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Abstract

The main objective of this thesis is to examine the possibilities and limitations
of high resolution climate projections in orographically influenced areas on the
examples of the European Alps and the Himalayas. In particular, the question
whether observed regional patterns can be better represented in the regional data
than in the driving large-scale data is of interest. To this end, regional climate
simulations by the COSMO-CLM and from two statistical downscaling methods
are compared to ERA40 reanalysis data and data from the global atmosphere-
ocean model ECHAM5/MPIOM using various parameters of the climate system.

A comparison with the reanalysis on the basis of daily precipitation shows that
the accuracy of the COSMO-CLM rainfall data on the 0.5° scale is comparable
with ERA40 and statistically downscaled ERA40 precipitation. An additional
bias correction of the COSMO-CLM precipitation shows good results. However,
a sufficient number of rain days is necessary to give a certain degree of security
in the bias estimate. In the present study a threshold of about 500 rain days is
proposed.

For the South Asian region the reproduction of a realistic Indian summer mon-
soon (ISM) is of high relevance. Considering only the mean values and temporal
variabilities of different large-scale indices, the COSMO-CLM provides no added
value compared to the driving data. However, the spatial patterns of rainfall
and vertical wind shear as well as the temporal correlation of the ISM indices
are improved by the application of the COSMO-CLM to the ECHAM5/MPIOM
model.

COSMO-CLM projections carried out for the years 1960 to 2100 show negative
trends in the ISM indices for the SRES scenarios A2, A1B and B1. The most
negative trends are found in A2, followed by A1B and B1. Almost no trends
appear in the commitment scenario. Although there are large temporal variabili-
ties, the trends in rainfall, outgoing longwave radiation and meridional and zonal
wind shear are statistically significant in many regions of the simulation domain.
For northwest India, the projections partially show a decline in rainfall during
the monsoon season of more than 70% in 100 years. The decrease in wind shear
is found to be based mainly on changes in the upper troposphere at 200 hPa.

While in the COSMO-CLM projections all ISM indices show simultane-
ous negative trends, the trends for the all-India monsoon rainfall in the

1



2 Abstract

ECHAM5/MPIOM model are positive. Following the definition of the indices,
simultaneous trends are more likely and the COSMO-CLM is able to add value
on the global projections in this aspect as well. Overall, the results of this study
show that the COSMO-CLM adds valuable regional information to the global
models in the two regions investigated.

For the river basins of the upper Danube and the upper Brahmaputra, the
COSMO-CLM projections reveal a significant rise in temperature in both basins
and for all seasons from 1960 to 2100. The values are generally higher in the
Brahmaputra area with the highest values in the region of the Tibetan Plateau.
For precipitation, there are also clear seasonal trends, such as an increase in
spring precipitation in the upper Danube. The largest trends are again simu-
lated in the region of the Tibetan Plateau with an increase of up to 50% in the
drought length from June to September and a simultaneous increase of about
10% for the maximum amount of rainfall on five consecutive days. For the region
Assam in India, the projections show further an increase of 25% in the number
of consecutive dry days during the monsoon season.
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Kurzzusammenfassung

(Eine ausführliche deutsche Zusammenfassung findet sich in Kapitel 7.)

Das Ziel dieser Studie ist es, die Möglichkeiten und Grenzen von hoch-
auflösenden Klimaprojektionen in orographisch beeinflussten Gebieten an den
Beispielen der europäischen Alpen und des Himalajas zu prüfen. Insbesondere
wird die Fragestellung untersucht, ob beobachtete regionale Muster in den höher
aufgelösten Daten besser wiedergegeben werden als in den antreibenden großskali-
gen Daten. Dazu werden regionale Klimasimulationen des COSMO-CLM Modells
und Daten von zwei statistischen Regionalisierungsmethoden mit ERA40 Reana-
lysen sowie Daten des globalen Atmosphäre-Ozean Modells ECHAM5/MPIOM
für verschiedene Parameter des Klimasystems verglichen.

Ein Vergleich mit den Reanalysen anhand täglicher Niederschlagsstatistiken
ergibt, dass die COSMO-CLM Niederschlagsdaten auf der 0.5° Skala vergleichbar
sind mit ERA40 Niederschlägen und mit statistisch regionalisierten ERA40 Nie-
derschlägen. Eine zusätzliche Fehlerkorrektur der COSMO-CLM Niederschläge
liefert gute Ergebnisse. Dabei sind jedoch etwa 500 Regentage notwendig, um
eine robuste Fehlerabschätzung zu gewährleisten.

Für das südasiatische Gebiet ist eine realistische Wiedergabe des indischen
Sommermonsuns (ISM) in den Modellen von hoher Relevanz. Betrachtet man
nur die Mittelwerte und zeitlichen Variabilitäten von verschiedenen Indizes des
ISM, so liefert das COSMO-CLM keinen Mehrwert im Vergleich zu den antreiben-
den Daten. Allerdings werden die räumlichen Strukturen von Niederschlag und
vertikaler Windscherung, sowie die zeitliche Korrelation der modellierten Indizes
gegenüber dem ECHAM5/MPIOM Modell verbessert.

Die durchgeführten COSMO-CLM Projektionen für die Jahre 1960 bis 2100
zeigen negative Trends des ISM für die SRES Szenarien A2, A1B und B1. Die
negativsten Trends sind dabei im Szenario A2 zu finden, gefolgt von A1B und B1.
Fast keine Trends zeigen sich im commitment Szenario. Trotz großen zeitlichen
Variabilitäten sind die Abnahmen in Niederschlagsmengen, ausgehender lang-
welliger Strahlung und Windscherung statistisch signifikant in großen Regionen
des Simulationsgebietes. Für Nordwest-Indien weisen die Projektionen teilweise
einen Rückgang der Monsunniederschläge von über 70% in 100 Jahren auf. Der
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4 Kurzzusammenfassung

Rückgang der Windscherung ist hauptsächlich auf Veränderungen in der oberen
Troposphäre bei 200 hPa zurück zu führen.

Während in den COSMO-CLM Projektionen alle Indizes des ISM synchrone
Negativtrends aufweisen, sind die Trends für den Monsunregen über Indien im
globalen ECHAM5/MPIOM Model positiv. Gemäß den Definitionen der verschie-
denen Indizes, sind jedoch synchrone Trends wahrscheinlicher und das COSMO-
CLM liefert zu den globalen ISM Projektionen ebenfalls einen Mehrwert. Insge-
samt zeigen die Ergebnisse dieser Studie, dass das COSMO-CLM wertvolle regio-
nale Zusatzinformationen zu den globalen Modellen in den beiden untersuchten
Regionen liefert.

Für die Einzugsgebiete der oberen Donau und des oberen Brahmaputra liefern
die COSMO-CLM Projektionen einen signifikanten Anstieg der Temperatur für
alle Jahreszeiten der Jahre 1960 bis 2100. Die Werte sind generell höher im Brah-
maputragebiet, mit den größten Trends in der Region des tibetanischen Plateaus.
Im Niederschlag zeigen die saisonalen Anteile ebenfalls klare Trends, beispielswei-
se eine Zunahme des Frühjahrsniederschlags im Einzugsgebiet der oberen Donau.
Die größten Trends werden wiederum in der Region des tibetanischen Plateaus
projiziert mit einem Anstieg von bis zu 50% in der Länge der Trockenperioden
zwischen Juni und September und einem gleichzeitigen Anstieg von etwa 10% für
die maximale Niederschlagsmenge an fünf aufeinander folgenden Tagen. Für die
Region Assam in Indien, zeigen die Projektionen zudem eine Zunahme von 25% in
der Anzahl der aufeinander folgenden trockenen Tage während der Monsunzeit.

PhD-Thesis - Andreas Dobler, 2010



Chapter 1

Introduction

With the increasing availability of inexpensive computational resources, gen-
eral circulation models (GCMs) and regional climate models (RCMs) have be-
come very popular and are broadly used at many scientific institutions worldwide.
They serve as helpful tools to understand climate processes, simulate historic cli-
mates and to project future climates under various assumptions (e.g., future
greenhouse gas concentrations or land use).

Most of the recently performed climate projections use scenarios defined in the
special report on emission scenarios (SRES, Nakicenovic and Swart, 2000) of the
international panel on climate change (IPCC, http://www.ipcc.ch). Each sce-
nario assumes different future developments and together they cover a large part
of the uncertainties in future emissions. The output of more than 20 atmosphere-
ocean GCMs (AOGCMs) following the SRES scenarios have been collected within
the coupled model intercomparison project (CMIP) Phase 3 (Meehl et al., 2007,
http://cmip-pcmdi.llnl.gov/). This data provided the basis for a large part
of the research results presented in the fourth IPCC assessment report.

In the present work, simulations according to the following four SRES scenarios
are considered.� A1B: A very rapid economic growth with a low global population growth

that peaks in mid-century and declines thereafter. It also assumes rapid
introduction of new and more efficient technologies and a balance of fossil
and non-fossil energy sources.� B1: A convergent world with the same global population as in the A1
storyline but with rapid changes in economic structures toward a service
and information economy, with reductions in material intensity, and the
introduction of clean and resource-efficient technologies.� A2: A very heterogeneous world with continuously increasing global pop-
ulation and regionally oriented economic growth that is more fragmented
and slower than in other story lines.

5
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6 Introduction� Commitment: The greenhouse gas concentrations are held fixed at the year
2000 level.

Currently, the demand for climate information increases in many scientific
disciplines like hydrology, climate change impact and adaption studies, but also
in politics. However, most GCMs are run with a horizontal grid resolution of
about 200 km due to still arising limitations in computational power. While
it is necessary to generate these global GCM projections, for instance to force
RCMs at the boundary, the spatial resolution is often not sufficient to fulfill the
requirements of highly resolved regional information. A downscaling to a grid
resolution of 0.5° (50 km) or less is necessary to generate regional precipitation
patterns (Ahrens, 2003; Beck et al., 2004; Dobler and Ahrens, 2008; Frei et al.,
2003; Salathé, 2003), especially in regions with a complex orography. Further-
more, while most GCMs show agreement in the projected global and continental
temperature trends in the 21st century, there is large disagreement in the projec-
tions of precipitation at the regional scale (Annamalai et al., 2007; IPCC, 2007b)
and a downscaling may add some value in this aspect.

Thus, the use of downscaling methods has significantly increased in the last
years. However, the resulting regional climate projections include uncertainties
due to: 1) the downscaling approach, 2) the driving GCM, 3) the greenhouse gas
emission scenario, and 4) natural climate variability.

Generally, two classes of downscaling methods can be distinguished (Murphy,
1999; Xu, 1999): a) dynamical downscaling via a high-resolution simulation of
physical processes (e.g., by a RCM) and b) statistical downscaling employing
observed relationships between coarse and fine scales. Furthermore, the two
methods may be used in combination and statistical downscaling methods can
be applied as bias correction methods, where the final data is at the same scale
as the input fields.

The here presented work investigates the possibilities, limitations, uncertain-
ties and applications of different methods with the purpose to bridge the scale
gap between GCM projections and impact modeling. The investigation focuses
on two spatially heterogeneous areas including two major alpine regions: the
European Alps and the Himalayas.

In chapter 2 of this work, different downscaling methods are evaluated with
the help of daily precipitation statistics in Europe and South Asia. In chapter 3,
an analysis of the representation of the Indian summer monsoon (ISM) system
in the RCM COSMO-CLM (http://www.clm-community.eu) and in the driving
GCMs is given. Chapter 4 deals with the discussion of climate projections for the
ISM generated by the COSMO-CLM and the AOGCM ECHAM5/MPIOM. To
provide different possible future developments, the SRES scenarios A1B, A2, B1
and commitment have been simulated for the time span 1960-2100. In chapter 5
the issue of a changing climate in the upper Danube and the upper Brahma-
putra river basin (UDRB and UBRB) is assessed by the use of seasonal trends

PhD-Thesis - Andreas Dobler, 2010
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Introduction 7

of daily precipitation and temperature indicators from 1960 to 2100. Finally,
chapter 6 gives the conclusions drawn from this work and chapter 7 provides a
German summary. An evaluation study on radiation fluxes over Europe by Kothe
et al. (2010), including the COSMO-CLM simulations generated for this thesis,
is shown in the Appendix.

As a further application, the downscaled projections have been used within the
BRAHMATWINN project (http://www.brahmatwinn.uni-jena.de) as input
to simulate historical and future water balances of the UDRB and the UBRB
(Prasch et al., 2010), in glacier and permafrost modeling (Lang et al., 2010) and
in the calculation of climate change indicators (Giannini and Giupponi, 2010;
Giannini et al., 2010).

PhD-Thesis - Andreas Dobler, 2010
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Chapter 2

Precipitation by a regional
climate model and bias correction
in Europe and South Asia

Published as: Dobler, A. and B. Ahrens, 2010: Precipitation by a

regional climate model and bias correction in Europe and South
Asia. Meteor. Z., 17 (4, Sp. Iss.), 499-509.
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10 2. Precipitation modeling in Europe and South Asia

2.1 Abstract

Because coarse-grid global circulation models do not allow for regional esti-
mates of the water balance or trends of extreme precipitation, downscaling of
global simulations is necessary to generate regional precipitation. This paper ap-
plies for downscaling the regional climate model CLM as a dynamical downscaling
method (DDM) and two statistical downscaling methods (SDMs). Because the
SDMs neglect information available to the DDM, and vice versa, a combination
of the dynamical and statistical approaches is proposed here. In this combined
approach, a simple statistical step is carried out to correct for the regional model
biases in the dynamically downscaled simulations.

To test the proposed methods, coarse-grid global re-analysis data (ERA40 with
∼1.125◦ grid spacing) is downscaled in two regions with different climatology and
orography: one in South Asia and the other in Europe. All of the methods are
tested on daily precipitation with 0.5◦ grid spacing. The SDMs are generally
successful: the standardized root mean square error of rain day intensity is re-
duced from ERA40’s 0.16 to 0.10 in a test area to the west of the European Alps.
The CLM simulations perform less well (with a corresponding error of 0.14), but
represent a promising approach if the user requires flexibility and independence
from observational data. The proposed bias correction of the CLM simulations
performs very well in European test areas (better than or at least comparable
with the SDMs; i.e., with a corresponding error of 0.07), but fails in South Asia.
An investigation of the observed and simulated precipitation climate in the test
areas shows a strong dependence of the bias correction performance on sampling
statistics (i.e., rain day frequency) and on the robustness of bias estimation.

PhD-Thesis - Andreas Dobler, 2010



2. Precipitation modeling in Europe and South Asia 11

2.2 Zusammenfassung

Da grob aufgelöste globale Zirkulationsmodelle keine regionale Einschätzung
des Wasserhaushalts oder der Entwicklung von Extremniederschlägen erlauben,
ist ein Hinunterskalieren der globalen Klimaprojektionen auf die regionale Skala
notwendig, um regionale Niederschlagsfelder zu erzeugen. In dieser Arbeit werden
das regionale Klimamodell CLM für ein dynamisches Hinunterskalieren und zwei
statistische Skalierungsmethoden angewendet. Da statistische Methoden Infor-
mation vernachlässigen, welche in dynamischen Methoden verwendet wird, und
umgekehrt, stellen wir hier einen kombinierten Ansatz vor. In diesem Ansatz
wird ein einfacher statistischer Schritt durchgeführt um regionale, systematische
Fehler in den dynamisch hinunterskalierten Simulationen zu korrigieren.

Um die Methoden zu testen, werden grob aufgelöste globale Reanalyse Daten
(ERA40 mit ∼1.125◦ Gitterabstand) in zwei Regionen mit unterschiedlicher Kli-
matologie und Orographie skaliert: Eine in Südasien die andere in Europa.
Alle Methoden werden im Vergleich mit täglichem Niederschlag mit 0.5◦ Git-
terabstand getestet. Die statistischen Skalierungsmethoden sind generell er-
folgreich: Der standardisierte mittlere quadratische Fehler der Regentaginten-
sität von ERA40 wird von 0.16 auf 0.10 reduziert in einem Testgebiet west-
lich der Europäischen Alpen. Die CLM Simulationen schneiden weniger gut ab
(mit einem entsprechenden Fehler von 0.14), sind aber vielversprechend, wenn
Unabhängigkeit von Beobachtungsdaten und Flexibilität erwünscht sind. Die
vorgestellte Fehlerkorrektur der CLM Simulationen funktioniert sehr gut in eu-
ropäischen Testgebieten (besser oder zumindest vergleichbar mit den statistischen
Skalierungsmethoden, d.h. mit einem entsprechenden Fehler von 0.07), schlagen
aber fehl in Südasien. Eine Untersuchung der beobachteten und simulierten Re-
gentaghäufigkeit in den Testgebieten zeigt eine grosse Abhängigkeit der Güte der
Fehlerkorrekturen von Sampling-Statistiken (d.h. Regentaghäufigkeit) und von
der Robustheit der Modellfehlerschätzung.

PhD-Thesis - Andreas Dobler, 2010



12 2. Precipitation modeling in Europe and South Asia

2.3 Introduction

Climate predictions of regional precipitation patterns are important for investi-
gations of water balance or changes in heavy precipitation. Although simulations
performed using current global circulation models (GCMs) feature a grid resolu-
tion of about 2◦, this is insufficient for examining regional precipitation patterns,
which requires downscaling to a grid resolution of 0.5◦ or less (Ahrens et al., 2003;
Beck et al., 2004; Frei et al., 2003; Salathé, 2003).

Generally, two different classes of downscaling methods may be applied (Mur-
phy, 1999; Xu, 1999)): a) dynamical downscaling methods (DDMs) based on
simulations of physical processes at a fine scale, and b) statistical downscal-
ing methods (SDMs) that employ observed statistical relationships between the
coarse and fine scale. A wide range of different downscaling methods have been
reviewed by Wilby and Wigley (1997); Giorgi et al. (2001). As a DDM, this
paper applies the regional climate model CLM (http://www.clm-community.
eu; Böhm et al., 2006). The DDM performance is compared with the perfor-
mance of two simple SDMs in terms of our predictant, daily precipitation with
0.5◦ grid resolution. To minimize the influence of predictor uncertainties on the
downscaling results, we use ERA40 (Uppala et al., 2005) re-analysis data from
the European Centre for Medium-Range Weather Forecasts (ECMWF) rather
than GCM simulations. The global ERA40 re-analysis has only small circulation
errors, thereby yielding an optimal environment for evaluation of the different
downscaling methods. In using the CLM, precipitation is generated by regional
climate simulations driven with ERA40 data. For the SDMs, the coarse-grid
ERA40 precipitation is used as a predictor. The use of coarse-grid precipitation
as a predictor for SDMs has previously been successfully applied by Widmann
et al. (2003).

This paper also tests the potential of combining the dynamical and statistical
downscaling approaches via the application of bias correction to the dynamically
downscaled simulations. The goal is to make use of the advantages of the two
approaches (DDM and SDMs). The employed bias correction methods (BCMs)
are conceptually identical to the applied SDMs.

The employed statistical methods make use of the empirical relationships be-
tween the predictants (i.e., ERA40 precipitation in the case of the SDMs and CLM
precipitation in the case of the BCMs) and observations over a certain training
period to reduce the bias in rain day frequency and rain day intensity over an
independent evaluation period. Therefore, the statistical methods depend on the
stationarity of any error in the predictant from the training to evaluation periods
(as discussed in greater detail below) and fail if this stationarity is not achieved;
however, methods implemented to reduce model biases have shown good results,
both for downscaling (Wood et al., 2004) and bias correction (Hay et al., 2002).

Our methods are applied and evaluated in six regions with different climates.

PhD-Thesis - Andreas Dobler, 2010
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2. Precipitation modeling in Europe and South Asia 13

The results of this evaluation may be used as a guide for the future choice of
methods employed in the downscaling of climate projections from GCMs. One
of our aims is to assess the performances of the different methods in terms of
transferability from one climate region to another; i.e., to determine the degree
to which the performances of the downscaling methods are region-specific. As
part of this transferability study, we also intend to identify deficiencies in the
different downscaling and bias correction methods. The transferability of the
CLM to different climate zones of the earth (using the example of precipitation)
is addressed in detail by Rockel and Geyer (2008). Additional transferability
studies, including analyses of other regional climate models, are outlined in Takle
et al. (2007).

The remainder of this paper is organized as follows. Section 2 describes the an-
alyzed data and Section 3 the applied methods. Section 4 presents and discusses
the results, and the conclusions are provided in Section 5.

2.4 Data

2.4.1 Regions

Test regions with contrasting climatology and orography were chosen in two
domains: Europe (Fig. 2.1), with a generally temperate climate, and South Asia
(Fig. 2.2), with a tropical monsoon climate. In turn, three evaluation regions were
selected within each of these two domains. The three European evaluation regions
are based on those used previously by Schmidli et al. (2006): a flat area to the west
of the Alps (WEST), an alpine region in southern Switzerland (TIC), and a region
containing the northern alpine ridge (NALP). The sizes of the three regions are
3.5◦×3◦, 2◦×2◦, and 3.5◦×2◦, respectively (see. Fig. 2.1). Precipitation in TIC
and NALP is strongly influenced by orography. We chose the same European
evaluation regions as those used previously to enable a comparison of our methods
with the local intensity scaling (LOCI) method used by Schmidli et al. (2006).
The three selected evaluation regions in the South Asian domain (each 2◦×2◦;
Fig. 2.2) are Central India (CI), Lhasa (LH), and Assam (AM). CI is located upon
the Deccan Plateau, and LH and AM are located to the north and south of the
eastern Himalayas, respectively. Thus, precipitation in LH and AM is strongly
influenced by orographic factors.

2.4.2 Reference data sets

Observation-based reference data sets are required for training of the SDMs,
training of the BCMs, and for evaluation purposes. For the South Asian domain,
the East Asia Daily Precipitation dataset (Xie et al., 2007) is used on its na-
tive 0.5◦ grid for the period 1978-2001. For the European Alpine area, a 29-year
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14 2. Precipitation modeling in Europe and South Asia

Figure 2.1: Orography (m) used for the regional climate simulations with
the CLM and evaluation regions WEST, TIC, and NALP (from left to right)
in the European computational domain.

(1971-1999) daily analysis at a grid resolution of 1/6◦ is available (Frei and Schär,
1998, version 4.1). However, the European dataset is averaged to a 0.5◦ grid for
consistency; thus, the target resolution of downscaling in both domains is 0.5◦.
Both data sets are gauge-based analyses. In the South Asian region, the lower
density of the gauge network is compensated by the use of monthly climatologies
to correct for orographic effects (Xie et al., 2007). The data sets are split into a
training period (South Asia: 1978-1989, Europe: 1971-1985) and an evaluation
period (1990-2001 and 1986-1999, respectively). The impact of the limited dura-
tion of the periods assigned for daily training and evaluation of the data for the
South Asian region are discussed in Section 4. Figures 2.3a) and 2.4a) show the
mean yearly precipitation during the entire observation periods for parts of the
European and South Asian domains, including the evaluation regions. Note that
the SDMs and BCMs yield precipitation fields on the grid of the reference data
sets by design as will be discussed in Section 3.

2.4.3 ERA40 data

ERA40 re-analyses (Uppala et al., 2005) from the ECMWF with a resolution
of ∼1.125◦ (T159) are used as a substitute for coarse-grid GCM projections.
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Figure 2.2: As for Fig. 2.1, but for the South Asian computational domain.
Here the evaluation regions (from left to right) are Central India, Lhasa, and
Assam.

Several ERA40 fields are used as forcing data for the DDM. For the SDMs,
ERA40 precipitation interpolated to a 1.25◦ regular latitude/longitude grid is
used as a predictor.

While the large-scale circulation in the re-analysis is bound to observations,
precipitation is generated by the model of the ECMWF analysis system. Figures
2.3b) and 2.4b) show the mean yearly ERA40 precipitation during the observation
periods in parts of the European and South Asian domains. Note that to enable
comparison, the precipitation fields in Figs. 2.3b) and 2.4b) have been bilinearly
interpolated to the target grid with 0.5◦ grid spacing.

2.5 Methods

Figure 2.5 provides a schematic overview of the different methods applied in
this paper. The downscaling methods are either a dynamical downscaling method
(DDM) or one of two statistical downscaling methods (SDMs). We also propose
two bias correction methods (BCMs) that combine the DDM with an additional
bias correction step based on the SDMs. The methods are described in the
following subsections.
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Figure 2.3: Mean yearly precipitation (mm/a) during the observation period
1971-1999 for a) observations, b) ERA40, and c) dynamically downscaled
ERA40 precipitation for part of the European domain containing the three
evaluation regions.

2.5.1 Dynamical downscaling using the CLM

Dynamical downscaling of ERA40 simulations employs the CLM (clm 3.1,
climate version of the COSMO model from the German meteorological service
(DWD); Böhm et al. 2006). The model is driven by ERA40 data in two com-
putational domains: Europe and South Asia (see Figs. 2.1 and 2.2). A rotated
grid is used in each of the domains with a grid spacing of 0.44◦. The model is
driven by conventional forcing at the lateral boundaries with an update interval
of 6 hours. As shown in Figs. 2.1 and 2.2, the orography in the South Asian
domain shows relatively steep slopes compared with the European domain. The
two regions also show major differences in their climatological properties, such
as the total yearly amount of precipitation (Figs. 2.3c and 2.4c); however, to
assess the transferability problem we use the same setup and model version in
both domains. This setup is equivalent to that used for the CLM consortial runs
(Hollweg et al., 2008) except for the horizontal resolution (0.44◦ in the present
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Figure 2.4: As for Fig. 2.3, but for part of the South Asian domain and the
observation period 1978-2001.

study) and the number of vertical layers (20 in the present study). In particular,
we used prognostic cloud water and diagnostic rain and snow in the parameter-
ization of grid-scale precipitation, and the Tiedtke scheme (Tiedtke, 1989) for
convection parameterization. The simulations were initialized in 1958 to avoid
spin-up effects, and the whole ERA40 period (1958-2001) was downscaled.

