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Phase diagram of dense neutral three-flavor quark matter
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We study the phase diagram of dense, locally neutral three-flavor quark matter as a function of
the strange quark mass, the quark chemical potential, and the temperature, employing a general
nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange
quark mass, the ground state of matter corresponds to the color-flavor-locked (CFL) phase. At
some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL
(gCFL) phase. We also find several other phases, for instance, a metallic CFL (mCFL) phase, a
so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor
color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase.

I. INTRODUCTION

At sufficiently high densities and sufficiently low tem-
peratures quark matter is a color superconductor [1]. This
conclusion follows naturally from arguments similar to
those employed in the case of ordinary low-temperature
superconductivity in metals and alloys [2]. Of course,
the case of quark matter is more complicated because
quarks, unlike electrons, come in various flavors (e.g.,
up, down, and strange) and carry non-Abelian color
charges. In the last six years, this phenomenon was stu-
died in detail by various authors [3, 4, 5, 6, 7, 8, 9, 10].
Many different phases were discovered, and recent studies
[11, 12, 13, 14, 15, 16] suggest that even more new phases
may exist. (For reviews on color superconductivity see,
for example, Ref. [17].)

In nature, the most likely place where color super-
conductivity may occur is the interior of compact stars.
Therefore, it is of great importance to study the phases
of dense matter under the conditions that are typical
for the interior of stars. For example, one should appre-
ciate that matter in the bulk of a star is neutral and β-
equilibrated. By making use of rather general arguments,
it was suggested in Ref. [21] that such conditions favor
the color-flavor-locked (CFL) phase and disfavor the two-
flavor superconducting (2SC) phase. In trying to refine
the validity of this conclusion, it was recently realized
that, depending on the value of the constituent (medium
modified) strange quark mass, the ground state of neutral
and β-equilibrated dense quark matter may be different
from the CFL phase [11, 12, 13, 14, 15, 16]. In particu-
lar, the gapless two-flavor color-superconducting (g2SC)
phase [11] is likely to be the ground state in the case of
a large strange quark mass. On the other hand, in the
case of a moderately large strange quark mass, the reg-
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ular and gapless color-flavor-locked (gCFL) phases [15]
are favored. At nonzero temperature, T 6= 0, some other
phases were proposed as well [16].

In this paper, we study the phase diagram of dense
neutral three-flavor quark matter as a function of the
strange quark mass at zero and finite temperature. In or-
der to allow for the most general ground state, we employ
a nine-parameter ansatz for the gap function. The effects
of the strange quark mass are incorporated in our model
by a shift of the chemical potential of strange quarks,
µi

s → µi
s −m2

s/(2µ) where i = r, g, b is the color index,
ms is the strange quark mass, and µ is the quark chemical
potential. This shift reflects the reduction of the Fermi
momenta of strange quarks due to their mass. Such an ap-
proach is certainly reliable at small values of the strange
quark mass. We assume that it is also qualitatively cor-
rect at large values of the strange quark mass.

We note that the analysis of this paper is restricted to
locally neutral phases only. This automatically excludes,
for example, mixed [18] and crystalline [19] phases. Also,
in the mean field approximation utilized here, we cannot
get any phases with meson condensates [20].

This paper is organized as follows. In Sec. II we
present the details of our approach which is based on
the Cornwall-Jackiw-Tomboulis (CJT) formalism [22].
There, we also derive the gap equations and the neu-
trality conditions, and obtain an expression for the pres-
sure. In the next two sections, the gap equations and
the neutrality conditions are studied by using numerical
methods. The results at zero temperature are presented
and discussed in Sec. III. There, the appearance of the
CFL and gCFL phases is established in the case of small
and moderately large values of the strange quark mass,
respectively. The results at nonzero temperature are dis-
cussed in Sec. IV. Also, the phase diagram of quark mat-
ter in the T –m2

s/µ plane, as well as in the T –µ plane
is presented. Finally, Sec. V concludes this paper with a
summary of the results.

Our units are ~ = c = kB = 1. The metric tensor
is gµν = diag (1,−1,−1,−1). Four-vectors are denoted
by capital Latin letters, e.g., Kµ = (k0,k) where k is a
three-vector with absolute value k = |k| and direction

k̂ = k/k. We use the imaginary-time formalism, i.e., the
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space-time integration is defined as
∫

X =
∫ 1/T

0 dτ
∫

V d3
x,

where τ is the Euclidean time coordinate and V the three-
volume of the system. Energy-momentum sums are de-
fined as follows: T/V

∑

K = T
∑

n

∫

d3
k/(2π)3 where

the sum runs over the fermionic Matsubara frequencies
ωn = (2n+ 1)πT ≡ ik0.

