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Abstract. This paper proves several generic variants of context lemmas
and thus contributes to improving the tools to develop observational
semantics that is based on a reduction semantics for a language. The
context lemmas are provided for may- as well as two variants of must-
convergence and a wide class of extended lambda calculi, which satisfy
certain abstract conditions. The calculi must have a form of node sharing,
e.g. plain beta reduction is not permitted. There are two variants, weakly
sharing calculi, where the beta-reduction is only permitted for arguments
that are variables, and strongly sharing calculi, which roughly correspond
to call-by-need calculi, where beta-reduction is completely replaced by
a sharing variant. The calculi must obey three abstract assumptions,
which are in general easily recognizable given the syntax and the reduc-
tion rules. The generic context lemmas have as instances several context
lemmas already proved in the literature for specific lambda calculi with
sharing. The scope of the generic context lemmas comprises not only
call-by-need calculi, but also call-by-value calculi with a form of built-in
sharing. Investigations in other, new variants of extended lambda-calculi
with sharing, where the language or the reduction rules and/or strat-
egy varies, will be simplified by our result, since specific context lemmas
are immediately derivable from the generic context lemma, provided our
abstract conditions are met.

Keywords: lambda calculus, observational semantics, context lemma, func-
tional programming languages

1 Introduction

A workable semantics is indispensable for every formal modelling language, in
particular for all kinds of programming languages. This paper will make a con-
tribution to the tools, in particular so-called context-lemmas, which support
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reasoning about semantical properties of higher-order functional programming
languages and lambda-calculi. Generally, an application of semantics is to ob-
tain knowledge about the evaluation of programs and the correctness of program
transformations. Usually, the essence of higher-order formalisms is defined in
form of an extended lambda calculus.
For various lambda calculi a widely used observational semantics is contextual
equivalence based on a reduction semantics in the style of Morris [Mor68], i.e.
two expressions are equal if their termination behavior is always the same when
they are plugged into an arbitrary program context. Given a calculus consisting
of a language of terms, a small step reduction relation → on terms, and a set of
answer terms, a term is called may-convergent if there exists a finite sequence of
→-reductions starting with the term and ending in an answer. Usually answers
are weak head normal forms for call-by-need and call-by-name calculi, and weak
normal forms for call-by-value calculi. For non-deterministic calculi, contextual
equivalence must be based on the conjunction of two termination behaviors (see
e.g. [Ong93]): May-convergence and must-convergence, where the latter takes
all reduction possibilities into account. There are two different definitions of
must-convergence in the literature:

– iff every →-successor of t is may-convergent.
– iff every maximal sequence of reductions starting with t ends in answer. We

will call this form of must-convergence also total must-convergence.

The first definition of must-convergence also includes terms that may evaluate
infinitely but the chance of finding an answer is never lost. These terms are
called weakly divergent in [CHS05]. Note that a similar combination of may-
and must-convergence is also known from the use of convex powerdomains in
domain-theoretic models [Plo76].
In this paper we will consider several variants of contextual approximations
and equivalences based on may-, must- and/or total must-convergence. Usually,
a first step and strong tool for further proof techniques is to prove a context
lemma that reduces the test for convergence (may- and/or must-) to a subclass
of contexts, the reduction contexts (also called evaluation contexts), instead of
all contexts. This technique dates back to [Mil77] for showing full abstractness
of denotational models of lambda-calculi.
In this paper, we formulate abstract conditions on an extended lambda-calculus
and its reduction semantics, and then prove generic context lemmas for the
three types of convergences for calculi satisfying these conditions. Our result
can be applied to two forms of lambda calculi: strongly sharing and weakly
sharing calculi. In these sharing calculi, the normal-order reduction must follow
a strict discipline in only modifying reduction positions, with the exception of
perhaps replacing variables by variables. They could also be seen as top-down
evaluating calculi. In strongly sharing calculi, the (normal-order) reduction may
only modify non-reduction positions through renamings. E.g. the full beta-rule
(λx.s) t → s[t/x] violates our assumptions, since there may be non-reduction
occurrences of x in s that are replaced by the beta-rule. The restricted beta-rule
(λx.s) y → s[y/x] may be allowed in weakly sharing calculi, whereas the rules
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(λx.s) t → (let x = t in s) and (let x = v in R[x]) → (let x = v in R[v])
are fine for strongly sharing calculi. The corresponding rule in explicit sub-
stitution calculi is compatible, though not all the rules given in the explicit
substitution calculi [ACCL91]. Examples for calculi, where the context-lemma
for may-convergence is immediately applicable, are the deterministic calculi
[AFM+95,AF97,MOW98,AS98,SS06]. Non-deterministic calculi where also the
must-context lemmas are applicable, are [KSS98,Man05,SSS07,NSSSS06], the
latter is the calculus from [NSS06] with some adaptations.
The context lemma is an important tool for further investigations into cor-
rectness of program transformations, for example, the diagram methods in
[SSSS05,SSS07,NSSSS06] demonstrate their strength only if the context lemma
is proved. There is no context lemma used in [KSS98], which severely complicates
the diagram-proofs.
There is also related work on context lemmas for calculi not satisfying our condi-
tions. For call-by-value languages with beta-reduction, there is a weaker form of
a context lemma, the so-called CIU-theorem, which was first proved in [FH92],
which also holds for a class of languages, and was even formally checked by an
automated reasoner (see [FM01,FM03]). For PCF-like languages, also with full
beta-reduction, there is also a context lemma proved for a class of languages
extending PCF [JM97]. Another related generic tool is bisimilarity for extended
lambda-calculi [How89,How96], and for typed languages [Gor99]. An extension
for calculi with sharing w.r.t. may-convergence is done for a non-deterministic
calculus in [Man05] and for a class of calculi in [MSS06].
The structure of this paper is a follows. After presenting the abstract syntax for
higher-order calculi, the assumptions on the calculi are presented and discussed.
Section 4 presents the different convergence relations and contextual approxi-
mations, Section 5 contains the proofs of the various generic context lemmas,
and the final section 6 contains a discussion on the range of calculi where the
instances of the generic context lemmas hold.

