtraining. This may be a possible explanation for the
rather poor predictive performance of the ab6A model.
The ab6A ORN shows a somewhat broader selectivity
characteristic: activators are not as easy to discriminate
from non-activators as for the other ORNs, and our
method of assigning binary activity values may not have
been appropriate in this case. Here it is important to note
that ab6A is the only ORN in this study for which the
receptor gene could not yet be identified [3].

General remarks
All these interpretations should be treated with care. It is
not justified to interpret an individual descriptor as the
sole discriminating feature. Rather, the KS-statistics dem-
onstrate that many features are suitable for classification.
Descriptor selection is the result of a statistical procedure,
and depends on the composition of the data set. The
results we present in this section should be read as an
example of how to extract knowledge from such an anal-
ysis. Moreover, the ANN models combine the informa-
tion obtained from the selected features to represent a
more complex and nonlinear (except for Perceptron-type
ANNs) relationship between molecular structure and
activity than is suggested by the inherently linear descrip-
tor ranking.

With these notes of caution, one might speculate that
binding of odor molecules is achieved through different
receptor-ligand interaction mechanisms at each OR. For
example, our study suggests that ab2A is activated at least
in part by the polarity of small ligands, whereas ab5B
appears to require the flexibility of large ligands. While in
the past the classification of chemical stimuli was based
on selected functional groups or chemical class, the use of
physicochemical descriptors provides a different view on
the molecular features that govern ORN activation.

A systematic analysis of ORN selectivity was complicated
by the limited amount of ORN response data. Only
recently, more comprehensive data on Drosophila ORN
responses became available [26]. Although the data was
acquired using a different methodology (heterologous
expression of OR genes in an "empty" ORN), it is possible
that more data on these ORs will yield better results. This
may be a fruitful task for a future study. It will be interest-
ing to see if the abstract description of chemical entities as
we used here can aid to reveal a logical structure in the
selectivity of ORNs.

Using ORN responses to predict ORN responses
If ORN responses really span some sort of chemical space,
it should as well be possible to use the spike rates as a
descriptor. To assess this hypothesis, we tried to predict
activity of one ORN using responses of the remaining
ORNs. We used the logarithm of the spike rates, because

Disk-like shapes of ab1D activatorsFigure 1
Disk-like shapes of ab1D activators. Three activators of 
ab1D, methyl salicylate (187 spikes/s), phenylacetaldehyde 
(76 spikes/s) and acetophenone (157 spikes/s) show their 
disk-like shape in surface representation. Red areas indicate 
negative partial charge, blue areas positive partial charge, and 
white indicates neutral (= no) charge.
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principle component analysis showed that this transfor-
mation results in a more uniform distribution with less
outliers (data not shown). ANN training and model selec-
tion followed the same protocol as above, except that only
150 pairs of test and training data were formed and, no
additional validation data was available to prune net-
works that showed poor generalization. Since only six
descriptors were available to train the ANNs, we did not
apply KS-statistics for data reduction.

The results are given as correlation coefficients in Table 2.
ORNs ab3A, ab3B, ab5B, and ab6A show moderate corre-
lation (MCC between 0.47 to 0.66) on the test set, but pre-
diction completely failed for ab1D, ab2A (MCC = 0,
respectively) and ab2B (MCC = -0.10). This indicates that
this approach indeed works, at least for four out of seven
receptors. The failure at the remaining three likely results
from the fact that for these receptors there are too few
actives in the test set, namely one for each ab1D and ab2A
(salicylaldehyde and propyl acetate resp.), and three for
ab2B (octanol, ethyl 3-hydroxybutanoate and 2-
octanone).

Conclusion
We have demonstrated that it is possible to predict Dro-
sophila ORN responses from molecular structure. The
approach performed well on the majority of receptors,
considering that only few data was available for training.
The features that were selected as being suitable for model
training indicate that each ORN has different preferences
regarding the physicochemical properties of its potential

ligands. Finally, the ORN responses themselves can effec-
tively be used as a descriptor to predict responses of other
ORNs, providing evidence that ORNs indeed analyze
chemical space in a way that can be exploited to predict
receptor-ligand affinities.

Experimental
We prepared a database containing the molecular struc-
tures of the odorants previously screened [18] and their
activity (in spikes/s) on the neurons of the classes ab1D,
ab2A, ab2B, ab3A, ab3B, ab5B and ab6A. We chose these
ORNs because interpretation of the response spectrum
was not complicated by high responses to the solvent, and
at least four molecules were active for these ORNs. This
yielded a minimum ratio of active to inactive molecules of
roughly 1 to 10, and allowed splitting of the data into a
training and a validation set of the same size, and at least
two instances of active molecules in each set (cf. "Neural
Network Training").

