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Summary 

1 Summary 

1.1 German Summary 

Prionenerkrankungen sind neurodegenerative Erkrankungen, neuropathologisch 

charakterisiert durch spongiforme Vakuolenbildungen im Hirngewebe, den Verlust 

neuronaler Zellen sowie die verstärkte Proliferation von Mikroglia und Astroglia. 

Die molekularen Mechanismen für eine derartige Prionen-vermittelte 

Neurodegeneration sind jedoch nicht vollständig aufgeklärt. In jüngster 

Vergangenheit wurden Beobachtungen gemacht, die annehmen lassen, dass eine 

zytosolische fehlgefaltete Form des zellulären Prionproteins (PrPC) der Auslöser 

für solch einen neuronalen Zelltod sein könnte. Dabei wird angenommen, dass 

eine Beeinträchtigung des proteasomalen Proteolysesystems eine Ursache für 

diese zytosolische Akkumulation von PrP darstellt. Die Akkumulation von 

zytosolischem PrP ist entweder die Folge eines Rücktransports von unreifem 

nicht-nativ gefaltetem PrP aus dem endoplasmatischen Retikulum (ER), welches 

unter diesen Bedingungen nicht abgebaut wird (ER-assoziierter Abbau, ERAD) 

oder ist zurückzuführen auf einen unzureichenden post-translationalen ER-Import 

bei gesteigerter Genexpression. In der Tat wurde in vivo und in vitro ein 

zytotoxisches Potential für ein zytosolisch exprimiertes PrP (Cy-PrP) gezeigt. Mit 

Hilfe kultivierter Zelllinien wurden diesbezüglich jedoch widersprüchliche 

Ergebnisse publiziert, die nicht für eine generelle Toxizität des Cy-PrPs sprechen. 

Dennoch könnte eine Cy-PrP-vermittelte neuronale Toxizität eine zentrale Rolle 

bei der Pathogenese von Prionenerkrankungen spielen. Um diesem Mechanismus 

detaillierter auf den Grund zu gehen, wurden in dieser Studie neuronale N2a 

Zellen etabliert, die Cy-PrP sowohl transient induzierbar als auch stabil 

exprimieren.  

Mit Hilfe dieses Zellmodells konnten folgende Beobachtungen gemacht werden: 

Erstens, die transiente Expression von Cy-PrP über einen Zeitraum von 24 h und 

48 h war nicht ausreichend, um im signifikanten Maßstab Zelltod in neuronalen 

Zellen zu induzieren. Dazu wurde zum einen die Vitalität der Zellen mittels MTT-

Test gemessen. Zum anderen wurde die Freisetzung von Lactat-Dehydrogenase 

(LDH) aus den Zellen bestimmt zur Abschätzung der Cy-PrP vermittelten 
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Zytotoxizität. Um diese Daten zu untermauern wurde zusätzlich getestet, ob eine 

Cy-PrP Expression zu einer spezifischen Aktivierung der Caspase-3 führt, einem 

zentralen Parameter innerhalb der Apoptose-Signalwege. Auch hier konnte keine 

Cy-PrP spezifische Caspase-3-Aktivierung nachgewiesen werden. Um zelltyp-

abhängige Effekte auszuschließen wurde das Cy-PrP in nicht-neuronalen Zellen 

exprimiert, zeigte jedoch auch hier keinen zytotoxischen Effekt in den MTT-

Vitalitätstests.  

Auf Grund der postulierten biochemischen Ähnlichkeiten von Cy-PrP und PrPSc 

wurde das Cy-PrP im zweiten Teil der Arbeit bezüglich seiner Proteinase K-

Resistenz, seiner Halbwertszeit und intrazellulären Proteolyse näher 

charakterisiert. Ersteres wurde ermittelt durch den Verdau der Zelllysate mit 

unterschiedlichen Protease K-Konzentrationen gefolgt von Immunoblotanalysen 

zur Detektion der resistenten Cy-PrP-Mengen. Im Gegensatz zum PrPSc, welches 

kontinuierlich von den als positive Kontrolle eingesetzten N2a58/22L-Zellen 

gebildet wird, wurde das Cy-PrP durch die Proteinase-K-Behandlung vollständig 

verdaut. Zur Bestimmung der Halbwertszeiten von Cy-PrP und dem vollständigen 

Prionprotein (PM-PrP) wurden Degradationsexperimente durchgeführt. Mit Hilfe 

der dazu durchgeführten Immunoblotanalysen konnte ein intrazellulärer Abbau 

des Cy-PrPs beobachtet werden. Dabei war die Abbaukinetik des Cy-PrPs 

vergleichbar mit der des PM-PrPs. Nähere Untersuchungen mit Hilfe des 

proteasomalen Inhibitors Epoxomicin zeigten, dass die Cy-PrP-Proteolyse 

Proteasom-vermittelt ist. Im Vergleich dazu erfolgte der Abbau des reifen, 

glycosylierten PM-PrPs unabhängig von der Inhibitorzugabe und war demzufolge 

nicht Proteasom-vermittelt.  

Drittens, obwohl die Cy-PrP-Proteolyse durch das Proteasom erfolgt, hatte die 

Überexpression von Cy-PrP keinen Einfluß auf die intrazelluläre 

Proteasomaktivität und das proteasomale Expressionslevel. Um zu untersuchen, 

ob eine Beeinträchtigung der Proteasomaktivität eine Cy-PrP-vermittelte 

Zytotoxizität auslösen kann, wurden MTT-Tests in Anwesenheit des spezifischen 

Proteasominhibitors Epoxomicin durchgeführt. Trotz Inhibition des Proteasoms 

konnte nach 24 stündiger Cy-PrP-Expression keine Cy-PrP-vermittelte 

Zytotoxizität detektiert werden.  

Viertens, intrazelluläre Lokalisationsstudien mit Hilfe von Fraktionierungs-

experimenten und Immunofluoreszenzanalysen ergaben eine inhomogene 
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intrazelluläre Verteilung des Cy-PrPs, charakterisiert durch starke Aggregat-

ähnliche Detektionsmuster in den Immunofluoreszenzanalysen. Dieses 

Lokalisationsmuster wurde sowohl in den transient exprimierenden Zellen als auch 

in den stabilen N2a-Cy-PrP Zelllinien beobachtet. Kolokalisationsstudien mit 

verschiedenen Zellkompartment-spezifischen Markern ergaben keine ER- und 

Golgi-Lokalisation für das Cy-PrP. Dagegen wurde das PM-PrP wie erwartet 

Membran-ständig und im Golgi detektiert. Interessanterweise konnte hier gezeigt 

werden, dass die großen intrazellulären Cy-PrP-Akkumulationsherde mit 

endosomalen EEA-1 positiven Vesikeln und mit Hsc70, der konstitutiven Form des 

Hsp70, kolokalisierten. Dabei war zu beobachten, dass das zytosolische Hsc70 in 

den Mock-Kontrollen und PM-PrP-exprimierenden Zellen intrazellulär homogen 

verteilt war. Die Expression von Cy-PrP verursachte jedoch eine zelluläre 

Umverteilung  von Hsc70, beobachtbar als Aggregat-ähnliches Detektionsmuster 

in den Immunofluoreszenzanalysen. Dabei hatte die Expression von Cy-PrP oder 

PM-PrP keinen Einfluß auf das Expressionslevel von Hsc70, analysiert in 

Immunoblotexperimenten.  

Fünftens, in dieser Arbeit gelang es zum ersten Mal stabile Cy-PrP-exprimierende 

Zelllinien zu etablieren. Dabei wurden zwei verschiedene Parentalzelllinien 

verwendet – die neuronalen N2a Zellen und die PrP0/0 neuronalen Vorläufer-

Zellen. Diese Zelllinien zeigten keine Anzeichen von Apoptose wie verringerte 

Proliferation oder Chromatinkondensation. In den PrP0/0 neuronalen Vorläufer-

Zellen kolokalisierte das Cy-PrP ebenfalls mit endosomalen EEA-1 positiven 

Vesikeln und mit Hsc70.  

Diese Ergebnisse lassen den Schluß zu, dass allein das Auftreten von 

zytosolischem PrP nicht primär den neuronalen Zelltod initiieren muß. Zusätzlich 

könnte die effiziente Entfernung des Cy-PrPs aus dem Zytosol durch einen 

gezielten Transport in endosomale Vesikel eine erfolgreiche Methode sein, um 

eine toxische zytosolische PrP-Akkumulation zu unterbinden, was letztendlich von 

Zelltyp zu Zelltyp in seiner Leistungsfähigkeit variieren kann. Die beobachtete 

Kolokalisation von Cy-PrP und Hsc70 in solchen endosomalen Vesikeln könnte 

ein erster Hinweis darauf sein, dass Hsc70 eine wichtige Regulatorfunktion bei der 

kontrollierten Entstehung von amorphen Cy-PrP Aggregaten und deren Transport 

in endosomale Vesikel übernimmt. Diese Hsc70-abhängige Translokation von Cy-
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PrP könnte einen wesentlichen Schutzmechanismus gegen eine toxische 

Akkumulation von Cy-PrP in N2a-Zellen widerspiegeln.  

1.2 English Summary 

Prion diseases are a complex group of fatal neurodegenerative disorders with a 

broad host spectrum, which are characterised by strong neuronal cell loss, 

spongiform vacuolation and astrocytic proliferation. The molecular mechanisms of 

prion-mediated neurodegeneration are not yet fully understood. Recently, it has 

been proposed that neuronal cell death might be triggered by cytosolic 

accumulation of misfolded cellular prion protein (PrPC) due to impairment of 

proteasomal degradation. Cytosolic PrPC could result from either retro-

translocation via the endoplasmatic reticulum-associated degradation system 

(ERAD) or abortive translocation of PrPC into the ER. Indeed, expression of 

cytosolic PrP (Cy-PrP) was shown to be neurotoxic both in vivo and in vitro. 

However, contradicting results on cytosolic PrP-mediated neurotoxicity in cultured 

cells have been reported. Cytosolic PrP–mediated cytotoxicity may play a central 

role in the pathogenesis of prion diseases. In order to investigate the molecular 

mechanisms of this process, a detailed analysis of N2a cells conditionally 

expressing cytosolic PrP (Cy-PrP) was performed in this study. The following 

results were obtained: First, Cy-PrP expression is not per se sufficient to trigger 

cytotoxicity in N2a cells independently of proteasome inhibition. Second, Cy-PrP is 

degraded with kinetics resembling the degradation of cell membrane-anchored 

full-length PM-PrP. In this process, the 20/26S proteasome was responsible for 

Cy-PrP degradation while the proteolysis of matured full length PM-PrP is not 

affected by the proteasomal system. Third, Cy-PrP accumulates in fine foci when 

expressed at high levels and co-localises with the cytosolic chaperone Hsc70 in 

EEA-1 positive endocytic vesicles. From these data it was proposed that the 

chaperone Hsc70 acts as a regulator for the controlled formation of amorphous 

Cy-PrP aggregates and their transport to endosomal vesicles. This Hsc70-

dependent mechanism may confer protection to N2a cells against toxic 

accumulation of Cy-PrP in the cytosol. 
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2 Introduction 

2.1 Prion diseases and infectivity 

In the past decade, transmissible spongiform encephalopathies (TSE) or prion 

diseases have achieved enhanced attention in the media due to the appearance of 

bovine spongiform encephalopathy (BSE) or “mad cow disease” in the UK. Due to 

the potential for human infection, BSE has strongly influenced medical, 

agricultural, economic and political issues in Europe and (Chesebro, 2003). 

Presently, Scrapie (Sc), BSE and CWD are the most prominent prion diseases in 

the animal kingdom (Chesebro, 2003). Creutzfeldt-Jacob disease (CJD), kuru, 

Gerstmann-Sträussler-Scheinker disease (GSS), fatal familial insomnia (FFI) and 

new variant of Creutzfeldt-Jacob disease (vCJD) are the prion diseases in human. 

Irrespective of their sporadic, infectious or familial origin, the prion diseases are 

transmissible disorders in which infectivity is associated with the replication and 

accumulation of PrP-scrapie (PrPSc), a disease-related insoluble form of the host 

derived cellular prion protein (PrPC). According to the “protein-only” hypothesis, 

PrPSc is the infectious agent that may convert PrPC to PrPSc in a self-propagating 

reaction (Prusiner, 1998). Additionally, different experimental data have 

demonstrated that transmission of infectivity is closely connected to PrPC 

(Brandner et al., 1996b; Bueler et al., 1993; Legname et al., 2004; Prusiner et al., 

1993). Recently, it has been shown that PrPC has to be membrane anchored to 

mediate transmission of PrPSc-infectivity (Chesebro et al., 2005). 

The clinical symptoms of TSE diseases vary in humans. They have in common a 

progressive development of severe motoric disturbance and dementia leading to 

death within few months to several years after diagnosis, which can be years to 

decades after the initial infection in transmissible cases.  

Neuropathology of prion disease is characterised by extensive neuronal death, 

accompanied by spongiform vacuolation as well as astro- and microgliosis, usually 

combined with widespread deposits of extracellular amyloid aggregates. These 

aggregates often contain the causative agent PrPSc. Abnormal PrP accumulation 

occurs in the majority of, but not all, prion diseases. 
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2.2 Cellular prion protein  

2.2.1 Characteristics and structure of PrPC 

Murine PrPC is a glycoprotein encoded by the highly conserved prion protein gene, 

Prnp, containing three exons with the open reading frame (ORF) in exon 3 (Fig. 5). 

Transcription of the ORF sequence and its translation generates PrP with a size of 

253 amino acids (Fig. 1). The N-terminal signal peptide (NSP) of the precursor 

form of the prion protein directs PrP through the endoplasmatic reticulum (ER) and 

the Golgi apparatus to the cell surface. PrPC is N-glycosylated at two asparagin 

residues located in the C-terminal part of PrP (aa 181 and 197) (Bolton et al., 

1985). Attachment of a glycosylphosphatidylinositol (GPI) anchor occurs at 

position 231 of PrP (Stahl et al., 1987).  

 

 

 

Fig. 1 Structure of the prion protein. (A) The cellular prion protein consists of a flexible N-

terminal and a globular C-terminal domain. The C-terminal structure contains mainly α-helical 

arrangements and two small β-sheet secondary elements. The N-terminus possesses the copper-

binding octarepeats; the protein has a signal peptide (NSP) for membrane targeting and is post-

translationally modified by addition of two glycosylations as well as a glycosylphosphatidylinositol 

(GPI) membrane anchor. (B) The nuclear magnetic resonance (NMR) derived structure of mouse 

PrP (121-231) contains a two stranded anti-parallel beta-sheet and three alpha-helices (Riek et al., 

1996a). 

In addition, a single disulfide bridge is formed between the cysteine residues at 

position 179 and 214 (Safar et al., 1990). PrPC is attached to the cell membrane 

through the GPI anchor (Stahl et al., 1987). 
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The three-dimensional structure of PrPC, determined by nuclear magnetic 

resonance (NMR) spectroscopy (Fig. 1B) and circular dichroism analysis of 

recombinant murine PrP (Hornemann et al., 1997; Riek et al., 1996b; Riek et al., 

1997), consists of a disordered N-terminal region (aa 1-120) and a C-terminal 

region (121-231) composed of three α-helices and two β-strands flanking the first 

α-helix (Fig. 1A). Although the primary structure of PrPC and PrPSc are the same, 

the two isoforms are very different at the level of secondary structure. PrPSc has a 

much higher proportion of β-sheets than PrPC (45% compared to 3%) (Prusiner, 

1998). Typically, PrPC occurs as non-, mono- and diglycosylated form correlating 

with a molecular weight of 27-35 kDa in immunoblot analyses and is, in contrast to 

the pathological PrPSc, sensitive to proteinase K (PK) treatment. Although the Prnp 

gene is highly conserved as well as the three-dimensional protein structure of 

PrPs from different species are quite similar, there exist some differences in the 

primary structure of PrPs in different species. The latter allows distinguishing PrPs 

from different species by specific anti-PrP antibodies. In this study a chimerical 

mouse-hamster-mouse PrP, called MH2M PrP (Scott et al., 1993) was 

overexpressed in neuronal cells. The transgene MH2M PrP contains an epitope, 

which is not present in murine PrP. This epitope is specifically recognised by the 

3F4 antibody and allows distinguishing between host-derived murine PrP and 

transgene PrP. 

2.2.2 Biosynthesis and endosomal trafficking of PrPC 

The biosynthetic pathway followed by PrPC is similar to that of other membrane 

and secreted proteins. Synthesised PrPC contains a specific N-terminal signal 

peptide (NSP) and a C-terminal hydrophobic GPI anchor sequence (Fig. 1A), 

which are both responsible for co- or post-translational PrPC translocation into the 

rough endoplasmic reticulum (ER), wherefrom PrPC transits the Golgi on its way to 

the cell surface (Harris, 2003). During PrP maturation in the ER, PrPC is subjected 

to several post-translational modifications, including cleavage of the N-terminal 

signal peptide, addition of N-linked oligosaccharide chains (see Fig. 1), formation 

of a single disulphide bond, and attachment of the GPI anchor following cleavage 

of the GPI sequence (Haraguchi et al., 1989; Stahl et al., 1987; Turk et al., 1988). 

The N-linked oligosaccharide chains added within the ER are subsequently 
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modified in the Golgi to yield complex-type chains that contain sialic acid and are 

resistant to endoglycosidase H, but sensitive to Peptide N-glycosidase F 

(PNGaseF). The majority of PrPC is found in detergent-resistant raft domains on 

the cell surface (Gorodinsky and Harris, 1995; Naslavsky et al., 1997; Vey et al., 

1996). After delivery of PrPC to the cell surface not all PrPC molecules remain 

there. Some PrPC molecules constitutively cycle between the plasma membrane 

and the endocytic compartment (Shyng et al., 1993). Kinetics analysis 

demonstrates that PrPC molecules cycle through the cell with a transit time of ~60 

min. In the process, internalised PrPC co-localises with different endosomal 

markers (Magalhaes et al., 2002). The endocytic recycling pathway is of interest 

concerning the prion generation, since the initial steps in the conversion of PrPC 

into PrPSc may take place on the plasma membrane or following internalisation of 

PrPC (Borchelt et al., 1992; Caughey and Raymond, 1991). 

2.2.3 Putative functions of PrPC 

While the exact function of the cellular prion protein (PrPC) is still unclear, there are 

several references due to increasing knowledge on the localisation and interaction 

of PrPC with other molecules. The reported putative functions include e.g. 

antioxidant properties (Brown et al., 1997c; Brown et al., 1999; Sakudo et al., 

2005a; Senator et al., 2004; Wong et al., 2001), regulatory activity in copper 

metabolism (Brown et al., 1997a; Korte et al., 2003; Varela-Nallar et al., 2006; 

Vassallo and Herms, 2003), neuronal differentiation (Chen et al., 2003; Mouillet-

Richard et al., 1999; Mouillet-Richard et al., 2000; Sales et al., 2002; Steele et al., 

2006), neuroprotective signalling and synaptic function (Collinge et al., 1994; 

Criado et al., 2005; Maglio et al., 2006; Re et al., 2006; Whittington et al., 1995). 

The latter is interesting in terms of the in vivo situation. PrPC was found in 

presynaptical nerve terminals, synapses in the brain and neuromuscular junctions 

(Brown, 2001; Fournier et al., 1995; Fournier et al., 2000; Haeberle et al., 2000; 

Herms et al., 1999; Sales et al., 1998). Furthermore, PrPC may be a constituent of 

the synaptic vesicle membrane, since the PrPC interacting protein synapsin I is 

associated with small synaptic vesicles (Spielhaupter and Schatzl, 2001) and PrPC 

co-localises with the presynaptic vesicle protein synapthophysin (Fournier et al., 

1995). PrPC affects the neurotransmitter release via synaptic vesicles as shown for 

4 



Introduction 

acetylcholine in neuromuscular junction (Re et al., 2006). This would suggest a 

role in the recycling of the vesicles or a more direct role in the synaptic activity. 

The latter has been substantiated by some electrophysiological studies conducted 

in mice devoid of PrPC, which exhibit weakened GABAA-mediated fast inhibition 

(Collinge et al., 1994) and impaired long-term potentiation (Collinge et al., 1994; 

Criado et al., 2005; Maglio et al., 2006; Whittington et al., 1995). Recombinant PrP 

induces rapid polarisation and development of synapses in embryonic rat 

hippocampal neurons (Kanaani et al., 2005). In vivo accumulation of PrP deposits 

correlates with abnormal synaptic protein expression in the cerebellum of CJD 

brains (Ferrer, 2002), and scrapie-infected mice showed a loss of synapses 

associated with abnormal PrP precedes (Jeffrey et al., 2000), intrinsic dysfunction 

of cortical and hippocampal neurons (Jefferys et al., 1994) and altered properties 

of the membrane and synapses (Johnston et al., 1997). In summary, it seems that 

PrPC is not required for most vital synaptic functions, but appears to be important 

for the fine-tuning of neuronal function. The other putative functions of PrPC 

mentioned above are closely associated with its synaptic function. PrPC binds 

copper via histidines in the octarepeat region and could regulate the copper 

concentration in the synaptic region of neurons and decrease oxidative stress in 

synapses (Herms et al., 1999; Kretzschmar et al., 2000; Morot-Gaudry-Talarmain 

et al., 2003). The latter anti-oxidative activity of PrPC has been shown i.a. as 

copper/zinc-dependent superoxid dismutase activity (Brown et al., 1997b; Brown 

et al., 1999; Brown and Besinger, 1998; Rachidi et al., 2003; Sakudo et al., 

2005b). Signalling function of PrPC has been demonstrated by the activation of the 

non-receptor tyrosine kinase fyn (Kanaani et al., 2005; Mouillet-Richard et al., 

2000; Santuccione et al., 2005), which is enriched in brain synaptosomes and has 

been implicated in long term potentiation (Grant et al., 1992) - a further cellular 

pathway through which PrPC influences the synaptic function. 

