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1 - Abbreviations 

 
2D   two-dimensional 

3D   three-dimensional 

A!   Amyloid-! 

ACE   Angiotensine-converting enzyme 

AD   Alzheimer's Disease 

APP   Amyloid Precursor Protein 

AWLN  Advanced Wiswesser Line-Formula Notation 

BEDROC  Boltzmann-enhanced Receiver Operating Characteristic 

BLOSUM  Block Substitution Matrix 

CANGEN  Canonization and Generation 

CbC   Comparison by Compression 

COBRA  Collection Of Bioactive Reference Analogues 

COX   Cyclooxygenase 

CROSSBOW  Computer Retrieval of Organic SubStructures by means of Wiswesser 

CSI   Chemical Substructure Index 

CUDA   Compute Unified Device Architecture 

DDP   Double Dynamic Programming 

DHFR   Dihydrofolatreductase 

dMTP   Deoxythymidine Monophosphate 

EF   Enrichment Factor 

ELISA   Enzyme-linked immunosorbent assay 

FAST   Fragment Alignment Search Tool 

FDA   Food and Drug Administration 

FPGA   Field Programmable Gate Array 

FSM   Finite State Machine 

FXA   Factor Xa 

GPU   Graphics Processing Unit 

GS   "-Secretase 

GSI   " -Secretase Inhibitor 

GSM   " -Secretase Modulator 
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HTS   High Throughput Screening 

IC50   Inhibitory Concentration 50% 

InChi  International Union of Pure and Applied Chemistry International 

Chemical Identifier 

InChiKey  International Union of Pure and Applied Chemistry International 

Chemical Identifier Key 

IUPAC  International Union of Pure and Applied Chemistry 

LBVS   Ligand-based Virtual Screening 

MCMC  Marcov Chain Monte Carlo 

MCMCMC  Metropolis-coupled Marcov Chain Monte Carlo 

MCS   Maximal Common Subgraph 

MIC   Minimal Inhibitory Concentration 

MOE   Molecular Operating Environment 

MOS   Maximum Overlapping Set 

MQL   Molecular Query Language 

NID   Normalized Information Distance 

NIST   National Institute of Standard and Technology 

NP   Non-deterministic Polynomial Time 

NSAID  Non-Steroidal Anti-Inflammatory Drug 

OpenGL  Open Graphics Library 

PAM   Point Accepted Mutations 

PhAST   Pharmacophore Alignment Search Tool 

PID   Percent Sequence Identity 

PPAR   Peroxisome-Proliferator Activated Receptor 

PPP   Potential Pharmacophoric Point 

PSI-BLAST  Position-Specific Iterated Basic Local Alignment Search Tool 

RMSE   Root Mean Squared Error 

ROC   Receiver Operating Characteristic 

ROCAUC  Receiver Operating Characteristic Area Under Curve 

ROSDAL  Representation of Organic Structures Description Arranged Linearly 

SBVS   Structure-based Virtual Screening 

SHA   Secure Hash Algorithm 

SMILES  Simplified Molecular Input Line Entry System 

SPP   Similar Property Principle 
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SSE2   Streaming Single Instruction Multiple Data Streams Extensions 2 

SXT   combination of Trimethoprim and Sulfamethoxazole 

THR   Thrombine 

VEGFR  Vascular Endothelial Growth-Factor Receptor 

VS   Virtual Screening 

WLN   Wiswesser Line-Formula Notation 
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2 - Zusammenfassung 
 

Die Entwicklung neuer Wirkstoffe ist ein langiweriger und kostenintensiver Prozess, der bis 

zu 15 Jahre dauern und 2 Millarden Dollar kosten kann. Das ‚High Throughput Screening’ 

(HTS) hat sich in diesem Prozess als Technik für die Identifizierung vielversprechender 

Startstrukturen, so genannter ‚Hits’, etabliert. Während eines HTS werden 50.000 bis 100.000 

Substanzen automatisiert in einem Assay auf ihre biologische Aktivität getestet. Setzt man 

diese Anzahl evaluierter Substanzen in Relation zu vorsichtigen Schätzungen der Gesamtzahl 

möglicher wirkstoffartiger Verbindungen (1060), wird klar, dass mit HTS allein ein großer 

Teil dieses ‚Chemischen Raums’ unerforscht bleibt. 

Eine schnellere Alternative bieten computerbasierte Methoden. Ist eine Struktur mit 

einer gewünschten biologischen Wirkung bekannt, ist es mit diesen Methoden möglich, die 

Einträge in Molekülsammlungen nach ihrer berechneten Ähnlichkeit zu dieser 

Referenzstruktur zu sortieren. Diese Technik wird als virtuelles Screening bezeichnet. Die 

Annahme hierbei ist, dass Substanzen, die als ähnlich zur verwendeten Referenzstruktur 

bewertet werden auch in ihren biologischen Wirkeigenschaften ähnlich zu dieser sind. 

In dieser Arbeit wurde eine neue Methode entwickelt und evaluiert, mit der sich die 

Ähnlichkeit zweier Moleküle berechnen lässt. Die Bezichnung dieser Methode ist 

‚Pharmacophore Alignment Search Tool’ (PhAST). In dieser Methode werden Moleküle 

verglichen durch paarweises globales Sequenzalignment, einer Technik für den Vergleich von 

Zeichenketten. Sie wurde bisher nur auf Sequenzen aus Aminosäuren oder Nukleotiden 

angewendet, um Homologe zu identifizieren. In einem Sequenzalignment werden die 

Symbole zweier Sequenzen einander zugeordnet, wobei die Reihenfolge der Symbole 

innerhalb jeder Sequenz erhalten bleibt. Das Einfügen von Lücken (‚Gaps’) in Sequenzen ist 

erlaubt, wenn es die Gesamtzuordnung verbessert. Werden gleiche Symbole einander 

zugeordnet, wird dies als ‚Match’ bezeichnet, bei ungleichen Symbolen wird dies als 

‚Mismatch’ bezeichnet. Jedes dieser Ereignisse wird bewertet. Der Score eines Alignments 

wird berechnet als die Summe der Einzelbewertungen. Die in dieser Arbeit verwendeten 

Algorithmen berechnen stets das ‚optimale’ Alignment, also das, das den höchstmöglichen 

Alignment Score hat. 

Bedingt durch die Unterschiede zwischen Biopolymeren und wirkstoffartigen 

Molekülen wurde Sequenzalignment auf die Problemstellung des Molekülvergleichs 

angepasst und neue parametrisiert. Mit allen Parametrisierungen wurde PhAST in 
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retrospektiven Screenings auf seine Fähigkeit getestet, mit einer aktiven Substanz als 

Referenz andere aktive Substanzen zu erkennen und für diese höhere Ähnlichkeiten zu 

berechnen als für inaktive Substanzen. Werden die Einträge einer Molekülsammlung nach 

den berechneten Ähnlichkeiten absteigend sortiert, konzentrieren sich so die aktiven 

Moleküle am Beginn der Rangliste, verglichen mit einer uniformen Verteilung über die 

gesamte Molekülsammlung (Anreicherung). Die Grundlage dieser retrospektiven 

Experimente war die Wirkstoffsammlung COBRA, die in der verwendeten Version 6.1 

insgesamt 8,311 wirkstoffartige Moleküle enthält. Dabei wurden die aktiven Liganden von 

insgesamt sechs verschiedenen Zielproteinen jeweils einmal als Referenz verwendet. 

PhAST berechnet nicht die strukturelle sondern die funktionelle Ähnlichkeit zwischen 

Molekülen. Um dies zu erreichen, wurde eine Abstraktion jedes Moleküls erstellt, die aus 

potentiellen Interaktionspunkten besteht. Die Zuweisung dieser Interaktionsmöglichkeiten 

geschah basierend auf einer Sammlung von Fragmenten, in der jedem nicht Wasserstoff Atom 

eines Fragments bereits eine Interaktionsmöglichkeit zugewiesen war. Immer, wenn ein 

Molekül ein Fragment als Substruktur aufwies, wurden die Zuweisungen aus dem Fragment 

auf die korrespondierenden Atome des Moleküls übertragen. Insgesamt wurde zwischen den 

folgenden neun Interaktionstypen unterschieden: positive Ladung, negative Ladung, 

aromatisch, lipophil, Wasserstoffbrücken Akzeptor, Wasserstoffbrücken Akzeptor kombiniert 

mit Wasserstoffbrücken Donor, Wasserstoffbrücken Akzeptor kombiniert mit Polarität, 

Wasserstoffbrücken Akzeptor kombiniert mit Wasserstoffbrücken Donor und Polarität sowie 

keiner möglichen Interaktion. Jeder dieser neun Typen wurde durch ein einziges Symbol 

repräsentiert. 

Sequenzen aus Aminosäuren oder Nukleotiden sind unverzweigt, azyklisch und 

gerichtet. Wirkstoffartige Moleküle hingegen sind verzweigt, enthalten Ringschlüsse und sind 

ungerichtet. Um paarweises globales Sequenzalignment zum Vergleich von wirkstoffartigen 

Molekülen nutzen zu können, mussten diese folglich zunächst in einer linearisierten Form 

gespeichert werden. Die Notwendigkeit dieses Schritts wurde in dieser Arbeit bewiesen. Die 

Umwandlung von Molekülen in Zeichenketten muss eindeutig sein in dem Sinn, dass für ein 

Molekül nur eine einzige Zeichenkette generiert werden kann. Dies ist notwendig, damit 

identische Moleküle durch die Identität ihrer linearen Repräsentationen erkannt werden 

können. Um dies sicherzustellen, wurden verschiedene Algorithmen implementiert und 

evaluiert, die den Atomen in einem Molekül einen eindeutigen Satz von Indizes zuweisen. 

Die Zuweisung der Indizes zu den Atomen ist eindeutig, es wird also jedem Atom stets 

derselbe Index zugewisen, unabhängig davon, in welcher Form das Molekül an den 
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Algorithmus übergeben wird. Die zugewiesen Indizes bestimmten die Reihenfolge, in der die 

mit den Eigenschaften der Atome korrespondierenden Symbole zu einer Zeichenkette 

zusammengesetzt wurden, beginnend beim niedrigsten Index. Die evaluierten Methoden 

lassen sich in zwei Klassen einteilen: Algorithmen die für die kanonische Indizierung von 

Molekülgraphen und Methoden zur Dimensionsreduktion. Die Methode, mit der PhAST in 

den retrospektiven Studien am besten abschnitt, war ‚Minimum Volume Embedding’. Dies ist 

eine Methode zur nichtlinearen Dimensionsreduktion, die in dieser Arbeit mit topologischen 

Distanzen gemessen über einen Diffusionskernel kombiniert wurde. 

Für die Berechnung von Sequenzalignments ist ein Bewertungssystem nötig, das das 

wechselseitige Zuweisen gleicher oder ungleicher Symbole bewertet. Solche 

Bewertungssysteme existierten bisher nur für Aminosäuren und Nukleotide. Im Rahmen 

dieser Arbeit wurden eine stochastische sowie zwei systematische Methoden entwickelt, mit 

denen solche Bewertungsschemata berechnet werden können. In den systematischen 

Varianten wurden die Ereignisse bewertet in Abhängigkeit ihrer Häufigkeit in paarweisen 

Alignments beziehungsweise durch eine Kernelfunktion berechneter Atomzuweisungen, die 

in einem Referenzdatensatz berechnet und zu den Gesamthäufigkeiten der beteiligten 

Symbole in Relation gesetzt wurden. Die resultierenden Bewertungssysteme wurden 

untereinander verglichen sowie mit zwei weiteren Bewertungsmöglichkeiten. In einer wurden 

alle Matches sowie alle Mismatches gleich bewertet. Im letzten Bewertungssystem wurden 

die verschiedenen Ereignisse bewertet basierend auf den relativen Häufigkeiten der 

beteiligten Symbole und dem Grad, zu dem sich die durch sie repräsentierten Funktionalitäten 

entsprechen. Mit dem zuletzt vorgestellten Bewertungsschema erzielte PhAST in 

retrospektiven Experimenten die höchste Anreicherung. Der beobachtete Unterschied war 

signifikant. Das einheitliche Bewertungsschema erzielte signifikant schlechtere Anreichung 

verglichen mit den übrigen Schemata. 

Sequenzalignment als Methode für den Vergleich von Zeichenketten ist umfassend 

parametrisierbar. Dadurch konnte das Bewertungsschema weitergehend modifiziert werden. 

So war es möglich, Symbole in einer Zeichenkette stärker zu gewichten, die 

Interaktionsmöglichkeiten entsprachen, von denen bekannt war, dass sie essentiell für die 

Rezeptor-Ligand-Interaktion sind. Am Beispiel des Peroxisom-Proliferator-aktivierten 

Rezeptors wurde demonstriert, dass mit einer sinnvoll gewählten Gewichtung signifikant 

erhöhte Anreicherung erzielt werden kann. Es wurde gezeigt, dass die systematische 

Anwendung von Gewichten auf alle Positionen in retrospektiven Experimenten dazu geeignet 

ist, essentielle Interaktionspunkte zu identifizieren. Dafür ist es allerdings notwendig, dass ein 
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entsprechender Datensatz mit einer ausreichenden Anzahl von Strukturen vorhanden ist. Es 

konnte gezeigt werden, dass Sequenzalignment auch für die Berechnung struktureller 

Ähnlichkeiten benutzt werden kann. 

Es wurden verschiedene Algorithmen für die Berechnung von globalen 

Sequenzalignment veröffentlicht. Die Standardlösung dieses Problems ist der Algorithmus 

von Needleman und Wunsch, der in seiner generalisierten Form eine Laufzeit von O(n3) hat. 

In dieser Arbeit wurde zunächst eine angepasste Version dieses Algorithmus verwendet mit 

einer Laufzeit von O(n2). Ein weiterer Algorithmus wurde implementiert und evaluiert, der 

zwar die gleiche asymptotische Laufzeit hat, in der Praxis jedoch nur 40% der Zeit benötigt, 

um die gleiche Menge von Sequenzen zu alignieren. Dies wird durch die Vereinfachung 

erreicht, dass im Alignment ein Gap in einer Sequenz nicht auf einen Gap in der anderen 

Sequenz folgen darf. Dies reduziert die Anzahl der Rechenoperationen, die zur Berechnung 

eines Alignment nötig sind. In einigen Fällen wurden so jedoch Sequenzalignments 

berechnet, die von denen des Needleman Wunsch Algorithmus abwichen. Es konnte aber 

gezeigt werden, dass diese Abweichungen auf die von PhAST berechneten Sortierungen von 

Molekülen nur geringen Einfluss hatten. Die entstehenden Ranglisten waren nahezu identisch, 

was sich in einer hohen und als signifikant berechneten Rangkorrelation widerspiegelte. 

Daher wurde für PhAST der schnellere Algorithmus verwendet. 

Um die Ähnlichkeit von Zeichenketten aus deren Alignment zu berechnen, müssen die 

Alignments bewertet werden. Für die Alignments von Aminosäuresequenzen wurden bereits 

verschiedene Maße entwickelt: die Sequenzidentität, der Alignment Score und die Signifikanz 

des Alignment Scores. Alle drei Ansätze wurden in verschiedenen Varianten implementiert 

und evaluiert. Es konnte gezeigt werden, dass wie auch für Aminosäuresequenzen, der Score 

eines Alignments besser geeignet ist um Ähnlichkeiten zu identifizieren. Mit dem Alignment 

Score als Bewertungskriterium erzielte PhAST signifikant höhere Anreicherung verglichen 

mit der Sequenzidentität. Zur Bewertung der Signifikanz des Scores eines Alignments wurden 

p-Werte brechnet. Die mit ihnen erzielte Anreicherung war vergleichbar mit der, die mit dem 

Alignment Score erzielt wurde. Über die Rangkorrelation der zugehörigen Ranglisten konnte 

dennoch gezeigt werden, dass die berechneten Molekülsortierungen nicht identisch sind. Zur 

Berechnung von p-Werten war es zwingend erforderlich, die Verteilung von Alignment 

Scores zu kennen für die jeweiligen Paare von Sequenzlängen. Auch für 

Aminosäuresequenzen ist die Verteilung der Scores globaler Alignments nicht bekannt. 

Folglich mussten für die Berechnung von p-Werten in PhAST die Verteilungen von 

Alignment Scores simuliert werden. Dies geschah mit einer Kombination aus Marcov Chain 
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Monte Carlo Simulationen und Importance Sampling. Nachdem die Verteilungen bestimmt 

waren, wurde für jeden Alignment Score das Integral der zugehörigen Verteilung oberhalb 

dieses Wertes als p-Wert berechnet. Für die Berechnung von E-Werten wurden die 

berechneten p-Werte einer Bonferroni Korrektur unterzogen, so dass sie die Gesamtzahl der 

Einträge in der Molekülsammlung berücksichtigen. Als Ergebnis dieser Arbeit wurde für die 

Signifikanz mit PhAST berechneter Ähnlicheiten ein Grenzwert von 1*10-5 vorgeschlagen: 

Alignments mit einem E-Wert unterhalb dieses Grenzwerts werden als signifikant angesehen. 

PhAST wurde in retrospektiven Experimenten mit anderen Methodem zum virtuellen 

Screening verglichen, die bereits in der Wirkftoffentwicklung eingesetzt werden. Es konnte 

gezeigt werden, dass die mit PhAST erzielte Anreicherung vergleichbar oder höher war. 

Allerdings waren die von PhAST berechneten Ranglisten sehr unänhlich zu denen anderer 

Methoden. Folglich ist es mit PhAST möglich, in einem Screening auf den frühen Rängen der 

berechneten Ranglisten eine ähnliche Anzahl von aktiven Substanzen anzureichern, die sich 

jedoch von den mit anderen Methoden identifizierten Hits unterscheiden. Das macht PhAST 

zu einem wertvollen neuen Bestandteil der frühsten Phase der Wirkstoffentwicklung, da mit 

dieser neuen Methode Hits identifiziert werden können, die mit anderen Methoden nicht 

gefunden werden. Die Anwendung von PhAST auf dreidimensionale statt zweidimensionale 

Molekülrepräsentationen erzeugte nur leichte Änderungen in der beobachteten Anreicherung, 

wenn auch die erzeugten Ranglisten von einander abwichen. 

PhAST wurde erfolgreich in zwei prospektiven Anwendungen eingesetzt. Bei der 

Suche nach nicht von Nukleosiden abgeleiteten Inhibitoren der bakteriellen Thymidinkinase 

wurde ein Hit identifiziert. Er zeigte eine deutliche strukturelle Abweichung von der 

verwendeten Referenzstruktur, war jedoch nur schwach aktiv. In einem Screening nach neuen 

Modulatoren der "-Sekretase wurde ein potentes Molekül identifiziert. Es zeigt deutliche 

Unterschiede zur verwendeten Referenzstruktur. Eine im selben Screening identifizierte 

inaktive Substanz ermöglichte einen ersten Eindruck der zugehörigen Struktur-Aktivitäts-

Beziehung, da es sich lediglich durch den Austausch eines einzigen Atoms von der aktiven 

Struktur unterschied, jedoch komplett inaktiv war. 

PhAST unterscheidet sich von anderen Methoden für das virtuelle Screening durch die 

Möglichkeit die Signifikanz der berechneten chemischen Ähnlichkeit zu bestimmen, bekannte 

essentielle Interaktionspunkte höher zu gewichten, solche essentiellen 

Interaktionsmöglichkeiten zu identifizieren und durch die berechneten Ranglisten von 

Molekülen. Die gezeigten Beispiele für eine erfolgreiche prospektive Anwendungen haben 

deutlich gemacht, dass PhAST eine Bereicherung für die Wirkstoffentwicklung ist.
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3 - Abstract 
 

This work investigated the applicability of global pairwise sequence alignment to the 

detection of functional analogues in virtual screening. This variant of sequence comparison 

was developed for the identification of homologue proteins based on amino acid or nucleotide 

sequences. Because of the significant differences between biopolymers and small molecules 

several aspects of this approach for sequence comparison had to be adapted. All proposed 

concepts were implemented as the ‘Pharmacophore Alignment Search Tool’ (PhAST) and 

evaluated in retrospective experiments on the COBRA dataset in version 6.1. 

 The aim to identify functional analogues raised the necessity for identification and 

classification of functional properties in molecular structures. This was realized by fragment-

based atom-typing, where one out of nine functional properties was assigned to each non-

hydrogen atom in a structure. These properties were pre-assigned to atoms in the fragments. 

Whenever a fragment matched a substructure in a molecule, the assigned properties were 

transferred from fragment atoms to structure atoms. Each functional property was represented 

by exactly one symbol. 

Unlike amino acid or nucleotide sequences, small drug-like molecules contain 

branches and cycles. This was a major obstacle in the application of sequence alignment to 

virtual screening, since this technique can only be applied to linear sequences of symbols. As 

a consequence, molecules and their properties had to be encoded as linear representations. To 

ensure the detection of identical molecules and close analogues, these representations had to 

be unambiguous, meaning that one molecule can only be encoded to exactly one sequence. 

This problem was solved by canonical vertex labeling, where an index is assigned to each 

vertex in a molecular graph, and the assignment of indices to vertices is identical each time 

the same molecular graph is handled. This canonical set of indices defines the order of 

vertices in the linear representation of molecules. Several algorithms for canonical vertex 

labeling were investigated. They belonged to two classes: Algorithms developed for canonical 

atom labeling and techniques for dimensionality reduction. To the best of knowledge, this 

work represents the first application of dimensionality reduction to graph linearization. 

 Sequence alignment relies on a scoring system that rates symbol equivalences 

(matches) and differences (mismatches) based on functional properties that correspond to 

rated symbols. Existing scoring schemes are applicable only to amino acids and nucleotides. 

In this work, scoring schemes for functional properties in drug-like molecules were developed 
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based on property frequencies and isofunctionality judged from chemical experience, pairwise 

sequence alignments, pairwise kernel-based assignments and stochastic optimization. The 

scoring system based on property frequencies and isofunctionality proved to be the most 

powerful (measured in enrichment capability). All developed scoring systems performed 

superior compared to simple scoring approaches that rate matches and mismatches uniformly. 

The frameworks proposed for score calculations can be used to guide modifications to the 

atom-typing in promising directions. 

The scoring system was further modified to allow for emphasis on particular symbols 

in a sequence. It was proven that the application of weights to symbols that correspond to key 

interaction points important to receptor-ligand-interaction significantly improves screening 

capabilities of PhAST. It was demonstrated that the systematic application of weights to all 

sequence positions in retrospective experiments can be used for pharmacophore elucidation. 

A scoring system based on structural instead of functional similarity was investigated and 

found to be suitable for similarity searches in shape-constrained datasets. 

 Three methods for similarity assessment based on alignments were evaluated: 

Sequence identity, alignment score and significance. PhAST achieved significantly higher 

enrichment with alignment scores compared to sequence identity. p-values as significance 

estimates were calculated in a combination of Marcov Chain Monte Carlo Simulation and 

Importance Sampling. p-values were adapted to library size in a Bonferroni correction, 

yielding E-values. A significance threshold of an E-value of 1*10-5 was proposed for the 

application in prospective screenings. 

PhAST was compared to state-of-the-art methods for virtual screening. The 

unweighted version was shown to exhibit comparable enrichment capabilities. Compound 

rankings obtained with PhAST were proven to be complementary to those of other methods. 

The application to three-dimensional instead of two-dimensional molecular representations 

resulted in altered compound rankings without increased enrichment. 

 PhAST was employed in two prospective applications. A screening for non-nucleoside 

analogue inhibitors of bacterial thymidin kinase yielded a hit with a distinct structural 

framework but only weak activity. The search for drugs not member of the NSAID (non-

steroidal anti-inflammatory drug) class as modulators of "-secretase resulted in a potent 

modulator with clear structural distiction from the reference compound. 

The calculation of significance estimates, emphasizing on key interactions, the 

pharmacophore elucidation capabilities and the unique compound rannkings set PhAST apart 

from other screening techniques. 
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4 - Introduction 
 

4.1 - The Drug Development Process 
 

Discovery and development of new drugs is a lengthy and cost-intensive process: Analysis of 

drug design campaigns leading to approved drugs between 1989 and 2002 resulted in 

estimated costs (measured in time and money) of 15 years and up to 2 billion dollar per 

successful campaign depending on therapy and developing firm.1,-3 The first step in target-

based drug discovery (Figure 1) is the identification and validation of a drug target and the 

ascertainment of its role in the disease process. After assays, which are capable of measuring 

activity modulating effects of proposed small organic molecules, are developed, the next 

challenge is the identification of ‘hits’: non-promiscuous binding compounds with known 

structure that exhibit reproducible activity above a certain threshold value.4,5 If their activity 

and selectivity is confirmed and they exhibit novel pharmacological features, they are 

optimized to ‘leads’ with respect to pharmacodynamics and pharmacokinetics. At this stage, 

compounds with unwanted groups responsible for fast metabolization or toxicity are weeded 

out. Each remaining lead is subject to further development into a lead series:  compounds 

exhibiting the same molecular frame (‘scaffold’) coupled with variations in one or several 

positions. These are further optimized regarding their activity, bioavailability, toxicity, 

metabolization and off-target activity. Pre-clinical development involves in vitro and in vivo 

tests. The conducted studies test for effectiveness and especially safety for further testing in 

humans. The following clinical trials are separated into three steps: Phase 1 is an initial testing 

 
 

Figure 1. The drug development process. Development time and number of compounds according to 
diMasi et al. 2003,1 Rankovic & Morphy 2010,2 and Adams & Brantner 2006.3 
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on up to 100 healthy volunteers. The main goal of this clinical study is a first assessment of 

safety in humans and determination of safe dosing ranges. Phase 2 trials involve up to 500 

patients and investigate the candidate drug’s effectiveness. They as well examine short-term 

side effects. In phase 3 drug candidates are studied in a larger number of patients (up to 

5,000). These trials generate statistically significant data regarding efficacy and safety. If a 

drug candidate completes all clinical trials, the developing company files a new drug 

application with the Food and Drug Administration (FDA). There, the complete data 

generated during the drug development process is reviewed. If the FDA concludes the drug is 

safe and effective enough, it is approved. After approval, the production process has to be up-

scaled for large-scale manufacturing before the drug can be marketed. 

The identification of hits and leads is a major milestone in drug development, since by 

lack of active compounds every drug discovery campaign is on hold. The identification of a 

large number of diverse hits and leads is essential. According to the Pharmaceutical Research 

and Manufacturers of America, 10,000 hits are necessary on average to get one drug to the 

market"# 
 

4.2 - From High-Throughput Screening to Virtual Screening 
 

Since the early 1990s ‘High Throughput Screening’ (HTS) has dominated hit generation by 

systematically testing compound libraries containing between 50,000 and 100,000 molecules 

in automated systems. Combinatorial chemistry helped maximizing library size by taking 

advantage of miniaturization and parallel synthesis.7 The systematic combination of building 

blocks allows the generation of more than 100,000 compounds within several months.8 So far, 

107 small organic compounds have been synthesized by man or were encountered in nature.9 

But even cautious estimates of the total number of synthesizable organic molecules (also 

known as ‘chemical space’) exceed values of 1060.10 These estimations are heavily 

constrained, only considering molecules 

$ with up to 30 non-hydrogen atoms  

$ built solely from the elements carbon, nitrogen, oxygen and sulfur 

$ containing a maximum of four rings 

$ containing up to 10 branch points 

 

Collections of known bioactive compounds contain structures with more than 30 non-

hydrogen atoms: Figure 2 displays the distribution of non-hydrogen atom counts in the 



 18!

COBRA11 collection of bioactive reference compounds. As a consequence, the true size of 

chemical space has to be even higher. Implied by these numbers, it remains unexplored to a 

vast majority. 

 

HTS is a suitable method for evaluating existing compounds that have been 

synthesized and stored. But it is limited to this repository due to the fact that it relies on the 

availability of the actual compound. That way, explorations in chemical space by HTS have to 

be preceded by costly and time-consuming syntheses. Speed and cost could be optimized, if 

non-promising candidates were identified and excluded (‘negative design’) from a set of 

possible structures, or if efforts could be focused on the most promising candidates (‘positive 

design’). Advances in computer sciences lead to the emerging field of chemoinformatics: 

“The application of informatics methods to solve chemical problems”.12 It combines aspects 

of computer sciences, chemistry, biology, medicine and pharmacology. These methods allow 

for the computer-based evaluation of chemical compounds with regard to various properties. 

They are based on virtual libraries with the advantages of being independent of synthesized 

compounds and trendmendously faster evaluation compared to HTS, leading to methods for 

compound prioritization known as ‘Virtual Screening’ (VS). VS has been described in 

literature as “the computational equivalent of high-throughput screening, wherein a large 

number of samples are quickly assayed to discriminate active samples from inactive 

samples”.13 In the beginning, computational methods were used for negative design.14 This, 

 
 

Figure 2. Distribution of the number of non-hydrogen atoms per structure in the COBRA collection of 
bioactive reference compounds (version 6.1, 8,311 compounds). Logarithmic Y-axis for better 
visualization of low absolute frequencies. 
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for example, was done by eliminating molecules that judged by their properties appeared non 

‘drug-like’. An example for such a set of criteria is Lipinski’s ‘rule of five’,15 deduced from 

statistics of known drugs. It describes constraints for molecules with high probability for 

sufficient oral bioavailability. Properties are listed in Table 1. These guidelines have been 

updated ever since their original proposition resulting in a larger number of constraints.16 As 

the rule of five was compiled based on analysis of properties observed in drugs, it might not 

be ideally suited for the filtering of promising candidates at the beginning of the drug design 

process.17 As a result, a set of criteria for ‘lead-likeness’ was proposed.18 The corresponding 

compound properties are also listed in Table 1. Virtual screening methods have evolved and 

are now also used for the selection of promising candidates (positive design). Based on the 

origin of the starting point, virtual screening methods can be distinguished in two concepts: 

structure-based and ligand-based methods. 

Structure-based (also: receptor-based19) virtual screening (SBVS) relies on an 

available model of the target obtained by X-ray crystallography or nuclear magnetic 

resonance spectroscopy. The most prominent technique in SBVS is ‘docking’ that aims at 

predicting the most likely binding pose and the corresponding binding energy. But the 

available model might display low resolution or there might actually be no model due to 

induced-fit effects or protein size. In these cases, a homology model for a protein can be built 

with a close homolog as template, and this model will be treated as the actual receptor 

structure. In the absence of an actual structure or appropriate template as well as in parallel to 

structure-based approaches, ligand-based virtual screening (LBVS) is a promising alternative. 

This screening concept relies on the availability of a known active compound as reference 

(‘query’). Screening compounds are ranked according to their calculated similarity to the 

query based on the expectation that compounds with activity against the same target are 

Table 1. Properties of drug-like14 and lead-like18 molecules. Hydrogen-bond donors: nitrogen or oxygen 
atoms with one or more hydrogen atoms, Hydrogen-bond acceptors: nitrogen or oxygen atoms. The 
original desription of the rule of 5 for drug-like compounds does not restrain the number of rotatable 
bonds. 

!
Property Drug-Like Compounds Lead-Like Compounds 

Molecular Mass [Dalton] < 500 < 300 

No. Hydrogen-Bond Donors < 5 < 3 

No. Hydrogen-Bond Acceptors < 10 < 3 

Octanol-Water Partition 
Coefficient (logP) < 5 < 3 

No. Rotatable Bonds - < 3 

!
!
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enriched on early ranks. These methods are based on the ‘similar property principle’ (SPP), 

which assumes a close relationship between structure and activity. It states that similar 

compounds exhibit similar properties.20 The SPP describes the ideal case, where small 

modifications to molecules lead to slight alterations in biological activity. It does not account 

for so called ‘activity cliffs’,21 where small modifications cause drastic activity changes 

(examples in Figure 3). Such effects may occur as a consequence of small modification 

eliminating essential interactions or other constraints such as the necessity to coordinate metal 

ions.23 Methods have been proposed for the characterization of structure-activity relationships 

in order to assess the validity of the SPP for a particular target.23,24 Ligand-based methods can 

even be applied in the absence of active compounds. In this case, actives for close homologs 

of the target can be used as queries. This strategy started under the term ‘ligand transfer‘ and 

is now fully exploited as ‘chemogenomics‘.25 The idea behind these approaches is that 

proteins of the same family most likely exhibit similarities in the overall structure, especially 

concerning the binding pocket. Therefore corresponding ligands should likewise display 

structural and functional similarities. Successful applications to protein kinases and G-

protein-coupled receptors have been reported.26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Activity cliffs. Shown are four vascular endothelial growth-factor receptor (VEGFR-2) 
tyrosine kinase inhibitors with different structures and potencies.The two inhibitors at the top are potent 
and bind with IC50 values of 6 nM. Slight structural modifications result in a decrease in activity by two 
to three orders of magnitude. Example adepted from Eckert et al. 2007.22 
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Even for computational methods, the prediction of activity values for each molecule in 

chemical space or their classification into sets of active and inactives for a particular target is 

not feasible. But these techniques can help to navigate in chemical space, i.e. guiding drug 

design campaigns to interesting regions and limiting the number of compound tested in 

biological assays only to the most promising candidates. This way these techniques help to 

reduce development costs for new drugs and speed up the drug design process: It was shown 

that the combination of VS and HTS reduced the number of compounds that had to be tested 

to find an active to 100 – 1000 instead of 104 – 106 with HTS alone.27 

 

4.3 - Chemical Similarity 
 

The key element of ligand-based virtual screening is the assessment of chemical similarity 

that is more an abstract concept than a calculable property.25 Methods for similarity 

assessment are based on calculations performed on the ‘molecular graph‘ that is defined as a 

“connected undirected graph one-to-one corresponded to the structural formula of a 

chemical compound so that vertices of the graph correspond to atoms of the molecule and 

edges of the graph correspond to chemical bonds between them”.28 In this definition, vertices 

are labeled with an element symbol derived from the periodic table, edges are labeled with an 

integer indicating their bond order. The molecular graph can be used for direct similarity 

assessment through substructure searching. Given a set of active molecules, their maximal 

common subgraph (MCS) can be calculated and used as query in substructure searches.29 

Methods for the identification of a disconnected MCS (maximum overlapping set, MOS) 

identify a set of substructures common to all known actives. The similarity of structures 

matching the MCS or MOS usually also depends on parts of the screening compound not 

matching the query and is located in a value range of 0 (not similar) to 1 (exact match).30 

The molecular graph can also be used for the calculation of ‘descriptors’, where a 

descriptor is “the final result of a logic and mathematical procedure which transforms 

chemical information encoded within a symbolic representation of a molecule into a useful 

number or the result of some standardized experiment”.31 Descriptors can be distinguished by 

the dimensionality of the molecular representation that they are calculated from. Table 2 

represents a short overview on these differences. ‘Fingerprints’ are the combination of several 

descriptors in a vector. As bitstrings they can indicate the absence and presence of certain 

features. Holographic fingerprints on the other hand count the occurrences of certain 

substructures and / or properties. Fingerprints can be compared using several distance metrics 
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(Manhatten distance, Euclidean distance) or similarity measures (Tanimoto coefficient, Dice 

coefficient, Cosine coefficient), of which many can be applied to binary as well as 

holographic fingerprints.33 

 

An abstraction from the molecular graph that is used for similarity assessment as well is the 

‘pharmacophore’. The term was first used by Lemont Kier34 and according to the 

International Union of Pure and Applied Chemistry (IUPAC) is “the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target structure and to trigger (or to block) its biological response”.35 It is 

a purely abstract concept and does not describe a real molecule. The pharmacophore can be 

considered as the set of interactions in the correct spatial configuration that is necessary for 

the activity of a molecule. As a consequence of this definition, not all functional groups and 

the corresponding interaction possibilities present in a particular molecule might be part of the 

pharmacophore. Those are named ‘potential pharmacophoric points’ (PPPs) because it is 

unknown a priori which of them actually contribute to the ligand-receptor interaction.36 

Typical interaction types considered potential pharmacophoric points are hydrogen-bond 

donors, hydrogen-bond acceptors, positive and negative charges and lipophilic as well as 

aromatic features. The first interaction pattern published under the term pharmacophore is 

shown in Figure 4. 

Table 2. Classification of descriptors by the dimensionality of their molecular representation. Adapted 
from Gasteiger & Engel 2003.32 

!

Dimension Description Examples 

0 Properties independent from atom 
connectivity and spatial arrangement 

Atom Counts, bond counts, 
molecular mass, sum of vand-wer-
Waals volumes 

1 Properties depending on local atom 
neighborhoods 

Fragment counts like primary, 
secondary, tertiary and 
quarternary sp3 hybridized carbon 
atoms 

2 
Properties depending on atom 
connectivity but invariant to spatial 
arrangement 

Zagreb index, Wiener path index, 
molecule radius, molecule 
diameter 

3 Properties depending on the spatial 
arrangement of atoms 

Radius of gyration, solvent-
accessible surface volume 

!
!
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An abstraction describing a molecule employing these six interaction types or 

combinations between them is a blurred characterization, as different functional groups can be 

responsible for the same interaction possibilities. Hence, molecules with different structures 

can exhibit the same pattern of potential pharmacophoric points. This potential for ‘Scaffold 

Hopps’ is extremely valuable in the hit identification phase because it generates a more 

diverse set of unrelated starting points compared to methods measuring structural similarity. 

The same concepts of descriptors and fingerprints calculated from the molecular graph can be 

applied to the pattern of potential pharmacophoric points as well. Several successful 

applications of virtual screening methods have been reported.37,38 

 

4.4 - Line Notations 
 

Besides descriptors and fingerprints, the molecular graph can be described as an alphanumeric 

sequence. Compared to descriptors and fingerprints they do not only describe the presence 

and absence of structural features but can also mirror their topological or spatial arrangement 

if the respective property influenced the linearization procedure. An example every chemist is 

familiar with is the systematic IUPAC name of a compound. But several other line notations 

were developed for compound storage, substructure search and duplicate detection. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The first published pharmacophore model, by L. B. Kier, for muscarinic agonists. Adapted 
from Kier 1971.34 
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4.4.1 - Wiswesser Line-Formula Notation 
 

A first version of the ‘Wiswesser Line-Formula Notation’ (WLN) was published in 1954.39 

The WLN assigns symbols to atoms or substructures of a molecular graph. For many atoms 

the WLN symbol is equal to the atomic symbol in the periodic table. Functional groups, ring 

systems, positions of ring substituents and positions of condensed rings are assigned to 

symbols or combinations of symbols. Definitions are chosen in a way that ensures frequently 

met substructures are encoded with only one symbol to keep linear representations short.40 

This way the WLN facilitates searches for particular substructures and functional groups. 

Symbols used for WLN coding of chemical structures are listed in Table 3.41 Examples for 

OH

O

C C C
O

C C C
O

H

C C
O

OH

C C
O

O

b

c
d

e

f

N

 
Table 3. Symbols used for WLN coding of chemical structures. Symbols are listed with increasing 
priority used for unambiguity. 

!

Symbol Usage 

Capital letters A-Z Elements, substructures, branches, bonds, ring 
positions 

Numbers 0-9 Length of alkyl chains, ring number 

“&”; “/”; “-“; “ “ Rings and substitution positions 

!
!