II. MODEL AND FORMALISM

In this paper, we follow closely the approach of Ref. [23]
which is based on the CJT formalism [22]. We generalize
the model of Ref. [23] in the way that strange quarks may
now also participate in forming Cooper pairs. The quark
spinor field has the following color-flavor structure:

ψ =



























ψr
u

ψr
d
ψr

s

ψg
u

ψg
d
ψg

s

ψb
u

ψb
d

ψb
s



























. (1)

The Dirac conjugate spinor is defined as ψ̄ = ψ†γ0. In the
treatment of superconducting systems it is advantageous
to double the fermionic degrees of freedom by introducing
the so-called Nambu-Gorkov spinors

Ψ̄ =
(

ψ̄, ψ̄C

)

, Ψ =

(

ψ
ψC

)

, (2)

where ψC = Cψ̄T is the charge-conjugate spinor, and C
is the charge-conjugation matrix.

In this paper, as in Ref. [23], we shall approximate
the gluon-exchange interaction between the quarks by a
point-like current-current interaction. Physically, this is
equivalent to a model with heavy, non-dynamical gluons.
In many ways, such an approximation is analogous to the
nonrenormalizable Fermi theory of weak interactions that
was used before the SU(2)×U(1) gauge theory of electro-
weak forces was developed [24]. Also, in the mean-field
approximation that we use below, our treatment will be
similar to that in Refs. [3, 4, 11, 12, 14, 15, 25, 26, 27]
which are based on Nambu–Jona-Lasinio (NJL) [28] type
models.

In the approximation with a point-like interaction, the
CJT effective action simplifies. It has the following gene-
ral form:

Γ [S] =
1

2
Tr lnS−1 +

1

2
Tr
(

S−1
0 S − 1

)

+ Γ2 [S] . (3)

Here the traces run over space-time, Nambu-Gorkov,
color, flavor, and Dirac indices. The factor 1/2 in front of
the fermionic one-loop terms compensates the doubling
of the degrees of freedom in the Nambu-Gorkov basis.

In the above effective action, S denotes the full quark
propagator.

In order to understand the structure of the full quark
propagator S, let us first discuss the structure of the free
quark propagator S0 in the Nambu-Gorkov basis. The
inverse, S−1

0 , is given by the following matrix:

S−1
0 =

(

[G+
0 ]−1 0
0 [G−

0 ]−1

)

, (4)

where

[G±
0 ]−1 = γµKµ ± µ̂γ0 (5)

are the inverse Dirac propagators for massless quarks
and charge-conjugate quarks, respectively. At sufficiently
large quark chemical potential, there is no need to take
into account the small masses of the light up- and down-
quarks. It is easy to understand that the dynamical effect
of such masses around the quark Fermi surfaces is negli-
gible. Of course, the situation with the strange quark is
different because its mass is not very small as compared
to µ. It appears, however, that the most important ef-
fect of a nonzero strange quark mass is a shift of the
strange quark chemical potential due to the reduction
of the Fermi momentum, µi

s → µi
s −m2

s/(2µ). (Strictly
speaking, it is µi

s rather than µ that should appear in
the denominator. Quantitatively, however, this does not
make a big difference.) For simplicity, this is the only
mass effect that we include in our analysis below. Note
that nonzero quark masses were properly accounted for
in Refs. [26, 27, 29].

The quark chemical potential matrix µ̂ in color-flavor
space is defined as

µ̂ = diag
(

µr
u, µ

r
d, µ

r
s, µ

g
u, µ

g
d, µ

g
s, µ

b
u, µ

b
d, µ

b
s

)

. (6)

In realistic systems, such as bulk matter inside a star,
some of the µi

f should be related. This is because, in
chemical equilibrium, one can introduce only as many
independent chemical potentials as there are different
conserved charges in the system. In quark matter, the
chemical potentials µi

f can be defined in terms of the

quark chemical potential µ (µ ≡ µB/3, where µB is the
baryon chemical potential), the chemical potential µQ for
the electrical charge, and the two chemical potentials, µ3

and µ8, for color charge,

µi
f = µ+ µQQf + µ3T

i
3 + µ8T

i
8. (7)

Thus, there are only four out of nine chemical potentials
in Eq. (6) that are independent in the case of dense three-
flavor quark matter in chemical equilibrium. In (locally)
neutral matter, as we shall see below, only one of them
will remain independent.