5 



Introduction 

2.3 Neurotoxicity of pathological prion protein 

2.3.1 PrPSc and neurotoxicity 

Neuronal cell loss is a hallmark of prion diseases. Several studies in humans and 

in mice models of diverse types of prion diseases indicate that neuronal 

dysfunction and cell death occur through apoptosis, i.e. observed as nuclear DNA 

condensation and fragmentation as well as caspase-3 activation (Chiesa et al., 

2000; Dorandeu et al., 1998; Ferrer, 1999; Giese et al., 1995; Gray et al., 1999; 

Lucassen et al., 1995). A key area of controversy in the field is the toxicity of the 

disease-associated isoform PrPSc itself. Although PrPSc is associated with the 

pathology and infectivity of prion diseases, the link between PrPSc and 

neurotoxicity is unclear. PrPC conversion to PrPSc could cause neurotoxicity 

through the loss of the normal function of PrPC. Compelling evidence for 

cytotoxicity of PrPSc are: i) PrPSc accumulation in the brain is a hallmark of TSEs, 

ii) PrP derived peptides e.g. PrP106-126 and PrP82-146 with PrPSc-like 

characteristics including high β-sheet content, amyloid fibrilar structure and 

detergent insolubility are toxic in vitro and in vivo (Bahadi et al., 2003; Bergstrom 

et al., 2005; Carimalo et al., 2005; Ferreiro et al., 2006; Forloni et al., 1993; 

Salmona et al., 2003). iii) there is a good temporal correlation between the 

accumulation of PrPSc and the appearance of pathology and clinical symptoms. 

However, a lot of results using transgenic animal models argue against such a 

simple relationship between PrPSc accumulation and neurodegeneration: i) 

Neuronal degeneration was observed in the absence of detectable PrPSc or 

neuronal damage was not detected despite of high levels of PrPSc (Chesebro et 

al., 2005; Chiesa and Harris, 2001; Ersdal et al., 2005; Hill and Collinge, 2003). ii) 

PrP knock out animals do not develop neuropathological and phenotypic 

alterations similar to TSE-affected animals (Bueler et al., 1993; Manson et al., 

1994; Weissmann and Flechsig, 2003). Indeed, adaptive mechanisms during 

neurodevelopment might compensate the loss of PrPC function, masking any 

phenotype, whereas the loss of PrPC function in the adult CNS might be 

deleterious. However, it has been demonstrated that PrPC depletion in the post-

mitotic neurons of adult mice also results in healthy animals with no detectable 
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neuronal cell loss (Mallucci et al., 2002), which also suggests that the loss PrPC 

function may not be the trigger for neurodegeneration. And iii) host PrPC 

expression is necessary for cytotoxicity, since PrPSc itself is not directly toxic to 

PrP0/0 neurons (Brandner et al., 1996a; Bueler et al., 1992). Thereby, PrPSc 

cytotoxicity is only observed in neurons expressing plasma membrane anchored 

PrPC on their cell surface (Chesebro et al., 2005). Additionally, it has been shown 

that depletion of PrPC in conditional PrP knockout mice after prion infection not 

only stops the development of neuronal damage but also reverses the pathology 

(Mallucci et al., 2003). Hence, PrPC is an indispensable substrate to elicit disease 

in the brain, and deposition of prions alone does not support neurodegeneration. 

These findings have kindled a series of further questions on the mechanisms of 

brain damage in TSEs. So far, it has been postulated that the neurotoxic initiator 

might be an abnormal form of the host PrPC. 

2.3.2 ER-stress and PrP misfolding 

More recently, it has been published that PrPSc induces apoptosis in N2a cells by 

activation of the ER-stress response characterised through ER-calcium release, 

up-regulation of ER chaperones and activation of caspase-12 followed by 

caspase-3 activation (Hetz et al., 2003). In support of these observations made in 

vitro, caspase-12 activation and induction of ER-stress inducible chaperones were 

also detected in brains from scrapie-infected mice and humans affected by CJD 

(Hetz et al., 2003; Hetz et al., 2005; Yoo et al., 2002). PrP can interact with several 

ER chaperones including Bip, calnexin and protein disulfide isomerase (PDI) 

(Capellari et al., 2000; Hetz et al., 2005; Jin et al., 2000). However, no direct 

accumulation of PrPSc in the ER has been described in the TSEs, yet. Rather it 

has been postulated that changes in the calcium homeostasis might be the trigger 

for PrPSc-mediated ER-stress and apoptosis (Ferreiro et al., 2006; Hetz et al., 

2003; Kristensson et al., 1993; Sandberg et al., 2004; Wong et al., 1996; Yadavalli 

et al., 2004). Severe ER calcium alterations are also reflected in the accumulation 

of misfolded proteins in the ER, because calcium is essential for the proper folding 

of proteins in the ER (Bushmarina et al., 2006; Verkhratsky, 2002; Zhang and 

Kaufman, 2006). Different overexpressed mutant PrPs associated with human 

prion diseases were found to be accumulated in the ER in several cell lines 
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(Campana et al., 2006; Drisaldi et al., 2003; Gu et al., 2003; Negro et al., 2001). 

Furthermore, ER-stress has also been associated with the pathogenesis of other 

neurodegenerative disorders, including Alzheimer disease (AD), Parkinson´s 

disease (PD) and Huntington disease (HD) (Campana et al., 2006; Ferreiro et al., 

2006; Katayama et al., 2004; Lindholm et al., 2006; Ryu et al., 2002; Sherman and 

Goldberg, 2001; Smith et al., 2005) - all characterised by accumulation of 

abnormal proteins mostly found as aggregates in the brain.  

2.4 PrPC proteolysis and the proteasomal system 

The proteasome is a multi-subunit protease complex located in the cytoplasm and 

nucleus. Mostly, substrates are modified by Ubiquitin-ligases-mediated poly-

ubiquitination followed by ATP-dependent degradation through the 26S 

proteasome (20S core proteasome and 19S regulator). Particularly, under stress 

conditions such as oxidative stress and/or intracellular accumulation of 

malfunctioned and misfolded proteins the proteasome is the major defence system 

in the cell to prevent “waste overload” (Mehlhase and Grune, 2002). As a 

membrane-anchored protein, mature PrPC is not a natural substrate for the 

proteasomal 20S/26S system. A small percentage (1-5 %) of the internalised 

molecules are proteolytically cleaved near residue 110 in the endosomes, and the 

N- and C-terminal cleavage products are then secreted (Harris et al., 1993; Shyng 

et al., 1993). Some of the membrane-anchored protein is released into the 

extracellular medium by cleavage within the GPI anchor followed by proteolytic 

attack at amino acid 110/111/112 (α-cleavage) by zinc-metalloproteases of the 

desintegrin and metalloprotease (ADAM) family in the brain (Cisse et al., 2005; 

Hooper, 2005; Jimenez-Huete et al., 1998; Vincent et al., 2001). 

Analysis of proteasome-dependent PrPC proteolysis revealed that the half life or 

maturation kinetics of wild type-PrP (wt-PrP) or two different mutant PrPs (PG14 

and D177N) were unaffected by treatment with specific proteasome inhibitors PSI1 

and lactacystin in CHO cells (Drisaldi et al., 2003). In contrast, mutant PrP 

associated with GSS can be rapidly degraded (half life 10 min) in a cell culture 

model (Zanusso et al., 1999). Following proteasome inhibition with lactacystin, the 

protein accumulates and forms aggregates in the ER, Golgi apparatus, and 
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nucleus. In the absence of proteasome inhibition, the mutant PrP does not form 

aggregates, suggesting that impairment of the proteasome system may also be 

involved in pathogenesis of the human disease (Zanusso et al., 1999). 

2.5 Cytosolic PrP  

Secretory or membrane proteins are correctly folded and post-translationally 

modified in the ER lumen by ER chaperones and supporting calcium ions. 

However, a small portion of misfolded or incorrectly modified proteins retains in the 

ER and is subjected to a quality control process by which they are retro-

translocated into the cytoplasm and degraded by the proteasome, a process 

named ER-associated degradation (ERAD) (Bonifacino and Weissman, 1998; Tsai 

et al., 2002). ER chaperones, like Bip, are implicated in the process of recognition 

for the proteasomal degradation. This mechanism is intended to ensure that 

abnormally folded proteins, or those that are not properly modified or assembled 

into multi-subunit complexes, do not reach the plasma membrane where they 

might cause cellular damage.  

In the case of PrPC around 10 % of translated PrPC appears to be retro-

translocated from ER into the cytosol (Yedidia et al., 2001). Such cytosolic PrP 

(Cy-PrP) might be characterised by cleaved NSP and GPI anchor sequences. 

When the proteasomal system is impaired by specific inhibitors such as 

epoxomicin or MG132, retro-translocated wild type PrPC (wt-PrP) or mutant PrP 

accumulates throughout the cytoplasm (Borchelt et al., 1990; Ma and Lindquist, 

2001; Ma and Lindquist, 2002a; Wang et al., 2005; Yedidia et al., 2001). In 

transfected CHO and PC12 cells expressing PrP from the cytomegalovirus (CMV) 

promoter, proteasome inhibitors induced accumulation of a non-glycosylated PrP 

form in the cytosolic environment. However, this PrP contained the N-terminal 

signal peptide, indicating that it originated from abortive translocation rather than 

retrograde transport from ER lumen.  
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Fig. 2 Schematic view of maturation of membrane proteins and ER-associated degradation 

pathway of misfolded forms. Proteins are co-translationally imported into the ER lumen followed by 

cleavage of the NSPs and different post-translational modifications such as N-linked glycosylation. 

Correctly folded and modified proteins are transported to the Golgi for final maturation. A small 

portion of the protein is misfolded or wrongly modified. This is a signal for the ER quality control 

system to promote their retro-translocation to the cytosol followed by proteasome-mediated 

degradation. 

Otherwise, it has been shown that proteasome inhibition failed to cause PrP 

accumulation in the cytoplasm in cells expressing endogenous level of PrP and in 

primary neurons from transgenic (tg) mice expressing PrPC from the endogenous 

promoter (Drisaldi et al., 2003). Thus, it has been proposed that the occurrence of 

PrP in the cytosol is dependent on its expression level and CMV-driven PrP 

overexpression saturates the translocation machinery. Indeed, proteasome 

inhibitors seem also to induce strong transcription of CMV- driven cDNAs (Biasini 

et al., 2004; Drisaldi et al., 2003). Nevertheless, under physiological conditions the 

possibility remains that low amounts of cytosolic PrP are produced by abortive 

translocation or retro-translocation, and accumulate to a toxic level if not removed 

by the proteasomal system. The level of tolerable Cy-PrP might be also dependent 
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on its structure and binding to cytosolic protective proteins such as heat shock 

proteins (HSPs). 

2.5.1 Cytotoxicity of cytosolic PrP 

The presence of cytosolic PrP suggests that dysfunction of the proteasomal 

machinery during aging could result in the accumulation of cytotoxic PrP 

molecules in the cytoplasm. Recent work has highlighted this novel possible role 

of a dysfunctional proteasome system in the initiation of prion disease. This might 

explain the onset of some cases of sporadic prion diseases. Lindquist and 

colleagues showed that inhibition of the proteasome leads to accumulation of 

cytosolic PrP, which is spontaneously converted into a PK-resistant PrPSc-like 

species in a neuronal cell model (Ma and Lindquist, 1999; Ma et al., 2002a). 

Removal of the proteasome inhibitor from the medium did not stop the generation 

of the PrPSc-like species suggesting a self-perpetuating process once it has been 

triggered – a characteristic feature of PrPSc-replication (see also 2.1). Accordingly, 

it was examined in different cell models whether cytosolic PrP species trigger cell 

death and apoptosis (Fioriti et al., 2005; Ma et al., 2002b; Rane et al., 2004; 

Roucou et al., 2003). However, it remains controversial whether cytosolic PrP is 

cytotoxic at a very low level and in a cell type dependent manner. On one hand 

accumulation of cytosolic PrP in presence of proteasome inhibition is toxic to N2a 

cells but not to COS 1 and mouse NIH3T3 fibroblasts suggesting that cytosolic 

PrP is only toxic to neuronal cell types (Ma et al., 2002b). On the other hand, it is 

assumed that traces of PrP in the cytosol are extremely toxic to neurons and 

responsible for initiation of neurodegeneration in prion disease since low level 

expression of Cy-PrP in vivo induces massive neuronal cell loss in the granular 

layer of the cerebellum (Ma et al., 2002b). The latter is supported by the fact that 

the generation of stably cytosolic PrP-expressing neuronal cell lines failed so far. 

In contrast to these observations, retro-translocated overexpressed wt-PrP, mutant 

PrP and Cy-PrP itself are not toxic to human primary neurons, nor is Cy-PrP toxic 

in two human neuroblastoma cell lines, BE(2)-M17 and SK-N-SH, treated with the 

proteasomal inhibitor epoxomicin (Roucou et al., 2003). Moreover, Cy-PrP 

expression appears to protect human neurons against BAX-mediated cell death as 

previously observed with wt-PrP. N2a cells expressing CMV-driven wt-PrP or 
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mutant PrPs show no altered morphology or viability after exposure to proteasome 

inhibitors (Fioriti et al., 2005). Rather, PrP overexpression appears to have a 

protective effect under such conditions. Furthermore, neurons in the forebrain 

tolerate higher expression levels of Cy-PrP as granular cerebellar neurons in vivo 

(Wang et al., 2006). Cytotoxic potential of Cy-PrP might be also dependent on the 

interaction with other cytosolic proteins. As published currently, Cy-PrP-induced 

apoptosis after proteasome inhibition in human SH-SY5Y neuroblastoma cells 

involves coaggregation of Cy-PrP with anti-apoptotic Bcl2 (Rambold et al., 2006). 

Further prominent candidates are members of the heat shock protein (Hsp) family 

that could control or influence folding reaction to a PrPSc-like structure. Generally, 

chaperones are potent suppressors of neurodegeneration in vivo (Nollen and 

Morimoto, 2002; Tanaka et al., 2002; Tidwell et al., 2004). After proteasome 

inhibition retro-translocated Cy-PrP forms aggregates, often in association with 

Hsc70 in an aggresome-like state (Ma et al., 2001). The expression level of Hsps 

varies in normal and scrapie-infected cells and brain tissue (Belay and Brown, 

2006; Foster et al., 1995; Guzhova et al., 2001; Manzerra and Brown, 1996; 

Prusiner, 1998; Tanaka et al., 2002; Tatzelt et al., 1995; Voisin et al., 1996) as well 

as in the different neuronal cell subtypes in the brain in CJD (Kovacs et al., 2001), 

which might influence the cytotoxicity of Cy-PrP in vitro and in vivo.   

Currently, no complete model exists to explain all these controversial data and it is 

not certain whether cytosolic occurring PrP is toxic per se for neurons or whether 

the whole process of impaired ERAD is necessary to induce cytotoxicity (kinetics 

of ER translocation, ER-stress-mediated apoptosis and involved chaperones). 

Nevertheless, different neuronal cell types might tolerate different distinct amounts 

of cytosolic PrP by a currently unknown mechanism. 

2.6 Ecdysone-inducible expression system 

To clarify the cytotoxic potential of Cy-PrP to neuronal cells, an inducible rather 

than a constitutive expression system was sought to conduct the in vitro 

neurotoxicity experiments. The most widely used Tet-On/Tet-OFF inducible 

expression system (Baron et al., 1997; Gossen and Bujard, 1992), in which gene 

expression depends on tetracycline, was not adapted in this study due to major 
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concerns about reported interactions of PrP with tetracycline (Forloni et al., 2002; 

Tagliavini et al., 2000). Thus, the ecdysone-inducible dual vector system 

(Invitrogen) was used, in which gene expression can be regulated through the 

addition of the ecdysone ponasterone A (PonA), a natural glucocorticoid 

originating from insects (No et al., 1996; Saez et al., 2000). The vector pVgRXR 

expresses both VgEcR and RXR, which bind together to form the modified 

heterodimeric nuclear glucocorticoid receptor VgRXR as transactivator (Fig. 3). 

The gene of interest is cloned into the multiple cloning site of the pIND vector 

containing the glucocorticoid receptor recognition element (E/GRE), which is 

bound by the transactivator VgRXR.  
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Fig. 3 Regulation of transcription using the ecdysone-inducible system. The synthetic 

receptor VgEcR is a fusion of the ligand-binding and dimerisation domain of the Drosophila 

ecdysone receptor (EcR), the DNA-binding domain of the glucocorticoid receptor (GR), and the 

transcriptional activation domain of herpes simplex virus (HSV) VP16. VgEcR and human retinoid 

X receptor α (RXR) bind as a heterodimer to five copies of the E/GRE recognition sequence (5× 

E/GRE), which are located upstream of the minimal heat shock promoter (P ∆mHSP). The E/GRE 

recognition sequence consists of inverted half-site recognition elements for the RXR and the GR 

DNA-binding domains. In the absence of PonA (the inducer), the promoter is tightly repressed by 

co-repressors. When PonA binds to VgEcR, the co-repressors are released, co-activators are 

recruited, and the complex becomes transcriptionally active. 
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A comparison of tetracycline-based and ecdysone-based inducible systems 

reveals that the ecdysone regulatory system exhibits lower basal activity and 

higher inducibility in vitro and in vivo (Galimi et al., 2005; Meyer-Ficca et al., 2004; 

No et al., 1996; Senner et al., 2001). The latter is extremely target-dependent and 

has to be verified for each target protein. Since ecdysone administration has no 

apparent effect on mammalian cells, its use for regulating genes should be 

excellent for transient inducible expression of eventually toxic genes or extremely 

regulative genes in cell cultures, transgenic mice and for gene therapy. 
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2.7 Objectives 

The truncated cytosolic form (Cy-PrP) of PrPC is in vivo toxic to neurons in the 

cerebellum of transgenic Cy-PrP-expressing mice and is leading to clinical 

symptoms like in prion disease. In vitro Cy-PrP toxicity is controversial discussed 

and the mechanisms for selective observed toxicity are unknown. To analyse the 

cytotoxic potential of Cy-PrP and the underlying mechanisms, in vitro neuronal cell 

models were established to analyse effects of transiently and stably expressed Cy-

PrP on N2a cells. Thereby, a set of different experiments were performed to 

address the following questions: 

 

1. Examination of the cytotoxic potential of inducibly expressed Cy-PrP using 

different viability and apoptosis assays  

2. Role of the proteasome in Cy-PrP-mediated cytotoxicity 

3. Analysis of Cy-PrP stability and proteolysis to determine Cy-PrP properties 

in comparison to PrPSc 

4. Subcellular distribution of Cy-PrP by co-localisation with different cell 

compartment markers and chaperones 

5. Generation of stably Cy-PrP expressing cells as cellular models for further 

investigations of the Cy-PrP metabolism and its effects on cell signalling 

and survival 
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3 Materials and Methods 

3.1 Materials and chemicals 

3.1.1 Materials and equipments 

Absorption and fluorescence in viability assays, proteasome and caspase-3 

activity were measured in the „GENios plus“ platereader (Tecan). For fluorescence 

experiments, samples were analysed in black 96 well plates (Nunc, #137101). 

Flasks from Greiner and dishes from Nunc were used for cell cultivation. DNA 

concentration was determined by measuring DNA absorption in the “GeneQuant 

pro” photometer (Amersham Pharmacia). 

 

Materials for semi-dry immunoblotting: 

0.2 µm Protran BA-83 nitrocellulose  Schleicher and Schuell, #10401396 

0.2 µm Optitran BA-S 83 nitrocellulose  Schleicher and Schuell, #10439396 

Blotpaper Protean Xl size     BioRad, #170-3968 

Blotpaper xi size       BioRad, #170-3969 

 

3.1.2 Chemicals 

All chemical used for molecular and biochemical methods are listed alphabetically 

as follows: 

 
Name Company Cat.-No. 
acetic acid Roth T179.1 

agarose Invitrogen 15510-027 

ampicillin Roth K029.2 

7-amino-4-methylcoumarin (AMC) BACHEM Q-1025 

aprotinin  Roth A162.2 

ATP-Mg Sigma A-9187 

deoxycholat  Sigma D-6750 
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bis-benzimid (Hoechst) Sigma  B2261 

boric acid Sigma B-6768 

bovine serum albumin (BSA) Sigma A7906 

dNTP New England Biolabs N0446S 

dimethylsulfoxide (DMSO) Sigma D-2650 

dithiothreitol (DTT)  Sigma D-9163 

ethanol Roth 5054.1 

ethidium bromide Sigma E-8751 

epoxomicin Calbiochem 324800 

Ficoll type 400 Amersham pharmacia 17-0300-10 

geniticin Invitrogen 10131-027 

glycine (99 %) Sigma G-5516 

glycerol (99 %) Sigma G-8898 

isopropanol Roth 9866.1 

leupeptin  Sigma  L8511 

methanol Roth 4627.5 

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT)

Roth 4022.1 

NaCl  Sigma S7653 

NP40 10%  Sigma  74388 

phenol-chloroform Roth A156.1 

ponasterone A  Sigma P-3490 

puromycin  Sigma P9620 

SDS (Lauryl sulfate) Sigma L-4390 

suc-LLVY-AMC  Calbiochem 539142 

sucrose Fluka 84099 

Tris-HCl Roth  9090.1 

Tween 20  BioRad 170-6531 

zeocin  Invitrogen R250-01 
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3.1.3 Enzymes 

All restriction enzymes and corresponding buffers were purchased from New 

England Biolabs and used according to the manufacturer’s instructions.  