2.5.2 Statistical downscaling with local intensity scaling

(LOCI)

Local intensity scaling (LOCI), suggested by Schmidli et al. (2006) for down-
scaling of GCM precipitation, works on the basis of daily precipitation. The
downscaled precipitation is corrected for biases in rain day frequency and rain
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Figure 2.5: Schematic overview of the applied downscaling and bias correc-
tion methods.

day intensity. The LOCI algorithm applied in the present study consists of the
following four steps:

(1) Bilinear interpolation of model precipitation to the observation grid. Here,
our method differs slightly from the original LOCI algorithm, where a simple
nearest neighbor interpolation was applied; however, the evaluated statistics are
in agreement with the findings of Schmidli et al. (2006) (see section 4.1).

(2) Determination of the model rain day threshold RDT m such that

|{P ∈ P m
t |P > RDTm}|
|P m

t | =
|{P ∈ P o

t |P > 1 mm/d}|
|P o

t |
,

where P is the daily precipitation and P o
t and P m

t are observed and interpo-
lated model precipitation series, respectively. The subscript t denotes the training
period. Thus, RDT m is obtained in the training period such that the frequency
of the simulated rain days is equal to the frequency of the observed rain days
(i.e., days with more than 1 mm/d observed precipitation).

(3) Estimation of the scaling factor

ŝ =
{P ∈ P o

t |P > 1 mm/d} − 1 mm/d

{P ∈ P m
t |P > RDTm} − RDT m

as the ratio of the mean rain day intensity of observed to model precipitation
during the training period.

(4) Calculation of the final downscaled precipitation:

P̂ = max (0 mm/d, 1 mm/d + ŝ · (P − RDT m))

for all P ∈ P m
e , where the subscript e denotes the evaluation period. Thus,

the difference between the evaluation period model precipitation and model rain
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day threshold is multiplied by the scaling factor ŝ and added to the observation
rain day threshold (1 mm/d). Resulting negative values are set to zero.

The method is applied at every observation grid point. Thus, applying step
four to the model training period precipitation series P m

t instead of P m
e would

yield time series with the same climatological rain day frequency (FRE) and
rain day intensity (INT) as P o

t at every grid point. When applied to P m
e , one

would expect the resulting downscaled precipitation to be more accurate than
the coarse-grid precipitation in terms of FRE and INT; however, this is only true
if RDT m and ŝ have a similar value in the evaluation and training periods.

2.5.3 Statistical downscaling with gamma distribution
mapping (GAMMA)

A two-parameter gamma distribution is commonly used to model observed rain
day intensities (Aksoy, 2000), and has previously been used for the downscaling
of GCM seasonal forecasts to the station scale (Ines and Hansen, 2006). The
distribution is given by

γ(P ) =
1

βαΓ(α)
P α−1e−P/β

for any rain day intensity of P ≥ 0 mm/d. The distribution is defined by the
shape parameter α and the scale parameter β. The mean and variance of the
distribution are given by αβ and αβ2, respectively.

As an example, consider one grid cell in the evaluation region CI. Figure 2.6
shows the probability densities of observed rain day intensities above 1 mm/d for
this point during the evaluation period 1990-2001, a fitted two-parameter gamma
distribution, and a fitted exponential distribution. For the gamma distribution,
the estimated parameter values are α̂ ≈ 0.6 and β̂ ≈ 16.6 mm/d, and the mean
and variance values are 10.7 mm/d and 177.2 (mm/d)2, respectively. For the
exponential distribution, these values are 10.7 mm/d and 114.5 (mm/d)2, respec-
tively, whereas for the observations the corresponding values are 10.7 mm/d and
228.8 (mm/d)2.

The local statistical downscaling method presented here, named GAMMA,
maps the ERA40 precipitation series to a projected two-parameter gamma dis-
tribution at every observation grid point. The first two steps of GAMMA are the
same as in LOCI given above. These are followed by:

(3) Reduction of the precipitation series to the amount above the corresponding
rain day threshold. For the observations the threshold is 1 mm/d, and for the
model precipitation we use RDT m. The resulting time series are

P o∗
t = {P ∈ P o

t |P > 1 mm/d} − 1 mm/d,

P m∗

t = {P ∈ P m
t |P > RDTm} − RDT m,
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Figure 2.6: Gamma (solid) and exponential (dotted) distribution fitted to
the probability densities of observed daily precipitation above 1 mm/d (gray)
for a single grid cell in the evaluation region Central India during the period
1990-2001.

P m∗

e = {P ∈ P m
e |P > RDTm} − RDT m.

(4) Maximum likelihood estimation of the shape (α) and scale (β) parameters
α̂o

t , β̂o
t , α̂m

t , β̂m
t , α̂m

e , and β̂m
e for P o∗

t , P m∗

t , and P m∗

e .
(5) Generation of a gamma distribution projection γ with α̂ = α̂m

e · α̂o
t/α̂

m
t

and β̂ = β̂m
e · β̂o

t /β̂
m
t . Thus, the ratio between the two parameters of the new

distribution γ and the reduced model precipitation of the evaluation period P m∗

e

is set to be the same as the ratio between the two parameters of the reduced
observation and model precipitation during the training period.

(6) Map the model precipitation to the gamma distribution γ using

P̂ = F−1

γ (F m(P )) + 1 mm/d

for all P ∈ P m∗

e , where F m() is the empirical cumulative distribution function
(CDF) of the model precipitation and F−1

γ () is the inverse of the CDF of the
projected gamma distribution γ.

In step (6), mapping is only performed for model precipitation above RDT m.
Below RDT m, the model precipitation is simply linearly interpolated between 1
and 0 mm/d; however, the total precipitation amount for days with precipitation
below 1 mm/d is only 2.5% of the total yearly amount, and the mapping errors
for small model precipitation is negligible. The use of an exponential distribution
instead of a gamma distribution in mapping the model precipitation yielded a
reduction in accuracy (not shown).
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2.5.4 Bias correction of CLM precipitation

Both regional and global climate models commonly show model biases in, for
example, rain day frequency and rain day intensity. When applying one of the
SDMs described above, a bias correction for the coarse-grid precipitation is per-
formed automatically. To correct for the bias of CLM precipitation (i.e., of DDM
output), we employ the same algorithms as those used for statistical downscaling.
The interpolation step is also carried out, as the model and observation grids are
not identical. Both BCMs are carried out at every observation grid point, thereby
enabling us to correct the model bias locally; this is advantageous because the
CLM bias shows spatial variations (Jaeger et al., 2008).

2.6 Results and discussion

2.6.1 Statistical downscaling of ERA40 precipitation

Both SDMs are applied to all grid points inside the six evaluation regions. As
evident in Fig. 2.7, both methods yield a more accurate rain day intensity in the
European evaluation regions than the interpolated ERA40 precipitation; this is
especially true for the region TIC. ERA40 precipitation was interpolated to the
observation grid using the nearest neighbor technique, but bilinear interpolation
yields similar results (not shown). The differences between the two SDMs are
small for all European regions. The results obtained using LOCI are in agreement
with those of Schmidli et al. (2006).

Figure 2.7: Rain day intensity in the European evaluation regions for obser-
vations, ERA40, and statistically downscaled ERA40 precipitation by LOCI
and GAMMA during the evaluation period.

In the South Asian evaluation regions, the seasonal cycle of the ERA40 sim-
ulations and the observations show a number of differences that the SDMs are
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Figure 2.8: As for Fig. 2.7, but for the South Asian evaluation regions.

Table 2.1: List of precipitation properties

Acronym Description Unit
FRE Fraction of days with more than 1 mm/d 1

precipitation
INT Mean precipitation amount on days with mm/d

more than 1 mm/d precipitation
FL90 Fraction of total precipitation above the 1

long-term 90th percentile

unable to correct (Fig. 2.8). The differences between the two methods are some-
what larger than those obtained for the European evaluation regions, but remain
very small.

For a more quantitative analysis, we calculate the root mean square errors
(RMSEs) of rain day frequency (FRE), rain day intensity (INT), and heavy rain-
fall proportion (FL90). FL90 is the proportion of total rainfall derived from
events more intense than the 90% quantile. More detailed information on FRE,
INT, and FL90 is provided in Table 2.1. The RMSEs are calculated from the
spatially averaged monthly deviations from the observations and are standard-
ized by division by the observed annual mean. Table 2.2 shows the standardized
RMSEs for the six evaluation regions for the interpolated and statistically down-
scaled ERA40 precipitation. For FRE, the RMSE is reduced in all evaluation
regions except WEST. The two methods yield the same result, as is inevitable
by design: for both statistical methods, the first two steps are the same, meaning
that RDT m is the same. As RDT m is not affected by the following steps, FRE
is also unaffected. For INT there is an increase in accuracy in all six regions. In
examining the performance of the two methods concerning INT, LOCI performs
better in WEST and GAMMA performs better in CI; however, the differences
are small, and no clear differences are observed between the two methods for the
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Table 2.2: Standardized root mean square errors for ERA40 and statisti-
cally downscaled ERA40 precipitation. These errors are calculated from the
spatially averaged monthly deviations from the observations. The values are
given as part of the observed annual mean in the six evaluation regions for
different precipitation properties.

WEST NALP TIC CI LH AM
FRE
ERA40 0.10 0.13 0.18 0.29 1.67 0.39
ERA40 LOCI 0.11 0.13 0.18 0.26 0.38 0.10
ERA40 GAMMA 0.11 0.13 0.18 0.26 0.38 0.10
INT
ERA40 0.16 0.14 0.33 0.38 1.21 0.35
ERA40 LOCI 0.09 0.10 0.11 0.25 0.38 0.31
ERA40 GAMMA 0.10 0.10 0.11 0.24 0.38 0.31
FL90
ERA40 0.07 0.06 0.10 0.31 0.25 0.08
ERA40 LOCI 0.08 0.07 0.09 0.29 0.35 0.09
ERA40 GAMMA 0.07 0.07 0.09 0.25 0.33 0.13

other four evaluation regions. The biggest differences between the two methods
can be found in the RMSE of FL90. In this case, GAMMA performs better than
LOCI in WEST, CI, and LH. This result was expected, as LOCI simply scales
the coarse-grid precipitation with the estimated factor ŝ, while GAMMA uses
two parameter estimates; however, in the evaluation region AM, LOCI performs
better than GAMMA. With regard to FL90, the raw ERA40 simulations are
slightly more accurate than LOCI in WEST and more accurate than both SDMs
in NALP, LH, and AM.

As shown by Hagemann et al. (2005), the ERA40 precipitation strongly overes-
timates precipitation in the Ganges-Brahmaputra region for the period 1989-2001.
This overestimation can also be seen in Fig. 2.8 for LH, which is located in the
same region. Furthermore, the relatively high RMSEs of the statistically down-
scaled ERA40 precipitation in LH can be explained by the changing model bias
in the ERA40 data from the training to evaluation periods (Hagemann et al.,
2005). The wet bias of the ERA40 data in LH, and especially in AM during
spring, as well as the general dry bias in NALP, are also in agreement with the
findings of Hagemann et al. (2005).

2.6.2 Dynamical downscaling by the CLM with and with-
out bias correction

Dynamical downscaling by the CLM reproduces the observed INT reason-
ably well in the European evaluation regions (Fig. 2.9). Comparing Fig. 2.9 with
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Fig. 2.7, we see that in TIC the CLM bias is much smaller than the ERA40 bias;
in the two other regions it is comparable to the ERA40 bias. Figure 2.10 is the
same as Fig. 2.9 but for the South Asian evaluation regions. Here, the CLM ex-
perienced major difficulties in representing the observed INT climatologies. For
example, the interseasonal variance of the CLM INT bias is much larger in CI
than in NALP; the same is true for FRE and FL90 (not shown). However, a
comparison of Table 2.3 and Table 2.2 reveals that the overall CLM performance
is comparable with that of ERA40 and statistically downscaled ERA40 precipita-
tion. As reported by Beck et al. (2004), it is difficult to improve the high-quality
ERA40 precipitation in the European Alps with nested model simulations if com-
pared at the 0.5◦ scale. In LH, however, the CLM clearly outperforms ERA40;
this can be explained by the limitations of the ERA40 data described above.

Figure 2.9: Rain day intensity in the European evaluation regions for obser-
vations, CLM, and bias corrected CLM precipitation by LOCI and GAMMA
during the evaluation period.

Figure 2.10: As for Fig. 2.9, but for the South Asian evaluation regions.

Both BCMs perform well in Europe (see Fig. 2.9), but the BCMs perform less
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Table 2.3: As for Table 2.2, but for CLM and bias corrected CLM precipi-
tation.

WEST NALP TIC CI LH AM
FRE
CLM 0.21 0.27 0.18 0.42 0.54 0.18
CLM LOCI 0.06 0.12 0.14 0.43 0.19 0.12
CLM GAMMA 0.06 0.12 0.14 0.43 0.19 0.12
INT
CLM 0.14 0.25 0.10 0.42 0.24 0.48
CLM LOCI 0.07 0.07 0.11 0.61 0.45 0.39
CLM GAMMA 0.07 0.08 0.10 0.66 0.41 0.35
FL90
CLM 0.08 0.07 0.06 0.38 0.17 0.23
CLM LOCI 0.08 0.07 0.06 0.34 0.17 0.31
CLM GAMMA 0.05 0.06 0.10 0.33 0.18 0.18

well in South Asia. Bias correction increases the CLM INT bias in CI for several
months (Fig. 2.10). The statistics provided in Table 2.3 show that in the two
European regions WEST and NALP and the South Asian region AM there is a
positive impact of GAMMA on INT, FRE, and FL90. Among the three other
regions (TIC, CI, and LH) the impact of GAMMA is variable. The performances
of LOCI and GAMMA are strongly similar; again, the biggest differences can be
found in FL90, where GAMMA shows an overall superior performance. Due to
the high interseasonal variance of the CLM bias in CI, training of the BCMs over
the entire period is insufficient: both BCMs fail, even in the bias correction of
FRE.

The bias corrected CLM precipitation outperforms the statistically downscaled
ERA40 precipitation in all European evaluation regions, but the opposite result is
obtained for two of the South Asian evaluation regions due to the strong seasonal-
ity of the precipitation and its generating processes, which are better reproduced
in the ERA40 data. It must be remembered, however, that the CLM is under
constant development, and its performance in the South Asian region is expected
to improve over time. Because the BCMs use the same methods as the SDMs,
the accuracy of the bias corrected CLM precipitation will increase with reduced
variation in the CLM bias.

2.6.3 Monthly training for bias correction of CLM pre-
cipitation

As shown above, the high interseasonal variance of the CLM bias has a neg-
ative effect on the BCMs. Thus, monthly training for the BCMs is tested in
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Central India (CI), although seasonal or monthly training raises the potential for
overfitting (Schmidli et al., 2006). Figure 2.11 shows a number of positive effects
of this procedure (e.g., for March) but also some marked deficiencies (e.g., for
November). For each month, the relative CLM INT bias is calculated as the dif-
ference between simulated and observed INT divided by observed INT (Fig. 2.12).
It is evident that for several months the CLM INT bias changes significantly be-
tween the training and evaluation periods. For example, in November the model
underestimates the observations during the training period but slightly overesti-
mates them during the evaluation period. This changing bias from the training
to evaluation periods resulted in the failure of both BCMs.

Figure 2.11: Rain day intensity in the South Asian evaluation region CI
during the evaluation period for observations, CLM and, bias corrected CLM
precipitation using monthly training.

2.6.4 Bias estimation

The observed change of the CLM INT bias in CI is not purely a problem with
model performance: it may also be a statistical artifact due to a small sample
size of rain days. Training and evaluation periods of the same length as those
employed for Europe would increase the sample size, although not by much. For
example, note that for November the total number of observed rain days (spatially
averaged over CI) is 22 in the training period and 26 in the evaluation period (not
shown). During this training period, the observations show a number of heavy
precipitation events (up to 200 mm/d), yet these events are almost completely
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Figure 2.12: Relative rain day intensity bias of the CLM in the South
Asian evaluation region CI during the training (black) and evaluation (gray)
periods. Bars denote estimations for the 90% confidence interval of the CLM
bias.

missing in the evaluation period. This does not appear to be a problem with
observational data, as a comparison with CRU TS 2.1 (Mitchell and Jones, 2005)
monthly rainfall amounts showed that the monthly sums are comparable. Given
the small total number of rain days, however, these extreme events have a major
impact on the rain day distribution and INT. In this training period the CLM
simulates only 7 rain days and is not able to simulate the extreme events, thereby
explaining the observed underestimation. In the evaluation period, however, the
CLM simulates 29 rain days and slightly overestimates the observations. With
a higher number of rain days the likelihood of changing model bias is expected
to decrease. Taking into account all of the rain days for an evaluation region
increases the number of rain days under consideration; however, as the events at
individual points are not independent, the actual distribution and performance
of the BCMs show little change (not shown).

Figure 2.12 shows the uncertainties in the CLM INT bias estimates. The
90% confidence interval is shown for each month of the training period. The
intervals for individual months were calculated using Student’s t-distribution with
n − 1 degrees of freedom, where n is the number of observed rain days. The
resulting intervals scale with 1/

√
n. Note that for a small number of rain days

and non-normal distributions these intervals are only approximations; however,
similar intervals were estimated using a bootstrap method (Ahrens et al., 2003),
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indicating that the confidence intervals are robust (not shown).
For the non-monsoon season (October-May), the uncertainties are large due

to the small number of observed rain days, while for the monsoon season (June-
September) the uncertainties are relatively small; however, for several months
the bias change lies outside the 90% confidence intervals. For these months, the
changing model bias is probably partly due to deficiencies in the CLM physics
or problems within the observation data set. The same investigation was carried
out for the European evaluation region NALP (not shown). In this case, the
average, variance, and change of the relative bias are much smaller than in CI;
furthermore, the minimum number of observed rain days is higher: all months
show at least 100 rain days. Thus, the uncertainties for individual months are
small in NALP compared with CI.

2.7 Conclusions

ERA40 simulations were downscaled to the regional scale with two SDMs
(LOCI and GAMMA) and a DDM (the regional climate model CLM). Two bias
correction methods (BCMs) were also applied to the CLM simulations. The
BCMs are based on the same methods as the SDMs. To test the different methods
for transferability, they were applied to European and South Asian domains, with
each domain containing three evaluation regions.

The performance of the SDMs was related to the intra- and interannual vari-
ance of the estimated model bias. In the European evaluation regions, the ERA40
simulations show stationary biases in precipitation that the SDMs are able to cor-
rect to a reasonable degree. In the South Asian evaluation regions, the biases
of the ERA40 precipitation show a higher seasonal dependency and the SDMs
perform less well. This is a major drawback for application of the SDMs on GCM
projections, as GCMs are expected to show a bigger intraannual variance of the
bias then the ERA40 data. The same holds for the size of the bias: with an
increasing bias, the risk of a negative impact of the SDMs also increases.

The main deficiencies of the CLM in the South Asian domain are apparent
during the monsoon season, when the CLM underestimates the observed rain day
intensity. As shown by Rockel and Geyer (2008), the CLM also highly underes-
timates the seasonal precipitation in this region during summer (JJA) when the
Kain-Fritsch convection scheme (Kain and Fritsch, 1993) and spectral nudging
(von Storch et al., 2000) are applied; only an improved parameterization of the
cloud and precipitation processes leads to an increase in CLM performance. This
finding is not surprising because the model was not designed for this climate
region. Nevertheless, the accuracy of CLM precipitation at the 0.5◦ scale is com-
parable with that of ERA40 precipitation, and in most places comparable with
that of statistically downscaled ERA40 precipitation. The CLM is therefore a
promising downscaling method for application on GCM projections. Moreover,
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the CLM has an advantage in that it yields a consistent set of different mete-
orological parameters that can be used, for example, as input to a hydrological
model; however, it remains to compare the CLM and SDMs for downscaling of a
general GCM. This task will be undertaken in a future study.

LOCI and GAMMA yield similar results in all six evaluation regions, both for
downscaling of ERA40 precipitation and bias correction of CLM precipitation.
Overall, GAMMA performs slightly better than LOCI when considering the heavy
rainfall proportion.

In comparing the different methods, we conclude that the CLM combined
with a BCM should be the method of choice for simulations of precipitation in
a European domain. In the South Asian domain, however, a high seasonality in
the CLM bias and a large uncertainty in the bias estimation for non-monsoon
months have negative impacts on bias correction. Thus, based on the current
results we suggest the use of CLM precipitation without any BCM in this region,
as the risk of a negative impact is too high. The combination of CLM simulation
and BCM appears to be less transferable than the CLM itself.

Our results reveal that a reasonable number of rain days in the training period
is essential to generate sufficient certainty in the model bias and thus the impact
of the statistical methods. We suggest a minimum number of about 500 rain
days to ensure a robust estimation of stationary (GCM or CLM) model bias and
thereby the successful application of the statistical methods. This requirement
limits the application of the statistical methods in dry or seasonally dry climates.

Regarding the general transferability of the methods, we wish to emphasize
that this paper focuses only on precipitation modeling in Europe and South
Asia. Any other domains and simulated fields (including those from other climate
models) are outside of the scope of this work and therefore must be evaluated
separately; however, we do plan to analyze the transferability of temperature
modeling with the CLM and an optional BCM in the same domains as those
of the present study. Note that the statistical methods described above only
have an effect on precipitation; the redistribution of water and resulting physical
inconsistencies between precipitation and other meteorological fields might have
negative impacts in subsequently applied models (Salathé, 2003). The input fields
should therefore be used with caution.
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32 3. The Indian summer monsoon in the CCLM

3.1 Abstract

The Indian summer monsoon (ISM) influences daily lives and economies in
many countries in the South Asian region. This study analyses the representa-
tion of the ISM system in the regional climate model COSMO-CLM. Simulations
driven by ERA40 re-analysis and present-day (1960-2000) data from the global
climate model ECHAM5 are investigated. The ability of the COSMO-CLM to
reproduce the ISM better than the coarser-grid driving models is tested using a
set of well established, complementary monsoon indices: the all-India monsoon
rainfall, vertical wind shear indices and an outgoing longwave radiation (OLR)
index. The results show that regarding these large-scale indices the COSMO-
CLM simulations are not more accurate than the driving models. Considering
the spatial distribution of rainfall, the ERA40-driven COSMO-CLM simulations
show major overestimations (about 100%) for the west coast of India, and under-
estimations (about 50%) for the Himalayan foothills. Large biases occur in the
OLR data over the Arabian Sea and the Bay of Bengal where the COSMO-CLM
shows high convective activity (OLR < 180 W m−2) at about three times as many
days as observed in the monsoon season. In the ECHAM5-driven simulation un-
derestimations of rainfall appear at the Himalayan foothills, too. Nevertheless,
the application of COSMO-CLM to ECHAM5 improves the temporal correla-
tions of the modeled ISM indices, and the spatial patterns are better simulated
in the COSMO-CLM with 0.44° horizontal grid-spacing than in the large-scale
ECHAM5 data.
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3.2 Introduction

The Indian summer monsoon (ISM) has been the subject of numerous scientific
studies for more than a century (Walker, 1910; Flohn, 1970; Webster et al., 1998;
Gadgil, 2003). Interannual variability in the ISM has a profound impact on
society, the environment, agriculture, and the economy, both in India and other
countries in the South Asian region. The most obvious impact of the ISM is
on rainfall in the monsoon season (June, July, August, and September; JJAS),
which accounts for about 75% of the annual precipitation in India.

Kripalani et al. (2007) examined 22 global climate models (GCMs) on the
ability to simulate the South Asian summer monsoon precipitation and its vari-
ability. They showed that most of the models are able to reproduce the observed
annual cycle (with some difference in amplitude), but also showed that simula-
tion of precipitation at regional scales is very difficult. Moreover, Kumar et al.
(2006) stated that GCM applications in the Indian region are limited by an in-
sufficient orographical representation of, for instance, the Western Ghats due to
their coarse grid resolution (around 200-300 km), and that the use of regional
climate models (RCMs) helps to add regional details to the GCM simulations,
especially for precipitation.

Parthasarathy et al. (1992) defined the all-India monsoon rainfall (AIMR)
index as the total rainfall amount in JJAS averaged over India. Although the
interannual standard deviation is only about 10% of the long-term mean, the
extremes lead to floods and droughts (Webster et al., 1998; Krishnan et al., 2003).
The AIMR index thus provides an important criterion for evaluation of GCMs
and regional climate models (RCMs) in this region. However, precipitation in
GCMs and RCMs is modeled very late in the process chain and is influenced
by many foregoing processes. Thus, indices representing other aspects of the
monsoon system allow for a more detailed analysis of the ISM representation in
these models and may help to find deficiencies in foregoing model processes.

In the present study, we use the ISM indices based on precipitation, wind, and
outgoing longwave radiation (OLR) and their correlations as a tool to investigate
possible shortcomings in dynamics and convection parametrization in climate
models. The method is applied to investigate if the ISM is better represented in
the RCM COSMO-CLM (http://www.clm-community.eu) than in the global
re-analysis data set ERA40 (Uppala et al., 2005) from the European Centre
for Medium Range Weather Forecasts (ECMWF) or in global simulations done
with the coupled atmosphere-ocean climate model ECHAM5/MPIOM (Roeckner
et al., 2003; Jungclaus et al., 2006), which are applied as driving data for COSMO-
CLM.