In the framework of the CJT formalism, the thermo-
dynamic potential of quark matter is proportional to the
CJT effective action at its stationary point, determined
by the solution of the following equation:

δΓ

δS = 0. (8)
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This is nothing but the Dyson-Schwinger equation for the
quark propagator,

S−1 = S−1
0 + Σ , (9)

where

Σ ≡ 2
δΓ2 [S]

δS (10)

is the quark self-energy. The functional Γ2 is the sum
of all two-particle irreducible (2PI) diagrams. Unfortu-
nately, it is impossible to evaluate all 2PI diagrams ex-
actly. Nevertheless, the advantage of the CJT effective
action (3) is that a truncation of the sum Γ2 at a finite
number of terms still provides a well-defined many-body
approximation. In this study, we only include the sunset-
type diagram shown in Fig. 1 of Ref. [23], which becomes
a double-bubble diagram in the case of a local, instanta-
neous interaction. It is easy to check that this leads to
the following expression for the self-energy:

Σ (K) = −g2 T

V

∑

Q

Γµ
aS (Q) Γν

bD
ab
µν . (11)

Local, instantaneous gluon exchange is parametrized by
a propagator of the form

Dab
µν ≡ −δab gµν

Λ2
. (12)

In Eq. (11), we introduced the Nambu-Gorkov vertex,

Γµ
a =

(

γµTa 0
0 −γµT T

a

)

. (13)

Equation (11) is a self-consistency equation for Σ, com-
monly called the “gap equation”.

In color-superconducting systems, the quark self-
energy has the form

Σ =

(

0 Φ−

Φ+ 0

)

. (14)

The regular (diagonal) part of the self-energy is neglected
here. While it plays an important role in the dynamics
of chiral symmetry breaking, it is essentially irrelevant
for color superconductivity in dense quark matter. (The
effect of the diagonal part of the self-energy was studied,
for example, in Ref. [6].) The off-diagonal elements Φ−

and Φ+ in Eq. (14) are matrices in Dirac, color and fla-
vor space. They are related by the requirement that the

action is real, Φ− ≡ γ0 (Φ+)
†
γ0.

With Eq. (14) one may invert Eq. (9) to obtain the full
quark propagator,

S =

(

G+ Ξ−

Ξ+ G−

)

, (15)

where the diagonal and off-diagonal elements are

G± =
{

[G±
0 ]−1 − Φ∓G∓

0 Φ±
}−1

(16)
and

Ξ± = −G∓
0 Φ±G±, (17)

respectively.

In the following, we use the notation Γ∗ for the CJT
effective action evaluated at the stationary point. In the
approximation used here, it takes the following form:

Γ∗ =
1

2
Tr lnS−1 − 1

4
Tr (ΣS) , (18)

In this paper, we utilize the following nine-parameter
ansatz for the gap matrix:

Φ± =





























[∆rr
uu]± 0 0 0 [∆rg

ud]
± 0 0 0 [∆rb

us]
±

0 0 0 [∆rg
du]± 0 0 0 0 0

0 0 0 0 0 0 [∆rb
su]± 0 0

0 [∆rg
du]± 0 0 0 0 0 0 0

[∆rg
ud]

±
0 0 0 [∆gg

dd]
± 0 0 0 [∆gb

ds]
±

0 0 0 0 0 0 0 [∆gb
sd]

± 0
0 0 [∆rb

su]± 0 0 0 0 0 0

0 0 0 0 0 [∆gb
sd]

± 0 0 0

[∆rb
us]

±
0 0 0 [∆gb

ds]
± 0 0 0 [∆bb

ss]
±





























. (19)

The explicit Dirac structure of the matrix elements is

[∆ii′

ff ′ ]
+

(K) =
∑

c,e=±

φe
c
ii′

ff ′ (K)Pe
c (k) , (20a)

[∆ii′

ff ′ ]
−

(K) =
∑

c,e=±

φe
c
ii′

ff ′ (K)P−e
−c (k) . (20b)

In this representation, φe
c
ii′

ff ′ are real-valued gap para-
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meters, while

Pe
c (k) = 1

4 (1 + cγ5)(1 + eγ0γ · k̂) (21)

are the energy-chirality projectors.
In order to calculate the first part of the effective ac-

tion in Eq. (18), we transform the inverse quark propa-
gator (9) into a block-diagonal form which is schemati-
cally shown in Fig. 1. This is easily achieved by chang-
ing the order of rows and columns in color, flavor,
and Nambu-Gorkov space. The energy-chirality projec-
tors simplify the calculation of the Dirac traces. Af-
ter performing these traces, we use the matrix relation
Tr lnA =

∑

K ln (detA) to calculate the one-loop contri-
bution of the quarks to Γ∗.

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

2 x 2

6 x 6

FIG. 1: The block-diagonal structure of the inverse quark
propagator in color-flavor and Nambu-Gorkov space.