 

 
Name Company Cat.-No. 
Ampli-Taq Roche Applied Biosystems N8080152 

PNGaseF  Sigma  G5166 

Proteinase K Roche Applied Biosystem 1 429 868 

T4 DNA Ligase New England Biolabs M0202S 

 

3.1.4 Cells and media  

All media (fluid and plates) as well as trypsin (0.25 % trypsin in PBS, 1 mM EDTA) 

and PBS solutions were prepared by colleagues of the media and reagent facility 

at the Paul-Ehrlich-Institut according to the generally used receipts (Sambrook and 

Russel, 2001). SOC medium for bacterial transformations was purchased from 

Invitrogen (#15544034). 

 

For cultivation of eukaryotic cells DMEM/Glutamax medium (Gibco, #21885-108) 

and Optimem medium (Gibco, #31985-047) were used. Media were supplemented 

with fetal bovine serum (Gibco, #10270-106, Lot 40G9943K). Horse serum (Gibco, 

#26050-070) was used as blocking reagent for immunoblotting. 

The following cell lines were used: 

N2a murine neuroblastoma cell line (ATCC: CCL-131) 

HEK293T human embryonal kidney cell line expressing the large T antigen 

(ATCC: CRL-11268) 

PrP0/0 PrPC knock out (Zurich I) cerebellar neuronal precursor cell line (gift 

by D. Rossi, Mailand) 
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3.1.5 Kits 

All kits were used according to the manufacturer’s directions. 

 
Table 1  Alphabetical order of the used kits 

Name Company Cat.No Application 

BCA Kit Pierce 23227 Protein concentration 

CytoTox-one Kit Promega G7890 Cytotoxicity assay (LDH) 

EndoFree Plasmid Maxi Kit Qiagen 12362 
Plasmid DNA 

preparation 

QIAfilter Plasmid Midi Kit Qiagen 12243 
Plasmid DNA 

preparation 

Qiaprep Spin Miniprep Kit Qiagen 27106 
Plasmid DNA 

preparation 

QIAquick gel extraction Kit Qiagen 28704 DNA gel extraction 

QIAquick PCR purification Kit Qiagen 28106 
DNA fragment 

purification 

Re-Blot Plus Kit Chemicon 2500-S Western striping reagent 

 

3.1.6 Antibodies 

Antibodies for immunoblotting (IB), immunoprecipitation (IP), immunofluorescence 

(IF) and FACS analyses were used as shown in Table 2 

  
Table 2  Summary of all used antibodies and their application 

Primary antibody Origin Dilution 
IB/IP 

Dilution 
IF/FACS 

Company/ 
Cat.No. 

β-actin mouse IgG1 1:40.000  Sigma/ A5441 

Calnexin Rabbit 1:2.000  Stressgen/ SPA-860 

EEA1 rabbit   1:300 Calbiochem/ 324610 

GAPDH mouse IgG 1:20.000  Abcam/ ab9484 

Giantin Rabbit  1:500 Convance/ PRB-114C 

Hsc70 rat IgG1  1:300 QED/ 11042-200 
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Hsc70 Goat 1:5.000  Santa Cruz/ Sc-1059 

PDI mouse IgG1  1:300 QED/ 11080-50 

3F4 PrP(hu) 
mouse 

IgG2a 
1:2-5.000 1:250 Chemicon/ MAB1562 

SAF32 PrP 
mouse 

IgG2b   
1:100  Cayman/ 189720 

6H4 PrP mouse IgG1 1:500  Prionics/ 01-010 

R340 PrP Rabbit 1:500  gift from Aguzzi  

20Sα5  Rabbit 1:1.000  Affinity/ ABR-
PA11962C-100 

Isotype IgG2a 
mouse 

IgG2a  
 1:250 Becton Dickenson, 

#553454 

Isotype IgG1 mouse IgG1  1:300 
Becton Dickenson, 
#553447 
 

secondary 
antibody Origin Dilution 

IB 
Dilution 

IF 
Company/ 
Cat.No. 

α-mouse-HRP Goat 1: 15.000  Zytomed/ 81-6720 

α-rabbit-HRP Donkey 1:20.000  Amersham Pharmacia/ 
NA9340 

α-goat-HRP Donkey 1:10.000  Dianova/ 705-035-147 

α-mouse-A594 Goat  1:1.000 Molecular Probes/ A-
21135 

α-mouse-A488 Goat  1:500 Molecular Probes/ A-
21121 

α-rabbit-A488 Goat  1:500 Molecular Probes/ A-
11070 

α-rat-A488 Goat  1:500 Molecular Probes/ A-
11006 

α-mouse-RPE Goat  1:1.000 
(FACS) 

Dako/ 115-116-171 
 

3.2 Molecular biology 

3.2.1 Plasmids 

The plasmids pIND and pcDNA3.1 were used for generation of Cy-PrP and PM-

PrP encoding vectors. Plasmid pVgRXR is part of the ecdysone-inducible 

expression system and encodes the transactivator protein VgRXR. The linearised 
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plasmid pGEM-Teasy was used for intermediate cloning steps of PCR-fragments 

harbouring single adenosine (A) overhangs via T/A-cloning.  

 

Name 
Resistance gene 
bacteria/mammalian 
 

Company 

pGEM-Teasy Ampicillin Promega 

pUC18 Ampicillin gift from M. Hamdorff 

pVgRXR zeocin/zeocin Invitrogen 

pIND ampicillin/geniticin Invitrogen 

pcDNA3.1 (+) ampicillin/geniticin Invitrogen 

 

To ensure correctly inserted transgenic sequences, plasmid DNA was sent to 

MWG for sequencing. 

3.2.2 Construction of vectors encoding transgene PrPs 

Full length PrP (PM-PrP) and cytosolic PrP (Cy-PrP) were cloned into the 

ecdysone-inducible vector pIND (Invitrogen) for transient experiments and into 

pcDNA3.1 (Promega) for generation of stable cell lines. From genomic DNA of 

MH2M transgenic mice, the open reading frame encoding the mouse-hamster-

mouse chimeric PrP was amplified by PCR and cloned into a pPrPcDNA vector 

generating the pPrPcDNAMH2M plasmid (supplied by G. Barenco, unpublished), 

which served as template for the following cloning steps. DNA-fragments encoding 

Cy-PrP and PM-PrP were amplified by PCR using the primers Cy-PrP-for/-rev and 

F1-for/F2-rev containing the restriction sites BamHI and EcoRI (see table 3). 

Amplified PrP fragments were ligated into linearised pGEM-Teasy plasmid 

(Promega) according to the manufactures protocol. From pGEM-Teasy, Cy-PrP 

and PM-PrP fragments were removed through BamHI-EcoRI restriction followed 

by ligation into BamHI/EcoRI digested target vectors pIND and pcDNA3.1. 

Sequencing (MWG Biotech) of pIND and pcDNA3.1 using the primers pIND-for/-

rev and T7-for/BGH-rev(pCR3.1) (see table 3) verified correct cloning of Cy-PrP 

and PM-PrP into pIND and pcDNA3.1 vectors.  
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3.2.3 Polymerase chain reaction  

In the polymerase chain reaction (PCR), DNA-dependent DNA-polymerases 

amplify specific DNA sequences of different origins, such as plasmid, genomic or 

complementary DNA bordered by two primer sequences (Mullis and Faloona, 

1987; Saiki et al., 1985). In this study Taq-polymerase (Roche Applied 

Biosystems) isolated from Thermophilus aquaticus was used, which shows a 

temperature optimum of 72 °C. One complete PCR cycle contains a DNA 

denaturation step at 94 °C followed by primer annealing to the single stranded 

DNA template. The annealing temperature (TD) is adjusted according to length 

and composition of the DNA template. The TD can be calculated roughly 

corresponding to the Wallace rule (Suggs et al., 1981) as follows: TD = 4 x (G+C) 

+ 2 x (A+T) or tested by temperature gradient PCR as done in this study. DNA 

elongation is performed at 70-75 °C corresponding to the Taq-polymerase activity 

optimum. The length of the template determines the elongation time, since Taq-

polymerase has an amplification activity of approximately 1 kb DNA/min. Multi-

repeating of the cycle leads to amplification of the DNA-fragment in an exponential 

manner. For amplification of PrP sequences the following PCR mix (50 µl) was 

used: 

 

1x PCR buffer (20 mM Tris/HCl, pH 7.5; 100 mM KCl; 1.5 mM MgCl2; 1 mM DTT; 

0.1 mM EDTA, 0.5 % Tween 20; 0.5 % Nonidet P40; 0.01 % gelatine) 

0.5 pmol/µl of each primer  

300 µM dNTPs 

2.5 units Ampli-Taq  

10-20 ng template (plasmid DNA)  

 

PCR was performed at following conditions: 

94 °C 2.5 min 

94 °C 30 sec 

gradient 45-65 °C 45 sec 29 cycles 

72 °C 45 sec 

72 °C 4 min; subsequent cool down to 4 °C 
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All PCR reactions were performed in a “PTC200” Peltier thermal cycler (MJ 

Research). Analysis of PCR fragments were performed in 1 % agarose gel 

followed by purification of the PCR sample using PCR purification kit (Qiagen). 

 

Colony-PCR was used to identify bacterial clones containing the transgene DNA 

fragments. E.coli colonies were picked and transformed in PCR tubes followed by 

PCR as described above except the annealing temperature was 54 °C. Using the 

designed primers M13-for/-rev, pIND-for/rev and T7-for/ BGH-rev(pCR3.1) (see 

table 3) allowed testing of the right orientation of integrated fragments in the 

vectors pGEM-Teasy, pIND and pcDNA3.1. 

3.2.4 Oligonucleotides 

Table 3  Sequences of used oligonucleotides 

Name 5´-sequence-3´ 

F1-for ATCGGGATCCGCCACCATGGCGAACCTTGGCTACTGG 

F2-rev TGCGGAATTCACTCACTCATCCCACGATCAGGAAGATGAGG

Cy-PrP-for ATCGGGATCCGCCACCATGAAAAAGCGGCCAAAGC 

Cy-PrP-rev TGCGGAATTCACTCACTCAGCTGGATCTTCTCCCGTCG 

M13-for GTAAAACGACGGCCAG  

M13-rev CAGGAAACAGCTATGAC 

pIND-for AGAAAGAAGAACTCACACACAGC 

pIND-rev AACTAGAAGGCACAGTCGAGG 

T7-for TAATACGACTCACTATAGGG 

BGH-rev(pCR3.1) TAGAAGGCACAGTCGAGG 

 

3.2.5 Agarose gel electrophoresis 

For analytical and preparative purposes, DNA molecules were separated by 

agarose gel electrophoresis. Negatively charged DNA molecules migrate with 

different velocity dependent on their size through such a gel upon application of 

electric current. For DNA molecules with a size of 0.5-14 kb 1-2 % agarose gels 

were produced by dissolving agarose in Tris-acetate-EDTA (TAE) buffer by 
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heating in a microwave oven. Cooled agarose solution was supplemented with 0.5 

µg/ml ethidium bromide for DNA labelling. DNA solution was mixed with 1/6 

loading buffer and separated on gel at 120 V. 100 bp-, 1 kb- and 2-log-DNA 

ladders (New England Biolabs) served as DNA size standard. For preparative 

agarose gel electrophoresis, DNA fragments were cut out and purified using 

QIAquick gelextraction kit (Qiagen). 

  

TAE buffer     6 x loading buffer : 

40 mM Tris-acetate    0.25 % bromphenolblue 

1 mM EDTA     0.25 % xylene-cyanol FF 

adjusted to pH 7.5    15 % Ficoll (typ400, Pharmacia) 

 

3.2.6 Restriction and ligation  

DNA molecules were digested with type II restriction endonucleases to provide 

DNA molecules for ligation or to analyse vectors for the correct transgene 

integration. All DNA restrictions were performed using commercially available 

restriction endonucleases from New England Biolabs (NEB, Schwalbach, 

Germany) according to the manufacturer’s instructions. Ligation of two double 

stranded nucleic acid molecules was achieved by usage of T4 DNA ligase, which 

catalyses the formation of phosphodiester-bonds between the fragments, under 

consumption of ATP. 50-100 ng DNA with molar ratio of backbone to insert 1:3 

were incubated with 100 U T4 DNA ligase (NEB) in ligase buffer (50 mM Tris-HCl 

pH 7.5, 10 mM MgCl2, 10 mM DTT, 1 mM ATP, 25 µg /ml BSA) with end volume of 

20 µl at 4 °C overnight. 

3.2.7 DNA purification 

3.2.7.1 PCR purification kit 

DNA from restriction reactions or PCR samples were purified using the “QIAquick 

PCR purification kit” (Qiagen) according to the manufacturer’s instructions. 
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Thereby, DNA molecules bind to silica-gel membrane. After washing, DNA was 

eluted with bidestillated water. 

3.2.7.2 Phenol extraction and DNA precipitation  

Phenol extraction allows removal of proteins from DNA/RNA solution (Sambrook 

et al., 2001). The DNA solution was filled up with water to 200 µl and mixed step 

by step 1:1 with phenol (pH 8.0), phenol-chlorophorm-isoamylalcohol (25:24:1, v/v) 

and chlorophorm. In between, each sample was centrifuged for 1 min at 16 100 x 

g and the aqueous phase was transferred into a new tube. DNA from the aqueous 

phase recovered after the last chlorophorm extraction was precipitated with 2.5 

fold volume ethanol in presence of 0.3 M Na-acetate (pH 5.2) for 1 h at -80 °C or 

with 0.7 volume isopropanol at room temperature for 5 minutes. Precipitated DNA 

was centrifuged at 16100 x g at 4 °C for 30 min, washed twice with 70 % ethanol, 

dried and suspended in 50 µl of bidestillated water.  

3.2.8 Photometric determination of DNA concentration 

DNA concentration was determined using ultraviolet absorption spectroscopy. 

Absorption at 260 nm (A260) and 280 nm (A280) was measured and DNA 

concentration was calculated as follows:  

c [µg/ml] = A260 x 50 x DF    

DF = dilution factor 

50 = specific absorption coefficient for dsDNA 

Absorption of 1.0 corresponds to 50 µg/ml double stranded DNA (Sambrook et al., 

2001). The ratio A260/A280 served as value DNA purity. Pure DNA samples showed 

ratios of 1.8-2.0.  

3.2.9 Working with bacteria 

3.2.9.1 Cultivation of bacteria 

E. coli DH5α were grown as suspension culture in LB-medium (10 g/l peptone, 5 

g/l yeast extract, 10 g/l NaCl pH 7.0 with NaOH) at 200 rpm or on LB agar plates 

(2 % agar in LB-medium) at 37°C overnight. Selection of transformed bacteria was 
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achieved by adding different antibiotics corresponding to the plasmid resistance 

genes (50 µg/ml ampicillin, 25 µg/ml zeocin). Identification of positive bacteria 

clones of pGEM-Teasy transformants were analysed by blue/white screening after 

cultivation on LB-agar plates containing 50 µg/ml X-Gal and 10 µg/ml IPTG. For 

long-term storage, 1 ml bacterial suspension was mixed with 1 ml DMSO solution 

(7 % v/v) and transferred to -80°C.      

3.2.9.2 Generation of competent bacteria      

Chemically competent bacteria of the E. coli strain DH5α were produced as 

described by Hanahan (Hanahan et al., 1991). Briefly, 200 ml LB-medium were 

inoculated with 2 ml of E. coli DH5α overnight culture and incubated at 200 rpm 

and 37°C until bacteria achieved the optical density of 0.2-0.3 at 600 nm (OD600). 

Following 10 min incubation on ice, bacteria were centrifuged at 5.000 x g for 10 

min at 4°C and the pellet was suspended in 50 ml of cold 100 mM CaCl2. 

Centrifugation was repeated following 30 min incubation on ice and the pellet was 

suspended in 10 ml of cold 50 mM CaCl2 supplemented with 20 % glycerine. 100 

µl aliquots were frozen immediately in liquid nitrogen and stored at -80 °C.    

3.2.9.3 Transformation of bacteria  

Chemically competent bacteria E. coli DH5α were thawed on ice. 50 µl bacteria 

suspension were mixed with 2-10 µl of ligation reaction or 1 ng pUC18 (as control) 

and incubated for 30 min on ice. Then, bacteria suspension was incubated at 42 

°C for 60 sec and cooled down on ice for 2 min. After addition of 800 µl SOC 

medium bacteria were incubated at 37°C for 1-2 h. 100 – 400 µl transformed 

bacteria were plated on agar plates and cultivated at 37°C overnight.    

3.2.9.4 Plasmid DNA preparation 

Plasmid-DNA isolation and purification was performed using plasmid preparation 

kits (Qiagen) according to the manufacturer’s directions. Briefly, following bacterial 

lyses, the plasmid-DNA bound to an anion exchange column. The column was 

washed and plasmid DNA was eluted by bidestillated water. Plasmid-DNA 

concentration was determined photometrically (3.2.8). To identify correctly ligated 
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plasmid-DNA, 3 ml of bacterial transformants were prepared using Qiagen Mini-kit 

for low-scale plasmid-DNA isolation followed by DNA-restriction analysis and 

DNA-sequencing. Mini preparations were done with 3 ml of an overnight bacterial 

culture using the Mini-kit (Qiagen) to identify the correct ligated and amplified 

plasmid DNAs in optimised restriction analyses. To transfect plasmid-DNA into 

eukaryotic cells, 200 ml of bacterial transformants were prepared using Endo-free 

Maxi kit (Qiagen) for large-scale plasmid-DNA isolation with high purity. These 

purified plasmids were used in transfection experiments with eukaryotic cells.  

3.3 Cell biology and biochemistry 

3.3.1 Cultivation of eukaryotic cells 

All cell lines were cultured in Dulbecco´s Modified Eagles Medium (DMEM; Gibco 

BRL, Eggenstein, Germany) supplemented with glutamax and 10 % fetal calf 

serum (Gibco BRL, Eggenstein, Germany) at 37 °C and 5 % CO2. For transient 

transfection 2 x 106 cells were seeded in T75 flasks and incubated for 24 h 

followed by transfection using Lipofectamin 2000 (Invitrogen) according to the 

manufacturer’s directions. Plasmids encoding PM-PrP or Cy-PrP (4 µg) and the 

ecdysone receptor (4 µg) were transfected into N2A cells and 293T cells. After 24 

h PrP expression was induced using 0.5-2 µM PonA (Invitrogen) for different 

periods of time as indicated. To generate stable Cy-PrP expressing cell lines, N2a 

cells were transfected with Cy-PrP or PM-PrP encoding plasmid pcDNA3.1 

(Promega, 8 µg) followed by selection of antibiotic-resistant cell clones using 1 

mg/ml G418 48 h post-transfection. After 3 weeks of antibiotic selection, Cy-PrP- 

and PM-PrP-expressing cell clones were further cultivated in 0.5 mg/ml G418 

containing medium.  

In the case of neuronal PrP0/0 precursors, 1.4 x 106 cells were seeded in 10 cm 

dishes for 24 h and transfected with 24 µg Cy-PrP encoding plasmid pIRES2-puro 

in serum-free Optimem (Promega) using FUGENE transfection reagent 

(DNA:reagent 1:3). After 6 h incubation at 37 °C, FBS was added to a final 

concentration of 10 % and transfection procedure was elongated overnight at 37 

°C followed by medium substitution against DMEM containing 10 % FBS. 
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Selection of antibiotic-resistant cell clones started 48 h post-transfection using 

medium supplemented with 2 µg/ml puromycin and 10 ng/ml basic fibroblast 

growth factor (BFGF, Sigma). Selected stable Cy-PrP-expressing cell clones were 

further cultivated in 1 µg/ml puromycin containing medium.  

3.3.2 Determination of the cell number 

Cells were incubated 1:1 (v/v) with 0.4 % trypan blue solution (Sigma, #T8154) for 

5 min at room temperature and counted in a Neubauer chamber (Fischer, 

#9161078). Trypan blue is able to stain cells with compromised membrane 

integrity. Thus, living and dead cells can be distinguished by uptake of the blue 

dye into dead cells. Only living cells were used for cell number determination. Cell 

numbers were calculated as followed: 

cell no. / 4 (s) x 2 (DF) = X x 104 cells/ ml 

s = no. of squares 

DF = dilution factor 

Same cell numbers were seeded for the experiments as indicated. 