2 Abstract Syntax and Language

For the generic formulation we use higher-order abstract syntax, see e.g.
[How89,How96]. The construction of terms of the language requires variables,
operators (i.e. symbols with arity), and variable-binding primitives. We allow
the extension by a recursive letrec which is used as an extra operator with its
own binding rules.

Definition 2.1. Let L = (O,α, β) be a signature, where O is a set of operators,
which may include letrec. For every operator f ∈ O \ {letrec}, α(f) ∈ IN0 is
the arity, and β(f) is an α(f)-tuple with components in IN ∪ {“V ”, “T”}, indi-
cating the number of possible variables that may be bound at the corresponding
argument and if there are no binders, then whether variables terms are permitted
(“V”), or terms (“T”). Terms T (L) are inductively defined as follows:

– Every x ∈ V is a term. (There are infinitely many variables)
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– If f ∈ O \ {letrec} with α(f) = 0, then f is a term.
– If f ∈ O \ {letrec}, then f(a1, . . . , an) is a term if n = α(f) ≥ 1 and for

every i = 1, . . . , n: if β(f)i = “V”, then ai is a variable, if β(f)i = “T”, then
ai is a term, and if β(f)i = m ∈ IN, then ai is of the form x1, . . . , xm . ti,
where x1, . . . , xm are different variables, and ti is a term 1.

– If letrec ∈ O, n ≥ 0, x1, . . . , xn are different variables, and if t1, . . . , tn, s
are terms, then (letrec x1 = t1, . . . , xn = tn in s) is a term.

As usual, the scope of every variable xi, i = 1, . . . , n in x1, . . . , xm . t is the term
t, and the scope of every variable xi in a letrec as above is the set of terms
t1, . . . , tn, s. Variable occurrences that are in the scope of a binder that binds
them, are called bound occurrences of variables, others are free occurrences of
variables.

The set of free variables of a term t is denoted as FV(t). As usual, a term t
is closed if all of its variables are bound, i.e. FV(t) = ∅, otherwise it is called
open. Since we have to deal in depth with different kinds of renamings, we do not
assume anything about implicit renamings, though it is known how to correctly
rename terms (cf. [Bar84]).

Example 2.2. With O = {λ, letrec,@, Cons, Nil, case} a language with
let(rec), application, abstractions, lists and a case is defined. The de-
scription is α(λ) = 1, β(λ) = (1), α(@) = 2, β(@) = (“T”, “T”), Cons is
specified like @, α(Nil) = 0, and α(case) = 3, β(case) = (“T”, 2, “T”).
The usual lambda-term λx.x is represented as λ(x.x)). A term like
let x = (Cons x Nil) in case x of (Cons z1 z2) -> y; Nil -> Nil
would be expressed as (letrec x = Cons(x, Nil) in case(x, z1z2.y, Nil)).

Examples of languages with the variable restriction are: [MSC99] where argu-
ments of applications are only variables, and the language in [NSSSS06], where
the first argument in cell-expressions (x c t) must be a variable.
We will use positions to address subterms, variables and variables in binders
using a slightly extended Dewey decimal notation. The addressing is such that
prefixes of addresses of term positions are term positions. We write s|p for the
subterm of s at position p, and s(p) for the head-symbol of the subterm s|p.
For example, the term t = Cons(λx.@(x,@(y, x)), z) has e.g. the following term
positions: y is at position 1.1.2.1, x occurs at positions 1.1.1 and 1.1.2.2, and
t(1) = λ and t(1.1.1) = x. We also assume that there is a virtual binder for free
variables at the top.
A context C is like a term, where the hole [·] is allowed at a single term-position.
The expression C[s] denotes the result of plugging in a term s into C, where
capture of variables is permitted. We will also use multi-contexts M that may
have more holes.

Definition 2.3 (Distinct Variable Convention). A term t satisfies the dis-
tinct variable convention (DVC), iff all bound variables in t are distinct, and
moreover, all bound variables in t are distinct from all the free variables in t.
1 The expressions x1, . . . , xm . ti are called operands in [How96]
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2.1 Renamings and Substitutions

A renaming may rename bound variables in a term t. It is called capture-free, iff
the relation between occurrence of a variable and its binding position remains
unchanged. A renaming of variables of the term s is described by a finite set S
of pairs (p, x 7→ y), where p is a binding position of x, and renaming means to
apply all the replacements x 7→ y to all variables x in the scope of the binder at
p, and also to the binder. A bv-renaming is defined as a capture-free renaming
of bound variables (the virtual binder is not allowed in this case) of the term s.
If t can be reached from s by a sequence of bv-renamings, then we define this
as s =α t. An fvbv-renaming is defined as a capture-free renaming of free and
bound variables of a term s that is injective on FV(s). With fvp(σ) we denote
that mapping on FV(s) for a fvbv-renaming σ of s. If {x1 7→ y1, . . . , xn 7→ yn} is
the representation of the mapping on variables, then {x1, . . . , xn} is the domain,
and {y1, . . . , yn} the codomain. A vvbv-substitution γ of a term s is like an fvbv-
renaming, but it is permitted to have name clashes for the free variables of s.
We also use fvp(γ), which we call in this case a vv-substitution, denoted as ν.
A vv-substitution may cause a capture of variables, however, vvbv-substitutions
have the built-in property that no variable capture is permitted. Given a term
s, a vv-substitution ν, a set of variables FV(s) ⊆ W , and a vvbv-substitution γ.
Then we say γ is derived from ν on W , iff fvp(γ)(x) = ν(x) for all x ∈ W . This
notion is also used for fvbv-renamings.