We use the Gauss elimination procedure to reduce the
6 × 6-block to a 3 × 3-block and all the 2 × 2-blocks to
1 × 1-blocks in color-flavor space. The determinant of
the 3 × 3-block is computed analytically by using, for
example, Mathematica or Maple.

The most complicated expression arises from the de-
terminant of the 3 × 3-block. Schematically, it has the
following form:

det (3 × 3)e = k6
0 + bk4

0 + ck2
0 + d. (22)

Here, the coefficients b, c, and d are rather compli-
cated functions of the quark momentum k, three che-

mical potentials (µr
u, µg

d, and µb
s) and six gap parame-

ters (φrr
uu, φrg

ud, φrb
us, φ

gg
dd, φ

gb
ds, and φbb

ss). This determi-
nant can always be factorized as follows: det (3 × 3)e ≡
[k2

0 − (ǫ̃e1)
2][k2

0 − (ǫ̃e2)
2][k2

0 − (ǫ̃e3)
2]. As is clear, the func-

tions ǫ̃e1, ǫ̃
e
2 and ǫ̃e3 determine the dispersion relations of

the three quasiparticles described by the 3 × 3-block of
the quark propagator. In order to get their explicit ex-
pressions, one solves the cubic equation det (3 × 3)e = 0
for ξ = k2

0 . By making use of Cardano’s formula, the so-
lutions can be presented in an analytical form that we
use later in the numerical calculations. Because of their
very complicated nature we refrain from presenting them
explicitly.

The dispersion relations of the quasiparticles that cor-
respond to the 1 × 1-blocks are easy to derive. They
are given in terms of the same function, ǫe

k
(µ, φ) =

[(k− eµ)2 + |φ|2]1/2, that also appears in the 2SC phase.

Once the quasiparticle dispersion relations are estab-
lished, the calculation of the first term in the CJT action,
i.e.,

∑

K ln
(

detS−1
)

≡∑j

∑

K ln
[

(ωn + iµj)
2 + ǫ2j

]

, re-
duces to a sum of several standard contributions of the
following type [30]:

∑

K

ln

(

(ωn + iµj)
2 + ǫ2j

T 2

)

= V

∫

p2dp

2π2

[

ǫj
T

+ ln
(

1 + e−(ǫj−µj)/T
)

+ ln
(

1 + e−(ǫj+µj)/T
)

]

. (23)

In order to simplify the second term in the effective po-
tential in Eq. (18), we use the gap equation (11). Then,
we arrive at the following simple result:

−1

4
Tr (ΣS) =

3

4

Λ2

g2

V

T
Tr

[

Φ̂

(

Φ̂ + 3
∑

a

T T
a Φ̂Ta

)]

,

(24)

where the new notation Φ̂ was introduced to represent
only the color-flavor part of the gap matrix Φ+, given
in Eq. (19). In this connection, it should be noted that

the gap parameters φe
c
ii′

ff ′ are independent of the chirality
and energy projections. This is a consequence of the gap
equation (11).

Finally, by combining all contributions to Eq. (18), we
derive the result for the pressure p ≡ T

V Γ∗,
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p =
T

π2

∑

l

∫ ∞

0

dk k2

{

ln

[

1 + exp

(

−El − µl

T

)]

+ ln

[

1 + exp

(

−El + µl

T

)]}

+
3

4

Λ2

g2

3
∑

i=1

(

φ2
i + ϕ2

i + 6φiϕi + 2σ2
i

)

+
1

2π2

3
∑

i=1

∑

e=±

∫ κ

0

dk k2

{

ǫ̃ei − k + 2T ln

[

1 + exp

(

− ǫ̃
e
i

T

)]}

+
1

π2

3
∑

i=1

∑

e=±

∫ κ

0

dk k2

{

ǫek (µ̄i, φi) − k + T ln

[

1 + exp

(

− ǫe
k

(µ̄i, φi) + δµi

T

)]

+T ln

[

1 + exp

(

− ǫe
k

(µ̄i, φi) − δµi

T

)]}

. (25)

The first term in this expression is the contribution of lep-
tons (i.e., l = e−, µ−). In principle, the contribution of
neutrinos should be added as well. In this paper, however,
their contribution is neglected. This is a good approxima-
tion for compact stars after deleptonization. The disper-
sion relations of the leptons are given by El =

√

k2 +m2
l

with me− ≈ 0.511 MeV and mµ− ≈ 105.66 MeV. Note
that the vacuum contribution was subtracted in Eq. (25),
in order to improve the convergence of the momentum in-
tegrals. In various applications, a bag constant could be
added if necessary. In Eq. (25), φi are the three indepen-
dent gap parameters that appear in the 2 × 2-blocks in
Fig. 1, while ϕi and σi appear in the 6 × 6-block. They
are defined by