Table 4. Examples for substructure codes used in WLN. 
 

Structure WLN  Structure WLN 

 5   Q 

 9   O 

 
U  

 
V 

 UU  
 

VH 

 
X  

 
VQ 

 
Y  

 
VO 

 

R 
 

substituent 
positions 
B C D E F 

 
 

N 

     
!
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coded fragments are shown in Table 4. Starting from different atoms in the molecular graph, 

many representations of the same molecule in WLN are possible. Unambiguity of WLN 

representations is achieved through a simple rule-based prioritization of possible starting 

points. Coding begins at the element with highest priority based on prioritization order shown 

in Table 3.41 After the starting point is selected, the WLN notation is determined by the 

topology of the molecular graph. Linear representations of molecules in WLN are very 

compact, since complete substructures are condensed to only one symbol. Examples of WLN 

usage are the application to indexing the Chemical Substructure Index (CSI) at the Institute 

for Scientific Information and the CROSSBOW (Computer Retrieval of Organic 

SubStructures by means of Wiswesser) System of Imperial Chemical Industries.42,43 In 1982 

an advanced version of the WLN (AWLN) was published that utilizes more than the 40 WLN 

symbols and has an extended rule set.41 

 

4.4.2 - Representation of Organic Structures Description Arranged Linearly 
 

The ‘Representation of Organic Structures Description Arranged Linearly’ (ROSDAL) syntax 

was developed at the Beilstein institute in 1985 for the Beilstein DIALOG system.44 The 

ROSDAL generation process is straightforward: Integer numbers beginning from 1 are 

assigned to all non-hydrogen atoms randomly, and paths through the molecular graph are 

written in linear order. Atoms are written as their index followed by the element symbol. 

Carbon atoms are an exception to this rule. They are represented just by digits because of 

their high frequency in drug-like compounds. Bonds are represented by symbols 

corresponding to their bond order. Symbols used for ROSDAL coding of chemical structures 

are listed in Table 5. ROSDAL is used as data exchange format in the Beilstein DIALOG-

system. 

Table 5. Symbols used for ROSDAL coding of chemical structures. 
 

Symbol Usage 

Integer numbers Indicate paths through the labelled graph 

Element symbols Element types, carbon atoms are only 
referenced to by their index 

- / = / # / ? Single / double / triple / any bond 

, Delimiter for sequences generated from 
separated branches 
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4.4.3 - Simplified Molecular Input Line Entry System 
 

David Weininger developed the ‘Simplified Molecular Input Line Entry System’ (SMILES) 

while working at the United States Environmental Research Laboratory in 1986.45 SMILES 

are human understandable and very compact. A molecule graph is transformed into a line 

notation following six simple rules: 

$ Hydrogen atoms are omitted, they automatically saturate free 

valences 

$ Atoms are represented by their corresponding atomic symbols 

$ Neighboring atoms in the molecular graph stand next to each 

other in the line notation 

$ Single bonds are represented by “-“, double bonds by “=” and 

triple bonds by “#” 

$ Branches are represented by parentheses 

$ Rings are indicated by identical digits following the element 

symbol of the atoms closing the ring 

 

SMILES generation can start at any vertex in the molecular graph, resulting in a large 

number of possible valid SMILES describing the same molecule. An unambiguous line 

notation named ‘canonical SMILES’ can be created using a two-step algorithm proposed 

under the name CANGEN:46 First, canonical labels are assigned to the vertices in the 

molecule graph. The second step is a depth-first search visiting the vertices with low indices 

with highest priority that concatenates symbols of atoms and bonds and inserts symbols for 

branching and ring closures. The SMILES line notation was subject to several extensions 

designed for special purposes, such as substructure description and reaction notation. 

 

4.4.4 - IUPAC International Chemical Identifier 
 

The ‘IUPAC International Chemical Identifier’ (InChi, originally ‘IChI’ for ‘IUPAC 

Chemical Identifier’) was developed from 2000 to 2005 as a project of the IUPAC chemical 

nomenclature and structure representation division and the National Institute of Standards and 

Technology (NIST).47 The objective of the project was the development of a non-proprietary 

identifier for chemical substances than can be used in print media and electronic data sources. 
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Every InChi starts with the fragment “InChi=” followed by the version number 

(currently 1). Structural information is organized in six layers and sub-layers, describing 

different aspects of a molecule.48 InChi layers are listed and described in Table 6. The InChi 

generation process has three steps: 

$ Normalization: removes redundant information, disconnects salts and metals, 

eliminates radicals if possible 

$ Canonization: creates canonical labels for atoms, ensures unambiguity 

$ Serialization: generates the actual InChi string 

 

A special form of line notation as structure representation is InChiKey. It is a 

condensed version created from InChi through hashing using the Secure Hash Algorithm 

(SHA-256).48,49 InChiKey has a fixed length of 27 characters: The first 14 symbols result 

Table 6. InChi layers, their identification characters and meaning. 
 

Layer Sublayer 
Symbol Sublayer Description 

Main 
/ 
/c 
/h 

chemical formula 
connectivity 
hydrogen 

Specifies bonds separatly for non-
hydrogen and hydrogen-atoms 

Charge /q 
/p 

charge 
proton ballance 

Specifies absolute charge and 
protonation alterations necessary for 
representation without regard to 
protonation 

Stereochemical 

/b 
/t 
/m 
/s 

double bond 
sp3 
sp3 
sp3 

Specifies E/Z- and tetrahedral 
stereochemical properties of a 
molecule 

Isotopic /i isotopic Specifies aberrations from the 
majoritarian isotopes 

Fixed-H /f fixed-H 

Hydrogen-atoms mobile due to 
tautomerism can be bound to specific 
atoms in the original structure 
molecule; if these changes affect 
earlier layers, appropriate changes 
are added to this layer 

Reconnected /r reconnected 

Used for the handling of 
organometallic compounds; 
represents such as one large 
structure instead of two individual 
components; if these changes affect 
earlier layers, appropriate changes 
are added to this layer 
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from a hash of the connectivity information, followed by a hyphen and 8 characters 

representing the remaining layers (except charge), 1 for the InChi version and a checksum 

character. Separated by a hyphen the last character describing the protonation layer. They 

were developed to facilitate easy searching. InChi and InChiKey are currently used by several 

public and commercial databases (for example the Pubchem project, the United States 

National Cancer Institute Database and the Chemical Entities of Biological Interest database 

of the European Bioinformatics Institute) as well as scientific journals like Nature Chemical 

Biology and the Beilstein Journal of Organic Chemistry. 

 

Examples for the described line notations are shown in Figure 5.  

!
!
!
!
!
!
!
Trivial Name:  Chlorpromazine 
IUPAC Name:   3-(2-chlorophenothiazin-10-yl)-N,N-dimethylpropan-1-amine 
WLN:    T C666 BN ISJ B3N1&1 EG 
ROSDAL:  1-2N-3-4-5-6N-7=8-9=10-11=12-13S-14-15=16-17=18-19-6, 7-12, 14=19, 2-

20, 17-21Cl 
SMILES:   CN(C)CCCN1C2=CC=CC=C2SC3=C1C=C(C=C3)Cl 
InChi:  InChI=1S/C17H19ClN2S/c1-19(2)10-5-11-20-14-6-3-4-7-16(14) 21-17-9-8-

13(18)12-15(17)20/h3-4,6-9,12H,5,10-11H2,1-2H3 
InChiKey:  ZPEIMTDSQAKGNT-UHFFFAOYSA-N 
!
!
!
!
!
!
!
!
 
Trivial Name:  Acetylpromazine 
IUPAC Name:  1-[10-[3-(dimethylamino)propyl]phenothiazin-2-yl]ethanone 
WLN:   T C666 BN ISJ B3N1&1 EV1 
ROSDAL:  1-2N-3-4-5-6N-7=8-9=10-11=12-13S-14-15=16-17=18-19-6, 7-12, 14=19, 2-

20,17-21-22, 21=23O 
SMILES:  CC(=O)C1=CC2=C(C=C1)SC3=CC=CC=C3N2CCCN(C)C 
InChi:  InChI=1S/C19H22N2OS/c1-14(22)15-9-10-19-17(13-15)21(12-6-11-

20(2)3)16-7-4-5-8-18(16)23-19/h4-5,7-10,13H,6,11-12H2,1-3H3 
InChiKey:  NOSIYYJFMPDDSA-UHFFFAOYSA-N 
!

Figure 5. Structure diagrams and corresponding line notations of chlorpromazine and 
acetylpromazine. IUPAC name generated by ChemBioDraw Ultra (v12.0, CambridgeSoft, 
Cambridge, USA), SMILES generated by MOE (Molecular Operating Environment v2009.10, 
Chemical Computing Group, Montreal, QC, Canada), InChi and InChiKey generated by IUPAC 
InChi generator v1.02. 
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4.5 - Virtual Screening employing Line Notations 
 

None of the described line notations was developed for virtual screening. That is why most of 

them are not suitable for this purpose. 

ROSDAL has the major disadvantage that it is not unambiguous. The same molecule 

can be represented by several ROSDAL sequences without any string similarity measure 

being able to detect even identical structures. That makes it unsuitable for virtual screening, as 

even identical molecules could not be recognized as such. 

WLN is unambiguous, but the sequence generation process is complicated. Computer 

programs for the automated input and output of molecules in WLN were developed,50,-52 but 

the full set of rules could not be implemented and the automated sequence generation process 

was prone to errors.32 Furthermore the substructure encoding system of WLN has the 

disadvantage that insertions and deletions of one vertex to the molecular graph are not 

necessarily reflected by additions or deletions of only one symbol in WLN notation. As a 

consequence, there is no one-to-one correspondence in the severity of molecule differences 

between their molecular graph and WLN sequence. This is a clear disadvantage for a virtual 

screening method. 

Due to its layered structure, there are different possible InChi representations of the 

same structure despite the fact that InChi is unambiguous. And depending on the way a 

molecule is drawn, in some cases the generation of certain layers is not possible, for example 

the stereo layer from a structure diagram without specified stereochemistry. InChiKey is a 

hashed version of InChi with fixed length. Different structures yield different InChiKey 

representations. But comparing structures by their InChiKey strings is unreasonable, as small 

modifications cause drastic differences at least in the first part of InChiKey because of the has 

operation. The only meaningful result from the comparison of InChiKey representations of 

molecules is the identification of identical molecules. 

SMILES are an unambiguous description of the molecular graph. Except for changes 

in branching and ring closures they mirror modifications to the molecular graph by the 

addition or deletion of the same number of symbols as non-hydrogen atoms are inserted or 

deleted in the graph. These properties make them the best choice of the described line 

notations for the development of virtual screening methods. But as well as the other line 

notations, SMILES is a description of the molecular graph, not of its interaction possibilities. 

The following sections describe the two known virtual screening approaches based on 

SMILES. 
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4.5.1 - LINGO 
 

LINGO is based on the comparison of absolute word frequencies calculated from SMILES 

representations of molecules.53,54 The term ‘LINGO’ refers to a SMILES substring of length 

q. To compare two molecules 

! 

M1 and 

! 

M2  with lengths 

! 

m1 and 

! 

m2 their corresponding 

canonical SMILES are generated and the following preprocessing steps are applied to ensure 

each feature of the molecule is represented by only one symbol: Cl is altered to L, Br is 

altered to R, all numbers indicating ring closures are replaced by 0. Then, all 

! 

(m1 " (q "1))  

substrings of 

! 

M1 and 

! 

(m2 " (q "1))  substrings of 

! 

M2  in modified SMILES representation are 

collected and condensed to a unique set of size l while counting the occurrences of each 

unique LINGO in each SMILES. For similarity assessment LINGO frequencies are used to 

calculate the integral Tanimoto coefficient of the form (Equation 1) 

 

! 

TC =

1"
NM 1 ,i

" NM 2 ,i

NM 1 ,i
+ NM 2 ,ii=1

l

#

l
        (1) 

 

where 

! 

NM 1 ,i
 is the frequency of LINGO 

! 

i  in 

! 

M1 and 

! 

NM 2 ,i
 is the frequency of LINGO 

! 

i  in 

! 

M2 . Calculated similarities are bound between 0 and 1. Besides virtual screening,54 

LINGO has been successfully applied to the calculation of biophysical properties.53 

 

4.5.2 - Comparison by Compression 
 

The Kolmogorov complexity of a sequence 

! 

X  (

! 

K(X)), is defined as the shortest binary 

program that computes 

! 

X  on a computer.55 The conditional Kolmogorov complexity 

! 

K(X |Y )  is the shortest binary program that computes 

! 

X  from 

! 

Y . These definitions can be 

used for the calculation of a distance between 

! 

X  and 

! 

Y , the ‘Normalized Information 

Distance’ (NID) defined in Equation 2.56 It returns values between 0 and 1. 

 

! 

NID(X,Y ) =
max K(X |Y ),K(Y | X){ }
max K(X),K(Y ){ }       (2)

 

 

The Kolmogorov complexity is noncomputable. But it can be approximated by the size of 

compressed representations 

! 

C(X) and 

! 

C(Y ) of 

! 

X  and 

! 

Y . The DEFLATE algorithm (a 
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combination of LZ77 compression57 and Huffman coding58) has been successfully used in a 

virtual screening approach to compress SMILES representations of molecules and calculate 

their similarity as given in Equation 359 

 

! 

S(X,Y ) =1"
min C(XY ),C(YX){ } "min C(X),C(Y ){ }

max C(X),C(Y ){ }     (3)
 

 

 where 

! 

C(XY ) (

! 

C(YX)) is the size of the compressed representation of 

! 

X  and 

! 

Y  (

! 

Y  

and 

! 

X ) concatenated. The only necessary preprocessing step identified was the duplication of 

SMILES to overcome storage overhead effects of the compression algorithm. 

 

4.5.3 - General String Metrics 
 

There are other string metrics that could be applied to the comparison of line notation 

representations of molecules. The Levenshtein distance between two sequences is defined as 

the minimum number of edit operations necessary to transform one sequence into the other 

with insertion, deletion and substitution of a single symbol being the allowed edit 

operations.60 The Damerau-Levenshtein distance uses an additional edit operation: 

transpositions of neighboring symbols.61 Dice’s coefficient can be applied to strings based on 

bigram (substrings of length 2) counts as shown in Equation 462 

 

! 

S(X,Y ) =
2nt

nX + nY          (4)
 

 

 where 

! 

nt  is the number of bigrams common to both strings, 

! 

nX  is the number of 

bigrams found only in 

! 

X  and 

! 

nY  is the number of bigrams found only in 

! 

Y . 
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5 - Study Objective 
 

The described line notations are linear representations of the molecular graph, and as a 

consequence capture only structural properties. But the hit generation phase of a drug 

discovery campaign relies on a preferably diverse set of hits representing independent starting 

points. With ligand-based approaches in virtual screening, these can be generated using 

pharmacophore methods, whereas techniques comparing molecule structures are more 

suitable during the development of lead-series. That is why existing line notations are not 

ideal for the early stage of the drug development process and a way to encode the pattern of 

potential pharmacophoric points as alphanumerical sequence has to be developed, preferably 

with a one-to-one correspondence in the numbers of vertices in the molecular graph and 

symbols in line notation representation. 

The mentioned similarity measures applicable to strings only count symbol identities. 

Not identical symbols are not further distinguished. A line notation representing potential 

pharmacophoric points as symbols would clearly benefit from a similarity measure that is able 

to differentiate between several cases of dissimilarity, because the exchange of certain pairs of 

potential pharmacophoric points is more or less severe than others. A sequence comparison 

method that is sensitive to different cases of not identical symbols is sequence alignment used 

in biology and bioinformatics for the identification of homologue amino acid or nucleic acid 

sequences. So far sequence alignment has been parameterized for such biopolymers. Given 

the existence of a line notation describing functional properties of molecules, a new 

parameterization of global pairwise sequence alignment has to be undertaken before it can be 

used in virtual screening.  

 

5.1 - Pharmacophore Alignment Search Tool (PhAST) 
 

The combination of a line notation describing a linear form of the pattern of potential 

pharmacophoric points of a molecule and global pairwise sequence alignment as similarity 

measure between these sequences was developed under the name ‘Pharmacophore Alignment 

Search Tool’ (PhAST). It represents molecules as unambiguous sequences of symbols 

describing their pattern of potential pharmacophoric points (PhAST-sequence), meaning that 

the program creates exactly the same sequence for the same molecule at every time. But this 

molecule might not be the only one leading to this sequence. Each symbol in a PhAST-
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sequence describes the interaction possibilities of a non-hydrogen atom in the original 

molecule, thus corresponds to a potential pharmacophoric point. The ideal correspondence 

between the pattern of PPPs and the PhAST-sequence of a molecule is illustrated in Figure 6: 

The position of each symbol in the sequence should only depend on graph topology, not on 

PPP type. That way molecules with topologically identical PPP patterns diverging only in one 

PPP type yield identical PhAST-sequences except for the symbols representing the diverging 

PPP types. 

The textual representation of a molecule is created in three steps: 

 

1) Categorization: A graph of potential pharmacophoric points is created, in which each 

non-hydrogen atom of the molecular graph is represented by a vertex. Each vertex is 

colored with a symbol describing the possible interaction of the original atom. This 

atom-typing is fragment-based, employing a set of substructures with pre-defined 

assignments of potential pharmacophoric points to non-hydrogen atoms. Substructure 

searches are carried out using the Molecular Query Language (MQL).63 Types of 

potential pharmacophoric points used in PhAST are listed in Table 7. MQL queries as 

representations of molecular fragments used for atom-typing an their corresponding 

assignments of potential pharmacophoric points are shown in Table 8. 

 

2) Canonization: To ensure unambiguity of PhAST-sequences, vertices in the graph of 

potential pharmacophoric points have to get assigned a unique set of indices (called 

canonical labels) in the integer range from 1 to 

! 

n, where 

! 

n equals the number of 

vertices in the graph. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Outline of the ideal correspondence between molecule and line notation. Exchanges of 
potential pharmacophoric points from A to B (indicated by different shades of grey) only influence the 
PPP types in the line notation, but not the position where this information is coded. 

 
 

A) B) Molecule 

PhAST-sequence 

Molecule 

PhAST-sequence 
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Table 7. Potential pharmacophoric points employed in PhAST and their corresponding symbols used in 
the line notation. 

 

Possible Interactions Symbol 

hydrogen bond acceptor A 

charge positive P 

charge negative N 

lipophilic L 

aromatic R 

hydrogen bond acceptor, hydrogen bond donor E 

hydrogen bond acceptor, polar Q 

hydrogen bond acceptor, hydrogen bond donor, polar U 

no possible interactions O 

 
 

Table 8. MQL63 queries defining pharmacophoric points in PhAST. Symbols are assigned to atoms 
used in the queries from left to right. Queries are used in the given order from top to bottom. 

 

MQL Query PPP Symbols 

c R 

n R 

*[charge<0] N 

*[charge>0] P 

C(=O)-O-H O;N;E 

P(=O)-O-H O;N;E 

S(=O)-O-H O;N;E 

N[allHydrogens=0&totalConnections=3] Q 

N[allHydrogens=1&totalConnections=3](-C')-C' U 

N[allHydrogens=2&totalConnections=3]-C' U 

N[allHydrogens=1&totalConnections=2]=C' E 

N[allHydrogens=0&totalConnections=2](=C')-C' A 

O-H E 

C=O O;A 

C[!bound(~N)&!bound(~O)]-*'[C|F|Cl|Br|I|S] L 

Cl L 

Br L 

I L 

S[!bound(~N)&!bound(~O)]~*'[C|H] L 
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3) Concatenation: To finally create the PhAST-sequence as representation of a molecule, 

the symbols corresponding to the vertices in the graph of potential pharmacophoric 

points created in step (1) are concatenated in the order determined by the canonical 

labels generated in step (2). 

 

The workflow of PhAST-sequence generation is illustrated in Figure 7 using 

chlorpromazine as example. It is noteworthy that, unlike SMILES, a PhAST-sequence lacks 

any explicit description of branching and ring closures in a molecule. This information is only 

implicitly encoded if it was used in the canonization process. 

 

Pairwise sequence alignment was developed as sequence comparison method to answer the 

question whether two amino acid sequences are related.64 To create the alignment of two 

sequences 

! 

X = x1,x2,...,xn  and 

! 

Y = y1,y2,...,yn , their symbols are matched. In this, the symbol 

order is retained and gaps may be inserted to improve the matching (insertion of paired gaps 

is forbidden). Three cases exist: (i) 

! 

xi is aligned to 

! 

y j  and 

! 

xi = y j  (match), (ii) 

! 

xi is aligned 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Figure 7. Outline of the sequence generation process of PhAST. After all atoms are typed, vertices in 
the created graph of potential pharmacophoric points are canonically labeled. The generated indices 
dictate the order of symbol concatenation. 



 36!

to 

! 

y j  and 

! 

xi " y j  (mismatch), (iii) 

! 

xi is aligned to a gap in 

! 

Y  or 

! 

y j  is aligned to a gap in 

! 

X . 

In protein sequence alignment, matches represent conserved residues; mismatches may arise 

from mutations, and gaps from insertions or deletions in an assumed evolutionary process of 

the compared sequences. Consequently, matches are rewarded with a positive score, 

mismatches are, depending on the exact case, either rewarded with a positive score or 

penalized with a negative score, and gaps are penalized with a negative score. The score of 

the complete alignment is calculated as the sum of scores for matches, mismatches and gap 

penalties. The optimal alignment of two sequences is the alignment with the maximum score. 

This way, the alignment identifies similar regions of both sequences, and from these 

similarities the decision can be made whether significant homology exists or whether the 

observed similarities could have occurred by chance. 

There are two types of sequence alignments: global and local. Global alignments span 

the entire length of both sequences, aligning every symbol in each one with a symbol from the 

other sequence or a gap. Local alignments on the other hand identify only the most similar 

region between two sequences that can be highly divergent overall. If the compared sequences 

are very similar, global and local alignments are identical. PhAST-sequences represent whole 

molecules. As a consequence, in order to obtain similarity scores for the original molecules, 

PhAST employs global alignment. The standard technique for this purpose is the Needleman 

Wunsch algorithm based on dynamic programming.64,65 The algorithm depends on a scoring 

function 

! 

s(xi,y j ) that returns scores for symbol matches and mismatches. The original 

algorithm applicable to any gap cost function has complexity of 

! 

O(max(n,m)3) , but for the 

special case of affine gap penalties there is a simplified algorithm with complexity 

! 

O(nm) (

! 

"O(n2)).66 Affine means that the opening of a gap is penalized by a gap open penalty 

! 

d , the 

extension of a gap by one position with a gap extension penalty 

! 

e , with 

! 

d > e . The penalty 

! 

P  

of a gap with length 

! 

g  can be calculated by Equation 5. 

 

! 

P(g) = "(d + (e(g "1))        (5) 

 

The algorithm calculates a two-dimensional matrix 

! 

F  (‘alignment graph’) with three 

entries in each cell 

! 

Fi, j  representing the score of the optimal alignment of initial subsequences 

! 

(x1,...,xi)  and 

! 

(y1,...,y j )  ending with the alignment of 

! 

xi and 

! 

y j  (

! 

Fi, j
D ), 

! 

xi aligned to a gap 

position in 

! 

Y  (

! 

Fi, j
H ) and 

! 

y j  aligned to a gap position in 

! 

X  (

! 

Fi, j
V ). The algorithm is divided 

into two phases: Initialization of border cells according to Equations 6 – 12 and the recursive 
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calculation of remaining matrix elements according to Equations 13 –15. After all matrix 

elements are calculated, the optimal alignment score equals 

! 

max Fn,m
H ,Fn,m

D ,Fn,m
V{ } . 

The actual sequence alignment can be assembled in a traceback procedure starting 

from the traceback step T0 that equals the alignment possibility of sequence ends 

! 

xn  and 

! 

ym  

with the maximum score. The next step  (T1) back in the alignment graph towards sequence 

beginnings is determined by the value in the alignment graph that was used in the 

maximization for the current value. The traceback procedure with corresponding 

maximization possibilities is outlined in Table 9. There might be different optimal alignments 

! 

F1,1
D = s(x1,y1)

! 

Fi+1, j+1
D = s(xi+1,y j+1) +max Fi, j

D ,Fi, j
H ,Fi, j

V{ }

! 

F1, j
D = s(x1,y j ) " (d + e( j "1))

! 

Fi+1, j
H =max Fi, j

D " d,Fi, j
H " e,Fi, j

V " d{ }

! 

Fi,1
D = s(xi,y1) " (d + e(i "1))

! 

Fi, j+1
V =max Fi, j

D " d,Fi, j
H " d,Fi, j

V " e{ }

! 

Fi,0
H = "(d + e(i "1))

! 

F1, j
H = "(2d + e( j "1))

! 

F0, j
V = "(d + e( j "1))

! 

Fi,1
V = "(2d + e(i "1))

 (6)   (13) 

 (7)   (14) 

 (8)   (15) 

 (9)    

 (10)    

 (11)    

 (12)    

!
!

 
 
Table 9. Sequence alignment traceback. The traceback procedure is explained by the step from T0 to T1. 
Besides index adjustments, the procedure is the same for all following steps. From each possible T0 
there are three possibilities for T1. T1 is chosen as the possibility corresponding to the maximum of the 
three possible maxima listed for each T0. 
 

T0 T1 Possibilities Necessary Maximum 

! 

Fn,m
H  

! 

Fn"1,m
H  

! 

Fn"1,m
H " e  

 

! 

Fn"1,m
D  

! 

Fn"1,m
D " d  

 

! 

Fn"1,m
V  

! 

Fn"1,m
V " d  

! 

Fn,m
D  

! 

Fn"1,m"1
H  

! 

Fn"1,m"1
H + s(xn ,ym )  

 

! 

Fn"1,m"1
D  

! 

Fn"1,m"1
D + s(xn ,ym )  

 

! 

Fn"1,m"1
V  

! 

Fn"1,m"1
V + s(xn ,ym )  

! 

Fn,m
V  

! 

Fn,m"1
H  

! 

Fn,m"1
H " d  

 

! 

Fn,m"1
D  

! 

Fn,m"1
D " d  

 

! 

Fn,m"1
V  

! 

Fn,m"1
V " e  

!
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all yielding maximum score. To ensure that the algorithm always returns the same alignment 

for the same pair of sequences the three possibilities for the next step are always checked in 

the order 

! 

Fi, j
H , 

! 

Fi, j
D  and 

! 

Fi, j
V , and a possibility is only accepted as next step if it has higher 

score. If only the alignment score is of interest, performing the traceback procedure is not 

necessary. 

 

Sequence alignments were developed for the comparison of amino acid sequences but are 

applied to nucleotide sequences (deoxyribonucleic acid and ribonucleic acid) as well. With an 

appropriate scoring scheme, each type of sequence can be compared using this technique. For 

protein sequence alignments score matrices like PAM67 (point accepted mutations) or 

BLOSUM68 (block substitution matrix) are a common choice as scoring systems for matches 

and mismatches. These matrices were calculated from multiple reference alignments of 

sequences and the observed substitution frequencies of amino acids. Affine gap penalties 

described in Equation 5 are the standard choice in most applications of global and local 

sequence alignments. But other choices are possible, for example: 

$ constant gap penalty: any gap is penalized with penalty 

! 

p  

$ linear gap penalty: analogue to the affine gap penalty with 

! 

d = e  

$ logarithmic gap penalty: a gap of length g is penalized with 

! 

log(g) 

 

The steps and variable parameters of PhAST are described in Figure 8. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Major steps (dark grey) of PhAST and their variable parameters (light grey). 
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5.2 - Preliminary Parameterization 
 

In a preliminary study a first parameterization of PhAST was identified that exhibited basic 

screening capabilities.69 In this version the Weininger algorithm for graph canonization46 was 

used for canonical labeling of the graph of potential pharmacophoric points. PhAST-

sequences were aligned by the Needleman-Wunsch algorithm.64 

 

5.2.1 - Scoring System 
 

The scoring system used for matches and mismatches is shown Table 10. It is based on the 

idea of entropy scoring, assigning less frequent events higher scores or penalties, that way 

giving them higher influence on the calculated sequence alignment.70 PPP frequencies 

determined from the COBRA collection of bioactive reference compounds are: A = 4.95%, E 

= 1.44%, L = 19.95%, N = 1.22%, O = 24.63%, P = 1.8%, Q = 1.58%, R = 41.61%, U = 

3.11%. The idea of entropy scoring in PhAST is motivated by the fact that frequent PPP types 

like R, L and O form main parts of molecules, with their only function being to ensure other 

PPPs have the correct spatial arrangement. Matches and mismatches between these frequent 

PPP types could occur in an alignment just because of their overall frequency, not because 

they represent the same interaction at the same position in different molecules. 

PPP types can be separated in two groups: single-interaction and multiple-interaction 

PPPs. Scores for single-interaction PPPs were chosen to resemble the corresponding 

frequencies in drug-like molecules determined from the COBRA11 collection of bioactive 

 
Table 10. Scoring scheme for matches and mismatches of potential pharmacophoric points. For a 
description of the interaction possibilities associated with a symbol see Table 7. 

 

 A E L N O P Q R U 

A 8 2 2 -1 -2 -4 4 -4 -2 
E  12 -4 -9 -4 -6 -4 -9 0 
L   2 -2 -2 -2 -4 1 -6 
N    10 -2 -6 -7 -4 -10 
O     2 -2 -4 -4 -6 
P      10 6 -5 4 
Q       14 -9 6 
R        3 -13 
U         16 
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reference compounds, so that the influence of less frequent PPPs increased. PPP types O and 

L are the most frequent ones. As a consequence the corresponding matches get only a reward 

of 2. The less common type A gets a match score of 8. Least frequent types E, N and P 

receive highest score of 10. These scores were chosen arbitrarily. 

Mismatch scores are based on isofunctionality of mismatching types. P and N 

represent opposite interaction possibilities and this mismatch is scored with -6, just like A and 

D. Any mismatch involving O represents a loss of function and is scored with -2, so are 

mismatches of any type with L. N can partly act the same way A does, so this mismatch 

receives minimal penalty of -1. D on the other hand as opposite of A is scores with a higher 

penalty of -3 for the same reason. As A is negatively polarized, the mismatch with P is 

penalized with -4 – stronger than a mismatch with O, but weaker than the PN event. Aligning 

P to D is penalized by -2. 

Events involving multifunctional PPPs are scored following a straightforward scheme: 

All possible unique pairs of single-functional PPPs included in the multifunctional atom types 

are considered and their scores are added up to the final match or mismatch score. A special 

case is type R, as this PPP represents aromatic features. Those represent electron-rich regions 

in a molecule but behave close to lipophilic PPPs. Because of this relation between R and L 

the corresponding mismatch receives a small reward of 1 instead of a penalty despite the fact 

that lipophilic regions do not exhibit this electron-richness. 

Gap penalties for the affine penalty model were determined in a grid search with gap 

open penalty between 2 and 15 and gap extension penalty equal to any value lower than the 

gap open penalty. The combination of gap open penalty -3 and gap extension penalty -1 

showed best results. 

 

5.2.2 - Alignment Evaluation 
 

The global alignment of two sequences identifies similar parts as matched regions. But the 

alignment of symbols between sequences alone does not indicate homology. For this purpose 

alignment evaluation methods have to be used that calculate a similarity based on the 

alignment. A simple and intuitive method is the calculation of ‘percent sequence identity’ 

(PID) between sequences. This method has been used successfully for the identification of 

homologue proteins.71,72 In the preliminary parameterization PhAST assesses similarity 

between two molecules as the PID calculated from the alignment of their corresponding 

PhAST-sequences as shown in Equation 16 
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! 

PID(X,Y ) =
M(A(X,Y ))
L(A(X,Y ))

        (16) 

 

 where 

! 

A(X,Y )  is the global alignment of sequences X and Y, 

! 

M(A(X,Y ))  is the 

number of matches in 

! 

A(X,Y )  and 

! 

L(A(X,Y ))  is the length of the 

! 

A(X,Y ) , that is the length 

of either sequence including gapped positions. This definition is based on a measure proposed 

by Doolittle,71 but in contrast to that first idea of sequence identity calculated from 

alignments it does not exclude terminal gaps.73 This modification is necessary as PhAST is 

supposed to calculate the similarity between complete molecules. The exclusion of regions 

aligned to gapped positions would confine similarity assessment only to fractions of 

molecules and as a consequence calculated similarities would no longer describe relationships 

between complete structures. 

 

5.3 - Retrospective Evaluation 
 

5.3.1 - Dataset 
 

Screening performance of different PhAST configurations and other virtual screening 

methods was assessed through retrospective virtual screenings employing the COBRA11 

collection of bioactive compounds as reference dataset that contains active and inactive 

compounds for different targets. The COBRA library was used in version 6.1 containing 

8,311 molecules with target receptor information compiled from selected scientific journals. 

Retrospective screenings were performed on six targets listed in Table 11. 

 

5.3.2 - Performance Measure 
 

In the scenario retrospective virtual screenings it is known which molecules are active 

against the same biological target as the query. The enrichment capabilities of a virtual 

screening method, meaning the assignment of better ranks to actives than to inactives,  can be 

assessed by the ranks of actives assigned in the screening. Several metrics for this purpose 

have been proposed. Virtual screening aims at enrichment of active compounds on early ranks 

in the ranked screening library. As a consequence, performance on the first part of the ranked 
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library is of special interest and a good performance measure should be able to detect such 

‘early enrichment’. 

The ‘enrichment factor’ (EF) is one of the simplest performance measures for virtual 

screening.74 It compares the ratio of actives to inactives within the first 

! 

n  ranked samples to 

uniform distribution. Typical values for 

! 

n  are 1% and 5% of the library size. The enrichment 

factor is calculated according to Equation 17. 

 

! 

EF(n) =
n+

n
N +

N
         (17) 

 

 where 

! 

n+  is the number of actives in the first 

! 

n  ranked samples, 

! 

N + is the total 

number of actives in the library and 

! 

N  is the total number of compound in the library. The 

enrichment factor is easy to calculate and to interpret but has several drawbacks. It depends 

on the number of actives. For the same 

! 

n  and 

! 

N , increasing 

! 

N + lowers the range of possible 

enrichment factors. Choosing 

! 

n  is critical for the enrichment factor. It is calculated based on 

the number of high ranked compounds instead of the number of different ranks, so it does not 

consider ties. Furthermore the order of actives within the first 

! 

n  compounds does not matter, 

but cases where the 

! 

n+  samples are ranked on the first 

! 

n+  positions should clearly be 

preferred. 

Table 11. Targets in the COBRA library version 6.1 used for retrospective virtual screenings. Shown 
are abbreviations used in this study as well as the number of active compounds. The total number of 
molecules in the COBRA library is 8,311. 

 

Target Abbreviation No. Actives 

Angiotensine-converting enzyme ACE 34 

Cyclooxygenase 2 COX2 136 

Dihydrofolat-reductase DHFR 64 

Factor Xa FXA 228 

Peroxisome-proliferator activated receptor " PPAR" 44 

Thrombin THR 183 

Total  689 
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The receiver ‘operating characteristic’ (ROC) curve plots the true positive rate over 

the false positive rate.75 But the visual comparison of a multitude of ROC curves would not be 

feasible. The corresponding are under the curve (ROCAUC) is easy to calculate and became 

an established performance measure for ranking methods. ROCAUC can be calculated 

according to Equation 18. 

 

! 

ROCAUC =
1

(nN)
Fa (k) Fi(k) " Fi(k "1)[ ]

k=2

N

#      (18) 

 

where 

! 

N  is the library size, 

! 

n  is the number of actives, 

! 

Fi(k)  is the cumulative count 

of inactives at rank 

! 

k  and 

! 

Fa (k)  is the cumulative count of actives at rank 

! 

k . It equals the 

probability of ranking a randomly chosen positive sample better than a randomly chosen 

negative sample. Early enrichment is visible in ROC curves, but ROCAUC fails in the 

detection of such behavior. The ROCAUC score of a random model that has to be 

outperformed, corresponding to uniform distribution of actives in the screening library is, 0.5. 

The ‘Boltzmann-enhanced discrimination of receiver operating characteristic’ 

(BEDROC) is based on the idea of an exponential weighting according to rank.13 It 

emphasizes the beginning of the ranked list, giving more weight to early ranked samples. The 

exponential weighting function can be influenced through an ‘early recognition parameter‘ 

! 

"  

determining the range from the beginning of the ranked list with most influence: higher values 

for 

! 

"  correspond to fewer early ranks dominating the BEDROC score. 20 is suggested as 

default value for 

! 

" .13 BEDROC is calculated according to Equation 19 

 

! 

BEDROC =

e"#ri N
i=1

n

$

Ra
1" e"#

e# N "1
% 

& 
' 

( 

) 
* 

+
Ra sinh(# 2)

cosh(# 2) " cosh(# 2 "#Ra )
+

1
1" e#(1"Ra )

  (19) 

 

 where 

! 

N  is the number of compounds in the library, 

! 

ri is the rank of the 

! 

i -th active 

and 

! 

Ra  is the ratio of actives. Because of its ability to detect early recognition, in this work 

BEDROC was used for performance evaluation inretrospective screenings, with 

! 

" = 20. The 

BEDROC score of a random model that has to be outperformed, corresponding to uniform 

distribution of actives in the screening library, is 

! 

1 "  = 0.05 for 

! 

"  = 20. 
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5.3.3 - Significance Assessment 
 

When two virtual screening methods or different parameterizations of the same 

method perform different in retrospective virtual screenings, indicated by different scores 

received from the performance measure of choice, the question is whether this difference is 

significant. The most powerful solution to the problem of significance assessment found so 

far is a paired permutation test.76,77 It has the null hypothesis that virtual screening method P 

performs significantly better than method Q. Assuming p and q are rank lists of actives 

resulting from the virtual screening methods, the null hypothesis requires that – with 

BEDROC as example – BEDROC(p) > BEDROC(q). As each active has two ranks, one in p 

and one in q, new rank lists p* and q* can be created by swapping its rank in p with its rank in 

q for each active with probability 1/2. This was repeated 104 times and the frequency of the 

event that BEDROC(p) – BEDROC(q) is less than BEDROC(p*) – BEDROC(q*), the type I 

error rate for the null hypothesis, was used as p-value for significance estimation. 0.05 and 

0.01 were used as significance levels. 
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6 - Influence of Canonical Atom Labeling on Similarity Searching 
 

This section discusses the publication listed as Appendix A. 

 

6.1 - Motivation 

 
The preliminary parameterization of PhAST employed the Needleman-Wunsch algorithm for 

global sequence alignment.64 Other alignment algorithms have been proposed. A faster 

algorithm described in Durbin et al. 1998 (referred to as FSM algorithm) gains computational 

speed through simplifications made for the alignment process: The introduction of subsequent 

gaps in both sequences is forbidden, they have to be separated by at least one match or 

mismatch.78 The assumption of two insertions or deletions not following directly onto each 

other is biologically valid and reduces the number of necessary computations. The alignments 

obtained with this algorithm are guaranteed to be identical to those calculated by the 

Needleman Wunsch algorithm if the sum of both gap penalties is lower than the lowest 

mismatch score.78 If that is not the case, resulting alignments might differ slightly. The FSM 

and Needleman-Wunsch algorithm were compared in this study in a set of 689 virtual 

screenings (vide supra). Similarity of results was assessed by the respective retrospective 

performance measured using BEDROC and the correlation of rankings obtained with each 

algorithm for the same screening. Both algorithms were compared in the same preliminary 

paramaterization (vide supra). 