Example 2.4. The term λy.x can be modified into λx.y by an fvbv-renaming
(or a vvbv-substitution). However, this cannot be represented as σµ1 for a bv-
renaming µ1 and a substitution x 7→ y, nor as µ1σ. It can only be represented
as σ1ν1σ2 with σ2 = {y 7→ z}, and σ1 = {z 7→ x}.

Lemma 2.5.

– If t1
σ1−→ t2

σ2−→ t3 by vvbv-substitutions σ1, σ2, then the composition σ3 is an
vvbv-substitution with fvp(σ3)(x) = fvp(σ2)fvp(σ1)(x) for all x ∈ FV(t1).
This can be specialized to fvbv-renamings and bv-renamings.

– s =α t iff s
σ−→ t by a single bv-renaming σ.

– If s
σ−→ t by an fvbv-renaming, then the reverse renaming is also capture-free,

i.e. a fvbv-renaming. Again this holds also for bv-renamings.
– If s is a term not satisfying the DVC, then there is a term s′ satisfying the

DVC, and a bv-renaming σ with σ(s) = s′. This can be accomplished by
renaming bound variables with fresh variables.

– If s
σ−→ t is an vvbv-substitution, and ρ = fvp(σ), then there are bv-renamings

σ1, σ2, such that s
σ1−→ ρ−→ σ2−→ t.

– Given a fvbv-renaming σ of a term s. Then fvp(σ) is injective on FV(s).

It is interesting to note that terms and vvbv-substitutions form a category with
terms as objects; the same holds for fvbv-renamings and bv-renamings. We will
also use fvbv-renamings and bv-renamings for contexts and multicontexts.
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Definition 2.6. Let C be a (one-hole) context. Then BPhole(C) is defined as
the set of binder-positions in C that have the hole of C in their scope, BPhole(C)
is the complement, i.e. the set of binder-positions that do not have the hole in
their scope, and Vhole(C) is the set of variables that are bound by the binders in
BPhole(C).

It is obvious that all variables bound by binders in BPhole(C) are different.

Lemma 2.7. Let C be a context, s be a term, and σ be an fvbv-renaming of C[s].
Then σ can be splitted into an fvbv-renaming σC of C, and an fvbv-renaming σs

of s, where the mapping fvp(σs) is injective on Vhole(C) as well as on FV(s).
Also the mapping induced by σ on Vhole(C) is injective.

3 Generic Lambda Calculi with Sharing

In this section we describe the required notions and the required abstract prop-
erties. We assume that for the calculus calc the following is given:

– An algorithm unwind, detecting all the potential reduction positions (which
must be term positions). We assume that the algorithm has a term or a multi-
context as input and non-deterministically produces a sequence of positions,
all of which are reduction positions.

– A small-step reduction relation →0 on terms, where s →0 t0 is defined only
for terms s satisfying the DVC, but the term t0 is not further restricted. The
small-step reduction s → t is then defined as s →0 t0 →1 t, where →1 is a
bv-renaming (see Assumption 3.4).

– A set of answers ANS, which are accepted as successful results of reductions.

We distinguish weakly and strongly sharing calculi in the following, where
strongly sharing calculi do not make use of vv-substitutions. To ease notation we
use a set VV of vv-substitutions, with VV = {Id} for strongly sharing calculus
and VV the set of all vv-substitutions for weakly sharing calculi.
In the considered calculi, the reduction → is usually the (call-by-need) normal-
order reduction, and the answers are the WHNFs.
The algorithm unwind has a term or a multicontext t as input and (perhaps non-
deterministically) produces a sequence of term-positions, starting with p1 = ε.
Given t, the possible sequences p1, p2, . . . produced by unwind are called the
valid runs of t. We do not enforce the sequences to be maximal. The following
conditions must hold:

Assumption 3.1 (unwind-Assumptions).

1. If p1, . . . , pn is a valid run, then for 1 ≤ i ≤ n, p1, . . . , pi is also a valid run, the
set {p1, . . . , pn} is a prefix-closed set of positions, and pn 6∈ {p1, . . . , pn−1}.

2. If t′ is a term or a multicontext, p1, . . . , pn is a valid run for t, and for all
i < n, we have t(pi) = t′(pi), then p1, . . . , pn is also a valid run for t′.
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3. If t′ is a term or multicontext, and ν ∈ VV , γ a vvbv-substitution derived
from ν with t′ = γ(t), and p1, . . . , pn is a valid run for t, then p1, . . . , pn is
also a valid run for t′.

Given a term or multicontext t. Then the position p of t is a reduction position
in t, iff p is contained in some valid run of t. The set of all reduction positions
is defined as RP(t) = {p | p is contained in some valid run of t}. Note that
every reduction position is a term-position by definition. Since we also apply the
formalism to multicontexts, we can speak of reduction positions of multicontexts
as well as of terms. A single-hole context C[] is defined as a a reduction context,
if the hole [] of C is a reduction position in C[]: We denote reduction contexts
as R[].