3.3.3 Flow cytometry analysis 

To analyse green fluorescence protein (GFP) and PM-PrP expression in N2a and 

293T cells, flow cytometry (FACS) was performed as follows: cells were washed 

with PBS, harvested with PBS containing 1 mM EDTA and centrifuged at 200 x g 

at 4 °C. 105 cells were equilibrated in 1 ml FACS buffer (1 % BSA, 5 mM EDTA, 

0.01 % NaN3 in PBS) on ice. After centrifugation at 200 x g and 4 °C, cells were 

suspended in 500 µl FACS buffer and GFP fluorescence was measured with the 

“FACScan” machine (Becton Dickinson). For PM-PrP, cells were suspended in 

100 µl FACS buffer containing 3F4 antibody 1: 1.000 dilution and incubated on ice 

for 30 min followed by washing with 4 ml FACS buffer. Then, cells were incubated 

with mouse-anti-goat-IgG-IR-PE-(Fab2) 1:200 in 100 µl FACS-Puffer 30 min on 

ice, washed twice with FACS buffer and suspended in 500 µl FACS buffer for 

FACS measurement. All measurements were analysed using the “Cell Quest” 

software from Becton Dickinson. 
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3.3.4 Viability assays  

For cell viability analysis, 20.000 cells/well were plated in 96-well plates one day 

after transfection and grown for additional 24 h or 48 h in cell culture medium 

supplemented with 2 µM PonA for transgene induction. Firstly, cell viability was 

quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) method. Briefly, 10 µl of MTT (2 mM) labelling reagent were added to each 

well, and the samples were incubated for 4 h at 37 °C. 100 µl of solubilisation 

mixture (isopropanol/0.04 N HCl) were added to each well, and the samples were 

thoroughly mixed. Absorbance of blue formazan was measured with a plate reader 

at 560 nm. Optimisation of cell counts ensured an OD560 of 0.2-1.0. Secondly, cell 

injury was monitored by measuring lactate dehydrogenase (LDH) release into the 

supernatant by using the CytoTox-one kit (Promega). LDH was assayed by an 

indirect fluorescence measurement of NADH formation during lactate oxidation to 

pyruvate using resazurin, with an excitation wavelength of 535 nm and an 

emission wavelength of 610 nm. For proteasome inhibition epoxomicin was diluted 

in DMSO (1 mM) and added at 50 nM to the culture medium for 16 h prior MTT or 

LDH measurement. 

3.3.5 Caspase-3 activity assay 

Cells transfected with mock plasmid, Cy-PrP or PM-PrP were lysed in 10 mM 

HEPES containing 2 mM EDTA, 0.1 % NP40, 1 mM DTT, 1 mM PMSF, 2 µg/ml 

aprotinin and 2 µg/ml leupeptin for 15 min at 4 °C followed by centrifugation at 

10000 x g. Protein concentration was determined in supernatants by the micro-

BCA assay (Pierce). 150 µg protein of the supernatant were incubated with 50 µM 

caspase-3 specific substrate DMQD-AMC for 60 min at 37 °C in reaction buffer 

(100 mM HEPES, 0.5 mM EDTA and 20 % glycerol) in presence or absence of 10 

mM specific inhibitor AcDEQD-CHO. Caspase-3 mediated release of AMC as 

measured by fluorescence with an excitation wavelength of 380 nm and an 

emission wavelength of 465 nm (same principle as shown in Fig. 6 under 3.3.9) 

Non-specific caspase-3-like activity was calculated by subtraction of fluorescence 

of inhibitor treated samples. Values were normalised as percentage to mock-

transfected cells.  
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3.3.6 Proteinase K digestion 

Cells were lysed in lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 0.1 % Triton X-

100, 0.5 % DOC, 1 mM DTT, 2 mM EDTA and 1 µg /ml pepstatin and leupeptin) 

and incubated for 15 min on ice followed by centrifugation step at 10.000 x g for 3 

min. Protein concentration was determined in supernatants by the micro-BCA 

assay (Pierce). Protein concentration was adjusted to 0.6 mg/ml by adding lysis 

buffer. 1 or 10 µg/ml proteinase K (PK, Roche diagnostics) was added to 200 µg 

protein and the volume was adjusted to 100 µl with PBS incubated at 37 °C for 30 

min. Proteinase K activity was stopped by addition of 1 mM Pefablock (Serine 

protease inhibitor, Roche diagnostics) on ice. After 5 min samples were 

centrifuged at 16.000 x g for 45 min at 4 °C, supernatants were discarded and 

pellets were suspended in 20 µl sample buffer (see 3.3.7) followed by 5 min boiling 

at 95 °C. Detection of PK-resistant Cy-PrP was performed by immunoblot using 12 

% SDS-PAGE and 3F4 antibody.   

3.3.7 SDS-PAGE  

Cells were washed with PBS, harvested with PBS containing 1 mM EDTA and 

centrifuged at 200 x g at 4°C. Cells were lysed in lysis buffer (50 mM Tris pH 7.4, 

150 mM NaCl, 0.1 % Triton X-100, 0.5 % DOC and 1 mM DTT) and incubated for 

30 min on ice. Lysates were homogenised by pulling up and down with „Omnifix-F 

1ml“ syringes (Roth, #H999.1) using “0,4 x 22 mm, 27 G ¾” needle (Roth, 

#X133.1) before 10 min centrifugation step at 1.000 x g, Post-nuclear 

supernatants were collected and protein concentration was determined in 

supernatants by micro-BCA assay (Pierce). Equal amounts of protein were 

electrophoretically separated due to their molecular weight in 10 % or 12 % 

polyacrylamide gels (NuPAGE from Invitrogen or self-poured) according to 

Laemmli (Laemmli, 1970). Protein denaturation was achieved by 5 min incubation 

at 95 °C in presence of 5 % β-mercaptoethanol and 5 % SDS added to the sample 

buffer. Discontinuous SDS polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed at 100-200 V with MES buffer (Invitrogen, #NP0002) using precast gels 

or the following running buffer using self cast gels: 
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SDS running buffer (1 l)    4 x sample buffer

36 g glycin      200 mM Tris-HCl pH 6.8 

7.75 g Tris      400 mM DTT 

1.25 ml 20 % SDS     20 % SDS 

add 250 ml aqua bidest    40 % glycerol 

       20 % β-mercaptoethanol 

       0.4 % bromphenolblue 

 

Seeblue 2 plus and MultiMark (both from Invitrogen) were used as protein 

standards.  

3.3.8 Immunoblot analysis 

Electrophoretically separated proteins were transferred onto a 0.2 µm 

nitrocellulose (Schleicher.und Schuell) by semi-dry blotting at 15 V for 20-30 min 

using the “semi-dry cell chamber” from Bio-Rad. To block non-specific binding of 

the antibodies, the membrane was incubated with 10 % horse serum (Gibco) in 

PBS (pH 7.4) containing 0.1 % Tween 20. The blots were incubated with the 

primary antibodies (dilutions see Table 2, 3.1.6) 3F4 anti-PrP, anti-proteasome 

20S subunit α5 (anti-20Sα), anti-Hsc70, anti-GAPDH, anti-β-actin and anti-

calnexin for 1h at room temperature. For the detection of primary antibodies, 

appropriate peroxidase conjugated secondary antibodies were used (3.1.6,Table 

2) in conjunction with SuperSignal west pico chemiluminescence substrate (Pierce 

Chemical Co., Rockford, Illinois) according to the manufacturer’s directions.  

 

Semi-dry blot buffer: 3.03 g Tris 

14.4 g glycin  adjusted to 1 l bidest  

3.3.9 Proteasome activity assay 

Cells were washed twice with PBS, harvested by scraping and lysed in 250 mM 

sucrose, 25 mM HEPES pH 7.8, 10 mM MgCl2 and 1 mM EDTA by repeating 

freezing and thawing cycles. To remove non-lysed cells, nuclei and debris, the 
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lysates were centrifuged at 16.100 x g at 4 °C for 30 min. Supernatants were used 

for activity assays. 

The proteasome has three different catalytic activities promoted by inner ring β1, 

β2- and β5-unit. Thereby, chemotrypsin-like activity appears to play a major role 

and is characterised by cleavage behind LLVY sequence. Thus, AMC-conjugated 

LLVY substrate (LLVY-AMC) was used to determine specific ATP-dependent 

proteasome activity (Fig. 4). Proteasome-mediated cleavage behind the tyrosine 

releases free AMC resulting in fluorescence with an emission wavelength at 460 

nm following excitation at 380 nm. The fluorescence can be observed as blue light 

bands in native proteasome activity gels or was measured at 460 nm in a 

fluorescence plate reader. 

 

LLVY-

LLVY

AMC AMC

proteasome

LLVY-

LLVY

AMCAMC

proteasome

Fig. 4 

 
 

Principle for measurement of proteasome activity. Proteasome peptide substrate LLVY 

is conjugated with fluorophor aminomethylcumarin (AMC). Bound AMC does not emit fluorescence. 

Proteasome-mediated cleavage behind the tyrosine releases free AMC, which emits light at 460 

nm following excitation at 380 nm. 

3.3.9.1 Native gel electrophoresis 

200 µg protein of supernatant were loaded on a non-denaturating 4.5 % Tris-

Borat-EDTA gel (supplemented with 2.5 % sucrose) and electrophoretically 

separated at 4 °C and 50 V for 20 h. The native gel was incubated in developing 

buffer (50 mM Tris pH 7.8, 25 mM KCl, 10 mM NaCl, 1.1 mM MgCL2, 0.1 mM 

EDTA, 10% glycerol, 1mM DTT) for 15 min at RT. Visibility of proteasomal activity 

was achieved by incubation with 200 µM LLVY-AMC substrate and 5 mM ATP (in 

developing buffer, pre-heated on 37 °C) for 15-30 min at RT followed by excitation 
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using UV light. Images were recorded with a digital camera (Olympus) to visualise 

the two fluorescent bands of active 26S and 30S proteasome complexes.  

3.3.9.2 Plate reader assay (96 well) 

20 µg protein of the supernatant were incubated with 200 µM LLVY-AMC 

substrate and 5 mM ATP in incubation buffer (450 mM Tris pH 7.8 at 4 °C, 15 mM 

Mg-Acetate, 15 mM MgCl2, 90 mM KCl, 1 mM DTT) at 37 °C for 30 min. Prior 

fluorescence detection, 0-100 µM of free AMC-standard was added in the upper 

row of the 96 well plate. Non-specific proteasome activity was determined by 

addition of 50 nM epoxomicin (Epoxo). Values were normalised as percentage to 

mock cells. 

3.3.10 Immunofluorescence 

Cells were cultured on cover slips in 24-well culture plates (40.000 cells/well) and 

induced with 0.5 µM PonA for 16 h. To visualise surface staining of PM-PrP, cells 

were washed in PBS and fixed in 4 % paraformaldehyde (PFA) for 20 min. 4 % 

PFA was prepared by heating 80 ml PBS to 60-70 °C and addition of 4 g PFA 

while stirring on a hot plate in the fume hood. Volume was adjusted to 100 ml with 

PBS, PFA was cooled down at room temperature and pH was adjusted to 7.4. For 

intracellular staining, cells were then incubated with 0.1 % Triton-X-100 in PBS 

containing Hoechst dye (bis-benzimid, 10 µg /ml) for 10 min at room temperature. 

After blocking with 1 % BSA in PBS for 30 min, cells were incubated with primary 

antibodies (dilutions see table 2, 2.1.6) against PrP (3F4 antibody), giantin, protein 

disulfide isomerase (PDI), early endosomal antigen 1 (EEA1), and Hsc70 in PBS 

at 37 °C for 1h. Alexa-594- and Alexa-488-labelled secondary antibodies 

(Molecular Probes) were used. After washing and embedding procedures 

(DakoCytomation, Dako, #S3023), the cells were examined by Zeiss LSM 510 

scanning confocal microscope. 
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3.3.11 Immunoprecipitation 

100 ng protein of the cell lysates were incubated with a 1:500 dilution of the anti-

PrP antibodies 6H4, R340 or SAF32 overnight at 4 °C. Antibody-protein 

complexes were immobilised by adding 20 µl magnetic protein G-sepharose beads 

(Amersham Pharmacia, # 71-7083-00 AG) for 1 h at 4 °C. After several washing 

steps with 500 µl PBS, the beads-bound antibody-protein complexes were dried 

10 min in a spinvac (Eppendorf) and suspended in 1 x sample buffer without β-

mercaptoethanol. After boiling for 5 min at 95 °C the immunoprecipitation samples 

were loaded on a gel for SDS-PAGE followed by immunoblot analysis with 3F4 

anti-PrP antibody and anti-Hsc70 antibody (Table 2, 3.1.6). 

3.3.12 Cellular fractionation 

Mock-, Cy-PrP- or PM-PrP-transfected N2a cells were washed with PBS, 

harvested with 1 mM EDTA in PBS and centrifuged at 200 x g at 4 °C. Cells were 

lysed by shaking in bidestillated water (bidest) containing 1 mM DTT at 4 °C for 1 

h followed by centrifugation at 16.100 x g and 4 °C for 30 min. Supernatants 

served as soluble cytosolic fraction. Pellets were suspended in 50 µl NP40 

containing buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 % NP40 and 1 mM DTT), 

incubated on ice for 15 min and centrifuged at 16.100 x g and 4 °C for 10 min. 

Supernatants comprised the insoluble membrane fraction.  

3.4 Statistics and fitting  

Standard abbreviation and significance level were calculated using Origin6.0. To 

test the significant difference of two samples (n > 6), populations was analysed 

with the t-test (two populations) using test type “independent” and a significance 

level of 0.05. Fitting of the kinetics of Cy-PrP and PM-PrP degradation were also 

done by Origin6.0.    
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4 Results 
It has been shown for the first time in 2002 that small quantities of a new PrP 

isoform, called Cy-PrP, produced by retro-translocation from the ER into the 

cytosol induces cytotoxicity in neuronal N2a cells (Ma et al., 2002b). In a 

transgenic mouse model Cy-PrP causes neuronal cell loss and gliosis in the 

granular layer of the cerebellum, which results in a phenotype characterised by 

ataxia, tail rigidity, frequent scratching and weight loss. These are typical 

symptoms associated with prion diseases. However, the mechanisms for neuronal 

cell death and the pathology caused by Cy-PrP are still unknown.  

In this study the Cy-PrP protein was expressed in neuronal N2a cells, which 

served as model cell line, using an inducible expression system. The inducible Cy-

PrP expression of Cy-PrP facilitates detailed characterisation of Cy-PrP-mediated 

cytotoxicity in a time dependent in this cell type. 

4.1 Generation and expression of Cy-PrP and PM-PrP 

4.1.1 Generation of Cy-PrP and PM-PrP 

N2a cells are murine neuroblastoma cells harbouring endogenous prion protein on 

their cell surface. Thus, transgene PrPs bearing an internal tag were cloned to 

distinguish them from the endogenous PrP. To avoid unspecific effects on protein 

conformation and function by common protein tags (Bian et al., 2006; Ledent et 

al., 1997; Supattapone et al., 2000), a cDNA encoding a chimeric mouse-hamster-

mouse PrP, MH2M (Scott et al., 1993), was used to generate Cy-PrP and PM-PrP 

(Fig. 5).  
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Fig. 5 Generation of chimeric Cy-PrP and PM-PrP. (A) Genomic DNA of transgenic MH2M 

mice encodes chimeric mouse-hamster-mouse PrP. The open reading frame (ORF) expresses 

MH2M-PrP protein (aa1-254) carrying the 3F4 anti-PrP antibody epitope (turquoise). cDNA of 

MH2M PrP from pPrPcDNAMH2M was used to generate Cy-PrP and PM-PrP. (B) PM-PrP and Cy-

PrP DNA-fragments were amplified from pPrPcDNAMH2M by PCR using specific forward and 

reverse primer pairs providing BamHI and EcoRI restriction sites for subsequent cloning into 

destination vectors. The N-terminal signal peptide (NSP, green) and the C-terminal GPI anchor 

sequence (yellow) were excluded to generate Cy-PrP fragment. 

The PM-PrP- and Cy-PrP-DNA-fragments were amplified from pPrPcDNAMH2M 

(M.G. Barenco, unpublished) by PCR using specific recombinant forward and 

reverse primer pairs with introduced BamHI and EcoRI restriction sites. These 

restriction sites were used for cloning into the destination vectors pIND and 

pcDNA3.1 to allow inducible and constitutive expression in eukaryotic cells. In 

addition to both PrP variants, the green fluorescence protein (GFP) was cloned 

into the pIND vector to test transfection efficiency and induction of gene 

expression after treatment with PonA. The generated constructs are listed in Table 

4.  
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Table 4  Generated plasmids encoding transgene PrP or GFP 

Name of construct Transgene 

pIND-CyPrP MH2M Cy-PrP 

pIND-PMPrP MH2M PM-PrP 

pcDNA-CyPrP MH2M Cy-PrP 

pcDNA-PMPrP MH2M PM-PrP 

pIRES-puroCy-PrP MH2M Cy-PrP 

pIND-GFP GFP 
 

4.1.2 Ecdysone-inducible expression system 

4.1.2.1 Functionality of the inducible expression system 

To test the inducible expression system, N2a cells were transiently co-transfected 

with plasmids encoding the GFP and the transactivator VgRXR followed by PonA 

treatment. Induced GFP expression was monitored by fluorescence microscopy 

and quantified by FACS analysis (Fig. 6). Strong GFP expression was obtained 

after 1 µM PonA treatment for 16 h, whereas non-treated cells showed almost no 

GFP expression (Fig. 6A).  

 

 

Fig. 6 Proof of principle: ecdysone-inducible gene expression in N2a cells. N2a cells were 

transiently co-transfected with transactivator VgRXR-encoding and GFP-encoding target plasmid. 

GFP expression was induced by adding PonA (1µM) for 16 h. (A) Immunofluorescence microscopy 

of GFP expression in presence or absence of PonA. (B) FACS analysis of GFP fluorescence after 

PonA treatment.  
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Relative quantification of GFP expression by FACS analysis showed 60-70 % 

transfection efficiency in PonA treated N2a cells (Fig. 6B), which was confirmed in 

at least three independent experiments. Increasing PonA concentrations from 0.5 

to 2 µM only weakly increased the GFP expression levels, whereby the GFP 

transfection efficiency was not affected (data not shown). These data 

demonstrated functionality of the ecdysone-inducible expression system in both 

N2a. The latter was confirmed in another cell line 293T (data not shown).  

4.1.2.2 Inducible expression of Cy-PrP and PM-PrP 

Inducible expression of Cy-PrP and PM-PrP were tested in neuronal N2a cells and 

non-neuronal 293T cells in transient transfection experiments. After transfection, 

cells were cultivated in presence or absence of 1 µM PonA for 16 h followed by 

preparation of cell extracts and the detection of Cy-PrP and PM-PrP by 

immunoblotting using the 3F4 antibody (Fig. 7). 

 

 

 
 

Fig. 7 Cy-PrP and PM-PrP transiently expressed in N2a and 293T cells after induction with 
PonA. Detection of Cy-PrP and PM-PrP in presence or absence of PonA (1µM) for 16 h using 3F4 

antibody in immunoblot analysis. 3F4 antibody recognises only the transgenic 3F4-tagged PrP and 

not the endogenous murine PrP. The arrow indicates the single band of Cy-PrP around 27 kDa. 

The expression of both, Cy-PrP and PM-PrP, was detectable in N2a and 293T 

cells (Fig. 7) upon PonA treatment. The PM-PrP protein (Fig. 7, right panel) 

showed the characteristic three band pattern caused by the different 

glycosylations, whereas Cy-PrP (Fig. 7, left panel) appeared as single band of 

38 



Results 

around 27 kDa due to missing glycosylations. This was confirmed by PNGaseF 

treatment, which did not alter the migration of the single band (data not shown). In 

contrast, untreated cells showed no expression of Cy-PrP and PM-PrP, 

respectively.  

These data showed the induced expression of Cy-PrP and PM-PrP by the 

ecdysone-inducible expression system in N2a and 293T cells, which was used in 

all following transient transfection experiments.  

As observed for GFP expression, increasing PonA concentration from 0.5 to 2 µM 

showed no significant effect on Cy-PrP and PM-PrP expression levels in N2a cells, 

(data not shown). In the following experiments only 0.5 µM PonA were used to 

analyse Cy-PrP and PM-PrP proteolysis and cellular distribution.  

4.2 Analysis of cytotoxicity in Cy-PrP expressing cells 

4.2.1 Cell viability in Cy-PrP expressing N2a cells 

Small amounts of Cy-PrP should be extremely toxic to neuronal cells after 24 h of 

Cy-PrP expression (Ma et al., 2002b). To examine this postulated cytotoxic 

potential of Cy-PrP in a neuronal cell line, viability assays were performed 24 h 

and 48 h after Cy-PrP induction in N2a cells (Fig. 8A and B). Cy-PrP expression 

was induced by treatment with 2 µM of PonA to ensure that the inducer was given 

in excess for maximal transgene expression. Two methods based on different 

mechanisms were applied to detect Cy-PrP-specific effects on cell viability 

compared to cells expressing PM-PrP or to cells transfected with the empty vector 

(mock). The relative values were normalised to mock cells. Functionality of the 

assays is demonstrated by the Triton-X-100 sample. Data for relative cell viabilities 

determined by measurement of mitochondrial respiratory activity (MTT assay) are 

shown in Fig. 8A.  
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Fig. 8 Viability and cytotoxicity in neuronal N2a cells after Cy-PrP and PM-PrP expression. 
Cells were transiently transfected with Cy-PrP or PM-PrP and their expression was induced with 2 

µM PonA. Cell viability and cytotoxicity were measured by MTT assay (A) and LDH assay (B) 24 h 

or 48 h post-induction. Cells treated with 9 % triton served as positive control. The values (A-B) are 

shown as % of mock control (mean ± SEM). Asterisks indicate values significantly different from 

mock controls (P* ≤ 0.05). Two asterisks matter significance different to mock (P* < 0.05) but not to 

non-induced samples. The bars represent at least three independent experiments.  