We introduce the use of the indices to calculate the degree to which these pro-
cesses can explain the interannual variability in the AIMR in observations and
models. Further, to explore details that are ignored as a consequence of simplifi-
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34 3. The Indian summer monsoon in the CCLM

cations inherent in index representation, the spatial distributions of the involved
fields are investigated. To assess the question of a better representation of the
ISM provided by COSMO-CLM simulations, these explorations also include the
driving models. This is motivated by the assumption that a better representation
of the ISM leads to more accurate climate projections for the South Asian region.

The remainder of this report includes Section 2, which describes the COSMO-
CLM and the setup used in the present study; Sections 3 and 4, which respectively
describe the reference datasets and the methods used; Section 5, which presents
the results and discussion; and Section 6, which provides conclusions and a brief
outlook.

3.3 Model and model setup

The COSMO (COnsortium for Small-scale MOdeling) model is a non-hydro-
static regional model (http://www.cosmo-model.org) used by a number of Eu-
ropean weather services for numerical weather prediction. The results of this
work are based on experiments carried out with the climate version of the model
(COSMO-CLM) in a South Asian domain (Fig. 3.1). We have used the model
version 2.4.11 which is identical to the current official, evaluated version of the
CLM-Community (version 3.2) with exception of two corrections in parts of the
model code which have not been used in this work. A detailed documentation of
the model, source code, modifications and further information can be found on
the CLM web page http://www.clm-community.eu/.

The basic differences between the original COSMO model and its climate
version are of technical nature and focus on the ability to use dynamical boundary
data for soil properties, varying CO2 concentrations for climate scenarios, a scale-
selective relaxation to the boundary data (“spectral nudging”) as well as the
implementation of a restart possibility. An overview of all changes is given in
Böhm et al. (2006).

For our analysis we used data resulting from two types of global forcing: the
ERA40 re-analysis data were used to reduce the influence of GCM circulation
biases on the RCM output and the ECHAM5 model was used as a more general
circulation model. Thus, the COSMO-CLM was driven by (a) ERA40 data with a
resolution of ∼1.125° (T159) for the period 1958-2000, and (b) by ECHAM5 data
with a resolution of 1.875° (T63) for the period 1960-2000. For ECHAM5, run 1
of the simulations for the 4th Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC, http://www.ipcc.ch) was used (Roeckner et al.,
2006a). The run starts in the year 1860, initialized from the preindustrial control
run.

In both cases the COSMO-CLM configuration was the same, and the included
physical parameterizations are well tested in the European domain (Hollweg et al.,
2008; Jaeger et al., 2008; Kothe et al., 2010) and have been successfully applied in
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Figure 3.1: Model domain (light gray) and areas used for the calculation of
the different indices. Shading indicates the region where the 850 hPa surface
is below the model orography.

the South Asian region (Dobler and Ahrens, 2008) before. The simulations were
carried out on a 0.44° rotated grid with 20 vertical layers centered on northwestern
India (Fig. 3.1). This resolution was chosen due to the fact that we also carried
out climate projections up to the year 2100 for different scenarios using the same
setup. Thus, a higher spatial resolution was not affordable. Nevertheless, the
higher resolution than in ERA40 and ECHAM5 is expected to lead to a better
representation of the ISM than in the driving data.

For numerical integration a leapfrog scheme with a time step of 240s was used
and no spectral nudging was applied. The applied setup includes a multilayer
soil model (Schrodin and Heise, 2002), a radiation scheme following Ritter and
Geleyn (1992) and a Kessler-type (Kessler, 1969) microphysic scheme including
ice-phase processes for cloud water, rain and snow. The Tiedtke (Tiedtke, 1989)
parametrization scheme was used for convection.

3.4 Reference data and indices

A wide range of indices have been defined to measure and predict the strength
of the ISM, as reviewed by Wang and Fan (1999). These are based on precipita-
tion (Parthasarathy et al., 1992; Goswami et al., 1999), on the vertical shear over
certain pressure levels of zonal winds (Webster and Yang, 1992), (Chen et al.,
2007) or meridional winds (Goswami et al., 1999), or on the use of outgoing
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36 3. The Indian summer monsoon in the CCLM

longwave radiation as a measure of convection (Wang and Fan, 1999). However,
the question of which index best estimates ISM strength remains controversial
(Goswami, 2000; Wang, 2000), as is the attempt to represent such a complex
phenomenon in a simple index (Wang and Fan, 1999).

All ISM indices in this study were obtained by averaging the corresponding
data over particular areas (Fig. 3.1). The AIMR index was calculated as the
sum, the other indices as the mean values over the monsoon season JJAS.

The averaging area of the AIMR included all of India with the exception of
four hilly meteorological sub-divisions as proposed by Parthasarathy et al. (1992)
because of low rain-gauge densities and low areal representation of rain-gauge
data in hilly areas. The meridional wind shear index (MWSI) was defined over
the area 10°N-30°N x 70°E-100°E, which includes almost all of India, the Bay of
Bengal and parts of the Indian Ocean close to the west coast of India. The zonal
wind shear index (ZWSI) covered the area 5°N-20°N x 45°E-80°E, which includes
the region of the Somali Jet and a large part of the Arabian Sea. Finally, the
convection index based on outgoing longwave radiation (COLR) covered the area
10°N-25°N x 70°E-100°E, which is almost the same as the MWSI region.

3.4.1 All-India monsoon rainfall

As reference time series for precipitation we used the homogeneous all-India
rainfall data (Parthasarathy et al., 1994) which cover the period 1871-2006. The
data are provided as monthly values by the Indian Institute of Tropical Meteo-
rology on their web site http://www.tropmet.res.in/.

To investigate the spatial variability of precipitation in the COSMO-CLM
model we used the Global Precipitation Climatology Centre (GPCC) full data
product version 4 (Schneider et al., 2008) with a spatial resolution of 0.5°. A
comparison with the Climate Research Unit time-series version 2.1 (Mitchell and
Jones, 2005) and the University of Delaware (UDEL) precipitation dataset version
1.02 (Legates and Willmott, 1990) showed that these three gridded datasets agree
well in means of spatial correlations and variability over India as well as with the
IITM time series (not shown). Thus, the choice of GPCC as the reference rainfall
dataset had no critical influence on our results. The spatial distribution of the
GPCC data is shown in Fig. 3.2. The highest values are observed at the north-
south oriented west coasts of India, Myanmar (Burma), Thailand and in the
Assam region.

3.4.2 Meridional and zonal wind shear

Both wind shear indices were defined as the difference between the lower tro-
posphere winds at 850 hPa and the upper troposphere winds at 200 hPa. The
averaging areas for the two wind shear indices were slightly smaller than those
originally proposed for the MWSI (Goswami et al., 1999) and the ZWSI (Wang

PhD-Thesis - Andreas Dobler, 2010

http://www.tropmet.res.in/


3. The Indian summer monsoon in the CCLM 37

65 70 75 80 85 90 95 100

5
10

15
20

25
30

35

0

2

4

6

8

[m]

Figure 3.2: Spatial distribution of GPCC mean rainfall in JJAS 1960-2000.
The black lines denote the west coast of India, the Himalayan foothills and
the AIMR area, respectively.

and Fan, 1999), because of model domain restrictions (Fig. 3.1). As results
obtained close to the edge of the model domain can be influenced by boundary
effects, no data derived from closer than 3.5° (i.e., eight grid points) from the
boundary was used.

Figure 3.1 also denotes the region in which the COSMO-CLM orography is
higher than the model’s reference atmosphere at 850 hPa. The winds at pressure
levels below ground are extrapolated in different ways for different models and
should be handled carefully. However, there were only few points within the
averaging area of the MWSI in this region (about 9%), and the influence of
the extrapolation method on the mean MWSI was assumed to be negligible.
Therefore these points were not treated differently.

The reference data used for the 200 hPa and 850 hPa meridional and zonal
winds were derived from the National Centers for Environmental Prediction/
National Center for Atmospheric Research (NCEP/NCAR) re-analysis 1 (Kalnay
et al., 1996) for the time period 1960-2000. These fields are classified as category
A files, which are highly influenced by observations; they are considered to be in
the most reliable class of NCEP output variables (Kalnay et al., 1996) and served
as pseudo-observations in this study. NCEP re-analysis data were obtained from
the Physical Sciences Division of the Earth System Research Laboratory and
Office of Oceanic and Atmospheric Research, NOAA web site http://www.cdc.

noaa.gov/ at 2.5° resolution. We used NCEP rather than ERA40 data to ensure
data independence as much as possible. However, due to the fact that both NCEP
and ERA40 wind fields are based on similar data sources, we do not expect the

PhD-Thesis - Andreas Dobler, 2010

http://www.cdc.noaa.gov/
http://www.cdc.noaa.gov/
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COSMO-CLM to perform better than ERA40 in comparison to NCEP data.
An additional index based on the north-south temperature gradient may be

defined following the investigations of Goswami et al. (2006): In their work, the
mean 200-600 hPa temperature difference between a northern area (15°N-35°N
x 40°E-110°E) and southern area (10°S-15°N x 40°E-110°E) was used to derive
the monsoon onset. However, correlations between the north-south temperature
gradient and the meridional wind sheer index are very high in ECHAM5 (0.99),
NCEP and ERA40 re-analyses (0.95 for both). A possible explanation is given
in the Appendix A with the help of the thermal wind equation. Due to the high
correlation, the index would provide little further insights in model deficiencies.
Furthermore, the southern area is not included in the smaller COSMO-CLM
domain, and the index was excluded from this study. Nevertheless, it may be
useful as a replacement of the vertical wind shear index, if the data are available.

3.4.3 Convection

As a measure of convection we used OLR data from NOAA (Liebmann and
Smith, 1996). As shown by Wang and Fan (1999) OLR yields a good estimation of
convection in which a low OLR value corresponds to high convective activity. The
NOAA data have been corrected for varying satellite equatorial crossing times
(Lucas et al., 2001), and covers the period June 1974 to December 1999, with
missing data from 17 March 1978 to 31 December 1978. The data are available
from the Research Data Archive at http://dss.ucar.edu in dataset ds684.1 at
NCAR with a resolution of 2.5°.
3.5 Methods

The analysis in this study was based on: 1) the mean values of the indices, 2)
the interannual variability of the indices, 3) the spatial distribution of the fields
involved, and 4) the representation of the temporal correlations of the indices
within the COSMO-CLM, and comparison with observed correlations. Spatial
correlations and variabilities were calculated after interpolation to the reference
dataset resolution, i.e., 0.5° for precipitation and 2.5° for OLR and the wind fields.

As we were using a model in climate mode, the temporal correlation with
observed time series was not of primary interest, contrary to the temporal vari-
ability. This was particularly true in the case of forcing of the COSMO-CLM
with the ECHAM5 data. For the ERA40-driven simulation the relevance of the
temporal correlation is arguable since no spectral nudging was applied and the
COSMO-CLM was allowed to develop its own dynamics within the model do-
main. Therefore, and for the sake of completeness, the values are shown for the
ERA40-driven simulations in the following section, but placed in parentheses in
Tables 3.1-3.4.
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Spatial correlations and variabilities are presented in Taylor diagrams (Taylor,
2001), which are useful for comparing multiple datasets to a reference dataset.
The diagrams include correlations, variability values (i.e., standard deviations),
and the centered root mean square differences. The variance of AIMR explained
by the three other indices was estimated by the coefficient of determination as
shown in Ahrens (2003), using a multilinear regression.

3.6 Results and discussion

In the following subsections the results of our analysis of the different ISM
indices are shown. For a more detailed analysis, the spatial distributions of the
involved fields in the COSMO-CLM are discussed.

3.6.1 All-India monsoon rainfall

Table 3.1 shows the mean values and the standard deviation of the AIMR
for the reference data (IITM), the data for COSMO-CLM driven by ERA40
(CLMERA) and ECHAM5 (CLMEC5), and the driving models for the time interval
1960-2000. The mean value of CLMERA was closest to the reference, but was
very low for CLMEC5. In both COSMO-CLM runs, the interannual variability
(measured by the standard deviation) was underestimated. The variability in
ERA40 and ECHAM5 was similar to that of IITM, despite lower mean values.

Table 3.1: Mean and standard deviation (sd) of AIMR for different model
datasets and correlation (R) of ERA40 and CLMERA with IITM for the time
period 1960-2000.

Data Mean [mm] sd [mm] R
IITM 839 84.5 1
ERA40 701 91.3 0.57
CLMERA 789 55.7 (0.47)
ECHAM5 684 83.9
CLMEC5 473 68.6

The spatial distribution of JJAS rainfall in the two COSMO-CLM simulations
and the differences to GPCC are shown in Figs. 3.3 and 3.4. In both simulations,
the patterns of high values at the west coasts and in the region around Assam
were well reproduced. However, in CLMERA the rainfall at the west coast of
India was much too high, with a maximum overestimation of more than 4000
mm over the four monsoon months (Fig. 3.3). The mean precipitation value on
the west coast in CLMERA was about 4400 mm (Fig. 3.3), compared to 2100 mm
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for GPCC (Fig. 3.2) and 1900 mm for CLMEC5 (Fig. 3.4). Using data from the
meteorological sub-divisions Konkan and Goa, Coastal Karnataka, and Kerala
from IITM we calculated a reference value of 2400 mm.
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Figure 3.3: As for Fig. 3.2, but for CLMERA (left) and CLMERA minus
GPCC (right).

In the northern part of India, in the Himalayan foothills (see Figs. 3.3 and
3.4), both runs showed underestimations, with mean values of about 420 mm
for the CLMERA and 340 mm for CLMEC5, compared to 900 mm for GPCC.
Here, the IITM figures for the average over the sub-divisions Bihar, East Uttar
Pradesh, and West Uttar Pradesh is 900 mm. After compensation for errors in
the CLMERA over the whole AIMR area (Fig. 3.3), the mean value was close to
that of GPCC.

The spatial correlations with the GPCC data and spatial variabilities of the
models are shown in Fig. 3.5. The spatial variability of the JJAS rainfall in
CLMERA was too high (Fig. 3.5); this is related to the over- and under-estimations
shown in Fig. 3.3. Further, the spatial correlation with the GPCC data was
smaller than in the forcing ERA40 data. These results show that for the spatial
distribution of JJAS rainfall over India, CLMERA provided no additional infor-
mation relative to ERA40. In contrast, improvements in both spatial correlation
and variability were evident in the CLMEC5 run compared with the large-scale
driving data.

3.6.2 Meridional and zonal wind shear

One reason for shortcomings in the ability of the COSMO-CLM to accurately
simulate rainfall over India may be the dynamics of the model. To investigate
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Figure 3.4: As for Fig. 3.3, but for CLMEC5.
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Figure 3.5: Similarities of the spatial precipitation patterns within the
AIMR area between GPCC and different models.

this possibility, vertical wind shear indices were calculated for the period 1960-
2000 and compared with indices derived from NCEP data (Tables 3.2 and 3.3).
In the ERA40 re-analysis the wind fields are strongly influenced by observation,
and were thus expected to be in very good agreement with those of NCEP. Nev-
ertheless, the CLMERA results were almost as good as those of the ERA40 data.

Overall, the properties of the two dynamic indices in COSMO-CLM were very
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Table 3.2: As for Table 3.1, but for MWSI using NCEP as reference.

Data Mean [m s−1] sd [m s−1] R
NCEP 1.90 0.48 1
ERA40 2.19 0.54 0.83
CLMERA 2.35 0.53 (0.73)
ECHAM5 0.85 0.76
CLMEC5 -0.24 0.75

Table 3.3: As for Table 3.1, but for ZWSI using NCEP as reference.

Data Mean [m s−1] sd [m s−1] R
NCEP 27.4 1.92 1
ERA40 26.4 1.82 0.92
CLMERA 28.3 1.81 (0.81)
ECHAM5 26.3 3.50
CLMEC5 25.0 3.67

similar to those of the driving model. For instance, in CLMEC5 and ECHAM5
the temporal variability of the MWSI and the ZWSI showed large overestima-
tions, and the MWSI was very low, suggesting that the models have difficulty
in correctly representing the monsoon Hadley circulation (Goswami et al., 1999).
In CLMEC5 the mean value over the region was negative.

Figure 3.6 shows the spatial variabilities and correlations with NCEP data for
meridional and zonal wind shear within the averaging areas of the different model
datasets. To summarize the results in one picture, the datasets were normalized
via division by the standard deviation of NCEP for the MWSI and the ZWSI,
respectively.

The too high spatial variability in CLMERA (Fig. 3.6) shows that the good
agreement of the mean MWSI and ZWSI with that of NCEP (Tables 3.2 and 3.3)
is (as with the AIMR index) mainly caused by compensation for errors over the
averaging area. In the CLMEC5 however, an added value over ECHAM5 can be
seen in the spatial structure, especially in the MWSI, despite the very low mean
value and the very great temporal variability (Tables 3.2 and 3.3). This indicates
that, in CLMEC5, the MWSI and ZWSI errors are distributed homogeneously
over the averaging area.

For all models the errors in the 200 hPa meridional and zonal winds were
relatively small (data not shown). As the strong zonal winds at 200 hPa account
for about two-thirds of the ZWSI these values dominate the index. Thus, the
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Figure 3.6: Similarities of the spatial wind shear patterns between NCEP
and different model datasets within the MWSI (hollow) and ZWSI (solid)
area.
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Figure 3.7: Mean NCEP zonal winds at 850 hPa in JJAS 1960-2000. Also
shown are the region where the 850 hPa surface is below the model orography
(light gray line) and the ZWSI area (dash-dotted).

good agreement with the NCEP mean value provides little information about the
lower troposphere dynamics of the models. However, moisture transport toward
India mostly happens at the lower levels (Lim et al., 2002). Figure 3.7 gives the
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850 hPa zonal winds as provided by the NCEP data. Figures 3.8 and 3.9 show the
results form the two COSMO-CLM runs and the differences to the NCEP data.
In both simulations the model overestimated westerly winds over the southern
part of the Bay of Bengal and large parts of the Arabian Sea, with the maximum
overestimation occurring in the Gulf of Aden. However, in the eastern part of the
Arabian Sea, close to the west coast of India, the CLMEC5 simulation of winds
was similar to that of the NCEP, but underestimated winds in the northern part
of the coast. In both COSMO-CLM runs orographically influenced wind patterns
appeared which are not visible in the coarse resolution (2.5°) NCEP data.
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Figure 3.8: As for Fig. 3.7, but for CLMERA (left) and CLMERA minus
NCEP (right) zonal winds.

For the meridional winds a good representation of the MWSI in the models is
very difficult, as the mean value was only about 2 m s−1. Contrary to the ZWSI,
the MWSI was not dominated by the lower or upper level winds, which are of
about the same speed (1 m s−1). Thus, even small errors in the field averages
(as was the case for CLMEC5) can lead to large deviations in the index (e.g., an
error of 1 m s−1 could lead to a deviation of 100%). Here, our analysis of the
COSMO-CLM bias for single fields revealed no detectable spatial patterns.

3.6.3 Convection

We used OLR data for the period 1974-1999 to measure convection, where low
(high) OLR values corresponded to high (low) convective activity. The observed
values are shown in Fig. 3.10, where convective regions can be seen over the
eastern parts of the Bay of Bengal and the Arabian Sea. Results of the convection
index based on OLR (COLR) for the simulations and the NOAA reference data
are summarized in Table 3.4. CLMERA overestimated convection over the target
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Figure 3.9: As for Fig. 3.8, but for CLMEC5.

area, whereas the variability was close to that of the reference. The CLMEC5 data
showed the opposite behavior. For both driving models the convective activity
was too low, and the COSMO-CLM introduced additional convection.

Table 3.4: As for Table 3.1, but for COLR and the time period 1974-1999
using NOAA as reference.

Data Mean [W m−2] sd [W m−2] R
NOAA 209 4.67 1
ERA40 225 3.69 0.72
CLMERA 186 3.87 (0.22)
ECHAM5 218 5.78
CLMEC5 206 8.72

Figure 3.11 shows the spatial variability of the OLR and correlations with
the NOAA OLR data in the various model datasets over the index area. The
datasets were interpolated to the coarse resolution (2.5°) of the reference data
to make a direct comparison possible. The correlations of the CLMEC5, ERA40,
and ECHAM5 with the reference data were high, but the spatial variability in
all models (except for ECHAM5) was much too high, with the CLMERA having
the greatest values. Overall (i.e., considering also the mean value and temporal
variability; Table 3.4), the ECHAM5 model showed surprisingly good agreement
with reference data.

Figures 3.12 and 3.13 show the spatial distribution of the OLR in the two
COSMO-CLM runs and the differences to the NOAA data. Common features
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Figure 3.10: Mean NOAA outgoing longwave radiation in JJAS 1974-1999.
The COLR area is denoted by the dash-dotted line.
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Figure 3.11: Similarities of the spatial OLR patterns between NOAA and
different model datasets within the COLR area.

include an overestimation of convection over the west coasts of India, Sri Lanka,
and Thailand, and the coasts of Bangladesh and Myanmar (Burma), and un-
derestimation over large parts of India and in the Himalayan foothills. Again,
compensation for errors within the COLR averaging area yielded a mean value
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for CLMEC5 that was close to the reference value.
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Figure 3.12: As for Fig. 3.10 but for CLMERA (left) and CLMERA minus
NOAA outgoing longwave radiation (right).
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Figure 3.13: As for Fig. 3.12, but for CLMEC5.

CLMERA underestimated the OLR by more than 70 W m−2 for the west coast
of India, and by more than 50 W m−2 over the Bay of Bengal. The large overesti-
mation of convection in these areas were associated with too many days with high
convective activity (i.e., days with an OLR < 180 W m−2). As can be seen in Fig.
3.14, the CLMERA data showed more than 25 such days per month over the west
coast of India, and about 20 such days over the Bay of Bengal; for the NOAA
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data the relevant conditions occurred on only about 5-10 days each month, and
for CLMEC5 on only 15 days a month (data not shown).
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Figure 3.14: Mean number of days per month with OLR < 180 W m−2 in
CLMERA in JJAS 1974-1999.

Calculating the mean OLR only in days with high convective activity, we
found values of about 160 W m−2 for the NOAA data and an underestimation of
about 30 W m−2 for both CLMERA (Fig. 3.15) and CLMEC5 (data not shown),
indicating that the model simulated high convective activity on too many days.

3.6.4 Index correlations

Table 3.5 shows pairwise temporal correlations of the AIMR, MWSI, ZWSI,
and COLR index, and the variance (R2) of AIMR explained by the three other
indices for their common time periods. Overall, the ECHAM5 data showed the
strongest intra-model correlations, followed by CLMEC5, CLMERA, the reference
datasets, and finally ERA40.

The correlations between the AIMR and wind shear indices in both COSMO-
CLM simulations were close to reference correlations. The ERA40 data showed
correlations that were too low and the ECHAM5 data correlations that were too
high. Thus, the regional model revealed an improvement of both large-scale driv-
ing models in assessing dynamical contribution to the AIMR. An improvement
was also found in the variance of AIMR explained by the other indices (Table
3.5) for CLMEC5.

The reference correlations of ZWSI with AIMR and COLR were close to the
values reported by Wang and Fan (1999). However, the correlations with MWSI
determined here differ from the values shown in Wang and Fan (1999). Small
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Figure 3.15: Mean CLMERA minus NOAA OLR in JJAS 1974-1999 for days
with OLR < 180 W m−2. White pixels inside the simulation domain are
areas with zero days with OLR < 180 W m−2.

Table 3.5: Correlations of the different indices in the reference datasets and
the models, and explained variance (R2) in AIMR by MWSI, ZWSI and
COLR.

Data AIMR& AIMR& AIMR& MWSI& MWSI& ZWSI& R2

MWSI ZWSI COLR ZWSI COLR COLR
Ref. 0.71 0.62 -0.43 0.64 -0.61 -0.61 0.38
ERA40 0.54 0.40 -0.57 0.58 -0.82 -0.63 0.37
CLMERA 0.65 0.62 -0.75 0.51 -0.61 -0.57 0.59
ECHAM5 0.87 0.81 -0.87 0.63 -0.78 -0.85 0.88
CLMEC5 0.76 0.68 -0.80 0.64 -0.86 -0.81 0.70

differences would be expected because of the use in the present study of different
time periods, index areas, and a newly corrected NOAA dataset. The differences
are mainly a result of the smaller averaging area used in this study (data not
shown). Interestingly, the MWSI index defined in the present study showed
a higher correlation with the AIMR than did the index proposed by Goswami
et al. (1999) and used by Wang and Fan (1999).

The greatest differences between the models and the reference datasets lay in
the anti-correlation of AIMR with COLR (Table 3.5); in all model simulations
the anti-correlation was higher than in the reference data. Thus, precipitation
over India was overly influenced in models by convection over the Arabian Sea
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and the Bay of Bengal.

3.6.5 Influence of sea surface temperature

Our findings above suggest that shortcomings in the COSMO-CLM were
largely associated with the parametrization of convection; however, the reasons
for overestimation of convective activity over the sea are not clear. Especially,
the better agreement of CLMEC5 than that of CLMERA with OLR and rainfall
observations is in general contrast to other downscaling studies. A comparison of
the two driving datasets revealed large differences in the sea surface temperature
(SST), with about 1� colder ECHAM5 SST over large parts of the Arabian Sea
and the Bay of Bengal (not shown). Note that the SST data are directly fed into
the COSMO-CLM, as the model does not include an ocean model on its own.