 

The preliminary parameterization of PhAST had two drawbacks that conflicted with the ideal 

case of line notation and sequence comparison. 

First, it employed the Weininger algorithm for graph canonization46 as linearization 

method applied to the pattern of potential pharmacophoric points (PPPs) associated with a 

molecule. Many properties used for vertex prioritization in this algorithm depend on atom 

types in the original molecule: atomic symbol, number of neighbors, number of connected 

vertices and the number of connected vertices that are non-hydrogen atoms. Because this 

conflicts with the idea of a line notation that depends only on graph topology (cf. Figure 6), 

several other methods for graph canonization were investigated. In addition to the Weininger 

algorithm two other algorithms developed for canonical atom labeling of chemical structures 
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were included in this survey: The Jochum-Gasteiger algorithm79 and the method developed by 

Prabhakar and Balasubramanian.80 All three algorithms were evaluated in an implementation 

adapted to the problem of indexing vertices in a graph of potential pharmacophoric points 

instead of a molecular graph. In a second implementation, each algorithm was modified in a 

way that prioritization criterions depending on the atom type or potential pharmacophoric 

point were excluded from the prioritization process. Besides these algorithms originating from 

molecular graphs, methods developed for dimensionality reduction were investigated for 

graph linearization. They can be applied to this problem by embedding the graph of potential 

pharmacophoric points in one dimension, yielding a linear sequence of vertices from which 

canonical labels are deduced. Methods investigated were Principal Component Analysis,81 

Laplacian Eigenmaps,82 Isomap83 and Minimum Volume Embedding.84 The necessity of 

graph canonization was proven by comparison to a random model for symbol concatenation. 

Second, percent sequence identity (PID)71 is not sensitive to different types of 

mismatches. Sequence alignment itself is sensitive to these differences as they are scored 

differently. But calculating PID for alignment evaluation, these differences are neglected. The 

alignment score on the other hand depends directly on these scores. Furthermore it was shown 

for protein sequence alignments that the alignment score is more suitable to the detection of 

homologues compared to PID.85 Due to these reasons the alignment score as method for 

evaluation of global alignments of PhAST-sequences was investigated, comparing two 

variants of PID and three measures derived from the alignment score. All combinations of 

canonization algorithm and alignment evaluation measure were evaluated in a set of 689 

retrospective virtual screenings, optimizing gap penalties in a grid-search.  

 

Algorithms used for graph canonization compared in this study employed diverging 

principles. The Jochum-Gasteiger algorithm assigns vertices based on burriedness, the 

Weininger algorithm creates equivalence classes based on toplogical properties and the 

Prabhakar-Balasubramanian method labels subsequent vertices on uninterrupted paths 

through a graph. Methods for dimensionality reduction applied to graph linearization included 

linear as well as non-linear methods. An ideal canonization algorithm would mirror 

modifications to the molecular graph in the corresponding PhAST-sequence without changes 

to subsequences originating from unchanged subgraphs. In order to assess to what degree the 

compared algorithms comply with this ideal case, PhAST-sequences generated from 

molecules with small topological and functional alterations were compared with regard to 

neighborhood relations between vertices and symbols. 
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6.2 - Discussion 
 

Changing the alignment algorithm from Needleman-Wunsch to FSM was a significant 

improvement for PhAST as virtual screening method. With FSM, calculated alignments were 

not the exact optimal alignments in some cases, but high correlation between ranked lists 

obtained in screenings indicated that the method still was suitable for virtual screening. The 

comparison speed more than doubled. Both, retrospective and prospective applications benefit 

from this speed-up: The number of parameterizations that can be evaluated in retrospective 

experiments increases as well as the size of libraries that can be screened for hits in the same 

time. 

 

Graph canonization was shown to be a necessary step in PhAST-sequence generation. 

Retrospective performance significantly increased if the Weininger algorithm for canonical 

labeling was employed instead of randomized symbol concatenation. But differences between 

canonization algorithms measured by their retrospective performance were dominated by 

those caused by the alignment score as alignment evaluation measure. This outcome was not 

expected. PID and the alignment score evaluate the same alignments, but the alignments 

themselves are altered if PhAST-sequences are generated using different canonization 

algorithms. So the expectation was for the variable influencing generation of PhAST-

sequences to have higher influence. 

Although differences between alignment evaluation methods were more severe, the 

canonization algorithm influenced retrospective performance as well. Highest retrospective 

performance was observed with Minimum Volume Embedding employing a Diffusion 

Kernel. This technique of non-linear dimensionality reduction relies only on distances 

between vertices in the graph of potential pharmacophoric points measured based on 

topological distances. This way it is independent from atom types in the molecular graph and 

corresponding types of PPPs. This way, it is consistent with an the concept of an ideal 

canonization algorithm. 

 

The analysis of canonization robustness against modifications to the molecular graph showed 

that none of the compared algorithms retained PhAST-sequence subsequences corresponding 

to identical subgraphs unaltered. Nevertheless all canonization algorithms succeed in 

generating PhAST-sequences yielding enrichment. This indicated that global sequence 

alignment as sequence comparison method was flexible enough to compensate for these 
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deficiencies. Comparison of canonization algorithms by their ability to retain symbol order 

revealed similarities between methods. Dimensionality reduction methods exhibited a 

diverging behavior compared to methods specifically designed for canonical atom labeling. 

But computational cost for this analysis was higher than actually performing a complete 

retrospective comparison due to the large number of altered molecular graphs. As a 

consequence, this kind analysis is suitable for the comparison of algorithms. But for 

assessment of screening performance, retrospective experiments remain the method of choice. 

 

Findings of this study helped to point further investigations and development of PhAST into 

promising directions. Findings for the alignment of amino acid sequences have been affirmed 

for PhAST-sequences as well: The alignment score was more suitable for the detection of 

similarities (amino acid sequences: homologues) than PID. Differences between PID and the 

alignment score were significant. In combination these results encourage the implementation 

and evaluation of further alignment evaluation measures. For proteins, it has been shown that 

measures based on significance estimation are more suitable for reliable homologue 

identification than both, PID and alignment score.85 Several approaches for the calculation of 

p-values have been published with regard to local alignments only.86-89 But only methods 

applicable to global alignments can be investigated in PhAST. 

 

Concluding, PhAST was significantly improved in this study. The parameterization with 

highest observed retrospective performance was: 

 

• Canonization:   Minimum Volume Embedding, Diffusion Kernel 

(diffusion parameter 0.4), covalent connectivity 

• Gap Open Penalty:   5 

• Gap Extension Penalty:  1 

• Alignment Evaluation:  Alignment score normalized to alignment length 

 

This parameterization was used as basis of all further investigations. 
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7 - Influence of the Third Dimension on Text-based Similarity 
Searching 
 

This section discusses the publication listed as Appendix B. 

 

7.1 - Motivation 
 

Descriptors calculated from two-dimensional (2D) molecular representations have been 

successfully applied in virtual screening campaigns.37,38 But bioactive conformations of 

compounds are three-dimensional, as receptor structures are three-dimensional as well. 

Because of this fact, virtual screening methods handling three-dimensional (3D) 

conformations should yield better results, manifesting in higher enrichment observable in 

retrospective experiments. This should at least be true if the bioactive conformation of 

molecules is known. For most compounds this ideal case does not apply, but computational 

methods for the generation of low-energy 3D conformations have been developed. Until 

today there is no agreement whether 2D or 3D descriptors should generally be preferred.90,91 

In order to investigate whether PhAST can benefit from the application to three-

dimensional conformations of molecules, the canonization process was modified. All methods 

for dimensionality reduction employed as canonization algorithms were applied to 3D 

conformations and systematic 2D structure diagrams in order to assess differences in 

screening performance. In case of Minimum Volume Embedding, additional kernel functions 

were investigated for this purpose. Because computational cost increases with increasing 

number of compared molecules, only the best performing version identified in the application 

to single 3D conformations was evaluated in retrospective experiments with multiple 

conformations per molecule. 

Another step in PhAST that can be modified to exploit 3D information is the 

alignment algorithm itself. For protein sequence alignment scoring systems have been 

proposed that reward structural instead of functional similarity. These methods succeed in the 

identification of similar proteins by shape comparison. Six different parameterizations of 

PhAST employing such a technique named ‘Double Dynamic Programming’ (DDP)92 were 

compared for the evaluation of the applicability of this method to the comparison of small 

organic molecules. 
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There are a multitude of available virtual screening techniques. New methods are only 

useful if they yield new chemical entities on early ranks. The novelty of PhAST in this 

context was assessed in comparison to common methods. For this comparison, retrospective 

performance (measured by BEDROC) including the significance of differences in enrichment 

capability and ranks of actives measured by rank correlation93 were used as similarity 

measures. Data fusion, the combination of complementary screening methods, has been 

reported to enhance screening perfomance.94 But to the best of knowledge, so far no criterion 

for the selection of such fusion candidates was proposed. This study investigated rank 

correlation for this purpose by celecting a suitable method that was then combined with 

PhAST. 

 

7.2 - Discussion 
 

Retrospective comparison of different canonization algorithms employed in PhAST applied to 

2D and 3D representations of molecules demonstrated that the dimensionality of molecular 

representations influences screening behavior. But differences were observed mostly in 

compound ranking, not in overall enrichment. The application of Minimum Volume 

Embedding employing a Diffusion Kernel in combination with covalent connectivity to 2D 

structure layouts still displayed best screening performance. Screening performance was 

increased by usage of multiple 3D conformations. But compared to the increase in 

computational cost, the increase was too small to justify this rise in cost. 

 PhAST was shown to have screening performance comparable or superior to other 

screening approaches. But the comparison of ranked lists obtained with different screening 

methods revealed that rankings calculated with PhAST were dissimilar to those of other 

methods. As a consequence, PhAST ranks active compounds on early ranks that are missed 

by other methods. This underlined the novelty of the PhAST concept. 

Descriptions of data fusion methods for virtual screenings mostly describe fusion rules 

or results from combined descriptors that were chosen by intuition. But they do not suggest 

selection criteria for methods selection. In this study, rank correlation was shown to 

successfully identify promising fusion candidates. ‘Pseudoreceptor Point Similarity’ (PRPS)95 

was selected as candidate for data fusion with PhAST. The observed increase in retrospective 

performance was assessed as significant. 
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The application of structural instead of functional scoring systems to the alignment of 

PhAST-sequences for similarity assessment of small molecules yielded enrichment better than 

random active distribution in most cases. But only for cyclooxygenase-2, functional scoring 

systems was outperformed. Due to a small binding pocket, most of the actives in the 

screening dataset are small and possess a common structural element. Only the query 

molecule sharing this element achieved high enrichment. This indicated that structural 

similarity assessment through sequence alignment is intolerant to structural variations. Further 

investigations of structural scoring schemes and combinations with functional score matrices 

should concentrate on this observation by comparing retrospective results for targets with 

similar constraints for active molecules. Furthermore, distances are measured without a 

directional component in the evaluated approach. For amino acid sequence alignments, 

improvements have been developed that place coordinate systems on every residue, enabling 

comparison of directions as well as distances. These methods improved structural scoring for 

proteins and should be evaluated for small molecules as well. 

 

The comparison of PhAST with other methods clearly showed that there is no method for 

virtual screening that performs best on each target used in the comparison. These findings 

suggest that in prospective applications methods should be chosen, evaluated and fine-tuned 

for the application to a particular target to maximize screening success.  

 

Using 3D molecular representations could not increase screening performance in  areasonable 

manner. That is why after this study the recommended parameterization of PhAST for 

prospective application remained: 

 

• Canonization:   Minimum Volume Embedding, Diffusion Kernel 

(diffusion parameter 0.4), covalent connectivity 

• Gap Open Penalty:   5 

• Gap Extension Penalty:  1 

• Alignment Evaluation:  Alignment score normalized to alignment length 
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8 - Influence of Scoring Systems on Text-based Similarity 
Searching 
 

This section discusses the publication listed as Appendix C. 

 

8.1 - Motivation 
 

Scoring system for protein sequence alignments are based on mutation rates manifesting in 

observed amino acid exchanges.67,68 Given a set of multiple sequence alignments, scores can 

be calculated systematically using an established and well-founded framework. Scores in the 

PhAST score matrix for potential pharmacophoric points (PPPs) on the other hand were 

chosen only from conceptual isofunctionality of types and observed frequencies in drug-like 

molecules. A modification of the underlying atom-typing would change those frequencies and 

could affect the applicability of the existing scoring scheme. Minor changes in the 

assignments of PPPs to substructures would reflect in altered PPP frequencies. Major changes 

like the introduction of completely new interaction types (for example: so far no purely 

hydrogen-bond donor functionality has been assigned) would require an extended scoring 

scheme including all new types of matches and mismatches. Systematic approaches to score 

calculations are preferable to intuition-based scoring because they enable rapid computation 

of new score matrices and their evaluation. Because of these reasons principles from score 

calculations in amino acid score matrices were evaluated for PPPs of drug-like molecules in 

this study based on the six compound classes in COBRA used for retrospective evaluation. 

The only concession necessary was the limitation to pairwise comparisons instead of 

multiple sequence alignment.96 This was due to the sequence generation process including 

Minimum Volume Embedding: Small modifications can cause the one-dimensional 

coordinate system to invert. As a consequence, the correct comparison direction of a sequence 

pair is not known, and both possible combinations have to be evaluated. For n sequences there 

are 2n possible combinations of orientations. Calculating this amount of multiple sequence 

alignments was not feasible, and it is unclear whether the correct one, in which all sequences 

have the correct orientation, can be identified at all. In addition to sequence alignments, a 

kernel-based assignment method97 was evaluated. It operates on graphs and circumvents 

mismatches occurring in sequence alignments due to positioning compromises during 

linearization. 
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Besides systematic approaches for score calculation, stochastic optimization was 

applied to match and mismatch scores. This optimization iteratively proposed and evaluated 

new solutions and generated derivatives of the most promising one. 

The application of the same score matrix to each position in a PhAST-sequence gives 

equals weight to all symbols of the same type. But as already implied by the definition of the 

term pharmacophore, this is not correct: The pharmacophore comprises only the interactions 

necessary for activity, not all possible interactions. The logical consequence was the 

application of weights to symbols in PhAST-sequences corresponding with interactions 

known to be essential for ligand-receptor-interaction, leading to position-specific scoring. The 

other way around, if screening performance increases with weights at particular symbols, their 

corresponding interactions are common to other actives and as a consequence most likely 

essential for activity. Both variants of weight application were evaluated in retrospective 

screenings. 

 

8.2 - Discussion 
 

All three methods for score determination yielded score matrices that performed superior to a 

simple uniform scoring scheme. The original scoring system remains significantly superior, 

but the two non-stochastic approaches generated reproducible and comprehensible scores. 

Therefore they are ideal methods for the standardized generation of score matrices that can be 

used for the evaluation of modifications to the interaction types and assignments employed in 

the atom-typing step of PhAST in future studies. Independent runs of stochastic optimizations 

returned similar but not identical matrices that perform not as good as those generated with 

the systematic approaches.  

Two datasets were used in the stochastic optimization of the score matrix employed in 

PhAST. Optimization was stopped after a fixed number of iterations. A better solution would 

have been to use three datasets: Training, test and validation data. The training dataset that is 

subject to the optimization. Retrospective performance on this compound collections serves as 

fitness function for matrix evaluation. Screening performance on a test dataset can serve as 

stop criterion for the optimization: If performance further increases on the training data but 

decreases on the test data, scores are overfitted to the training dataset and optimization should 

be stopped. This way the test data influences optimization, and a third dataset is needed for 

objective evaluation. Retrospective performance on a validation dataset that at no point is 

used for optimization serves as unbiased performance measure. But publicly available and 
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well-curated datasets for ligand-based virtual screening methods rare. The maximum unbiased 

validation dataset (MUV)98 was designed to eliminate analogue bias (high structural similarity 

between actives) and artificial enrichment (actives structurally too dissimilar from inactives), 

both leading to too optimistic estimations of screening performance. The resulting dataset 

turned out to be too hard for well-established screening methods.99 Furthermore the binding 

modes of compounds are unknown and inactivity of presumed inactive compounds is not 

confirmed. That way MUV is not suitable as any one of test, training or validation dataset. 

The COBRA11 and the Krier100 dataset used in this study have unequal numbers of actives 

(and as a consequence: of presumed inactives). For some targets the number of compounds is 

high enough for saturation effects to occur.13 For others it is too low for cross-validation 

approaches to represent generalized performance estimation in a fold. Facing these facts, the 

performed optimization was a knowingly chosen compromise that yielded acceptable results. 

COBRA was chosen as test dataset because it has been used for performance assessment of 

previous parameterizations of PhAST, providing a large set of results that allow a 

comparative interpretation of new results. This demonstrates the need for well-built and 

curated datasets. 

The application of weights to certain PPPs increased screening performance of PhAST 

significantly. So far general screening performance of PhAST was comparable to other 

established methods. But with the possibility to incorporate target- and query-specific 

knowledge about receptor-ligand interaction PhAST becomes superior to these methods. But 

even more important, the reversed application of weights allows the identification of essential 

features. This way PhAST cannot only be used as virtual screening method but also for 

pharmacophore elucidation and information mining in the elucidation of ligand-receptor 

interaction.  

 

The recommended parameterization of PhAST remained: 

 

• Canonization:   Minimum Volume Embedding, Diffusion Kernel 

(diffusion parameter 0.4), covalent connectivity 

• Gap Open Penalty:   5 

• Gap Extension Penalty:  1 

• Alignment Evaluation:  Alignment score normalized to alignment length 

 

Weights have to be chosen based on the particular target and query structure. 
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9 - Comparison of Text-Based Virtual Screening Techniques 
 

The known text-based virtual screening techniques LINGO53,54 and ‘Comparison by 

Compression’ (referred to as CbC)59 are based on SMILES45,46 representations of molecules. 

In order to show the novelty of the PhAST concept compared to these two methods, they were 

compared in retrospective studies on the COBRA11 collection of bioactive reference 

compounds. Criteria were retrospective screening performance measured by BEDROC scores 

(calculated with # = 20)13 and Kendall’s rank correlation coefficient93 calculated from ranked 

lists condensed to active compounds. LINGO and CbC were evaluated as described earlier. 

SMILES were generated with MOE (Molecular Operating Environment, v2010.06, Chemical 

Computing Group Inc., Montreal, Canada). PhAST was used in the identified 

parameterization with best screening performance: Canonization with Minimum Volume 

Embedding, Diffusion Kernel (diffusion parameter 0.4) and covalent connectivity, the 

original scoring scheme for PPPs, gap open penalty = 5, gap extension penalty = 1 and 

alignment evaluation by alignment score normalized to alignment length. Results are 

presented in Table 12 to Table 14. 

 PhAST and LINGO both exhibited higher averaged retrospective performance 

compared to CbC (Table 12). For both, these differences were significant in more than 50% 

of all screenings at both tested significance levels (Table 13). LINGO displayed higher 

retrospective performance than PhAST. But whereas the superiority of LINGO to CbC was 

significant in 78% (76%) of all screenings at 0.05 (0.01) significance level, the difference to 

PhAST was significant only in 53% (51%). The other way around, CbC performed 

significantly better than LINGO in 17% (15%) of all screenings, but PhAST significantly 

excelled LINGO in 43% (42%). As a consequence, the superiority of LINGO to CbC was 

more prominent as that to PhAST. LINGO and PhAST outperformed each other in nearly 

 
 
Table 12. Retrospective performance of PhAST, LINGO and CbC. Screening performance was 
measured as averaged BEDROC score per target calculated with # = 20. The first column presents the 
averaged result for all targets. 

 

 Ø ACE COX2 DHFR FXA PPAR" THR 

PhAST 0.40 0.40 0.40 0.57 0.42 0.25 0.36 

LINGO 0.41 0.59 0.47 0.36 0.39 0.25 0.38 

CbC 0.35 0.50 0.43 0.27 0.31 0.23 0.35 
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identical percentages of screenings. The averaged rank correlation between methods (Table 

14) indicated that rankings created by PhAST were complementary to those of the other 

methods. The rank correlation to CbC was 0.37, that to LINGO was 0.41. Rankings created 

by CbC and LINGO were more similar, with an averaged rank correlation of 0.57. This seems 

reasonable, as both methods use the same representation of molecules (SMILES).  

 In conclusion, the comparison of PhAST to LINGO and CbC proved the usefulness of 

PhAST. It has comparable retrospective to the better performing one of both other methods 

(LINGO). At the same time the created rankings of active compounds diverge. In a 

prospective application this effect would manifest in ranking novel chemotypes at early ranks, 

generating new ideas in the early stage of a drug design campaign. 

 

Table 13. Significance of difference in retrospective performance between PhAST, LINGO and CbC. 
For each method pair and target the percentage of screenings is presented one method performs 
significantly better than the other at 0.05 (0.01) significance level. The first column reports the averaged 
result for all targets. 

 

 Ø ACE COX2 DHFR FXA PPAR" THR 

PhAST 61 (59) 15 (6) 38 (36) 97 (97) 66 (65) 52 (43) 72 (69) 

CbC 33 (31) 71 (62) 58 (58) 2 (2) 29 (27) 27 (23) 24 (23) 

        

PhAST 43 (42) 3 (3) 23 (23) 92 (92) 32 (31) 43 (39) 60 (58) 

LINGO 53 (51) 94 (85) 74 (71) 5 (3) 65 (63) 43 (36) 35 (34) 

        

LINGO 78 (76) 97 (97) 68 (68) 81 (81) 86 (85) 55 (50) 76 (74) 

CbC 17 (15) 0 (0) 27 (26) 13 (9) 11 (8) 18 (7) 21 (21) 
 
 

Table 14. Rank correlation between PhAST, LINGO and CbC. Rankings were purged of inactive 
compounds before calculating Kendall’s rank correlation coefficient. The first column shows the 
averaged result for all targets. 

 

 Ø ACE COX2 DHFR FXA PPAR" THR 

PhAST / CbC 0.37 0.44 0.30 0.41 0.35 0.36 0.37 

PhAST / LINGO 0.41 0.43 0.35 0.48 0.38 0.41 0.40 

CbC / LINGO 0.57 0.71 0.60 0.50 0.54 0.54 0.56 
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10 - Significance-Assesment in Global Sequence Alignment 
 

10.1 - Motivation 
 

Virtual screening yields a ranked list of molecules, with those ranked best that are most likely 

to have desired properties. Ranks of compounds are determined by their similarity to the 

query structure. This poses a perturbing problem: Every VS method will rank any collection 

of molecules, even if the dataset does not contain a single molecule with the desired 

biological activity.101 The similarity scores of most methods are a poor measure of 

significance, as analysis of multiple HTS runs revealed: Even molecules with a Tanimoto 

score102 calculated from Daylight binary fingerprints103 above 0.85 to an active compound 

have only a 30% chance to be active against the same target.104 Similarity measures fail to 

predict that there are no actives in the dataset. Only for structural fingerprints (binary vectors 

coding the presence / absence of structural features) the problem of significance was 

addressed recently,105 yielding a framework for significance estimation.  

PhAST employs sequence alignment for molecule comparison. In the original 

application to amino acid sequences, the significance of local alignments is expressed through 

E-values (the expected number of hits with a score equal or higher to the observed score 

under a random sequence model) or p-values (the probability of a hit with score at least as 

high as the observed score under a random sequence model) for a score 

! 

s. Efficient methods 

for the calculation of p-values for local alignments have been proposed.86-89,106 

The calculation of significance estimates was investigated under the assumption that it 

might improve PhAST in two ways: First, it was shown that for PhAST the effect of 

alignment evaluation on screening performance even excels that of the canonization 

algorithm.107 Screening performance of PhAST employing sequence identity was inferior 

compared to the normalized alignment score. Significance as ranking criterion (with highest 

significance ranked best) might be beneficial to PhAST as ranking method, even though for 

protein alignments it has been empirically found that ranked lists generated by alignment 

score and significance estimates are fairly similar. Second, significance estimates could 

identify screening libraries containing only molecules that most likely do not possess the 

desired biological activity, thus saving assay capacity in a screening campaign only for 

significant screening hits. For alignments of amino acid sequences, this effect already 

improved the identification of homologue proteins.85 
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10.2 - Calculation of p-values 

 

The idea behind the calculation of p-values for sequence alignments is illustrated in Figure 9: 

If two sequences 

! 

X  and 

! 

Y  of lengths 

! 

m  and 

! 

n  yield alignment score 

! 

s, the significance of 

! 

s 

can be determined if the statistical distribution of alignment scores form the alignment of 

! 

X  

with random sequences of length 

! 

n is known. The p-value for score 

! 

s equals the area under 

the curve above 

! 

s. For protein sequence alignments, in the case of gapless local alignments of 

long sequences, empirical studies suggest a Gumbel distribution.108-111 Approximations for the 

more realistic scenario of gapped local alignments have been developed.112,113 Unfortunately, 

only little is known about the random distribution of optimal global alignment scores.114 But 

score distribution of gapless local alignments, gapped local alignments and global alignments 

are all accessible through sampling in a random sequence model. 

All investigated sampling approaches utilize symbol frequencies 

! 

fi  determined from 

the COBRA library of reference compounds in version 6.1, containing 8,311 compounds. 

These are: A = 4.95%, E = 1.44%, L = 19.65%, N = 1.22%, O = 24.63%, P = 1.80%, Q = 

1.58%, R = 41.61% and U = 3.11%. Significance estimates in form of p-values were 

calculated for not-normalized alignment scores that performed best with gap open penalty = 7 

and gap extension penalty = 1. All sampling approaches are explained using chlor- and 

acetylpromazine displayed in Figure 10 as example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Visualization of p-value calculation. If the distribution of scores is known, the p-value of 
score s equals the area under curve above s (highlighted in dark grey). 
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10.2.1 - Simple Sampling 
 

In simple sampling the query sequence 

! 

X  is aligned to a large number (e.g. 105) of random 

sequences of length 

! 

n. The resulting score histogram can be used for the calculation of p-

values. The problem with this approach is that only the region of alignment scores with high 

probabilities is sampled. The rare-event tail (high scores, low probability) is not accessible 

with this technique. Figure 11 shows score distributions obtained with simple sampling: The 

PhAST-sequence generated from chlorpromazine was aligned to random sequences of length 

23, corresponding to the length of the PhAST-sequence of acetylpromazine. The numbers of 

generated scores are 104, 105, 106 and 107. This practical example illustrates the drawbacks of 

simple sampling: The alignment of PhAST-sequences of chlor- and acetylpromazine has 

score 64. The highest score with simple sampling (59) was generated with 107 samples. As 

this maximum sampled score is below the actual alignment score, the p-value calculated for 

the alignment of chlor- and acetylpromazine would be 0. A Lilliefors test115 with the null 

hypothesis of the data coming from a normal distribution was performed with each sampled 

distribution. In each test the null hypothesis was rejected with a p-value below 2.2*10-16. This 

is a strong argument that the distribution of scores obtained from global alignments of 

PhAST-sequences is not of the family of normal distributions. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Comparison of chlor- and acetylpromazine using PhAST. A) chlorpromazine with 
corresponding PhAST-sequence. B) acetylpromazine with corresponding PhAST-sequence. C) 
alignment of PhAST-sequences shown in (A) and (B). PhAST-sequences were generated using 
Minimum Volume Embedding with Diffusion Kernel (diffusion parameter 0.4) and covalent 
connectivity. Sequence alignment was calculated by the FSM algorithm using the original 
PhASTscoring system for potential pharmacophoric points, gap open penalty = 7 and gap extension 
penalty = 1. Alignment score is 64. 
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10.2.2 - Sampling of Rare Events 
 

The rare-event tail of the distribution of alignment scores is accessible using the Metropolis-

Hastings algorithm.116,117 A method implementing this concept in a Marcov Chain Monte 

Carlo (MCMC) Simulation, that will be referred to as ‘Rare Event Sampling’, was proposed 

by Hartmann.89,118 In this work, it was evaluated for the calculation of p-values in PhAST. 

The original method has successfully been applied to significance estimations of amino acid 

sequence alignments. It uses the idea of Importance Sampling119 to estimate a particular 

distribution while having samples generated from another one. The probability distribution 

from which scores are sampled is altered in a way such that the region of interest is sampled 

with high probability. 

The algorithm is based on a Marcov Chain with states 

! 

Ci  and transition probabilities 

! 

pCi ,C j
 between them. The Marcov Chain has to be ergodic, meaning that from one state of the 

chain each other state is accessible through other states in finite time. In this application each 

state of the Marcov Chain represents a global alignment of the query sequence 

! 

X  and a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Simple sampling alignment score distributions. PhAST-sequence generated from 
chlorpromazine was aligned with 104 (A), 105 (B), 106 (C) and 107 (D) random sequences of length 23. 
This length corresponds to the PhAST-sequence of acetylpromazine. The alignment of PhAST-
sequences generated for chlor- and acetylpromazine has score 64. Logarithmic Y-axis for improved 
visualization of low relative frequencies. 
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random sequence 

! 

Yi  with associated score 

! 

si. If the Marcov Chain is in 

! 

Ct  with score 

! 

st  at 

time 

! 

t , a new state 

! 

C * with score 

! 

s* is proposed. It is accepted as state 

! 

Ct+1 with the 

Metropolis probability 

! 

min 1,exp "s T( )[ ], where 

! 

"s = s* #st . If 

! 

C * is accepted, 

! 

s* is 

counted as sampled score. If 

! 

C * is rejected, 

! 

Ct  is accepted as 

! 

Ct+1 and 

! 

st  is counted as 

sampled score 

! 

st+1. Random sequences 

! 

Y * in states 

! 

C * are generated from sequence 

! 

Yt  as 

follows: One position in 

! 

Yi is chosen and deleted by random with all positions being 

equiprobable. A new symbol at this position is chosen according to symbol frequencies 

! 

fi . 

Choice of 

! 

T  has consequences for the region that is sampled: With high 

! 

T  the 

sampling tends towards low scores, with low 

! 

T  towards high scores. To describe the 

distribution of scores over a wide range, simulations must be carried out with several choices 

of 

! 

T . For each run, the unbiased distribution of scores is obtained by scaling relative 

frequencies of scores with 

! 

exp "s T( ) . Histograms calculated with different temperatures can 

be patched together empirically, yielding the final distribution: Simulations with different 

! 

T  

have overlapping regions. Starting with simple sampling and the simulation with maximum 

! 

T  

for each pair of distributions a rescaling factor can be calculated from overlapping regions 

such that the difference between shared scores in the distributions is minimal.  

Equilibration of Marcov Chains can be determined empirically: Two simulations are 

started simultaneously with each combination of sequence length of the random sequence and 

temperature. The first simulation starts from high alignment scores, the second from low 

alignment scores. Equilibration is reached when for the last 

! 

t 2 steps of both simulations 

averaged scores agree within error bars and this is true for the rest of the simulation. 

The original method employs a Marcov Chain with two random sequences instead of 

one fixed sequence (the query) and one random sequence. The described modification allows 

sampling from a more realistic scenario: During searches in databases and libraries the query 

remains always identical. As a consequence the score distribution of this particular query 

sequence and random sequences should be used for significance assessment (Hartmann, 

personal communication). 

Rare event sampling was illustrated using the exemplary case of chlor- and 

acetylpromazine, results are displayed in Figure 12. With 

! 

T  = 2.5, equilibration as defined 

above was reached for the first time after 30 steps (Figure 12A), where the interval between 

sampled steps equals 1000 generated alignment scores. But both chains diverged again after 

ten more steps. Equilibration was reached again 8 steps later (step 48) and maintained for the 

remaining samples. Figure 12B illustrates the effect of different choices for 

! 

T . With low  
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Figure 12. Rare Event Sampling. Illustrated is the example of the PhAST-sequence of chlorpromazine and 
random sequences of length 23, corresponding to the PhAST-sequence of acetylpromazine. A) Equilibration 
time determination for two Marcov Chains sampling with T = 2.5, one starting from high alignment scores, 
the other starting from low alignment scores. Number of alignment scores in steps of size 1000. Dashed lines 
indicate steps where equilibration was reached. After step 48, equilibration was maintained for the complete 
sampling process. B) Sampled distributions with different choices for T. C) Distribution of alignment scores 
sampled with Rare Event Sampling and fits of Gaussian and Gumbel distributions. Gaussian 
parameterization: a = 0.0398, b = -4.963, c = 14.11; Gumbel parameterization: µ = -7.396, $ = 9.2920. 
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values for 

! 

T , high scores are preferred. Figure 12C presents the final distribution of 

alignment scores obtained for the PhAST-sequence of chlorpromazine and random sequences 

of length 23. A Gaussian distribution as shown in Equation 20 

 

! 

f (x) = a*e
"
x"b
c

# 

$ 
% 

& 

' 
( 
2

         (20) 

 

and a Gumbel distribution as defined in Equation 21 

 

! 

f (x) =
1
"
*e

#
x#µ
"

#e
#
x# µ

"

         (21)
 

 

were fitted to this distribution using the Levenberg-Marquart algorithm.120 Fits were 

evaluated by the root mean squared error (RMSE) calculated according to Equation 22 

 

! 

RMSE(G,H) =

gi " hi( )2
i=1

n

#
n

       (22) 

 

where 

! 

G and 

! 

H  are two distributions and n is the respective number of samples. The 

region where probabilities are high agreed well in all three distributions, resulting in an 

RMSE of 3.9*10-4 for Rare Event Sampling and the fitted Gaussian distribution and 2*10-3 

for Rare Event Sampling and the fitted Gumbel distribution. Both values indicate good fits. 

But for the calculation of p-values, the low probability region is of particular interest, so the 

RMSEs were recalculated based on logarithmic values. The recalculated RMSEs were 1.2 for 

Rare Event Sampling and Gaussian and 2.4 for Rare Event Sampling and Gumbel, indicating 

increased divergence in regions with low probability. As illustrated in Figure 12C, the p-value 

for the highest sampled alignment score 69 that was determined as 1.7*10-11 using Rare Event 

Sampling would be 4.6*10-14 in the fitted Gaussian distribution (overestimation by factor 103) 

and 2.9*10-5 in the fitted Gumbel distribution (underestimation by factor 106). These findings 

prove that the alignment scores obtained from global alignment of PhAST-sequences follow 

neither a Gaussian nor a Gumbel distribution, and as a consequence, that efficient sampling 

approaches like Rare Event Sampling are necessary for significance determination in PhAST. 

The p-value calculated for the original alignment of PhAST-sequences corresponding to 

chlor- and acetylpromazin with score 64 using Rare Event Sampling was 1.8*10-9. 
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10.3 - Retrospective Evaluation 
 

Rare Event Sampling for p-value calculation was evaluated in a retrospective screening on the 

COBRA dataset with lisinopril (Figure 13) as query that is known to be active against the 

angiotensin-converting enzyme (ACE).121 Calculated p-values were used as ranking criterion 

with those molecules ranked best that receive lowest p-values. The final ranking was 

evaluated using the BEDROC metric and compared to alignment evaluation methods 

described earlier (PID1, PID2, S1, S2 and S3; see section Appendix A for detailed 

descriptions). Significance of differences in retrospective performance was assessed in a 

paired permutation test with 106 permutations. Ranked lists were compared by their rank 

correlation. 

 

10.3.1 Parameterization 
 

Simulations were carried out for the PhAST-sequence generated from lisinopril and each of 

the 85 sequence lengths encountered in the COBRA library (cf. Figure 2) with 12 

temperatures (0.4, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0, infinity). With each 

parameterization, one simulation starting from high scores and one starting from low scores 

was performed as follows: The first simulation started from high alignment scores. If 

! 

m > n , 

! 

Y0  equaled the first 

! 

n symbols of 

! 

X ; if 

! 

m < n , 

! 

Y0  consisted of a copy of 

! 

X , the remaining 

! 

n "m  symbols were all of type L to minimize mismatch penalties. The second simulation 

started from low alignment scores. If 

! 

m > n , 

! 

Y0  equaled a ‘negative copy’ of the first 

! 

n  

symbols of 

! 

X , where for each symbol in 

! 

X  the symbol with maximum mismatch penalty was 

chosen according to the scoring scheme. If 

! 

m < n , 

! 

Y0  consisted of a negative copy of 

! 

X , the 

remaining 

! 

n "m  symbols were all of type L. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Molecular structure diagram and PhAST-sequence of lisinopril. This compound is a known 
active for the acetyl-converting enzyme. 
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Each simulation sampled 109 scores, but only each 103-th score was used to avoid 

correlations between scores that occur in Marcov Chain Monte Carlo sampling in contrast to 

fully random sequences. This resulted in 2,040 simulations, each returning 106 scores. 

Equilibration was assessed after termination, and both simulations with the same combination 

of sequence lengths and 

! 

T  were combined after equilibration was reached. 

 

10.3.2 - Results and Discussion 
 

Equilibration was reached in all simulations after at most 149,316 steps, with an averaged 

equilibration time of 868 steps. As a consequence, all distributions were calculated from at 

least 1.7*106 scores. 

BEDROC scores calculated with different alignment evaluation methods as similarity 

measure are reported in Table 15. Retrospective performance of p-values was comparable to 

the other alignment evaluation methods with exception of PID2 that had significantly lower 

enrichment. Highest retrospective performance resulted from S2 as alignment evaluation 

method. These results show that p-values used for similarity assessment do not perform better 

than the so far best alignment evaluation method (S2), but yield comparable enrichment. But 

the observed difference was not significant at 0.01 or 0.05 significance level. 

 Ranked lists obtained from the same virtual screening setup with different alignment 

 
Table 15. Retrospective comparison of p-value and other alignment evaluation methods. Reported are 
BEDROC scores and p-values assessing significance of differences in retrospective performance. 
BEDROC scores were calculated with # = 20. p-values were calculated with 106 permutations in a 
paired permutation test. 
 

 PID1 PID2 S1 S2 S3 p-value 

BEDROC 0.4413 0.1239 0.4587 0.4708 0.4468 0.4579 

       

PID1 - < 10-6 0.1175 0.0136 0.3807 0.1090 

PID2  - < 10-6 < 10-6 < 10-6 < 10-6 

Score1   - 0.0732 0.1386 0.4864 

Score2    - 0.0013 0.0917 

Score3     - 0.1226 

p-value      - 
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evaluation methods were compared by their rank correlation. The calculated correlation 

matrix is shown in Table 16. Rank correlation coefficients indicated closest similarity 

between p-value and the three variant of alignment scores. Within these, the not-normalized 

alignment score has closest relation to p-value. This is not surprising, as p-values are 

calculated based on this score. 

The p-value calculated for the top-ranked compound in the performed retrospective 

screening was 1.05*10-14. In order to obtain the same value through simple sampling, at least 

1014 alignments would have had to be calculated – with no guarantee that at least one of the 

sampled scores would be equal or higher to the original score. For the calculation of all 

necessary p-values for retrospective evaluation, 85*12*2*109 = 2.04*1012 alignments were 

calculated. So the evaluation of all alignments with Rare Event Sampling was 100 times faster 

than the calculation of only one single p-value with simple sampling. This real-life example 

emphasizes the usefulness of Rare Event Sampling. 