Cell viability of N2a cells was not affected by 24 h Cy-PrP expression (column + 

PonA) as compared to cells devoid of Cy-PrP (Column - PonA). No differences in 

cell viability were observed in comparison with PM-PrP-transfected (column 5) and 

PM-PrP-expressing cells (column 6) or with mock cells. After longer expression 

period (48h), cell viability is reduced around less than 20 % in N2a cells 

expressing Cy-PrP (right panel, column 4) as compared to mock cells. The 

detected reduction of cell viability was not significantly different to transfected cells 

devoid of Cy-PrP protein (right panel, column 3). PM-PrP transfection and 48 h 

expression did not effect the cellular survival (right panel, column 6). Triton-X-100 
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treated cells showed approximately 60-70 % reduction of cell viability at both time 

points (*P < 0.05). Furthermore, cytotoxicity of Cy-PrP and PM-PrP expression in 

N2a cells were determined by measurement of cytosolic LDH release due to the 

loss of membrane integrity (LDH assay, Fig. 8B). Triton-X-100 treatment 

demonstrated cytotoxic effects (*P < 0.05) after 24 h and 48 h. In contrast, neither 

cells expressing Cy-PrP (column 4) nor PM-PrP-expressing cells (column 6) 

answered with detectable releases of LDH. All transfected samples did not show 

increased cytotoxicity after 24 h and 48 h. Viability assays were not performed at 

longer time points due to decreasing Cy-PrP amounts observed 72 h post-

transfection (data not shown). Indeed, the viability of Cy-PrP expressing cells was 

comparable to that observed for the PM-PrP expressing and mock transfected 

cells.  

 

Fig. 9 PonA induced gene expression in samples used for cell survival assays. (A) PonA 

induced GFP expression after 24 h in the samples used for MTT and LDH assay. (B) One 

representative immunoblot of Cy-PrP and PM-PrP expression in the samples used for MTT and 

LDH assay at 24 h post-induction. 
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To monitor for transfection efficiency and PonA-mediated induction of gene 

expression, the GFP encoding plasmid was simultaneously transfected followed 

by visualisation of GFP expression by fluorescence microscope imaging (Fig. 9A). 

GFP was highly expressed 24 h post-induction with PonA, while most of the 

untreated cells did not express GFP. The weak background of GFP due to leakage 

of the inducible system in transiently transfected cells was negligible. The 

induction of Cy-PrP and PM-PrP expression in the cells used in both assays was 

monitored by immunoblot analysis using the 3F4- antibody (Fig. 9B). Cy-PrP and 

PM-PrP induction was clearly detected in the samples incubated with 2 µM PonA.  

4.2.2 Cell viability in Cy-PrP expressing 293T cells 

It was postulated that Cy-PrP might be toxic in a cell type dependent manner (Ma 

et al., 2002b). In N2a cells, which express endogenous PrPC, no Cy-PrP-mediated 

cytotoxicity was measured (Fig. 8, see 4.2.1). If endogenous PrPC has an 

influence on toxicity of Cy-PrP, a cytotoxic effect should be measured in cells 

lacking endogenous PrPC. To address this question, cell survival of 293T cells 

expressing Cy-PrP and PM-PrP was tested using the MTT assay (Fig. 10). 

  

 

Fig. 10 Viability after Cy-PrP and PM-PrP expression in 293T cells. Cells were transiently 

transfected with Cy-PrP or PM-PrP and their expression was induced with 2 µM PonA. Cell viability 

was measured by MTT assay 24 h post-induction. The viability values are shown as % of mock 

control (mean ± SEM). The bars represent three independent experiments.  
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These are non-neuronal cells, which do express very low levels of endogenous 

PrPC (LeBlanc et al., 2004). Transgene PrPs were similar expressed in both, N2a 

cells and 293T cells, after induction for 24 h with 2 µM PonA (data not shown). 

Both Cy-PrP and PM-PrP expression did not affect cell viability of 293T cells (Fig. 

10).  

Taken together, Cy-PrP was neither toxic to neuronal N2a nor to non-neuronal 

293T cells at the indicated time points. Hence, Cy-PrP toxicity seems to be not 

directly related to the endogenous PrPC level or the cell type in these in vitro 

models. 

4.2.3 Caspase-3 activity in Cy-PrP expressing N2a cells 

In the previously published work (Ma et al. 2002b), Cy-PrP toxicity in N2a cells 

was analysed by a terminal-dUTP nick end labelling (TUNEL) assay, a method for 

determination of apoptosis. Within 24 h of Cy-PrP expression TUNEL positive cells 

increased from 6 to 14 %. This is not as high as expected for an extremely toxic 

protein. Establishment of the TUNEL-assay (fluorescent and colorimetric) for the 

N2a cell model used in this study failed due to lack of reproducibility. Thus, 

another apoptosis marker was chosen to detect cytotoxicity in N2a cells after 24 h 

of Cy-PrP expression. Since several apoptosis inducing pathways involve 

caspase-3 activation, a specific enzyme caspase-3 activity test was established 

and used to analyse apoptosis triggered by Cy-PrP or PM-PrP after 24 h 

expression (Fig. 11). Caspase-3 activity was analysed in cell lysates incubated 

with the AMC-conjugated caspase-3 specific substrate DMQD. Free cleaved AMC 

was detected by fluorescence measurement. Relative caspase-3 activity in Cy-PrP 

and PM-PrP expressing N2a cells was calculated from the fluorescence units and 

normalised to PonA-treated mock cells (Fig. 11). No specific increase of caspase-

3 activity was detected in PonA-treated Cy-PrP expressing cells (column 4) as 

compared to non-treated (column 3) and mock cells (column 1 and 2) after 24 h. 

Similarly, PM-PrP expression (column 6) did not specifically affect caspase-3 

activity in N2a cells.  
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Fig. 11 Caspase-3 activity in neuronal N2a cells after Cy-PrP and PM-PrP expression. Cells 

were transiently transfected with Cy-PrP or PM-PrP and their expression was induced with 2 µM 

PonA. Caspase-3 activity detected by fluorescence measurement of the cleaved AMC from the 

substrate peptide DMQD-AMC. The values are shown as % of mock control (mean ± SEM). The 

data represent three independent experiments.  

4.3 Proteolysis of Cy-PrP and PM-PrP in N2a cells  

4.3.1 Kinetics of Cy-PrP and PM-PrP proteolysis 

It has been shown that proteasome inhibition causes accumulation of Cy-PrP and 

that such Cy-PrP is detergent-insoluble and partially PK-resistant (Ma and 

Lindquist, 2002). Moreover, Cy-PrP appears to have the ability to promote further 

conversion of additional PrP to the same state. All these properties are also 

characteristic for PrPSc
, the TSE-infectious agent (Kocisko et al., 1994; Prusiner, 

1998). In order to see whether transiently expressed Cy-PrP has similar 

characteristics like PrPSc when the proteasomal system is functional, cell extracts 

of N2a cells containing transiently expressed Cy-PrP (Fig. 12, 0 µg/ml) were 

digested with 1 or 10 µg/ml PK (Fig. 12, Cy-PrP 1 and 10 µg/ml) and analysed by 

immunoblotting using 3F4 antibody. As a control served cell extracts from N2a 

cells harbouring PrPSc (N2a58/22L). 

 

44 



Results 

 

 

Fig. 12  PK-digestion of Cy-PrP expressed in N2a cells. Cells were transiently transfected with Cy-

PrP and their expression was induced overnight with 0.5 µM PonA. Detection of PK-resistant Cy-

PrP analysed by immunoblot using 3F4 antibody following proteinase K digestion. Mock 

transfected cells served as negative and scrapie-infected N2a58/22L as positive control. PrPres 

presents the PK-resistant part of PrPSc after PK digestion including the N-terminal truncation of 90 

aa.  

No PK-resistant Cy-PrP was detected after digestion with 1 or 10 µg/ml PK. In 

PrPSc-containing N2a-58/22L cells significant amounts of PK-resistant PrP (PrPres) 

were detected (Fig. 12, last lane) following digestion with double concentrated PK 

(20 µg/ml). Cy-PrP was completely degraded by PK and does not accumulate in 

PK-resistant aggregates. PK is a fungal protease with broad substrate spectrum. 

To analyse the stability of Cy-PrP as compared to PM-PrP in N2a cells containing 

mammalian proteases, the kinetics of Cy-PrP and PM-PrP degradation were 

determined by detection of Cy-PrP and PM-PrP at different time points by 

immunoblotting (Fig. 13). The stability of Cy-PrP in comparison to PM-PrP was 

reflected by the calculated half life of both PrPs in N2a cells. Amounts of PM-PrP 

and Cy-PrP decreased within 6-12 h after PonA withdrawal. Detection of β-actin 

demonstrated equal protein loading. The densitometric quantification showed that 

the half life for both PM-PrP and Cy-PrP was between 7 and 8 h (Fig. 13B). While 

PrPC is synthesised and degraded relatively rapidly (t0.5 ~ 5 h), PrPSc is 

synthesised slowly and appears to accumulate (t0.5 ~ 15 h) (Borchelt et al., 1990). 
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Cy-PrP degradation was not prolonged as compared to PM-PrP indicating 

absence of PrPSc-like stability and protease resistance.  

 

 

Fig. 13  Degradation of Cy-PrP and PM-PrP in N2a cells. Cells were transiently transfected with 

Cy-PrP or PM-PrP and their expression was induced overnight with 0.5 µM PonA. PonA-containing 

medium was replaced with normal DMEM for indicated time points. (A) Time-dependent decrease 

of PM-PrP (left) and Cy-PrP (right) analysed by immunoblot using 3F4 antibody. Immunoblot 

against actin served as positive control. (B) Degradation curve for PM-PrP and Cy-PrP determined 

by densitometric evaluation of four different immunoblot experiments. The values are normalised 

as percentage to the PrP signal at time point 0h (mean ± SEM). Curve fitting was achieved by 

interpolation using the Boltzmann model with indicated chi-square values. Fitting function was used 

to calculate half life (t0.5) of Cy-PrP and PM-PrP.  
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4.3.2 Role of proteasome in Cy-PrP and PM-PrP proteolysis 

4.3.2.1 Proteolysis under proteasome inhibition 

Since mutant PrP or retro-translocated wt-PrP accumulates in cells with impaired 

proteasome activity (Fioriti et al., 2005; Ma et al., 2001; Ma et al., 2002a; Wang et 

al., 2005), it was assumed that Cy-PrP might be degraded by the proteasome. 

Thus, degradation of PM-PrP and Cy-PrP was monitored in N2a cells between 0 

and 12 h upon removal of PonA treatment in absence or presence of the specific 

proteasome inhibitor epoxomicin (Fig. 14).  

 

 

Fig. 14 PM-PrP and Cy-PrP proteolysis under proteasome inhibition. Cells were transiently 

transfected with PM-PrP or Cy-PrP and their expression was induced overnight with 0.5 µM PonA. 

PonA-containing medium was replaced with either DMEM or supplemented with the proteasome 

inhibitor epoxomicin (Epoxo) for indicated time points. (A) PM-PrP and Cy-PrP degradation 

analysed by immunoblot using 3F4 antibody. Immunoblot against actin served as positive control. 

(B) Densitometric evaluation of the PM-PrP and Cy-PrP signal for four different immunoblot 

experiments normalised to the PrP signal at time point 0 h.  
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The amount of PM-PrP or Cy-PrP was analysed by immunoblots at indicated time 

points. The PM-PrP showed independently from the proteasome inhibition 

decreasing signal intensities (Fig. 14A, left panel). Densitometric quantification 

revealed that mature PM-PrP was proteasome-independently degraded with no 

altered half life (Fig. 14B, left panel). This was expected, since PM-PrP is located 

on the cell surface or in cellular compartments such as recycling vesicles and the 

Golgi apparatus where the proteasome is not located. However, long term 

exposure of immunoblot seen in Fig. 13 showed accumulation of the non-

glycosylated PrP form after epoxomicin treatment (Fig. 15, + Epoxo 4-12 h) as 

compared to untreated cells (Fig. 15, - Epoxo 4-12 h) indicating retro-translocation 

of PrP from the ER into the cytosol for further degradation by the proteasome 

(Fioriti et al., 2005; Wang et al., 2005).  

 

 

Fig. 15 Accumulation of non-glycosylated band of PM-PrP after proteasome inhibition. Cells 

were transiently transfected with PM-PrP or Cy-PrP and their expression was induced overnight 

with 0.5 µM PonA. PonA-containing medium was replaced with either DMEM or supplemented with 

the proteasome inhibitor epoxomicin (Epoxo) for indicated time points. Panel shows PM-PrP 

signals analysed by immunoblot using 3F4 antibody following over exposure. Arrow indicates the 

non-glycosylated band of PM-PrP. 

In the case of Cy-PrP a constant immunoblot signal was detected between 8 and 

12 h in presence of epoxomicin (Fig. 14A, right panel), whereas untreated cells 

showed a continuous decrease of the Cy-PrP signal. These data demonstrate a 

strong inhibition of Cy-PrP proteolysis in presence of epoxomicin. Densitometric 

quantification of four independent experiments clearly confirmed that Cy-PrP 

proteolysis was dramatically decelerated by proteasome inhibition (Fig. 14B, right 
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panel). The half life of Cy-PrP was increased to more than 12 h (see black column) 

by proteasome inhibition.  

Additionally, the Cy-PrP content was examined after 16 h PonA treatment in the 

presence of different proteasome inhibitor concentrations to support the data that 

Cy-PrP is a proteasomal substrate (Fig. 16). Immunoblot analysis demonstrated 

that Cy-PrP clearly accumulated with increasing epoxomicin concentration (Fig. 

16A). Densitometric quantification confirmed that increasing proteasomal inhibition 

resulted in an approximately 4-fold increase of Cy-PrP content in N2a cells (Fig. 

16B).  

 

 
 

Fig. 16  Cy-PrP accumulation after proteasome inhibition in N2a cells. Cells were transiently 

transfected with Cy-PrP and expression was induced with 2 µM PonA for 24 h. 16 h prior to cell 

lysis 50 nM epoxomicin (Epoxo) was added. (A) Cy-PrP accumulation analysed by immunoblot 

using 3F4 antibody. Immunoblot against actin served as positive control. (B) Densitometric 

evaluation of Cy-PrP signals from four different immunoblot experiments normalised to the Cy-PrP 

signals without Epoxo treatment (mean ± SEM).Value of 50 nM Epoxo treated cells was 

significantly different to untreated Cy-PrP cells (P* < 0.05). 

The correlation of Cy-PrP accumulation with increasing proteasome inhibitor 

concentration confirmed the results observed in Cy-PrP proteolysis experiments 

indicating that Cy-PrP is a substrate of the proteasome and must be therefore 

present in the cytosol.  
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4.3.2.2 Proteasome activity after Cy-PrP expression  

Since Cy-PrP is degraded by the proteasome, overexpression of Cy-PrP as well 

as PM-PrP could influence basic proteasomal activity in transiently transfected 

N2a cells. Thus, the activity of the 26S ATP-dependent proteasome complex was 

determined for Cy-PrP and PM-PrP expressing N2a cells using a native enzymatic 

activity gel (Fig. 17A). The cleavage of the proteasomal substrate LLVY-AMC by 

native 26S proteasome molecules in the gel was visible through fluorescence.  

 

 
 

Fig. 17 Proteasome activity and content in N2a cells expressing Cy-PrP or PM-PrP. Cy-PrP 

or PM-PrP expression was induced in transiently transfected N2a cells by adding 0.5 µM PonA for 

16 h. Proteasomal cleavage of suc-LLVY-AMC was measured as fluorescence at 380 nm 

excitation and at 460 nm emission (A and C). (A) ATP-dependent proteasome activity observed as 

blue fluorescent bands in a native gel. (B) Immunoblot of 20S proteasome using anti-20S α-subunit 

antibody. Anti-GAPDH served as loading control. (C) Plate reader assay of 26S proteasome 

activity. Proteasome activity is normalised to mock cells (mean ± SEM). The value represents three 

independent experiments.  

50 



Results 

Strong substrate turnover was observed for cells expressing Cy-PrP and PM-PrP 

(Fig. 17A, lane Cy- and PM-PrP, + PonA). However, mock-transfected N2a cells 

showed also increased cleavage of the proteasome substrate (lane mock +) 

indicating that the transfection procedure alone elevates proteasome activity.  

To exclude altered 26S proteasome activity in transfected cells due to increased 

proteasome expression, the samples were examined for their proteasome content 

by immunoblotting using a specific anti-20S α-subunit antibody (Fig. 17B). 

Proteasomal α-subunit protein levels were equal in non-transfected (N2a, -PonA) 

and transfected cells (mock, Cy- and PM-PrP, + PonA) independent of transgene 

expression demonstrating that increased proteasome activity was not the result of 

increased proteasome levels per se. Native proteasome activity gels allow 

qualitative analysis of the cellular proteasome activity. Since all of the transfected 

cells answered with a clear increase of the 26S proteasome activity, a second 

more quantitative plate reader fluorescence assay was applied to support the 

qualitative native gel results. In the plate reader assay the cleavage of the 

proteasomal substrate LLVY was detected by digital measurement of the emitted 

fluorescence units. Calculated proteasome activity values were normalised to the 

PonA-treated mock cells (Fig. 17C). Neither Cy-PrP (column Cy-PrP, + PonA) nor 

PM-PrP overexpression (column PM-PrP, + PonA) in N2a cells affected the 

proteolytical activity of the proteasome system as compared to the mock 

transfected N2a cells (column mock, + PonA). PonA itself exhibited no influence 

on 26S proteasome activity as demonstrated by columns - and + PonA of mock 

cells. Proteasome activity assays revealed transfection-mediated proteasome 

activation. The potential Cy-PrP-mediated cytotoxicity could have been 

counterbalanced through unspecific increased proteasome-mediated proteolysis of 

Cy-PrP. 

4.3.3 Viability in Cy-PrP expressing N2a cells after proteasome 
inhibition 

One reason for the lack of Cy-PrP cytotoxicity in transiently transfected N2a cells 

might be the increased proteasome activity caused by the transfection procedure, 

because Cy-PrP might be faster degraded by the proteasome. However, it was 
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proposed that neuronal death could be triggered by accumulation of cytosolic PrP 

due to impairment of the proteasomal degradation system. Thus, reduction of the 

proteasome activity by specific inhibitors might reveal cytotoxicity caused by Cy-

PrP overexpression in N2a cells. To test this hypothesis, Cy-PrP and PM-PrP 

expression was induced in N2a cells in presence of the proteasome inhibitor 

epoxomicin followed by MTT viability assays 24 h post-induction (Fig. 18A). 

 

 

Fig. 18  Proteasome inhibition does not reveal Cy-PrP-mediated cytotoxicity in N2a cells. 
Cells were transiently transfected with PM-PrP or Cy-PrP and their expression was induced with 2 

µM PonA for 24 h. 16 h prior to viability measurement 50 nM epoxomicin (Epoxo) was added. (A) 

Cell viability was measured by MTT assay 24 h post-induction. The values are shown as % of 

mock control (mean ± SEM). Cells treated with 9 % triton served as positive control, which was 

significantly different from mock control (P ≤ 0.05). (B) Proteasome inhibition in N2a cells treated 

with 50 nM epoxo detected by measuring 26S-proteasome-mediated LLVY-AMC cleavage in plate 

reader. Proteasome activity was normalised to untreated N2a cells (mean ± SEM). The value 

represents three independent experiments and was significantly different to untreated N2a cells (*P 

< 0.05). (C) One representative immunoblot of Cy-PrP and PM-PrP expression in the samples 

used for MTT and LDH assay at 24 h post-induction. 
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Neither Cy-PrP (column Cy-PrP, + PonA) nor PM-PrP (column PM-PrP, + PonA) 

overexpressed in N2a cells during impaired proteasome activity influenced the 

cellular survival as compared to the non-induced (column Cy- and PM-PrP, - 

PonA) and mock-transfected N2a cells (column mock, + PonA). In contrast, 

treatment with 9% Triton-X-100 showed significantly (P* < 0.05) decreased 

survival of N2a cells (around 50 % to mock, last column). No toxic potential 

induced by PM-PrP was detected. To confirm the effective inhibition of the 

proteasome, 26S proteasome activity was analysed in fluorescence substrate-

cleavage assays (Fig. 18B). Treatment with 50 nM of epoxomicin was sufficient to 

inactivate the proteasomal 26S activity in N2a cells. Immunoblot using 3F4 

antibody ensured Cy-PrP and PM-PrP expression (Fig. 18C) in the samples used 

for MTT assays shown in Fig. 18A. 

These results suggest that N2a cells tolerate high Cy-PrP levels and cytotoxicity of 

Cy-PrP is controlled by other cellular mechanisms than degradation through the 

proteasome complex.  