A short experiment for the years 1958-1965 was carried out to evaluate the
impact of the SST difference, replacing SST in the driving ERA40 data with
ECHAM5 SST. The reduced SST affected evaporation over sea and led to a
better agreement of the rainfall distribution in the 8-year period (not shown).

Alternatively to the artificial reduction of SST, the evaporation over sea can
be reduced in the COSMO-CLM model setup (Hollweg et al., 2008). The setup
modification decreases the heat fluxes over water and shows the same positive
effects as a reduction of SST in the spatial distribution of rainfall and OLR (not
shown).

3.6.6 Monsoon and ENSO

The relationship between the El Niño Southern Oscillation (ENSO) and the
Indian summer monsoon has been extensively discussed in literature (Walker,
1923; Rasmusson and Carpenter, 1982; Ju and Slingo, 1995). As in our RCM
simulations the ENSO region was not wholly included in the domain, we were
able to analyse how the boundary information of the ENSO-monsoon relationship
was passed from the driving models to the RCM.

Table 3.6 shows the correlations of the JJAS mean of the Niño3.4 index with
the AIMR, MWSI, ZWSI and COLR, respectively. We used the Niño 3.4 index
as it is better correlated to AIMR than is the Niño 3 index (Gadgil et al., 2004).
However, results for the Niño 3 index were found to be similar (not shown). Niño
3.4 and Niño 3 data was obtained from Climate Prediction Center, National
Oceanic and Atmospheric Administration, USA (http://www.cpc.noaa.gov/
data/indices).

As can be seen, the (anti-)correlations between ENSO and all indices were
weaker in the COSMO-CLM runs than in the driving models. This had been
expected as the Niño 3.4 index was calculated using the data from the driving
models only. For the dynamical indices MWSI and ZWSI, the weakening was only
small. Similar to AIMR and COLR, the correlation between ENSO and COLR
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was in all model simulations higher than in the reference data. However, the
weakening of the correlation between ENSO and COLR was much stronger than
for the dynamical indices. The variance of AIMR explained by MWSI, ZWSI,
COLR and ENSO (Table 3.6) was close to the values given in Table 3.5.

Table 3.6: Correlations of the JJAS mean of the Niño 3.4 index with the
different indices in the reference datasets and models. Also shown is the
explained variance R2 in AIMR by MWSI, ZWSI, COLR and Niño 3.4.

Data AIMR MWSI ZWSI COLR R2

Ref. -0.5 -0.49 -0.67 0.29 0.39
ERA40 -0.32 -0.54 -0.68 0.59 0.39
CLMERA -0.28 -0.42 -0.61 0.36 0.60
ECHAM5 -0.59 -0.40 -0.70 0.64 0.88
CLMEC5 -0.36 -0.33 -0.66 0.43 0.70

3.7 Conclusion and Outlook

We analysed the representation of the Indian summer monsoon (ISM) in the
regional climate model (RCM) COSMO-CLM in comparison to its larger-scale
driving data. For this purpose, two simulations, one driven by ERA40 re-analysis
data, the other by the global climate model (GCM) ECHAM5/MPIOM were
used.

In a first step, the representation of the ISM was investigated using indices
based on precipitation, vertical wind shear and outgoing longwave radiation.
These indices are mainly measures of the large-scale phenomena associated with
the ISM. We expected the COSMO-CLM to perform better than the large-scale
data, as for instance the orography of the Tibetan Plateau was better represented
in the RCM due to the higher resolution. However, our results showed, that the
COSMO-CLM was not able to improve the ISM representation with respect to
means and temporal variability of most indices.

But, an evaluation of models based only on the discussed ISM indices is in-
complete, as errors may compensate for each other, resulting in an areal average
in good agreement with reference data sets. Thus, we included the spatial distri-
butions of the various fields involved in index calculations in our analysis. This
showed that the COSMO-CLM was generally able to reproduce the observed spa-
tial rainfall patterns, but tended to overestimate precipitation over the west coast
of India, and to underestimate precipitation over large areas of India, especially
in the Himalayan foothills. When applied to ERA40 data the COSMO-CLM
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showed no overall improvements in the spatial distribution of precipitation over
India, vertical wind shear or outgoing longwave radiation, either.

Contrary, the COSMO-CLM was able to improve the spatial patterns for pre-
cipitation and vertical wind shear when using ECHAM5 driving data. Thus,
downscaling of large-scale ECHAM5 data yielded additional information that is
necessary for regional utilization of results (Beck et al., 2004). This is a promising
result consistent with the findings of Hagemann and Jacob (2007) that RCMs can
compensate problems of the driving GCM on the local scale. Thus, the analysis
of various climate projections using ECHAM5 driven COSMO-CLM simulations
is planned. The substantially different results of the two simulations in relation
to the driving data imply that it is difficult to assess the added value of dynamical
downscaling of re-analyses, as in re-analyses the problems on the local scale can
be compensated by the assimilation of observational data.

The principal deficiencies of the model were located in the parametrization
of convection. The simulations showed too much of convective activity near the
west coast of India. For the dynamical properties, the COSMO-CLM showed
good agreement with NCEP re-analysis data in terms of 200 hPa zonal and
meridional winds. However, when driven by ERA40 data, the model tended to
simulate westerly winds that were too strong at 850 hPa over the Arabian Sea
and the Bay of Bengal. This may be another explanation for the overestimates of
precipitation on the west coast of India, as stronger winds are associated with en-
hanced moisture transport towards land. A model sensitivity study showed that
the atmosphere-ocean interaction is a key factor for a good model performance in
this region. Further investigations and developments in this area or the coupling
of the COSMO-CLM to an ocean model could lead to significant improvements.

In both COSMO-CLM simulations, the correlations of the all-India monsoon
rainfall (AIMR) with the wind shear indices were more accurate than in the
driving models. For the correlation of AIMR with the convection index and the
variance of AIMR explained by the other indices we found high values in the
ECHAM5 and the COSMO-CLM model. As shown by Patra et al. (2005), the
interannual variability in aerosol content over the Indian subcontinent can have
a significant influence on the AIMR. As the applied ECHAM5 and COSMO-
CLM model versions did not include an aerosol microphysics component, other
explaining parameters like aerosol variability were not well represented. This, to
some part, may have led to the too strong correlations in the models.

We conclude that the transfer of a RCM to different regions is not straight
forward and needs severe testing before application. With this work we have
proposed a framework which may help in finding an accurate setup for RCM
simulations in the region of the ISM. In a future study we will test the transfer-
ability of our methods to other monsoon systems (for instance the West African
monsoon).
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3.8 Appendix

Based on the work of Goswami et al. (2006), a temperature based ISM index
can be defined taking the mean 200-600 hPa temperature difference between
15°N-35°N x 40°E-110°E and 10°S-15°N x 40°E-110°E averaged over JJAS. This
index however, is highly correlated to the meridional wind sheer index. This may
be expected, since a horizontal temperature gradient and a vertical geostrophic
wind shear can be related by the thermal wind equation

−∂vg

∂p
=

R

pf
k ×∇pT

where p is the pressure, vg = (Ug, Vg, 0)T the geostrophic wind vector, f the
Coriolis parameter, R the gas constant for air, k the vertically directed unit
vector, T the temperature and ∇p the isobaric del operator. Thus, the vertical

shear of the meridional geostrophic wind −∂Ug

∂p
is proportional to the north-south

isobaric temperature gradient ∂T
∂py

.
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4.1 Abstract

This paper discusses projections of the Indian summer monsoon (ISM) for the
time period 1960-2100 by the regional climate model (RCM) COSMO-CLM. The
RCM simulations follow four different future greenhouse gas emission scenarios
(SRES A2, A1B, B1 and commitment) and are driven by the global atmosphere-
ocean model ECHAM5/MPIOM. To quantify the evolution of the ISM, the all-
Indian monsoon rainfall (AIMR) index, two vertical wind shear indices and an
estimation of convection via outgoing longwave radiation is used.

The COSMO-CLM simulations show significantly decreasing future ISM
trends in all indices for the scenarios A2, A1B and B1. Parts of north-western
India are projected to face a decrease in rainfall during the monsoon season of
over 70% within this century. For the wind shear indices, the projected de-
crease is shown to be mainly due to changes in the upper troposphere winds at
200 hPa. At 850 hPa, the changes are limited to decreasing westerlies of 20%
to 30% at the southern parts of the Arabian Sea and the Bay of Bengal. The
ECHAM5/MPIOM shows similar results for all indices except for the AIMR.
Here, the ECHAM5/MPIOM shows positive trends in all scenarios. Considering
that COSMO-CLM and ECHAM5/MPIOM overestimate currently observed low
predictability values of AIMR, but with a lesser overestimation by the regional
model, and that a simultaneous evolution of the ISM indices is more consistent
with long-term index correlations than opposite trends, we conclude that the
COSMO-CLM is able to add value on the global ISM projections.
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4.2 Introduction

Daily live, agriculture yields and profitability in many countries in the South
Asian region are highly influenced by the Indian summer monsoon (ISM). About
75% of the yearly amount of rainfall falls during the monsoon season (this is, from
June to September) providing water that is necessary for irrigation, electric power
production and drinking water. The yearly amount of rainfall during the monsoon
season has a strong influence on the economy of the South Asian region. A variety
of indices have thus been defined to measure and to predict the yearly variations
and future developments of the monsoon’s strength. The most commonly used
indices are based on rainfall (Parthasarathy et al., 1992; Goswami et al., 1999),
the vertical wind shear over certain pressure levels (Webster and Yang, 1992;
Chen et al., 2007; Goswami et al., 1999) or the estimation of convection (Wang
and Fan, 1999) in certain areas. While all of these indices are correlated by some
degree to each other, there is no single best index in estimating the ISM strength
(Wang and Fan, 1999; Goswami, 2000; Wang, 2000).

This study gives an overview of the transient projections of different ISM
indices by the regional climate model (RCM) COSMO-CLM for the time period
of 1960-2100. As a small ensemble of possible future developments, the scenarios
A1B, B1, A2, and the commitment scenario as given in the IPCC Special Report
on Emissions Scenarios (SRES, Nakicenovic and Swart, 2000) have been used
here. This paper focuses on future climate projections and the ability of the
RCM to provide an added value to the ISM projections of the driving global
model. The ability of the COSMO-CLM to represent the ISM during the time
period of 1960-2000 has been evaluated in a previous study (Dobler and Ahrens,
2010).

Most earlier studies on the topic of ISM projections (e.g., IPCC, 2007b; An-
namalai et al., 2007) are based on general circulation model (GCM) simulations.
While the GCMs already provide some insight in the large-scale trends, the spa-
tial distribution of the fields involved can be better resolved by the application of
RCMs. Furthermore, there are indications that RCMs are able to resolve climate
extremes better than GCMs (e.g., Duffy et al., 2003).

Thus, due to the increasing availability of computational power, RCM projec-
tions have become a popular tool for investigating the fine-scale behavior of the
climate system in reaction to enhanced greenhouse gas emissions (e.g., Giorgi,
2006; Kumar et al., 2006; Ashfaq et al., 2009). However, most of these studies
are limited to time-slice experiments, simulating about 30 years in the late 20th
and 21st centuries, or include one emission scenario only.
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4.3 Model and model setup

The COSMO-CLM is a non-hydrostatic regional climate model (RCM) based
on the COSMO (Consortium for Small-scale Modeling) model (http://www.
cosmo-model.org), which is currently used by seven European weather services
for their operational numerical weather prediction (NWP). In this work, we ap-
plied the COSMO-CLM (version 2.4.11) in a South Asian domain (Fig. 4.1)
to simulate regional climate projections within the time period between 1960-
2100. Details on the model can be found on the CLM web page http://www.

clm-community.eu/. The main differences between the NWP and RCM version
are given in Böhm et al. (2006).
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Figure 4.1: Simulation domain and the areas used for the different indices.
The gray region denotes the area where the 850 hPa surface is below the
model orography.

The lateral boundary conditions were provided by the atmosphere-ocean gen-
eral circulation model ECHAM5/MPIOM which has a resolution of 1.875° (T63).
The COSMO-CLM simulations were carried out on a 0.44° rotated grid with 20
vertical layers. Due to the transient simulation of four different scenarios from
1960 to 2100, a higher resolution was not affordable.

Although the COSMO-CLM configuration includes physical parametrizations
that are mainly tested in European domains (Hollweg et al., 2008; Jaeger et al.,
2008; Kothe et al., 2010), Dobler and Ahrens (2010) showed that, by using the
same setup, the model is still able to improve the spatial distribution of precip-
itation and wind shear as compared to the ECHAM5/MPIOM driving data in
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the South Asian region. The model parametrizations include a radiation scheme
following Ritter and Geleyn (1992), a Kessler-type (Kessler, 1969) micro-physic
scheme with ice-phase processes for cloud water, rain and snow, the Tiedtke
(Tiedtke, 1989) convection scheme and a multilayer soil model (Schrodin and
Heise, 2002). Numerical integration was done by a leapfrog scheme using a time
step of 240s.

4.4 Indian summer monsoon indices

The analysis of trends in the projections of the ISM was carried out for a set of
indices. These indices were obtained by averaging the model data over the areas
shown in Fig. 4.1 and the monsoon months from June to September. To make
the single indices comparable, we standardized the time series with respect to the
reference period of 1971-2000. The index approach provides good information on
the projected ISM strength but masks the spatial distribution of the projected
changes. Therefore, our analysis also includes the linear trends for the fields
involved in the index calculations at the single model grid points.

4.4.1 All-India monsoon rainfall

The all-India monsoon rainfall (AIMR) index was defined by Parthasarathy
et al. (1992) as the total rainfall amount from June to September over India
excluding four hilly meteorological sub-divisions. Its inter-annual standard devi-
ation is about ten per cent of the long-term average only. Nevertheless, severe
floods or droughts have been observed in years with high (low) values (Webster
et al., 1998; Krishnan et al., 2003). A long-time series of observational data for
the homogeneous all-India monsoon rainfall (Parthasarathy et al., 1994) is avail-
able for the years 1871-2009 by the Indian Institute of Tropical Meteorology at
http://www.tropmet.res.in/.

4.4.2 Meridional and zonal wind shear

The wind shear indices were calculated as the difference between the lower
troposphere winds at 850 hPa and the upper troposphere winds at 200 hPa.
The meridional wind shear index (MWSI) was calculated over 10°N-30°N x 70°E-
100°E. This area includes almost all of India, the Bay of Bengal and a part of the
Indian Ocean close to the west coast of India. The zonal wind shear index (ZWSI)
was obtained over 5°N-20°N x 45°E-80°E including the region of the Somali Jet
and a large part of the Arabian Sea.

Because of the model’s domain size, the two wind shear averaging domains
(Fig. 4.1) were slightly smaller than the original domains given in Goswami et al.
(1999) and Wang and Fan (1999). To reduce boundary effects, no data within 3.5°
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(i.e., eight grid points) distance from the boundary was used. Furthermore, winds
extrapolated to pressure levels below the ground should be handled carefully. The
region where the COSMO-CLM orography is higher than the model’s reference
atmosphere at 850 hPa is shown in Fig.4.1. However, only about nine per cent of
the grid points within the MWSI area are in this region, and the effects on the
overall MWSI are negligible (not shown). Thus, these points were not treated
specially.

The reference wind data for the time period of 1948-2009 at 200 hPa and 850
hPa were taken from the National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanalysis 1 (Kalnay et al.,
1996). The wind fields in NCEP are highly influenced by observations and are in
the most reliable class of output variables (Kalnay et al., 1996). NCEP reanalysis
data were obtained from the NOAA/OAR/ESRL PSD (Boulder, Colorado, USA)
web site http://www.cdc.noaa.gov/ at 2.5° resolution.

4.4.3 Convection

A convection index based on outgoing longwave radiation (COLR) was defined
over 10°N-25°N x 70°E-100°E, which is similar to the MWSI averaging area. As
shown by Wang and Fan (1999), outgoing longwave radiation (OLR) yields a
good estimation of convection in which a low OLR value (in upward direction)
corresponds to high convective activity. To simplify the comparison to the other
indices, we used downward directed OLR. Thus, a low value corresponds to low
convective activity.

Observational data were taken from NOAA (Liebmann and Smith, 1996). The
data are corrected for varying satellite equatorial crossing times (Lucas et al.,
2001). As these data are satellite-based, they cover the time period of June 1974
to December 1999 only, with missing data from 17 March 1978 to 31 December
1978. The data was provided by the Research Data Archive at http://dss.

ucar.edu in dataset ds684.1 at NCAR with a resolution of 2.5°.
4.5 Results

For a detailed analysis of the different ISM indices as observed and simulated
by the COSMO-CLM and the ECHAM5/MPIOM for the time period of 1960-
2000, we refer to Dobler and Ahrens (2010). In the following subsections, we show
the results of climate projections over the time period of 1960-2100 considering
the same indices.
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4.5.1 Rainfall

Figure 4.2 shows the 21-year running means of the standardized AIMR. There
are large long-time variations in the observations and projections, and the neg-
ative trend observed in the past 50 to 60 years is within the natural variability.
However, there is clear evidence of a low AIMR by the end of the 21st century
in the higher-emission scenarios of A1B and A2 in the COSMO-CLM. In the B1
scenario, the projected decrease at the end of the time series is less pronounced.
Contrary to the COSMO-CLM, the ECHAM5/MPIOM shows an increase in
AIMR for all scenarios by the end of the 21st century.
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Figure 4.2: Centered 21-year running means of the standardized AIMR in-
dex for observation data, COSMO-CLM (solid lines) and ECHAM5/MPIOM
(dashed) projections according to different SRES scenarios.

The very low AIMR values at the end of the COSMO-CLM projections are a
result of a decrease in monsoon precipitation throughout most of India. Figure
4.3 gives the distribution of the linear trends of monsoon precipitation in the
South Asian region according to the A2, A1B and the B1 scenario. Especially in
the north-western parts of India and the adjacent regions, a significant decrease
is projected. For A1B and B1, the drying pattern is similar to A2, but with
reduced amplitudes in accordance with the overall AIMR trend. Furthermore,
there is some increase in monsoon precipitation at the south-eastern edge of the
Indian peninsula. The commitment scenario shows almost no significant trends
(not shown). Although it is clear from Fig. 4.2 that the assumption of linear
trends in the monsoon precipitation is a simplification, it is helpful to summarize
the projected trends and their statistical significance.

The changes in the rainfall climatology in the COSMO-CLM projections from
the time period of 1971-2000 to 2071-2100 are shown in Fig. 4.4. Although
there is a reduced annual rainfall in all scenarios, an increase of October and
post-monsoon season precipitation (October and November) can be seen in all
scenarios.
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a)

b)
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Figure 4.3: Linear trends in monsoon rainfall (%/cent.) during the time
period 1960-2100 in a) the A2, b) the A1B and c) the B1 COSMO-CLM
run. Colored areas show significant trends (at the 5% significance level).
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Figure 4.4: Annual cycle of monthly precipitation in the time periods 1971-
2000 and 2071-2100 for the different COSMO-CLM scenario runs.

4.5.2 Wind shear

The 21-year running means of the standardized MWSI and ZWSI are shown
in Figs. 4.5 and 4.6, respectively. For the MWSI, the long-time variations and
trends are similar to the AIMR index (Fig. 4.2) in the COSMO-CLM runs. For
the ZWSI, the variations are much smaller, and the decreasing trends in the A2
and A1B scenario are striking. In the single scenarios, there is a high agreement
in the temporal evolution of the wind shear indices and the AIMR index.
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Figure 4.5: As for Fig. 4.2, but for the meridional wind shear index.

While the observations show a negative trend for MWSI (Fig. 4.5) in ac-
cordance with the observed AIMR trend over the past 60 years, no trend can
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be seen in the corresponding ZWSI (Fig. 4.6). The differences between the
ECHAM5/MPIOM and COSMO-CLM projections are larger in the MWSI than
in the ZWSI, especially in the B1 scenario. However, as for the COSMO-CLM,
the trends in both wind shear indices in the ECHAM5/MPIOM projections are
negative for the A2, A1B and B1 scenario.
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Figure 4.6: As for Fig. 4.2, but for the zonal wind shear index.

The spatial distributions of the horizontal wind fields in the COSMO-CLM,
averaged over the monsoon season from 1971 to 2000, are shown in Fig. 4.7 for
a) 850 hPa and b) 200 hPa. Within the ZWSI area, there is a large shear of the
zonal winds visible from 850 hPa to 200 hPa, while the shear of the meridional
winds in the MWSI area is small. Furthermore, an anti-clockwise rotation can
be seen to the west of Bangladesh at 850 hPa, and a clockwise rotation at 200
hPa over the Himalayan ridge.

Figures 4.8 a) and b) show the linear trends in the wind fields from the
COSMO-CLM A2 simulation. Significant wind changes at 850 hPa are restricted
to a decrease of eastward winds in the southern part of the simulation domain.
These changes have a size of about 2-3 m/s in A2 (Fig. 4.8) and A1B, and about
2m/s in B1 (not shown). The reduced MWSI and ZWSI projected at the end
of the 21st century are thus mainly a result of shifts in the upper troposphere
winds. They result in a decrease of the southward shear in the eastern part of
the MWSI area and a decrease of westward shears in the ZWSI area (Fig. 4.8).
At 200 hPa, there is also an increased convergence visible over the Bay of Bengal
(Fig. 4.8). In all four scenarios, the distribution of the trends is again similar,
with the generally highest amplitudes in A2 followed by A1B, B1 and almost no
trends in the commitment scenario (not shown).

4.5.3 Convection

Note again that the OLR in this work is measured as being downward directed.
Thus, a lower value of the COLR index corresponds to less convective activity. In
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Figure 4.7: Divergence (colored areas) and directions (arrows) of wind fields
at a) 850 hPa and b) 200 hPa for the monsoon season from 1971-2000 as
simulated by the COSMO-CLM. The MWSI and ZWSI areas are given by
a solid and dotted rectangle, respectively.

Fig. 4.9 the 21-year running means of the standardized COLR index are given.
Although the trends are less clear than they are for the MWSI, ZWSI and AIMR
indices, the low values at the end of the A2 and A1B scenario are again evident.
There is a large difference between the ECHAM5/MPIOM and the COSMO-CLM
commitment projection. The reason for this is unclear. Due to its shortness, the
observed time series shows mainly that there are some variations in COLR as
well, but does not reveal any valuable information on an observable trend.

The decreasing COLR in A1B and A2 are a consequence of negative OLR
trends in large parts of the averaging area (Fig. 4.10). Furthermore, an OLR
decrease is visible in almost the complete upper half of the simulation domain.
Overall, there is a good agreement of the COLR trends with the trends in the
monsoon precipitation.
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Figure 4.8: Linear trends (per century) in the divergence and directions
of the winds at a) 850 hPa and b) 200 hPa during the time period 1960-
2100 in the COSMO-CLM A2 simulation. Colored areas and white arrows
show significant trends (at the 5% significance level). Black arrows show
non-significant wind changes.
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Figure 4.9: As for Fig. 4.2, but for COLR.
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Figure 4.10: Linear trends in outgoing longwave radiation (W/m2 per cen-
tury) during the time period 1960-2100 in a) the A2, b) the A1B and c)
the B1 COSMO-CLM run. Colored areas show significant trends (at the 5%
significance level) and the COLR area is indicated by a dotted rectangle.
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4.5.4 Index correlations

A teleconnection between the ISM and the El Niño Southern Oscillation is
well-documented (Walker, 1923; Rasmusson and Carpenter, 1982; Ju and Slingo,
1995) but has weakened in recent decades (e.g., Kripalani and Kulkarni, 1997;
Kumar et al., 1999). As shown in Fig. 4.11, the observed 21-year sliding ex-
plained variance (R2

21
) of AIMR by the NINO3.4 index drops below 0.1 at the

starting year of 1989. The NINO3.4 data were obtained from the Climate Predic-
tion Center, National Oceanic and Atmospheric Administration, USA Web site
http://www.cpc.noaa.gov/data/indices. The dataset starts in 1871 and is
updated continuously. For the whole time period, no value of R2

21
below 0.1 can

be observed before 1989-2009 (not shown).
For the ten to 14-year sliding R2, however, the data show values above 0.1 for

the last few years (Fig. 4.11), indicating a new strengthening of the relationship.
Note that sliding windows below ten years are excluded from this study due to
brevity, and OLR data are excluded due to the short observation time period.

Figure 4.11 further includes the explained variance of AIMR by ZWSI and
MWSI for different sliding window sizes. Here also, a clear decrease of R2

21 during
the last decades is evident but no further decrease is apparent in the last years.
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Figure 4.11: Observed explained variance (R2) in AIMR by Niño 3.4 (upper-
right part) and by MWSI and ZWSI (lower-left part) for different sliding
window sizes (left and right axes) over the time period from 1948 to 2009.
The years on the top and bottom axes denote the starting year of the sliding
window.
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Figure 4.12: As for Fig. 4.11, but for the COSMO-CLM A2 simulation over
the time period from 1960 to 2100.

The sliding explained variances of the COSMO-CLM and ECHAM5/MPIOM
A2 scenario runs are given in the Figs. 4.12 and 4.13 for the years of 1960-2100.
Contrary to the ECHAM5/MPIOM, the COSMO-CLM simulation shows values
of R2

21
below 0.1 for AIMR explained by NINO3.4. Note that the NINO3.4 index

for the COSMO-CLM projections has been calculated using the data from the
ECHAM5/MPIOM because the NINO3.4 averaging region is outside the regional
simulation domain. Thus, the correlation between the AIMR and the NINO3.4
index in the COSMO-CLM is expected to be smaller than that in the driving
model. This clearly biases this evaluation to some extent.