Definition of activity ranges
We transformed the continuous range of activity levels
[see Additional file 2] into all-or-none data by setting a
lower and an upper threshold for each ORN. Molecules
with activities below the lower threshold were considered
inactive, while those with activities above the upper
threshold were considered active. Odorants with an activ-
ity value between the two thresholds were excluded from
the modeling process, because their activity cannot be
determined with a high level of confidence. The dose-
response curve of ORNs is a sigmoid, and small differ-
ences in odor delivery can in result in changes in the con-
centrations producing inconsistencies between the
previously published results [18] and the recordings in
this study, particularly for these "borderline" odors.

To determine the two thresholds we used the following
procedure: Starting from activity histograms for each
ORN, we estimated a lower threshold below which a mol-
ecule is considered inactive. Assuming that the activities of
inactive compounds would be distributed around zero
spikes/s (but without knowing the true distribution), we
estimated the lower threshold to be where the first "gap"
in the activity histogram distribution was located. Simi-
larly, we estimated the upper threshold above which we

Table 2: Matthew's Correlation Coefficient (MCC) for training 
and screening (test) using ORN responses as descriptor. The 
upper row refers to the performance on the training data, the 
lower row to performance on the test data

ORN ab1D ab2A ab2B ab3A ab3B ab5B ab6A

MCC training 0.55 0.0 0.76 1.00 0.77 0.80 0.72
test 0.0 0.0 -0.10 0.47 0.66 0.54 0.54

Charge distribution of ab2A activatorsFigure 2
Charge distribution of ab2A activators. Conolly-surface 
representation for activators of the ab2A ORN. Color 
scheme is identical to Figure 1.
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considered molecules as being active. This procedure is
illustrated in the supplement [see Additional file 7].

In one case, additional data [3] indicated that ethyl ace-
tate, considered inactive at ab5B according to the thresh-
old, may actually be a weak activator for the ab5B neuron.
In consequence, we marked its activity as "unknown". The
final data collection including the thresholds for activity
assignment can be reviewed in the supplement [see Addi-
tional file 2].

Descriptor calculation, selection and ranking
We calculated 203 molecular descriptors using MOE
(Chemical Computing Group, Montreal) for each odor-
ant molecule, including calculated physical properties,
subdivided surface areas, atom and bond counts, Kier &
Hall connectivity and shape indices, adjacency and dis-
tance matrices, pharmacophore features, partial charge
indices, potential energies, surface area, volume and
shape indices and conformation dependent charge indi-
ces.

Prior to descriptor calculation, we generated heuristic 3D
conformations with CORINA (Molecular Networks,
Erlangen, Germany). At this stage, we used one conforma-
tion per molecule. Subsequently, those conformations
were refined by energy minimization using MOE's
MMFF94x force field, a modified version of the MMFF94s
force field [27]. Minimization was stopped at a gradient of
10-5.

Pruning unsuitable descriptors
Nine descriptors were discarded because they had zero
variance across odor molecules. Some descriptors (e.g. the
dipole moment) depend on the three-dimensional con-
formation of the molecule, which could lead to inconsist-
ent modeling results for different conformations. Because
we do not know which conformation of an odorant stim-
ulates the ORN we sought to eliminate descriptors that
vary strongly with 3D conformation.

To identify such strongly varying descriptors, we gener-
ated multiple conformers of all odorants using MOE's sto-
chastic conformer generation functionality, using an
energy cutoff of 5 kcal/mol. This resulted in a median nine
conformers per molecule, with a maximum of 956 con-
formers for nonanal. For each descriptor the variance over
all conformers of an odorant was calculated and scaled

using the Fano Factor [28], , with σD the vari-

ance and μD the mean of descriptor D over all conforma-

tions, without prior normalization. We calculated the
mean FD of each descriptor over all molecules and

ranked the descriptors accordingly. Data from prelimi-
nary experiments (not shown) suggested a set of descrip-
tors that particularly affected prediction quality through
conformational variation. We selected the one with the
smallest Fano Factor, which was the "dipole" descriptor
with FD = 0.03, and eliminated all 26 descriptors with a

mean FD ≥ 0.03.