Lemma 3.2. Let M be a multicontext with n holes, and sj , j = 1, . . . , n be
terms, such that for some i: M [s1, . . . , si−1, [], si+1, . . . sn] is a reduction context.
Then there is some j ∈ {1, . . . , n}, such that for all terms tk, k = 1, . . . , n,
M [t1, . . . , tj−1, [], tj+1, . . . tn] is a reduction context.

Proof. Let p be the position of the hole in t := M [s1, . . . , si−1, [], si+1, . . . sn].
By the assumption on unwind, there is a valid run p1, . . . , pm of t, such that
pm = p. Let Q be the set of the positions of the n holes of M . Then there is
a least k such that p1, . . . , pk is a valid run of t, pk ∈ Q and pk is the position
of some hole, say the jth hole. Minimality of k implies that p1, . . . , pk−1 are
positions within M , but not the position of any hole of M . Now we can apply
the conditions on unwind, in particular condition (2): unwind produces the
valid run p1, . . . , pk, irrespective of the terms in the holes of M . Hence the claim
of the lemma holds. ut

Assumption 3.3 (Answer-Assumption). There is a set ANS of answer terms. We
assume that the following conditions are satisfied:

1. If t
σ−→ t′ for terms t, t′ by a fvbv-renaming σ, and t ∈ ANS, then t′ ∈ ANS.

2. If t = M [t1, . . . , tn] is an answer for some multicontext M , no hole of M is
a reduction position, then M [t′1, . . . , t

′
n] is also an answer.

The essence of the following assumption is that reduction commutes with renam-
ing, and that reduction in strongly sharing calculi does not modify non-reduction
positions, and in weakly sharing calculi, it may replace variables by variables.

Assumption 3.4 (Reduction-Assumption). It is assumed that calc only defines
a (small-step) relation →0 that is applicable to terms satisfying the DVC, and
that the full small-step relation→ is derived from→0 and a subsequent renaming
of variables. The relation → is defined such that s → t holds whenever s, t satisfy
the DVC, and s →0 t0

σ−→ t for some t0 and some bv-renaming σ of t0. We assume
that the following conditions are satisfied for →0:

1. Let t = M [t1, . . . , tn] be a term that satisfies the DVC, where M is a
multicontext with n holes that are at non-reduction positions, and let
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t′ be a term with t →0 t′. Then there is a multicontext M ′ with n′

holes, a mapping π : {1, . . . , n′} → {1, . . . , n}, vv-substitutions νi ∈
VV , i ∈ {1, . . . , n′}, where the domain and codomain-variables already oc-
cur in M , such that for all terms s1, . . . , sn: If M [s1, . . . , sn] satisfies the
DVC, then M [s1, . . . , sn] →0 M ′[ν1(sπ(1)), . . . , νn′(sπ(n′))]. In particular,
t′ = M ′[ν1(tπ(1)), . . . , νn′(tπ(n′))].
Note that ν is capture-free since DVC holds before reduction.

2. If s is a term satisfying the DVC, s →0 t, s
σ−→ s′ an fvbv-

renaming of s, such that s′ := σ(s) satisfies the DVC. Then
there is a term t′ and an fvbv-renaming σ′ of t, where fvp(σ′)
is a restriction of fvp(σ), such that s′ →0 t′ and t′ = σ′(t).

s
σ //

0

��

s′

0

���
�
�

t
σ′

//_____ t′

There is no easy generalization of the first assumption to calculi with beta-
reduction: Let M [., .] := (λx.[])(λy.[]), and s1 = (f x), then M [s1, s2]

β−→
f(λy.s2).

4 Contextual Preorder and Equivalence for May- and
Must-Convergence

In this section we define different kinds of convergence properties of terms, and
the corresponding notions of contextual preorder and equivalence. There are
three main notions of convergence of a term t: may-convergence, which means
that t may reduce to an answer, total must-convergence, which means that t
has no reduction to a must divergent term (failure term) and no infinite reduc-
tion, and (strong) must-convergence, which means that every term reachable by
reduction from t is may-convergent.

Definition 4.1. A term t is called

– may-convergent iff there is a some answer t′ with t
∗−→ t′, denoted as t ↓.

– must-divergent iff t is not may-convergent, denoted as t ⇑.
– may-divergent, iff there is some term t′ ⇑ with t

∗−→ t′, denoted as t ↑.
– must-convergent iff it t

∗−→ t′ implies t′ ↓, denoted as t ⇓.
– totally must-convergent iff t ⇓ and there is no infinite reduction starting with

t, denoted as t W .
– totally may-divergent iff t ↑, or there is an infinite reduction starting with

t, denoted as t �.

Note that t is not may-divergent iff it is must-convergent. Note also that total
must-divergence is the same as must-divergence, and total may-convergence is
the same as may-convergence.
In calculi with a deterministic →0-reduction the may- and must-predicates
are identical. We could call a calculus deterministic iff the may- and must-
convergence predicates are identical for all terms. Terms t with t ⇓, but not t W ,
are called weakly divergent in [CHS05]. Must-convergence is interesting because
it is linked to fairness (see e.g. [CHS05,SSS07,NSSSS06]); further justification
for non-total may-divergence is in [SS03].
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Definition 4.2. Let s, t be two terms (of the same type), and M ∈ {↓,⇓, W}.
Then s ≤M t iff for all C[] : C[s]M =⇒ C[t]M, and
s ≤Mν t, iff for all C[], for all vv-substitutions ν and for all vvbv-substitutions
γs, γt derived from ν on FV(s) ∪ FV(t): C[γs(s)]M =⇒ C[γt(t)]M.