However, for the explained variance of AIMR by ZWSI and MWSI, there
are no such limitations. During the time period common with the obser-
vations (1960-2009), the resulting R2 is 0.60 for the COSMO-CLM, 0.84 for
the ECHAM5/MPIOM and 0.55 for the observations. The values in the
ECHAM5/MPIOM are generally higher than in the COSMO-CLM, and the re-
gional model is closer to the observed values (Figs. 4.12 and 4.13). For instance,
R2

21
shows a mean value of 0.63 for COSMO-CLM, 0.70 for ECHAM5/MPIOM

and 0.59 for the observations. The minimum (maximum) values of R2
21

are 0.33
(0.79) for COSMO-CLM, 0.44 (0.93) for ECHAM5/MPIOM and 0.27 (0.79)
for the observations. Thus, while both models show an overestimation of the
explained variance, the COSMO-CLM is closer to the observations than the
ECHAM5/MPIOM. For the other SRES scenarios, the improvement in the index
correlations is similar (not shown). This is also in agreement with the findings in
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Dobler and Ahrens (2010) for the present climate.
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Figure 4.13: As for Fig. 4.12, but for the ECHAM5/MPIOM A2 simulation.

Noteworthy is the large area of low values of R2 in the ECHAM5/MPIOM
simulations (Fig. 4.13) at the end of the simulation time with a sliding window
size of over 70 years. These low values are the result of an increase in the AIMR
and a simultaneous decrease in the ZWSI and MWSI or in the Niño 3.4 index at
the end of the simulations.

4.6 Conclusions

Four indices used to investigate the projected change in the Indian summer
monsoon (ISM) during the 21st century show decreasing trends for the SRES sce-
narios A2, A1B and B1 in the regional climate model COSMO-CLM. Generally,
the trends are most negative in A2, followed by A1B and B1. Almost no trends
can be found in the commitment scenario. This suggests a negative influence of
greenhouse gas emissions on the ISM strength.

The use of transient climate simulations from 1960 to 2100 allows us to include
long-term variations in the analysis. Although there are large variabilities in all
time series, the trends in rainfall, outgoing longwave radiation, and meridional
and zonal wind shear are statistically significant in many regions of the simulation
domain. For the north-western part of India, the simulations show highly negative
trends in monsoon precipitation amounts of up to more than -70% per century.

PhD-Thesis - Andreas Dobler, 2010



4. Indian summer monsoon projections 71

For the global coupled atmosphere-ocean model ECHAM5/MPIOM the trends
in the indices are similar to the COSMO-CLM simulations with the exception of
the all-India monsoon rainfall (AIMR) for which the ECHAM5/MPIOM shows
positive trends in all scenarios (Fig. 4.2). According to the current knowledge on
the ISM system represented through the applied indices (Wang and Fan, 1999;
Goswami, 2000), a simultaneous decrease in all indices, as in the COSMO-CLM,
is more realistic.

An investigation of the explained variance of AIMR by MWSI and ZWSI
or the NINO3.4 index shows that the currently observed lack in predictability
of the AIMR is below the simulated minimum values. The average explained
variances in the COSMO-CLM and the ECHAM5/MPIOM are higher than in
the observations. This indicates that in both models an essential part in the
interaction of dynamics and physics affecting the ISM is missing. In the COSMO-
CLM this may for instance be the lack of an atmosphere-ocean coupling. However,
the values in the COSMO-CLM are closer to the observations than those in the
driving ECHAM5/MPIOM model, and the index correlations are improved by
the regional climate model.

Although we used an RCM approach with a tested setup (Dobler and Ahrens,
2010) and four different SRES forcing, there are some limitations to our approach.
First, a broader ensemble of different GCMs would provide more information on
the uncertainties in the projected changes. Second, the tested setup shows some
non-negligible biases (Dobler and Ahrens, 2008, 2010; Lucas-Picher et al., 2010)
of which we can only assume, that they are constant in the model projections
and thus removed by the standardization of the indices. However, a similar study
using the RCM RegCM3 (Ashfaq et al., 2009) showed that the simulated change
of ISM rainfall is insensitive to the choice of the driving GCM, vertical resolution
and initial conditions. This is further supported by the similarity of the results
found therein and in this study for the A2 scenario.
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5.1 Abstract

Projections from coarse-grid global circulation models are not suitable for re-
gional estimates of water balance or trends of extreme precipitation and tem-
perature, especially not in complex terrain. Thus, downscaling of global to re-
gionally resolved projections is necessary to provide input to integrated water
resources management approaches for river basins like the Upper Danube River
Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB).

This paper discusses the application of the regional climate model COSMO-
CLM as a dynamical downscaling tool. To provide accurate data the COSMO-
CLM model output was post-processed by statistical means. This downscaling
chain performs well in the baseline period 1971 to 2000. However, COSMO-CLM
performs better in the UDRB than in the UBRB because of a longer application
experience and a less complex climate in Europe.

Different climate change scenarios were downscaled for the time period 1960-
2100. The projections show an increase of temperature in both basins and for
all seasons. The trends are generally larger in the UBRB with the highest values
occurring in the region of the Tibetan Plateau. Annual precipitation shows no
substantial change. However, seasonal amounts show clear trends, for instance an
increasing amount of spring precipitation in the UDRB. Again, the largest trends
for different precipitation statistics are projected in the region of the Tibetan
Plateau. Here, the projections show up to 50% longer dry periods in the months
June to September with a simultaneous increase of about 10% for the maximum
amount of precipitation on five consecutive days. For the Assam region in India,
the projections also show an increase of 25% in the number of consecutive dry
days during the monsoon season leading to prolonged monsoon breaks.
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5.2 Introduction and objectives

The Danube and the Brahmaputra River have their headwaters in mountain-
ous regions where massive glacier retreat and permafrost thaw have been observed
in recent times. Thus, further climate warming is likely to impact water avail-
ability and hydrological dynamics in both river-basins. In this regard climate
model projections can be used to gain some estimate of possible future impacts.

To estimate the impact of future climate change on the hydrology at the basin
scale, climate projections with a suitable temporal and spatial resolution are
essential input to hydrological models. However, projections from current global
circulation models (GCMs) have a grid resolution of about 200 km or more.
Further, these projections mostly agree on the global and continental scale of
precipitation and temperature change in the 21st century, but the projections for
precipitation changes diverge with decreasing spatial scales (Bates et al., 2008).

Thus, GCM projections are inappropriate to assess the impact of climate
change on a regional scale related to integrated water resources management
(IWRM) in the UDRB and the UBRB. A downscaling of the large-scale simula-
tions to a resolution of 50 km or less is necessary (Ahrens, 2003; Beck et al., 2004;
Frei et al., 2003; Salathé, 2003). To this end, it is essential to find a well suited
GCM and to apply an appropriate downscaling method to the GCM projections.

In this paper we discuss the comparison and enhancement of existing down-
scaling methods, their validation by means of observational data sets and the
application to different GCM scenarios in the UDRB and UBRB.

5.3 Role within the integrated project

As glacier and permafrost melting are natural system processes with long re-
sponse times, the respective impact models should be driven by transient regional
climate projections. However, due to limited available computational power,
there has been a lack of transient projections, especially in South Asia where
earlier studies (e.g., Kumar et al., 2006) mostly were based on time slice experi-
ments.

Within the BRAHMATWINN project (http://www.brahmatwinn.uni-jena.
de) downscaled GCM projections were used as input to the hydrological model
DANUBIA to simulate historical and future water balances of the UDRB and the
UBRB (Prasch et al., 2010). Furthermore the data were used in snow glacier and
permafrost modelling (Lang et al., 2010) and, to assess the question of a changing
climate directly, in the calculation of climate change indicators (Giannini and
Giupponi, 2010; Giannini et al., 2010).

To cope with these necessities, we provided transient climate projections for
the UDRB and the UBRB covering the years 1960-2100. The A1B, B1, A2, and
the commitment scenario, as given in the IPCC Special Report on Emissions
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Scenarios (SRES, Nakicenovic and Swart, 2000), were used to generate a small
ensemble of possible future developments.

5.4 Scientific methods applied

The testing and further development of existing downscaling techniques is an
important first step in the generation of regional climate projections with a high
temporal and spatial resolution. The latter is a prerequisite to evaluate the use
of these data for the estimation of the regional impact of future climate change.

0 500 1000 1500 2000 [m]

Figure 5.1: Model orography used in the European computational domain
with the UDRB (red).

Generally, two different classes of downscaling methods may be applied (Mur-
phy, 1999; Xu, 1999): a) dynamical downscaling methods based on simulations of
physical processes at a fine scale, typically using a regional climate model (RCM)
and b) statistical downscaling methods that employ observed statistical relation-
ships between the coarse and the fine scale. Dobler and Ahrens (2008) tested
different statistical, dynamical and combined downscaling methods on global
ERA40 re-analysis data (Uppala et al., 2005) in Europe and South Asia with
respect to rain day frequency and intensity. For this study, one of the proposed
combined downscaling methods was further developed and implemented for ap-
plication on GCM data at different high-performance computing sites.

As the dynamical downscaling method we applied the RCM COSMO-CLM
(http://www.clm-community.eu) in a European (Fig. 5.1) and a South Asian
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Figure 5.2: As for Fig. 5.1, but for the South Asian computational domain
with the UBRB (red).

region (Fig. 5.2). The COSMO-CLM is based on the COSMO (COnsortium for
Small scale MOdeling) model originally called Lokal Modell (LM) which was de-
veloped by the German meteorological service (DWD) in 1999 (Steppeler et al.,
2003). A detailed documentation of the LM (Doms and Schättler, 1999) is avail-
able at http://www.cosmo-model.org. More information on the model setup
and results of regional climate simulations over Europe and South Asia are given
in Dobler and Ahrens (2008, 2010) and Kothe et al. (2010).

Observational data was needed for the two basins for evaluation and for sta-
tistical downscaling methods. As in-situ measurements are sparse in the UBRB,
they were replaced with the following gridded, observational data sets, which in
most cases are globally available.� CRU TS 2.1 (Mitchell and Jones, 2005): monthly temperature and precip-

itation data on a global 0.5◦ grid for the years 1901-2002� UDEL version 1.02 (Legates and Willmott, 1990): monthly temperature
and precipitation data on a global 0.5◦ grid for the years 1950-1999� GPCC full data product version 4 (Schneider et al., 2008): monthly pre-
cipitation data on a global 0.5◦ grid for the years 1901-2007� F&S version 4.1 (Frei and Schär, 1998): daily precipitation data on a
1/6◦ grid covering the European Alps for the years 1971-1999
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78 5. RCM projections in the UDRB and the UBRB� EAD v0804 (Xie et al., 2007): daily precipitation data on a 0.5◦ grid cov-
ering South East Asia for the years 1980-2002� ZGIS: a newly developed daily temperature data set on a 0.5◦ grid
covering the two basins based on observational data retrieved from
the NCDC web page http://www.ncdc.noaa.gov/cgi-bin/res40.pl?

page=gsod.html, controlled and mapped by the Centre for Geoinformatics,
Salzburg (Kienberger et al., 2008).

To quantify the uncertainty of the observational data sets in the basins, a
comparison of the climatological annual cycle in temperature and precipitation
was carried out, including ERA40 re-analysis data.

The downscaling approach developed for and tested on ERA40 re-analysis data
were applied to GCM data. The GCM selection was based on the evaluation of
models used in the fourth IPCC assessment report (IPCC, 2007a). van Ulden and
van Oldenborgh (2006) have investigated 23 GCMs on the quality of simulated
global sea level pressure patterns. Further, Kripalani et al. (2007) have tested
22 GCMs for their performance in the South Asian region. Amongst these 22
models, they found no best model and a multi model ensemble (MME) mean
was proposed as benchmark. Unfortunately, a multi driving-model ensemble was
not feasible in the time frame of BRAHMATWINN and a single GCM had to be
selected.

Projections from the selected GCM were then downscaled to a resolution of
about 50 km. The dynamical downscaling of four SRES scenarios was followed by
a bias correction of the downscaled precipitation and temperature fields taking
into account the limited availability of observational data in the UBRB. For
other hydro-meteorological fields no bias correction was applied due to lack of
quality proofed observational data sets. Further, the impact models used within
the BRAHMATWINN framework are assumed to show the highest sensitivity to
precipitation and temperature.

5.5 Results achieved and deliverables provided

5.5.1 Observation uncertainties

The investigation of different observation data sets in the two basins shows
that for precipitation, the uncertainties in the UDRB are relatively small with less
than 20 mm/month (Fig. 5.3). Contrary, in the UBRB the data sets differ with a
maximum range of 70 mm/month in the monsoon months June to September as
shown in Fig. 5.4. However, only small uncertainties appear in the temperature
data sets, both in the UDRB (up to 2.2◦C, Fig. 5.3) and the UBRB (up to
1.2◦C, Fig. 5.4). As the CRU data set also includes the information on rain
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day frequency, it was chosen as the observational reference for temperature and
precipitation in both basins.

Figure 5.3: ERA40, observations and ERA40 driven COSMO-CLM simula-
tions with (DEB) and without bias correction in the UDRB for the present
climate.

Figure 5.4: As for Fig. 5.3, but for the UBRB.

5.5.2 Downscaling method

To firstly identify an appropriate downscaling method, ERA40 re-analysis data
rather than data from a general GCM simulation have been downscaled from

PhD-Thesis - Andreas Dobler, 2010



80 5. RCM projections in the UDRB and the UBRB

about 1.125◦ grid spacing to about 0.5◦. This minimises the influence of large
scale circulation uncertainties on the downscaling results.

Figures 5.3 and 5.4 show the climatology from ERA40 re-analysis, COSMO-
CLM simulations and different observations for the UDRB and UBRB, respec-
tively. While the European region shows a generally temperate climate (Fig. 5.3),
the climate in South Asia is dominated by a monsoon system which supplies the
region with up to 80% of the annual rainfall total (Fig. 5.4). The main deficien-
cies of the COSMO-CLM in the South Asian domain are apparent from June to
September. As shown in Dobler and Ahrens (2008) the model tends to under-
estimate the observed rain day intensity in these months. For temperature, the
COSMO-CLM shows a cold bias in the UDRB of up to 1.5◦C in April and of up
to 5◦C in the UBRB in December.

As can be seen, the COSMO-CLM performs clearly better in the UDRB than
in the UBRB. However, this has been expected, since the model was developed
in Europe and adapted to this region. Nevertheless, considering the big uncer-
tainties in the observations of precipitation, the COSMO-CLM performance in
the UBRB is acceptable. Overall, the accuracy of COSMO-CLM precipitation at
the 0.5◦ scale is comparable with that of the ERA40 precipitation, and, as shown
by Dobler and Ahrens (2008), in most places it is also comparable with that of
statistically downscaled ERA40 precipitation. In the UBRB, the COSMO-CLM
shows much better results than the ERA40 precipitation. This has also been ex-
pected, since the orography represented by ERA40 is very coarse and deficiencies
in this region are well known (Hagemann et al., 2005).

As the downscaled data was used as input for hydrological modelling (Prasch
et al., 2010), a set of hydro-meteorological data (temperature, precipitation, hu-
midity, surface radiation, wind, etc.) was needed. Generating such data sets with
statistical downscaling methods is highly limited by the sparseness of long term
observations which focus mainly on precipitation and temperature. Therefore,
the dynamical downscaling method is preferable.

5.5.3 Bias correction

An additional post-processing bias correction has been applied to precipitation
and temperature. For precipitation this showed to be problematic in the UBRB,
where a high seasonality in the COSMO-CLM bias and a large uncertainty in
the bias estimation for non-monsoon months have negative impacts on the tested
methods (Dobler and Ahrens, 2008). The uncertainties in the bias estimation
were found to result from the few rain days in the dry months. To reach the
proposed minimum number of rain days (about 500) a statistical approach based
on local rain day intensity scaling (Schmidli et al., 2006) was developed which
corrects the frequency of wet days and the mean wet day precipitation to fit
the observed values in a specific calibration period. The method uses monthly
rainfall amounts and number of rain days, both obtained from the CRU data set.
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This allows for a longer calibration period (44 years) than using the EAD data
set in the South Asian region. However, to guarantee a robust bias estimation
(and thus correction) the calibration period for the method must still include
sufficient rain days. Therefore, the method was applied on a monthly basis only
to the months June to September in the UBRB. In the UDRB, the method
was applied without monthly splitting as there is almost no seasonality in the
COSMO-CLM precipitation bias.

For the 2m temperature a simple Gaussian bias correction was applied at each
grid point. To this end, the simulated 2m temperature time series (3 hourly) T S

i

were corrected by fitting the monthly annual cycle to observations by eq. 5.1.

T ∗

i =
T S

i − T S

σS
· σO + TO. (5.1)

Through this the mean T S and the variance σS are linearly corrected to be equal
to those of the observation data (TO and σO, respectively). Here again, we used
the CRU temperature data set as reference.

Figures 5.3 and 5.4 show the positive effects of the applied bias correction
methods in both twinning basins.

5.5.4 Downscaling of GCM data

After testing the downscaling approach on ERA40 forcing data, the
method was applied to GCM data from the coupled atmosphere-ocean model
ECHAM5/MPIOM (Jungclaus et al., 2006). The ECHAM5/MPIOM was se-
lected for the following reasons to provide the necessary GCM data.

1. It is among the top models simulating a realistic 20th century South Asian
monsoon climate (Kripalani et al., 2007).

2. The simulated pressure field has a high skill in the mean spatial correlation
and in the mean explained spatial variance for Europe as well as globally
(van Ulden and van Oldenborgh, 2006).

3. There is broad experience with the model in downscaling applications in Eu-
rope (e.g., http://ensembles-eu.metoffice.com and http://prudence.

dmi.dk).

4. It is in good agreement with known large-scale features of the Asian sum-
mer monsoon including the re-establishing of the westerly jets south of the
Himalayas and the decay of the anticyclone on the Tibetan Plateau after
the monsoon season (data not shown).

5. The COSMO-CLM is able to provide the information necessary for
the assessment of regional climate change impacts when driven by the
ECHAM5/MPIOM (Dobler and Ahrens, 2010).
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Note that while current GCMs projections mostly agree in positive regional
and global temperature trends during the 21st century, there is still much dis-
agreement in the projections of precipitation, especially on the regional scale
(IPCC, 2007a). Therefore, the selection of a GCM for dynamical downscaling
based on projected precipitation changes on the regional scale is inappropriate.
For instance in the UBRB, the HadCM3 (Jones et al., 2004) model shows an
increase of annual precipitation of about 14% from 1971-2000 to 2071-2100 while
the ECHAM5/MPIOM shows an increase of 3% only during this time period
(data not shown).

5.5.5 Regional climate projections

To assess the issue of changing climates in the two basins, seasonal trends of
daily precipitation and temperature indicators (Tab. 5.1) were calculated for the
simulation period 1960-2100. For the European regions the seasons are spring
(SP, March to May), summer (SU, June to August), autumn (AU, September to
November) and winter (WI, December to February). As suggested by Basistha
et al. (2009) for the South Asian regions these are summer (SU, March to May),
monsoon (MO, June to September), post-monsoon (PM, October to November)
and winter (WI, December to February).

Table 5.1: Description of climate change indicators for precipitation and
temperature. The wet/dry day threshold used was 1 mm/d.

Acronym Description Unit
PFRE Fraction of wet days 1
PREC Total precipitation amount mm
PINT Mean precipitation amount mm/d

on wet days
PQ90 90% quantile of wet days mm/d

precipitation
PX5D Max. 5-day precipitation amount mm
PCDD Longest period of d

consecutive dry days
T2M Mean 2m temperature ◦C
T2MIN Mean daily minimum 2m temperature ◦C
T2MAX Mean daily maximum 2m temperature ◦C

The projections were normalized with respect to the reference period 1971-
2000. This is an easy way to remove constant model biases and a comparison
to more complex bias correction methods has shown no significant differences
in the resulting trends (data not shown). The trends were tested for statistical
significance at the 5% level using a linear model.
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To give a general summary of the indicator trends is very difficult. The single
projections show big regional and seasonal differences. But overall, the commit-
ment scenario shows the smallest trends up to the year 2100, followed by the B1,
A1B and finally the A2 scenario. However, up to the year 2080 most A1B trends
are higher than those of the A2 scenario (data not shown). This can be explained
by the higher emissions of the A1B scenario at the beginning of the 21st century.
Thus, the magnitude of the trends is generally in direct relation to the amount
of greenhouse gas emissions of the single scenarios.

We will concentrate our evaluations on the results from the scenarios A1B
and B1 in the following subsections as they were within the main focus of the
BRAHMATWINN project: A1B was considered as the most likely one and B1 as
a more optimistic one. However, the projected trends of the A1B and A2 scenario
are close to each other. In the commitment scenario, constant greenhouse gas
concentrations are assumed after the year 2000. Thus, it may be used as a control
experiment to estimate the impacts of anthropogenic forcings on the climates in
the two regions. This is however out of the scope of this study.

5.5.5.1 Temperature changes

Figures 5.5 and 5.6 show the annual temperature trends for the four SRES
scenarios in the two basins. For the A1B scenario, the temperature increase until
the year 2100 is projected around 4◦C in the UDRB and 5◦C in the UBRB. For
B1 the increase is around 2◦C in the UDRB and 4◦C in the UBRB .
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Figure 5.5: Ten year running means of temperature increase in the UDRB
for four SRES scenarios.

For A1B the temperature trends are around +3 to +4◦C within the UDRB
(Fig. 5.7) and up to more than +6◦C within the UBRB (Fig. 5.8). In both basins,
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Figure 5.6: As for Fig. 5.5, but for the UBRB.

the temperature increase in higher elevated areas is larger than in low level areas
and the largest trends appear in the region of the Tibetan Plateau. In B1, the
trends are about 1◦C smaller than in A1B throughout both basins (data not
shown).

−1 0 1 2 3 4 5 6 7 8

Figure 5.7: Linear trends of the annual mean temperature (◦C/cent.) in
the UDRB during the time period 1960-2100 following the A1B scenario.
Coloured areas show significant trends (at the 5% level). The grey dotted
lines denote isohypses in m a.s.l. Also shown are the Lech (white) and the
Salzach (blue) river basin.
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Figure 5.8: As for Fig. 5.7, but for the UBRB with the Assam region (blue),
the Lhasa (green) and the Wang-Chu (brown) river basin.

Figures 5.9 and 5.10 show the seasonal temperature trends and the spatial
variability of the trends in A1B for the UDRB and the UBRB, respectively.
Spatially averaged trends that are statistically significant are indicated by a red
cross for the A1B scenario and a green cross for the B1 scenario. As can be seen,
both scenarios show significant positive trends for all seasons in temperature, as
well as daily minimum and maximum temperature in both basins. The increase of
the maximum daily temperature is generally highest, followed by the increase of
mean temperature and the increase of the daily minimum temperature suggesting
an increase in temperature variability. However, there are also exceptions to this,
for instance during the post-monsoon season in the UBRB and spring in the
UDRB.

5.5.5.2 Precipitation changes

The projected precipitation trends are less unanimous than the temperature
trends. No significant trends were found in the two basins for the annual pre-
cipitation amounts (Figs. 5.11 and 5.12). This is however a result of trends
compensating each other in the different seasons and areas.

Figures 5.13-5.16 show the trends of precipitation-based indicators in the
UDRB and UBRB. In A1B, the summer precipitation amount in the UDRB
is decreasing with about 20%/century (Fig. 5.13) and the monsoon precipitation
amount in the UBRB with about 10%/century (Fig. 5.15). Simultaneously, there
is a decrease in the number of precipitation days (PFRE), an increase in the
rain-day intensity (PINT) as well as an increase in the length of consecutive dry
days (PCDD) in both basins.

In the UDRB there is further an increase of PX5D (Fig. 5.14) and of PREC
(Fig. 5.13) in spring. As can be seen, there are less significant precipitation trends
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Figure 5.9: Spatial variability of seasonal trends in T2M, T2MIN and
T2MAX in the UDRB for the A1B scenario. Red and green crosses show
statistically significant spatial mean trends for the A1B and the B1 scenario,
respectively.
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Figure 5.10: As for Fig. 5.9, but for the UBRB.

in the UBRB than in the UDRB which is due to a larger inter-annual variability
(data not shown). In both basins, the PQ90 trends agree to a large extend with
the trends in PINT for all seasons.

At sub-basin scales the trends are even more varying. In the monsoon season
for instance, there is an increasing trend in the A1B scenario for PX5D of 9%
in the Lhasa river basin (Fig. 5.17). Simultaneously, PCDD increases by 53% in
the Lhasa river basin and by 20% in Assam (Fig. 5.18). For B1, these trends are
about 50% smaller but the spatial distribution is similar (data not shown).

Figures 5.17 and 5.18 and the high temperature increases shown above indicate
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Figure 5.11: Ten year running means of precipitation change in the UDRB
for four SRES scenarios.
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Figure 5.12: As for Fig. 5.11, but for the UBRB.

that the Tibetan Plateau is a region highly sensitive to future climate changes.
For Assam, the positive trend in PCDD implies longer monsoon breaks, which in
the current climate show a typical length of 15 days.

PhD-Thesis - Andreas Dobler, 2010



88 5. RCM projections in the UDRB and the UBRB

SP SU AU WI SP SU AU WI SP SU AU WI

−
40

−
20

0
20

40

Season

%
/c

en
t.