Descriptor selection
Descriptors were ranked by their ability to separate active
from inactive molecules. This ability was assessed using
the Kolmogorov-Smirnov (KS) test [29]. The KS-test com-
pares the distribution of two series of data samples A and
B by comparing, for each potential value x, the fraction of
values from A less than x with the fraction of B values less
than x. The KS-value (kKS) is the maximum difference over
all x values. For each ORN, the descriptor values of all
active odorants provided A, while B was provided by the
inactive odorants.

The KS-test was performed using MATLAB R14 (The Math-
Works, Natick, MA). For the ranking we used the p-value
of the KS-test, that is, the probability that A and B stem
from the same distribution. High KS-values result in low
p-values. Descriptors with low p-values were ranked high-
est. Note that the ranking is specific and unique for each
ORN. This is because for each ORN, different molecules
constitute the active and inactive population, and ind
consequence the descriptor values for active and inactive
molecules are differently distributed.

Artificial neural network training

We trained multilayer feed-forward Artificial Neural Net-
works (ANNs) to predict the activity of odorant mole-
cules. Such networks have been described in detail
elsewhere [30,31]. Briefly, a network with k inputs, j neu-
rons in the hidden layer, and i output neurons delivers the

output  in response to a pattern μ according to equa-

tion (1):

with g(x) the transfer function of the output and hidden
layer neurons respectively (see eq. (2)), bi, bj the bias of the

neurons, Wij the weight of the jth hidden neuron to the ith

output neuron, wjk the weight of kth input neuron to the

jth hidden neuron, and  the kth element of input pat-
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tern μ. We used a sigmoidal transfer function (equation
(2)):

where x is the net input of a neuron.

The MATLAB Neural Network Toolbox was used for ANN
modeling, employing backpropagation training with a
gradient descent algorithm as implemented in MATLAB's
traingdx function [30].

Descriptor values were scaled to zero mean and unit
standard deviation (autoscaling) prior to network train-
ing. We assigned a target value of 1 to active molecules
and 0 to inactive molecules. By random permutation and
subsequent splitting we formed 250 pairs of test and vali-
dation data, keeping the fraction of active to inactive mol-
ecules identical in both sets.

Network performance during training was assessed using
the mean standard error (MSE, equation (3))

where Opredict was the output of the network and Oexpect
was given by the target values.

The MSE on the training data served as fitness function
during training. ANN training was stopped when the MSE
on the validation data did not decrease for 5,000 training
epochs.

Model performance evaluation
Two factors greatly influence the outcome of ANN train-
ing: The ANN architecture (how many neurons to use in
the hidden layer) and the number of inputs (molecular
descriptors). More neurons in the hidden layer or a higher

number of inputs to the ANN may allow for more com-
plex description of the data, but the resulting model is
also susceptible to overfitting, that is, modeling fine
details without revealing the global data structure.
Because these parameters are difficult to estimate in
advance, we trained many networks with different combi-
nations of parameters, varying the number of neurons in
the hidden layer from one to four. In the special case of
one hidden neuron, the ANN was reduced to a single neu-
ron, which essentially is a Perceptron architecture [30]. To
vary the number of descriptors, we cumulatively used the
first 1, 2,...30 descriptors from the ranked list, meaning we
used the first descriptor, then the first two and so on until
we used all 30 highest-ranked descriptors.

In total, we trained 30,000 ANN models per ORN (4
architectures × 30 input dimensionalities × 250 repeti-
tions with different data splitting). We proceeded with
selection of models with high predictive quality in cross-
validation. We used the Matthews Correlation Coefficient
MCC [32] to assess prediction quality (eq. (4)):

where P is the number of "true positives", that is, data
instances that are active and have also been predicted
active. N ("true negatives") is the number of data
instances that are inactive and have been predicted inac-
tive. O denotes the number of "overpredicted" instances,
predicted active in spite of being inactive, and U is the
number of "underpredicted" instances, that is, active
instances predicted inactive. During each training run, we
recorded the MCC on the training data as well as on the
validation data for this run.

Model selection
A well-trained, well-generalizing model will have a high
MCC both on the training and validation data. Hence, we
selected ANNs with a training MCC equal or greater than
their validation MCC, differing by no more than 0.1.
From all ANNs fulfilling these criteria, we selected those
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e x
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Table 3: Additional validation compounds. Additional odorant activity data we used for model selection. Sources: a: [33], b: [3]

ORN Odorant Name Source Remarks

ab1D furfural a -
ab2B cyclohexanol a -

(R)-ethyl-3-hydroxybutyrate b unknown stereoisomer, not tested in previous study [18]
ab3A butyl acetate b -

ethyl acetate b unsure activity in [18]
1-hexanol b unsure activity in [18]

ab3B pentyl Acetate b unsure activity in [18]
E2-hexenal b unsure activity in [18]

ab5B ethyl acetate b considered inactive in [18]
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with the maximum training MCC. If the selection resulted
in more than one ANN, we used all selected ANNs and
combined their prediction values by averaging.