φ1 ≡ φgb
sd, ϕ1 ≡ φgb

ds, and σ1 ≡ φrr
uu, (26a)

φ2 ≡ φrb
su, ϕ2 ≡ φrb

us, and σ2 ≡ φgg
dd, (26b)

φ3 ≡ φrg
du, ϕ3 ≡ φrg

ud, and σ3 ≡ φbb
ss. (26c)

In accordance with the fact that the gap parameters
are independent of the energy and chirality, the corre-
sponding indices were dropped. Similarly, µ̄i and δµi

(i = 1, 2, 3) are the average values and the differences
of various pairs of chemical potentials that come from
the three different 2 × 2-blocks,

µ̄1 ≡ 1

2
(µg

s + µb
d), and δµ1 ≡ 1

2
(µg

s − µb
d), (27a)

µ̄2 ≡ 1

2
(µr

s + µb
u), and δµ2 ≡ 1

2
(µr

s − µb
u), (27b)

µ̄3 ≡ 1

2
(µr

d + µg
u), and δµ3 ≡ 1

2
(µr

d − µg
u). (27c)

In order to render the integrals in the expression for the
pressure finite, we introduced a three-momentum cut-
off κ. In QCD with dynamical gluons, of course, such
a cutoff would not be necessary. Here, however, we use
a model with a local current-current interaction which is
nonrenormalizable.

In the case of the ansatz (19) for the gap function, there
are nine coupled gap equations (corresponding to the to-
tal number of gap parameters) that follow from Eq. (11).
The explicit form of these equations is very complicated

and not very informative by itself. Because of this, they
will not be displayed here. In the next two sections, we
solve these gap equations by numerical methods.

As was mentioned in the Introduction, matter in the
bulk of a compact star should satisfy the conditions of
charge neutrality and β-equilibrium. The latter is auto-
matically satisfied after choosing the chemical potentials
as in Eq. (7). The neutrality conditions read

nQ ≡ ∂p

∂µQ
= 0 , (28a)

n3 ≡ ∂p

∂µ3
= 0 , (28b)

n8 ≡ ∂p

∂µ8
= 0 . (28c)

After solving these equations, one is left with only one
chemical potential (out of four) that remains indepen-
dent. It is most convenient to keep the quark chemical
potential µ as a free parameter, and determine µQ, µ3

and µ8 from Eqs. (28). This is done numerically.

III. RESULTS AT ZERO TEMPERATURE

In this section we focus on three-flavor quark matter at
zero temperature. It is clear that, for small and moderate
values of the strange quark mass, the ground state of neu-
tral quark matter should correspond to either the regular
(gapped) CFL phase [4] or the gapless CFL phase [15].
At very large strange quark mass and/or relatively weak
coupling, the ground state can also be either a regular
(gapped) or gapless 2SC color superconductor [11].

Before proceeding to the results, let us specify the pa-
rameters of the model. The strength of the diquark cou-
pling and the value of the cutoff in the momentum inte-
grals are fixed as follows:

g2/Λ2 = 45.1467 GeV−2 , (29a)

κ = 0.6533 GeV . (29b)

In order to see how the phase structure of neutral three-
flavor quark matter changes with the mass of the strange
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quark ms, we solve a coupled set of twelve equations,
i.e., nine gap equations and three neutrality conditions,
given in Eq. (28), for various values of ms, keeping the
quark chemical potential fixed. In this calculation we
take µ = 500 MeV. The results for the absolute va-
lues of the gap parameters and the chemical potentials
µQ, µ3, and µ8 are shown in Figs. 2 and 3, respec-
tively. Note that, strictly speaking, the gap parameters
do not coincide with the actual values of the gaps in
the quasiparticle spectra. In the case of the CFL phase,
for example, there is a degenerate octet of quasiparticles
with a gap φoctet = |φ1| and a singlet state with a gap
φsinglet = 3ϕ1−|φ1|. In the CFL phase, φ1 = φ2 = φ3 < 0,
ϕ1 = ϕ2 = ϕ3 > 0, and σ1 = σ2 = σ3 > 0. Also, in the
CFL phase, the following relation between the gap para-
meters is satisfied: σi = ϕi − |φi| ≡ 2φ(6,6), i = 1, 2, 3,
where φ(6,6) is the sextet-sextet gap in the notation of
Ref. [7].