Easy consequences are that for all terms s: s W =⇒ s ⇓ =⇒ s ↓, that for
M ∈ {↓,⇓, W}, the relations ≤M are compatible with contexts, and reflexive
and transitive, and that ≤Mν ⊆ ≤M.
Note that for a general proof of transitivity of≤M it is unavoidable that C[s], C[t]
may contain free variables. The corresponding proof w.r.t. a definition of ≤M
that restricts C[s], C[t] to be closed is in general not applicable, since the middle
term C[s2] is not necessarily closed, if C[s1], C[s3] are closed.
Contextual equivalence is defined as ∼↓ :=≤↓ ∩ ≥↓ for deterministic calculi and
for nondeterministic calculi as ∼↓⇓ :=∼↓ ∩ ≤⇓ ∩ ≥⇓ or ∼↓ W

:=∼↓ ∩ ≤ W

∩ ≥

W

depending on the used must-convergence predicate. The relations∼↓ν are defined
analogously using the respective ≤-relations.

Example 4.3. The relation ≤↓ν may be different from ≤↓ (in exotic calculi):
Consider the calculus with one binary constructor c and a constant d, and the
reduction rule: c x x → d, let d be the only answer, and let all positions be
reduction positions. Then c x y ≤↓ c x z, but c x y 6≤↓ν c x z.

For simplifying several proofs in the following sections, we introduce a 0-1-
labelled variant of →-reduction sequences, which is nothing else but a reduction
of the form s1,0 →0 s1,1 →1 s2,0 →0 s2,1 →1 . . .. I.e., a reduction, where →0-
reductions and bv-renamings →1 are alternating, and the terms si,0 satisfy the
DVC.

s1,0
σ1,0 //

0
��

t1,0

0���
�

s1,1

1
��

σ1,1
//_____ t1,1

1���
�

s2,0
σ2,0 //_____

0
��

t2,0

0
���
�

. . . . . .

s
σ1 //

σ2

��

t

σ3

���
�
�

s′
σ4

//_____ t′

Fig. 1. Reduction diagrams for Lemma 4.4

Lemma 4.4. Let s, t be terms satisfying the DVC with s
σ−→ t by an fvbv-

renaming σ, and Red be a 0-1-labelled reduction for s as follows: s = s1,0 →0

s1,1 →1 s2,0 →0 s2,1 . . . →0 sn,1 →1 sn+1,0. Then there is also a reduction for
t of the form t = t1,0 →0 t1,1 →1 t2,0 →0 t2,1 . . . →0 tn,1 →1 tn+1,0 with terms
ti,k, such that for all i, k: si,k

σi,k−−→ ti.k by fvbv-renamings σi,k, fvp(σi,k) is a
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restriction of fvp(σ), the terms ti,0 satisfy the DVC, and sn+1,0 is an answer iff
tn+1,0 is an answer (see left diagram in figure 1).
The lemma holds also for bv-renamings instead of fvbv-renamings. The lemma
also holds, if the 0-1-labelled reduction of s starts with a →1-reduction, in which
case the reduction of t also starts with a →1-reduction.

Proof. Follows by induction on the length of reductions; from answer assumption
3.3, reduction assumption 3.4, and Lemma 2.5. ut

Proposition 4.5. Let s, s′ be terms with s′ = σ(s), where σ is a fvbv-
renaming. Then sM⇔ s′M for all M∈ {↓,⇓, ↑,⇑, W ,�}.

Proof. Follows by easy arguments using Lemma 4.4, Lemma 2.5 and the assump-
tions on answer-terms 3.3. ut

5 Context Lemmas

Definition 5.1. For all terms s, t and M∈ {↓,⇓, W}:
s ≤M,Rν t iff for all reduction contexts R, all vv-substitutions ν, all
vvbv-substitutions γs, γt of s, t derived from ν on FV(s) ∪ FV(t), we have
R[γs(s)]M =⇒ R[γt(t)]M.
For strongly sharing calculi, if only the identical vv-substitution in the above re-
lations is permitted, and also only the identical vvbv-substitution, we indicate
this by omitting the ν in the notation, and denote the relations as ≤M,R.

Lemma 5.2. Let calc be strongly sharing and M ∈ {↓,⇓, W}. Then
≤M,Rν = ≤M,R.

Proof. This follows from Proposition 4.5, since for a reduction context R, σs, σt

(with adapted positions), are also bv-renamings of R[s], R[t], respectively. ut

For a finite set of variables W , a context C is called fresh for W , iff for all
variables x ∈ W , x is not bound by a binder in BPhole(C). We can slightly
restrict the necessary reduction contexts for ≤M,R, by using renamings and
Proposition 4.5.
We separate the proofs for weakly and strongly sharing calculi, since there are
differences in the renamings, and the weakly sharing part requires a lot of treat-
ments of vvbv-substitutions.

Lemma 5.3 (May-Convergence and Weakly Sharing). Let calc be
weakly sharing. Then ≤↓,Rν = ≤↓ν .

Proof. We show the following generalized claim:
For all n, all multicontexts M with n holes, all vv-substitutions νi and derived
vvbv-substitutions γs,i, γt,i on FV(si) ∪ FV(ti): If for terms si, ti, i = 1, . . . , n,
and for all i = 1, . . . , n: si ≤↓,Rν ti, then M [γs,1(s1), . . . , γs,n(sn)] ↓ =⇒
M [γt,1(t1), . . . , γt,n(tn)] ↓. For convenience let s′i := γs,i(si), t′i := γt,i(ti). Note
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that in the inductive proof below we will only use the weakened precondition
γs,i(si) ≤↓,Rν γt,i(ti). Proposition 4.5 permits us to assume, by applying bv-
renamings, that the bound variables in s′i and t′i are distinct.
The claim is shown by induction on the length l of 0-1-labelled-reductions of
M [s′1, . . . , s

′
n] to an answer, and second on the number of holes of M .