4.4 Cellular localisation of Cy-PrP and PM-PrP in N2a 
cells 

4.4.1 Intracellular localisation of Cy-PrP  

The lack of Cy-PrP glycosylation and the proteasome-mediated proteolysis of Cy-

PrP indicate cytosolic localisation of Cy-PrP. To confirm this cellular localisation, 

subcellular fractions were tested for the presence of Cy-PrP expression by 

immunoblotting (Fig. 19). Following PonA induction, N2a cells expressing Cy-PrP 

or PM-PrP were subjected to hypoosmotic lysis followed by centrifugation to 

separate the low density fraction containing cytosolic proteins and small vesicles 

from the high density fraction containing plasma membrane and large cellular 

compartments. Both fractions were analysed by immunoblot. As expected, almost 

no PM-PrP was detectable in the cytosolic fraction (Fig. 19, left panel, lane Pm-

PrP + PonA) whereas a strong PM-PrP signal was found in the membrane fraction 

(Fig. 19, right panel, lane PM-PrP, + PonA). In contrast, Cy-PrP was localised in 
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both the cytosolic fraction (Fig. 19, left panel, laneCy-PrP, + PonA) and the 

membrane fraction (Fig. 19, right panel, lane Cy-PrP, + PonA). In the latter only a 

low Cy-PrP concentration was detected, the majority of Cy-PrP was located in the 

cytosol. Counterstaining of β-actin, known as cytosolic marker, and calnexin, 

known as ER-membrane marker, underscored separation of both fractions, 

although weak signals of each marker was found in unrelated fractions indicating 

minor contaminations. 

 

 
 

Fig. 19 Cy-PrP mainly localises in the low density-cytosol fraction of N2a cells. Cy-PrP or 

PM-PrP expression was induced in transiently transfected N2a cells by adding 0.5 µM PonA for 16 

h. Cells were lysed and subcellular fractions of low density (cytosol) and high density (membranes) 

were analysed for Cy-PrP and PM-PrP expression by immunoblotting using 3F4 antibody. Anti-β-

actin and anti-calnexin served as controls for both fractions.  

However, these data confirmed the assumption that Cy-PrP is mainly localised in 

the cytosolic compartment whereas PM-PrP was localised in membranes, which 

was in line with the results showing that overexpressed full length PrP is found at 

the cell surface and in the Golgi apparatus (Haraguchi et al., 1989; Stahl et al., 

1987; Taraboulos et al., 1992).  

To strengthen these observations, extracellular and intracellular 

immunofluorescence analyses were performed to visualise microscopically the 

localisation of overexpressed Cy-PrP and PM-PrP in N2a cells (Fig. 20). In 
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extracellular staining, a strong membrane staining was observed for PM-PrP (red) 

on the cell surface (Fig. 20A bottom panel). Extreme slight signals were also found 

for Cy-PrP (Fig. 20A middle panel), which showed a dot-like pattern (speckles) 

differently to PM-PrP.  

 

 

Fig. 20 Cy-PrP accumulates in fine foci throughout N2a cells and is partially nucleus-
associated. Cy-PrP or PM-PrP expression was induced in transiently transfected N2a cells by 

adding 0.5 µM PonA overnight. Immunofluorescence staining was performed using the anti-PrP 

3F4 antibody (A and B) and anti-giantin antibody (B) followed by fluorescent dye conjugated 

secondary antibodies. (A) Extracellular staining with 3F4 anti-PrP without cell permeabilisation to 

detect PM-PrP and Cy-PrP (both red) (B) Extra- and intracellular PrP staining of permeabilised 

cells. Yellow colour in the merged images provides co-localisation of PM-PrP with giantin (green). 

Nucleus staining was performed with bis-benzimid (Hoechst 33342) solution (blue). scale bar: 20 

µm 

Intracellular staining uncovered that Cy-PrPs (red) formed indeed those 

intracellular speckles unusual for cytosolic proteins (Fig. 20B, middle panel) and 

suggested that some cells in the extracellular staining were slightly permeable 

after fixation. In contrast, intracellular staining of PM-PrP confirmed its membrane-
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distribution but showed also a structured pattern close to the nuclei (Fig. 20B, 

bottom panel). To discriminate intracellular localisation of Cy-PrP and PM-PrP, 

cells were counterstained for giantin, which is a known marker for the Golgi 

apparatus (Fig. 20B). Indeed, intracellular PM-PrP co-localised with giantin (Fig. 

20B, bottom panel, merged) suggesting that PM-PrP was associated with the 

Golgi apparatus. In contrast, Cy-PrP did not co-localise with giantin and the dot-

like structures of intracellular Cy-PrP were distinct from the PM-PrP pattern. Thus, 

Cy-PrP was not associated with the Golgi apparatus (Fig. 20B, middle panel, 

merged). However, a minority of intracellular Cy-PrP exhibited more diffuse 

staining pattern (Fig. 20B, middle panel, arrows). Counterstaining of intranuclear 

chromatin by bis-benzimid (Hoechst 33342) revealed that those Cy-PrP molecules 

localised with the nuclei. To analyse more detailed the intranuclear localisation of 

Cy-PrP, N2a cells were co-stained with bis-benzimid (Hoechst 33342) and Cy-

PrP-antibody, and multilayer images were recorded. Focusing through several z-

layers of different cells revealed that Cy-PrP was not located in the nucleus and 

the diffuse distribution rather surrounded the nucleus (Fig. 21). Thus, Cy-PrP 

might have been associated with other subcellular structures or compartments.  

 

 
 

Fig. 21  Immunofluorescence of nucleus-associated Cy-PrP in N2a cells. Cy-PrP expression 

was induced in transiently transfected N2a cells by adding 0.5 µM PonA overnight. Intracellular 

immunofluorescence staining was performed in Triton-permeabilised cells using the anti-PrP 3F4 

antibody for Cy-PrP detection and bis-benzimid (Hoechst 33342) solution for nucleus staining 

(blue). Images were obtained by stack recording using Zeiss LSM 510 scanning confocal 

microscope. Images of different z-layers (µm) are shown. Scale bar: 20 µm 
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4.4.2 Cy-PrP co-localisation with Hsc70 in EEA1 positive vesicles 

The above presented results demonstrated that overexpressed Cy-PrP formed 

fine foci throughout the N2a cells, different to a diffuse and homogenous 

distribution often observed for cytosolic proteins, and Cy-PrP might be associated 

with other compartments such as ER or endosomes and lysosomes. Thus, 

intracellular staining of Cy-PrPs was repeated along with different known markers 

characteristic for those compartments. Co-staining of Cy-PrP with disulfide 

isomerase (PDI), a marker for the ER, did not show co-localisation in merged 

images (Fig. 22, first panel) indicating Cy-PrP was not translocated into the ER 

lumen. In contrast, co-staining of Cy-PrP along with early endosome antigen 1 

(EEA1), a marker for the presented endosomal compartment revealed intense 

overlap of both patterns in merged pictures (Fig. 22, middle panel) strongly 

suggesting that overexpressed Cy-PrP is recruited to endocytic vesicles. 

Recruitment of overexpressed cytosolic proteins to endosomal/lysosomal vesicles 

has been described and chaperones, especially Hsc70/Hsp70 and their co-

chaperones, are involved in this process (Agarraberes and Dice, 2001; Chiang et 

al., 1989; Cuervo et al., 1997). Thus, Cy-PrP overexpressed in N2a cells was 

stained together with Hsc70 (Fig. 22, bottom panel). Indeed, the specific Hsc70 

staining provided an inhomogeneous intracellular localisation similar to the 

speckles observed for Cy-PrP. Merging the pictures revealed intense overlap of 

both, Cy-PrP and Hsc70 staining, indicating that Cy-PrP and Hsc70 co-localise in 

N2a cells (Fig. 22, bottom panel, merged). 

To demonstrate that Hsc70 co-localised specifically with Cy-PrP, a second 

immunofluorescence experiment was performed including PM-PrP- and mock-

transfected N2a cells (Fig. 23). Neither in mock nor in PM-PrP-expressing cells 

Hsc70 clustered in dot-like structures (Fig. 23, top and bottom panel). In contrast, 

Cy-PrP expression has a striking effect on Hsc70 distribution showing 

homogenous Hsc70 was concentrated in fine foci (Fig. 23, middle panel), which 

co-localised with Cy-PrP speckles (Fig. 23, middle panel, merged).  
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Fig. 22  Cy-PrP co-localises with Hsc70 in EEA1-positive endocytic vesicles. Cy-PrP 

expression was induced in transiently transfected N2a cells by adding 0.5 µM PonA overnight. 

Cells were fixed, permeabilised with Triton-X-100, and stained with 3F4 anti-PrP antibody and anti-

PDI, anti-giantin, anti-EEA1 or anti-Hsc70 antibody followed by Alexa488 (green)-conjugated and 

Alexa594 (red)-conjugated secondary antibody. Nucleus staining was performed with bis-benzimid 

(Hoechst) solution (blue). Co-staining of Cy-PrP (red) with PDI, giantin, EEA1 or Hsc70 (green). In 

the merged images Cy-PrP co-localises with EEA1 or Hsc70, producing a yellow colour, which was 

not observed with compartment markers PDI and giantin. Scale bar: 20 µm  
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Fig. 23  Redistribution of cytosolic Hsc70 by Cy-PrP expression in N2a cells. Cy-PrP or PM-

PrP expression was induced in transiently transfected N2a cells by adding 0.5 µM PonA overnight. 

Cells were fixed, permeabilised with Triton-X-100, and stained with mouse anti-PrP antibody 3F4 

and rat anti-Hsc70 antibody followed by Alexa488 (green)-conjugated anti-rat and Alexa594 (red)-

conjugated anti-mouse secondary antibody. Nucleus staining was performed with bis-benzimid 

(Hoechst) solution (blue). Yellow colour in merged images provides co-localisation of Cy-PrP and 

Hsc70. Scale bar: 20 µm 

To test whether the intense dot-like Hsc70 staining in Cy-PrP expressing N2a cells 

was due to an increased Hsc70 protein level, cell extracts derived from mock, Cy-

PrP and PM-PrP expressing cells were analysed by immunoblot using a specific 

anti-Hsc70 antibody (Fig. 24). In addition, transgene expression was confirmed 

using 3F4 antibody. In all cell extracts Hsc70 was detectable in similar quantities 

(band around 70 kDa), which excluded that Hsc70 redistribution or accumulation in 

fine foci was caused by an increased Hsc70 protein level in the cytosol of Cy-PrP 

expressing N2a cells. 
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Fig. 24  Hsc70 level is not altered by Cy-PrP expression in N2a cells. Cy-PrP or PM-PrP 

expression was induced in transiently transfected N2a cells by adding 0.5 µM PonA for 16 h. Cells 

were harvested and lysates were analysed for Hsc70 expression by immunoblotting using anti-

Hsc70 antibody. Cy-PrP and PM-PrP expression was ensured using the 3F4 antibody. Right panel 

shows the coomassie stained gel as protein loading control. 

Summary, these results suggest that homogenous distributed Hsc70 directed 

accumulated Cy-PrP to fine foci structures by binding and trafficking of Cy-PrP to 

endosomal vesicles. This would explain why transiently overexpressed Cy-PrP 

was not toxic during inhibition of the proteasome system in N2a cells. 

4.4.3 Binding of Cy-PrP by Hsc70 

Immunofluorescence analyses provided the interesting result that Cy-PrP and 

Hsc70 co-localise in N2a cells, but did not proof direct binding of Cy-PrP by 

Hsc70. Therefore, specific Cy-PrP immunoprecipitation using the 3F4 antibody 

followed by immunoblot analysis with anti-Hsc70 may provide more detailed 

information on Cy-PrP/Hsc70 interaction. Unfortunately, the 3F4 antibody was not 

able to precipitate sufficient amounts of Cy-PrP from cell extracts as already 

observed by Wang et al. (2005). However, Cy-PrP was successfully 

immunoprecipitated using the anti-PrP antibodies 6H4, SAF32 and R340, which 

bind to different regions in the PrP sequence (Fig. 25A, lanes IP). Cy-PrP 

expression in the cell extracts of Cy-PrP transfected and induced N2a cells was 

also proven (Fig. 25A, lane L). Analysis of the supernatants of immunoprecipitation 
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experiments exhibited no signal for retained soluble Cy-PrP (Fig. 25A, lane S). 

Disadvantage of the used antibodies is their recognition of both transgene PrPs 

and endogenous murine PrP (PrPC) in transfected N2a cells resulting in co-

precipitation of PrPC and MH2M PrPs (data not shown). Testing of Hsc70 co-

precipitation with Cy-PrP specific 3F4 antibody revealed a significant Hsc70 signal 

in all analysed samples as well as in the mock and in PM-PrP expressing N2a 

cells (Fig. 25B). However, the amount of co-precipitated Hsc70 was increased by 

about 40 % in the Cy-PrP expressing N2a cells (Fig. 25B, lane 2). Detection of Cy-

PrP and PM-PrP using 3F4 antibody ensured that immunoprecipitation 

experiments worked.  

 

 

Fig. 25 Cy-PrP immunoprecipitation and co-precipitation of Hsc70. Lysates (200 µg) of PonA 

(0.5 µM) induced Cy-PrP-transfected N2a cells were immunoprecipitated with different PrP 

antibodies followed by immunoblot analysis using 3F4 antibody for Cy-PrP and PM-PrP detection 

and additionally anti-Hsc70 in B. (A) Cy-PrP in immunoprecipitates (IP) and supernatants (S) of 

anti-PrP immunoprecipitations using either antibody 6H4 and R340 with dilution 1:500 or SAF32 

with 1:100 dilution. As positive control served 20 µg of pure lysate (L) of transiently Cy-PrP 

expressing N2A cells (B) Immunoblot analysis of Cy-PrP and PM-PrP immunoprecipitations (R340 

anti-PrP) with co-immunoprecipitated Hsc70. Densitometric evaluation of Hsc70 signals from two 

independent experiments are shown as normalised values to mock control (= 1). 

These data suggest that endogenous PrPC might be a natural substrate for Hsc70 

and additional expression of Cy-PrP increases the amount of co-

immunoprecipitated Hsc70 - a first hint for the regulator function of Hsc70 during 

appearance of cytosolic PrP.  
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4.5 Stable Cy-PrP expressing neuronal cell lines 

4.5.1 Cy-PrP and PM-PrP expressing N2a cells 

The experimental data obtained with transiently Cy-PrP expressing N2a cells 

showed that Cy-PrP is not intrinsically toxic to neuronal cells. However, the 

generation of a stable and constitutive Cy-PrP expressing cell lines failed yet, a 

finding, which was taken as support for the thesis that Cy-PrP mediates 

cytotoxicity (Ma et al. 2002). Since no acute Cy-PrP-mediated cytotoxicity was 

observed in the cellular model in vitro, establishment of stable Cy-PrP expressing 

N2a cell lines could argue against a long term effect on cell survival by Cy-PrP. 

The first attempt to generate stable cellular N2a-clones was done using the 

inducible ecdysone expression system, which was used in transient experiments. 

After transfection or transduction and selection of antibiotic-resistant cellular 

clones, no transactivator VgRXR was expressed on protein level, which hampered 

the expression of Cy-PrP. In the second attempt, the generation of stable clones 

was repeated using the non-inducible CMV-driven Cy-PrP expression plasmid. In 

total, 63 antibiotic-resistant cellular clones were selected and screened by 

immunoblotting using the 3F4 antibody. 43 N2a cell clones positive for Cy-PrP 

expression at different levels were identified (Table 5).  

 
Table 5 Stable Cy-PrP or PM-PrP expressing N2a cell clones 

Transgene tg-PrP expression level count of clones 
Cy-PrP + 31 

 ++ 7 
 +++ 5 
 - 20 

PM-PrP + 6 
 ++ 2 
 +++ 2 
 - 2 
 

 

 

One representative immunoblot presenting the clones 6, 18 and 25 with highest 

Cy-PrP expressing levels is shown in Fig. 26A. The specific band of around 27 
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kDa for Cy-PrP was detected in all three clones, but not in the parental N2a cells. 

Additional unspecific protein bands were observed at higher molecular weight 

(around 38 kDa) in some of the stable N2a-Cy-PrP cell lines. 

 

 
 

Fig. 26 Stable N2a-Cy-PrP and N2a-PM-PrP cell lines. N2a cells were stably transfected with 

Cy-PrP and PM-PrP followed by puromycin selection. Resistant cell clones were tested on 

transgene PrP expression by immunoblot using 3F4 antibody. Parental N2a cells served as 

negative control. (A) Immunoblot of N2a-Cy-PrP clone 6, 18 and 25. Arrow indicates specific Cy-

PrP band. (B) Immunoblot of N2a-PM-PrP clone 2 and 7.  

In a third step, the control cell lines stably expressing PM-PrP were generated as 

described using CMV-driven PM-PrP construct. Already 10 out of the first 12 

selected antibiotic-resistant clones showed stable expression of PM-PrP (Table 5). 

Immunoblot of the highest PM-PrP expressing N2a clones, 2 and 7, is shown in 

Fig. 26B. The typical three-band pattern of PM-PrP was observed. In contrast, PM-

PrP was not detected in the parental cell line N2a. The efficacy rate to generate 

Cy-PrP and PM-PrP expressing cell lines was 80 % for N2a-PM-PrP cells and 60 

% for N2a-Cy-PrP cells. The successful generation of stable Cy-PrP expressing 

N2a cells might further argue against Cy-PrP-mediated cytotoxicity. 

 

63 



Results 

4.5.2 Phenotype of N2a-Cy-PrP cell lines 

To test whether Cy-PrP expression might have toxic effects in the stable cell lines, 

several clones were cultivated and examined for their morphology and 

proliferation. Most of the N2a-Cy-PrP clones (> 90 %) showed altered morphology 

in contrast to the parental N2a cells characterised by visual less cytosolic content, 

more ramified and prolonged cell shape and dramatically enhanced cell-cell 

interactions. The latter was already observed in very thin cell culture populations 

and complicated the subcloning procedure (Fig. 27).  

 

 

Fig. 27 Altered morphology of N2a-Cy-PrP cell clones and nuclear chromatin staining. Upper 

lane displays morphology of N2a-Cy-PrP clone 6 and 25 as compared to parental N2a cells. Below 

Hoechst-stained nuclei (blue) of N2a cells and N2a-Cy-PrP cell clones are shown recorded with 

63xPh3 objective of a confocal laser scanning microscope (LSM). Scale bar: 20 µm  
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In contrast, no N2a-PM-PrP clone showed such an altered morphological 

phenotype. N2a-Cy-PrP cell lines did not show reduced proliferation or apoptotic 

morphology such as apoptotic bodies or highly condensed chromatin-structure in 

the nuclei. The latter was examined in Hoechst-stained cells by 

immunofluorescence as shown in Fig. 27. Rather proliferation rate of N2a-Cy-PrP 

cell lines was dramatically accelerated as compared to N2a cells when the 

threshold of critical cell number was exceeded (Fig. 28).  
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Fig. 28  Growth curves and maximal population doubling per day (PD) of stable N2a-Cy and N2a-

PM cell lines and N2a cells. Plot shows cell counts as function of the growing time. Values were 

used for calculation of the maximal PD (right). 

The maximal population doubling rate (PD) of N2a cells and N2a-PM-PrP cell lines 

was around 2.2-2.6 per day (Fig. 28, right). The maximal PD of N2a-Cy25, which 

was the cell clone with the highest Cy-PrP expression, attained 3.7 per day.  

4.5.3 Localisation of Cy-PrP in N2a-Cy-PrP cell lines 

To analyse cellular distribution of Cy-PrP, immunofluorescence experiments were 

performed with different stable N2a-Cy-PrP cell lines. Immunofluorescence 

experiments provided 3F4-specific Cy-PrP staining as red speckles throughout the 

cells as observed in transient transfection experiments and in proximity to plasma 

membrane strongly associated with regions of cell-cell contacts (Fig. 29). To 
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visualise the entire cellular Cy-PrP localisation, projection analyses were 

performed, where all z-layer images were summarised to one image with maximal 

transparency. Partially, the projection image of clone 6 displayed the localisation of 

Cy-PrP in fine foci through the entire cell. In contrast, the highest Cy-PrP 

expressing clone 25 showed a additional strong plasma membrane-like staining. 

 

 

 

Fig. 29  Immunofluorescence of Cy-PrP expression in stable N2a-Cy-PrP cell lines. Cells 

were fixed, permeabilised with Triton-X-100, and stained with mouse anti-PrP antibody 3F4 

antibody followed by Alexa594 (red)-conjugated anti-mouse secondary antibody. Nucleus staining 

was performed with bis-benzimid (Hoechst) solution (blue). Scale bar: 20 µm 
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For the first time, stable N2a-Cy-PrP cell lines were successfully established and 

their characteristics such as accelerated proliferation rate and the lack of apoptotic 

morphology supported the data of viability assays done with transient Cy-PrP 

expressing N2a cells. Therefore, Cy-PrP expression was not toxic per se to 

neuronal N2a cells. Nevertheless, Cy-PrP might affect the cell-cell interactions by 

altered cell adhesion molecule expression.  