The results in Figs. 2 and 3 extend the results of
Ref. [15] by considering a more general ansatz for the gap
matrix that takes into account, in particular, the pairing
in the symmetric sextet-sextet channel. The effect of in-
cluding pairing in the symmetric channel is a splitting
between the pairs of gaps (|φ1|, ϕ1), (|φ2|, ϕ2) and (|φ3|,
ϕ3) that is also reflected in the change of the quasiparticle
spectra. Of course, in agreement with the general argu-
ments of Refs. [4, 7], the symmetric sextet-sextet gaps
are rather small, see Fig. 2 (c). This, in turn, explains
the fact why the splittings between the above mentioned
pairs of gap parameters are not very large [compare the
results in Figs. 2 (a) and (b)].

In this study, we confirm that the phase transition from
the CFL phase to the gCFL phase happens at a critical
value of the parameter m2

s/µ that is in good agreement
with the simple estimate of Ref. [15],

m2
s

µ
≃ 2∆ ∼ 190 MeV. (30)

The qualitative results for the chemical potentials µQ, µ3,
and µ8 in Fig. 3 are in agreement with the corresponding
results obtained in Ref. [15] as well. In the CFL phase,
in our notation the color chemical potential µ8 fulfils the
identity µ8 = −m2

s/(
√

3µ). In addition, while the CFL
phase requires no electrons to remain neutral, the pairing
in the gCFL phase is distorted and a finite density of elec-
trons appears. This is seen directly from the dependence
of the electrical chemical potential µQ in Fig. 3, which
becomes nonzero only in the gCFL phase. This observa-
tion led the authors of Ref. [15] to the conclusion that
the phase transition between the CFL and gCFL phase
is an insulator-metal phase transition, and that the value
of the electron density is a convenient order parameter
in the description of such a transition. In fact, one could
also choose one of the differences between number densi-
ties of mutually paired quarks as an alternative choice for
the order parameter [11]. In either case, there does not
seem to exist any continuous symmetry that is associated
with such an order parameter. To complete the discussion

of the chemical potentials, we add that the other color
chemical potential, µ3, is zero only in the CFL phase at
T = 0.

The effects of a nonzero strange quark mass on the
phase structure of neutral strange quark matter could be
viewed from a different standpoint that, in application
to stars, may look more natural. This is the case where
the dependence on the quark chemical potential is stu-
died at a fixed value of ms. The corresponding numerical
results are shown in Fig. 4. (Note once again that φi with
i = 1, 2, 3 have negative values, and we always plot their
absolute values.) In this particular calculation we choose
ms = 300 MeV.

At large values of the quark chemical potential [µ &
m2

s/(2∆) ∼ 475 MeV which is similar to the small strange
quark mass limit considered before], the ground state of
quark matter is the CFL phase. At smaller values of the
chemical potential, the ground state of dense matter is
the gCFL phase. In this case, there are nine gap parame-
ters all of which are different from each other. One could
also check that the density of quarks that pair are not
equal in the gCFL phase. This can be seen from Fig. 5
where all nine quark number densities are plotted for
the same value of the strange quark mass, ms = 300
MeV. Only nr

d = ng
u and nr

s ≈ nb
u, all other quark num-

ber densities are different from each other. This agrees
with the general criterion of the appearance of gapless
phases at T = 0 that was proposed in Ref. [11] in the
case of two-flavor quark matter. In the ordinary CFL
phase, in contrast, one finds that nr

u = ng
d = nb

s, and
nr

d = nr
s = ng

u = ng
s = nb

u = nb
d.

In order to see that the gCFL phase indeed describes
a gapless superconductor, it is necessary to show that
the dispersion relations of quasiparticles contain gapless
excitations. In Fig. 6, the dispersion relations of all nine
quasiparticles are plotted. The dispersion relations for
the corresponding anti-particles are not shown. The dis-
persion relations that result from the 6 × 6 color-flavor
block of the quark propagator are labelled by ǫ̃i in Fig. 6
(see the discussion and Fig. 1 in Sec. II). The remaining
dispersion relations correspond to quasiparticles that are
described by the 2 × 2-blocks of the quark propagator,
given by k0 = ǫe

k
(µ̄i, φi) ± δµi. Qualitatively, these are

the same as the dispersion relations that appear in the
2SC/g2SC phase in Ref. [11]. This is not a coincidence
because the corresponding 2×2 color-flavor blocks of the
propagator have the same structure as in the case of the
2SC/g2SC phase.

From Fig. 6 we see that there is indeed a gapless
mode in the “green-strange–blue-down” sector. This is
the same that was found in Ref. [15]. Note also that,
in agreement with Ref. [15], the “red-strange–blue-up”
quasiparticle has a dispersion relation that is nearly
quadratic, k rb

0su ≃ |k − k∗|2 with k∗ ≈ 400 MeV for a
given choice of parameters, see Fig. 6 (c). The nearly
quadratic dispersion relation resembles the situation at
the transition between the 2SC phase, where nr

u = ng
d,

and the gapless 2SC phase, where nr
u and ng

d are diffe-



7

rent. This explains the approximate equality nr
s ≈ nb

u

mentioned above.