PREC

XX

X
X

PFRE

XX

X

X

X

PINT

XX X
XX X

Figure 5.13: As for Fig. 5.9, but for PREC, PFRE and PINT.
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Figure 5.14: As for Fig. 5.9, but for PQ90, PX5D and PCDD.

5.6 Contributions to sustainable IWRM

The presented GCM downscaling approach provided the basis for the inte-
grated water resources management system comprising the DANUBIA hydrolog-
ical model, the river basin information system (RBIS) and the network analysis
and creative modelling decision support system NetSyMoD which is building a
sustainable development based on stakeholder negotiations within the framework
of the BRAHMATWINN project.

The results shown in this paper provide sound evidence about likely climate
change dynamics which will impact the hydrological process dynamics and runoff
generation at present active within both twinning basins. They provide a scenario

PhD-Thesis - Andreas Dobler, 2010



5. RCM projections in the UDRB and the UBRB 89

SU MO PM WI SU MO PM WI SU MO PM WI

−
40

−
20

0
20

40

Season

%
/c

en
t.

PREC

X
X

PFRE

XX

X
X

X
X

PINT

X

Figure 5.15: As for Fig. 5.9, but in the UBRB and for PREC, PFRE and
PINT.
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Figure 5.16: As for Fig. 5.9, but in the UBRB and for PQ90, PX5D and
PCDD.

based framework setup within which adaptive management options for sustain-
able IWRM can be developed and evaluated.

The results discussed focus on the most pronounced trends in the UDRB and
the UBRB during the years 1960-2100. A complete set of time series for all
scenarios, seasons, areas of interest (see Figs. 5.7 and 5.8) and the indicators
PREC, PX5D, PCDD, T2M, T2MIN and T2MAX (Tab. 5.1) for the years 1960-
2100 are available through the RBIS of the BRAHMATWINN project.
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Figure 5.17: Linear trends of PX5D (%/cent.) in the UBRB in monsoon
from 1960 to 2100 following the A1B scenario. White areas show non-
significant trends (at the 5% level). The grey dotted lines denote isohypses
in m a.s.l. Coloured lines show the Assam region (blue), the Lhasa (green)
and the Wang-Chu (brown) river basin.
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Figure 5.18: As for Fig. 5.17, but for PCDD.

5.7 Conclusions and recommendations

Using regional climate projections from the COSMO-CLM allows analysing
the impact of the climate change signal on the regional water balance in the
UDRB and the UBRB. To generate several likely scenarios for the time period
1960-2100, the COSMO-CLM was driven by the GCM ECHAM5/MPIOM with
four different SRES forcings. The model output was for instance used as input
to the hydrological model DANUBIA.
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The temperature is projected to increase in both basins in the coming decades
with the higher values in the region of the Tibetan Plateau. Thus, parameters
directly dependent on temperature, like potential evapotranspiration, are also
assumed to show clear trends. This will have a severe impact on the hydrology
of the river basins.

Precipitation trends are less clear. Annual precipitation is projected not to
change significantly, but seasonal amounts are. Different climate change indi-
cators, like the length of the longest dry periods, indicate more frequent and
prolonged droughts. However, there is no simultaneous tendency to less flooding
events. The projected increasing amount of (1-day and 5-day) spring precipita-
tion in the UDRB in combination with increased spring snow melt due to higher
temperatures in the Alps might even yield more intense and frequent flooding
events.

An increase in the number of consecutive dry days and in the maximum 5-day
precipitation amount in the region of the Tibetan Plateau for the monsoon season,
as well as large temperature trends indicate a highly sensitive region to future
climate changes. For Assam, the positive trend in the number of consecutive dry
days in the monsoon season indicate longer monsoon breaks.

In this study a specific model combination was used, and applying a different
GCM to drive the COSMO-CLM would most likely result in slightly changed
regional projections. As discussed above, the HadCM3 projects larger increases of
precipitation in the UBRB than the ECHAM5/MPIOM. Thus, the COSMO-CLM
may be expected to project slightly larger precipitation trends too, if driven by
the HadCM3. This uncertainty clearly has to be considered. Although comparing
to the different SRES scenarios the uncertainty is expected to be small, driving
the COSMO-CLM with different GCMs would be preferable and reveal more
insight on the influence of the driving model to the results.
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Chapter 6

Conclusions

In this thesis, the application of the regional climate model COSMO-CLM in
a European and a South Asian region is analyzed. The model is compared to two
statistical downscaling methods on the basis of daily precipitation statistics. It is
further evaluated using various parameters of the climate system to answer the
question of a better representation of regional patterns in the downscaled data
than in the large-scale driving models.

The investigations carried out lead to the conclusion that the COSMO-CLM
provides the ability to regionalize global climate models (GCMs) in both regions
and to yield additional regional information. For instance, the accuracy of the
COSMO-CLM rainfall data on the 0.5° scale is comparable with ERA40 precipi-
tation, and in most regions also comparable with statistically downscaled ERA40
precipitation. For the central European region, a dynamical downscaling with
the COSMO-CLM provides a suitable method to generate accurate rainfall and
temperature fields.

To generate unbiased input data for hydrological or other impact models,
an additional bias correction of precipitation and temperature may be applied.
However, in statistical downscaling methods and bias corrections, the estimation
of statistical correlations between simulations and observations includes large
uncertainties in the case of a low number of data points (such as in extreme
events). The results of this thesis show that about 500 rain days are necessary to
give an adequate degree of security in the estimation of statistical relations for rain
day frequency and intensity. Thus, the application of statistical methods based
on these relations in dry or seasonally dry climates is very limited. Although
regional climate models do technically not have this disadvantage, the model
evaluation and fine-tuning do have the same limitations.

The results in South Asia show some significant deviations from observed data.
In this region (and other ones the model has not been designed for directly) a
detailed examination of the results is required before the model data may be
used, for instance as input to impact models. Due to current model limitations,
bias corrections are necessary to provide suitable data in the South Asian re-
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gion. However, to overcome the limitation of too few rain days, a correction of
precipitation should be applied for the months from June to September only.

Nevertheless, the COSMO-CLM is able to compensate for problems of the
driving model at the local scale considering the Indian summer monsoon (ISM).
Although the regional model provides no added value in the representation of the
ISM by large-scale indices, spatial rainfall and wind patterns and index correla-
tions are more accurate than in the ECHAM5/MPIOM model, showing that the
regional model is able to improve the GCM projections.

The COSMO-CLM projections partly show a decrease of rainfall from June to
September of more than 70% per century in northwest India for the years 1960-
2100. The decrease rates of various ISM indices in four different emission scenarios
are generally in the same order as the greenhouse gas (GHG) concentrations. This
points to a negative impact of GHG concentrations on the strength of the ISM.

Projections for the upper Danube and the upper Brahmaputra river basin re-
veal that the climate of the Tibetan Plateau is highly sensitive to future GHG
emissions. Furthermore, the projections show a significant extension of monsoon
breaks in the region of Assam in India. This would have a severe impact on agri-
culture in that region. In the upper Danube river basin, the spring precipitation
is projected to increase. In conjunction with an increase in snow melt due to
higher temperatures this would lead to more intense and more frequent floods
during spring.

A general answer to the question which of the investigated methods is best
suited to downscale GCMs can not be given in this work. Although the applica-
tion on reanalyses provides the possibility of a quantitative ranking and testing of
the methods, the ranking is not transferable to the application on GCMs. Results
from this work show that a successful application on reanalyses is not sufficient
to ensure a successful application on GCMs.

When using bias corrections, the model error must be constant in time to allow
a robust error estimate and a successful application. Large model errors in the
calibration time lead to large corrections of the model data in the application
period and include a high risk of deterioration of the model data. Therefore,
further developments in global and regional climate models are also necessary to
generate adequate data for statistical methods, as the current models often do
not meet these requirements. For the COSMO-CLM the investigations in this
work show that a change in the parametrization of convection and the coupling
to an ocean model would probably yield improved results.
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Kapitel 7

Deutsche Zusammenfassung

7.1 Einleitung

Mit der zunehmenden Verfügbarkeit günstiger Rechenressourcen sind allge-
meine Zirkulationsmodelle und regionale Klimamodelle sehr populär geworden
und an vielen wissenschaftlichen Institutionen weltweit im Einsatz. Sie stellen
hilfreiche Werkzeuge dar, um klimatische Prozesse zu verstehen sowie zur Simu-
lation von historischen und zukünftigen Klimata unter verschiedenen Annahmen
wie Konzentrationen von Treibhausgasen, Landnutzung, etc.

Die meisten der aktuell durchgeführten Klimaprojektionen verwenden Szenari-
en, die im Sonderbericht über Emissionsszenarien (SRES, Nakicenovic und Swart,
2000) des International Panel on Climate Change (IPCC, http://www.ipcc.

ch) definiert sind. Innerhalb der dritten Phase des Coupled Model Intercompa-
rison Projects (Meehl et al., 2007, http://cmip-pcmdi.llnl.gov/) wurden die
Projektionen von mehr als 20 gekoppelten Ozean-Atmosphäre Zirkulationsmo-
dellen nach den SRES-Szenarien gesammelt. Diese Daten bildeten die Grund-
lage für einen großen Teil der Forschungsergebnisse, welche im vierten IPCC-
Sachstandsbericht vorgelegt wurden.

Die derzeit verfügbaren globalen Projektionen haben jedoch eine horizonta-
le Auflösung von etwa zwei Grad (ca. 200 km am Äquator). Zur Abschätzung
der regionalen Wasserbilanz ist diese Auflösung zu grob, weshalb eine Regiona-
lisierung auf eine Auflösung von 0.5° (50 km) oder weniger notwendig ist, um
regionale Niederschlagsmuster zu generieren (Ahrens, 2003; Beck et al., 2004;
Dobler und Ahrens, 2008; Frei et al., 2003; Salathé, 2003). Dies gilt insbesondere
für Regionen mit einer komplexen Orographie. Darüber hinaus sind sich zwar die
meisten globalen Zirkulationsmodelle einig über die globalen und kontinentalen
Temperaturänderungen im 21. Jahrhundert, unterscheiden sich aber substantiell
in den Projektionen des Niederschlags auf regionaler Skala (Annamalai et al.,
2007; IPCC, 2007b).

Die Zielsetzung dieser Arbeit ist die Untersuchung der Möglichkeiten und
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Abbildung 7.1: Europäisches Modellgebiet und Orographie mit dem Ein-
zugsgebiet der oberen Donau (rot).

Grenzen von hochauflösenden Klimaprojektionen in orographisch stark beein-
flussten Gebieten an den Beispielen der europäischen Alpen und des Himalajas.
Zu diesem Zweck wurden regionale Klimasimulationen in einem europäischen
und einem südasiatischen Gebiet (Abb. 1 und 2) erstellt. Die regionalen Kli-
masimulationen werden mit statistischen Regionalisierungsmethoden verglichen
und anhand unterschiedlicher Parameter des Klimasystems evaluiert. Für das
südasiatische Gebiet ist die Wiedergabe eines realistischen Monsunsystems von
hoher Relevanz, insbesondere die Fragestellung, ob sich dieses im regionalen Mo-
dell besser darstellen lässt als im antreibenden globalen Modell.

Im Rahmen des Projekts BRAHMATWINN der Europäischen Union wurde
des Weiteren eine Klimaänderungsstudie für die Einzugsgebiete der oberen Do-
nau (Abb. 1) und des oberen Brahmaputra (Abb. 2) erstellt. Diese basiert auf
Veränderungen täglicher Niederschlags- und Temperaturindikatoren in den ein-
zelnen Jahreszeiten während der Zeitspanne 1960 bis 2100. In der europäischen
Region wurden die Jahreszeiten Frühling (März bis Mai), Sommer (Juni bis Au-
gust), Herbst (September bis November) und Winter (Dezember bis Februar)
verwendet. Für Südasien wurde das Jahr unterteilt in Sommer (März bis Mai),
Monsun (Juni bis September), Post-Monsun (Oktober und November) und Win-
ter (Dezember bis Februar), wie von Basistha et al. (2009) vorgeschlagen. Die
untersuchten Indikatoren sind in Tabelle 1 zusammengefasst.

Um verschiedene zukünftige Klimaentwicklungen abzudecken, wurden vier
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Abbildung 7.2: Südasiatisches Modellgebiet und Orographie mit dem Ein-
zugsgebiet des oberen Brahmaputra (rot).

Projektionen für die Jahre 1960 bis 2100 anhand unterschiedlicher SRES-
Szenarien durchgeführt. Die gewählten Szenarien und deren grundlegenden An-
nahmen sind wie folgt.� A1B: ein schnelles wirtschaftliches Wachstum und eine moderate Zunahme

der Weltbevölkerung mit Spitzenwerten in der Mitte des 21. Jahrhunderts,
sowie eine schnelle Einführung von neuen und effektiveren Technologien mit
einem ausgeglichenen Anteil an fossilen und nicht fossilen Energiequellen� B1: Zunahme der Weltbevölkerung wie in A1B jedoch mit einer schnellen
Einführung von sauberen und energieeffizienten Technologien� A2: langsamer und heterogener Wirtschaftswachstum mit einer monoton
zunehmenden Weltbevölkerung� Commitment: konstante Treibhausgaskonzentrationen auf dem Niveau des
Jahres 2000

Als weitere Anwendung wurden die regionalisierten Projektionen innerhalb
des BRAHMATWINN Projekts als Antrieb für hydrologische Simulationen von
historischen und zukünftigen Wasserbilanzen der oberen Donau und des oberen
Brahmaputra (Prasch et al., 2010), zur Gletscher- und Permafrostmodellierung
(Lang et al., 2010) und in der Berechnung von Indikatoren des Klimawandels
(Giannini und Giupponi, 2010; Giannini et al., 2010) verwendet.
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Tabelle 7.1: Klimaäanderungsindikatoren für Niederschlag und Temperatur.
Der verwendete Schwellwert für Regentage ist 1 mm/d.

Abkürzung Erklärung Einheit
PFRE Anteil Regentage 1
PREC Gesamtniederschlagsmenge mm
PINT Durchschnittliche Niederschlagsmenge an Regentagen mm/d
PQ90 90% Quantil der Niederschlagsmenge an Regentagen mm/d
PX5D Maximale 5-Tages Niederschlagsmenge mm
PCDD Längste Trockenperiode d
T2M Durchschnittliche 2m-Temperatur ◦C
T2MIN Durchschnittliche tägliche 2m Minimaltemperatur ◦C
T2MAX Durchschnittliche tägliche 2m Maximaltemperatur ◦C

7.2 Datengrundlage

Im Folgenden werden die Daten beschrieben, welche dieser Arbeit zugrunde
liegen. Es handelt sich hierbei einerseits um modellgenerierte Daten und ande-
rerseits um aus Beobachtungen generierte Daten.

7.2.1 Modelldaten

Um die regionalen Klimasimulationen zu erstellen, wurde das COSMO-CLM
verwendet. Das COSMO-CLM basiert auf dem COSMO-Modell, ursprünglich
als Lokal Modell vom Deutschen Wetterdienst im Jahr 1999 entwickelt (Doms
und Schättler, 1999; Steppeler et al., 2003). Das COSMO Modell wird derzeit
von sieben europäischen Wetterdiensten für die operationelle numerische Wetter-
vorhersage verwendet. Eine ausführliche Dokumentation ist unter http://www.

cosmo-model.org verfügbar. Die hier verwendete Modellkonfiguration entspricht
der aus den CLM-Konsortialläufen (Hollweg et al., 2008), mit Ausnahme einer
gröberen horizontalen und vertikalen Auflösung. Eine höhere Auflösung war auf-
grund der Anzahl durchgeführter Simulationen nicht realisierbar. Bei den Simu-
lationen des A1B und des B1 Szenarios im europäischen Rechengebiet wird auf
die CLM-Konsortialläufe zurück gegriffen.

Um die Randbedingungen des regionalen Modells zu definieren, werden glo-
bale Modelldaten benötigt. Diese wurden entweder aus ERA40 Reanalyse Daten
(Uppala et al., 2005) des European Centre for Medium-range Weather Forecasts
(ECMWF) oder aus globalen Simulationen des gekoppelten Ozean-Atmosphäre-
Modells ECHAM5/MPIOM (Roeckner et al., 2003; Jungclaus et al., 2006) ge-
wonnen. Bei den ECHAM5/MPIOM Daten handelt es sich jeweils um den ersten
Lauf der für den vierten IPCC-Sachstandsbericht verwendeten Simulationen (Ro-
eckner et al., 2006b,c,d,e).
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7.2.2 Beobachtungen

Beobachtungsdaten werden zur Modellevaluierung sowie in den untersuchten
statistischen Regionalisierungsverfahren benötigt. Da in-situ-Messungen beson-
ders in der asiatischen Region schwierig zu erhalten sind, wurden folgende, aus
Stationsdaten gewonnene, Temperatur- und Niederschlagsdaten verwendet. Die
meisten dieser Daten sind für wissenschaftliche Zwecke frei verfügbar und haben
eine weltweite Abdeckung.� Climate Research Unit time-series, Version 2.1 (CRU, Mitchell und Jones,

2005): Monatliche Temperatur- und Niederschlagsdaten auf einem globalen
0.5° Gitter für die Jahre 1901 bis 2002� University of Delaware Daten, Version 1.02 (UDEL, Legates und Willmott,
1990): Monatliche Temperatur- und Niederschlagsdaten auf einem globalen
0.5° Gitter für die Jahre 1950 bis 1999� Global Precipitation Climatology Centre Daten, Version 4 (GPCC, Schnei-
der et al., 2008): Monatliche Niederschlagsdaten auf einem globalen 0.5° Git-
ter für die Jahre 1901 bis 2007� Frei und Schär Datensatz, Version 4.1 (F&S, Frei und Schär, 1998): Tages-
niederschlagsdaten auf einem 1/6° Gitter für die europäischen Alpen von
1971 bis 1999� East Asia daily precipitation data, Version 0804 (EAD, Xie et al., 2007):
Tagesniederschlagsdaten auf einem 0.5° Gitter für Ostasien für die Jahre
1980 bis 2002� Daten des Zentrum für Geoinformatik, Salzburg (ZGIS, Kienberger et al.,
2008): Ein neu entwickelter Tagestemperaturdatensatz auf einem 0.5° Gitter
für beide Regionen für die Jahre 1975 bis 2000, basierend auf Stationsdaten
von der Web-Seite des National Climatic Data Center http://www.ncdc.

noaa.gov/cgi-bin/res40.pl?page=gsod.html, kontrolliert und kartiert
durch ZGIS

Des Weiteren wurden in der Untersuchung des Indischen Monsuns folgende
zusätzlichen Datensätze als Referenz verwendet:� Beobachtungsdaten des jährlichen Monsunniederschlags in Indien (Partha-

sarathy et al., 1994) für die Jahre 1871 bis 2009, erstellt durch das Indian
Institute of Tropical Meteorology (http://www.tropmet.res.in)� Ausgehende langwellige Strahlung von der National Oceanic and Atmos-
pheric Administration (NOAA, Lucas et al., 2001) für den Zeitraum von
Juni 1974 bis Dezember 1999
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100 7. Deutsche Zusammenfassung� El Niño Southern Oscillation index 3.4 Daten vom Climate Prediction Cen-
ter, NOAA, USA (http://www.cpc.noaa.gov/data/indices) für die Jah-
re 1871 bis 2009� Winddaten für den Zeitraum 1948 bis 2009 auf 200 hPa und 850 hPa aus
dem Reanalysedatensatz 1 (Kalnay et al., 1996) der National Centers for
Environmental Prediction/National Center for Atmospheric Research

7.3 Resultate

In einem ersten Schritt (Kapitel 2, Dobler und Ahrens, 2008) werden die Me-
thoden anhand von täglichen Niederschlagsstatistiken in jeweils drei Regionen
mit unterschiedlicher Klimatologie und Orographie in den beiden Rechengbieten
(Abb. 1 und 2) verglichen. Zur Minimierung des Einflusses der Unsicherheiten
im antreibenden Modell, werden die Methoden auf die globalen Reanalysedaten
ERA40 des ECMWF angewendet. Aus ERA40 Daten gewonnene Antriebsda-
ten besitzen wesentlich kleinere Fehler als aus allgemeinen Zirkulationsmodellen
gewonnene und bilden daher eine ideale Testumgebung zur Bewertung der ver-
schiedenen Methoden.

Die statistischen Regionalisierungsverfahren sind generell erfolgreich. Die
größten Fehler in den COSMO-CLM Simulationen treten während der Monsun-
zeit in der südasiatischen Region auf, in der das Modell die Niederschlagsinten-
sitäten unterschätzt. Dieser Befund ist nicht überraschend, da das Modell nicht
für dieses Klima und diese Region entwickelt wurde. Dennoch ist die Genauigkeit
der COSMO-CLM Niederschlagsdaten auf der 0.5° Skala vergleichbar mit dem
ERA40 Niederschlag und in den meisten Regionen sogar vergleichbar mit dem
statistisch regionalisierten ERA40 Niederschlag.

Das COSMO-CLM ist daher eine viel versprechende Regionalisierungsmetho-
de. Darüber hinaus besteht der Vorteil gegenüber statistischen Methoden darin,
dass es eine physikalisch konsistente Reihe von verschiedenen meteorologischen
Parametern erzeugt, die z.B. verwendet werden können um ein hydrologisches
Modell anzutreiben.

Eine Fehlerkorrektur der COSMO-CLM Simulationen basierend auf den statis-
tischen Methoden funktioniert sehr gut in den europäischen Testgebieten, schlägt
aber fehl in Südasien. Eine genauere Untersuchung zeigt eine große Abhängigkeit
der Robustheit der Modellfehlerschätzung von der beobachteten und simulierten
Regentaghäufigkeit. Dies hat zur Folge, dass eine ausreichend große Anzahl Re-
gentage in der Kalibrationsperiode der statistischen Methoden vorliegen muss,
um eine bestimmte Sicherheit in der Fehlerschätzung zu gewährleisten und ei-
ne erfolgreiche Anwendung zu ermöglichen. Die Untersuchungen liefern dabei
einen Schwellwert von ca. 500 Regentagen. Dadurch wird die Anwendung der
statistischen Methoden in trockenen oder saisonal trockenen Klimatas stark ein-
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geschränkt.
In einer zweiten Studie (Kapitel 3, Dobler und Ahrens, 2010a) wird die Dar-

stellung des indischen Sommermonsuns (ISM) im COSMO-CLM im Vergleich zu
den globalen Antriebsmodellen ERA40 und ECHAM5/MPIOM analysiert. Dazu
werden diverse großskalige Indizes für den ISM untersucht. Diese basieren auf
Niederschlag, vertikaler Windscherung und ausgehender langwelliger Strahlung.

Die Ergebnisse zeigen, dass bezüglich dieser Indizes die COSMO-CLM Simu-
lationen nicht genauer sind als die antreibenden Modelle. Eine Bewertung der
Modelle nur aufgrund der ISM-Indizes ist jedoch unvollständig. Fehler innerhalb
der einzelnen Mittelungsregionen können einander ausgleichen und zu einer guten
Übereinstimmung mit den Beobachtungsdaten führen. In der räumlichen Vertei-
lung der Niederschläge zeigen z.B. die durch ERA40 angetriebenen COSMO-CLM
Simulationen große Überschätzungen (ca. 100%) für die Westküste von Indien
und Unterschätzungen (ca. 50 %) an den Ausläufern des Himalajas, welche zu ei-
nem gut mit den Beobachtungen übereinstimmenden Mittel über Indien führen.
Große Modellfehler können zudem in der ausgehenden langwelligen Strahlung
über dem Arabischen Meer und dem Golf von Bengalen gefunden werden. Hier
zeigt das COSMO-CLM hohe konvektive Aktivität an etwa drei Mal so vielen
Tagen während der Monsunzeit wie beobachtet.

In den ECHAM5/MPIOM angetriebenen Simulationen wird der Niederschlag
am Fuße des Himalajas ebenfalls unterschätzt. Jedoch können die räumlichen
Muster für Niederschlag und vertikale Windscherung sowie die zeitliche Korre-
lation der modellierten ISM-Indizes gegenüber dem ECHAM5/MPIOM verbes-
sert werden. Diese Anwendung des COSMO-CLM liefert demnach zusätzliche
Informationen, die notwendig sind für die regionale Interpretation der Ergebnisse
(Beck et al., 2004). Hinsichtlich der Erstellung von regionalen Klimaprojektionen
ist dies ein vielversprechendes Ergebnis, das mit den Erkenntnissen von Hage-
mann und Jacobs (2007) übereinstimmt, dass regionale Klimamodelle Probleme
der antreibenden Modelle auf lokaler Skala kompensieren können.

Eine Sensitivitätsanalyse mit dem COSMO-CLM in der südasiatischen Re-
gion führt zum Schluss, dass die Wechselwirkung von Atmosphäre und Ozean
ein entscheidender Faktor für die Modellergebnisse ist. Eine Reduktion der Mee-
resoberflächentemperatur im Arabischen Meer in den ERA40 angetriebenen Si-
mulationen führt zu einer Reduktion der simulierten Westwinde in der unteren
Troposphäre und dadurch zu einer geringeren Niederschlagsüberschätzung an der
indischen Westküste. Weitere Untersuchungen und Entwicklungen in diesem Be-
reich oder die Kopplung des COSMO-CLM an ein Ozean-Modell könnten daher
zu spürbaren Verbesserungen der Simulationen führen.