Significance estimates in form of p-values can be used for the estimation of thresholds 

that maximize hitrates (ratio of active to inactive compounds) and reduce costs in prospective 

screenings. As shown in Figure 14, the early region of the ranked list, where p-values are low, 

was mostly populated with active compounds. Figure 14C presents retrospective hitrates: If 

10-9 would be chosen as threshold to indicate promising candidates for a prospective 

screening, this would result in a hitrate of 50% (7 actives in 14 compounds). The 

determination of a threshold depends upon the cost associated with making a mistake. A 

threshold of 0.01 means that an error occurs with 1% probability. Whether this is stringent 

enough depends on the actual cost of mistakes, for example the evaluation of a screening 

compound from a prospective application in an assay.  

 

Table 16. Comparison of alignment evaluation methods based on rank correlation coefficients. Rank 
correlation was calculated from ranked lists obtained from virtual screenings of lisinopril against the 
COBRA collection of bioactive compounds with the respective alignment evaluation methods. 

 

 PID1 PID2 S1 S2 S3 p-value 

PID1 - 0.1221 0.5350 0.5467 0.5650 0.4894 

PID2  - 0.1430 0.1183 0.0381 0.1662 

S1   - 0.8732 0.7484 0.8862 

S2    - 0.7653 0.8243 

S3     - 0.6624 

p-value      - 
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10.4 - Calculation of E-values 
 

The number of low p-values that has to be expected by chance increases with the number of 

comparisons. This variable cannot be included in the calculation of p-values. As a 

consequence, the p-value for a score 

! 

s has to be modified to account for the number of 

comparisons, yielding an E-value. In statistics, the Bonferroni correction can be used to 

address the problem of multiple comparisons:122 If a statistical test is performed 

! 

n  times at 

significance level 

! 

" , this level may be appropriate for each individual comparison, but not for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Distribution of p-values resulting from screening lisinopril against the COBRA dataset. A) 
Number of compounds with a certain p-value. B) Number of active compounds with a certain p-value. 
C) Retrospective hitrates calculated for certain p-value thresholds. 
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the set of all comparisons. Due to the increased number of observations, the chance of a 

significant event occurring by chance increases. According to Bonferroni, the actual 

significance level can be calculated as 

! 

1" (1"#)n . Another possibility to account for the 

number of comparisons being performed is to lower the alpha value for each test. This can be 

achieved by dividing the significance level by the number of tests performed, hence 

! 

"actual = " n . The converse of this approach is the correction of the p-value by multiplication 

with the number of tests and has already been used in adapted forms for the correction of p-

values in sequence alignment.123 This operation yields an E-value. The relation of p-value and 

E-value of score 

! 

s is described in Equation 23. 

 

! 

E(s) = N " p(s)          (23) 

 

 Several choices for 

! 

N  have been reported or seem reasonable: i) library size 

! 

n  (the 

original Bonferroni correction), ii) 

! 

sc(L)  where 

! 

sc  is the count of symbols and 

! 

L  is the 

library (suggested if variation in sequence lengths is large)123, iii) 

! 

sc(L) sc(q)where 

! 

q is the 

query sequence, iv) 

! 

k " sc(q) " sc(L) , (

! 

0 < k <1). Figure 15 presents the same statistic as 

Figure 14C but with several choices for rescaling. Corrections (i) and (iii) behave nearly 

identical. Which variant of p-value correction is most suitable for prospective application and 

whether a choice 

! 

k "1 for correction (iv) is necessary can only be determined in additional 

retrospective and prospective applications. For the time being, there is no reason in evidence 

to deviate from the original Bonferroni correction. Consequently, a general and reusable E-

value threshold of 1*10-5 seems reasonable. With this threshold, 15 compounds would have to 

be evaluated for their activity in the given example. The retrospective hitrate would be 50%. 

Both are acceptable values. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Retrospective hitrates for certain E-value thresholds resulting from screening lisinopril 
against the COBRA dataset. 
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10.5 - Discussion 
 

The local alteration of sequences based on symbol frequencies during Marcov Chain Monte 

Carlo simulations is an adequate model for protein sequences. But it does not account for 

local constraints due to protein structure or function, which could influence exchange 

frequencies in certain parts of a protein. Drug-like molecules are subject to even more severe 

constraints that make some symbol combinations in PhAST-sequences impossible. Examples 

are a number of R symbols (aromatic) that does not fulfill Hückel’s ‘

! 

4n + 2’ rule124,125 and 

high quantity of positive (P) or negative (N) charges: In the COBRA collection of bioactive 

reference compounds the respective maximum numbers were 8 Ps in a sequence of length 36 

and 8 Ns in a sequence of length 84. The assignment of O symbols in most cases depends on 

the interaction types of the adjacent vertices, which is also ignored in the current approach. 

For application with PhAST, a more realistic model would be to use PhAST-sequences 

generated from random molecules with a fixed number of non-hydrogen atoms. This would 

require the development of a framework for randomized and chemically meaningful 

alterations to molecules of fixed size. 

Equilibration time could be reduced by the application of parallel tempering, yielding 

a Metropolis-coupled Marcov Chain Monte Carlo simulation (MCMCMC).126 There, 

simulations are performed with different 

! 

T  in parallel (

! 

T1 < T2 < ... < Tmax ). After each 

simulation step a pair 

! 

Ti,Ti+1( )  is chosen by random and sequence configurations are 

exchanged with probability 

! 

pe according to Equation 24. But given the observed equilibration 

times this does not seem necessary. 

 

! 

pe =min 1,exp "
1
Ti
"
1
Ti+1

# 

$ 
% 

& 

' 
( ) Si " Si+1( )

# 

$ 
% 

& 
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# 

$ 
% % 

& 

' 
( (       (24) 

 

The published version of Rare Event Sampling involves two randomized sequences, 

whereas the implementation proposed in this work leaves the query sequence fixed. Both 

variants have certain advantages and disadvantages. 

With a fixed query sequence, score distributions have to be calculated in each 

screening. On first sight, this is a clear disadvantage because of the time necessary for 

simulations. But in this scenario it is possible to adapt the sampling process to a particular 

screening setup. First, the application of position weights remains possible. Second, symbol 

frequencies used in the generation of random PhAST-sequences can be adjusted to the 
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screening library. Table 17 presents relative PPP frequencies determined from seven different 

molecule repositories, three for small drug-like compounds, one for lead-like compounds and 

three collections of natural products. The corresponding correlation matrix is shown in Table 

18. Low and in some cases not significant correlation (at 0.05 significance level) is observed 

between members of the two different groups of molecule collections, whereas correlation is 

high and significant at 0.05 and 0.01 significance levels within these groups. Despite the 

argued differences between drug-like and lead-like compounds (vide supra), the distributions 

of PPPs observed in the corresponding subsets of ZINC are fairly similar. Pairwise Chi2 

tests128 performed on absolute frequencies indicate significant differences between each 

dataset pair with a p-value below 2.2*10-16 as well as a test performed on all datasets at once. 

In case of the Chi2 test, calculated significance is most likely due to the large number of 

samples. But these findings point to large and relevant deviations of symbol frequencies 

especially between repositories for drug-like molecules and natural products. These 

differences can be incorporated into significance estimations if score distributions for the 

random model are calculated for each screening. Related to this topic is the atom-typing in 

general: If the atom-typing is changed in the future, new symbols and symbol frequencies can 

be used in the random model. 

With two randomized sequences on the other hand, score distributions can not be 

adapted to symbol frequencies, new symbol types and position weights. But they can be pre-

calculated. Molecules from the COBRA dataset yield PhAST-sequences with 85 different 

lengths. During retrospective evaluations in this dataset, 3,655 combinations of sequence 

Table 17. Relative symbol frequencies in six molecule repositories. Collections of drug-like 
compounds: COBRA11 collection of bioactive reference compounds, Specs vendor catalogue for small 
compounds in version 08/2010 (Sepcs, Delft, the Netherlands), ZINC127 drug-like subset, ZINC127 lead-
like subset. Collections of natural products: Specs vendor catalogue for natural products in version 
08/2010, Analyticon purified natural products of microbial origin release 100915, Anlyticon purified 
natural products of plant origin release 100915 (Analyticon, Potsdam, Germany). Absolut numbers of 
PPPs are: COBRA = 244,505; Specs SC = 4,828,971; ZINC drug-like = 261,917,160; ZINC lead-like = 
30,348,012; Specs NP = 13,460; MEGXm = 33,780; MEGXp = 615,769. 

 

 COBRA 6.1 Specs SC ZINC drug-like ZINC lead-like Specs N MEGXm MEGXp 
A 4.95 4.84 6.30 6.52 4.99 7.83 4.05 
E 1.44 0.49 0.14 0.50 3.47 7.45 12.60 
L 19.65 15.53 15.50 16.56 38.57 36.28 27.59 
N 1.22 0.48 0.13 0.50 0.51 1.58 0.63 
O 24.63 20.83 25.90 24.66 27.42 29.37 37.29 
P 1.80 0.34 0.16 0.23 0.65 0.10 0.06 
Q 1.58 1.69 2.26 1.92 0.30 0.82 0.04 
R 41.61 53.08 46.16 44.88 23.73 14.83 17.66 
U 3.11 2.71 3.46 4.22 0.35 1.73 0.08 
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lengths in alignments are possible. With the corresponding pre-calculated score distributions, 

significance assessment would only require the look-up of the correct distribution for a certain 

combination of sequence lengths. The calculation of all distributions would be costly in terms 

of time, but with an increasing number of performed retrospective and prospective screenings 

this initial investment would amortize. The pre-calculation of score distributions would enable 

the large number of screenings that is necessary to establish reliable E-value thresholds. 

 

In this work, choices for 

! 

T  employed in Rare Event Sampling were based on preliminary 

experiments that determined values suitable for the application of this method to PhAST-

sequences. But nevertheless, different 

! 

T  were chosen more or less arbitrarily. Wang and 

Landau proposed a Monte Carlo algorithm that is independent from choices of 

! 

T .129,130 There, 

acceptance of a proposed step depends on the inverse density of states starting from a uniform 

distribution: The more times a state was visited in the past, the less likely is its acceptance in 

the future. The complete distribution is sampled within defined minimum and maximum 

values in one single simulation. This method can be further enhanced by performing multiple 

random walks in parallel with overlapping minimum and maximum values distributed in the 

interval of the minimum and maximum value of the complete distribution. This sampling 

method would render significance estimations independent from fixed choices of T. 

Table 18. Correlation of PPP frequencies between six molecule repositories. Shown is Pearson’s 
correlation coefficient and the corresponding p-value, the latter in parentheses. Collections of drug-like 
compounds: COBRA11 collection of bioactive reference compounds, Specs vendor catalogue for small 
compounds in version 08/2010 (Sepcs, Delft, the Netherlands), ZINC127 drug-like subset, ZINC127 lead-
like subset. Collections of natural products: Specs vendor catalogue for natural products in version 
08/2010, Analyticon purified natural products of microbial origin release 100915, Anlyticon purified 
natural products of plant origin release 100915 (Analyticon, Potsdam, Germany). 
 

 Specs SC ZINC 
druglike 

ZINC 
leadlike Specs N MEGXm MEGXp 

COBRA 
6.1 

0.98 
(1.03*10-05) 

0.99 
(3.52*10-07) 

0.99 
(1.13*10-07) 

0.79 
(1.13*10-02) 

0.65 
(4.70*10-02) 

0.71 
(3.05*10-02) 

Specs 
SC - 0.99 

(1.20*10-06) 
0.99 

(9.52*10-07) 
0.66 

(4.55*10-02) 
0.49 

(1.26*10-01) 
0.55 

(9.18*10-02) 

ZINC 
drug-like  - 1.00 

(5.93*10-11) 
0.72 

(2.79*10-02) 
0.57 

(8.23*10-02) 
0.65 

(5.03*10-02) 

ZINC 
lead-like   - 0.73 

(2.42*10-02) 
0.58 

(7.57*10-02) 
0.65 

(4.90*10-02) 

Specs N    - 0.97 
(2.77*10-05) 

0.90 
(1.32*10-03) 

MEGXm     - 0.94 
(2.91*10-04) 
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The Bonferroni correction used for p-value adjustment distributes the significance 

level equally on all tests (in this case: alignments). As a consequence it is very conservative, 

because a p-value has to be very low to be still significant after the correction. It controls the 

probability of false positives but increases the probability for false negatives. More recent 

methods for p-value adjustments try to overcome this drawback. Examples are the 

Bonferroni-Holm procedure131 and the Benjamini-Hochberg method.132 Which method is best 

for significance estimation of chemical similarity with PhAST has to be determined in future 

studies. 
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11 - Prospective Application 
 

During its development, PhAST was parameterized and compared to other state-of-the-art 

virtual screening methods in retrospective experiments. During this process and after the best-

performing parameterization was determined, PhAST was employed in prospective virtual 

screenings for the identification of compounds that possess certain activity of biological 

interest. 

 

11.1 - Bacterial Thymidinkinase of Staphylococcus aureus 
 

This section discusses the publication listed as Appendix D. Methicillin-resistant 

Staphylococcus aureus is a widespread pathogenic bacterium.133,134 The combination of 

trimethoprim and sulfamethoxazole (SXT) has antimicrobial activity, as it inhibits the folic 

acid pathway, eventually blocking the bacterial synthesis of deoxythymidine monophosphate 

(dMTP) by thymidylate synthase. But S. aureus possesses a second pathway for the synthesis 

of dMTP by uptake of extracellular thymidine and subsequent phosphorylation via 

Thymidinekinase.135,136 In the presence of high extracellular levels of thymidine, a 

combination of halogenated 2’-deoxyuridine derivates (see Figure 16) has been reported to 

exhibit synergistic antimicrobial activity against S. aureus.137,138 The downside of nucleoside 

analogues as inhibitors of bacterial thymidine kinase is their cytotoxicity. If they are 

phosphorylated to triphosphates and incorporated into DNA, they can lead to single-strand 

breaks.139,140 Therefore, screening for non-nucleoside analogues as inhibitors of bacterial 

Thymidinekinase was of special interest for this work. 

 
 
 
 
 
 
 
 
 

Figure 16. Structure diagrams of two halogenated 2’-deoxyuridine derivates. A) 5-iodo-2’-
deoxyuridine, B) 5-chloro-2’-deoxyuridine. Both are known to have antimicrobial activity against S. 
aureus in combination with SXT with minimal inhibitory concentrations of 0.0625 mgL-1 for S. aureus 
strains ATCC 700699 and ATCC 29213. 
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 PhAST was used in a ligand-based virtual screening for non-nucleoside inhibitors of S. 

aureus thymidine kinase in the version performing best in retrospective experiments at that 

point in development: For graph canonization PhAST employed the Prabhakar algorithm,80 

sequence alignments were calculated with gap open penalty = 5 and gap extension penalty = 

1. The screening library combined the vendor catalogues of Specs (v01/2009, Specs, Delft, 

The Netherlands) and Asinex Gold and Platinum collections (v11/2008, Asinex, Moscow, 

Russia). All compounds were protonated using the ‘wash‘ function of MOE (v2008.10, 

Chemical Computing Group, Montreal, Canada). 5-chloro-2’-deoxyuridine was used as 

query. From the resulting ranked list, four compounds were selected and evaluated for their 

activity.141 Minimal inhibitory concentrations (MICs) of all selected candidate compounds 

were determined in combination with SXT against S. aureus strains ATCC 700699 

(methicillin resistant) and 29213 (not methicillin resistant) in the presence of thymidine.  

Obtained results are presented in Table 19. The only molecule with measured 

inhibitory activity was compound 2. With MICs of 32 mgL-1 (ATCC 700699) and 64 mgL-1 

(ATCC 29213) activity was 50 and 100 fold lower compared to the query compound. Despite 

the decreased activity, PhAST succeeded in the identification of an active compound that is 

not a nucleoside-analog. Compound 2 is a purine-dione whereas the query is a pyrimidine-

dione. This non-nucleoside-analog inhibitor could be further optimized in future studies. 
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Table 19. Results of virtual screening with PhAST for non-nucleoside inhibitors of bacterial thymidine 
kinase. MIC values represent the median of three experiments. 
 

MIC [mgL-1] 
Structure Rank 

ATCC 700699 ATCC 29213 

1 

 

2 128 128 

2 

 

8 32 64 

3 

 

18 128 128 

4 

 

41 128 128 
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11.2 - Application to "-Secretase 

 

"-Secretase (GS) is an integral membrane protein. Among other substrates it processes the 

amyloid precursor protein (APP) as subsequent step to its proteolytic cleavage by !-Secretase. 

During this process it produces preferably amyloid-! (A!) peptides of length 40 and 42.142,143 

A!42 fragments are prone to oligomerize, eventually forming neurotoxic extracellular 

amyloid plaques, which are characteristically found in brains of patients suffering from 

Alzheimer’s disease (AD).144 The process of A!42 oligomerization and the extracellular 

deposition of amyloid plaques are believed to be a major disease-causing step in the 

pathology of AD. This so called amyloid hypothesis served as the rationale for the 

development of GS inhibitors (GSIs) (in order to treat AD).145 As GS processes ca. 80 

peptidic substrates (e.g. the NOTCH receptor), the inhibition of GS has severe consequences 

besides inhibition of APP processing. Only recently (August 2010), Eli Lilly had to stop the 

development of the unselective GSI semagacestat (Figure 17) that reached phase III clinical 

trials.146 The compound failed to slow progression of Alzheimer’s disease. Furthermore, 

declines in cognitive function and a greater risk of skin cancer appeared as side effects. 

Consequently, NOTCH-sparing approaches of %!42 reduction are of urgent need. 

One of these alternative approaches besides GS inhibition is GS modulation. "-

Secretase modulators (GSMs) cause a product shift during APP processing at the expense of 

A!42 to shorter and non-toxic fragments, such as A!38.147 Importantly, they do not influence 

the processing of other GS substrates.148-150 Four examples of GSMs characterized by their 

A!42 inhibitory concentration 50% (A!42 IC50) are reported in Table 20. Compounds 5-7 are 

‘non-steroidal anti-inflammatory drugs’ (NSAIDs) that constituted the first class of GSMs. 

They combine a carboxylic head group with lipophilic aromatic substrutures. They exhibit 

 
 
 
 
 
 
 
 
 

Figure 17. Structure diagram of semagacestat. This "-Secretase inhibitor was developed by Eli Lilly. 
Development was stopped in 2010 after phase III clinical trials revealed its inability to stop the 
progression of Alzheimer’s disease. 
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only weak inhibition of A!42 production, but are reported to be highly active against 

cyclooxygenase (COX).147 As a consequence, their long-term use is associated with COX-

mediated side effects such as gastrointestinal ulceration and increased cardiovascular 

morbidity. Despite its weak activity (305 mM), compound 5 ((R)-Flurbiprofen) reached phase 

III clinical development, where the compound failed to show any beneficial effects.  Its low 

potency and weak blood-brain-barrier permeability are discussed as major reasons for the 

failure.153,154 These problems with NSAIDs therapeutically applied as GSMs emphasize the 

need for not-NSAID-like GSMs.155 
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Table 20. Known "-Secretase modulators and their in vitro activity. Activities for compounds 5-7 
according to Peretto et al. 2008,151 activity for compound 8 according to Kimura et al. 2005.152 

 

Structure IC50 A!42 [µM] 

5 

 
(R)-Flurbiprofen 

305 

6 

 
Indomethacin 

25-50 

7 

 
Sulindac sulfide 

25-50 

8 

 

0.065 
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PhAST was used in a ligand-based virtual screening for GSMs with the best-

performing parameterization identified in this study: Canonization through Minimum Volume 

Embedding employing the Diffusion Kernel with diffusion parameter 0.4 and covalent 

connectivity, gap open penalty = 5, gap extension penalty = 1 and the alignment score 

normalized to alignment length for alignment evaluation. The screening library combined the 

vendor catalogues of Specs (v01/2010, Specs, Delft, The Netherlands) and Asinex Gold and 

Platinum collections (v11/2008, Asinex, Moscow, Russia). All compounds were protonated 

using the ‘wash‘ function of MOE. Compound 8 listed in Table 20 was used as query. From 

the resulting ranked list, four compounds were selected and evaluated. Activity was 

determined in an ELISA as described elsewhere.156 The results are presented in Table 21. 

Three of the four tested compounds (9, 11 and 12) were inactive at 100 µM. 

Compound 10, that was ranked thirteenth, exhibited inhibition of A!42 production with an 

IC50 of 10 µM without influencing A!40 and A!38. It is topologically identical to the inactive 

compound 9. The molecular graphs differ only in the exchange of an aromatic carbon atom to 
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Table 21. Results of virtual screening with PhAST for GSMs. ‘-‘ indicates no activity at 100 µM.  
 

Structure Rank IC50 A!42 [µM]!

9 

 

12 - 

10 

 

13 10 

11 

 

20 - 

12 
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a nitrogen atom from 9 to 10, indicating a steep structure-activity relationship. As a 

consequence, compounds 9 and 10 were assigned adjacent ranks with identical scores due to 

the fact that the graphs of potential pharmacophoric points created during the atom-typing 

step of PhAST are identical. Both are based on a bipyridine framework that is substituted with 

two additional aromatic ring systems. None of them has a carboxylic head group known from 

NSAIDs. Furthermore, they diverge from the linear assembly of four ring systems that can be 

observed in non-acidic GSMs.155 These findings show that the identified active compound is 

pharmacologically disjunct from other classes of GSMs known so far. 

Compound 10 has a 30-fold increased activity compared to compound 5 that reached 

phase III clinical trials. As compound 8 shows, molecules with even higher activity are 

known. But those are highly optimized structures. PhAST is meant as aid in the hit-

identification phase of the drug development process. Promising compounds will be subject to 

further optimization in following stages. As hit, compound 10 is interesting because of its new 

pharmacology, and with its already acceptable activity it has high potential for optimization. 

PhAST succeeded in the identification of a promising GSM with a novel chemotype. 
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12 - Conclusions 
 

This work prove that the concept of molecule comparison by global sequence alignment, until 

now applied to sequences of amino acids and nucleic acids, can be successfully used for the 

comparison small drug-like molecules. The obstacle of proteins and nucleic acids being linear 

and directed structures in contrast to small molecules that contain branches and cyclic systems 

was overcome by canonical atom labeling. Meaningful scoring systems for potential 

pharmacophoric points were calculated based on concepts developed for amino acids. The 

implementation of these methods lead to the development of the Pharmacophore Alignment 

Search Tool (PhAST). This concept was successfully applied to prospective screening 

scenarios. 

 

This work investigated several concepts for graph linearization. Algorithms most suitable for 

PhAST were originally developed for dimensionality reduction. To the best of knowledge, 

this work represents the first application of these methods to the problem of graph 

linearization. The superiority of these methods to algorithms developed for calculating 

canonical sets of atom labels was significant. 

 It was shown that screening performance of PhAST is comparable to that of methods 

already applied in drug development campaigns. At the same time, PhAST was 

complementary to those methods, meaning that it ranked compounds in a unique order. This 

way, it can be applied to prospective scenarios along with other methods, generating a diverse 

set of hit candidates. The incorporation of knowledge about ligand-receptor interactions in the 

screening process by the application of position weights in the query sequence significantly 

increased screening performance of PhAST compared to the standard version. The concept of 

positional weights wa used for pharmacophore elucidation: the determination of key 

interactions common to a diverse set of active compounds. 

 Double Dynamic Programming was developed to calculate alignments of amino acid 

sequences based on structural similarity. In this work, this technique was successfully 

transferred to the comparison of line notations of small molecules. This way it was shown that 

a linear molecular representation is sufficient for shape comparison. 

 The significance of similarity scores is of great importance, as the exclusion of 

insignificant hits obtained in a virtual screening from subsequent activity assessment can 

reduce time and cost of early stages in drug design campaigns. For the most methods used in 
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drug discovery, there are no proposed or established ways of significance estimation. PhAST 

employs sequence alignment for similarity assessment, where this problem has been 

investigated for nearly 40 years. As a consequence, methods developed for significance 

assessment of amino acid alignment scores were re-used for alignments of small molecule 

line notations. In this work, a technique for the sampling of rare events was applied 

successfully to the determination of alignment score distributions of PhAST-sequences. These 

distributions were used for the calculation of p-values, yielding E-values after a Bonferroni 

correction for library size. This way, PhAST can be used for the identification of significant 

hits. 

PhAST was applied successfully in prospective screening campaigns. In both 

applications, to "-Secretase and bacterial Thymidinkinase, active compounds with a structural 

distinction to the query structure were identified. These results prove that PhAST is a suitable 

and valuable method for the identification of diverse hits in the early stages of drug 

development campaigns. 

 

Besides their impact for the development of PhAST, the results of this work disclosed general 

coherences important to virtual screening and drug design in general. The incorporation of 

ligand-receptor interactions in the screening process has high impact and helps to build more 

realistic models. There is no single-best screening method for all drug targets. The application 

of only one screening technique is inferior compared to data fusion approaches or screening 

cascades. As illustrated in the thymdine kinase project, the identification and refinement of 

hits with a diverse set of methods can lead to more potent compounds than one method alone. 

This is due to the multifaceted nature of biological activity. 

 

This work evidenced the capabilities of text-based virtual screening and the effects of 

alterations to its components. The calculation of significance estimates of similarity scores, 

the flexible scoring scheme, the possibility to apply weights to key interaction, its 

pharmacophore elucidation capabilities and the unique rank order of compounds set PhAST 

apart from other screening techniques. Because of these reasons, PhAST has the potential to 

be a valuable asset to any drug development campaign. 
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13 - Outlook 
 

During the development of PhAST it was shown that sequence alignment, developed for the 

comparison of amino acid sequences and nucleic acids, can be applied to the comparison of 

drug-like molecules as well. This analogy was not limited to the general concept of sequence 

alignment but applied in a variety of specific findings such as:  

• the alignment score is an indicator for similarity superior to percent sequence identity, 

• sequence alignment can be used for the comparison of three-dimensional structures, 

• the efficient calculation of p-values is possible through Marcov Chain Monte Carlo 

methods. 

 

These pronounced similarities give plausible reason to the hope that improvements to 

sequence alignment and special variants of this technique developed for the application to 

amino acid sequences and nucleic acids are applicable to PhAST as well. 

Sequence alignment algorithms can be adapted to specific hardware features. An 

implementation tailored to the Intel SSE2 extension calculated alignments 13 times faster.157 

Using field programmable gate arrays (FPGAs), 160-fold acceleration was observed.158,159 

Sequence alignment is an embarrassingly parallel problem, as different sequence pairs can be 

aligned on different processing units without any necessary interprocess communication. 

Several implementations of sequence alignment algorithms that exploit this fact have been 

reported. Using the multi-core Cell processor embedded in the Sony Playstation 3, 36-fold 

speedup was achieved.160 Graphics processing units (GPUs) can be used for parallelization as 

well, due to their large number of highly specialized processors. Using the OpenGL interface 

calculations could be accelerated by factor 5.161 An adaption to the ‘compute unified device 

architecture’ (CUDA) resulted in reported increases of 2-30-fold and 23-fold.162,163 

Parallelization cannot only be achieved by distributing sequence alignment tasks to a large 

number of processing units. Another possibility is the modification of the alignment algorithm 

to calculate single alignments using several processors in parallel. So far, this strategy 

resulted in 2- to 16-fold increase depending on sequence length.164 Besides parallelization 

alignment algorithms can be improved by the usage of ‘query-profiles’ that circumvent the 

time-consuming look-up of scores in the score matrix.157,165 Using heuristics instead of exact 

solutions for the optimal alignment problem results in 50-fold increase.163 PhAST could 

benefit from increased throughput in two ways: First, the number of parameterizations that 
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can be evaluated in retrospective screenings would increase. Especially with regard to time-

consuming calculations such as Double Dynamic Programming and Rare Event Sampling this 

would be a major improvement. Second, the number of screened compounds in prospective 

applications could be increased. Again, Double Dynamic Programming and significance 

estimation through Rare Event Sampling would benefit most, because these calculations take 

hours to days in the current implementation.  

 The capabilities of PhAST to compare three-dimensional molecular structures through 

Double Dynamic Programming have to be further investigated. The current implementation 

cannot differentiate between atoms that diverge in their directional component. For protein 

structures it has been reported that accounting for directional differences improves 

equivalency detection. The second level of dynamic programming could be eliminated if 

spatial equivalence was evaluated with a measure different from sequence alignment. This 

would significantly reduce computational costs. In addition to calculations of molecular 

similarity, matches in the generated alignments could be used as seeds in the calculation of 

molecular alignments.166,167 

 Homologue searches applied to amino acid sequences can be refined in an iterative 

process that calculates a position specific score matrix for the query sequence, as shown with 

the ‘Position-Specific Iterated Basic Local Alignment Search Tool’ (PSI-BLAST).168 

Sequences considered for position-specific score calculations are selected based on a 

significance threshold. The availability of p-values and E-values permits such strategies in 

PhAST as well, if meaningful thresholds can be determined. Threshold determination goes 

hand in hand with further investigation of the significance of global alignments of PhAST-

sequences. The impact of symbol frequency adaption to screening libraries as well as 

compound classes and effects of alternative sampling methods should be investigated for that 

matter. 

 So far multiple sequence alignment96 seemed infeasible for pharmacophore elucidation 

because of the large number of possible sequence orientation combinations and because of 

multiple sequence alignment being a NP-complete problem.169-171 A simple heuristic could 

solve this problem: One sequence is defined as origin, the remaining sequences are integrated 

in the multiple sequence alignment in the orientation that yields highest alignment score to the 

first one. 

 This work investigated pairwise optimal global sequence alignments for the 

comparison of drug-like molecules. For nucleotide or amino acid sequences the optimal 

alignment may not necessarily reflect the correct biological alignment. Since in most cases the 
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true alignment is unknown, methods that generate ‘suboptimal’ alignments close to the 

optimal one have been developed.172-175 An alignment score within a certain score difference 

to the optimal alignment characterizes these suboptimal alignments. Future studies could 

investigate the applicability of suboptimal alignments to the comparison of drug-like 

molecules. 

The current implementation of PhAST compares linear representations that are created 

from molecules in one single step. The disadvantage of this approach is that features from 

different domains of a molecule might end up represented by adjacent symbols in the 

corresponding line notation. This behavior makes PhAST a non-additive similarity function. 

A fragment-based transformation of molecules to line notations would constrain this effect 

locally. Such a ‘Fragment Alignment Search Tool’ (FAST) could increase the sensitivity for 

local similarity. An important variable in this concept is the fragmentation strategy. A strict 

scaffold-and-side-chain-based set of rules as proposed by Bemis and Murcko176,177 requires 

the possibility of meaningful prioritization between sidechains. Alternatives are substructure 

prioritizations analogue to systematic compound name generation178 or the step-wise 

decomposition of molecular structures as proposed by Schuffenhauer et al..179 If preservation 

of locality is strong enough, the application of local sequence alignment as similarity measure 

might be possible.180 

Algorithms utilized for canonization so far either were developed for molecular graphs 

or belong to the field of dimensionality reduction. A field not investigated so far with 

similarities to dimensionality reduction is the projection of vertices to monster curves, such as 

the Hilbert space-filling curve.181 This approach might circumvent disadvantages observed in 

Principal Component Analysis, that places vertices with large distances in between orthogonal 

to the principal component adjacent in the one-dimensional projection. 

The identified modulator of "-Secretase and its inactive structural analogue point to a 

weakness in the pharmacophore model of PhAST as they have identical graphs of potential 

pharmacophoric points: Heteroatoms in aromatic rings get assigned no interaction possibility 

besides aromaticity. In addition, only recently,182 a statistical evaluation of hydrogen-bond 

donors and acceptors has been published than can be incorporated in a more meaningful 

pharmacophore model. 

 

The multitude of aspects and concrete starting points for future investigation underline the 

flexibility of the PhAST concept and give confidence that this approach can be further 

enhanced in future studies. 
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14 - List of Publications 
 

This section lists the contributions of Volker Dirk Hähnke to publications that are part of this 

cumulative dissertation. 

 

(1) Hähnke, V.; Rupp, M.; Krier, M.; Rippmann, F.; Schneider, G. (2010) Pharmacophore 

Alignment Search Tool: Influence of Canonical Atom Labeling on Similarity 

Searching, Journal of Computational Chemistry 31, 2810-2826. 

• Development of the concept to use dimensionality reduction for canonical 

atom labeling 

• Implementation of canonization algorithms: Weininger, Prabhakar, Jochum-

Gasteiger, Principal Component Analysis, Laplacian Eigenmaps, Isomap, 

Minimum Volume Embedding 

• Implementation of kernels: Diffusion Kernel, Euclidean distance kernel 

• Implementation of modified Needleman-Wunsch algorithm and FSM 

algorithm for sequence alignment 

• Development and implementation of the concept to use rank correlation for 

screening result comparison 

• Development and execution of the idea to compare alignment algorithms by 

correlation of retrospective performance obtained with PhAST 

• Implementation of percent sequence identity and alignment score variants 

• Development, execution and analysis of the test for canonization necessity 

• Development, execution and analysis of the test for canonization robustness 

through resistance to structure modifications, selection of modification 

fragments 

• Implementation of the BEDROC metric for enrichment assessment and the 

paired permutation test 

• Molecule preparation: determination of protonation states, calculation of 2D 

layouts 

• Execution of all retrospective screenings and assessment of enrichment through 

BEDROC scores 

• Design of all figures and tables in the manuscript 

• Draft of the complete manuscript 
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(2) Hähnke, V.; Klenner, A.; Rippmann, F.; Schneider, G. Pharmacophore Alignment 

Search Tool: Influence of the Third Dimension on Text-based Similarity Searching, 

Journal of Computational Chemistry, accepted. 

• Implementation of canonization algorithms: Weininger, Prabhakar, Jochum-

Gasteiger, Principal Component Analysis, Laplacian Eigenmaps, Isomap, 

Minimum Volume Embedding 

• Implementation of kernel: Diffusion Kernel, Euclidean distance kernel, 

Gaussian radial basis function kernel, p-step random walk kernel 

• Implementation of the modified Needleman-Wunsch and FSM algorithm for 

sequence alignment 

• Implementation of the LINGO approach for virtual screening 

• Development, implementation and execution of the concept to use 

Levenshtein- and Damerau-Levenshtein distance for similarity assessment of 

canonization algorithms as well as 2D and 3D representations of molecules 

• Development, implementation and execution of the concept to use averaged 

rank correlation for screening method comparison 

• Implementation and execution of the data fusion approach 

• Implementation of Double Dynamic Programming and development as well as 

execution of parameterization concepts 

• Implementation of the BEDROC metric for enrichment assessment and the 

paired permutation test 

• Development, implementation and execution of the concept used for 

calculation of a symmetric distance matrix based on asymmetric significance 

estimations 

• Molecule preparation: determination of protonation states, calculation of 2D 

layouts, calculation of single 3D conformation 

• Execution of all retrospective screenings and assessment of enrichment through 

BEDROC scores with PhAST as well as every other screening method 

• Analysis of screening runtimes 

• Execution and analysis of all clusterings 

• Design of all figures and tables in the manuscript 

• Draft of the complete manuscript (except for the subsection comparing datasets 

by scaffold diversity) 
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(3) Hähnke, V.; Schneider, G. Pharmacophore Alignment Search Tool: Influence of 

Scoring Systems on Text-based Similarity Searching, Journal of Computational 

Chemistry, accepted. 

• Implementation of Minimum Volume Embedding and Diffusion Kernel 

employed for canonization 

• Implementation of the BEDROC metric for enrichment assessment and the 

paired permutation test 

• Development, implementation and execution of the concept to use constrained 

pairwise sequence alignments for the calculation of alignment scores 

applicable to potential pharmacophoric points 

• Development, implementation (except for the ISOA kernel itself) and 

execution of the concept to use constrained pairwise assignments for the 

calculation of alignment scores applicable to potential pharmacophoric points 

• Parameterization of log-odds-score calculations 

• Development, implementation, parameterization and execution of the 

stochastic optimization applicable to the problem of optimizing alignment 

scores of potential pharmacophoric points 

• Development and implementation of the concept of weighted positions in the 

query sequence 

• Development and implementation of the concept to use systematic weighted 

screenings for pharmacophore elucidation 

• Molecule preparation: determination of protonation states 

• Execution of all retrospective screenings and assessment of enrichment through 

BEDROC scores 

• Similarity assessment of molecules by structural fingerprints 

• Execution of all paired permutation tests for significance assessment 

• Analysis of score matrices obtained with the proposed calculation strategies 

and their relations 

• Analysis of weight sets obtained from systematic weighted retrospective 

screenings for pharmacophore elucidation 

• Design of all figures and tables in the manuscript 

• Draft of the complete manuscript 
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(4) Zander, J.; Hartenfeller, M.; Hähnke, V.; Proschak, E.; Besier, S.; Wichelhaus, T. A.; 

Schneider, G. (2010) Multistep Virtual Screening for Rapid and Efficient 

Identification of Non-Nucleoside Bacterial Thymidine Kinase Inhibitors, Chemistry – 

a European Journal 16, 9630-9637. 

• Preceding parameterization of PhAST and implementation of all employed 

algorithms: canonization (Prabhakap algorithm, Isomap), FSM algorithm for 

sequence alignment 

• Molecule preparation: determination of protonation states 

• Calculation of all 184 2D descriptors of MOE (Molecular Operatin 

Environment, v2008.10, Chemical Computing Group, Montreal, QC, Canada) 

• Execution of a Principal Component Analysis to the calculated 2D descriptors 

• Selection of the first 40 principal components 

• Execution of prospective screenings with PhAST 

• Compound selection after the first screening level 

• Substructure search in screening library based on results of the first screening 

level 

• Compound selection after the second screening level 
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Abstract: Previously, (Hähnke et al., J Comput Chem 2009, 30, 761) we presented the Pharmacophore Alignment
Search Tool (PhAST), a ligand-based virtual screening technique representing molecules as strings coding pharmaco-
phoric features and comparing them by global pairwise sequence alignment. To guarantee unambiguity during the
reduction of two-dimensional molecular graphs to one-dimensional strings, PhAST employs a graph canonization
step. Here, we present the results of the comparison of 11 different algorithms for graph canonization with respect
to their impact on virtual screening. Retrospective screenings of a drug-like data set were evaluated using the BED-
ROC metric, which yielded averaged values between 0.4 and 0.14 for the best-performing and worst-performing can-
onization technique. We compared five scoring schemes for the alignments and found preferred combinations of can-
onization algorithms and scoring functions. Finally, we introduce a performance index that helps prioritize canoniza-
tion approaches without the need for extensive retrospective evaluation.

q 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2810–2826, 2010

Key words: global alignment; line notation; molecular graph; similarity; virtual screening

Introduction

The Pharmacophore Alignment Search Tool (PhAST) is a string-
based approach to virtual screening.1 It reduces each molecule
to an unambiguous linear representation describing its pharma-
cophore—called ‘‘PhAST-sequence’’—in three steps: (i) each
nonhydrogen atom in the structure graph is replaced by a poten-
tial pharmacophoric point symbol, hydrogen atoms are removed;
(ii) vertices of this pharmacophore graph are canonically labeled
by the algorithm of Weininger et al.2; and (iii) vertex symbols
are concatenated into a string in increasing order of their canoni-
cal labels. For virtual screening, both the screening compound
collection (‘‘library") and the query molecules are converted,
and the resulting PhAST-sequences are compared using pairwise
global sequence alignment.3 As a result, molecular similarity
values are computed from the alignment, which can be used for
the retrieval of pharmacophorically similar molecules from a
compound database.