As a base case, the claim is obviously true, if the number n of holes is equal to
0, since then M [s′1, . . . , s

′
n] = M [t′1, . . . , t

′
n].

There are two cases:

1. In M [s′1, . . . , s
′
n] some s′i is in a reduction position.

This means that at least one of the contexts Mi = M [s′1, . . . , s
′
i−1, [], s

′
i+1, . . . , s

′
n]

is a reduction context. Then Lemma 3.2 shows that there is some j, such
that M [s′1, . . . , s

′
j−1, [], s

′
j+1, . . . , s

′
n] as well as M [t′1, . . . , t

′
j−1, [], t

′
j+1, . . . , t

′
n] is

a reduction context. Using the induction hypothesis for the context M ′ :=
M [[], . . . , [], s′j , [], . . . , []], which has n − 1 holes, it follows that M [s′1, . . . , s

′
n] ↓

=⇒ M [t′1, . . . , t
′
j−1, s

′
j , t

′
j+1, . . . , t

′
n] ↓.

Since M [t′1, . . . , t
′
j−1, [], t

′
j+1, . . . , t

′
n] is a reduction context, the assumption and

M [t′1, . . . , t
′
j−1, s

′
j , t

′
j+1, . . . , t

′
n] ↓ imply that M [t′1, . . . , t

′
j−1, t

′
j , t

′
j+1, . . . , t

′
n] ↓.

2. For all i: None of the contexts Mi = M [s′1, . . . , s
′
i−1, [], s

′
i+1, . . . , s

′
n] is a re-

duction context. Lemma 3.2 implies that none of the holes of M is at a reduction
position. If l = 0, then M [s′1, . . . , s

′
n] is an answer-term, and by Assumption 3.3,

the expression M [t′1, . . . , t
′
n] is also an answer term. Now assume that l > 0:

2a. First we consider the case that M [s′1, . . . , s
′
n] satisfies the DVC and that

the reduction on M [s′1, . . . , s
′
n] is a →0-reduction. Let M [s′1, . . . , s

′
n] →0 s′

be the start of the reduction of length l to an answer. By the assumption
3.4 on reductions, there is a multicontext M ′ with n′ holes, νi ∈ V V for
i ∈ {1, . . . , n′}, and a mapping π : {1, . . . , n′} → {1, . . . , n}, such that
s′ = M ′[ν1(s′π(1)), . . . , νn′(s′π(n′))].
The same holds by assumption 3.4 for M [t′1, . . . , t

′
n]: There is a reduction

M [t′1, . . . , t
′
n] →0 M ′[ν1(t′π(1)), . . . , νn′(t′π(n′))]. Now we can apply the induc-

tion hypothesis, since the number of reductions to an answer of s′ is l − 1,
and the required preconditions hold: For all R, νR and if γRs,i, γRt,i are derived
from νR on FV(s′i) ∪ FV(t′i), then for all i = 1, . . . , n′: R[γRs,iνi(s′π(i)]) ↓ =⇒
R[γRt,iνi(t′π(i))] ↓ holds, since γRs,iνi and γRt,iνi are also vvbv-substitutions
derived from a common vv-substitution (see Lemma 2.5).

2b. The other case is that M [s′1, . . . , s
′
n] is the result of a →0 and the next

reduction step in the 0-1-labelled reduction is a renaming. Then the reduction
consists of applying some bv-renaming M [s′1, . . . , s

′
n] σ−→ M ′[s′′1 , . . . , s′′n], such

that M ′[s′′1 , . . . , s′′n] satisfies the DVC.
Let σM be the part of the renaming for the binder positions that are in M . Let
Wi, i = 1, . . . , n be the set of variables that may be potentially bound in hole
i, and let ρi, i = 1, . . . , n be the mappings on Wi induced by σ. Note that ρi is
injective on Wi. The effect of the bv-renaming σ can be modelled as follows:
It is a bv-renaming M

σM−−→ M ′, and fvbv-renamings µi with s′i
µi−→ s′′i , where µi
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is derived from ρi. We construct an appropriate bv-renaming σ′ for M [t′1, . . . , t
′
n]

by using σM again for M , and for every i fvbv-renamings µ′i for t′i, where for
all i: µ′i is derived from ρi. For the bv-part of µ′i fresh variables must be used,
which ensures that σ′(M [t′1, . . . , t

′
n]) satisfies the DVC. By construction, we have

σ′(M [t′1, . . . , t
′
n]) = M ′[µ′1(t

′
1), . . . , µ

′
n(t′n)].

It remains to show that the precondition µi(s′i) ≤↓,Rν µ′i(t
′
i)) holds for the all

pairs (µi(s′i), µ
′
i(t

′
i)): Let i be fixed in the following, and let R be a reduction

context, let ν′ be a vv-substitution, and γ′s,i be vvbv-substitutions of µi(s′i)
derived from ν′ and R[γ′s,iµi(s′i)] ↓. Then let γ′t,i be a vvbv-substitution of µ′i(s

′
i)

derived from ν′. Since γ′s,iµi and γ′t,iµ
′
i are derived from the same vv-substitution

νρi|V (ρi(Wi)), we obtain by the assumption that R[γt,iµi(s′i)] ↓.
Since the preconditions are satisfied, the multicontext is the same M ′ for si

and ti, and the reduction length has been reduced, we can apply the induction
hypothesis. ut

Lemma 5.4. Let s, t be terms, M∈ {↓,⇓, W} and W be a finite set of variables
that contains all variables in s, t. Then s ≤M,R t holds, iff for all reduction
contexts R that are fresh for W , we have R[s]M =⇒ R[t]M.