IV. RESULTS AT NONZERO TEMPERATURE

In this section, we present the results for the phase
structure of dense neutral three-flavor quark matter in
the plane of temperature and m2

s/µ, as well as in the
plane of temperature and quark chemical potential.

Let us start with the discussion of the temperature de-
pendence of the gap parameters in the two qualitatively
different cases of small and large values of the strange
quark mass. As we saw in the previous section, the zero-
temperature properties of neutral quark matter were very
different in these two limits.

The results for the temperature dependence of the gap
parameters are shown in Figs. 7, 8 and 9 for two diffe-
rent values of the strange quark mass that represent the
two qualitatively different regimes. In the case of a small
strange quark mass (i.e., the case of m2

s/µ = 80 MeV
which is shown in Figs. 7 and 8), the zero-temperature
limit corresponds to the CFL phase. This is seen from the
fact that the three different gaps shown in every panel
of Fig. 7 merge as T → 0. At nonzero temperature, on
the other hand, the gap parameters are not the same.
This suggests that, similar to the zero-temperature case
of Figs. 2 and 4, a phase transition to the gCFL phase
happens at some nonzero temperature. However, we shall
show below that there is no phase transition between
the CFL and gCFL phases at any nonzero temperature.
Instead, there is an insulator-metal crossover transition
between the CFL phase and a so-called metallic CFL
(mCFL) phase. At this point, all quasiparticles are still
gapped. At some higher temperature, the mCFL phase
is replaced by the gCFL phase.

If the temperature is increased even further, there are
three consecutive phase transitions. These correspond to
the three phase transitions predicted in Ref. [16] in the
limit of a small strange quark mass. In order to resolve
these, we show a close-up of the near-critical region of
Fig. 7 in Fig. 8. The three transitions that we observe are
the following: (i) transition from the gCFL phase to the
so-called uSC phase; (ii) transition from the uSC phase
to the 2SC phase; (ii) transition from the 2SC phase to
the normal quark phase. Here, the notation uSC (dSC)
stands for superconductivity in which all three colors of
up (down) quark flavor participate in diquark pairing
[16]. Our results differ from those of Ref. [16] in that
the dSC phase is replaced by the uSC phase. The rea-
son is that, in our case, the first gaps which vanish with
increasing temperature are φ1 and ϕ1, see Fig. 8, while
in their case ∆2 (corresponding to our φ2 and ϕ2) dis-
appears first. Although we use the same terms for the
phases that were introduced in Ref. [16], we distinguish
between the gapped phases (e.g., CFL and mCFL phase)
and the gapless phases (e.g., gCFL). Also, in order to
reflect the physical properties of the mCFL phase, we

suggest to use the term metallic CFL, instead of modi-

fied CFL as in Ref. [16]. (Note that, in that work, the
mCFL phase also encompasses the gCFL phase.)

In the case of a large strange quark mass (i.e., the
case of m2

s/µ = 320 MeV shown in Fig. 9), the zero-
temperature limit corresponds to the gCFL phase. By
looking at the corresponding temperature dependence of
the gap parameters, we see that this case is a natural gen-
eralization of the previous limit of a small strange quark
mass. There are also three consecutive phase transitions.
It is noticeable, however, that the separation between the
different transitions becomes much wider at large ms.

We now take a closer look at the transition between
the CFL, the mCFL, and the gCFL phase. Let us recall
that, at zero temperature, there was no symmetry con-
nected with the order parameter, i.e., the number density
of electrons, that is associated with the CFL → gCFL
phase transition. At nonzero temperature, the electron
density is not strictly zero in the CFL phase as soon as
ms 6= 0. Indeed, the arguments of Ref. [31] regarding the
enforced neutrality of the CFL phase do not apply at
T 6= 0. This leads us to the conclusion that the insulator-
metal transition between the CFL and the mCFL phase
is just a smooth crossover at T 6= 0. Of course, in princi-
ple, we can never exclude the existence of a first-order
phase transition. Our numerical analysis, however, re-
veals a crossover. The transition can only be identified
by a rapid increase of the electron density in a relatively
narrow window of temperatures, see Fig. 10 (a). The lo-
cation of the maximum of the corresponding “susceptibil-
ity” (i.e., dnQ/dT ) is then associated with the transition
point.