4.5.4 Cy-PrP and PM-PrP expressing PrP0/0 neuronal precursors 

As described above, N2a-Cy-PrP cell lines exhibited an altered morphology 

accompanied by enhanced cell-cell interaction, which might be due to endogenous 

PrPC/Cy-PrP interaction. To discriminate between Cy-PrP-mediated effects and 

such possibly caused by Cy-PrP/endogenous PrPC interaction, PrP0/0 neuronal 

precursor cells were stably transfected with Cy-PrP. So far, one positive Cy-PrP 

expressing cell clone was selected (Fig. 30A), whose morphology was not affected 

by Cy-PrP expression as compared to the control PrP0/0 neuronal cells. Whether 

PrPC might have an influence on Cy-PrP function remains to be detailed 

investigated.  

To determine the subcellular localisation of Cy-PrP in these PrP0/0 neuronal cells, 

immunofluorescence experiments with co-staining of Cy-PrP and EEA1, Hsc70 or 

giantin (Fig. 30B) were performed. Interestingly, Cy-PrP was highly expressed in 

some cells and showed the same staining pattern as in transiently transfected N2a 

cells characterised by nucleus-associated localisation and intense speckles 

throughout the cell (Fig. 30B, 3F4). Furthermore, the immunofluorescence images 

also demonstrated that Cy-PrP co-localises with the endosomal marker EEA1 (Fig. 

30B, upper panel) as well as with Hsc70 (Fig. 30B, middle panel), clearly seen as 

yellow colour in the merged images. As expected, no co-localisation was observed 

of Cy-PrP and giantin (Fig. 30B, lower panel merged image) indicating that Cy-PrP 

is not located in the Golgi apparatus in the PrP0/0 neuronal precursor cells. 

These data, observed in stable PrP0/0-Cy-PrP neuronal precursor cells, were in 

accord with the results from transient experiments in N2a cells suggesting that 

Hsc70/Hsp70 might prevent Cy-PrP-mediated cytotoxicity.  
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Fig. 30  Cy-PrP expression in neuronal precursor cells. Stably expressed Cy-PrP in neuronal 

cerebellar precursor PrP0/0 cells. (A) Immunoblot of Cy-PrP clones Cy7 and Cy4 using 3F4 

antibody. As positive control served transiently transfected N2a cells (lane Cy(N2a)). (B) 

Immunofluorescence analysis of co-stained Cy-PrP (red) with EEA1, Hsc70 or giantin (green). 

Cells were fixed, permeabilised with Triton-X-100, and stained with 3F4 anti-PrP antibody and anti-

EEA1, anti-Hsc70 or anti-giantin antibody followed by Alexa488 (green)-conjugated and Alexa594 

(red)-conjugated secondary antibody. Nucleus staining was performed with bis-benzimid (Hoechst) 

solution (blue) Co-localisation is displayed as yellow colour in the merged images. Scale bar: 20 

µm.  
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5 Discussion 

5.1 Cy-PrP toxicity and proteasome in cell culture 

5.1.1 Cy-PrP is per se not toxic to neuronal cells 

Retro-translocation of proteins from ER to the cytosol is the natural route for 

misfolded and malfunctioning proteins to undergo proteasomal degradation, a 

mechanism also known as ERAD. Recent studies have shown that membrane-

associated PrP and mutant PrP underlie this pathway in neuronal cells (Yedidia et 

al. 2001; Rane et al. 2003; Wang et al. 2005). Ma and colleagues have shown that 

such cytosolic accumulated PrP is toxic to neuronal cells in vitro (2002a) and Cy-

PrP expressed in transgenic mice induces loss of the granular layer of the 

cerebellar neurons in vivo (2002b). However, the postulated cytotoxicity of a 

cytosolic form of PrP is controversial discussed and the mechanisms of 

appearance and action are still not clearly characterised (Fioriti et al., 2005; Heller 

et al., 2003; Rambold et al., 2006; Roucou et. al., 2003; Stewart and Harris, 2003). 

This study investigated the cytotoxic effects of cytosolic PrP in neuronal cells by 

inducible overexpression of a mutant form of PrP (Cy-PrP) lacking the N- and C-

terminal trafficking signals. It was published that this Cy-PrP expression is toxic to 

neuronal N2a cells within 24 h (Ma et al., 2002b; Roucou et al., 2003). To confirm 

this, Cy-PrP was inducible expressed in neuronal N2a cells followed by cell 

viability analyses using the MTT and LDH assay after 24 h and 48 h (Fig. 8). 

Surprisingly, no Cy-PrP-mediated cytotoxicity was measurable. Furthermore, cell 

viability assays performed in 293T cells after 24 h of induced Cy-PrP expression 

(Fig. 10) confirmed the unidentified toxicity in N2a cells. Hence, Cy-PrP was also 

not toxic in non-neuronal cells. It has been shown that Cy-PrP expression in N2a 

cells correlates with increased apoptosis demonstrated by TUNEL assay (Ma et 

al., 2002b) and detection of condensed chromatin with Hoechst 33342 staining 

(Roucou et al., 2003). Since in this study the TUNEL assay was not clearly 

reproducible, Cy-PrP expressing cells were examined for caspase-3 activity. 

Caspase-3 is the central apoptosis enzyme activated by different apoptosis 
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pathways including ER stress response. Thus, its activity is a reliable marker for 

induced apoptosis in neuronal cells. However, Cy-PrP expression did not induce 

increased caspase-3 activity in N2a cells after 24 h (Fig. 11). It might be possible 

that 24 h Cy-PrP expression was not sufficient to induce apoptosis. But this data 

are contrary to Ma and colleagues who have shown 6 to 14% increase of apoptotic 

N2a cells after 24 h using the same inducible expression system (Ma et al., 

2002b). Others observed only around 25 % Cy-PrP-mediated increased cell death 

24 h post-transfection in N2a cells determined by Hoechst stained condensed 

chromatin in the nuclei (Roucou et al., 2003). However, in this study chromatin-

staining in the nuclei after Cy-PrP expression  showed no increased chromatin 

condensation in N2a cells 24 h post-transfection (Fig. 20, Fig. 22, Fig. 23). One 

might argue that the expression levels of Cy-PrP in several used N2a 

subpopulations were not comparable due to different susceptibility to Cy-PrP-

mediated toxicity. But other neuronal cells were also not susceptible to Cy-PrP-

mediated toxicity (Roucou et al., 2003). Microinjection of Cy-PrP cDNA in human 

neuroblastoma cell lines as well as primary human neurons did not induce cell 

death including 72 h after injection (Roucou et al., 2003). This is further in 

accordance with data obtained for N2a cells overexpressing a mutant PrP, which 

accumulates in the cytosol after proteasome inhibition without showing a cytotoxic 

effect in the MTT viability assay (Fioriti et al., 2005). Furthermore, in this study 

stable Cy-PrP-expressing N2a cell lines were successfully generated, while 

attempts by others failed (Ma et al., 2002b; Roucou et al., 2003). These Cy-PrP 

cell lines with normal or increased proliferation rate and absence of apoptotic 

morphology (Fig. 27-29) are an additional indication that Cy-PrP is not extremely 

toxic. Moreover, neuronal cerebellar precursor cells from Zurich I PrP0/0 mice were 

used to generate the stable Cy-PrP-expressing cell line Cy4. Even in these cells, 

morphological observations and nuclei visualisation using Hoechst dye were not 

able to detect Cy-PrP-mediated toxicity (Fig. 30). Thus, this study showed several 

lines of evidence that Cy-PrP overexpression is not toxic per se in short-term to 

neuronal cells and the cells might be protected either through recognition and 

degradation of Cy-PrP or binding of Cy-PrP to protective proteins.  

Considering that neurodegeneration often appears with aging including inherited 

prion diseases and displays a long-term process, analysis of Cy-PrP involved in 

this process by transient transfection experiments may not be suitable. The 
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generated stably expressing Cy-PrP cell lines are an ideal starting point to 

investigate whether long-term Cy-PrP expression is detrimental to the cells by, for 

instance, analysis of Cy-PrP expression levels, Cy-PrP aggregation, and effects 

on cell growth and cell viability.  

5.1.2 Stability and proteolysis of Cy-PrP 

In most prion diseases, it has been shown that neuropathology is accompanied 

with widespread deposits of amyloid aggregates containing the structural 

converted PrPSc (Collinge, 2001; Hope, 2000; Jackson and Clarke, 2000). Since 

then, the ability of derivatives of PrPC, such as PrPSc, to form aggregates has been 

often used as parameter for neuronal toxicity. A characteristic of these detergent 

insoluble aggregates is their resistance to proteinase K digestion (Bolton et al., 

1982, McKinley et al., 1983). However, no proteinase K resistant Cy-PrP was 

found after 16 h PonA induction in the used cellular model (Fig. 12). A second 

indicator for PrPSc-like aggregation is the increased stability and prolonged half life 

as compared to PrPC (Borchelt et al., 1990). However, it was demonstrated that 

overexpressed Cy-PrP is degraded like a short living protein similar to PrPC 

(Borchelt et al., 1990). The proteolysis rate of Cy-PrP with the half life around 7.5 h 

was comparable to that of overexpressed full length PrP (PM-PrP) (Fig. 13). These 

findings support the lack of intrinsic Cy-PrP toxicity to N2a cells due to missing 

increased proteolysis and stabilisation as aggregates. Similar observations were 

obtained from experiments done with recombinant mPrP(23-231) (Hornemann et 

al., 1997). Recombinant mPrP(23-231) is soluble, sensitive towards proteolytical 

digestion and does not aggregate irreversible in aqueous solution in vitro. 

However, Wang and colleagues failed to precipitate Cy-PrP using the 3F4 

antibody, which was also found in this study (see 4.4.3), and assumed that Cy-PrP 

is aggregated due to the removal of such aggregates during the pre-clear 

centrifugation step within the procedure of immunoprecipitation (Wang et al., 

2005). In contrast, the precipitation of Cy-PrP worked well using antibodies 

recognising epitopes up- and down-stream of the 3F4-epitope (Fig. 25). This result 

does not further support this postulated aggregation theory. However, the 3F4-

epitope might cover a binding site with higher affinity to other proteins such as 

already postulated for PrPSc (Brown, 2000; Norstrom and Mastrianni, 2005; Satoh 
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et al., 2005; Zanata et al., 2002) and might explain the failed precipitation using 

the 3F4 antibody. Finally, Cy-PrP aggregates might exist and their formation 

depends on the cytosolic concentration, the intracellular localisation, and the 

kinetics between synthesis and degradation of Cy-PrP as well as the interaction 

with other cellular proteins. 

In different neurodegenerative diseases and during aging proteasome activity is 

reduced, which causes accumulation of misfolded and malfunctioning proteins 

(Grune et al., 2005; Keller et al., 2000; Keller et al., 2005; Korolainen et al., 2002). 

Accumulation of misfolded proteins is suggested to be the common pathogenic 

mechanism in some neurodegenerative disorders including prion disease. Thus, 

the Cy-PrP proteolysis was further detailed analysed for the responsible protease 

with the proteasomal system as primary target for investigations. Indeed, Cy-PrP 

proteolysis after proteasome inhibition was dramatically decelerated indicated by 

prolonged half life of around 12 h (Fig. 14), which is comparable with that of PrPSc 

(half life 15 h). Additionally, strong Cy-PrP accumulation was observed after 

proteasome inhibition (Fig. 16). Both results indicate that Cy-PrP is recognised 

and degraded by the proteasome. Strikingly, no influence on cell viability was 

detected during inhibition of proteasomal activity (Fig. 18). The Cy-PrP expression 

neither increased the proteasome activity nor altered the entire proteasome level 

in N2a cells (Fig. 17). The presented data together with the PK-digestion 

experiment do not confirm previous suggestions, that cytosolic accumulated PrP 

will aggregate, and aggregated PrP molecules are resistant to further degradation 

and might trigger cytotoxicity (Ma et al., 1999; Ma et al., 2002a). However, long-

term Cy-PrP expression might cause Cy-PrP aggregation by a yet unknown 

mechanism. In further studies using the generated N2a-Cy-PrP cells, Cy-PrP 

aggregation might be detectable through higher molecular weight of Cy-PrP 

signals with increasing number of cell passages. Moreover, the fibrilar character of 

Cy-PrP aggregates could be analysed via the specific amyloid fibril staining with 

Thioflavin S or (trans, trans)-1-bromo-2.5-bis-(3-hydroxycarbonyl-4-hydroxy) 

styrylbenzene (BSB) in a time-dependent manner (Ando et al., 2003; Hoefert et 

al., 2004; Konarkowska et al., 2006; Santa-Maria et al., 2006).  

Finally, it has to be mentioned that continuous Cy-PrP expression appears to 

increase the ATP-dependent proteasome activity in the N2a-Cy-PrP cell lines 6 

and 25 (data not shown) as compared to parental N2a cells. This changed 
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proteolytical activity could signalise a continuous stress situation, which has only 

consequences during prolonged cultivation.    

5.1.3 Retro-translocated Cy-PrP 

PrP accumulation in the cytosol has been shown clearly, however the nature of 

such cytosolic PrP is controversially discussed. Different studies using stable cells 

expressing wt-PrP or mutant PrP demonstrate accumulation of a non-glycosylated, 

N-terminal signal peptide-bearing form of PrP (NSP-PrP) in the cytosol during 

proteasome inhibition (Drisaldi et al., 2003; Fioriti et al., 2005). This small fraction 

of NSP-PrP appears not to be translocated into the ER. The authors claimed that 

PrP is not subjected to ERAD and the natural occurrence of Cy-PrP is therefore 

unlikely. In fact, they discussed that observed cytosolic NSP-PrP is a result of 

elevated transgenic PrP expression due to proteasome inhibitor-mediated 

increased CMV-promotor activity followed by overloaded ER translocation. In 

contrast, detailed analysis of endogenous wt-PrP in several cell lines and primary 

neurons revealed that a portion of PrP is retro-translocated to the cytosol for 

degradation by the proteasome (Wang et al., 2005). Consistent with these data, 

the accumulation of a non-glycosylated PM-PrP isoform was found during 

proteasome inhibition in PM-PrP overexpressing N2a cells (Fig. 15), although PM-

PrP expression was already stopped. The occurrence of this form of PrP cannot 

be the result of increased PM-PrP synthesis by epoxomicin-mediated elevated 

CMV-promoter activity. The molecular weight of this form of non-glycosylated PrP 

was slightly higher as compared to overexpressed transgenic Cy-PrP (e.g. Fig. 

7Fig. 9Fig. 19). The NSP contains 23 aa, which would result in an additional 

molecular weight of approximately 2.5 kDa. This supports the theory of retro-

translocated PrP carrying the NSP, which becomes visible. To confirm this, PM-

PrP expressing N2a cells have to be analysed by immunoblotting using a specific 

anti-NSP antibody (Stewart and Harris, 2003). On the other hand, PM-PrP like 

PrPC undergoes a variety of proteolytic processing events and another proteolytic 

form of PM-PrP might be detected, which is not related to retro-translocation into 

the cytosol. For instance, PrPC can be cleaved at aa 110 and 111 by ADAM family 

proteases such as ADAM 10 and ADAM 17 to produce a 17-kDa C-terminal 

fragment C1 (Jimenez-Huete et al., 1998; Pan et al., 1992; Shyng et al., 1993). 
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PrPC can also be cleaved by ROS within or adjacent to the octarepeats to 

generate a 21-kDa C-terminal fragment C2 (Jimenez-Huete et al., 1998; Pan et al., 

1992; Taraboulos et al., 1992). However, both proteolytical cleavage products of 

PM-PrP would provide lower molecular weight signals as compared to transgenic 

Cy-PrP of around 27 kDa. Thus, the appearance of NSP-PrP derived from PM-PrP 

becomes more evident.  

In addition, if PrP is mainly post-translational imported into ER, the putative 

transmembrane domain of PrP will induce misfolding in the cytosol interfering the 

import into the ER (Heller et al., 2003). Such non-glycosylated and misfolded NSP-

PrP associates with the ER membranes and decreases cell viability (Heller et al., 

2003). In contrast, Heller et al. showed that expressed Cy-PrP also adopts a 

misfolded conformation; however, this has no adverse effect on cell growth. In this 

study, accumulated non-glycosylated PM-PrP (Fig. 15) was not significant toxic 

after 24 h PM-PrP expression in presence of proteasome inhibition in N2a cells 

(Fig. 18). Continuous PM-PrP overexpression might cause saturation of ER-

translocation and could result in the accumulation of NSP-PrP and cell death, 

which needs further investigation. On the other hand, retro-translocation of 

misfolded or malfunctioned proteins involves Ca-dependent ER chaperones like 

Bip and calnexin. By this way a continuous traffic jam of misfolded or 

malfunctioned PrPs in the ER might cause alterations in the Ca-homeostasis 

(Bushmarina et al., 2006; Verkhratsky, 2002; Zhang and Kaufman, 2006) followed 

by ER-stress response and apoptosis (Ferreiro et al. 2006; Hetz et al., 2003; 

Kristensson et al., 1993; Sandberg et al., 2004; Wong et al., 1996; Yadavalli et al. 

2004).   

Taken together the presented data support that cytosolic PrP is a result of ER 

retro-translocation, but cytotoxicity might be triggered by not retro-translocated 

NSP-PrP generated by impaired ER import during or after translation. These 

findings further let conclude that high levels of Cy-PrP escaped from proteolysis 

and an impaired proteasome system are not sufficient to induce Cy-PrP-mediated 

neuronal cell death. Furthermore, cell type and cell line, respectively, might 

determine the tolerance against the Cy-PrP and NSP-PrP in the in vitro 

experiments.  
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5.1.4 Cy-PrP/membrane interaction as toxic event 

One recent publication showed that Cy-PrP-mediated cytotoxicity is due to 

association of Cy-PrP with membranes (Wang et al., 2006), since Cy-PrP 

expressed in N2a cells migrates with endogenous PrP and calnexin in the 

membrane fraction of sucrose gradients. Previous studies indicated that PrP 

interacts with lipids (Baron and Caughey, 2003; Kazlauskaite et al., 2003; Morillas 

et al., 1999; Sanghera and Pinheiro, 2002) and that recombinant PrP can bind and 

disrupt liposomes composed of negatively charged phospholipids (Kazlauskaite et 

al., 2003). One might speculate that Cy-PrP disrupts the phospholipid bilayer via 

interaction with the hydrophobic core of membranes, causing increasing calcium 

concentration and increasing levels of calcium-responsive phospholipase (cPLA2), 

as observed in degenerating cerebellum of transgenic mice expressing Cy-PrP 

(Wang et al. 2006). However in this study Cy-PrP was mainly separated with the 

soluble cytosolic fraction (Fig. 19). Only a small part of Cy-PrP was associated 

with the plasma membrane/ER membrane fraction as observed for the full length 

PM-PrP and no Cy-PrP-mediated toxicity was found (Fig. 8, Fig. 10 and Fig. 11). 

Thus, the postulated mechanism of the Cy-PrP-mediated impairment of calcium 

homeostasis via membrane disruption and cPLA2 activation as toxic signal 

cascade is inconsistent with these data. Furthermore, neurons in the forebrain 

tolerate higher amounts of Cy-PrP and do not show neuronal death in vivo (Wang 

et al. 2006). It is rather likely that Cy-PrP degradation (see 4.3.1) and interaction 

with protective cytosolic proteins prevents neuronal N2a cells from this 

mechanism.  

5.2 Cy-PrP localisation in early endosomal vesicles 

This study showed cytosolic localisation of Cy-PrP by immunoblot analyses of 

cytosolic and membrane fractions (Fig. 19). Immunofluorescence microscopy 

revealed a strong co-localisation of Cy-PrP with EEA1, a marker for early 

endosomes (Lawe et al., 2000; Mu et al., 1995, Wilson et al., 2000)(Fig. 22). Early 

endosomes are low density vesicles more present in the cytosol than in the high 

density membrane fractions (Bergeron et al., 1986; Kjeken et al., 1995; Shah et 
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al., 2006). EEA1 is a hydrophilic peripheral membrane protein partitioning in the 

aqueous phase after triton-detergent solubilisation as used here (Mu et al., 1995). 

Thus, both data were convergent to exclude that Cy-PrP is mainly plasma 

membrane-located. It was rather that high amount of Cy-PrP localised intracellular 

in EEA1-positive endosomal vesicles in transient Cy-PrP expressing N2a cells 

(Fig. 22). Further experiments to separate early and late endosomes as well as 

lysosomes using OptiPrep iodixanol density gradient (Axis Shield) would support 

the observed data. Lysosomal markers like “lysotracker green” and LAMP1 have 

been failed in immunofluorescence experiments (data not shown) and analyses 

using NH4Cl, as inhibitor of lysosomal proteases provided no hint for lysosomal 

degradation of Cy-PrP (data not shown).  

Firstly, EEA1 functions as tethering/docking molecule that provides directionality to 

the vesicular transport from the plasma membrane to the early endosomes 

(Rubino et al., 2000; Wilson et al., 2000). EEA1 is exclusively localised to early 

endosomes and not present in clathrin-coated vesicles (CCV) (Rubino et al., 2000; 

Wilson et al., 2000). These data let conclude that co-localisation of Cy-PrP with 

EEA1 represents a Cy-PrP transport to the early endosomal compartment. This 

process might be triggered by the N-terminal domain of Cy-PrP, containing the 

basic motive NH2-KKRPK, which is also sufficient for direct internalisation of PrPC 

(Sunyach et al., 2003; Taylor et al., 2005). This can be tested using a truncated 

Cy-PrP (aa27-231) or via alanine-scanning mutagenesis. 