Here, we present some modifications to the original method.
To speed up the alignment process, we exchanged the Needle-
man Wunsch algorithm3 with an algorithm proposed by Durbin

et al.4 that has the same asymptotic runtime complexity but a
lower constant, i.e., it runs faster in practice. We compared the
retrospective virtual screening performance of both algorithms
using BEDROC scores5 with Pearson’s q6 and complete ranked
result lists with Kendalls’s s as rank-correlation coefficient.7

We further investigated alternatives for the evaluation of
sequence alignments, namely the alignment score and the nor-
malized alignment score. This was motivated by a previous
comparison of these methods for determination of homology of
protein sequences.8 There, sequence identity was inferior to the
(normalized) alignment score, and both performed worse
than significance-based evaluation methods like the E-value
measure.9

The focus of the present work lies in comparison with differ-
ent canonical labeling algorithms in step (ii) (vide supra) of

Additional Supporting Information may be found in the online version of

this article.
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PhAST. We demonstrate the necessity of this canonization step,
which improves performance over random symbol ordering. In
addition to the algorithms proposed by Weininger et al.2 and
Jochum and Gasteiger,10 we implemented a third canonization
algorithm for molecular graphs suggested by Prabhakar and
Balasubramanian.11 All three algorithms were tested in their
original version and in a modified version that excludes some of
the original vertex prioritization rules. In addition, we used sev-
eral dimensionality reduction methods, namely linear principal
component analysis12 (PCA) and the nonlinear methods Lapla-
cian Eigenmaps,13 Isomap,14 and minimum volume embedding15

(MVE) to reduce two-dimensional graphs to one-dimensional
representations.

We compared the different canonization methods by retro-
spective virtual screening of a collection of drugs and lead com-
pounds (collection of bioactive reference analogues
(COBRA)).16 For statistical evaluation, we used BEDROC5

scores (with a 5 20 as suggested as default value for evalua-
tion5), the permutation test proposed by Zhao et al.,17 and the
Kolmogorov–Smirnov test.18 Finally, we investigated properties
of the canonization algorithms related to their impact on virtual
screening performance. To this end, we quantified the extent to
which neighborhoods of graph vertices are preserved by the
algorithms. Because the small structural modifications of mole-
cules should result in similar PhAST-sequences, we investigated
the effect of adding small fragments to the original molecules.

Methods

Definitions of pharmacophoric points used in step (i) of PhAST
are shown in Tables 1 and 2. We use the original PhAST ver-
sion1 as baseline with the only modification being a gap open
penalty of three instead of five. The reason for this was a change
in preprocessing of compounds [‘‘washing’’ with MOE (Molecu-
lar Operating Environment, version 2010.06, Chemical Comput-
ing Group, Montreal, Canada) instead of using fully protonated
structures], resulting in best retrospective performance for the
new gap penalty. All retrospective screens were performed using
the COBRA library16 (version 6.1, 8311 bioactive compounds;
see Table 3 for a list of the selected targets).

Sequence alignment is used in bioinformatics to decide how
related two sequences (deoxyribonucleic acid (DNA), ribonu-

cleic acid (RNA), and amino acid sequences) are. To create the
alignment of two sequences X 5 x1x2. . .xn and Y 5 y1y2. . .ym,
their symbols are matched. The symbol order is retained, and
gaps may be inserted to improve the matching (insertion of
paired gaps is forbidden). Three cases exist: (i) xi is aligned to
yj and xi 5 yj (match), (ii) xi is aligned to yj and xi = yj (mis-
match), (iii) xi is aligned to a gap in Y, or yj is aligned to a gap
in X. In protein sequence alignment, matches represent con-
served residues, mismatches may arise from mutations, and gaps
from insertions or deletions in an assumed evolutionary process
of the sequences. Consequently, matches are rewarded with a
positive score, mismatches are either rewarded with a positive
score or penalized with a negative score (depending on the par-
ticular scoring scheme), and gaps are penalized with a negative
score. The optimal alignment is the one with the highest overall
score (summed over the whole alignment). It can be computed
using dynamic programing.3

Table 1. Potential Pharmacophoric Points Used in PhAST.

Possible interactions PPP symbol

Hydrogen bond acceptor A
Charge positive P

Charge negative N

Lipophilic L

Aromatic R
Hydrogen bond acceptor, hydrogen bond donor E

Hydrogen bond acceptor, charge positive Q

Hydrogen bond acceptor, hydrogen bond donor,
charge positive

U

No possible interactions O

Table 2. Pharmacophoric Point Definitions in Terms of Molecular Query

Language (MQL)19 Queries.

MQL query PPP symbols

C R

N R

*[charge\ 0] N
*[charge[ 0] P

C(¼¼O)""O""H O;N;E

P(¼¼O)""O""H O;N;E
S(¼¼O)""O""H O;N;E

N[allHydrogens50&totalConnections53] Q

N[allHydrogens51&totalConnections53](""C0)""C0 U

N[allHydrogens52&totalConnections53]""C0 U
N[allHydrogens51&totalConnections52]¼¼C0 E

N[allHydrogens50&totalConnections52](¼¼C0)""C0 A

O""H E

C¼¼O O;A
C[!bound(# N)&!bound(#O)]-*0[C|F|Cl|Br|I|S] L

Cl L

Br L

I L
S[!bound(#N)bound(#O)]#*0[C|H] L

Symbols are assigned to atoms in the query from left to right; queries
are used from top to bottom.

Table 3. Targets, Taken From the COBRA Library (Version 6.1,

n 5 8,311).

Target Abbreviation

No. of

actives

Angiotensine-converting enzyme ACE 34

Cyclooxygenase 2 COX2 136

Dihydrofolate-reductase DHFR 64

Factor Xa FXA 228
Peroxisome-proliferator-activated

receptor type c
PPARc 44

Thrombin THR 183

Total 689
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Previously, we used an implementation of the Needleman
Wunsch algorithm3 for sequence alignment by PhAST.1 The
algorithm was adapted to the affine gap penalty model with a
fixed gap open and gap extension penalty.4 This version runs in
O(nm) instead of the original O(nm(n1m)) for any gap penalty
model. To further speed up virtual screenings, we implemented
the global pairwise sequence alignment algorithm conceived by
Durbin et al.,4 hereafter referred to as finite-state-machine
(‘‘FSM") algorithm. It has the same O(nm) runtime but runs
noticeably faster in practice. In some cases, the two algorithms
alignments are not identical, because the FSM algorithm prohib-
its the insertion of a gap in Y directly following a gap in X. This
simplification reduces computational cost and causes the
speedup, but it does not change the asymptotic runtime.

To assess whether this influences results, we conducted the
same retrospective virtual screenings twice, once for each algo-
rithm. For each target (Table 3), each active was used as query,
resulting in 689 ranked lists for each of the two alignment algo-
rithms. For each list, the BEDROC score5 was calculated (with
a 5 20). The correlation between the two sets of BEDROC
scores was determined using Pearson’s q.6 Statistical signifi-
cance of the observed correlation was estimated from the p-
value of a t test under the null hypothesis that the correlation
equals zero.

The BEDROC score is based on ranks and thus invariant
under permutations of the actives’ ranks. To investigate differen-
ces in the complete ranked lists produced by both algorithms,
we compared the two ranked lists of each query with Kendall’s
s7 as rank-correlation coefficient. Because ties can occur, we
used sb, which corrects for this scenario. The significance of the
observed rank correlation was calculated as the p-value of a z
test under the null hypothesis that the correlation equals zero.

The focus of this work is on the influence of the canonization
step on PhAST performance. We compared canonization meth-
ods as follows: With each method and for each target, each
active was used as query in a retrospective virtual screening,
resulting in 689 ranked lists. For each ranked list, the BEDROC
score was calculated (a 5 20). The mean BEDROC score was
used as overall performance index. For each canonization
method and target, gap open and extension penalties were opti-
mized using a grid search (starting from gap open penalty 5 2
and gap extension penalty 5 1, each combination with gap
extension penalty lower than gap open penalty was tested,
resulting in 190 penalty combinations), as it is hard to choose
them by intuition.20 Gap penalties greater than 20 seem unrea-
sonable as they exceed the highest mismatch penalties.

To prove that the canonization step is essential, we compared
baseline PhAST (Weininger canonization) against PhAST with
random labeling in step (ii) of the algorithm. To avoid bias
(default gap penalties are optimized for Weininger algorithm),
we used the same simple scoring scheme for both labeling
methods: Matches are rewarded with 11, mismatches are penal-
ized with 21, and both gap penalties are 1. For random label-
ing, we generated 100 pairs of PhAST-sequences for each pair
of molecules and used the average score as final similarity
value.

To assess whether two different versions of PhAST have sig-
nificantly different performance, we used the permutation test

proposed by Zhao et al.17 It has the null hypothesis that virtual
screening method P performs significantly better than method Q.
Assuming p and q are rank lists of actives resulting from the vir-
tual screening methods, the null hypothesis requires that BED-
ROC(p) [ BEDROC(q). As each active has two ranks, one in p
and one in q, new rank lists p* and q* can be created by swap-
ping its rank in p with its rank in q for each active with proba-
bility 1/2. This is repeated 10,000 times and the frequency of
the event that BEDROC(p)–BEDROC(q) is less than BED-
ROC(p*)–BEDROC(q*) is recorded. The frequency of this event
is the type I error rate for the null hypothesis. In addition, we
used a Kolmogorov–Smirnov test18 for the same purpose. Both
methods were used to assess the significance of the difference
between using the Weininger algorithm for graph canonization
and using random concatenation of symbols and to assess the
improvement from baseline PhAST to the best combination of
algorithms identified in this work. In both cases, calculations
were based on the 689 BEDROC scores resulting from each ver-
sion of PhAST.

Canonization Algorithms

The atom-typing step in PhAST yields a graph of potential phar-
macophoric points that has the same topology as the molecular
graph with suppressed hydrogen atoms. Each vertex is colored
with a symbol (Table 1) that represents a potential pharmaco-
phoric point. Edges represent covalent bonds. Canonization is
the labeling of the vertices with the natural numbers 1,2,3. . . In
a previous study,1 we compared the canonization algorithms of
Weininger et al.2 and Jochum and Gasteiger10; we reevaluate
them, here, because of changes in molecule preprocessing. In
contrast to these two algorithms, the one by Prabhakar and Bala-
subramanian11 is based on paths, a property thought to be bene-
ficial for PhAST. We modified all algorithms by using pharma-
cophoric points as prioritization criterion instead of the element
number.

Jochum–Gasteiger Method

The canonical labels created by the Jochum and Gasteiger algo-
rithm10 are in most cases identical to those obtained by the Mor-
gan21 algorithm.10 The first step is the separation of all vertices
into two sets—terminal vertices (vertices with exactly one single
bond) and core vertices (all others). All core vertices with the
same buriedness are members of the same equivalence class.
The algorithm divides the vertices of each class further using a
set of prioritization criteria, until only one atom remains that
gets the next label, starting from the vertices in the most buried
class. Prioritization criteria are (i) priority of the potential phar-
macophoric point (atom number in the original application) and
(ii) number of free electrons. In both cases, the vertex with the
highest value has priority. The next criteria involve the environ-
ment of the vertices organized in spheres around each vertex.
The vertex with the highest of these values in his neighborhood
gets priority: (iii) number of vertices, (iv) priority of potential
pharmacophoric points, (v) number of free electrons, (vi) num-
ber of bonds in the next sphere, (vii) bond order of these bonds,
(viii) neighborhood to an already labeled vertex, and (ix) bond
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order to the vertex in (viii). If more than one vertex remains af-
ter (ix), all of them are marked as indistinguishable and the
remaining vertices have priority over them. After all distinguish-
able vertices are labeled, (viii) is used to label the undistinguish-
able vertices. After all core vertices are prioritized, terminal ver-
tices are prioritized by criteria (i) and (viii).

Weininger Method

The canonization algorithm by Weininger et al. was proposed as
part of canonical simplified molecular input line entry system
(SMILES) generation.2 Its idea is to assign vertices to topologi-
cal symmetry classes. It first assigns a property vector to each
vertex that consists of different atomic invariants mainly based
on the original molecular graph: (i) number of connected verti-
ces, (ii) number of connected nonhydrogen atoms, (iii) priority
of the pharmacophoric point (atom number in the original ver-
sion), (iv) sign of charge, (v) absolute charge, and (vi) number
of connected hydrogen atoms. Vertices with identical vectors
form an equivalence class, and all vertices are sorted ascending
by this vector. For each vertex, its extended connectivity is cal-
culated as follows: Beginning with the equivalence class with
the lowest index, the vertices in each class are assigned the
same prime number, starting with 2. For each vertex in the
graph, the product of the primes of its neighbors is calculated.
These product values define new equivalence classes on the ver-
tices. Each equivalence class, in order of product values, is
assigned an index, starting from 1. This process is repeated until
the number of equivalence classes does not change in a step. If,
after extended connectivity calculation, an equivalence class
contains two or more vertices, these ties are broken by an addi-
tional step: the index of each equivalence class is doubled, and
one vertex from the equivalence class with the lowest index is
randomly chosen to form an own equivalence class with the
index of its original equivalence class lowered by 1. After that,
all equivalence classes are renumbered starting from 1. These
two steps (computing the extended connectivity and breaking
ties) are alternated until the number of equivalence classes
equals the number of vertices in the graph.

Prabhakar–Balasubramanian Method

The canonization algorithm by Prabhakar and Balasubramanian11

uses more graph-based prioritization rules than the other two
algorithms and progresses along paths through the graph. First,
the number of incident bonds with respect to bond order is
determined for each vertex (cn). As with the Jochum and Gas-
teiger algorithm, vertices are divided into two sets, terminal ver-
tices (cn 5 1) and core vertices (cn [ 1). Labeling starts with
the core atoms. Using the following prioritization rules, they are
divided into smaller subsets, until only one atom (which will get
the next canonical label) remains: (i) number of incident bonds,
(ii) number of incident bonds with respect to bond order, and
(iii) pharmacophoric point priority (atom number in the original
version of the algorithm). In these cases, the vertex with the
highest value has priority. If more than one atom with highest
priority remains, copies of the original graph are created, called
‘‘fragments.’’ If there are n vertices left for prioritization, n21

copies of the original graph are created for each vertex v. In
each copy, the first bond in the shortest path between v and one
of the other competing vertices is deleted. Only the part of the
copy that includes v is retained. The remaining prioritization
rules are applied to these fragments; a vertex has the highest pri-
ority, if one of his fragments has a higher priority than the frag-
ments created for all other vertices: (iv) the length of the path
starting in the competing vertex and following the highest pre-
computed cn values, until it reaches a vertex already visited or
labeled, (v) number of loops, (vi) length of the longest path in
the fragment, (vii) number of pharmacophoric points not lipo-
philic, aromatic or no interaction, (viii) summed symbol prior-
ities of vertices in the fragment, (ix) averaged distances between
all vertices not lipophilic, aromatic, or no interaction in the frag-
ment. In all cases except the last one, the fragment with the
highest value has priority. If there remains more than one vertex
and there is no already labeled vertex, one of them is chosen
arbitrarily and has priority over all other vertices. If there is al-
ready at least one labeled vertex, (x) the label of the connected
vertex is used. These rules are used in a depth-first search. All
neighbors of the last labeled vertex are the potential candidates
for the next label. If this search reaches an end point, all vertices
adjacent to an already labeled vertex are candidates for the next
label. After all core vertices are labeled, terminal vertices are
labeled according to criteria (ii), (iii), and the label of the
neighboring core atom.

Irrespective of the canonization method used, the PhAST-
sequences created from two identical graphs of pharmacophoric
points are identical. If a pharmacophoric point is changed, but
the topology remains the same, the relative order of symbols in
the PhAST-sequence should remain unchanged as well. Yet all
three algorithms use pharmacophoric point priority as a prioriti-
zation criterion. Consequently, the changes in a PhAST-sequence
because of exchange of a single vertex symbol can be more
severe than intended. To attenuate this, each canonization algo-
rithm was tested in a modified version:

$ In the Jochum and Gasteiger algorithm, clipping of terminal
atoms was omitted, and the criteria symbol priority and num-
ber of free electrons were eliminated.

$ For the Weininger algorithm, the creation of the initial priori-
tization vector was changed: the priority of the pharmaco-
phoric point, the total number of neighbors, and the number
of neighboring hydrogen vertices were omitted and both
charge criteria.

$ For the Prabhakar algorithm, the initial clipping of terminal
vertices was omitted. The priority of the pharmacophoric
point, the number of pharmacophoric points not lipophilic, ar-
omatic or no interaction in a fragment and averaged distances
between all vertices not lipophilic, aromatic or no interaction
in a fragment were removed.

Canonization by Dimensionality Reduction

An alternative approach to canonization that to our knowledge
has not been used before for canonization and does not suffer
from the mentioned drawbacks is the use of dimensionality
reduction algorithms. We implemented four such methods.
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Principal Component Analysis

Principal component analysis12 is a linear dimensionality reduc-
tion method often used to visualize high-dimensional data. We
used PCA to calculate one-dimensional coordinates from two-
dimensional graph layouts generated by the 2D depiction algo-
rithm of MOE (version 2010.06, Chemical Computing Group,
Montreal, Canada). Therefore, the coordinates of the vertices in
each graph were mean-centered, and the covariance matrix
between the position vectors of all vertices calculated. The com-
putation of the eigenvectors and eigenvalues of the covariance
matrix gives the loading vectors that are used for the computa-
tion of the new coordinates of the vertices. To get the one-
dimensional coordinate for each vertex, the dot product between
its original position vector and the loading vector with the high-
est absolute eigenvalue was calculated. Beginning with the ver-
tex with lowest one-dimensional coordinate, we assigned labels
in ascending order. For identical one-dimensional coordinates,
we used their coordinate in the second dimension of the princi-
pal component space as prioritization criterion. In all cases, the
vertex with the lowest coordinate had the highest priority.

PCA finds a low-dimensional embedding of data points that
best preserves their variance. However, PCA fails when a data set
contains nonlinear structures. Nonlinear approaches that overcome
this problem start with the assignment of vertex neighborhoods by
using a connectivity algorithm like k-nearest neighbors,22 b-
matching23 (each vertex gets assigned exactly b neighbors), or e-
balls (a vertex is connected to all vertices within distance e),
resulting in a neighborhood graph with edges between neighboring
vertices. We directly used the topology of the molecular graph
instead of connectivity algorithms. In the embedding, these meth-
ods aim at preserving the pairwise distances between neighbors.

Laplacian Eigenmaps

Laplacian Eigenmaps13 start by calculating three matrices from
the neighborhood graph: the weight matrix W with [eq. (1)]

Wij ¼
1 if i and j are connected

0 else

!
; (1)

the degree weight matrix D with the column sums of W as
entries [eq. (2)],

Dii ¼
X

j

Wij; (2)

and the positive semidefinite Laplacian matrix L [eq. (3)] with

L ¼ D"W: (3)

Then, the eigenvalues and eigenvectors of the generalized
eigenvector problem [eq. (4)] are calculated.

Lf ¼ kDf (4)

Eigenvectors (f) are sorted according to their eigenvalues (k)
in ascending order. The first eigenvector with k 5 0 is omitted.
The next d eigenvectors are used for embedding. In our case,

the second eigenvector contains the coordinates for the one-
dimensional embedding.

Isomap

The Isomap algorithm by Tenenbaum et al.14 uses the neighbor-
hood graph to estimate geodesic distances between the vertices.
A matrix D of shortest distances between all vertices is com-
puted, e.g., using the Floyd–Warshall algorithm.24,25 Using D,
the matrix s(D) is calculated as [eq. (5)]:

sðDÞ ¼ "1
2 ' HSH (5)

where S is the matrix of squared distances [eq. (6)]

Sij ¼ D2
ij (6)

and H the centering matrix [eq. (7)]:

Hij ¼ dij "
1

n
(7)

with dij the Kronecker delta and n the number of vertices. The
eigenvectors and eigenvalues of s(D) are computed. To embed
in d dimensions, the first d eigenvectors sorted according to their
eigenvalues in decreasing order are used. If kp is the pth eigen-
value of s(D) and vip is the ith component of the pth eigenvec-
tor, then the pth component of the d-dimensional coordinate vec-
tor of a vertex is equal to

ffiffiffiffiffi
kp

p
vip.

Minimum Volume Embedding

The two previous methods lose all information contained in the
eigenvectors that are not used for the embedding. None of them
aims at minimizing the amount of information lost this way.
MVE15 preserves as much information as possible in the d
dimensions used for embedding. This is achieved by an iterative
process based on semi-definite programing (SDP). First, an affin-
ity matrix A is calculated for the vertices using a kernel function
k. A is positive semidefinite and must be centered. This matrix
is used in the neighborhood definition process (instead of given
vertex coordinates) to obtain a binary connectivity matrix C. A
third matrix K is set equal to A. The following procedure is
repeated until convergence: (i) Calculate the eigenvectors fi and
eigenvalues ki of K, sort the fi descending to their corresponding
ki. (ii) Calculate the matrix B using eq. (8),

B ¼ "
Xd

i¼1

fif
T
i þ

XN

i¼dþ1

fif
T
i (8)

(iii) use SDP to solve eq. (9)

K ¼ argmin
K2K

trðKBÞ (9)

under constraints K defined by Shaw and Jebara,15 tr denotes the
matrix trace (sum of the diagonal elements).
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After convergence, kernel PCA26 is performed with K to get
the d eigenvectors used for embedding. MVE works with any
positive semidefinite kernel k. We used MVE with two different
kernel functions. The first one is a diffusion kernel.27 For each
pair of vertices mi and mj, it returns the probability that a random
walk starting in mi will be in mj after an infinite number of steps,
with only a low probability of leaving the current vertex in each
step. The kernel matrix can be calculated according to eq. (10).28

K ¼ eð"bLÞ (10)

where L is the Laplacian matrix introduced in (3) and b is the
diffusion parameter. If b equals 0, no diffusion is allowed and K
equals the unit matrix. K is computed by matrix exponentiation,
which is different from componentwise exponentiation. We used
12 values for b to determine its influence on PhAST: 0.01, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 10. The second ker-
nel function calculates inner products from the Euclidean coordi-
nates of the vertices. It is defined as given in eq. (11).

kðx; yÞ ¼ 1

2
' ð xk k2 þ yk k2" x" yk k2Þ: (11)

To obtain Euclidean coordinates for each vertex, as for PCA,
we used the 2D depiction algorithm of MOE. This particular ker-
nel is parameter free.

When using dimensionality reduction methods, slight modifi-
cations of a molecule can switch the direction of the axis of the
one-dimensional coordinate system. We addressed this issue by
repeating every sequence comparison during the virtual screen-
ing with one of the sequences inverted, if dimensionality reduc-
tion was involved. We used the higher of the two resulting val-
ues as similarity measure.

Evaluation of the Alignment

In addition to canonization methods, we analyzed the effect of
different alignment evaluation methods. The alignment of nucleic
or amino acid sequences is a traditional field in bioinformatics
and well analyzed. It was shown that there are methods to deter-
mine peptide sequence homology from pairwise alignments that
yield better results than the sequence identity used in PhAST.8

These methods are alignment scores and significance estimations
of alignments. We evaluated two variants of sequence identity
and three variants of alignment scores. There is no significant
overhead compared with sequence identity calculation.

Sequence Identity

The original PhAST used the percent identity (PID1) between
two sequences X and Y [eq. (12)],

PID1 ¼
MðAðX; YÞÞ
LðAðX; YÞÞ

(12)

with A(X,Y) the alignment of X and Y, M(A(X,Y)) the number of
matches in the alignment, and L(A(X,Y)) the length of the align-

ment (including all gaps). Comparing two sequences of mole-
cules active on the same target but of different size might result
in a low PID1, because the global alignment has to extend the
shorter sequence to the length of the longer one with gaps. To
counteract this effect, we correct for the size of the sequences:
We first calculate the maximum reachable PID1 of two sequen-
ces by inserting the maximum number of matches (length of the
shorter sequence) and the minimum length of the alignment
(length of the longer sequence) into eq. (12). We then normalize
PID1 according to eq. (13):

PID2 ¼
actual PID1

max PID1
(13)

Alignment Score

Besides sequence identity, we investigated alignment scores as
evaluation measures. The raw alignment score S1 is the sum of
matches, mismatches, and gap penalties. Alignments of long
sequences tend toward higher scores, so S1 depends on sequence
similarity and length. We normalize S1 by dividing through the
length of the alignment, yielding S2. The resulting score meas-
ures the average contribution of each event in the alignment
(match, mismatch, or gap). S1 can also be normalized by divid-
ing through the length of the shortest original sequence, yielding
S3, a measure of the maximum averaged contribution of each
symbol in a sequence. All alignment score methods are meas-
ures of the similarity between aligned sequences, but are no lon-
ger bounded by 0 and 1.

Alignment evaluation methods involving alignment length or
the number of occurrences of an event suffer from the drawback
that there can be more than one optimal alignment of two
sequences, which one is found depends on implementation
details. The alignment of the sequence pair (X,Y) can, therefore,
differ from that of (Y,X) in length, number of matches, number
of mismatches, number of gaps, and gap length. To ensure the
symmetry of our method, i.e., identical scores for A(X,Y) and
A(Y,X), we modified the affected evaluation methods. In case of
PID1, we compute A(X,Y) and A(Y,X), and use the average PID1

as final evaluation measure. This correction is used in the calcu-
lation of actual PID1 for PID2 as well. In case of S2, we align
both sequence pairs and use the averaged alignment length for
normalization.

In total, we compared 11 graph canonization methods com-
bined with five alignment evaluation methods and 190 gap pen-
alty combinations by conducting 689 virtual screenings for each
combination and averaging the resulting BEDROC scores (a 5
20). To assess whether our modifications lead to significant
improvements of PhAST, we used the permutation test proposed
by Zhao et al.17 and a Kolmogorov–Smirnov test.18

Canonization Analysis

To further quantify the differences between canonization meth-
ods, we determined how well the neighborhood relations in the
original pharmacophoric point graph are retained and repre-
sented in the resulting PhAST sequences. We did this by count-
ing how often the vertices, which are neighbors in the graph, are
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neighbors in the PhAST-sequence. This was done for every mol-
ecule in the COBRA library of reference compounds.16 For all
graph neighbors that are not neighbored in the one-dimensional
representation, we counted how many vertices were inserted
between them, resulting in a histogram of these distances. As
each pair of neighboring vertices was viewed twice, once from
each vertex as origin, the resulting counts were divided by 2.

For use with PhAST, canonization algorithms should be ro-
bust against small changes in molecular structure, i.e., similar
molecules should have similar PhAST-sequence. This in turn
means that neighbors in the PhAST-sequences of a molecule
should remain neighbors even if the molecule is slightly modi-
fied. To test this, the compounds in the COBRA library were
modified by attaching small fragments. After conversion to
PhAST-sequence, we counted (i) neighboring vertices in the
original PhAST-sequence that are neighbors in the modified
PhAST-sequence, (ia) with their relative orientation as in the
original PhAST-sequence, (ib) with their relative orientation
changed; (ii) neighboring vertices in the original PhAST-
sequence that are not neighbors in the modified PhAST-
sequence, (iia) with their relative orientation as in the original
PhAST-sequence, (iib) with their relative orientation changed. If
two vertices of the same type that are neighbors in the original
PhAST-sequence are still neighbors in the modified PhAST-
sequence, but changed their relative orientation, this event is
counted as (ia) because the change of positions has no effect on
the PhAST-sequence due to identical types. Cases (ib) and (iib)
present a problem for global sequence alignment as a string
comparison method. As the relative position of symbols cannot
be changed, the only two operations that can be reconstructed in
the alignment process are mutations (a symbol changed to
another one) and insertion/deletions (compensated by gaps). A
transversion, i.e., the swapping of two different symbols, cannot
be properly modeled by only one event.

Figure 1 presents the six used fragments. Three fragments
consist only of carbon atoms that are typed as L in the atom typ-
ing step. The other three are topologically identical to the first
three fragments, with one carbon changed to nitrogen typed as

U. This way, the algorithms are confronted with topological
modifications and changes in vertex priorities. Fragment attach-
ment points should not change the atom typing. We used carbon
atoms that were typed as L, R, or O in the original molecule
and were connected to at least two hydrogen atoms. One of the
hydrogen atoms was replaced by the first atom of the fragment.
Molecules (1612/8311) from COBRA were omitted, because
they had less than 10 possible attachment points. Each single
fragment attachment was repeated five times at random posi-
tions. In addition, each possible combination between fragments
(resulting in 21 unique pairs) was used five times as well, again
at random positions. In total, each molecule was compared to
135 variants of itself.

All modifications were undertaken in a single preprocessing
of the COBRA compound collection to ensure that all algo-
rithms are compared with the same modified molecules. The
resulting molecular graphs were depicted using MOE, because
one variant of MVE depends on Euclidean distances. In the case
of dimensionality reduction methods, again both possible canoni-
zation results were used in the analysis, and we used the one
with a higher preservation of neighborhood relationships. This is
justified, because for these methods, both orientations of the
PhAST-sequence are used during a virtual screen.

All programing was done using the Java Programing Lan-
guage (version 6). Eigen decompositions were done with the
java linear algebra package (JLAPACK) library.29 SDP problems
were solved with the c semi-definite programming library
(CSDP) solver.30 Productive runs and calculations were per-
formed on a Linux cluster with 40 advanced micro devices
(AMD) Opteron 8214 processors and 320 gigabyte (GB) random
access memory (RAM).

Results and Discussion

Choice of Alignment Algorithm

To determine whether the exchange of the alignment algorithm
of Needleman and Wunsch by the faster FSM algorithm affected
the performance of PhAST, we determined the correlation of
BEDROC scores obtained from virtual screening with each
active as reference (n 5 689). The Pearson-correlation coeffi-
cient was 0.9996 with a p-value of below 1021051. To quantify
the differences within the complete ranked lists, Kendall’s s was
computed (see Fig. 2). The minimum correlation observed was
0.945, the maximum correlation observed was 0.998, and the
average correlation observed was 0.984. The p-value for each s
was below 0:5 ' erfc 82;779;141;588'

ffiffi
2

p

109;242;709

# $
. The FSM algorithm used

only 40% of the runtime of the Needleman Wunsch algorithm.
On the basis of the gain in computation speed and the high
correlations, we decided to employ the FSM algorithm for all
experiments in this study.

Necessity for Canonization

To verify the importance of the canonization step, we compared
BEDROC values (a 5 20) of baseline PhAST and PhAST with
random labeling (average of 100 random labeling procedures

Figure 1. Fragments for the comparison of modified molecules.
* Denotes the attachment point. Shown are molecular fragments
(left) and corresponding pharmacophoric point graphs (right).
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per comparison; matches 5 11, mismatches 5 21, gap penal-
ties 5 1).

Figure 3 presents the distribution of BEDROC scores per tar-
get. There is almost no overlap, with the exception of cyclooxy-
genase 2 (COX2). The latter can be explained by the distribution
of pharmacophoric points: As given in Table 4, COX2 ligands
have 56% pharmacophoric points of type R. Random concatena-
tions of pharmacophoric points of the same type do not change
the resulting PhAST sequence (more symbols of the same type

only result in fewer possible sequences). The global sequence
alignment matches regions of identical symbols between sequen-
ces, resulting in a high score. Subsequences of different lengths
are compensated by gaps, lowering the score. PhAST-sequences
of COX2 ligands have shortest average length and standard
deviation, i.e., they are least affected by this effect because they
are of comparable length. In agreement with this reasoning, the
target with second largest overlap, peroxisome-proliferator-acti-
vated receptor typec (PPARc), is also second in type R symbols
(51%) and of comparatively small size.

Table 5 presents the results of the Zhao permutation test.
PhAST with Weininger canonization performed significantly bet-
ter than random labeling in 91% of all screenings at a signifi-
cance level of 0.05. In 5% of the screens, random labeling per-
formed better. The latter cases are dominated by screenings on
COX2. A Kolmogorov–Smirnov test showed that the difference
between these two methods is significant with a p-value of
1.0835 3 10278. We conclude that the canonization step is nec-
essary for PhAST.

Comparison of Canonization Methods

We compared 11 canonization algorithms, five alignment evalua-
tion methods, and 190 gap penalty combinations for their effect
on PhAST in a set of virtual screening experiments employing

Figure 2. Box-whisker plots of rank correlation coefficients
between the ranked lists obtained using the Needleman–Wunsch and
the FSM algorithm for sequence alignment per target (n 5 34, 136,
64, 228, 44, and 183). Shown are 5th/95th (points), 10th/90th
(whiskers), 25th/75th (box borders) percentiles, median (solid line),
and mean (dashed line).

Figure 3. BEDROC (a 5 20) scores of Weininger versus random
canonization. A simple alignment scoring system with 11 (21) for
matches (mismatches) and gap open and extension penalty of 1. For
random canonization, the mean similarity of 100 random sequences
was used. Shown are 5th/95th (points), 10th/90th (whiskers), 25th/
75th (box borders) percentiles, median (solid line), and mean
(dashed line).

Table 4. Symbol Frequencies in the COBRA Library.

ACE COX2 FXA PPARc DHFR THR

Ø Symbols 27.12 24.61 34.34 28.57 27.34 35.95

r 7.43 3.17 5.28 7.03 5.71 7.90
A 8.89 2.27 4.87 5.73 4.91 6.99

E 0 0.24 0.28 0.08 0.29 1.08

L 23.64 17.99 9.45 17.10 13.83 21.01
N 6.40 0.69 0.46 3.10 2.57 00.43

O 23.64 22.80 25.57 19.97 17.49 29.47

P 3.25 0.09 2.85 0.56 0.97 3.02

Q 1.74 0.18 2.92 0.88 0.74 2.60
R 31.45 55.48 48.43 51.31 49.94 29.21

U 0.98 0.27 5.17 1.27 9.26 6.19

‘‘Ø Symbols’’ and ‘‘r’’ indicate the average number of pharmacophoric
points per molecule and the standard deviation.

Table 5. Permutation Test Results for Weininger Canonization Versus

Random Canonization.

No. of queries Weininger Random

ACE 34 100 (100) 0 (0)

COX2 136 70 (68) 22 (21)

DHFR 64 95 (95) 2 (2)
FXA 228 98 (98) 1 (1)

PPARc 44 84 (84) 7 (5)

THR 183 97 (97) 0 (0)

Total 689 91 (91) 5 (5)

Shown are the percentages of cases where one contestant performs sig-

nificantly better than the other at a significance level of 0.05 (0.01).
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Figure 4. BEDROC (a 5 20) scores for combinations of alignment evaluation methods and gap pen-
alties. (a) Jochum and Gasteiger algorithm, (b) modified Jochum and Gasteiger algorithm, (c) Wei-
ninger algorithm, (d) modified Weininger algorithm, (e) Prabhakar algorithm, (f) modified Prabhakar
algorithm, (g) MVE with diffusion kernel and diffusion parameter 0.4, (h) MVE with Euclidean dis-
tance kernel, (i) Laplacian Eigenmaps, (j) Isomap, and (k) PCA.
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six targets (Table 3) from the COBRA library of bioactive com-
pounds. For each combination of canonization, alignment, and
gap penalties, each active molecule of each target was used as
query in a virtual screening. Screening success was assessed by

average (n 5 689) BEDROC (a 5 20) scores. For MVE with
diffusion kernel, we compared 12 values of the diffusion param-
eter b. Only the best performing version with b 5 0.4 that
reaches the highest averaged BEDROC score is included in the

Figure 4. (Continued)

2819Pharmacophore Alignment Search Tool

Journal of Computational Chemistry DOI 10.1002/jcc



following analysis. The results for the remaining settings of b
are presented in Figure S1 (cf. Supporting Information). Figure
4 presents the outcome of the comparison.

For each canonization algorithm, alignment evaluation meth-
ods and gap penalty combinations have similar effects. For the
algorithms of Weininger, Prabhakar, and Jochum–Gasteiger, the
respective modified versions display a retrospective performance
that is comparable to the original versions of the algorithms.
Our modifications, therefore, neither worsened nor improved
their performance. For MVE, the effect of different kernel func-
tions is minor. The best parameterization of the diffusion kernel
was slightly superior to the Euclidean distance kernel. Isomap
and Laplacian Eigenmaps performed comparably but with
slightly lower BEDROC scores. Among the dimensionality
reduction methods, PCA performed worst. Considering the com-
parison of baseline PhAST with random labeling, we conclude
that having a canonization method at all is more important than
the particular method used.

PID1 is the original alignment evaluation method, PID2

penalizes differences in sequence lengths to a lesser extent than
PID1, and performs worse than PID1 manifesting in lower aver-
aged BEDROC scores (see Fig. 4). We introduced PID2 to com-
pensate for the difference in sequence lengths of actives of the
same target. Although PID2 yielded greater similarity values
than PID1, it also did so for sequences from different targets.
This effect generates false positives, thereby, diminishing
screening performance.

The evaluation methods S1, S2, and S3 are all based on the
alignment score with different normalization techniques. They
perform similar and all of them appear to be superior to align-
ment evaluation methods based on sequence identity. We
explain this observation by the improved weighting of matches
and mismatches. Sequence identity is influenced only by the
number of (mis)matches. The alignment score, however, is influ-
enced by the exact type of match or mismatch depending on the
symbols involved. For similar numbers of matches and mis-
matches, this enables a more differentiated evaluation of the
alignment.

All combinations of canonization and alignment evaluation
strongly depend on the gap penalties used. Retrospective
results for one particular combination of canonization algo-
rithm and alignment evaluation method show strong variation
with different penalty combinations. For each gap open pen-
alty, retrospective performance decreases with increasing gap
extension penalty. This can be explained by the alignment pro-
cess itself. The optimal alignment is the combination of posi-
tive scores for matches and negative scores for mismatches
and gaps that is highest in sum. If gap penalties exceed mis-
match scores, gaps will decrease the alignment score more
than mismatches, thus increasing the number of mismatches.
This results in alignments dominated by mismatches due to
this effect and not because of the exchange of functional
groups in the molecular graph. The resulting alignments do
not reflect molecular similarity anymore and decrease virtual
screening accuracy.