For some ORNs, additional odorant activity data was
available from other sources [3,33], providing an addi-
tional selection constraint on the models (see Table 3).
Models failing to correctly predict the additional activity
data were discarded. Of the additional compounds, Ethyl-
3-hydroxybutyrate, a strong activator for ab3A according
to [3], was not tested in [18], making it suitable as an
additional validation point. Ethyl acetate was weakly
active in [3] at the ab5B ORN but inactive in the original
data. Assuming that it truly is an activator of ab5B, we
excluded it from network training and used it to validate
the ANN predictions. The remaining compounds in Table
3 were originally excluded from training because their
activity fell in between the upper and lower activity
threshold and thus could not be derived with certainty.
Since the additional sources suggest they are active, we
used them as validation compounds for model selection.

Electrophysiology
We used the models to predict activity for a new set of
odorants and tested the predictions in a new set of meas-
urements from Drosophila ORNs. Electrical activity was
recorded extracellularly by inserting glass electrodes into
individual sensilla on the antenna of Drosophila mela-
nogaster males as previously described [18,34]. Each sen-
sillum houses several ORNs, either 4 (ab1 sensilla) or 2
(ab2, 3, 4, 5 and 6 sensilla). Neuronal excitation was
measured as counts of spikes (action potentials) produced
during a 500 ms stimulation period. Spike rates for each
odorant were averaged from at least 9 (ab1 and ab2 sen-
silla), 7 (ab3 sensillum) or 3 individuals (ab5 and ab6
sensilla). It has previously been shown that spikes pro-
duced by the neurons in each of these sensilla can be reli-
ably separated based on amplitude and shape differences
[18,33,35]. The models were based on data generated
with Tungsten electrodes but tested using saline filled
glass electrodes. Both are standard methods that have
been shown to produce similar results [34]. The fly was
permanently bathed in a 194 cm/s air-stream. Most odor-
ants were dissolved at 1% v/v in paraffin oil and air from
a 5 ml syringe, containing 10 μl on a small piece of filter
paper, was injected with a ca. 9-fold dilution factor [18].
Three odorants were tested at a 100 times lower concen-
tration [see Additional file 4] because they were extremely
potent activators for some ORNs.

Odorants
Odorants were obtained from Sigma, Aldrich or Fluka, of
purity > 99% or highest available, except for octanal
(98%), salicylaldehyde (98%), ethyl 3-hydroxybutanoate

(98%) and 2-octanone (98%). Except for (S)-(+)-carvone,
all chiral odorants were applied as racemic mixtures.

Additional material

Additional File 1
trainingCompounds. Odorant molecules for which ORN responses were 
obtained in [18]. Compound names are given in [Additional file 2].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-1-11-S1.pdf]

Additional File 2
trainingResponses. Activity values (in spikes/s) and per-ORN thresholds. 
Spike rates of "active" odorants are set in bold in the respective column. 
Compounds in brackets have uncertain activity (i.e. spike rates between 
the upper and lower threshold).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-1-11-S2.pdf]

Additional File 3
testCompounds. These odorants were screened to check prediction qual-
ity. Compound names are given in [Additional file 4].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-1-11-S3.pdf]

Additional File 4
testResponses. Measured response in test (t, in spikes/s) and predicted 
activation (p, 1 = predicted active, 0 = predicted inactive). The upper ten 
compounds were also part of the training set. Underlined ORN responses 
are considered active, those in plain font inactive according to the thresh-
olds in ORN response [see Additional file 2]. Comparisons between pre-
dictions and measurements are marked up according to the following: --
means true negative, ++ true positive, o false positive (overpredicted) and 
u false negative (underpredicted). Responses to ethyl-3-Hydroxybutyrate 
at ab2B and butyl acetate at ab3A have not been taken into account for 
the MCC calculation.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-1-11-S4.pdf]

Additional File 5
pValues. The ranked list of descriptors for each ORN and the associated 
p-values.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-1-11-S5.pdf]

Additional File 6
descriptorMeaning. The descriptors that we used in this study and how 
they are derived from chemical structure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-1-11-S6.pdf]
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