Um die Änderung des ISM in den COSMO-CLM und ECHAM5/MPIOM Pro-
jektionen für das 21. Jahrhundert zu untersuchen, wurden verschiedene Indizes
analysiert (Kapitel 4, Dobler und Ahrens, 2010b). In den COSMO-CLM Simu-
lationen zeigen alle Indizes eine signifikant negative Tendenz, und damit eine
wesentlich geringere Stärke des ISM für die SRES-Szenarien A2, A1B und B1.
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Generell können die negativsten Trends in A2 gefunden werden, gefolgt von A1B
und B1. Fast keine Trends sind hingegen im commitment Szenario zu finden. Dies
deutet auf einen negativen Einfluss der Treibhausgaskonzentrationen auf die ISM
Stärke hin.

Die Verwendung von transienten Klimasimulationen von 1960 bis 2100
ermöglicht es, langfristige Variabilitäten in die Analyse mit einzubeziehen. Ob-
wohl große jährliche Schwankungen bestehen, sind die Trends im COSMO-CLM
für Niederschlagsmenge, ausgehende langwellige Strahlung und meridionale und
zonale Windscherung in vielen Regionen des südasiatischen Simulationsgebie-
tes statistisch signifikant. Für Nordwest-Indien zeigen die Projektionen teilwei-
se einen Rückgang der Niederschläge während der Monsunzeit von über 70%
während 100 Jahren. Es ist zudem zu sehen, dass die Abnahme in den Windsche-
rungindizes hauptsächlich auf Veränderungen in der oberen Troposphäre bei 200
hPa basieren und die Veränderungen in der unteren Troposphäre nur gering sind.

Im globalen Model ECHAM5/MPIOM sind die Trends der ISM-Indizes eben-
falls negativ, mit Ausnahme des Monsunregens über Indien. Gemäß der Definitio-
nen und aktuellen Kenntnissen über die Monsunindizes sind synchrone Trends,
wie in den COSMO-CLM Simulationen, wahrscheinlicher und das regionale Mo-
del liefert hier einen weiteren Mehrwert im Vergleich zum Globalmodell.

Die COSMO-CLM Projektionen in den Einzugsgebieten der oberen Donau und
des oberen Brahmaputra (Kapitel 5, Dobler et al., 2010) weisen einen signifikanten
Anstieg der Temperatur für alle Jahreszeiten über den Zeitraum 1960-2100 auf.
Die Temperaturzunahmen sind in der Regel größer im Brahmaputragebiet, mit
den größten Werten in der Region des tibetanischen Plateaus.

Die Änderungen in den Niederschlagsstatistiken sind weniger deutlich. Es
werden keine wesentlichen Veränderung in den jährlichen Niederschlagsmen-
gen in beiden Gebieten gefunden. Allerdings zeigen die saisonalen Anteile kla-
re Trends, beispielsweise eine Zunahme im Frühjahrsniederschlag im Einzugsge-
biet der oberen Donau. In Kombination mit der projizierten erhöhten Schnee-
schmelze aufgrund höherer Temperaturen, würde dies intensivere und häufigere
Überschwemmungen im Frühjahr bedeuten.

Die größten Trends im Niederschlag werden erneut in der Region des tibetani-
schen Plateaus projiziert. Hier zeigen die Simulationen einen Anstieg von bis zu
50% in der Länge der Trockenperioden in den Monaten Juni bis September, mit
einem gleichzeitigen Anstieg von etwa 10% für die maximale Niederschlagsmenge
an fünf aufeinander folgenden Tagen. Für die Region Assam in Indien zeigen die
Projektionen eine Zunahme von 25% in der Anzahl der aufeinander folgenden tro-
ckenen Tage während der Monsunzeit und somit eine signifikante Verlängerung
der Monsunpausen.
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7.4 Schlussfolgerungen

Die in dieser Arbeit angestellten Untersuchungen führen zum Schluss, dass
die Anwendung des COSMO-CLM die Möglichkeit liefert, globale Klimamodelle
in den beiden untersuchten Gebieten zu regionalisieren und zusätzliche regionale
Informationen bereit zu stellen. Für Mitteleuropa stellt das COSMO-CLM eine
geeignete Methode dar, um Niederschlags- und Temperaturfelder zu erzeugen.

Um akkurate Antriebsdaten für hydrologische oder andere Anschlussmodelle
zu generieren, kann zudem eine statistische Fehlerkorrektur von Niederschlag und
Temperatur verwendet werden. Für statistische Regionalisierungsverfahren und
Fehlerkorrekturen gilt jedoch, dass im Falle weniger Datenpunkte (wie z.B. bei
Extremereignissen) eine große Unsicherheit in der Schätzung der statistischen
Zusammenhänge zwischen Simulationen und Beobachtungen entsteht. Regionale
Klimamodelle besitzen diesen Nachteil zwar nicht, eine Modellevaluierung und
Feinabstimmung wird dadurch aber ebenfalls erschwert.

Für Südasien ist eine Fehlerkorrektur von Niederschlag und Temperatur auf-
grund momentan vorliegender Modelleinschränkungen im COSMO-CLM notwen-
dig, um z.B. geeignete hydrologische Antriebsdaten zu erstellen. Im Falle des Nie-
derschlags sollte diese aber nur für die Monate Juni bis September angewendet
werden, um die Limitierung durch wenige Regentage zu überwinden.

Eine allgemeine Aussage darüber, welche der untersuchten Methoden am
besten geeignet ist für die Regionalisierung globaler Klimamodelle, lässt sich
nicht treffen. Die Anwendung der Methoden auf Reanalysedaten liefert zwar die
Möglichkeit einer quantitativen Einordnung der Methoden, diese Einordnung ist
jedoch nicht auf allgemeine Klimamodelle übertragbar. Die Evaluierung anhand
Reanalysedaten ist notwendig um die Methoden zu testen aber nicht ausreichend
um eine erfolgreiche Anwendung zu gewährleisten.

Bei statistischen Methoden mit Fehlerkorrekturen führen große Modellfehler
in der Kalibrationszeit zu einer starken Korrektur der Modelldaten in der An-
wendungsperiode und beinhalten so ein hohes Risiko einer Verschlechterung der
modellierten Daten. Damit die Methoden erfolgreich angewendet werden können,
müssen die Modellfehler zudem zeitlich konstant sein, um eine robuste Feh-
lerschätzung zu ermöglichen. Eine Weiterentwicklung von globalen und regiona-
len Klimamodellen ist daher auch notwendig, um adäquate Daten für statistische
Methoden zu generieren, da die heutigen Modelle diesen Anforderungen oft nicht
genügen. Für das COSMO-CLM zeigen die Untersuchungen dieser Arbeit, dass
eine Änderung in der Parametrisierung der Konvektion und das Koppeln an ein
Ozeanmodell wahrscheinlich zu verbesserten Resultaten führen würden.
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Frei, C. and Schär, C.: A precipitation climatology of the Alps from high-
resolution rain-gauge observations, Int. J. Climatol., 18, 873–900, 1998.

Frei, C., Christensen, J., Deque, M., Jacob, D., Jones, R., and Vidale, P.: Daily
precipitation statistics in regional climate models: Evaluation and intercompar-
ison for the European Alps, J. Geophys. Res., 108, doi:10.1029/2002JD002287,
2003.

Gadgil, S.: The Indian monsoon and its variability, Annu. Rev. Earth Planet.
Sci., 31, 429–467, 2003.

Gadgil, S., Vinayachandran, P. N., Francis, P. A., and Gadgil, S.: Extremes
of the Indian summer monsoon rainfall, ENSO, and equatorial Indian Ocean
oscillation, Geophys. Res. Lett., 31, doi:10.1029/2004GL01973, 2004.

Giannini, V. and Giupponi, C.: Integration by identification of indicators, Adv.
Sci. Res., submitted, 2010.

Giannini, V., Giupponi, C., Hutton, C., Allan, A. A., Kienberger, S., Flügel,
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Frauenfelder, R., Casey, K., Füreder, P., Sossna, I., Wager, A., Janauer, G.,
Exler, N., Boukalova, Z., Tapa, R., Lui, J., and Sharma, N.: Assessing compo-
nents of the Natural Environment of Upper Danube and Upper Brahmaputra
River Basins, Adv. Sci. Res., submitted, 2010.

Legates, D. R. and Willmott, C. J.: Mean seasonal and spatial variability in
gauge-corrected, global precipitation, Int. J. Climatol., 10, 111–127, 1990.

Liebmann, B. and Smith, C. A.: Description of a complete (interpolated) out-
going longwave radiation dataset, Bull. Amer. Meteor. Soc., 77, 1275–1277,
1996.

Lim, Y. K., Kim, K. Y., and Lee, H. S.: Temporal and Spatial Evolution of the
Asian Summer Monsoon in the Seasonal Cycle of Synoptic Fields, J. Climate,
15, 3630–3644, 2002.

Lucas, L. E., Waliser, D. E., Xie, P., Janowiak, J. E., and Liebmann, B.: Esti-
mating the satellite equatorial crossing time biases in the daily, global outgoing
longwave radiation dataset, J. Climate, 14, 2583–2605, 2001.

Lucas-Picher, P., Christensen, J. H., Saeed, F., Kumar, P., Asharaf, S., Ahrens,
B., Wiltshire, A., Jacob, D., and Hagemann, S.: Can regional climate models
represent the Indian monsoon?, J. Hydrometeor., submitted, 2010.

Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.
F. B., Stouffer, R. J., and Taylor, K. E.: The WCRP CMIP3 multi-model
dataset: A new era in climate change research, Bull. Amer. Meteor. Soc., 88,
1383–1394, 2007.

Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database
of monthly climate observations and associated high-resolution grids, Int. J.
Climatol., 25, 693–712, 2005.

PhD-Thesis - Andreas Dobler, 2010



110 REFERENCES

Murphy, J.: An evaluation of statistical and dynamical techniques for downscaling
local climate, J. Climate, 12, 2256–2284, 1999.

Nakicenovic, N. and Swart, R.: Special Report on Emissions Scenarios, Cam-
bridge, UK: Cambridge University Press, p. 612, 2000.

Parthasarathy, B., Kumar, K. R., and Kothawale, D. R.: Indian-summer mon-
soon rainfall indexes - 1871-1990, Meteor. Mag., 121, 174–186, 1992.

Parthasarathy, B., Munot, A. A., and Kothawale, D. R.: All-India monthly and
seasonal rainfall series - 1871-1993, Theor. Appl. Clim., 49, 217–224, 1994.

Patra, P. K., Behera, S. K., Herman, J. R., Maksyutov, S., Akimoto, H., and
Yamagata, T.: The Indian summer monsoon rainfall: interplay of coupled
dynamics, radiation and cloud microphysics, Atmos. Chem. Phys., 5, 2181–
2188, 2005.

Prasch, M., Marke, T., Strasser, U., and Mauser, W.: Large scale integrated
hydrological modelling of the impact of climate change on the water balance
with DANUBIA, Adv. Sci. Res., submitted, 2010.

Rasmusson, E. M. and Carpenter, T. H.: Variations in tropical sea surface tem-
perature and surface wind fields associated with the Southern Oscillation/El
Niño, Mon. Wea. Rev., 110, 354–384, 1982.

Ritter, B. and Geleyn, J. F.: A comprehensive radiation scheme for numerical
weather prediction models with potential applications in climate simulations,
Mon. Wea. Rev., 120, 303–325, 1992.

Rockel, B. and Geyer, B.: The performance of the regional climate model CLM
in different climate regions, based on the example of precipitation, Meteor. Z.,
17, 487–498, doi:10.1127/0941-2948/2008/0297, 2008.
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Abstract The long- and short-wave components of the

radiation budget are among the most important quantities

in climate modelling. In this study, we evaluated the

radiation budget at the earth’s surface and at the top of

atmosphere over Europe as simulated by the regional cli-

mate model CLM. This was done by comparisons with

radiation budgets as computed by the GEWEX/SRB

satellite-based product and as realised in the ECMWF re-

analysis ERA40. Our comparisons show that CLM has a

tendency to underestimate solar radiation at the surface and

the energy loss by thermal emission. We found a clear

statistical dependence of radiation budget imprecision on

cloud cover and surface albedo uncertainties in the solar

spectrum. In contrast to cloud fraction errors, surface

temperature errors have a minor impact on radiation budget

uncertainties in the long-wave spectrum. We also evaluated

the impact of the number of atmospheric layers used in

CLM simulations. CLM simulations with 32 layers per-

form better than do those with 20 layers in terms of the

surface radiation budget components but not in terms of the

outgoing long-wave radiation and of radiation divergence.

Application of the evaluation approach to similar simula-

tions with two additional regional climate models

confirmed the results and showed the usefulness of the

approach.

Keywords Regional climate modelling �
Radiation budget � Evaluation

1 Introduction

Regional climatic features such as the orography, lakes,

complex coastlines, and heterogeneous land use are better

captured by regional climate models (RCMs) than by

global climate models (GCMs). Therefore RCMs provide

better understanding of regional climatic processes

(Giorgi et al. 1990; Frei et al. 2003; Leung et al. 2003;

Beck et al. 2004; Dobler and Ahrens 2008). In the present

study, we evaluate CLM (the COSMO-model in climate

version; see http://www.clm-community.eu/), a regional

non-hydrostatic limited-area climate model, in terms of

the radiation budget.

The long- and short-wave components of the earth’s

radiation budget are important terms in climate modelling,

describing the sources and sinks of energy in the earth-

atmosphere system. These terms govern the energy balance

of the earth and control daily and annual cycles. Thus, it is

necessary to evaluate the radiation budget of regional cli-

mate models and to identify sources of uncertainties.

Many studies use ground station data to evaluate the

results of RCMs or GCMs because of their well-known

accuracy (e.g. Wyser et al. 2008; Markovic et al. 2008;

Tjernström et al. 2008; Wild 2008). For example, the

accuracy of Baseline Surface Radiation Network direct solar

irradiance measurements is±2 W/m2 (Ohmura et al. 1998).

But, there are only a limited number of radiation stations

with climatic time series of the short- and long-wave
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components of radiation and thus only a poor spatial data

coverage. Other studies employ re-analysis data, whose

main advantage is the spatial coverage and the availability

of surface (SFC) and top of atmosphere (TOA) parameters

(e.g. Vidale et al. 2003; Hagemann et al. 2004; Marras et al.

2007; Jaeger et al. 2008). For ERA15 data (Gibson et al.

1997), the predecessor of the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA40 re-analysis

(Uppala et al. 2005), Wild et al. (1998) demonstrate good

agreement of surface radiation with ground station data.

Reichler and Kim (2008) investigate different re-analysis

datasets and show that there are uncertainties especially in

radiative quantities, but that the ERA40 dataset agrees best

with ground station observations.

In the present study, we use the ERA40 and additionally

the satellite-based GEWEX/SRB datasets as references.

The GEWEX/SRB dataset has previously been used to

evaluate model results (e.g. Shmakin et al. 2002; Winter

and Eltahir 2008), and we anticipate that the additional use

of the quasi-observational SRB dataset, in this study, pro-

vides more robust conclusions.

A comparison of CLM simulations and ERA15 re-

analysis data indicates a significant underestimation of the

net short- and long-wave radiation at the surface (down-

ward radiation counts positive and upward radiation nega-

tive), which is attributed to an overestimation of cloud

cover (Jaeger et al. 2008). Another study that compares the

surface radiation budget over North America of an RCM

with ground station measurements also associates uncer-

tainties in incoming short-wave radiation with imprecision

in cloud cover simulations (Markovic et al. 2008). For

downwelling long-wave radiation, Markovic et al. (2008)

conclude that all-sky errors are significantly influenced by

cloud-free radiation, cloud emissivity, and cloud cover

errors. Wild et al. (2001) report similar results in their

comparison of the downwelling long-wave radiation of

different GCMs and ground-based measurements under

cloud-free and all-sky conditions. They attribute biases in

all-sky conditions primarily to errors in the clear-sky

downwelling long-wave radiation. Hence, besides inter-

actions with clouds the absorption within the atmosphere

has also a significant effect on uncertainties in radiation

modelling. The absorption in the atmosphere is strongly

determined by water vapour, which is closely linked to the

temperature in the lower troposphere and thus correlated

with the surface temperature.

Besides errors in cloud cover and surface temperature

we expect an important impact of errors in the simulation

of surface albedo on the radiation budget. Thus, in addi-

tion to quantification of errors in the simulated radiation

budget components, we also investigate the impact of

errors in parameters such as cloud cover, surface albedo,

and surface temperature. Additionally, we compare CLM

simulations using either 20 or 32 vertical atmospheric

layers. Using 20 or 32 vertical layers is a relative small

change in model setup, but of potentially large impact.

First of all it is believed that better vertical resolution

with 32 layers improves the results. But, most of the

parameterizations in the model, for example the Tiedtke

mass flux scheme (Tiedtke 1989), were originally deve-

loped and tested for smaller layer numbers. Therefore, it

is of interest to evaluate both setups and check if our

evaluation approach is sensitive to the differences in the

simulations.

First, we provide a brief description of the model setup

and datasets and afterwards present in Sect. 4 comparisons

of CLM20 (20 layers), CLM32 (32 layers), ERA40, and

GEWEX/SRB. In Sect. 5 we then describe our investiga-

tion of the relationship between net radiation errors and

errors in cloud fraction, surface albedo, and surface tem-

perature. In the last section, we discuss the significance of

our results for regional climate modelling. Attached are

two appendices, which generalise our results. The first

appendix applies simulations by two additional RCMs and

the second one applies a conceptual model.

2 Model description and setup

The CLM is a state-of-the-art non-hydrostatic regional

climate model developed for application in climate simu-

lations up to several centuries in duration with spatial grid

spacings from 50 to 1 km. The CLM is the climate version

of the COSMO-model (see http://www.cosmo-model.org)

that is used for operational mesoscale weather forecasting.

Since completion of the first climate version of the CLM

(summer of 2002), there has been a steadily growing

community of users and developers (see http://www.clm-

community.eu).

In this study we investigated two climate simulations

done with version 2.4.11 of the CLM. Except for the hor-

izontal resolution and number of vertical layers, the setup

for these two simulations was identical to that used for the

so-called CLM consortial runs (Hollweg et al. 2008). Both

simulations were driven by ERA40 at the lateral bound-

aries for the years 1958–2001. The computational domain

covered Europe and parts of Northern Africa, with a grid

dimension of 91 9 97 grid points and a grid spacing of

0.44�. This was the computational domain applied as a

standard domain in the EU-project ENSEMBLES (Hewitt

and Griggs 2004; www.ensembles-eu.org). The only dif-

ference between the two simulations was the number of

atmospheric layers: 20 for CLM20 and 32 for CLM32.

Radiative transfer in the CLM is parameterized with a

d-two-stream radiation scheme (Ritter and Geleyn 1992)

for short- and long-wave fluxes in a plane parallel and
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horizontally homogeneous atmosphere. It is solved for

three intervals in the solar spectrum and five intervals in the

thermal spectrum. In the radiative transfer calculation of

CLM, the influence of cloud water droplets, cloud ice

crystals, water vapour, ozone, carbon dioxide, and other

minor trace gases and aerosols is accounted for. Radiative

transfer depends strongly on input provided by other model

components such as the cloud scheme. The fractional cloud

cover, which significantly influences radiation, is deter-

mined by an empirical function that depends on the relative

humidity, height of the model layer, and convective

activity. The effective radii of the hydrometeors are pre-

scribed. For cloud microphysics, the CLM offers four

different variants. For the applied CLM simulations, we

used a microphysical scheme with snow but without cloud

ice or graupel. Convection is parameterized following

Tiedtke (1989).

Parameters, such as soil type, soil moisture, and plant

cover, determine the CLM solar surface albedo. These

parameters were derived from datasets such as CORINE,

GLC2000, GLOBE, or the Digital Soil Map of the World

from the FAO (see Smiatek et al. 2008). The maximum of

the surface albedo is set to 0.7 (snow cover and sea ice) and

the minimum to 0.07 (water). Further details on the

dynamics and physics of the model are given in Böhm et al.

(2006), Steppeler et al. (2003) and in the model docu-

mentation (www.cosmo-model.org).

3 Reference data

3.1 ERA40

ERA40 is a re-analysis data product of the ECMWF. It is a

global gridded dataset with a horizontal spectral resolution

of T159 (about 125 km) and 60 vertical levels. ERA40

produces analyses at 6 h intervals from 1958 to 2001

(Uppala et al. 2005). In the present study, we used monthly

means that were derived from 18 h forecasts starting at 00

UTC and 12 UTC from the re-analyses and discarding the

leading 6 h to account for model spin-up. In addition to

monthly mean radiation fluxes, we also used monthly

means of ERA40 cloud fraction, surface albedo, and sur-

face temperature. In the evaluation of short-wave fluxes,

we applied a monthly mean cloud fraction derived from

daylight values (averages data where the sun is above the

horizon, just as short-wave fluxes).

3.2 GEWEX/SRB

The GEWEX/SRB (Surface Radiation Budget) project

provides a satellite-based dataset of short- and long-wave

radiation components at the earth surface and TOA on a

global scale (Pinker and Laszlo 1992). Here, we used

version 2.81 of the dataset (which covers July 1983 to

June 2005 with 3-hourly, daily, monthly/3-hourly (e.g.

monthly mean 12 UTC), and monthly averages) with a

global grid spacing of 1� (Gupta et al. 2006). The surface

radiation fluxes were evaluated in a variety of studies

with data of the BSRN (Baseline Surface Radiation

Network) or the GEBA (Global Energy Balance Archive)

project, which provided good agreement with monthly

data, i.e. within 5 W/m2 for long-wave fluxes and within

5–20 W/m2 for short-wave fluxes (Gupta et al. 1999;

Zhang et al. 2006, 2007, 2009). In the present study, we

used SRB radiation and cloud fraction data. The surface

albedo was determined as the ratio of up- and down-

welling solar surface fluxes. Cloud fraction data were

averaged over the daylight periods for comparisons with

the short-wave radiative components, and were averaged

over the whole day for comparisons with long-wave

radiative components. The cloud fraction data, included in

SRB, originate from the ISCCP (International Satellite

Cloud Climatology Project) and were already used in

other climate model evaluation studies (Ahrens et al.

1998). Monthly means were derived by averaging 3-hourly

instantaneous values.

3.3 CRU

For SRB, no consistent temperature dataset was available.

Thus, we employed the ERA40 surface temperatures over

sea and CRU (Climate Research Unit) temperatures over

land. The CRU dataset (version TS 2.1) provides monthly

mean global gridded surface temperature data with 0.5�

resolution (Mitchell and Jones 2005).

3.4 Comparison OF GEWEX/SRB and ERA40 data

We compared the monthly fluxes of SRB and ERA40 in

Europe (from 1983 to 2001) to estimate the uncertainty of

the reference data, which was essential to know to assess

the comparisons with CLM. Because of the different grid

spacing of SRB (1�), ERA40 (about 125 km), and CLM

(0.44�), we interpolated all data to the same grid with 1�

grid spacing. This interpolation was performed with simple

inverse distance weighting. SRB monthly means of radia-

tion fluxes were calculated by averaging 3-hourly instan-

taneous values, but ERA40 and CLM monthly means were

calculated by accumulated values. This yielded sampling

differences, which were approximately corrected by

application of a factor to the SRB data. This factor is the

ratio of the 1-hourly and 3-hourly averaged local solar

irradiance at TOA assuming that the hourly average is a

much better approximation of the means from accumulated

fluxes than a 3-hourly average.
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For surface net short-wave radiation (SNS), the com-

parison of SRB and ERA40 mostly showed small monthly

mean differences within ±10 W/m2, with slightly higher

values for SRB fluxes. The total mean differences are

small, as displayed in Fig. 1. This figure illustrates the

biases of SRB and ERA40 in reference to the mean of SRB

and ERA40. In general the difference was small, but SRB

showed larger SNS values than ERA40 especially in the

Mediterranean area. ERA40 realised larger TOA net short-

wave radiation fluxes (TNS) than SRB.

The agreement of ERA40 and SRB for surface net

long-wave radiation (SNL) was quite good, generally

within about ±1 W/m2 (Fig. 1). In most parts of Europe

the differences were close to zero. The SRB data had less

negative values than ERA40 over the Mediterranean Sea,

while ERA40 had less negative values over the Iberian

Peninsula and North Africa. The difference between SRB

and ERA40 for TOA net long-wave radiation (TNL)

was largest in the winter, with a mean difference of -12

W/m2. Thus, on average, SRB outgoing long-wave radiation

at TOA is higher than for ERA40, except for Southern

Europe and North Africa, where ERA40 had similar or

higher values.

Therefore, there was a substantial uncertainty in the

reference data, especially in the TOA fluxes (Fig. 1). A

comparison of cloud fraction showed that SRB predicted

more clouds than ERA40, with a maximum spatial mean

difference of 0.1 in summer. However, regional differences

could be as large as 0.25. Throughout the year, there was a

clear meridional gradient in the differences, with larger

ERA40 values in northern regions and larger SRB values in

southern regions (especially over the Mediterranean Sea).

The SRB surface albedo was slightly larger than the

ERA40 surface albedo in most parts of Europe.

4 Radiation budget evaluation

In this section we compared the CLM20, CLM32, GEW-

EX/SRB, and ERA40 datasets by using monthly mean data

from 1983 to 2001 on a 1� grid. The CLM simulation

domain placed limits on the area of comparison. We

excluded a five-degree lateral boundary buffer zone of the

CLM domain from all comparisons. Furthermore, as indi-

cated by the comparison to ERA40 data, there were some

uncertain pixels in the SRB dataset in the northern parts of

the domain during winter, which were excluded from the

comparisons. Because of the viewing geometry of satellites

in northern regions in winter, we believed that satellite-

based algorithms could produce some unrealistic values in

these regions.