The averaged BEDROC score of the best performing gap
penalty combination is given in Table 6 for each canonization
algorithm and alignment evaluation method. The performance of
baseline PhAST (Weininger canonization, gap open penalty 5
3, gap extension penalty 5 1, alignment evaluation PID1) is
0.29 (bottom left in the table). The best performance was 0.40
[MVE canonization using the diffusion kernel (b 5 0.4), gap
open penalty 5 5, gap extension penalty 5 1, alignment evalua-
tion S2]. To see whether this improvement is significant, we per-
formed the permutation test proposed by Zhao. Table 7 presents
the results per target. The lowest fraction of significantly
improved screenings is for angiotensine-converting enzyme
(ACE) with #24%. On average, the performance was signifi-
cantly increased in 71% of all screening experiments. Baseline
PhAST performs better only in 21%. In combination with the
increased average BEDROC scores, we conclude that the
improvement of our method is significant. This is supported by
a Kolmogorov–Smirnov test producing a p-value of 1.37 3
10221.

Average BEDROC performance for the globally optimal gap
penalty combination and gap penalties optimized for each target

Table 6. BEDROC Scores (a 5 20).

Scoring scheme

PID1 PID2 S1 S2 S3

Jochum Gasteiger 0.26 (3, 2) 0.17 (20, 1) 0.35 (5, 1) 0.36 (4, 1) 0.35 (4, 2)

Jochum Gasteiger modified 0.24 (3, 2) 0.15 (20, 1) 0.35 (4, 1) 0.35 (2, 1) 0.35 (3, 2)

Isomap 0.28 (20, 1) 0.19 (20, 1) 0.39 (8, 1) 0.39 (7, 1) 0.38 (8, 1)
Laplacian Eigenmaps 0.28 (20, 1) 0.18 (20, 1) 0.38 (8, 1) 0.38 (7, 1) 0.38 (9, 1)

MVE diffusion kernel 0.4 0.29 (3, 2) 0.20 (20, 1) 0.39 (7, 1) 0.40 (5, 1) 0.39 (6, 2)

MVE Euclidean kernel 0.27 (3, 2) 0.16 (20, 1) 0.37 (7, 1) 0.37 (5, 1) 0.37 (5, 2)
PCA 0.24 (3, 2) 0.14 (20, 1) 0.27 (4, 2) 0.35 (3, 1) 0.26 (4, 3)

Prabhakar 0.27 (13, 2) 0.16 (20, 1) 0.37 (6, 1) 0.37 (5, 1) 0.37 (7, 1)

Prabhakar modified 0.26 (3, 2) 0.17 (20, 1) 0.26 (6, 1) 0.36 (4, 1) 0.36 (6, 1)

Weininger 0.31 (3, 1) 0.20 (20, 1) 0.36 (7, 2) 0.37 (6, 1) 0.37 (7, 2)
Weininger modified 0.29 (3, 2) 0.17 (29, 1) 0.36 (5, 2) 0.37 (4, 1) 0.37 (5, 2)

The best gap open/gap extension penalties are shown in parentheses.

Higher scores indicate better virtual screening performance.
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are very close (Table 8), with a maximum difference of 0.024
for COX2. We conclude that the global optimum (gap open pen-
alty 5 5, gap extension penalty 5 1) provides reasonable default
values for practical applications.

We varied two major components of PhAST, the canoniza-
tion algorithm and the alignment evaluation method. Changing
both improved baseline PhAST significantly. But which of these
two variables is more important? The lowest score achieved
with PID1 (baseline PhAST) is 0.24 (modified Jochum–Gasteiger
canonization), the highest score is 0.31 (Weininger canoniza-
tion). With S2 (best performance), even the lowest score of 0.35
(PCA canonization) lies above the highest score of PID1. The
highest score with S2 for alignment evaluation is 0.40 (MVE
canonization with diffusion kernel, b 5 0.4). In 32 of 33 cases,
the alignment evaluation methods based on the alignment score
yield higher values with the same canonization algorithm than
PID1. For PID2, this is true for all 33 cases. In Table 6, the
mean coefficient of variation (r/l)6 of the columns is 0.09,
whereas that of the rows is 0.27. Varying the alignment evalua-
tion method, therefore, influences the performance three times
stronger than varying the canonization method. We conclude
that the choice of the alignment evaluation method is more im-
portant than the choice of the canonization algorithm.

Neighborhood Preservation

As an example, Figure 5 presents the canonical labels generated
for chlorpromazine with each of the 11 compared canonization
algorithms. Both versions of the Prabhakar algorithm have a
tendency to label consecutive paths in the graph. For both ver-
sions of the Gasteiger algorithm, the ground concept of number-

Table 7. Permutation Test Results for MVE (b 5 0.4) Canonization with

S2 Versus Weininger Canonization With PID1.

No. of queries

MVE 0.4

S2 (5, 1)
Weininger

PID1 (3, 1)

ACE 34 24 (24) 59 (56)

COX2 136 56 (56) 40 (40)
DHFR 64 95 (95) 3 (3)

FXA 228 67 (64) 22 (21)

PPARc 44 64 (61) 16 (14)
THR 183 90 (90) 6 (5)

Total 689 71 (70) 21 (20)

Shown are the percentages of cases where one contestant performs sig-
nificantly better than the other at a significance level of 0.05 (0.01).

Table 8. BEDROC Scores (a5 20) Per Target for Global and
Target-Optimal Gap Penalties.

Average BEDROC

with global optimum

gap penalties (5, 1)

Average BEDROC

with optimum gap

penalties per target

ACE 0.4034 0.4081 (2, 1)

COX2 0.4011 0.4251 (11, 2)

DHFR 0.5654 0.5704 (9, 1)
FXA 0.3563 0.3676 (2, 1)

PPARc 0.2612 0.2612 (5, 1)

THR 0.4130 0.4165 (2, 1)

Global optimum gap penalties are gap open penalty 5 and gap extension

penalty 1. The best performing gap penalties per target are shown in

parentheses. Higher scores indicate better virtual screenings performance.

Figure 5. Canonical labels for (a) chlorpromazine with (b) PCA, (c)
Jochum and Gasteiger algorithm, (d) modified Jochum and Gasteiger
algorithm, (e) Weininger algorithm, (f) modified Weininger algo-
rithm, (g) Prabhakar algorithm, (h) modified Prabhakar algorithm,
(i) MVE with diffusion kernel and diffusion parameter 0.4, (j) MVE
with Euclidean distance kernel, (k) Laplacian Eigenmaps, and (l)
Isomap.
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ing the vertices in spheres around the most buried atom is recog-
nizable. The other methods tend to spread the labels in a non-
intuitive manner. To further assess the differences between can-
onization algorithms, we analyzed to which extent each method
is capable of preserving neighborhood relations during the
reduction of the two-dimensional graph of potential pharmaco-
phoric points to its one-dimensional form, the PhAST-sequence.
For each method, 264,220 neighborhood relations were checked.
The results are summarized in Table 9.

The large number of preserved neighborhoods with both var-
iants of the Prabhakar algorithm (original: 62%, modified: 66%)
is no surprise as both perform a depth-first search with a com-
plex set of rules to decide which vertex is visited next. The crea-
tion of paths of consecutive canonical labels is inherent to this
approach. The modified version preserves even more neighbor-
hoods as the original algorithm, because it lacks the removal of
terminal atoms as initial steps. As a consequence, paths through
the molecule can include more atoms, and the fragments with
consecutive canonical labels may be elongated.

Both variants of the Jochum–Gasteiger algorithm preserve
least neighborhoods (original: 8%, modified: 9%). This is no
surprise as well, because originating from the most buried verti-
ces in the graph, they work in spheres around this centre. In this
approach, it cannot be anticipated that the resulting canonical
labels reflect neighborhoods to a high extent. If a vertex mi in a
sphere with ni vertices receives canonical label x, all adjacent
vertices from the next sphere of size nj will get assigned canoni-
cal labels that are bound between x 1 1 and x 1 (ni21) 1 nj.
But the algorithm does not guarantee that these canonical labels
will be directly subsequent to x or to each other. As with the
Prabhakar algorithm, the modified version preserves more neigh-
borhoods because of the fact that the terminal atoms were not
treated separately.

As the number of connected vertices is the main criterion
used for prioritization in the Weininger algorithm, it tends to
work its way from the outside to the inside of a molecule. The
initial equivalence classes are created based on further properties
regarding all atoms at once, not limited to a certain subset as the
vertices connected to the last labeled vertex as in the Prabhakar
algorithm or atoms with the same buriedness as the Jochum–Gas-
teiger method. So, it does not group atoms by their affiliation to

a certain region of the molecule but by the similarity of their
overall properties. Further on, the algorithm divides vertices from
the same equivalence class into unique subsets comprising only
one vertex, so this initial partition cannot be reversed. This
behavior is reflected in the low preservation of neighborhoods
with 9% for the original and 10% for the modified version.

All methods for dimensionality reduction only moderately
preserve the neighborhoods. For MVE (diffusion kernel: 30%,
Euclidean distance kernel: 31%), Isomap (40%), and Laplacian
Eigenmaps (49%), this was expected, as they were developed to
preserve local distances between neighboring points in datasets
as good as possible. They do not work in a greedy approach like
the depth-first search used by the Prabhakar algorithm. By
preserving the distances between neighboring pairs, distances
between nonadjacent vertices may be changed. So, it was antici-
pated that the degree of preservation is lower than for the Prab-
hakar algorithm. For PCA (34%), however, this result is surpris-
ing. During PCA projection neighborhoods of vertices are not
regarded explicitly, and different parts of a molecule may col-
lapse in the same region of the PhAST-sequence, merging verti-
ces from different parts of a molecule in the process.

MVE with the diffusion kernel that performed best in the ret-
rospective comparison does not perform best in neighborhood
preservation. The Prabhakar algorithm, which in the modified
version preserves the most neighborhoods, does not perform best
in the retrospective comparison. Pearson’s correlation coefficient
between the retrospective results using the best performing
alignment evaluation method S2, and the percentage of preserved
neighborhoods during the reduction of the two-dimensional
graph to a PhAST-sequence is 0.46. So, despite the fact that dif-
ferent approaches for graph canonization yield notably different
results in this analysis; the percentage of preserved neighbor-
hoods seems unsuited to explain why MVE performed best in
the retrospective comparison.

For each vertex pair in the two-dimensional graph of pharma-
cophoric points, we checked whether their corresponding sym-
bols are adjacent to each other in the PhAST-sequence. If not,

Table 9. Preserved Neighborhood Relations.

Algorithm

No. of preserved

neighborhoods

%

Preservation

Jochum Gasteiger 20,587 8
Jochum Gasteiger modified 22,801 9

Laplacian Eigenmaps 129,082 49

Isomap 105,152 40
MVE diffusion kernel 0.4 79,289 30

MVE Euclidean kernel 82,363 31

PCA 89,465 34

Prabhakar 163,691 62
Prabhakar modified 174,861 66

Weininger 24,734 9

Weininger modified 25,866 10

Figure 6. Number of inserted vertices between vertex pairs that are
neighbors in the molecule graph, but not the PhAST-sequence.
X-axis logarithmic to emphasize the interval in which the behavior
of the canonization algorithms diverges most.
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we counted by how many symbols they are separated. The result
is presented in Figure 6, exact values are available from Table
S1 in the Supporting Information. Overall, all methods for
dimensionality reduction behave similarly. They separate neigh-
boring vertices in the graph more often by only one vertex in
the PhAST-sequence compared to the other canonization algo-
rithms. For separations consisting of more than five vertices,
they have the lowest count of occurrence among all methods. As
both variants of the Prabhakar algorithm have the highest neigh-
borhood preservation, their overall count of insertions between
neighboring vertices is the lowest. They perform a depth-first
search, and only reaching a dead end in this search can cause an
event counted in this experiment. In case of these two algo-
rithms, the number of vertices inserted between neighboring ver-
tices gives the path length from a dead end in the depth-first
search and the next unlabeled vertex.

The Jochum–Gasteiger algorithm works in spheres around
the most buried vertex. Vertices from the same sphere receive
consecutive labels. This explains why both variants of the algo-
rithm have a high number of insertions with less than 10
inserted vertices. Most molecules analyzed here do not possess
enough vertices to create spheres of more than 10 members, so
the count of insertions of this size is very low.

Both variants of the Weininger algorithm lead to a medium
number of insertions of sizes 1–7, but from thereon, they have
the highest count for insertions. MVE performs best in retro-
spective studies for our method. But as well as the percent of
preserved neighborhoods, the number of vertices inserted
between originally neighboring vertices in the graph during the
generation of the PhAST-sequence seems not to be suitable to
explain this good performance.

We have demonstrated that different approaches for graph
canonization show different behavior regarding the number of
vertices they insert between vertices in the PhAST-sequences
that were connected in the two-dimensional graph of pharmaco-
phoric points. MVE with diffusion kernel turned out to be the
best performing method in the retrospective comparison.

Robustness Against Structural Modification

We tested the robustness of the compared canonization methods
by comparing the PhAST-sequence generated from a molecule
with that generated from a molecule similar to the original but
with a slight structural modification. For each pair of neighbor-
ing vertices in the original sequence, we checked whether they
remain adjacent in the modified PhAST-sequence and whether
they changed their relative orientation. We used six fragments
for chemical structure modification (see Fig. 1) that were
attached individually and in pairs. Each original PhAST-
sequence was compared with 135 variants, 6699 molecules from
the COBRA molecule library were investigated that way. The
results are presented in Table 10.

Both variants of the Jochum–Gasteiger algorithm preserve
around 40% of the neighborhoods from the original PhAST-
sequence in the modified variants. Nearly all of these preserved
relationships are kept in the original orientation, only a small
amount of transversions is generated (original: 0.65%, modified:
1.17%). Nonpreserved neighborhoods are kept mostly in the
original orientation as well (original: #45%, modified: #46%),
enabling the global sequence alignment to compensate these
changes by inserting gaps. Only around 12% of all neighborhood
relations are not kept and transversed at the same time.

All methods for nonlinear dimensionality reduction keep
more neighborhood relations but introduce transversions at the
same time to a higher extent, foremost MVE in combination
with the diffusion kernel with over 22% transversions. In case
of disrupted neighborhoods, the fraction of created transversions
is as high as for the Jochum–Gasteiger algorithm or even higher.

The aim of these algorithms for nonlinear dimensionality
reduction is to keep pairwise distances between neighboring
points while embedding a set of data points in a lower-dimen-
sional space. So, they only consider relationships between pairs
of points. Distances between two points are kept even if these
points switch coordinates. So, these methods introduce a high
amount of transversions, because this is a valid operation in their
functioning. PCA preserves the least neighborhoods from the

Table 10. Percentages of Neighborhood Relations Preserved and Changed Between PhAST-Sequences When

Modifying a Molecule by Attaching Fragments.

%

Preserved

% Preserved

original

orientation

% Preserved

transversed

orientation % Changed

% Changed

original

orientation

% Changed

transversed

orientation

Jochum Gasteiger 43.41 42.76 0.65 56.59 44.64 11.95
Jochum Gasteiger modified 40.65 39.47 1.17 59.35 46.43 12.93

Laplacian Eigenmaps 69.86 53.61 16.24 30.14 23.99 23.99

Isomap 64.63 43.25 21.38 35.37 24.55 10.82
MVE diffusion kernel 0.4 65.52 42.70 22.82 34.48 22.84 11.64

MVE Euclidean kernel 53.62 36.54 17.07 46.38 29.47 16.91

PCA 38.42 29.46 8.96 61.58 44.61 16.97

Prabhakar 75.60 72.76 2.84 24.40 19.25 5.15
Prabhakar modified 81.54 77.81 3.74 18.46 14.24 4.22

Weininger 62.03 62.01 0.01 37.97 36.75 1.22

Weininger modified 56.18 55.21 0.97 43.82 40.31 3.51

For both cases, the percentage of neighborhood relations in original orientation and in transversed orientation is

shown in addition.
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original to the modified PhAST-sequence, but most of them in
original orientation, not as transversions. It introduces transver-
sions in the disrupted neighborhoods to an extent comparable to
the nonlinear methods for dimensionality reduction.

Both variants of the Weininger algorithm introduce the
lowest fraction of transversions (original version: 1%, modified
version: 4%). Neighborhood preservation is well above the
Jochum–Gasteiger method.

Preservation of neighborhoods between related PhAST-
sequences is highest for both variants of the Prabhakar algorithm
(original version 76%, modified version 82%). This indicates
that paths in the original and altered molecules are very similar.
This is in perfect agreement with the low-transversion rate in
preserved (3% and 5%) and nonpreserved neighborhoods (4%
and 4%).

The correlation between retrospective results using the best
performing alignment evaluation method S2 and (i) the percent-
age of preserved neighborhoods is 0.57, (ii) the percentage of
kept but transversed neighborhoods is 0.65, and (iii) the percent-
age of neighborhoods that are disrupted and transversed is 0.09.
This indicates that transversions do not affect performance as
drastically as we expected. The sequence alignment uses only
mutations and insertions/deletions; a transversion can, thus, be
treated by two mismatches or a combination of gap and mis-
match. This explanation is backed up by (iii). None of the corre-
lations is sufficiently strong to qualify the corresponding prop-
erty as necessary for ‘‘good’’ retrospective results. However,
when both variants of the Prabhakar algorithm are omitted as
outliers, the correlation (i) increases to 0.93. We interpret this
observation as an indication that the Prabhakar algorithm differs
from the other canonization approaches (omitting other algo-
rithms does not increase correlation as much: without the Joc-
hum–Gasteiger algorithms: 0.39, without the Weininger algo-
rithms: 0.57, and without the methods for nonlinear dimensional-
ity reduction: 0.65). Indeed, there is such a difference: The
subset of vertices from which the next vertex is chosen is the
smallest of all approaches because of the depth-first like canoni-
zation process of the Prabhakar algorithm. The number of candi-
dates is four or even less in most cases because of the distribu-
tion of vertex degrees in molecular graphs.31 The Jochum–Gas-
teiger algorithm limits the number of candidates by the size of
the current sphere, which is potentially larger than four levels.

For the Weininger algorithm, the limit is given by the number
of vertices with the same properties, which typically exceeds
four as well. For the dimensionality reduction methods, the next
vertex can potentially be chosen from all remaining vertices.

Until this point, we have combined the results for single and
pairwise modifications of molecules. Treating both cases sepa-
rately does not dramatically change the picture (Tables S3 and
S4 of the Supporting Information). Both the Jochum–Gasteiger
and the Weininger algorithms introduce the fewest transversions.
Both versions of the Prabhakar algorithm preserve neighbor-
hoods best, followed closely by the methods for nonlinear
dimensionality reduction that preserve most neighborhood rela-
tions but not in the original orientation. PCA preserves neighbor-
hoods least but does not introduce as many transversions as the
nonlinear methods. Calculating Pearson’s correlation coefficient
between the retrospective evaluation scores and the percentage
of neighborhoods kept in original orientation, kept in transversed
orientation, and neighborhoods changed and transversed at the
same time reveals in both cases a slightly different relationship
as the combined evaluation. Using only the results of single
(double) modifications, the correlation coefficient between retro-
spective performance and percentage of neighborhoods pre-
served is 0.57 (0.57). In case of transversed neighborhoods, the
correlation coefficient is 0.64 (0.66). The major difference to the
combined case is the relationship between retrospective perform-
ance and percentage neighborhoods changed and transversed,
which correlates with 20.24 (20.27).

In summary, transversions in the PhAST sequences of similar
molecules do not affect the performance to a great extent. None
of the investigated properties correlate strongly with retrospec-
tive virtual screening performance.

Canonization Time

Computational efficiency is important for rapid virtual screening.
We compared our implementation of the canonization algorithms
with respect to the time needed to process the COBRA library
on a single central processing unit (CPU) of our cluster, atom
typing excluded (Table 11). With only #2 s for all 8311 mole-
cules, PCA was fastest. Both variants of the Weininger algo-
rithm are fast with a time requirement of about 4 s. The
Jochum–Gasteiger algorithm and all methods for nonlinear

Table 11. Time (Seconds) to Canonize the COBRA Library (Version 6.1, n 5 8,311) on a Single CPU.

Total Mean Max Min r

Jochum Gasteiger 95.61 0.01150 2.93918 0.00007 0.07857

Jochum Gasteiger modified 116.65 0.01404 2.85762 0.00009 0.08386
Laplacian Eigenmaps 21.48 0.00258 0.08001 0.00019 0.00327

Isomap 20.32 0.00245 0.07376 0.00017 0.00320

MVE diffusion kernel 0.4 9639.19 1.15981 96.29566 0.08336 2.72437
MVE Euclidean kernel 10045.93 1.20875 101.30420 0.09399 2.86952

PCA 2.02 0.00024 0.03797 0.00013 0.00073

Prabhakar 35904.97 4.32017 3159.95603 0.00005 66.66446

Prabhakar modified 135843.44 16.34502 23524.26899 0.00005 402.00449
Weininger 4.46 0.00054 0.01046 0.00006 0.00048

Weininger modified 4.51 0.00054 0.07926 0.00006 0.00098
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dimensionality reduction take more time but are still feasible.
For a prospective application, the Prabhakar algorithm might be
too slow. For a medium-sized screening library with 0.5 3 106

compounds, canonization with this algorithm would take 25
days for the original and 95 days for the modified version (not
including atom-typing). MVE with the diffusion kernel (best ret-
rospective performance) would need #7 days.

Conclusions and Outline

The canonization algorithm influences the performance of
PhAST in virtual screening, although to a minor extent. None of
the investigated properties of canonization algorithms seems use-
ful as an a priori indicator of retrospective virtual screening per-
formance by PhAST. The best retrospective performance was
achieved using MVE with the diffusion kernel (b 5 0.4), gap
open penalty 5 5, and gap extension penalty 5 1. Different ker-
nel functions vary MVE performance only slightly. Future work
could investigate alternative canonization approaches based on
the molecular graph32 or MVE using other kernels like p-step
random walks33 to further improve performance. Kernels operat-
ing on the graph topology (as opposed to spatial vertex coordi-
nates) have the advantage of being independent from the used
layout/conformation algorithm. We used covalent bonds to
define atom neighborhoods. In the original applications of these
algorithms, neighborhoods were defined by connectivity algo-
rithms like k-nearest neighbors,22 b-matching,23 or e-balls. Using
these instead of covalent bonds would render PhAST-sequences
independent from the original connectivity, possibly increasing
the chance for scaffold-hopping. The recently developed struc-
ture preserving embedding method by Shaw and Jebara34 pre-
serves global connectivity and might be a promising candidate
for further investigation. This technique already showed good
results in embedding 3D structures into two dimensions.34

MVE inserts many transversions into PhAST-sequences of
similar molecules. Global sequence alignment can treat these
only by mutations and insertions/deletions, and thus might not
be the best metric in this situation. Other string metrics such as
the Damerau–Levenshtein-distance35 that are capable of using
transversions as well as mutations and insertions/deletions might
be promising alternatives, not only for PhAST but also for other
string representations like SMILES.

Our study demonstrated that the alignment evaluation method
influences performance more than the canonization algorithm.
For all canonization methods, the alignment evaluation by align-
ment score yielded better results than the sequence identity cal-
culated from the alignment. This has also been observed by
studies on the alignment of protein sequences8; there, signifi-
cance-based methods perform even better than the actual align-
ment score. Some techniques originally developed for local
alignments seem promising for global alignments also.36–38 A
first simple step in this direction could be the use of Z-scores.1,39

Until recently, one had to create a population of alignment
scores by shuffling and realigning the originally compared
sequences to estimate mean and standard deviation of alignment
scores from alignments of random sequences. Booth et al.
showed that it is possible (for the ungapped case) to calculate

mean and standard deviation efficiently, avoiding the time-con-
suming realignment step.40

An important parameter of PhAST that was not changed in
our study is the score matrix used to score matches and mis-
matches in the alignments. It directly influences the alignments,
and thus the similarity score as well. The systematic develop-
ment of a new score matrix that no longer depends on chemical
intuition alone will be the subject of our future studies. Krier
and Hutter41 recently proposed a process for building a scoring
scheme based on aligning SMILES of molecular fragments.
Their score matrix reflects the frequencies of chemical replace-
ments in pharmaceutical substances. For PhAST, a similar
approach might be possible based on pharmacophoric points,
resulting in a score matrix close to the original concept of Dayh-
off et al.42 Modification of the pharmacophoric points is another
option, one should address at the same time.

With the alignment score as a measure for the evaluation of
global alignments (instead of percent identity) the weighting of
the influence of certain pharmacophoric points seems reasonable.
These points could represent interactions that are necessary for
binding. By upweighting the match and mismatch scores of im-
portant pharmacophoric points, one could force isofunctional
points to be matched. If no such points exist, key interactions
are missing resulting in a low score. Incorporating domain
knowledge in this way could further improve the performance of
PhAST.
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Figure S1 a-f BEDROC (!=20) scores for combinations of alignment evaluation methods 
and gap penalties for Minimum Volume Embedding with different settings for the diffusion 
parameter ". a) " = 0.01, b) " = 0.1, c) " = 0.2, d) " = 0.3, e) " = 0.4, f) " = 0.5. 
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Figure S1 g-l BEDROC (!=20) scores for combinations of alignment evaluation methods 
and gap penalties for Minimum Volume Embedding with different settings for the diffusion 
parameter ". g) " = 0.6, h) " = 0.7, i) " = 0.8, j) " = 0.9, k) " = 1.0, l) " = 10. 
 
 
 
 
 
 
 
 



Table S2 Number of inserted vertices between vertex pairs neighbored in the molecular 
graph but not in the PhAST-sequence (COBRA library, n=8,311).  The highest number of 
inserted vertices observed was 110. JG (m) = Jochum and Gasteiger algorithm (modified), LE 
= Laplacian Eigenmaps, Iso = Isomap, MVE (D 0.4) [E] = Minimum Volume Embedding 
(diffusion kernel with diffusion parameter 0.4) [euclidean distance kernel], PCA = principal 
component analysis, P (m) = Prabhakar algorithm (modified), W (m) = Weininger algorithm 
(modified). 
 

No. 
Inserted 
Vertices 

JG JGm LE Iso MVE D 
0.4 MVE E PCA P Pm W Wm 

1 33368 35263 89758 92706 84852 98122 90823 3000 453 26429 27637 
2 49765 44516 25799 39531 52831 49390 44994 3542 2463 16662 18500 
3 51027 43826 9996 15597 28625 22973 23575 5697 3934 17894 19349 
4 41708 38830 4236 6390 11451 7835 10105 16258 13478 13439 14756 
5 27821 29045 2206 2606 4557 2549 3500 4237 2729 13821 14510 
6 17127 20340 1316 1211 1705 746 1265 5500 4706 12159 12575 
7 9484 12578 872 521 561 193 365 4157 3373 11835 12486 
8 5126 7505 439 228 203 37 90 3890 3656 10228 11123 
9 2658 4159 224 142 91 8 33 3626 3506 9436 10403 

10 1597 2484 141 71 36 4 4 3645 3635 8127 9548 
11 958 1176 68 38 9 0 1 3316 3278 7488 9571 
12 580 727 34 10 6 0 0 3284 3220 6506 8548 
13 344 386 25 6 2 0 0 2943 3016 6041 7521 
14 312 241 13 2 0 0 0 2981 3010 5540 6473 
15 241 116 5 1 2 0 0 2755 2734 5526 6072 
16 181 88 0 3 0 0 0 2587 2615 5182 5237 
17 155 43 3 3 0 0 0 2524 2713 5372 5066 
18 110 31 1 1 0 0 0 2366 2551 4902 4565 
19 130 18 0 1 0 0 0 2186 2298 4796 4075 
20 92 13 0 0 0 0 0 2020 2115 4477 3728 
21 113 11 1 0 0 0 0 1951 2045 4254 3344 
22 94 7 1 0 0 0 0 1822 1800 3958 3071 
23 87 3 0 0 0 0 0 1625 1650 3530 2576 
24 62 4 0 0 0 0 0 1565 1572 3342 2182 
25 80 5 0 0 0 0 0 1430 1416 3059 2010 
26 43 4 0 0 0 0 0 1349 1229 2740 1723 
27 64 0 0 0 0 0 0 1181 1199 2562 1537 
28 37 0 0 0 0 0 0 1079 1087 2178 1386 
29 46 0 0 0 0 0 0 1012 965 2257 1205 
30 29 0 0 0 0 0 0 852 873 1763 973 
31 28 0 0 0 0 0 0 724 723 1630 863 
32 23 0 0 0 0 0 0 668 688 1511 808 
33 21 0 0 0 0 0 0 588 558 1389 718 
34 14 0 0 0 0 0 0 570 530 1122 587 
35 14 0 0 0 0 0 0 476 474 1108 388 
36 7 0 0 0 0 0 0 399 409 884 348 
37 14 0 0 0 0 0 0 403 286 801 352 
38 4 0 0 0 0 0 0 280 272 694 289 
39 8 0 0 0 0 0 0 255 284 564 234 
40 4 0 0 0 0 0 0 220 214 466 151 
41 9 0 0 0 0 0 0 164 169 417 223 
42 9 0 0 0 0 0 0 142 172 331 170 
43 8 0 0 0 0 0 0 155 138 372 161 
44 13 0 0 0 0 0 0 87 143 232 153 



No. 
Inserted 
Vertices 

JG JGm LE Iso MVE D 
0.4 MVE E PCA P Pm W Wm 

45 0 0 0 0 0 0 0 111 106 240 129 
46 2 0 0 0 0 0 0 75 82 197 125 
47 2 0 0 0 0 0 0 86 80 228 57 
48 3 0 0 0 0 0 0 55 62 165 51 
49 1 0 0 0 0 0 0 75 58 143 68 
50 3 0 0 0 0 0 0 49 49 141 43 
51 3 0 0 0 0 0 0 51 40 93 34 
52 0 0 0 0 0 0 0 41 45 72 41 
53 0 0 0 0 0 0 0 52 55 74 60 
54 1 0 0 0 0 0 0 44 30 62 22 
55 1 0 0 0 0 0 0 38 39 83 16 
56 0 0 0 0 0 0 0 26 32 82 27 
57 0 0 0 0 0 0 0 28 34 40 28 
58 0 0 0 0 0 0 0 16 27 75 30 
59 0 0 0 0 0 0 0 22 21 68 14 
60 0 0 0 0 0 0 0 23 30 75 29 
61 0 0 0 0 0 0 0 18 19 46 39 
62 0 0 0 0 0 0 0 13 20 36 24 
63 0 0 0 0 0 0 0 18 9 39 25 
64 0 0 0 0 0 0 0 19 12 14 16 
65 1 0 0 0 0 0 0 14 16 45 26 
66 0 0 0 0 0 0 0 22 14 33 16 
67 0 0 0 0 0 0 0 11 14 20 25 
68 0 0 0 0 0 0 0 11 10 76 35 
69 0 0 0 0 0 0 0 10 10 41 19 
70 0 0 0 0 0 0 0 12 8 14 12 
71 0 0 0 0 0 0 0 7 3 11 39 
72 0 0 0 0 0 0 0 12 5 10 10 
73 0 0 0 0 0 0 0 7 2 7 11 
74 0 0 0 0 0 0 0 6 3 17 2 
75 0 0 0 0 0 0 0 2 2 32 11 
76 0 0 0 0 0 0 0 1 7 28 4 
77 0 0 0 0 0 0 0 4 7 19 35 
78 0 0 0 0 0 0 0 3 3 12 0 
79 0 0 0 0 0 0 0 3 1 30 0 
80 0 0 0 0 0 0 0 3 5 1 0 
81 0 0 0 0 0 0 0 4 2 0 1 
82 0 0 0 0 0 0 0 4 1 9 0 
83 0 0 0 0 0 0 0 1 2 0 0 
84 0 0 0 0 0 0 0 1 3 1 0 
85 0 0 0 0 0 0 0 2 3 4 0 
86 0 0 0 0 0 0 0 1 0 5 0 
87 0 0 0 0 0 0 0 1 0 23 0 
88 0 0 0 0 0 0 0 1 1 8 0 
89 0 0 0 0 0 0 0 1 0 1 0 
90 1 0 0 0 0 0 0 1 0 2 0 
91 0 0 0 0 0 0 0 0 2 0 0 
92 0 0 0 0 0 0 0 1 0 0 0 
93 0 0 0 0 0 0 0 0 1 1 9 
94 0 0 0 0 0 0 0 2 0 4 4 
95 0 0 0 0 0 0 0 0 0 0 0 
96 0 0 0 0 0 0 0 1 1 0 13 



No. 
Inserted 
Vertices 

JG JGm LE Iso MVE D 
0.4 MVE E PCA P Pm W Wm 

97 0 0 0 0 0 0 0 0 0 0 4 
98 0 0 0 0 0 0 0 2 0 0 0 
99 0 0 0 0 0 0 0 1 0 5 1 

100 0 0 0 0 0 0 0 1 0 0 3 
101 0 0 0 0 0 0 0 0 0 0 0 
102 0 0 0 0 0 0 0 1 2 2 0 
103 0 0 0 0 0 0 0 0 0 3 1 
104 0 0 0 0 0 0 0 1 0 12 0 
105 0 0 0 0 0 0 0 0 0 11 0 
106 0 0 0 0 0 0 0 1 2 0 0 
107 0 0 0 0 0 0 0 0 0 1 0 
108 0 0 0 0 0 0 0 1 0 0 0 
109 0 0 0 0 0 0 0 0 0 1 0 
110 0 0 0 0 0 0 0 1 0 0 0 

 



Table S3 Percentages of neighborhood relations preserved and changed between PhAST-
sequences when modifying a molecule by attaching one fragment. For both cases, the 
percentage of neighborhood relations in original orientation and in transversed orientation is 
shown in addition. 
 

 

% 
preserved 

% 
preserved 

original 
Orientation 

% 
preserved 

transversed 
orientation 

% 
changed 

% 
changed 
original 

orientation 

% 
changed 

transversed 
orientation 

Jochum 
Gasteiger 53.18 52.67 0.51 46.82 37.32 9.50 

Jochum 
Gasteiger 
modified 

51.04 50.06 0.98 48.96 38.67 10.29 

Laplacian 
Eigenmaps 74.78 57.57 17.21 25.22 20.11 5.11 

Isomap 70.34 46.14 24.20 29.66 20.57 9.08 

MVE diffusion 
kernel 0.4 70.67 44.66 26.01 29.33 19.25 10.08 

MVE euclidean 
kernel 57.73 38.73 19.00 42.27 26.71 15.55 

PCA 44.28 33.89 10.39 55.72 40.16 15.56 

Prabhakar 78.84 76.73 2.11 21.16 16.82 4.35 

Prabhakar 
modified 85.14 82.06 3.08 14.86 11.48 3.37 

Weininger 71.31 71.30 0.01 28.69 27.98 0.72 

Weininger 
modified 67.50 66.76 0.74 32.50 0.74 2.20 

 
 



Table S4 Percentages of neighborhood relations preserved and changed between PhAST-
sequences when modifying a molecule by attaching two fragments. For both cases, the 
percentage of neighborhood relations in original orientation and in transversed orientation is 
shown in addition. 
 

 

% 
preserved 

% 
preserved 

original 
Orientation 

% 
preserved 

transversed 
orientation 

% 
changed 

% 
changed 
original 

orientation 

% 
changed 

transversed 
orientation 

Jochum 
Gasteiger 40.62 39.93 0.69 59.38 46.73 12.65 

Jochum 
Gasteiger 
modified 

37.68 36.45 1.23 62.32 48.64 13.68 

Laplacian 
Eigenmaps 68.45 52.48 15.97 31.55 25.10 6.45 

Isomap 62.99 42.43 20.57 37.01 25.69 11.32 

MVE diffusion 
kernel 0.4 64.04 42.14 21.91 35.96 23.86 12.09 

MVE euclidean 
kernel 52.44 35.92 16.52 47.56 30.26 17.30 

PCA 36.75 28.19 8.56 63.25 45.88 17.37 

Prabhakar 74.67 71.62 3.05 25.33 19.95 5.38 

Prabhakar 
modified 80.51 76.59 3.92 19.49 15.03 4.46 

Weininger 59.38 59.36 0.02 40.62 39.25 1.37 

Weininger 
modified 52.95 51.92 1.03 47.05 43.17 3.89 
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ABSTRACT 
 
Previously (Hähnke et al., J Comput Chem 2010, 31, 2810) we introduced the concept of non-
linear dimensionality reduction for canonization of two-dimensional layouts of molecular 
graphs as foundation for text-based similarity searching using our Pharmacophore Alignment 
Search Tool (PhAST), a ligand-based virtual screening method. Here we apply these methods 
to three-dimensional molecular conformations and investigate the impact of these additional 
degrees of freedom on virtual screening performance and assess differences in ranking 
behavior. Best-performing variants of PhAST are compared to 16 state-of-the-art screening 
methods with respect to significance estimates for differences in screening performance. We 
show that PhAST sorts new chemotypes on early ranks without sacrificing overall screening 
performance. We succeeded in combining PhAST with other virtual screening techniques by 
rank-based data fusion, significantly improving screening capabilities. We also present a 
parameterization of double dynamic programming for the problem of small molecule 
comparison, which allows for the calculation of structural similarity between compounds 
based on one-dimensional representations, opening the door to a holistic approach to molecule 
comparison based on textual representations. 
 
 
KEYWORDS 
 
Double dynamic programming; Global alignment; Line notation; Molecular graph; Similarity; 
Virtual screening 
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INTRODUCTION 
 
The Pharmacophore Alignment Search Tool (PhAST) is a string-based approach to virtual 
screening utilizing topological molecule information.1,2 It reduces each molecule to an 
unambiguous linear representation describing its pharmacophore in three steps: i) each non-
hydrogen atom in the structure graph is replaced by a potential pharmacophoric point symbol 
and hydrogen atoms are removed, ii) vertices of this pharmacophoric feature graph receive 
canonic labels, and iii) vertex symbols are concatenated as a string according to their canonic 
labels. For virtual screening, both the screening compound collection (‘library’) and the query 
molecules are converted, and the resulting PhAST-sequences are compared using pairwise 
global sequence alignment.3 Molecular similarity is calculated as the ratio of the alignment 
score and the alignment length for the retrieval of pharmacophorically similar molecules from 
the compound library. 

Previously,2 we introduced the concept of canonizing molecular graphs with 
dimensionality reduction algorithms. In retrospective experiments we identified minimum 
volume embedding4 employing a combination of diffusion kernel5 with diffusion parameter 
0.4 and covalent connectivity between potential pharmacophoric points as the best-performing 
canonization algorithm for the application to two-dimensional (2D) molecular graphs. Here, 
we expand this concept by applying canonization algorithms to three-dimensional (3D) 
conformations. In addition, we investigate new algorithms for dimensionality reduction in 
combination with connectivity algorithms defining the edges of the graph created in step (i) of 
PhAST. The canonization algorithm that performs best for single conformations is evaluated 
with regard to the impact of multiple conformations on screening performance. In contrast to 
our previous studies,2 we did not perform an optimization of gap penalties for each algorithm 
but used fixed preferred penalty combinations. 
 All canonization algorithms and screening methods are evaluated using the COBRA 
collection of drugs and lead compounds.6 For statistical evaluation we use Boltzmann-
enhanced discrimination of receiver operating characteristic (BEDROC) scores (! = 20), 7 a 
paired permutation test for significance assessment,8 and Kendall’s " as rank correlation 
coefficient.9 Differences in PhAST-sequences generated by the same canonization algorithm 
from two-dimensional layouts and three-dimensional conformations of the same molecule are 
quantified by calculating their Levenshtein10 and Damerau-Levenshtein distances.11 
 Information about the spatial arrangement of pharmacophoric points deduced from 
three-dimensional conformations can be used in the sequence comparison step of PhAST as 
well. For this purpose we parameterized double dynamic programming,12 which – to the best 
of our knowledge – until now has only been used for the calculation of global pairwise 
sequence alignments based on structural residue-equivalence of protein sequences. 
 The main objectives of this study were to i) assess the screening performance of 
PhAST with different canonization algorithms applied to 2D molecular layouts and 3D 
conformations, ii) quantify the impact of conformer structure on screening performance, iii) 
investigate the effect of multiple conformations per molecule, iv) assess the novelty of PhAST 
compared to established 2D and 3D virtual screening techniques, and v) investigate the effect 
of using structural information for sequence comparison in PhAST through double dynamic 
programming. 
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METHODS 
 
Canonization 
 
The atom-typing step of PhAST yields a graph of potential pharmacophoric points. It has the 
same topology as the original molecular graph without hydrogen atoms yielding a total of n 
vertices. Each vertex is colored with a symbol corresponding to one out of nine potential 
pharmacophoric features. Edges correspond to covalent bonds. Canonization is the labeling of 
the vertices with the natural numbers 1,2,3,… ,n. The algorithms compared in this work are 
described in detail in the supplemental material. Short descriptions are presented in the 
following paragraph. 