The transition between the mCFL and the gCFL phase
corresponds to the appearance of gapless quasiparticle
modes in the spectrum. We do not yet know whether this
transition is associated with any physical susceptibility.
There is no way of telling from the temperature depen-
dences in Figs. 7, 8 and 9, whether the corresponding
CFL and/or 2SC phases are gapless or not. This addi-
tional piece of information can only be extracted from
the behavior of the quasiparticle spectra. We also inves-
tigated them, but we do not show them explicitly.

Our results for the phase structure of dense neutral
three-flavor quark matter are summarized in Fig. 11. We
show the phase diagram in the T –m2

s/µ plane at a fixed
value of the quark chemical potential, µ = 500 MeV, and
in the T –µ plane at a fixed value of the strange quark
mass, ms = 250 MeV. The three solid lines denote the
three phase transitions discussed above. The two dashed
lines mark the appearance of gapless modes in the mCFL
and 2SC phases. We could term these as the mCFL →
gCFL and 2SC → g2SC crossover transitions. In addition,
as we mentioned above, there is also an insulator-metal
type transition between the CFL and mCFL phase. This
is marked by the dotted lines in Fig. 11.
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V. CONCLUSIONS

In this paper, we studied neutral three-flavor quark
matter at large baryon densities. We obtained a very rich
phase structure by varying the strange quark mass, the
quark chemical potential, and the temperature.

At T = 0, there are two main possibilities for the
strange quark matter ground state: the CFL and gCFL
phases. These findings confirm the results of Ref. [15]
concerning the existence of the gapless CFL phase, the
estimate of the critical value of the strange quark mass
ms, and the dependence of the chemical potentials on
ms. We also confirm that it is the color neutrality condi-
tion, controlled by the color chemical potential µ8 which
drives the transition from the CFL to the gCFL phase
[15]. This is in contrast to gapless 2SC superconductivity
which results from electrical neutrality [11].

Because we use a nine-parameter ansatz for the gap
function, the results of this paper are more general than
those of Ref. [15]. For example, we were able to ex-
plicitly study the effects of the symmetric pairing chan-
nel, described by the sextet-sextet gap parameters, that
were neglected in Ref. [15]. As one might have expected,
these latter modify the quasiparticle dispersion relations
only slightly. This check was important, however, to see
that the zero-temperature phase transition from the CFL
phase to the gapless CFL phase, which is not associated
with any symmetry, is robust against such a deformation
of the quark system.

In this paper, we also studied the temperature de-
pendence of the gap parameters and the quasiparticle
spectra. In particular, this study revealed that there ex-
ist several different phases of neutral three-flavor quark
matter that have been predicted in the framework of
the Ginzburg-Landau-type effective theory in Ref. [16].
Our results extend the near-critical behavior discussed

in Ref. [16] to all temperatures. Also, we show how this
behavior evolves with changing the value of the strange
quark mass. The only real qualitative difference between
our results and the results of Ref. [16] is that, instead
of the dSC phase, we find the uSC phase in the phase
diagram.

The main result of our paper is the complete phase dia-
gram of neutral three-flavor quark matter in the T –m2

s/µ
and T –µ plane, shown in Fig. 11. In this figure, all sym-
metry related phase transitions are denoted by solid lines.
(The symmetries of all phases appearing in this figure
were discussed in Ref. [16].) In the mean-field approxima-
tion used here, all of these transitions are second-order
phase transitions. After taking into account various types
of fluctuations, the nature of some of them may change
[32]. A detailed study of this issue is, however, outside
the scope of this paper. The dashed lines in Fig. 11 sepa-
rate the mCFL and regular 2SC phases from the gapless
CFL and gapless 2SC phases. These cannot be real phase
transitions, but are at most smooth crossovers. At T = 0,
there is an insulator-metal phase transition between the
CFL and the gCFL phase [15]. At nonzero temperature,
there exists a similar insulator-metal type transition be-
tween the CFL and the mCFL phase, given by the dotted
lines in Fig. 11.
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[9] T. Schäfer, Phys. Rev. D 62, 094007 (2000); M. G. Al-
ford, J. A. Bowers, J. M. Cheyne, and G. A. Cowan,
Phys. Rev. D 67, 054018 (2003); M. Buballa, J. Hošek,
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FIG. 11: The phase diagram of neutral three-flavor quark matter in the plane of temperature and m2

s
/µ (left panel) and in the

plane of temperature and quark chemical potential (right panel). The results in the left panel are for a fixed value of the quark
chemical potential, µ = 500 MeV. The results in the right panel are for a fixed value of the strange quark mass, ms = 250 MeV.
The dashed lines are associated with the appearance of additional gapless modes in the spectra. The dotted lines indicate the
insulator-metal crossover.