Secondly, other authors postulated a direct interaction of Cy-PrP with the plasma 

membrane, which could trigger EEA1-mediated docking at this locations followed 

by uptake of Cy-PrP into early endosomes to prevent disruption of cell membrane 

associated cell signalling or transport function. These vesicular inclusions could 

reduce levels of diffuse Cy-PrP in the cytosol and the risk of neuronal death as 

observed for huntingtin in primary neurons (Arrasate et al., 2004). EEA1 uptake 

within the endosomal membrane and its function are dependent on PI(3)P, Rab5-

GTP and calmodulin binding (Lawe et al., 2000; Lawe et al., 2003; Rubino et al., 

2000; Simonsen et al., 1998). Reduction of EEA1 or Rab5-GTP through RNA 

interference as well the inhibition of calmodulin binding by the specific inhibitor 

W7, which showed already re-localisation of EEA1 to the cytosol (Lawe et al., 

2003), might increase Cy-PrP-mediated cytotoxicity in N2a or other cellular 
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models. This would demonstrate both, Cy-PrP is toxic to cells and the endosomal 

compartment plays a pivotal protective function. 

Thirdly, internalisation of mature PrPC is mediated by clathrin coated pits into 

recycling endsomes from which it is rapidly retrieved to the cell membrane (Shyng 

et al., 1994; Sunyach et al., 2003; Taylor et al., 2005). During this process PrPC 

passes Rab5-containing early endosomes (Magalhaes et al., 2002; Sunyach et al., 

2003). Cy-PrP located in early endosomes could interact with mature PrPC. If Cy-

PrP has conformational similarities to PrPSc as postulated by Ma and colleagues 

(Ma et al., 1999; Ma et al., 2002a) and the known fact that early endosomes are 

identified as potential sites for the generation of PrPSc by PrPSc/PrPC interaction 

(Biswas et al., 2006; Brown, 2000; Feughelman and Willis, 2002; Norstrom et al., 

2005; Warwicker, 2000), it might be possible that Cy-PrP mediates conversion of 

PrPC to a PrPSc-like isoform and contributes to neuronal death in a time dependent 

manner. In fact, this study demonstrated that Cy-PrP is not PK-resistant and forms 

no proteolysis-resistant aggregates like PrPSc, since Cy-PrP was completely 

degraded by the proteasome. 

Fourthly, Cy-PrP could interact with PrPC in a toxic manner by inhibition of the 

signalling function of PrPC in vivo, e.g. within the Fyn-kinase pathway, on neuronal 

differentiation and survival (Chen et al., 2003; Kanaani et al., 2005; Santuccione et 

al., 2005; Steele et al., 2006) as well as during neuronal activation via synaptic 

vesicles. Furthermore, interaction of Cy-PrP with other membrane associated 

proteins than PrPC might be also a toxic event in vivo, especially when it occurs 

closely to synaptic membranes (Wang et al., 2006). In support to this hypothesis, 

Cy-PrP was observed in close proximity to the plasma membrane, mainly in 

regions of cell-cell contacts, in the highest stable Cy-PrP expressing N2a cell line 

(Cy25)(Fig. 29, middle panel). Cy-PrP-mediated effects on neuronal cell-cell 

communication, synaptic neurotransmitter release and neuronal differentiation 

could be examined using primary neurons followed by in vivo studies with mice 

expressing Cy-PrP in neuronal subtypes. However, toxic accumulation of Cy-

PrP/PrPC complexes might be rather a long-term effect. It has to be therefore 

analysed, whether continuous Cy-PrP expression has an effect on the PrPC level 

on the plasma membrane or endosomal aggregation as well as on the Fyn kinase 

signalling. Thus, further investigations using the generated stable N2a-Cy-PrP cell 

lines would be helpful to answer these questions. 
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5.3 Hsc70/Hsp70 - prevention against Cy-PrP toxicity 

The lack of Cy-PrP cytotoxicity in the used N2a cell model could also been due to 

the existence of a secondary defence system against the toxic accumulation of 

Cy-PrP in neuronal cells. The major difference between the normal and disease-

associated isoforms of PrP is a conformational change, leading to the hypothesis 

that chaperones may be involved in the folding of PrP and hence in the 

progression of the disease (Kenward et al., 1996; Telling et al., 1995). Hsp70 

family appears to play a particular role in prion disease, since it has been shown 

that Hsp70 co-localises with ubiquitin-protein conjugates in vesicle structures of 

the endosome/lysosome system of scrapie-infected mouse brain (Arnold et al., 

1995; Laszlo et al., 1992). Regarding cytosolic PrP, ER retro-translocated PrP co-

localises with Hsc70 in aggresomes after proteasome inhibition (Ma et al., 2001). 

In this study Cy-PrP co-localisation with Hsc70 in EEA1-positive vesicle structures 

was observed at higher expression levels.  The expression level of Hsc70 was not 

affected by Cy-PrP expression in N2a cells (Fig. 24). However, Cy-PrP seems to 

have a redistributing effect on Hsc70 (Fig. 23), since in mock and PM-PrP-

expressing N2a cells Hsc70 staining was diffuse and showed homogenous cellular 

Hsc70 distribution, which was lost in favour of Hsc70 focal aggregation in Cy-PrP-

expressing N2a cells. This is consistent with data obtained with the inducible 

Hsc70-counterpart Hsp70 and the co-chaperone Hsp40, which co-localise after 

proteasome inhibition with cytosolic PrP in immunofluorescence experiments and 

sucrose gradient fractions (Rambold et al., 2006). Moreover, Cy-PrP co-

immunoprecipitates with Hsp70 indicating that the cytosolic chaperone Hsp70 

interacts with Cy-PrP. It has been shown that in vitro Hsp70 and Hsc70 interact 

with lipids and promote the liposome aggregation in a time and protein 

concentration dependent manner (Arispe et al., 2002; Ma et al., 2001). 

Furthermore, accumulated inducible Hsp72 protects Purkinje cells against cell 

death in Creutzfeldt-Jacob disease (CJD) (Kovacs et al., 2001) and Hsp70/Hsc70 

reduces huntingtin toxicity and aggregation in neurons (Novoselova et al., 2005; 

Warrick et al., 1999). In SH-SY5Y human neuroblastoma cells, Hsc70 and Hsp40 

overexpression prevents cytosolic PrP-induced apoptosis (Rambold et al., 2006). 

The cytoprotective activity of Hsp70/Hsc70 is thought to be related to its 
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chaperone activity (Nollen et al., 2002). Taken together, these data support the 

findings in this study indicating that Cy-PrP cytotoxicity in neuronal cells could be 

prevented by the protective function of high levels of Hsc70. What might be the 

molecular mechanism of Hsc70/Cy-PrP interaction (Fig. 31)? 

Cy-PrP produced by retro-translocation (Jin et al., 2000; Ma et al., 2001; Roucou 

et al., 2003; Wang et al., 2005; Zanusso et al., 1999) or impaired import into the 

ER (Heller et al., 2003; Rane et al., 2004) is degraded by the proteasome (Fig. 

14). Thereby, hydrophobic residues of translated Cy-PrP are recognised by 

Hsc70, which promotes the folding process through cycles of substrate binding 

and release regulated by their ATP activity (Hartl and Hayer-Hartl, 2002; Rudiger 

et al., 1997). Function of such Hsc70/Cy-PrP complexes is dependent on co-

chaperone binding (Hohfeld et al., 1995; Hohfeld and Jentsch, 1997; Minami et al., 

1996). ER-associated degradation (ERAD) of Cy-PrP by the proteasome might be 

mediated by binding of co-chaperone BAG-1 to the Hsc70/Cy-PrP complex. BAG-

1 binds the proteasome and interacts with the ubiquitin-ligase CHIP followed by 

Cy-PrP release from Hsc70, Cy-PrP ubiquitination and proteasomal degradation 

(Alberti et al., 2002; Luders et al., 2000). It has to be mentioned that the cellular 

level of BAG-1 is approximately 1 % of Hsp70 (Nollen et al., 2000; Nollen et al., 

2002; Takayama et al., 1997) indicating that BAG-1 can bind only a fraction of 

Hsp/Hsc70 molecules. Otherwise, when Cy-PrP formation overcomes its 

proteolytical removal, excess Cy-PrP molecules interact with Hsc70, whose 

chaperone activity controls Cy-PrP folding in order to prevent cytotoxic 

aggregation. Although Hsc70 co-immunoprecipitation with PrP was increased in 

the Cy-PrP expressing cells, the binding of Cy-PrP by Hsc70 was not clearly 

demonstrated in this study. Therefore, in vitro binding assays such as 

plasmonresonance spectroscopy with purified Cy-PrP and Hsc70 could provide 

information about Cy-PrP/Hsc70 interaction. Furthermore, usage of distinct PrP 

peptides, e.g. PrP106-126, or truncated PrP isoforms could help to identify the Cy-

PrP/Hsc70 binding site in PrP.  
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Fig. 31 Model of Cy-PrP metabolism – cytotoxicity versus prevention by Hsc70. ER imported 

nascent PrP binds luminal chaperone Bip; transport to Golgi compartment following correct 

chaperone-mediated folding (e.g. calnexin); misfolded or incorrect modified (N-glycosylation) PrP is 

retro-translocated via sec61 to the cytosol, named Cy-PrP. Cy-PrP can be toxic by (Wang et al. 

2006) disruption of the intracellular membranes and the plasma membrane or by endosomal 

interaction with clathrin-endocytosed PrPC in fused clathrin coated vesicles (CCV) and early 

endosomes, also mediated by Hsc70 (clathrin uncoating). The latter likely might be an in vivo effect 

resulting in an impaired synaptic vesicle recycling or neurotransmitter release or PrPC signalling. 

Thereby, direct Cy-PrP traffic to CCVs/early endosomes might be triggered its N-terminal basic 

tetra peptide KKRP. However, Hsc70 also appears to have protective potential against Cy-PrP 

induced toxicity, maybe dependent on the Hsc70 level and the energy stage (ATP). Theoretically, 

Cy-PrP could bind Hsc70 via its hydrophobic core (aa) followed by BAG1- and CHIP-mediated 

proteasomal degradation. Excess Cy-PrP remains bound to Hsc70 to avoid uncontrolled 

aggregation, and it is translocated to early endosomes to remove Cy-PrP from the cytosol. Later 

on, Hsc70-mediated re-traffic of Cy-PrP to the cytosol is assumed for further proteasomal 

degradation. Therefore, the steady state level of Cy-PrP and chaperones, particularly Hsc70, as 

well as the availability of ATP and synaptic activity determine Cy-PrP-mediated cytotoxicity in vivo.     
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To remove the potential toxic Cy-PrP from cytosol, Hsc70 might mediate Cy-PrP 

translocation across intracellular membranes into endosomal vesicles 

(Agarraberes et al., 2001; Arispe et al., 2002; Cuervo et al., 1997; Terlecky et al., 

1992) explaining the observed co-localisation of Cy-PrP and the endosomal 

marker EEA1 (Fig. 22 and 30). It is known that cytosolic proteins are internalised 

and degraded in lysosomes in a Hsc73-mediated fashion (Chiang et al., 1989; 

Terlecky et al., 1992) However, further Cy-PrP degradation by lysosomes after 

delivery to the endosome/lysosome system by Hsc70-mediated transport is not 

assumed (see 5.2, first section). 

Nevertheless, in vivo Cy-PrP expression level varies in different brain regions and 

is extremely toxic to granular cerebellar neurons in transgenic mice (Ma et al., 

2002b; Wang et al., 2006). Such observed neuronal cell type-dependent 

cytotoxicity might be due to differences in the synaptic excitation or anti-stress 

systems, as chaperone response as well as ubiquitin-proteasome system. Indeed, 

the basal expression level of Hsc70 and the stress induced expression of Hsp70 

vary in several neuronal cell types (Belay et al., 2006; Foster et al., 1995; Guzhova 

et al., 2001; Manzerra et al., 1996; Tanaka et al., 2002; Voisin et al., 1996). 

Neuronal cell types that exhibit high levels of Hsc70, such as specific hippocampal 

neurons and cerebellar Purkinje cells, are not triggered to undergo stress-induced 

cell death as compared to other neuronal populations such as granular cerebellar 

neurons lacking Hsc70 (Belay et al., 2006; Tanaka et al., 2002). Furthermore, high 

level of constitutively expressed Hsc70 appears to have a damping effect on 

stress-induced Hsp70 expression (Foster et al., 1995; Manzerra et al., 1996). 

Moreover, a 10-fold reduction in Hsp70 basal expression was observed upon 

differentiation in neuroblastoma cells (Guzhova et al., 2001). Thus, the 

differentiation state and pool of chaperones expressed in different neuronal cell 

types may contribute to Cy-PrP mediated cytotoxicity in vivo. All these findings 

support our data obtained in the N2a neuroblastoma cell model and demonstrate 

that distinct chaperone expression is connected to neuroprotection. Concerning 

Cy-PrP-mediated cytotoxicity and the postulated hypothesis of Cy-PrP triggered 

membrane disruption (Wang et al., 2006), a participation of Hsp70/Hsc70 has to 

be considered, since these chaperones are present in lipid raft in cells of forebrain 

and cerebellum (Chen et al., 2005). Interestingly, in CJD patients it has been 

shown that neuropathological changes are mainly restricted to cell populations or 
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brain regions in which Hsp70/Hsc70 was expressed at lower levels. Indeed, 

apoptosis induction was higher in the Hsp70-negative granular cell layer as 

compared to Purkinje cells, which express high Hsp70 levels. Moreover, brain 

regions showing severe spongiform changes and gliosis exhibit fewer Hsp70-

immunoreactive neurons (Kovacs et al., 2001).  

In addition, it should be investigated whether neuronal differentiation has an 

influence on the Hsc70/Hsp70 pool and can reveal Cy-PrP-mediated toxicity in 

stable N2a-Cy-PrP cell lines and PrP0/0-Cy4. In order to prove the hypothesis that 

Hsc70 prevents Cy-PrP-mediated toxicity in N2a-Cy-PrP cells, siRNA approaches 

could be performed to knock down Hsc70 expression followed by viability and 

apoptosis assays in these cells.  

5.4 Cy-PrP and N2a cell morphology  

During the generation of stable Cy-PrP expressing N2a cells most of the selected 

cell clones exhibited a new morphology characterised by visual less cytosolic 

content, more ramified and prolonged cell shape and dramatically enhanced cell-

cell interactions (Fig. 29). Surprisingly, this phenotype was not found in any of the 

N2a-PM-PrP cell lines. These observations might indicate a Cy-PrP-mediated 

alteration of cell adhesion. To ensure that this phenomenon is due to the 

expression of Cy-PrP, the protein could be knocked down by a siRNA approach to 

return the morphology to the parental cells. This would be a novel unpublished Cy-

PrP-mediated effect in neuronal cells. Nevertheless, analyses of several adhesion 

molecules such as E/N-cadherine, p120, α- and β-catenin or NCAM as well as 

members of signalling cascades like Akt1/2 and SRC phosphorylation would be 

suggestive to examine, how Cy-PrP might influence this complex cell adhesion 

system. Interestingly, the selected Cy4 clone derived from PrP0/0 cells showed no 

altered phenotype as compared to the parental cells. Hence, N2a-Cy-PrP 

phenotype might be a result of Cy-PrP and endogenous PrPC interaction, e.g. in 

the endosomal compartment (see 2.2.2 and 5.2). Therefore, generated N2a-Cy-

PrP cell lines are potent cellular models to analyse Cy-PrP effects on cell adhesion 

in presence of endogenous level of PrPC.  
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5.5 Putative consequences for Cy-PrP expression in vivo 

Co-localisation of Cy-PrP with EEA1 (Fig. 22Fig. 30) and Hsc70 (Fig. 22Fig. 23Fig. 

30) arise the question of its consequences for the neuronal interaction in vivo. It is 

known that early endosomes and Hsc70 are important for the synaptic function 

and the recycling of synaptic vesicles as well as different neurotransmitter 

receptors (Bronk et al., 2001; Buchner and Gundersen, 1997; Holroyd et al., 1999; 

Selak et al., 2004; Selak and Fritzler, 2004; Shimizu et al., 2003; Stahl et al., 1999; 

Tobaben et al., 2001; Washbourne et al., 2004; Zinsmaier and Bronk, 2001). 

Hence, the speculated Hsc70-mediated transport of Cy-PrP to early endosomes 

within synaptic areas might influence the normal synaptic vesicles maturation and 

the neurotransmitter release. Such Cy-PrP induced synapsis dysfunction in vivo 

could explain the contradicting results concerning the Cy-PrP toxicity observed in 

different cell models in vitro. Furthermore, PrPC plays a role in the fine-tuning of 

synaptic activity and plasticity examined in PrP knock out mice (see also 2.2.3). 

These results are supported by the fact that recombinant PrP induces rapid 

polarisation and development of synapses in embryonic rat hippocampal neurons 

(Kanaani et al., 2005). Assumed Cy-PrP/PrPC interactions in the endosomes might 

result in similar neuropathological effects as detected in prion-diseased brains, 

maybe due to loss of normal PrPC function. In the cerebellum of CJD patients PrP 

deposits accumulated in the synapses correlating with abnormal synaptic protein 

expression (Ferrer, 2002). Scrapie-infected mice showed also synapses loss 

associated with abnormal PrP precedes (Jeffrey et al., 2000), intrinsic dysfunction 

of cortical and hippocampal neurons (Jefferys et al., 1994) and altered properties 

of the membrane and synapses (Johnston et al., 1997). Moreover, it has been 

speculated that PrPC may be a constituent of the synaptic vesicle membrane 

(Fournier et al., 1995) and affects the neurotransmitter release via synaptic 

vesicles as shown for acetylcholine in neuromuscular junction (Re et al., 2006). 

Thus, Cy-PrP localisation in endosomes followed by its presence in synaptic 

vesicles could have disastrous consequences for the neuron-neuron signalling and 

synaptic plasticity in the brain, when Cy-PrP impairs the PrPC and Hsc70 function 

during synaptic vesicle maturation, release and their recycling process. 
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7 Abbreviations 
 

aa   amino acid 

A  adenosine 

AMC  7-amino-4-methylcoumarin 

Asn   asparagines 

ATP  adenosine tri-phosphate 

BCA  bicinchoninic acid 

BFGF  basic fibroblast growth factor 

bp   base pair 

BSA  bovine serum albumin 

BSB  [(trans,trans),-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy) 

styrylbenzene 

BSE   bovine spongiforme encephalopathy 

CJD   Creutzfeldt-Jakob disease 

CMV  cytomegalovirus 

cPLA2  calcium-dependent cytosolic phospholipase A2  

Cy-PrP prion protein containing amino acids23-231 

d   days 

DMEM “Dulbecco´s modified Eagle´s medium” 

DMSO dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

DTT  dithiothreitol 

EDTA  ethylene diamine tetra-acetate 

EEA1  early endosomal antigen 1 

EndoH Endoglycosidase H 

Epoxo  epoxomicin 

ER  endoplasmatic reticulum 

ERAD  endoplasmatic reticulum associated degradation 

FACS  flow cytometry 

FFI  fatal familial insomnia 

Fig  Figure 

FITC   fluorescence isothiocyanate 
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GFP  green fluorescence protein 

GSS  Gerstmann-Sträussler-Scheinker disease 

GPI   glycosylphosphatidylinositol 

h   hours 

Hsp  heat shock protein 

Hsc  cognate form of heat shock protein 

Ig   immunoglobulin 

IB  immunoblotting 

IP  immunoprecipitation 

IF  immunofluorescence 

kb  kilobasepairs 

kDa  kilodalton 

l  litre 

LDH   lactate dehydrogenase 

LB  Luria Bertani 

µg   microgram 

MH2M  chimeric mouse-hamster-mouse prion protein 

min   minutes 

ml   millilitre 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

N2a   murine neuroblastoma cell line 

NSP   N-terminal signal peptide 

NTPs  nucleoside triphosphates 

OD  optical density 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PDI  protein disulfide isomerase 

PEI  Paul-Ehrlich-Institut  

PFA  paraformaldehyde 

PK   proteinase K 

PM-PrP plasma membrane located full length prion protein 

PMSF  phenylmethylsulfonylfluoride 

Prnp  mouse prion protein gene 

PrPC   cellular prion protein 
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PrP0/0  PrPC knock out (Zurich I) cerebellar neuronal precursor cell line 

PrPSc   pathogenic isoform of the prion protein 

R340  polyclonal anti-PrP antibody 

RPE  R-phycoerythrin  

RT  room temperature 

SAF32 anti-PrP antibody binding the N-terminal region 

SDS   sodium dodecyl sulfate 

SDS-PAGE  sodium dodecyl sulfate polyacrylamid gel electrophoresis 

sec   seconds 

6H4  anti-PrP antibody binding epitope aa144-152 

Tab  table 

TAE  Tris-acetate-EDTA 

TD  annealing temperature 

Tris  Tris-(hydroxymethyl)-aminomethane 

TSE   transmissible spongiform encephalopathies 

TUNEL terminal-dUTP nick end labelling 

wt   wild-type 

3F4  PrP-specific monoclonal antibody binding epitope aa109-112 

293T  human embryonal kidney cell line expressing the large T antigen 
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