Centroid linearization prioritizes vertices by their distance to the geometric centre of a 
molecule. Performing principal component analysis13 (PCA) on vertex coordinates yields the 
first principal component as a one-dimensional coordinate system. Deterministic non-linear 
methods for dimensionality reduction applied to 2D layouts and 3D conformations of 
molecules are Laplacian eigenmaps,14 Isomap15 and minimum volume embedding4 (MVE). 
The latter employs a kernel function. Kernels evaluated in this work are a diffusion kernel5,16 
(DK), a p-step random walk kernel (PRW),17 a method for calculating inner products from 
Euclidean coordinates2 (referred to as ‘Euclidean distance kernel’ (EDK)) and a Gaussian 
radial basis function kernel (RBF).18 All non-linear methods rely on neighborhood 
relationships between vertices. As connectivity algorithms used for neighborhood assignment 
we evaluated covalent bonds (cov) and k nearest neighbors (kNN).19 Proximity embedding 
was compared to the deterministic embedding algorithms in a stochastic variant20 (SPE) and 
based on canonical indices pre-calculated with MVE (MVEPE). These algorithms were 
compared amongst each other and to results obtained with algorithms that are independent 
from layouts and conformations of molecular structures. These are the Jochum-Gasteiger,21 
Weininger,22 and Prabhakar algorithm23 implemented as described previously.2 
 
 
Sequence Alignment 
 
Sequence alignment is used in bioinformatics to decide how related two sequences (DNA, 
RNA, amino acid sequences) are. To create the alignment of two sequences X = x1x2…xn and 
Y = y1y2…ym, their symbols are matched. Thereby the symbol order is retained and gaps may 
be inserted to improve the matching (insertion of paired gaps is forbidden). Three cases exist: 
(i) xi is aligned to yj and xi  = yj (match), (ii) xi is aligned to yj and xi ! yj (mismatch), (iii) xi is 
aligned to a gap in Y, or yj is aligned to a gap in X. In protein sequence alignment, matches 
represent conserved residues; mismatches may arise from mutations, and gaps from insertions 
or deletions in an assumed evolutionary process of the compared sequences. Consequently, 
matches are rewarded with a positive score, mismatches are -- depending on the specific case 
-- either rewarded with a positive score or penalized with a negative score, and gaps are 
always penalized with a negative score. The optimal alignment is the one with the highest 
score (summed over the whole alignment). It can be computed using dynamic programming.24 
Instead of the original Needleman-Wunsch24 algorithm we employed a faster method 
described in Durbin et al..3 It can be derived from a simple finite state machine and therefore 
will be referred to as ‘FSM algorithm’. We could show that it runs 60% faster than the 
Needleman-Wunsch algorithm and the calculated alignments are nearly identical.2 

Gap Penalties. Previously,1,2 we optimized gap penalties in a grid search with 190 
penalty combinations. Here all retrospective screenings were carried out with only one 
combination: Gap open penalty = -5 and gap extension penalty = -1. This decision was made 
based on earlier findings.2 Of all gap open penalties of best-performing combinations 
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involving the alignment score for alignment evaluation, -5 is the median value of the three 
values with the highest frequency and so it is least extreme. Gap extension penalty -1 (-2) [-3] 
occurs with a frequency of 70% (27%) [3%]. As differences in retrospective performance 
between top-performing combinations are marginal when other parameters remain 
unchanged, the combination we chose is an educated guess with minor sacrifice in 
performance if wrong. 
 Alignment Evaluation. In previous studies2 we identified the alignment score 
normalized to the alignment length to be the best performing alignment evaluation method so 
far. For this reason we only considered this evaluation method for comparison of PhAST 
screening performance with different canonization algorithms. 
 
 
Library Preparation 
 
We used the COBRA library of reference compounds6 as screening library (version 6.1, 8311 
compounds). Each compound was protonated using the ‘wash’ function of MOE (Molecular 
Operating Environment, v2010.06, Chemical Computing Group Inc., Montreal, Canada). 2D 
layouts were created for each compound using the ‘depict’ algorithm of MOE. Single 3D 
conformations were created for each compound using CORINA (v3.46, Molecular Networks 
GmbH, Erlangen, Germany) invoking the ‘canon’ option. Ten 3D conformations were 
generated for each compound using our stochastic conformer generator SOCGER.25 
 The only publicly available dataset compiled specifically for the evaluation of ligand-
based virtual screening methods is the ‘maximum unbiased validation’ (MUV) dataset.26 It 
was shown that many methods fail in achieving any significant enrichment for most of the 
targets present in MUV.27 MUV therefore disqualified as a reference dataset for retrospective 
comparisons of PhAST with other methods. The ‘directory of useful decoys’ (DUD) contains 
actives and decoys for 40 targets.28 DUD was especially designed for the evaluation of 
docking methods. In an attempt to remove analogue bias in the sets of active molecules, only 
actives were filtered according to certain criteria, causing some artificial enrichment.29 A 
second approach processed both, active and decoy compounds,30 but still, a high ratio of 
actives to decoys renders it unfavorable for virtual screening.7 In addition, DUD targets are 
limited to structurally resolved proteins, and for example GPCRs are excluded. So we relied 
on our own collection of bioactive reference compounds (COBRA)6. COBRA exhibits the 
same degree of scaffold diversity as trade drugs (1.7 compounds per graph scaffold) and may 
thus be considered as a druglike compound set also from a structural perspective. Both MUV 
(3.8) and DUD (6.3) contain more compounds per scaffold on average. Scaffolds were 
determined as graph frameworks defined by Bemis and Murcko.31,32 
 
 
Screening Protocol 1 
 
PhAST in combination with each canonization algorithm was used in a series of retrospective 
screenings. For each target (Table 1) each active was used once as query, resulting in 689 
screenings. Each screening run was evaluated with the Boltzmann-enhanced discrimination of 
receiver operating characteristic (BEDROC) metric.7 BEDROC scores were calculated with ! 
= 20, the suggested default value for evaluation.7 We first evaluated screening performance 
for each target by averaging the corresponding BEDROC scores. Final retrospective 
performance is expressed as the mean of these averages. We used the mean of averages to 
give equal weight to each target although the COBRA library contains unequal numbers of 
actives for different targets. Each canonization algorithm described in the Methods section 
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was tested on 2D graph layouts. Except for MVE DK and MVE PRW all versions were 
evaluated on single 3D conformations as well. 

To assess whether differences in screening performance are significant we employed a 
paired permutation test8 that was recently found to be the most powerful available 
significance test for this purpose.33 It has the null hypothesis that virtual screening method P 
performs significantly better than method Q. Assuming p and q are rank lists of actives 
resulting from the virtual screening methods, the null hypothesis requires that BEDROC(p) > 
BEDROC(q). As each active has two ranks, one in p and one in q, new rank lists p* and q* 
can be created by swapping ranks in p with corresponding ranks in q for each active with a 
probability of 50%. This was repeated 10,000 times and the frequency of the event that 
BEDROC(p) – BEDROC(q) is less than BEDROC(p*) – BEDROC(q*) is the type I error rate 
for the null hypothesis used as p-value for significance estimation. As significance levels we 
used 0.05 and 0.01. 
 
 
Assessment of Novelty 
 
Each canonization algorithm based on Euclidean coordinates of vertices was used on 2D 
layouts of molecular graphs and on 3D single conformations of the complete COBRA library. 
Besides the retrospective screening performance we assessed differences between 
canonization algorithms in two and three dimensions based on differences in compound 
rankings and PhAST-sequences. 
 Ranking Differences: Screening protocol 1 yielded 689 ranked lists for each 
canonization algorithm. Rankings of actives were compared using Kendall’s rank correlation 
coefficient.9 Before calculating Kendall’s ", ranked lists resulting from a virtual screening 
were reduced by eliminating all inactive compounds, yielding a ranking only of actives. These 
reduced lists were used to calculate "b that corrects for ties. We first calculated the average 
rank correlation per target and used the mean of these averages as final measure to express 
how similar PhAST ranks actives with two different canonization algorithms to give equal 
weight to each target although the COBRA library contains unequal numbers of actives for 
different targets.  
 Sequence Differences. Applying each canonization method on a 2D layout and a 3D 
conformation of the same molecule yields two PhAST-sequences. If the additional degrees of 
freedom in three instead of two dimensions have big impact on the canonization process, 
these two PhAST-sequences should be dissimilar. We measured sequence similarity 
employing the Levenshtein distance.10 It is defined as the minimum number of edit operations 
necessary to transform one sequence into the other with insertion, deletion and substitution of 
a single symbol being the allowed edit operations. To compare sequences of the whole 
COBRA library obtained with the same canonization algorithm applied to 2D layouts and 3D 
conformations we calculated the Levenshtein distance for all 8,311 pairs of PhAST-sequences 
generated from the same molecule and used the average of these values as final measure of 
dissimilarity. As observed earlier,2 MVE in particular tends to introduce a fourth kind of 
events in PhAST-sequences of similar molecules: transpositions, defined as the exchange of 
position between neighboring symbols. Accounting for this fact we used an extension to the 
original Levenshtein distance, the Damerau-Levenshtein distance11 that allows transpositions 
as edit operations. As the Damerau-Levenshtein distance uses an additional edit operation the 
calculated distances should be smaller compared to Levenshtein distances. We used both 
distances and compared obtained results because it is unknown which one is more suitable for 
our purpose. 
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Clustering of Canonization Methods 
 
The averaged rank correlation, the averaged Levenshtein and the averaged Damerau-
Levenshtein distance were used to quantify the difference between versions of PhAST with 
different canonization algorithms. Using these distances we performed a Ward clustering34 of 
the different PhAST versions to assess the similarity between canonization algorithms and to 
get an idea whether screening behavior and sequence generation are more influenced by the 
dimensionality of molecular representation (2D layouts vs. 3D conformations) or the 
canonization algorithm. Therefor we first selected a representative of each canonization 
algorithm from the possible parameterizations by using the retrospective performance 
averaged over both dimensionalities as selection criterion. In case of the Kendall rank 
correlation we used (1 – ") as distance measure. 
 
 
Data Fusion 
 
Retrospective results obtained with the top-performing canonization algorithms applied to 2D 
layouts and 3D conformations were combined using data fusion. This way we assessed 
whether the combination of topological and spatial information can further improve screening 
performance of PhAST. To do so, each screening described in screening protocol 1 was 
performed with both versions of PhAST. To avoid complications with different ranges of 
similarity values and re-scaling steps we chose a data fusion approach that combines the ranks 
of each compound in both ranked lists.35 To combine two methods, a new ranked list was 
created according to Eq (1). 
 

ri

* # min(ri

m1 ,ri

m2 )         (1) 
 

with m1 the first screening method, m2 the second screening method and ri the rank of 
the i-th compound. This version of PhAST is referred to as PhAST DF. 
 
 
Multiple Conformations 
 
The retrospective performance of PhAST applied to 3D conformations of molecules with 
different canonization algorithms was assessed using single 3D conformations generated for 
each molecule in the COBRA library. But there is more than one possible low-energy 
conformation for most molecules.36 This is why the canonization algorithm with best 
retrospective performance on single 3D conformations was re-evaluated with ten 
conformations per molecule. The retrospective analysis was similar to screening protocol 1 
with one modification: All ten conformations of each query molecule were compared to all 
ten conformations of each screening compound, and the maximum of these 100 similarity 
scores per molecule comparison was used as final similarity measure. To quantify the 
influence of the additional degrees of freedom in three dimensions on the generation process 
of PhAST-sequences we again used alternative sequence distance measures. We calculated 
the Levenshtein and Damerau-Levenshtein distance for each single conformations of a 
molecule in the COBRA library to the corresponding ten multi-conformations. 
 
 
Other Virtual Screening Methods 
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The best-performing versions of PhAST applied to 2D layouts and 3D conformations of 
molecules were compared to other popular virtual screening methods in the same series of 
retrospective screenings as described in screening protocol 1.  

(i) MDL MACCS substructural search keys37 were originally developed to encode 
common substructure features found in organic molecules. Each molecule is represented as a 
vector of 166 bits corresponding to a predefined set of 166 features, where each ‘on’ bit 
indicates the presence of the corresponding feature. We used the implementation of MACCS 
keys available in MOE, and binary vectors were compared using the Tanimoto coefficient.38 

(ii) LINGO39,40 is based on the fragmentation of SMILES into overlapping words of 
length q (LINGOs). Counts of LINGOs generated by the fragmentation of SMILES 
representations of two molecules were used to quantify molecular similarity between 0 and 1. 
SMILES were generated using MOE. These were modified by unitizing ring numbers as well 
as replacing ‘Cl’ with ‘L’, and ‘Br’ with ‘R’ as suggested for preprocessing.39 We used q = 4 
as this value showed highest retrospective performance in a comparison of lengths between 1 
and 20 (data not shown). 

(iii) ESshape3D and ESshape3D HYD are eigenvalue shape fingerprints implemented 
in MOE. ESshape3D compares 3D shapes made from heavy atoms of a molecule, ESshape3D 
HYD those from hydrophobic heavy atoms. Both are based on the calculation of eigenvalues 
for the Euclidean distance matrix between atoms, encoding this eigenspectrum into a 
fingerprint and using the inverse distance between fingerprints as similarity score. 

(iv) The property vector referred to as SIMPLE was used during the creation of the 
MUV dataset.26 It contains the number of all atoms, heavy atoms, boron, bromine, carbon, 
chlorine, fluorine, iodine, nitrogen, oxygen, phosphorus, and sulfur atoms, the number of 
acceptors, donors, logP, the number of chiral center and the number of ring systems in a 
molecule. For comparison the Euclidean distance between these vectors was calculated. 

(v) The TGD/TGT/TAD/TAT fingerprint family of MOE is based on a common 
definition of pharmacophoric points. Each atom is typed either as donor, acceptor, polar, 
anion, cation or hydrophobe. TGD (TGT) codes all pairs (triplets) of atoms by their types and 
topological distance as features. TAD and TAT use Euclidean distance between atoms. 
Fingerprints were compared using the Tanimoto coefficient. 

(vi) The *piDAPH# group of fingerprints in MOE is based on a more elaborate 
pharmacophore model. Each atom is assigned a type from the eight possible combinations 
between ‘in pi system’, ‘is donor’ and ‘is acceptor’. GpiDAPH3 codes triplets of atoms by 
their types and topological distances. piDAPH3 (piDAPH4) is the spatial analogue using 
inter-atomic distances between triplets (quadruplets). Fingerprints were compared using the 
Tanimoto coefficient. 

(vii) CATS (Chemically Advanced Template Search),41 (viii) LIQUID (Ligand-based 
Quantification of Interaction Distributions),42 and (ix) PRPS (Pseudoreceptor Point 
Similarity)43 are in-house implementations of the correlation vector concept.44 For CATS, 
each atom is assigned one type of donor, acceptor, anion, cation and lipophilic. For all 15 
pairs between these types, their occurrence in topological distances from zero to nine bonds 
was counted, yielding the ‘raw’ version of CATS. The sensitive (‘sens’) variant scales these 
values by the sum of involved atom type counts. LIQUID uses only three atom types (donor, 
acceptor, lipophilic) and creates a 3D pharmacophore model. Pharmacophoric points were 
clustered with cluster radius 2 Å and used to create feature densities modeled by trivariate 
Gaussians. The correlation vector was calculated between all six possible atom pairs in binned 
distances between one and 20 Å (or more) in steps of 1 Å. Finally, values were scaled so that 
the sum of the 20 bins for each pair equals 1. PRPS models a pseudoreceptor around each 
ligand based on known interaction directions with interaction types donor, acceptor and 
lipophilic. These interaction possibilities were translated into a correlation vector analogous to 
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LIQUID with bins from 1 to 15 Å in 1 Å steps. For all correlation vectors we used the 
Euclidean distance for similarity assessment. 
 
 
Clustering of Virtual Screening Methods 
 
In order to identify similarities between virtual screening methods, to assess the novelty of 
PhAST applied to molecular representations of different dimensionality compared to already 
existing virtual screening techniques, and to quantify the influence of the dimensionality of 
the molecular representation we performed a Ward clustering. As distance measures we used 
the averaged Kendall rank correlation as well as significance estimates for the superiority of 
one method over another. For this purpose we calculated the average percentage of virtual 
screens one method performs significantly better than the other in the paired permutation test 
at significance levels 0.05 and 0.01 for each target. We used the average of these per-target-
values to assess the significance of differences in retrospective performance between 
methods, yielding an asymmetric distance measure. Using Eq. (2) 
 

ds(mi,m j ) # da (mi,m j ) $ da (m j ,mi)       (2) 

 
with m a screening method, da the asymmetric distance between methods and ds the 

symmetric distance between methods we calculated a symmetric distance matrix. 
 
 
Double Dynamic Programming 
 
Besides the canonization algorithm during generation of PhAST-sequences spatial 
information can be used for scoring in the alignment process. This technique called ‘double 
dynamic programming’ (DDP) has proven to be successful in the comparison of protein 
structures as alternative to structure superposition.12,45,46 We will first describe the DDP 
alignment algorithm for proteins. Then we will explain our modifications to apply DDP to 
textual representations of small molecules. 

Algorithms calculating the optimal pairwise global sequence alignment use dynamic 
programming.3,24 During the alignment process matches and mismatches of residues have to 
be scored. Typically these scores come from score matrices like PAM47 or BLOSUM48 and 
relate to the functional similarity of residues. Using DDP these scores are calculated by a 
second level of dynamic programming based on structural instead of functional similarity. We 
will refer to these two levels as ‘residue level’ for the dynamic programming level equal to 
the normal dynamic programming and ‘distance level’ for the dynamic programming level 
calculating the scores for the residue level. The simplest approach for proteins is to consider 
only C! atoms in these calculations. 

When sequences X = x1x2…xn and Y = y1y2…ym are aligned and the score for aligning 
residues xi and yj on residue level have to be calculated, a position-specific distance score 
matrix Dij  with entries [Eq. (3)] 
 

Dkl

ij #
a

Xdi ,k
$Yd j ,l

% b
         (3) 

 
is created where Xdi ,k

 is the Euclidean distance between xi and xk, Yd j ,l
 is the Euclidean 

distance between yj and yl, b prevents division by 0 and the ratio of a to b defines the 
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maximum score where k = i and l = j. This matrix is used as score matrix for the distance level 
alignment. This alignment is calculated under the assumption that that xi and yj are structurally 
equivalent, hence the alignment of xi and yj has to be part of the distance level alignment.12,49 
The alignment score of the distance level alignment is used as score for the alignment of xi 
and yj on residue level. As dynamic programming has complexity O(n2), and in each step 
dynamic programming has to be performed to calculate the score of the alignment of two 
residues with again O(n2), DDP has complexity O(n4). 

The parameterization of DDP poses some new problems compared to standard 
dynamic programming. Three parameterization solutions are described in the supplemental 
material. As they mainly differ in the determination of gap penalties used on distance level, 
they are referred to as ‘static’, ‘flexible’ and ‘dynamic’, based on the particular penalty 
choices. 
 We evaluated our implementation of DDP with the best-performing canonization 
algorithms based on 2D and 3D information that were identified in this study. This way we 
wanted to assess whether the combination of 2D or 3D canonization with 3D sequence 
comparison is advantageous.  
 
 
Screening Protocol 2 
 
As DDP has a complexity of O(n4) and we implemented it using the exact but slower 
Needleman-Wunsch algorithm, average screenings as described in screening protocol 1 would 
take huge amounts of time. For evaluation we used a protocol proposed earlier1 with two 
queries per target taken from PDB50 structures (see Table 2 for detailed query list). Each 
query is used in a retrospective screening and the resulting ranked list is evaluated by 
calculating their BEDROC score with ! = 20, the suggested default value for evaluation.7 
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RESULTS AND DISCUSSION 
 
Canonization algorithms 
 
We compared the retrospective performance of PhAST employing different canonization 
approaches applied to 2D layouts and 3D conformations of molecules in a series of virtual 
screens. Canonization algorithms with highest retrospective performance in PhAST are 
minimum volume embedding (MVE) combined with the diffusion kernel (diffusion parameter 
0.4) and covalent connectivity for 2D molecular representations (averaged BEDROC = 0.40) 
and MVE combined with the Gaussian radial basis function kernel (& = 22) and k nearest 
neighbors connectivity with k = 3 (averaged BEDROC = 0.39). These versions of PhAST will 
be referred to as ‘PhAST 2D’ and ‘PhAST 3D’. Full results of all canonization algorithms are 
provided in the supplemental material.  
 The difference in screening performance between PhAST 2D and PhAST 3D is 
significant in more than 50% of all screenings at the 0.05 and 0.01 significance level. 
Compared to all methods evaluated in this study, PhAST 2D performs significantly better in 
50% of all screenings in 98% (84%) of all cases at a significance level of 5% (1%). This 
demonstrates that MVE in combination with a diffusion kernel (diffusion parameter = 0.4) 
and covalent connectivity is an appropriate canonization algorithm for the generation of 
molecule linearizations for sequence alignment. 
 
 
Impact of dimensionality on PhAST-sequences 
 
Table 3 presents the results of comparing the application of the same canonization algorithm 
to 2D layouts and 3D conformations of molecules by differences in PhAST-sequences and 
active ranks. The average difference between the averaged Levenshtein and Damerau-
Levenshtein distance is 0.66, indicating that transpositions allowed as additional edit 
operation in the Damerau-Levenshtein distance are not used very often to explain differences 
in PhAST-sequences generated from different representations of the same molecules. For all 
canonization algorithms utilizing a neighborhood definition of vertices, the biggest difference 
in PhAST-sequences is observed using k nearest neighbor neighborhoods with k = 2. This 
shows that the changes in vertex neighborhoods introduced by the additional dimension using 
3D conformations are only slight displacements of the same groups of vertices. Looking at 
only the two nearest neighbors, these displacements may results in selecting two different 
nodes, but as the number of considered neighbors increases, the shared fraction of nearest 
neighbors increases resulting in less distant PhAST-sequences. At the same time lowest rank 
correlation is observed for the same group of canonization algorithms with k = 2 as well. 
Lowest distance between PhAST-sequences and highest rank correlation are observed when 
identical connectivity is used in form of neighborhoods defined by covalent bonds. 

The rank correlation of actives varies between 0.71 and 0.36 with a mean of 0.59. 
Pearsons’s correlation coefficient65 between Levenshtein (Damerau-Levenshtein) distance and 
Kendall’s " is -0.95 (-0.96). This shows that whenever a canonization algorithm generates 
very dissimilar PhAST-sequences from molecular representations with different 
dimensionalities, this results in very dissimilar rankings of actives. 
 
 
Comparison 2D vs. 3D 
 
For all 42 canonization algorithms and parameterizations applied to molecular representations 
in both dimensionalities, the application to 2D layouts (3D conformations) has higher 
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averaged performance in 15 (27) cases. Focusing on the number of cases where more than 
50% of all screenings have significantly better averaged retrospective performance this is true 
in 2 (14) cases at 0.05 and only 0 (4) cases at 0.01. This implied superiority of using three-
dimensional molecular representations in general does not hold necessarily for a particular 
target. Table 4 lists the number of cases where the application to one dimensionality results in 
significantly higher retrospective performance compared to the other in more than 50% of 
performed screenings per target at both significance levels. By that criterion, more than 50% 
of the compared canonization algorithms have significantly higher retrospective performance 
when applied to 3D conformations on THR at 0.01. On this target, the application to 2D 
layouts is superior in only 7%. On COX2 both representations excel the other in 45%. On 
ACE in 43% of the compared cases the application on 3D conformers yields significantly 
better results with only 5% the other way. Nearly identical percentages are obtained for both 
dimensionalities on DHFR, FXA and PPAR'. These results demonstrate that the usage of 3D 
conformations seems to be advantageous only in some cases, but not in general. This is in 
agreement with other studies evaluating 2D and 3D methods.63,64 
 The similarity of results obtained from 2D and 3D representations can be explained by 
the similarity of the molecular representations. A comparison of MOE 2D layouts and 
CORINA single 3D low-energy conformations for the COBRA compounds by calculation of 
their pairwise root mean square deviation (RMSD) revealed that they are similar with an 
averaged RMSD of 1.9 Å (standard deviation 0.9 Å). This high similarity between 
representations is most likely due to a large number of atoms being part of arene systems. As 
PhAST employs the Hueckel definition of aromaticity, all atoms typed as aromatic are part of 
such planar systems. An analysis of PPP frequencies in the COBRA library reveals that 42% 
of all atoms are typed as aromatic. As a consequence, on average 42% of all non-hydrogen 
atoms present in a molecule have identical conformation in 2D and 3D, and slight differences 
occur only due do different positioning of these fragments. As a result of this limited 
difference between representations, Euclidean and topological distances between vertices are 
highly correlated. The Pearson correlation coefficient65 of the Euclidean and topological 
distances between all vertex pairs in all molecules of the COBRA library is r = 0.94. 
Linearization of structures based on distances from 2D and 3D representations with the same 
canonization algorithm results in smaller differences in the generated PhAST-sequences 
compared to the same molecular representation being processed by different canonization 
algorithms. This observation motivated the next part of our study, namely a comparison of 
canonization algorithms by the similarity of their corresponding PhAST-sequences. 
 
 
Canonization Clustering 
 
In order to assess general differences between algorithmic concepts, to categorize algorithms 
and to quantify the impact of the dimensionality of molecular representation in comparison to 
algorithmic differences we clustered the canonization algorithms compared in this study by 
different distance measures. Therefore, we first selected a representative from every group of 
canonization algorithm that was evaluated in more than one parameterization. As selection 
criterion we used the averaged retrospective performance obtained in the application to both 
dimensionalities of molecular representation. To get a more complete picture, we included 
results obtained with algorithms compared previously. As distance measures we utilized 
Kendall’s rank correlation of actives averaged over all targets as well as the averaged 
Levenshtein and Damerau-Levenshtein distance between PhAST-sequences generated from 
the same molecular representation with different algorithms. As in contrast to distance 
measures high rank correlation indicates similar behavior, we used (1 – ") as distance. We 
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used Ward’s algorithm to create a hierarchic clustering. Distance matrices are available in the 
supplemental material. 

The dendrogram obtained using Kendall’s rank correlation coefficient as distance is 
shown in Figure 1A. The algorithms explicitly designed for the canonization of molecular 
graphs (Jochum Gasteiger, Prabhakar, Weininger) are grouped in a sub-tree. Despite the fact 
that the Jochum Gasteiger algorithm labels vertices in spheres around the most buried one, the 
Prabhakar algorithm labels long paths through the graph and the Weininger algorithm groups 
vertices with similar properties in equivalence classes, they are more dissimilar to the 
approaches using dimensionality reduction then among themselves. That may be due to the 
fact that all three algorithms in the end use functional and topological vertex properties for 
prioritization instead of topological or spatial distances. Within this substructure lie both 
variants of centroid linearization. This is an expected result as they are the spatial analogue to 
the topological procedure performed by the Jochum Gasteiger algorithm that lies next to 
them. Besides centroid linearization, there is no case where both variants of the same 
algorithm applied to 2D and 3D molecular representations are grouped together. This implies 
that the dimensionality of molecular representation has bigger impact on rank orders than 
algorithmic differences. With MVE DK and MVE PRW both variants of MVE based on a 
kernel performing a random walk on the graph are grouped together. They form a sub-tree 
with covalent variants of Isomap and laplacian eigenmaps. Identical algorithm versions with 
different connectivity are never direct neighbors in the tree, showing that results obtained with 
chemical reasonable connectivity differ from those originating from close proximity between 
vertices. PCA and SPE, both independent from neighborhood definitions, behave similar, 
whereat differences between algorithms are of lesser importance compared to dimensionality 
of molecular representation for our problem to embed structures in only one dimension. For 
each connectivity variant and dimensionality of molecular representation, MVE variants EDK 
and RBF are grouped together, meaning they result in similar rankings of actives. This is 
reasonable, as both kernels depend on the same distances and coordinates for vertices in 
Euclidean space. 

These observations are substantiated by the dendrograms created with the averaged 
Levenshtein and Damerau-Levenshtein distances (dendrograms are identical) presented in 
Figure 1B: i) Dimensionality of molecular representation results in smaller differences as 
using different algorithms (except for centroid linearization) as does using covalent 
connectivity instead of k nearest neighbors, ii) MVE EDK and MVE RBF behave similar, iii) 
dimensionality reduction algorithms used for graph canonization result in active rankings 
quite dissimilar from those obtained with algorithms explicitly designed for this purpose. 

Cluster analysis of canonization algorithms revealed equivalent behavior of MVE RBF 
and MVE EDK. Furthermore, it emphasizes differences between ‘traditional’ algorithms for 
graph canonization and our approach using dimensionality reduction algorithms and between 
chemical reasonable connectivity and connectivity implied by spatial adjacency. These results 
approve the novelty of our concept of using dimensionality reduction for molecule 
linearization. Our findings indicate a difference in results obtained with molecules represented 
in 2D and 3D. However, the observed differences again do not result in significant differences 
of screening performance. 
 
 
PhAST data fusion 
 
PhAST 2D and PhAST 3D were combined in a data fusion approach based on compound 
ranks, yielding PhAST DF. The averaged rank correlation of actives between results obtained 
with PhAST 2D and PhAST 3D respectively is 0.69. Table 5 shows the averaged 
retrospective performance per target, the percentages of screenings in which one method 
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performed significantly better than the other per target and the averaged rank correlation per 
target. 

Judging from the averaged BEDROC scores per target, PhAST DF performs better 
than both original versions of PhAST only on THR and FXA. Taking into account the 
percentage of screenings one method outperforms the other significantly approves this result: 
Only on these two targets PhAST DF performs significantly better than PhAST 2D and 
PhAST 3D in more than 50% of all screenings at both significance levels. On other targets at 
least one of the other methods has at least the same percentage at 0.05. But on all targets and 
as consequence averaged over all targets retrospective performance did not increase enough 
(39% to baseline PhAST with 31% for the opposite case) to justify the computational cost of 
calculating 2D layouts and 3D single conformations for each molecule and conducting each 
screening twice, once in each dimensionality.  

The averaged rank correlation between PhAST DF and PhAST 2D (PhAST 3D) is 
0.85 (0.84). This shows that while PhAST DF ranks actives slightly better than PhAST 2D or 
PhAST 3D, it retains the order of actives relatively good with regard to these two PhAST 
versions and so does not introduce any novelty in chemotypes retrieved at higher ranks. 
 In general, the data fusion approach could not further improve the screening 
performance of PhAST and does not succeed in bringing any novelty to obtained screening 
results. As on the other hand it requires additional computational effort, we do not 
recommend this procedure for prospective application with the current versions of PhAST. 
 
 
Multiple Conformations 
 
We investigated the benefits of using PhAST with multiple 3D conformations (PhAST 3D 
MC) compared to 3D single conformations (PhAST 3D SC) in retrospective screenings with 
MVE RBF (& = 22, kNN k = 3) as canonization algorithm. This variant of MVE performed 
best for 3D single conformations. Ten conformations were created for each molecule. 
BEDROC scores and results from the paired permutation test are presented in Table 6.  

Averaged retrospective performance shows only a minor increase for PhAST 3D MC 
(0.41) compared to the SC variant (0.39) and PhAST 2D (0.40) in general. This is backed up 
by averaged significance estimations: At the 0.05 significance level PhAST 3D MC performs 
significantly better than PhAST 2D or PhAST 3D SC judged by the percentage of 
significantly better screenings averaged over all targets. These are 51% for PhAST 3D MC in 
both cases. At 0.01 the averaged percentages only slightly decrease to 48% and 47%. The 
opposite is true only in 35% (PhAST 2D) and 33% (PhAST 3D) at 0.05 significance level and 
31% for both at 0.01. On particular targets on the other hand differences are more distinct, as 
the results for ACE and FXA indicate. The averaged BEDROC score for ACE increases from 
0.37 for single conformers to 0.45, with that increase being significant in 79% (71%) at 0.05 
(0.01) and the single conformer version being significantly better in 0% at both levels. For 
FXA retrospective performance is raised from 0.35 to 0.40 with significantly better results in 
82% at both significance levels. On COX2 PhAST 3D MC performs worse than the SC 
variant, with this decrease in retrospective performance being significant in 65% at 0.05 and 
61% at 0.01. So in some cases taking the maximum of all similarity values calculated in the 
comparison of all pairs of conformations as final similarity value is misleading and increases 
the number of false positives. 

As an attempt to quantify the influence of different conformations on the 
corresponding PhAST-sequences we calculated Levenshtein- and Damerau-Levenshtein 
distances between PhAST-sequences of single conformations and their ten corresponding 
multiple conformations. PhAST-sequences generated from different conformations of the 
same molecule can be quite dissimilar with 4.98 (4.26) being the mean Levenshtein 
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(Damerau-Levenshtein) distance and standard deviation of 5.43 (5.32). As Table 7 shows this 
is most likely explained by the degrees of freedom each molecule has in three dimensions, 
measured by the averaged number of rotatable single bonds per target (descriptor b_1rotN in 
MOE). The Pearson correlation coefficient between these averages and the averaged 
Levenshtein (Damerau-Levenshtein) distance between each single conformation and its 
corresponding multiple conformation is 0.93 (0.87). Differences in retrospective performance 
between PhAST 3D SC and MC per target on the other hand do not correlate well with 
sequence differences (Pearson correlation coefficient of 0.31 for Levenshtein distance and 
0.35 for Damerau-Levenshtein distance). This agrees with weak correlation between 
differences in retrospective performance and the averaged number of rotatable single bonds 
(0.28). So the generation process of PhAST-sequences is sensitive enough to changes in 
vertex placements to capture molecule flexibility and mirror it. At the same time, differences 
in retrospective performance between the SC and MC variant of PhAST 3D can not be 
explained by this behavior. 
 This analysis strongly suggests that the usage of multiple conformations can be 
beneficial on some targets. This is in agreement with other studies evaluation screening 
methods with single and multiple conformations.63 Still, it should be kept in mind that the 
increased computational cost (here: for 10 conformation per molecule, an approximately 100-
fold increase) motivates 2D methods as a first choice. 
 
 
Comparison to other screening methods 
 
We compared PhAST 2D and PhAST 3D to other virtual screening methods by their 
retrospective performance, significance of differences in retrospective results and active ranks 
measured by Kendall’s rank correlation coefficient. 
 Table 8 gives the averaged retrospective performance per target for each method. 
PhAST 2D and PhAST 3D have the fourth and fifth highest averaged retrospective 
performance (0.40 for PhAST 2D, 0.39 for PhAST 3D) with 0.42 being the maximum 
performance in this comparison obtained with GpiDAPH3. The MOE fingerprints ESshape 
3D and ESshape 3D HYD perform even worse than the SIMPLE vector of molecule 
properties (0.13 and 0.12 in contrast to 0.21). Calculating ranks for each method on each 
target based on retrospective performance and averaging these ranks results in placing PhAST 
2D fifth and PhAST 3D eighth. Top-ranked according to this measure is LINGO that has 
second-highest retrospective performance (0.41). In general, PhAST succeeds in creating 
enrichment comparable to other established methods. 

The significance between retrospective results was assessed using a paired 
permutation test. We calculated a symmetric distance matrix based on the average percentage 
of screenings one method performed significantly better than the other and used it to create a 
dendrogram using Ward’s algorithm. The calculated symmetric distance matrix can be found 
in the supplemental material. The dendrograms received with significance levels 0.05 and 
0.01 are shown in Figure 2A and Figure 2B. Clustering two methods together means the 
difference between these methods is significant in less cases than between any other pairs of 
methods, so these two methods show only insignificant differences in retrospective 
performance in most cases. The dendrogram created from significance estimation at level 0.05 
mirrors the ranking order of methods by their averaged retrospective performance. From the 
seven top performing methods, six form a sub-tree with piDAPH4 (third-highest averaged 
retrospective performance) being excluded from this cluster. PhAST 2D is grouped with 
GpiDPH3, the method with highest averaged retrospective performance, but ranked at fifth 
position by this measure. This shows that differences between methods implied by averaged 
performance are caused by the summation of small insignificant differences. The five worst 
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performing methods form a substructure of their own as well. The tree created from 
significance data at 0.01 is nearly identical. The only difference is clustering MACCS with 
the TAD / TGD / CATS sens sub-tree and placing the complete structure farther away from 
the best performing screening methods. PhAST 2D is grouped again with the best performing 
GpiDAPH3 method. So despite the fact that PhAST 2D has only fifth-highest averaged 
performance, it has least significant differences in retrospective screenings to the best 
performing method. 

Motivated by these findings we analyzed in how many of the 689 screenings each 
method significantly outperforms each other method. The results per target are shown in 
Table 9. The results are nearly identical at both significance levels. At 0.01, LINGO has the 
highest percentage of screenings in which it significantly outperforms each other method 
(15%). The per-target-analysis reveals that this superiority mostly comes from screenings on 
FXA. PRPS dominates on DHFR and is ranked second best with 12% in total. Our method 
PhAST 2D is ranked third (9% at 0.01 significance level) with peak superiority on THR, 
whereat this significant higher performance is not as distinct compared to LINGO on FXA 
and PRPS on DHFR. 

All significance analysis justify usage and further development of PhAST as it exhibits 
enrichment comparable or superior to established methods with these improvements being 
significant in a great number of cases. 

Kendall’s rank correlation coefficient calculated based on active ranks was used as 
distance measure to create hierarchical clusterings of the compared methods using Ward’s 
algorithm. The calculated distance matrices can be found in the supplemental material, the 
dendrogram is presented in Figure 2C. 