Figure 1 provides a general overview of our results. It

provides the biases with reference to the average of SRB

and ERA40 data. The short-wave components in Fig. 1

were derived from whole-day means just as the long-wave

components. This simplifies the direct comparison of short-

and long-wave biases and their potential compensation.

The numbers in Fig. 1 show the mean values of the ref-

erence and additionally in brackets for short-wave the

corresponding values for daylight means. All other short-

wave values shown below were derived from daytime

means. The displayed biases of short- and long-wave

divergences given in the figure indicate biases in the dif-

ferences between TOA and SFC fluxes.

4.1 Surface net short-wave radiation (SNS)

Figure 1 shows that SRB and ERA40 had a larger long-

term mean SNS than CLM20 and CLM32. The underesti-

mation by CLM was highest from April to August with

spatial mean differences up to -30 W/m2. In the winter

months, the underestimation decreased to differences less

than -10 W/m2. Throughout the year, the largest differ-

ences (up to -60 W/m2) were over the Mediterranean Sea.

This can be seen in Fig. 2 (left and middle), but the dif-

ferences are smaller compared to ERA40 than to SRB.

These results are consistent with those of Jaeger et al.

(2008), who found summer biases in SNS of up to

-60 W/m2 using 32 levels, at least compared to ERA15.

Overall, the values of CLM32 were larger than those of

CLM20. The spatial mean difference ranged from less than

4 W/m2 (January and December) to more than 8 W/m2

(April). Again, the largest differences occured over the

Mediterranean Sea in Winter and over the Atlantic

Ocean in Summer (more than 25 W/m2; Fig. 2, right). In

Fig. 1 Biases of SRB, ERA40, CLM20, CLM32 relative to

(ERA40 ? SRB)/2 for SNS, TNS, SNL, TNL, short-wave diver-

gence, and long-wave divergence (for the whole investigation area

and time period 07/1983–12/2001). Short-wave values were derived

from whole-day means just as long-wave. The numbers show the

mean value of the reference in W/m2. For short-wave there are in

brackets the mean values for daylight means
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consequence the CLM32 underestimation compared to the

reference was more than 30% smaller than the CLM20

underestimation (Fig. 1).

4.2 TOA net short-wave radiation (TNS)

The TNS reference was much more uncertain than the SNS

reference as discussed above. The shown biases in Fig. 1

indicate that the mean TNS of CLM and SRB agrees very

well, whereas ERA40 has a much higher mean. But,

despite the reference uncertainty, Fig. 1 shows that CLM

tends to underestimate TNS. The spatial mean differences

were much larger compared to ERA40 (about -11 W/m2

in January and December; more than -50 W/m2 in April to

June) than to SRB (about -2 W/m2 in January and

December; about -12 W/m2 in April to August). In

autumn and winter, the largest differences were over the

Mediterranean Sea; in spring and summer, the greatest

differences were in Northern Europe, in the area around the

British Islands, and in Scandinavia (Fig. 3, left and mid-

dle). Because satellites directly observe TOA radiation, we

expected SRB TNS to be more reliable than ERA40 TNS.

Therefore, the CLM performance seemed to be better than

the ERA40 performance.

The TNS differences between CLM20 and CLM32 were

similar to the SNS differences. With an about 40% lower

mean underestimation with respect to the reference (see

Fig. 1), CLM32 yielded better results than CLM20.

4.3 Surface net long-wave radiation (SNL)

Figure 1 indicates that the mean SNL difference between

CLM and the reference data was relatively small. CLM

slightly overestimates SNL indicating that CLM underes-

timated thermal loss of energy at the surface.1 The spatial

mean difference ranged from about 2–12 W/m2, whereas

the mean difference compared to SRB had a minimum in

winter and a maximum in September, while compared to

ERA40 the largest differences occured in April and Octo-

ber and the minimum in July.

There was good agreement between CLM20 and CLM32,

with spatial mean differences ranging from 4 W/m2 (winter)

to-2 W/m2 (July). The largest differences were around the

British Islands (Fig. 4, right). Over the Mediterranean Sea,

differences of about 10 W/m2 occured only in winter. In

summary, although the differences were small, CLM32

provided better results than did CLM20 relative to the ref-

erence (the mean difference decreased by about 30%, see

Fig. 1), except for the Mediterranean in summer.

4.4 TOA net long-wave radiation (TNL)

Despite some differences in the references, CLM clearly

overestimated TNL (i.e. underestimates TOA outgoing

CLM20–SRB summer [W/m2]

CLM20–SRB winter [W/m2]

CLM20–ERA40 summer [W/m2]
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Fig. 2 Differences of SNS [W/m2] (derived from daytime means) in summer (JJA, upper row) and winter (DJF, lower row) for CLM20 minus

SRB (left), CLM20 minus ERA40 (middle), and CLM20 minus CLM32 (right). All values are means for the whole time period 07/1983–12/2001

1 Remind that downward radiation is counted positive and upward

radiation is counted negative.
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long-wave radiation). The annual cycle of the spatial mean

differences to SRB data ranged from 8 W/m2 (winter) to

more than 12 W/m2 (May). The largest differences to

ERA40 data were in winter (about 20 W/m2). Figure 5 (left

and middle) shows that CLM20 overestimated TNL in

almost the entire evaluation domain with maximum dif-

ferences over the Mediterranean Sea and Scandinavia.

For TNL, CLM20 yielded smaller spatial mean TNL

values (up to 7 W/m2) than CLM32. The spatial distribu-

tion (Fig. 5, right) showed that the smallest differences are

CLM20–SRB summer [W/m2]

CLM20–SRB winter [W/m2]
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Fig. 3 The same as Fig. 2 but for TNS
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Fig. 4 Differences of SNL [W/m2] in summer (JJA, upper row) and winter (DJF, lower row) for CLM20 minus SRB (left), CLM20 minus

ERA40 (middle), and CLM20 minus CLM32 (right)
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around the British Islands, Scandinavia, and central Eur-

ope, and that the largest differences were in the southeast

part of the Mediterranean Sea. A decrease in mean over-

estimation of about 35% (see Fig. 1) for TNL showed that

the results of CLM20 were better than those of CLM32.

4.5 Discussion of comparisons

A comparison of CLM with SRB and ERA40 showed a

clear underestimation of net incoming short-wave radiation

and net outgoing long-wave radiation. The magnitude of

the found biases was comparable to the biases of other

regional climate models discussed in the Appendix 1 and

given in Fig. 10. In the total radiation budget these CLM

errors partly compensated. At the surface, SNS was too

low, possibly because of underestimation of solar down-

welling radiation caused by an overestimation of cloud

cover or atmospheric absorption. Another possible reason

might be an overestimation of short-wave upwelling radi-

ation resulting from errors in the surface albedo. Similar

effects could explain the large underestimation of TNS. In

this context it has to be mentioned that Jaeger et al. (2008,

2009) state that clear-sky radiation and surface albedo are

reasonably modelled in CLM. We discussed the potential

error sources in more detail in the next section. For the

short-wave divergence it was impossible to judge the

quality of CLM because of a large evaluation uncertainty

(Fig. 1).

The bias in SNL might result from an underestimation of

surface emission caused by errors in surface temperature or

from errors in cloud cover. The same effects might be

responsible for the underestimation of TNL. Furthermore,

the results showed that CLM32 had smaller errors than

CLM20 in most of the radiation components (except for

TNL and the divergences). But, as shown by Fig. 1, after

integration (SNS ? SNL, respectively, TNS ? TNL) the

errors compensate and it cannot be concluded that one

model version is superior. Nevertheless, CLM32 performed

better over sea (as Figs. 2, 3, 4, 5 indicate).

5 Impact of cloud fraction, surface albedo, and surface

temperature

Based on the results of previous studies (see discussion in

Sect. 1), we expected that cloud fraction (CFR), surface

albedo (ALB), and surface temperature (TS) are the main

factors influencing the radiation components of CLM.

Simple comparisons of CFR, ALB, and TS of the different

datasets confirmed this expectation. For example, the spa-

tial allocations of differences in short-wave net radiation

are often co-located with differences in CFR. Especially

over the ocean, there seemed to be a correlation between

CFR overestimation and SNS underestimation. However,

there were also regions where errors in CFR seemed not to

be the main cause of errors in SNS.
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Fig. 5 The same as Fig. 4 but for TNL
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The connection between errors in ALB and SNS or TNS

was not as obvious as for CFR. Nevertheless, there were

geographic areas with seasonally dependent correlations

between underestimations of SNS and overestimations of

ALB. Contrary to our expectations, there was no pro-

nounced correlation between errors in TS and SNL or TNL.

Here, we provide a quantification of the impact of the

errors DCFR, DALB and DTS (the difference between the

respective CLM and reference values) on the net radiation

fluxes. This requires that the results are comparable at

different geographical latitudes. Thus, we normalised the

shortwave fluxes with the factor 1/(4 sinh), where h is the

solar elevation angle.

Figure 6 (top left) shows the dependence of errors in

SNS on errors in CFR and ALB. If DCFR = 0, the error in

SNS increases from about -30 W/m2 to about 20 W/m2 as

DALB decreases. If DCFR and DALB were positive

(meaning that CLM predicts too many clouds and an

excessively high surface albedo), SNS was underestimated.

The analogous figure for TNS looks very similar (Fig. 6

top right).

Assuming linear relationship between the errors, the

squared correlation coefficient R2 is a measure of the

explained error variance. The explained variances for SNS

(Fig. 7) indicated that the error in CFR plays a more

important role than the ALB error and that the combination

of DALB and DCFR is responsible for the largest part of

the error in SNS. The highest values of explained variance

for DALB were during the winter and spring over land,

whereas the contribution of DALB to variance over the

ocean was smaller. For DCFR, the largest values of R2

were during the autumn and winter. Figure 8 shows that the

explained variance had large regional differences. For

DALB, high values of R2 occured during winter in an area

from the Alps to nearly all of Eastern Europe. These are

regions with frequent winter snow cover (see for example:

http://www.dwd.de/snowclim) with high albedos and

albedo uncertainties. R2 values for DCFR were largest in

the Mediterranean Sea throughout the year and around the

British Islands in spring and summer.

The sensitivity of DTNS to DCFR was similar to that of

DSNS, whereas the sensitivity of DTNS to DALB was

lower. Again, the influence of errors in ALB over the sea

was very low. The seasonal and regional distribution of R2

for DCFR and DALB was similar to that of SNS.

A simple calculation confirmed these results for SNS

and TNS (see Appendix 2, Table 2). An increase in CFR or

ALB led to a negative bias in net short-wave radiation, and
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Fig. 6 Differences of monthly

means (07/1983–12/2001) of

CLM minus ERA40 SNS

(derived from daytime means)

and TNS (upper row) against

errors in ALB and CFR and for

SNL and TNL (lower row)

against errors in TS and CFR. In

this figure, the SNS error was

averaged within boxes with a

side length of 0.04 units for

CFR and ALB and 0.25 K for

TS. The Figure bases on single

grid points over the whole area

without coast pixels
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the DCFR impact was in case of typical errors a multiple

than that of DALB. A similar calculation for the long-wave

net radiation showed that errors in CFR had a large effect

on errors in the net long-wave radiation (Appendix 2,

Table 3). We assumed that TS is another important factor

for net long-wave radiation, but this simple calculation

showed that for typical errors the impact of TS is low

compared to the impact of CFR.

This was pictured by the CLM results. Figure 6 (bottom

left) shows a clear dependence of the error in SNL on

DCFR and a small dependence on DTS. As mentioned

above, for SRB the ERA40 TS was used over sea and CRU

TS over land. Using ERA40 TS over land instead of CRU

TS changed the R2 values only slightly (within ±0.02).

In combination, Fig. 6 (bottom and top panels) shows

that there is a partial compensation of errors in the net

short- and long-wave radiation. Whereas for SNS, a posi-

tive error in DCFR and DALB was mainly associated with

a negative error in net radiation, a positive error in DCFR

and DTS for SNL was associated with a positive error in

net radiation. Figure 7 shows that for SNL, there were

small values of R2 for DTS. However, ERA40 had large

values of explained variance for SNL over both land and

ocean. These high levels of explained variance resulted

from a high sensitivity to DCFR. The R2 value of about

0.15 over land for DTS (Fig. 7) with ERA40 was because

of relatively large R2 values in summer over Eastern

Fig. 7 Explained variances of radiation errors relative to errors in

CFR, ALB, TS and the according combinations DALB ? DCFR and

DTS ? DCFR, for land (top) and sea (bottom). The values are means

for the whole investigation area and time period 07/1983–12/2001
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Fig. 8 Explained variance of

SNS in winter (mean 1983–

2001) of errors in SNS and ALB

(denoted by DSNS * DALB)

and errors in SNS and CFR

(denoted by DSNS * DCFR)

for SRB (top) and ERA40

(bottom)
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Europe (Fig. 9). In all other seasons, the variance explained

by DTS was very low. A possible reason for the higher R2

values in case of ERA40 than in case of SRB was that the

radiation fluxes and the TS reference applied in the SRB

comparison might be inconsistent. Compared with SNL,

the explained variance of TNL was even lower.

In summary, DCFR and DALB explain about 50% of the

error variance in the solar spectrum. In the long-wave

spectrum DCFR was of less importance compared to short-

wave (besides in the comparison against ERA40 in case of

SNL), and the impact of TS errors on the radiation budget

was small (except for the summer season with generally

smaller cloud fractions). These results were confirmed by a

investigation of two other state-of-the-art regional climate

models (see Appendix 1). Obviously, there were more

influential errors especially in the long-wave spectrum, but

a better representation of CFR and ALB will substantially

improve the computation of radiation budgets in CLM.

6 Conclusions

The main goal of this study was to quantify uncertainties in

the short- and long-wave components of the radiation

budget for CLM simulations using the satellite-based

GEWEX/SRB dataset and the ERA40 re-analysis dataset as

references. Our comparisons showed considerable under-

estimations of the net short-wave radiation in large parts of

Europe, especially over ocean areas. Over land, the dif-

ferences of CLM to SRB were smaller than to ERA40. For

TNS, an overall underestimation of CLM was found,

whereas SRB showed a slight overestimation in southern

parts of Europe. In particular, for the TOA components, the

satellite-based SRB dataset was expected to be more reli-

able than the ERA40 dataset. Overall, the CLM results

were quite satisfactory, if the evaluation uncertainties due

to the differences in the reference datasets were considered.

The CLM overestimated SNL in most areas, but underes-

timates SNL in some parts of Eastern Europe. Overesti-

mation of TNL was even larger, especially in comparison

with ERA40. But again, these differences were not very

large with respect to the difference between the reference

datasets.

We also investigated the effect of the number of atmo-

spheric layers used in CLM simulations. We found that the

climate simulation with 32 layers yielded (except for TNL

and long-wave divergence) better results. The use of 32

layers considerably reduced the biases (up to 40%) in the

radiation components. However, the improvement was

relatively small if compared to the evaluation uncertainties

and if the long- and short-wave compensation effects are

considered (Fig. 1). Therefore, with respect to computa-

tional costs and evaluation uncertainties, the use of 20

atmospheric layers is a considerable option in terms of the

radiation budget. Nevertheless, the evaluation approach

applied in this paper relies on generally available data and
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Fig. 9 Explained variance of

SNL in summer (mean 1983–

2001) of errors in SNL and TS

(denoted by DSNL * DTS) and

errors in SNL and CFR (denoted

by DSNL * DCFR) for SRB

(top) and ERA40 (bottom)
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helps in the evaluation of model differences (CLM20,

CLM32, and the additional models REMO and ALADIN in

Appendix 1) and will support the evaluation of CLM in

other parts of the world in a future study.

Finally, we also estimated possible sources of errors

with respect to possible approaches for model improve-

ment. It was expected, that the main error sources in

radiation components would be errors in CFR, ALB, and

TS. For net short-wave radiation, we confirmed that

DCFR and DALB are important factors; the explained

variance for DCFR was two- to threefold higher than for

DALB. The large seasonal and geographic differences

also had to be considered. Errors in CFR led to sub-

stantial biases in the net long-wave radiation. However,

we found that DTS had only a small or even negligible

influence on errors in the net long-wave radiation budget.

In a comparison to simulations of the regional climate

models REMO and ALADIN we could confirm the found

relations. Thus, a better representation of cloud fraction

CFR and surface albedo ALB yields a substantially better

estimation of the radiation budget components by CLM.

It is worth to wrestle with these relatively simple

parameters compared to parameters like cloud inhomo-

geneity, cloud phase, direct and indirect aerosol effects,

etc.
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Appendix 1: Results compared to other regional climate

models

To see how our results with the regional model CLM

compare to results with other regional climate models, we

investigated simulations with the REMO regional climate

model of the Max Planck Institute for Meteorology

(Hamburg, Germany) (Jacob et al. 2001, 2007) and the

ALADIN in climate mode of the Centre National de

Recherches Météorologiques (Toulouse, France) (Sanchez-

Gomez et al. 2008; Radu et al. 2008). These two regional

climate models were applied in the EU-project ENSEM-

BLES (Hewitt and Griggs 2004) and we have analysed the

corresponding simulations for Europe. The used simula-

tions were ERA40 driven with a horizontal resolution of

0.5�. The REMO used 27 and ALADIN used 31 vertical

layers, respectively.

The model bias of REMO (Fig. 10) relatively to SRB

and ERA40 was small and for all parameters within the

uncertainty range of the reference data. Opposite to CLM

there was a small overestimation of TNS, which led to a

larger solar divergence error than quantified for CLM. The

model bias of ALADIN (Fig. 10) was of similar magnitude

as of CLM, but in all cases with the opposite algebraic sign.

Thus, ALADIN showed an overestimation of short-wave

net radiation and an underestimation of long-wave net

radiation. This shows that our evaluation approach is useful

in identification of inter-model difference in radiation

budget components.

In terms of the identification of error sources the pattern

of the dependence of flux errors on errors in the explaining

quantities CFR, ALB, and TS in general was similar for all

investigated models and setups (CLM20, CLM32, REMO,

ALADIN). Figure 11 (upper panels) shows a strong

dependence of the SNS differences in REMO and ALA-

DIN on errors in CFR and ALB. For SNL (Fig. 11, lower

panels) there was also a strong dependence on errors in

CFR, while there was no dependence on errors in TS.

These results compare very well to the results shown for

CLM in Fig. 6.

The explained variances (not shown) also yielded simi-

lar results as those displayed for CLM in Fig. 7. Errors in

CFR explain two to three times more than errors in ALB of

the error variance in solar fluxes. For ALADIN explained

variances for errors in ALB were with a range of about

11–22% clearly higher than for errors in TS, with a range

of 0–7%. For REMO the values of explained variance for

errors in ALB as well as for TS had a higher range than for

ALADIN (for ALB 5–22%, for TS 2–22%). Thus, the

investigation of REMO and ALADIN confirms the results

with CLM that it is useful to invest some effort in relatively

easily improvable parameters like CFR and ALB in further

improvement of RCMs.

Fig. 10 Same figure as Fig. 1 but additionally with biases of REMO

and ALADIN
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Appendix 2

By the help of a simplified calculation we wanted to dis-

cuss the impact of uncertainties in CFR, ALB, or TS on

radiation fluxes. In the solar spectrum a cloud albedo of

one and a transparent clear-sky atmosphere were assumed.

Then the shortwave radiation components (SW) can be

written to:

SWSFC #¼ 1� CFRð Þ � SWTOA #

SWSFC "¼ ALB � 1� CFRð Þ � SWTOA #

SWTOA "¼ SWTOA # � ALB � 1� CFRð Þ2þCFR
h i

The indices SFC and TOA represent the surface or top of

atmosphere and the arrows : or ; represent the upwelling

or downwelling fluxes. The net short-wave fluxes are given

by:

SNS ¼ SWSFC # � SWSFC "¼ 1� ALBð Þ�

1� CFRð Þ � SWTOA #

TNS ¼ SWTOA # � SWTOA "¼ SWTOA # �

1� ALB � 1� CFRð Þ2þCFR
h i

The impact of errors in CFR and ALB is nearly linear,

but (a) CFR is larger than ALB on average and (b) the

error in CFR typically is larger than the error of ALB.

The average values are given in Table 1 and applied in

simple calculations summarised in Table 2. The results

show that an overestimation in CFR and ALB led to a

decrease in SNS and TNS and that the impact of errors in

CFR was larger than the impact of errors in ALB on

average.

In case of long-wave radiation (LW) the single com-

ponents are given by:

LWSFC "¼ r � TS4

LWSFC #¼ 0:75 � r � TS4 � 1þ 0:22 � CFR2
� �

LWTOA "¼ 1� CFRð Þ � r� � TSk
�

þ CFR�

1� e�ð Þ � r� � TSk
�

þ e� � r� � TCk�
� �

The SFC components were estimated following

Ångström and Bolz (see Warnecke 1997) with r the

Stefan Boltzmann constant. The outgoing long-wave

radiation LWTOA: was approximated following Corti and
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Fig. 11 Same figure as Fig. 6

but for REMO and ALADIN

and only for surface radiation

components

Table 1 Mean values and typical errors (mean errors of all data) for

CFR, ALB and TS in the model simulations discussed

Parameter Mean Typical error

CFR 0.62 0.06

ALB 0.14 0.03

TS 284 K -1.0 K

S. Kothe et al.: The radiation budget in a regional climate model

123



Peter (2009). They estimated the parameters r* and k* to

1.607 9 10-4 Wm-2 K-4 and 2.528, respectively, by

radiative calculations. For a mid-level cloud a cloud

temperature TC = 255 K and an effective cloud

emissivity e* = 0.79 (Allen 1971) were assumed. The

choice of the cloud emissivity was important for the

respective impact of CFR and TS (the higher e, the higher

is the impact of CFR and the lower the impact of TS). SNL

and TNL are the difference of the downwelling minus the

upwelling component:

SNL ¼ LWSFC # � LWSFC "¼ r � TS4�

0:165 � CFR2 � 0:25
� �

TNL ¼ 0� LWTOA "¼ �r� �
�

1� CFRð Þ � TSk
�

þCFR � 1� e�ð Þ � TSk
�

þ e� � TCk�
� ��

For the example calculations in Table 3 typical errors of

TS (denoted by DTS) and CFR (denoted by DCFR) were

assumed (see Table 1). The table shows that the typical

impact of errors in CFR was larger than in TS because of a

partly compensation of terms with TS. In Table 3 it is also

to see that DTNL in most cases was smaller than DSNL,

while Fig. 1 shows a larger bias for TNL than for SNL. In

combination with Fig. 7, where it can be seen that the

explained variance for TNL was lower than for SNL, this

shows that especially for TNL there were other important

influencing factors besides CFR and TS. For example,

Corti and Peter (2009) said that their parameterization

could be improved by including a measure for the amount

of absorption from water vapour, but they left it for

simplification reasons.
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Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R,

Kjellström E, Lenderink G, Rockel B, Sànchez ES, Schär C,
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Jaeger EB, Stöckli R, Seneviratne SI (2009) Analysis of planetary

boundary layer fluxes and land–atmosphere coupling in the

Table 2 Example of a simplified calculation of typical errors in SNS

(denoted by DSNS) and TNS (denoted by DTNS) to test the sensi-

tivity to uncertainties in CFR (denoted by DCFR) and ALB (denoted

by DALB) under the assumption of SWTOA; = 1367/4 W/m2

DALB DCFR DSNS (W/m2) DTNS (W/m2)

?0.03 0 -3.9 -1.5

0 ?0.06 -17.6 -18.5

?0.03 ?0.06 -20.9 -19.6

Table 3 Example of a simplified calculation of typical errors in SNL

(denoted by DSNL) and TNL (denoted by DTNL) to test the sensi-

tivity to uncertainties in TS (denoted by DTS) and CFR (denoted by

DCFR)

DTS DCFR DSNL (W/m2) DTNL (W/m2)

-1 K 0 0.9 1.1

0 K ?0.06 4.7 2.9

-1 K ?0.06 5.6 3.9

S. Kothe et al.: The radiation budget in a regional climate model

123

http://dx.doi.org/10.1007/BF01030205
http://dx.doi.org/10.1029/2004GL020115
http://dx.doi.org/10.1029/2002JD002287
http://dx.doi.org/10.1007/s10584-006-9213-4


regional climate model CLM. J Geophys Res 114:D17106. doi:

10.1029/2008JD011658

Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate

research. Bull Am Meteorol Soc 84:89–95

Markovic M, Jones CG, Vaillancourt PA, Paquin D, Winger K,

Paquin-Ricard D (2008) An evaluation of the surface radiation

budget over North America for a suite of regional climate

models against surface station observations. Clim Dyn 31(7–

8):779–794

Marras S, Jimenez P, Jorba O, Perez C, Baldasano JM (2007) Present-

day climatic simulations run with two GCMs: a comparative

evaluation against ERA40 reanalysis data. American Geophys-

ical Union, Fall Meeting 2007

Mitchell TD, Jones PD (2005) An improved method of constructing a

database of monthly climate observations and associated high-

resolution grids. Int J Climatol 25:693–712

Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H,

Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R,

Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline

Surface Radiation Network (BSRN/WCRP): new precision

radiometry for climate research. Bull Am Meteorol Soc

79(10):2115–2136

Pinker RT, Laszlo I (1992) Modeling surface solar irradiance for

satellite applications on a global scale. J Appl Meteorol 31:194–

211
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