Lemma 5.5 (May-Convergence and Strongly Sharing). Let calc be
strongly sharing. Then ≤↓,R = ≤↓.

Proof. We show the following generalized claim:
For all n and all multicontexts M with n holes: If for terms si, ti, i = 1, . . . , n,
and for all i = 1, . . . , n: si ≤↓,R ti, then M [s1, . . . , sn] ↓ =⇒ M [t1, . . . , tn] ↓.
Note that the induction and the cases are instances of the cases in the proof
of lemma 5.3, where vv-substitutions can be omitted; only the final part on the
preconditions is different: We present the proof that the precondition µi(si) ≤↓,R
µ′i(ti)) holds for the all pairs (µi(si), µ′i(ti)):
Let i be fixed in the following, and let R be a reduction context with R[µi(si)] ↓.
We assume using Lemma 5.4 that the binders BPhole(R) use fresh variables.
Let σ2 be a fvbv-renaming of R[µi(si)], such that the mapping on Vhole(R) is a
restriction of ρ−1

i , and σ2 acts as the inverse of µi on si. Note that σ2 may also act
on free variables in R[µi(si)], since R may have too few binders. The construction
of σ2 is possible due to the assumption on R. Then σ2(R[µi(si)]) = σ2(R)[si], and
σ2(R) is a reduction context by the assumption 3.1 on unwind. Proposition 4.5
shows that σ2(R)[si] ↓. The assumptions of the main claim of this proof now
implies that σ2(R)[ti] ↓. Now starting with R[µ′i(ti)], let σ3 be an fvbv-renaming
of R[µ′i(ti)] such that the mapping on Vhole(R) is a restriction of ρ−1

i , and σ3 acts
as a reverse of µ′i on ti. There is no conflict within ti, and also no conflict between
binders of R and variables in µ′i(ti), hence σ3 is indeed an fvbv-renaming. Then
σ3(R[µ′i(ti)] = σ3(R)[ti] = σ2(R)[ti], and σ2(R)[ti] ↓ and Proposition 4.5 imply
R[µ′i(ti)] ↓. ut

Lemma 5.6 (Must-Convergence and Strongly Sharing). Let calc be
strongly sharing. Then ≤↓,R ∩ ≤⇓,R ⊆ ≤⇓.
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Proof. We show the following generalized claim, using may-divergence.
For all n and all multicontexts M with n holes: If for all for terms si, ti, i =
1, . . . , n, and for all i = 1, . . . , n: si ≤↓,R ti ∧ si ≤⇓,R ti, then M [t1, . . . , tn] ↑ =⇒
M [s1, . . . , sn] ↑.
The claim is shown by induction on the number l of →0 and →1-reductions of
0-1-labeled reductions of M [t1, . . . , tn] to a must-divergent term, and second on
the number of holes of M . The proof is almost a copy of the proof of the context
lemma 5.5 for may-divergence; we give a sketch and emphasize the differences:
If some term ti is in a reduction position in M [t1, . . . , tn], then the arguments
are the same as in proof of Lemma 5.5.
If no hole of M [t1, . . . , tn] is a reduction position, l > 0, and the reduction is a
→0-reduction, then the same arguments as in the in proof of Lemma 5.5 show
that we can use induction on l. The base case l = 0 is that M [t1, . . . , tn] is
must-divergent. Now suppose that M [s1, . . . , sn] is not must-divergent. Then it
is may-convergent, which by the assumption ∀i : R[si] ↓ =⇒ R[ti] ↓ and the
context lemma 5.5 implies that M [t1, . . . , tn] ↓, which is a contradiction. Hence
M [s1, . . . , sn] ↑, and the base case is proved. If no hole of M [t1, . . . , tn] is a
reduction position, l > 0, and the reduction is a renaming →1, then the same
arguments as in the proof of the may-context lemma 5.5 apply. ut

An immediate consequence is:

Corollary 5.7. Let calc be strongly sharing. Then ≤↓ ∩ ≤⇓,R ⊆ ≤⇓.

Lemma 5.8 (Must-Convergence and Weakly Sharing). Let calc be
weakly sharing. Then ≤↓,Rν ∩ ≤⇓,Rν ⊆ ≤⇓ν .

Proof. The proof can be done along the argumentation of the proof of Lemma
5.6, with analogous extensions as done in the proof of Lemma 5.3. ut

Lemma 5.9 (Total Must-Convergence and Strongly Sharing). Let calc
be a strongly sharing calculus. Then ≤

W ,R
t = ≤

W

.

Proof. We show the following generalized claim:
For all n and all multicontexts M with n holes: If for all for terms si, ti, i =
1, . . . , n, and for all i = 1, . . . , n: si ≤

W ,R
ti, then M [s1, . . . , sn] W =⇒

M [t1, . . . , tn] W .
Thus, let us assume that M, si, ti are given, that M [s1, . . . , sn] W , and that
the claim holds for all terms that can be reached from M [s1, . . . , sn] by a →-
reduction. Proposition 4.5 permits us to assume, by applying bv-renamings, that
the bound variables in si and ti are distinct. The claim is shown by well-founded
induction on the order +−→ defined by the reduction → for all the descendents
of M [s1, . . . , sn], and second on the number of holes of M . As a base case, the
claim is obviously true, if n = 0.
There are several cases: We give a sketch for every case:

1. Some si or ti is in a reduction position in M [s1, . . . , sn] or M [t1, . . . , tn],
respectively. Then some hole of M [., . . . , .] is in a reduction context, and the
arguments in case (1) of the proof of Lemma 5.5 apply.
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2. None of the contexts Mi = M [s1, . . . , si−1, [], si+1, . . . , sn] is a reduction
context. Then no hole of M is a reduction position. We have to show that all
reduction sequences of M [t1, . . . , tn] terminate. If M [t1, . . . , tn] is an answer-
term, then we are finished. If M [t1, . . . , tn] is irreducible, then by the same
arguments as in in the proof of Lemma 5.5, M [s1, . . . , sn] is also irreducible,
which implies that M [s1, . . . , sn] is an answer, and hence M [t1, . . . , tn] is
an answer, too. If M [t1, . . . , tn] has a reduction, then using the reduction
assumptions 3.4 for →0 and the same arguments as in Lemma 5.5, we can
apply the induction hypothesis. ut

The already demonstrated techniques suffice to prove:

Lemma 5.10 (Total Must-Convergence for Weakly Sharing). Let calc
be weakly sharing. Then ≤

W ,Rν = ≤

W ν
.

Theorem 5.11 (Generic Context Lemma). If our assumptions hold for
calc, then:

– For strongly sharing calculi: ≤↓,R = ≤↓, ≤
W ,R

= ≤

W

, and ≤↓,R ∩ ≤⇓,R

⊆ ≤⇓.
– For weakly sharing calculi:
≤↓,Rν = ≤↓ν ⊆ ≤↓, ≤

W ,Rν = ≤

W ,ν
⊆ ≤

W

, and ≤↓,Rν ∩ ≤⇓,Rν ⊆ ≤⇓ν ⊆
≤⇓.

5.1 Strengthening the Context Lemma for Weakly Sharing Calculi

The context lemma for weakly sharing calculi has the slight disadvantage
that in addition to all reduction contexts, also all vv-substitutions have to be
checked. This can be avoided in most calculi by simulating s[y1/x1, . . . , yn/xn]
by (letrec x1 = y1, . . . , xn = yn in s), which is usually of the form R[s].
Note, however, that the relation ∀ . . . : s[y1/x1, . . . , yn/xn] ∼ (letrec x1 =
y1, . . . , xn = yn in s), which is sufficient to drop all the ν’s, may require an
extra proof, depending on the calculus.

6 Examples of Calculi and Context Lemmas

Our context lemmas can be applied to higher-order lambda-calculi, even with
letrec, with strict and non-strict reduction, provided there are no substituting
rules, which is usually only possible, if a form of sharing is permitted by e.g. let,
letrec or explicit substitutions. As a general guideline, note that the beta-rule in
general violates our assumptions. The restricted beta-rule (λx.s) y → s[y/x] may
be allowed in weakly sharing calculi, provided y is in a reduction or a variable-
only position, The rules (λx.s) t → (let x = t in s), (let x = v in R[x]) →
(let x = v in R[v]) are usually permitted in strongly sharing calculi, if the
replaced position of x is in a reduction position. Our result can be used for may-
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as well as must-convergence in its two forms, with or without taking infinite
reductions into account.
We mention several calculi, where the result is applicable:
The call-by-need-calculi in [AFM+95,AF97,MOW98] are deterministic, use a
let to represent sharing, and use a sharing variant of beta-reduction. All the
assumptions are satisfied, where the answers according to our definition are of the
form let x1 = t1 in let x2 = t2 in ... in λx.s. The context lemma for
may-termination holds for these strongly sharing calculi.
The letrec-calculi in [AS98,SS06] are deterministic and provide letrec
for expressing sharing. The context lemma for may-convergence holds for
these strongly sharing calculi. The non-deterministic call-by-need calculi in
[KSS98,Man05] provide a let and a non-deterministic choice. The assump-
tions are satisfied, where unwind is deterministic. Context lemmas for may-
termination as well as must-termination for these strongly sharing calculi hold.
Note that [KSS98] uses total must-divergence, and makes no use of a context
lemma, whereas the calculus in [Man05] did not treat must-divergence.
The call-by-need calculus in [MSC99] with letrec, choice, case and construc-
tors uses may- and total must-convergence, and satisfies our assumptions. The
calculus is weakly sharing since the beta-rule-variant and the case-rule use vv-
substitutions. Note that this calculus is an example with positions that may
only be occupied by variables, namely the arguments in applications, which is
permitted by our higher-order syntax. The context lemmas for may- and total
must-convergence hold in this calculus.
The call-by-need calculi in [SSS07,Mor98] provide amb, letrec, case and con-
structors. They satisfy our criteria, where the first is strongly, and the second is
weakly sharing. unwind and normal-order reduction are non-deterministic. Our
results confirms the respective context lemmas, and also shows a new one for
the call-by-need variant in [Mor98], since there is no proof of context lemma for
total must-convergence in [Mor98].
The call-by-value concurrent process calculus in [NSSSS06] has a sharing variant
of beta-reduction, and is derived from a calculus with beta-reduction [NSS06].
The sharing variant in [NSSSS06] has mutable cells, and a non-deterministic
reduction. It satisfies our assumptions for a strongly sharing calculus. Note that
unwind is nondeterministic. After some preprocessing is done, the context lem-
mas for may- and must can be derived from our results.
If the calculus permits substituting rules like plain beta-reduction, then Theorem
5.11 is not applicable, since then Assumption 3.4.(1) does not hold.

7 Conclusion

It is easy to check that the lemmas also hold for a simple type system, like in sim-
ply typed lambda calculus. To extend the results to other type systems is left for
future research. A further topic for future research is to investigate bisimilarity
for non-deterministic calculi with sharing also w.r.t. must-convergence.
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