Using the inversed rank correlation the two methods based solely on structural features 
are grouped together (MACCS, LINGO). All our in-house implementations of the correlation 
vector concept (CATS, LIQUID, PRPS) are grouped with MOE pharmacophore based 
fingerprints (TGD, TAD, TGT, TAT) without mixing these two groups. For these methods, 
dimensionality of molecular representations seems to be of lesser importance than 
methodological differences between as in these groups variants applied to different 
dimensionalities are grouped together. This is also true for MOE fingerprints GpiDAPH3, 
piDAPH3 and piDAPH4 which use a more elaborate definitions of pharmacophoric points as 
TGD, TAD, TGT and TAT (eight potential pharmacophoric points instead of six). Using 
quadruplets (piDAPH4) instead of triangles (piDAPH3) seems to make a smaller difference in 
ranking actives than using only topological information (GpiDAPH3). The three worst 
performing methods (ESshape3D, ESshape3D HYD, SIMPLE) form their own sub-tree. All 
methods succeed in creating rankings of actives that are dissimilar from those. PhAST 2D and 
3D are grouped together with methods solely based on structural features (MACCS, LINGO) 
and pharmacophoric points (piDAPH3, piDAPH4, GpiDAPH3). This high similarity between 
MACCS / LINGO and the piDAPH family of fingerprints is remarkable and surprising, as the 
general assumption is that pharmacophore methods create rankings different from structural 
methods. But the closeness of MACCS keys and pharmacophore methods can be explained by 
the fact that besides structural features (for example the presence of rings of different sizes) 
the substructures coded in a MACCS key represent functional groups responsible for certain 
interactions, i.e. determining the pharmacophore. LINGOs on the other hand are a flexible 
way of describing atom environments that as well describe functional groups responsible for 
interactions. The interaction information implicitly compared by these methods seems to be 
quite similar to the 8-point pharmacophore model of MOE and to each other. In the end, the 
dendrogram shows a clustering by complexity of pharmacophore models: The sparse models 
used in CATS, LIQUID and PRPS form one group, methods based on the five-point model of 
MOE another one, and the complex models with eight atom-types in MOE, nine atom-types 
in PhAST and even more types in MACCS and LINGO are grouped together as well. 
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Analysis on ranking behavior with regard to actives further justifies usage and 
development of PhAST as we succeeded in creating a method introducing new chemotypes at 
early ranks without diminishing enrichment capability. 

Compared by runtime, other methods are superior to PhAST: The conversion of the 
complete COBRA library (8,311 compounds) to PhAST-sequences (30 minutes) is more than 
250 times slower as substructure fingerprint generation, correlation vector calculation, and 
SMILES which need only about 20 seconds for this operation. There is no significant 
difference between the kernel functions employed by PhAST 2D and PhAST 3D with regard 
to calculation speed. On average, screening the COBRA library takes three times longer with 
PhAST (3 seconds) than with our in-house implementation of LINGO (1 second) or 
substructure fingerprints (about 1 second averaged over all fingerprints). But even fingerprints 
are outperformed 200-fold by screening correlation vector representations of molecules with 
Euclidean distance (0.005 seconds). As drastic as these differences appear, even with PhAST 
106 compounds can be screened in approximately six minutes on a single core computer, once 
molecules have been converted to PhAST-sequences. The time-consuming step of molecule 
conversion is ‘embarrassingly parallel’ and can easily be distributed to several cores and 
computers. 
 
 
Inter-method data fusion 
 
Following the principle of data fusion in virtual screening, we combined PhAST 2D with a 
method based on three-dimensional molecule representations to see if we could further 
improve screening performance. We selected the second screening method by two criteria: 
The rank correlation with PhAST 2D should be low and the averaged retrospective 
performance high at the same time. Following these guidelines we selected PRPS (" = 0.23, 
averaged BEDROC 0.37) and combined both methods by ranking each compound with the 
minimum rank received with each method. Averaged retrospective performance per target, the 
percentages of significantly better screenings and the averaged rank correlation with each of 
the original methods per target are shown in Table 10. 

The gain in screening performance is significant. Averaged retrospective performance 
increases from 0.40 (0.37) for PhAST 2D (PRPS) to 0.45. And even at the most rigorous 
significance level this improvement is significant in 50% (59%) of all cases for PhAST 
(PRPS). With averaged rank correlation of 0.53 to PRPS the ranking of actives is changed 
considerably, but relatively close to PhAST (" = 0.70). Hence we succeeded in selecting 
candidates for successful data fusion screenings based on easy to calculate properties. 
 In the comparison with other virtual screening methods PhAST exhibits comparable or 
superior screening capabilities and qualifies as a valuable tool in screening campaigns through 
the introduced novelty of chemotypes at good ranks and the distinct difference to other virtual 
screening method enabling successful data fusion. 
 
 
Double Dynamic Programming 
 
We adopted and parameterized the double dynamic programming (DDP) approach for 
calculating sequence alignments based on structural properties for the comparison of PhAST-
sequences. It was applied to PhAST-sequences created using MVE DK applied to 2D layouts 
and MVE RBF (& = 22, kNN with k = 3) applied to 3D single conformations in three different 
parameterizations. Table 11 presents the retrospective performance for each of these six 
combinations with that of PhAST 2D and PhAST 3D for comparison. 
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Regardless of the canonization algorithm, the simplest parameterization of DDP hand-
built from a single example performs best in this comparison. With MVE DK for canonization 
before using DDP, PhAST 2D and 3D are outperformed in 1 of the 12 screenings (query S58), 
with MVE RBF in 2 screenings (queries DIF and S58). Enrichment better than random 
(BEDROC score 0.05) is achieved in most cases. We did not perform significance estimations 
because divergences between functional and structural versions of PhAST are distinct. 
Despite the fact that the faster versions of PhAST that score functional similarity and employ 
normal dynamic programming perform better in most screenings, these results show that the 
comparison of PhAST-sequences based on structural instead of functional properties is 
possible and succeeds in enrichment of actives, but the structural information available in the 
current implementation of DDP alone is not sufficient for general high enrichment. The 
implemented version of DDP is comparable to the first one applied to protein sequences12 and 
has obvious flaws like the disability to regard differences in direction for vertices with the 
same distance. But since its first implementation, DDP for protein sequences was subject to 
numerous modifications and improvements addressing especially this deficit, 12,45,46,49 and we 
are certain that these improvements will increase performance in the comparison of PhAST-
sequences as well. As for DDP for protein sequences, the structural similarity score could be 
combined with the functional scores from our functional score matrix, or these functional 
scores could be calculated on the fly from pre-calculated properties as hydrogen-bond-donor 
and acceptor potentials, resulting in a holistic approach to molecular comparison, no longer 
dependent of a pharmacophoric point definition. Alignment speed could be improved by 
switching to the FSM algorithm as for PhAST 2D and PhAST 3D, but differences in 
alignments introduced this way would have to be carefully monitored. Reasons why the 
dynamic parameterization is inferior to fixed gap penalties remain unclear at this moment but 
will be the subject of further investigations. 

The runtime of DDP is high compared to standard dynamic programming: On average, 
screening of the COBRA library takes 160 minutes on a single core of an Intel Xeon with 
2.26 GHz. The query size has a strong impact on the computing time (asymptotic runtime of 
O(n4)). With 14 symbols in the query sequence the complete COBRA set of 8,311 compounds 
is screened in 46 minutes. An increase in query size to 41 symbols increases screening time to 
735 minutes. For the time being, this renders PhAST DDP only applicable to small, focused 
subsets that have been pre-selected by other methods. 
 We succeeded in the first time application of DDP to the calculation of structural 
similarity scores of small molecules. Adopting existing improvements of this approach to the 
comparison of textual representations of small molecules will be part of future studies. 
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CONCLUSIONS AND OUTLINE 
 
In this study, we investigated the impact of using three-dimensional conformations instead of 
two-dimensional layouts of molecular graphs for our PhAST screening method. Canonizing 
CORINA single conformations with MVE combining radial basis function kernel (& = 22) and 
k nearest neighbor connectivity (k = 3) has retrospective performance only slightly below the 
application of MVE with a diffusion kernel (( = 0.4) and covalent connectivity to molecular 
graphs, but requires conformer generation. Despite of an observable difference in the 
retrieved actives (complementarity of PhAST 2D and PhAST 3D), combining these two 
methods through data fusion could not further improve overall screening performance. 
Nevertheless, using multiple conformations in PhAST significantly increases screening 
performance for individual targets. 

We could show that, for non-linear dimensionality reduction, the applied connectivity 
algorithm has high impact on screening performance. A further method for the definition of 
neighborhoods not yet investigated is b-matching.66 There, exactly b neighbors are assigned to 
each vertex. This technique has been already been shown to be beneficial to other applications 
of MVE.67 We showed that our approach using dimensionality reduction for graph 
canonization yields PhAST-sequences and active rankings different from those obtained with 
canonization algorithms developed for molecular graphs. Further we demonstrated that 
PhAST ranks actives dissimilar to other methods without sacrificing screening performance, 
introducing novel chemotypes at earlier ranks. This proves that our approach of text-based 
virtual screening is worthy of further investigation and development. As PhAST MVE DK is 
still the best performing variant of PhAST and this difference is evidentially significant, we 
advise the usage of this method for prospective application. 
 We successfully applied double dynamic programming to the comparison of PhAST-
sequences, calculating structural similarity scores. In most of our test cases calculating 
functional similarity resulted in better screening performance, but compared to PhAST DDP, 
PhAST 2D and PhAST 3D are highly optimized and their superior performance had to be 
expected. But these first results with PhAST DDP are very promising. There are many known 
improvements to DDP we are confident will improve performance and speed of PhAST DDP 
as well. As the second layer of dynamic programming in DDP is only used to assess structural 
equivalence, a faster method for this purpose would speed up the calculation of sequence 
alignments based on structural similarity. One could, for example, adopt of the idea of 
ultrafast shape recognition.68 There, distance distributions are characterized by their first three 
moments. The difference between these values can be used to assess the similarity of 
distributions, and as a consequence, structural similarity. The combination of structural and 
functional similarity will lead to a holistic approach of molecule comparison based on one-
dimensional textual representations. 
 Retrospective comparison of methods with regard to significance of performance 
differences revealed that in some cases a ranking of methods based solely on averaged 
performance is misleading. These differences may be caused by the summation of 
insignificant differences. Because of this discovery we highly encourage the calculation of 
significance estimates. 
 Results from the comparison of PhAST 3D applied to single and multiple 
conformations of molecules support our findings from a previous analysis of the robustness of 
canonization algorithms against topological modifications of molecular graphs,2 that PhAST 
can not be used as additive scoring function for de novo design of compounds. Even small 
changes in the spatial arrangement of potential pharmacophoric points cause measurable 
changes in corresponding PhAST-sequences. As the distance measures we used to assess 
these differences are insensitive to the exchange of positions between equal symbol types, 
these changes might be more severe than observed. So small changes in graph topology as 
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well in spatial arrangement of potential pharmacophoric points cause changes in the PhAST-
sequence as representation of a molecule, which makes them non-additive. 
 Graph canonization through dimensionality reduction showed at the example of PCA 
that the projection on one single straight axis does not yield good results. An alternative could 
be the projection on space-filling curves like Hilbert-,69 Peano-,70 or Koch-curves71. As these 
curves are space-filling they have the ability to de-skew the projection created by PCA. Of 
course, this method would again depend on the generation of vertex coordinates. 
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Legends to the figures 
 
Figure 1 Dendrograms of canonization algorithms created using Ward‘s algorithm. A) 
distance measure: (1-") where " is the averaged Kendall rank correlation of active ranks in 
retrospective virtual screenings, B) distance measure: averaged Levenshtein distance between 
PhAST-sequences generated for molecules in the complete COBRA library using different 
canonization algorithms. Using Damerau-Levenshtein distance results in the same 
dendrogram as B). Lengths of edges are solely for visualization, with no respect to actual 
distances. Distances matrices are available in the supplemental material. 
 
Figure 2 Dendrograms of virtual screening methods created using Ward‘s algorithm. A) 
distance measure: percentage of significant differences in retrospective screenings at level 
0.05, b) distance measure: percentage of significant differences in retrospective screenings at 
level 0.01, C) distance measure: (1-") where " is the averaged Kendall rank correlation of 
active ranks in retrospective virtual screenings. Lengths of edges are solely for visualization, 
with no respect to actual distances. Distances matrices are available in the supplemental 
material. 
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Hähnke et al.   24 

Text for Graphical Abstract 
 
We applied non-linear dimensionality reduction to the problem of linearizing three-
dimensional conformations of molecules. These linear representations are compared by 
functional and structural properties using our virtual screening method PhAST. 
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Table 1. Targets in the COBRA library version 6.1 used for retrospective virtual screenings. 
Shown are abbreviations used in this study as well as the number of active compounds. The 
total number of molecules in the COBRA library is 8311. 

Target Abbreviation No. Actives 

Angiotensine-
converting 
Enzyme 

ACE 34 

Cyclooxygenase 2 COX2 136 

Dihydrofolat-
reductase 

DHFR 64 

Factor Xa FXA 228 

Peroxisome-
proliferator activated 

receptor ! 
PPAR! 44 

Thrombin THR 183 

Total  689 
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Table 2. Targets, query structure IDs in the PDB50 and the identifier of the PDB structures 
they were taken from used for single screening evaluations. 
 PDB Code Ligand ID 

ACE 1o8651 LPR 

 1ufz52 MCO 

COX2 1pxx53 DIF 

 6cox54 S58 

DHFR 1dg555 TOP 

 1hfr56 MOT 

FXA 1ezq57 RPR 

 1fjs58 Z34 

PPAR! 1fm959 570 

 1zgy60 BRL 

THR 3eq061 2TS 

 1o0d62 163 
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Table 3. Comparison of canonization algorithms applied to two-dimensional layouts and 
three-dimensional conformations of molecular graphs. Differences between algorithms are 
quantified by the averaged Levenshtein and Damerau-Levenshtein distance between 
generated PhAST-sequences for the complete COBRA library and the averaged Kendall rank 
correlation coefficient calculated pairwise from ranks of actives between 689 virtual 
screenings performed with each algorithm. 

 

Levenshtein 
Distance 

Damerau-
Levenshtein 

Distance 
Kendall’s " 

 Ø #$ Ø # Ø # 

Centroid Linearization 9.90 6.54 9.32 6.62 0.52 0.15 

Isomap kNN k = 2 11.64 7.74 11.31 7.82 0.36 0.16 

Isomap kNN k = 3 8.29 5.46 7.55 5.47 0.60 0.12 

Isomap kNN k = 4 8.60 5.57 8.00 5.57 0.60 0.11 

Isomap kNN k = 5 8.04 5.78 7.41 5.76 0.62 0.13 

Laplacian Eigenmaps kNN k = 2 10.77 7.49 10.40 7.57 0.38 0.16 

Laplacian Eigenmaps kNN k = 3 7.46 5.29 6.60 5.24 0.63 0.12 

Laplacian Eigenmaps kNN k = 4 7.47 5.43 6.70 5.42 0.64 0.12 

Laplacian Eigenmaps kNN k = 5 6.80 5.32 6.01 5.26 0.66 0.12 

PCA 7.65 6.50 7.05 6.48 0.57 0.16 

MVE EDK covalent 5.57 4.88 4.69 4.75 0.70 0.11 

MVE EDK kNN k = 2 7.92 6.20 7.35 6.21 0.58 0.14 

MVE EDK kNN k = 3 6.55 5.51 5.83 5.47 0.65 0.12 

MVE EDK kNN k = 4 6.46 5.62 5.78 5.55 0.65 0.13 

MVE EDK kNN k = 5 6.74 5.98 6.13 5.92 0.62 0.14 

MVE RBF # = 2-1 covalent 7.66 6.67 7.03 6.76 0.52 0.17 

MVE RBF # = 2-1 kNN k = 2 11.22 7.43 10.84 7.50 0.42 0.15 

MVE RBF # = 2-1 kNN k = 3 9.45 6.60 8.85 6.71 0.49 0.17 

MVE RBF # = 2-1 kNN k = 4 9.71 6.77 9.14 6.87 0.47 0.16 

MVE RBF # = 2-1 kNN k = 5 10.28 7.36 9.79 7.51 0.41 0.19 

MVE RBF # = 20 covalent 6.47 5.90 5.69 5.90 0.62 0.14 

MVE RBF # = 20 kNN k = 2 9.83 7.22 9.37 7.27 0.45 0.16 

MVE RBF # = 20 kNN k = 3 7.77 6.18 7.05 6.23 0.60 0.14 

MVE RBF # = 20 kNN k = 4 8.09 6.19 7.38 6.23 0.57 0.14 

MVE RBF # = 20 kNN k = 5 7.71 6.30 7.00 6.34 0.58 0.15 

MVE RBF # = 21 covalent 5.44 4.82 4.55 4.67 0.70 0.11 

MVE RBF # = 21 kNN k = 2 8.57 6.64 8.06 6.67 0.54 0.15 

MVE RBF # = 21 kNN k = 3 6.51 5.53 5.77 5.48 0.65 0.13 

MVE RBF # = 21 kNN k = 4 6.61 5.56 5.90 5.51 0.66 0.12 

MVE RBF # = 21 kNN k = 5 6.48 5.67 5.75 5.61 0.65 0.13 

MVE RBF # = 22 covalent 5.42 4.65 4.53 4.48 0.71 0.11 

MVE RBF # = 22 kNN k = 2 8.05 6.31 7.49 6.31 0.58 0.14 

MVE RBF # = 22 kNN k = 3 6.36 5.38 5.61 5.29 0.65 0.12 

MVE RBF # = 22 kNN k = 4 6.26 5.46 5.56 5.39 0.66 0.11 

MVE RBF # = 22 kNN k = 5 6.10 5.61 5.40 5.52 0.66 0.13 

MVE RBF # = 23 covalent 5.51 4.81 4.63 4.67 0.70 0.11 

MVE RBF # = 23 kNN k = 2 7.77 6.20 7.18 6.20 0.60 0.13 

MVE RBF # = 23 kNN k = 3 6.47 5.47 5.74 5.41 0.65 0.12 

MVE RBF # = 23 kNN k = 4 6.27 5.56 5.59 5.49 0.66 0.12 

MVE RBF # = 23 kNN k = 5 6.22 5.76 5.57 5.69 0.65 0.13 

SPE 6.82 6.19 6.18 6.13 0.60 0.14 
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MVEPE 8.37 6.41 7.91 6.40 0.52 0.13 
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Table 4. Number of canonization algorithms that perform significantly better on two-
dimensional layouts (three-dimensional conformations) compared to three-dimensional 
conformations (two-dimensional layouts) in more than 50% of the performed retrospective 
virtual screenings. The total number of algorithms compared is 42. Results are shown for 
significance levels 0.05 and 0.01 per target and for the averaged percentages for all targets. 
 p < 0.05 p < 0.01 

 2D 3D 2D 3D 

ACE 2 24 2 18 

COX2 19 19 19 19 

DHFR 19 15 13 12 

FXA 18 15 16 11 

PPAR! 3 12 0 4 

THR 5 26 3 25 

Ø 1 14 0 4 
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Table 5. Retrospective results attained from data fusion between PhAST 2D (canonization: 
MVE DK, covalent connectivity) and PhAST 3D (canonization: MVE RBF # = 22, kNN 
connectivity with k = 3). Shown are the averaged retrospective performance measured by 
averaged BEDROC scores per target and averaged over all targets, the percentage of 
significantly improved screenings at significance level 0.05 (0.01) and the averaged rank 
correlation of active ranks between each of the original methods and the method resulting 
from rank-based data fusion per target (PhAST DF). 
  ACE COX2 DHFR FXA PPAR! THR Ø 

PhAST DF 0.40 0.43 0.55 0.38 0.26 0.43 0.41 

PhAST 2D 0.40 0.40 0.57 0.36 0.25 0.42 0.40 BEDROC 

PhAST 3D 0.37 0.43 0.51 0.35 0.27 0.41 0.39 

PhAST DF 
35 

(21) 
66 

(62) 
5 

(5) 
65 

(61) 
36 

(34) 
55 

(51) 
44 

(39) 

PhAST 2D 
35 

(24) 
21 

(17) 
86 

(78) 
26 

(24) 
27 

(18) 
30 

(27) 
38 

(31) 

PhAST DF 
74 

(65) 
31 

(27) 
70 

(79) 
81 

(79) 
14 

(14) 
63 

(61) 
55 

(53) 

% p < 0.05 
(% p < 0.01) 

PhAST 3D 
9 

(9) 
46 

(43) 
16 
(9) 

12 
(11) 

52 
(41) 

27 
(25) 

27 
(23) 

PhAST 2D / 
PhAST DF 

0.82 0.83 0.93 0.82 0.86 0.85 0.85 
Kendall's " 

PhAST 3D / 
PhAST DF 

0.77 0.86 0.87 0.82 0.88 0.84 0.84 

Page 30 of 39

John Wiley & Sons, Inc.

Journal of Computational Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 6. Retrospective Comparison of PhAST with canonization algorithm MVE RBF # = 22, 
kNN connectivity with k = 3 (PhAST 3D) applied to single (SC) and multi conformations 
(MC) generated for the COBRA library. Using multiple conformations, each molecule was 
represented by 10 conformations. Shown are the averaged retrospective performance 
measured by averaged BEDROC scores per target and averaged over all targets and the 
percentage of significantly improved screenings at significance levels 0.05 and 0.01. 
  ACE COX2 DHFR PPAR! THR FXA Ø 

PhAST 3D MC 0.45 0.41 0.51 0.28 0.42 0.40 0.41 

PhAST 2D 0.40 0.40 0.57 0.25 0.42 0.36 0.40 BEDROC 

PhAST 3D SC 0.37 0.43 0.51 0.27 0.41 0.35 0.39 

PhAST 3D MC 
74 

(62) 
49 

(48) 
9 

(9) 
57 

(52) 
45 

(44) 
71 

(71) 
51 

(48) 

PhAST 2D 
3 

(0) 
38 

(38) 
78 

(75) 
23 

(11) 
48 

(45) 
20 

(18) 
35 

(31) 

PhAST 3D MC 
79 

(71) 
19 

(16) 
30 

(27) 
43 

(36) 
49 

(48) 
82 

(82) 
51 

(47) 

% p < 0.05 
(% p < 0.01) 

PhAST 3D SC 
0 

(0) 
65 

(63) 
48 

(47) 
32 

(20) 
44 

(42) 
12 

(11) 
33 

(31) 
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Table 7. Retrospective comparison of PhAST 3D (canonization: MVE RBF # = 22, kNN 
connectivity with k = 3) applied to single conformations (SC) and 10 conformations (MC). 
Shown are the retrospective performance of each method measured by averaged BEDROC 
scores per target and averaged over all targets, the difference between retrospective 
performance, the averaged Levenshtein and Damerau-Levenshtein distance between PhAST-
sequences generated from single conformations and the 10 conformations generated for the 
same molecule for each target as well as the averaged number of rotatable single bonds in 
molecules per target. 
 ACE COX2 DHFR PPAR! THR FXA 

PhAST 3D MC 0.45 0.41 0.51 0.28 0.42 0.40 

PhAST 3D SC 0.37 0.43 0.51 0.27 0.41 0.35 

$% BEDROC 0.08 -0.02 0.00 0.02 0.01 0.05 

Ø Levenshtein distance 6.24 2.32 3.62 3.54 8.61 6.25 

Ø Damerau-Levenshtein distance 5.43 2.04 2.66 2.85 7.72 6.25 

Ø No. Rotatable Bonds 9.06 3.91 6.78 7.00 10.51 7.63 
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Table 8. Retrospective comparison of virtual screening methods. Shown are averaged 
BEDROC scores per target, the averaged BEDROC score averaged over all targets and the 
averaged rank of each method based on per target method rankings. 
 BEDROC 

 ACE COX2 DHFR FXA PPAR! THR Ø Ø Rank 

CATS 2D raw 0.43 0.25 0.20 0.18 0.17 0.24 0.24 14.17 

CATS 2D sens 0.51 0.27 0.44 0.26 0.34 0.39 0.37 6.83 

Esshape 3D 0.11 0.23 0.10 0.17 0.07 0.12 0.13 17.33 

Esshape 3D HYD 0.09 0.23 0.11 0.14 0.07 0.10 0.12 17.33 

GpiDAPH3 0.61 0.55 0.49 0.26 0.29 0.32 0.42 5.50 

LINGO 0.59 0.47 0.36 0.39 0.25 0.38 0.41 5.50 

LIQUID 0.41 0.22 0.19 0.19 0.16 0.35 0.26 14.00 

MACCS 0.48 0.47 0.44 0.29 0.26 0.33 0.38 7.50 

PhAST 2D 0.40 0.40 0.57 0.42 0.25 0.36 0.40 6.67 

PhAST 3D 0.37 0.43 0.51 0.41 0.27 0.35 0.39 7.17 

piDAPH3 0.45 0.50 0.51 0.20 0.28 0.25 0.37 8.67 

piDAPH4 0.49 0.56 0.55 0.28 0.28 0.29 0.41 6.17 

PRPS 0.33 0.54 0.70 0.25 0.20 0.20 0.37 9.83 

SIMPLE 0.24 0.30 0.20 0.21 0.12 0.20 0.21 14.50 

TAD 0.59 0.38 0.28 0.28 0.33 0.34 0.37 7.50 

TAT 0.56 0.37 0.35 0.33 0.34 0.38 0.39 5.83 

TGD 0.60 0.39 0.28 0.26 0.32 0.37 0.37 6.83 

TGT 0.52 0.32 0.35 0.24 0.25 0.36 0.34 9.67 
 

Page 33 of 39

John Wiley & Sons, Inc.

Journal of Computational Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 9. Number of screenings a screening method performs significantly better than every 
other method in the comparison. Results for significance levels 0.05 and 0.01, the latter in 
parentheses. Per target the number of screenings is presented, the last column shows the 
percentage of all 689 screenings performed for comparison. 
 ACE COX2 DHFR FXA PPAR! THR Ø % 

MACCS 1 (0) 10 (10) 4 (3) 35 (35) 0 (0) 0 (0) 7 (7) 

CATS2D raw 0 (0) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

CATS2D sens 0 (0) 0 (0) 0 (0) 1 (1) 9 (7) 26 (25) 5 (5) 

ESshape3D 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

ESshape3D HYD 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 5 (5) 1 (1) 

GpiDAPH3 2 (1) 41 (39) 1 (1) 3 (2) 4 (4) 4 (4) 8 (7) 

LINGO 1 (1) 2 (2) 0 (0) 94 (89) 0 (0) 12 (12) 16 (15) 

LIQUID 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 10 (10) 2 (2) 

PRPS 0 (0) 22 (21) 50 (50) 4 (4) 2 (2) 5 (5) 12 (12) 

PhAST_2D 0 (0) 0 (0) 1 (1) 20 (19) 1 (1) 45 (41) 10 (9) 

PhAST_3D 0 (0) 1 (0) 0 (0) 12 (12) 0 (0) 28 (25) 6 (5) 

SIMPLE 0 (0) 3 (3) 0 (0) 6 (4) 2 (2) 1 (1) 2 (1) 

TAD 2 (2) 0 (0) 0 (0) 13 (12) 3 (2) 1 (1) 3 (2) 

TAT 1 (0) 0 (0) 0 (0) 11 (11) 5 (3) 12 (11) 4 (4) 

TGD 4 (1) 2 (2) 0 (0) 2 (2) 0 (0) 7 (7) 2 (2) 

TGT 2 (2) 9 (9) 0 (0) 0 (0) 0 (0) 7 (7) 3 (3) 

piDAPH3 0 (0) 5 (5) 1 (1) 1 (1) 1 (0) 0 (0) 1 (1) 

piDAPH4 0 (0) 2 (2) 4 (4) 1 (1) 0 (0) 0 (0) 1 (1) 
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Table 10. Retrospective results attained from data fusion between PhAST 2D (canonization: 
MVE DK, covalent connectivity) and PRPS. Shown are the averaged retrospective 
performance measured by averaged BEDROC scores per target and averaged over all targets, 
the percentage of significantly improved screenings at significance level 0.05 (0.01) and the 
averaged rank correlation between each of the original methods and the method resulting 
from rank-based data fusion per target (referred to as ‘Fused’). 
  ACE COX2 DHFR FXA PPAR! THR Ø 

Fused 0.44 0.53 0.72 0.36 0.27 0.37 0.45 
PhAST 2D 0.40 0.40 0.57 0.42 0.25 0.36 0.40 BEDROC 

PRPS 0.33 0.54 0.70 0.25 0.20 0.20 0.37 

Fused 
59 

(44) 
79 

(79) 
81 

(81) 
39 

(38) 
45 

(39) 
17 

(17) 
54 

(50) 

PhAST 2D 
38 

(38) 
18 

(18) 
19 

(19) 
57 

(56) 
30 

(27) 
78 

(76) 
40 

(39) 

Fused 
68 

(65) 
40 

(38) 
27 

(23) 
92 

(91) 
57 

(50) 
91 

(89) 
62 

(59) 

% p < 0.05 
(% p < 0.01) 

PRPS 
3 

(3) 
49 

(46) 
45 

(45) 
8 

(8) 
27 

(20) 
7 

(7) 
23 

(22) 
Fused / PhAST 2D 0.76 0.56 0.67 0.79 0.65 0.79 0.70 

Kendall’s " 
Fused / PRPS 0.42 0.63 0.71 0.48 0.59 0.34 0.53 
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Table 11. Retrospective results of PhAST employing double dynamic programming (DDP) as 
scoring function for aligned residues instead of a function-based score matrix. Query 
compounds are named according to their PDB identifier. Each screening was evaluated by its 
BEDROC score. Retrospective results of PhAST 2D (canonization: MVE DK, covalent 
connectivity) and PhAST 3D (canonization: MVE RBF # = 22, kNN connectivity with k = 3) 
are shown for comparison. For PhAST DDP, the 2D canonization algorithm is MVE DK with 
covalent connectivity, the 3D canonization algorithm is MVE RBF # = 22 with kNN 
connectivity and k = 3. 
 PhAST DDP 

 Canonization 2D Canonization 3D 

 

Query 

static flexible dynamic static flexible dynamic 

PhAST 2D PhAST 3D 

LPR 0.28 0.07 0.13 0.14 0.08 0.16 0.47 0.49 
ACE 

MCO 0.06 0.05 0.03 0.13 0.08 0.05 0.28 0.43 

DIF 0.12 0.11 0.07 0.07 0.14 0.12 0.09 0.08 
COX2 

S58 0.66 0.17 0.16 0.57 0.26 0.24 0.53 0.51 

TOP 0.19 0.09 0.16 0.17 0.17 0.12 0.70 0.69 
DHFR 

MOT 0.30 0.12 0.17 0.26 0.30 0.12 0.73 0.66 

RPR 0.23 0.18 0.17 0.23 0.17 0.19 0.57 0.51 
FXA 

Z34 0.19 0.23 0.13 0.18 0.12 0.15 0.44 0.52 

570 0.17 0.10 0.14 0.13 0.16 0.17 0.20 0.22 
PPAR! 

BRL 0.30 0.25 0.32 0.28 0.31 0.29 0.52 0.51 

2TS 0.23 0.13 0.16 0.19 0.13 0.17 0.54 0.58 
THR 

163 0.24 0.08 0.14 0.10 0.08 0.14 0.34 0.30 

Ø  0.25 0.13 0.15 0.20 0.17 0.16 0.45 0.46 
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Canonization Algorithms 
 
The atom-typing step of PhAST yields a graph of potential pharmacophoric points. It has the 
same topology as the original molecular graph without hydrogen atoms yielding a total of n 
vertices. Each vertex is colored with a symbol corresponding to one out of nine potential 
pharmacophoric features. Edges correspond to covalent bonds. Canonization is the labeling of 
the vertices with the natural numbers 1,2,3,… ,n. In the following description of canonization 
methods, vertices are referred to as 

! 

vi with  and their coordinates in Euclidean space 
as 

! 

xvi . 
Centroid Linearization. Centroid linearization uses the distance of each vertex to the 

geometric centre of the complete graph as a prioritization criterion. The vertex with the lowest 
distance has highest priority and received the smallest canonical label. Vertices were labeled 
in ascending order. Centroid linearization was applied to 2D layouts and 3D conformations of 
molecular graphs. 
 Principal Component Analysis. Principal component analysis (PCA) is a linear 
dimensionality reduction method often used to visualize high-dimensional data.1 We used 
PCA to compute one-dimensional (1D) coordinates from 2D graph layouts generated by the 
2D depiction algorithm of MOE (Molecular Operating Environment, v2010.06, Chemical 
Computing Group, Montreal, Canada). For PCA coordinates of vertices are mean-centered. 
Eigenvectors of the covariance matrix calculated from position vectors 

! 

xvi  are used to 
compute new coordinates for all vertices. The dot product between the original position vector 
of a vertex and the eigenvector with highest eigenvalue yields a 1D coordinate. We assigned 
canonical labels in ascending order starting from the vertex with lowest 1D coordinate in 
principal component space. PCA was applied to 2D layouts and 3D conformations of 
molecular graphs. 
 Laplacian Eigenmaps. Laplacian Eigenmaps rely on a neighborhood definition 
between vertices generated through a connectivity algorithm (see section Connectivity 
Algorithms).2 The canonization process starts by calculating three matrices from the 
neighborhood graph: (i) the weight matrix W with (Eq. 1) 
 

! 

Wij =
1
0

if i and j are connected
else

" 
# 
$ 

,        (1) 

 
(ii) the degree weight matrix D with the column sums of W as entries (Eq. 2), 

 

! 

Dii = Wij
j
" ,          (2) 

 
and (iii) the positive semidefinite Laplacian matrix L (Eq. 3) with 

 

! 

L = D "W  .          (3) 
 

Then, the eigenvalues and eigenvectors of the generalized eigenvector problem (Eq. 4) 
are calculated. 
 

! 

Lf = "Df          (4) 
 

Eigenvectors (fi) are sorted according to their eigenvalues (li) in ascending order. 
Eigenvector f0 with l0 = 0 is omitted. The next d eigenvectors are used for embedding. In our 

! 

1" i " n
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case, the second eigenvector contains the coordinates for the 1D embedding. Laplacian 
eigenmaps were applied to 2D layouts and 3D conformations of molecular graphs. 
 Isomap. Isomap needs a neighborhood definition between vertices.3 The algorithm 
uses the neighborhood graph to estimate geodesic distances between vertices. A matrix D of 
shortest distances between all vertices was computed using the Floyd-Warshall algorithm.4,5 
Using D, the matrix 

! 

"(D)  is calculated (Eq. 5): 
 

! 

"(D) = # 1
2 *HSH ,        (5) 

 
where S is the matrix of squared distances (Eq. 6) 

 

! 

Sij = Dij
2

,         (6) 

 
and H the centering matrix (Eq. 7) 

 

! 

Hij = " ij #
1
n          

(7) 

 
with 

! 

" ij  the Kronecker delta and n the number of vertices. The eigenvectors and 
eigenvalues of 

! 

"(D)  are computed. To embed in d dimensions, the first d eigenvectors sorted 
according to their eigenvalues in decreasing order are used. If lp is the pth eigenvalue of 

! 

"(D)  
and 

! 

f p
i  is the ith component of the pth eigenvector, then the pth component of the d-

dimensional coordinate vector of a vertex is equal to 

! 

f p
i "p . Isomap was applied to 2D 

layouts and 3D conformations of molecular graphs. 
 Minimum Volume Embedding. Minimum volume embedding (MVE) is a non-linear 
dimensionality reduction algorithm.6 It minimizes information loss during embedding in d 
dimensions. MVE requires two representations of the set of vertices: The affinity matrix 

! 

A  
calculated using a kernel function, and a symmetric binary connectivity matrix 

! 

C  constructed 
through the application of a connectivity algorithm to 

! 

A . Dimensionality reduction is 
achieved by an iterative process based on semidefinite programming (SDP). A third matrix 

! 

K  
is set equal to 

! 

A  and the following procedure is repeated until convergence: (i) calculate the 
eigenvectors fi and eigenvalues li of 

! 

K  and sort the fi descending to their corresponding li. (ii) 
calculate the matrix 

! 

B using Eq. (8), 
 

! 

B = " f i f i
T + f i f i

T

i=d +1

N

#
i=1

d

#        (8) 

 
(iii) use SDP to solve Eq. (9) 

 

! 

K =
K"#

argmin tr(KB)
        

(9) 

 
under constraints 

! 

"  defined by Shaw and Jebara,6 tr denotes the matrix trace (sum of 
the diagonal elements). After convergence, kernel PCA7 is performed with 

! 

K  to get the d 
eigenvectors used for embedding. 

We will now describe the kernel functions and connectivity algorithms we chose for 
our study. 
 

1. Diffusion Kernel 
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The currently best-performing version of PhAST uses a diffusion kernel.8 It is solely 
based on topological information, thus independent from spatial vertex coordinates. 
For each pair of vertices 

! 

vi,v j( ) the diffusion kernel calculates the probability of a 
random walk starting in 

! 

vi ending in 

! 

v j  after an infinite number of steps, with only a 
low probability of leaving the current vertex in each step. The diffusion kernel matrix 
is calculated according to Eq. (10)9 
 

        (10) 
 
with ! the diffusion parameter and 

! 

L  the Laplacian matrix (Eq. 3). The best 
performing version of PhAST so far uses ! = 0.4. The combination of MVE and the 
diffusion kernel will be referred to as ‘MVE DK’. MVE DK was applied only to 2D 
layouts of molecular graphs. 
 
2. P-Step Random Walk Kernel 
A kernel function that only depends on graph topology is the p-step random walk 
kernel.10 It is calculated using the normalized Laplacian matrix  with entries (Eq. 
11) 
 

! 

˜ L ij =

1
"

1
deg(vi) # deg(v j )

0

$ 

% 
& & 

' 
& 
& 

if i = j
if vi adjacent v j

else
,

    (11) 

 
where deg is the degree of a vertex. The kernel matrix is calculated as Eq. (12) 
 

        (12) 
 
 with .10 We investigate p-step random walk kernels with a assuming 
values of 2, 4, 6, 8 and 10. For p we chose two values that automatically adjust to the 
current graph: We measure the distance between two vertices as the number of bonds 
along the shortest path. The eccentricity of a vertex is its distance to the farthest vertex 
in the graph.11 Our first choice for p was the smallest eccentricity of a vertex in the 
graph, referred to as the ‘graph radius’.11 The second choice was the largest 
eccentricity of a vertex in the graph, referred to as the graph ‘diameter’.11 Both were 
determined using the Floyd Warshall algorithm.4,5 The combination of MVE and the 
p-step random walk kernel will be referred to as ‘MVE PRW’. MVE PRW was 
applied only to 2D layouts of molecular graphs. 
 
3. Inner Products from Euclidean Coordinates 
As a first kernel function depending on Euclidean vertex coordinates we employed a 
method that calculates inner products from Euclidean coordinates of vertices referred 
to as ‘Euclidean distance kernel’ (Eq. 13). 
 

! 

Kij
euclidean =

1
2
" xvi

2
+ xv j

2
# xvi # xv j

2$ 
% 
& 

' 
( 
) 
.     (13)

 

 

! 

Kdiffusion = e("#L )

! 

˜ L 

! 

K pstep = aI " ˜ L ( )p

! 

a " 2
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The combination of MVE and the Euclidean distance kernel will be referred to as 
‘MVE EDK’. MVE EDK was applied to 2D layouts and 3D conformations of 
molecular graphs. 
 
4. RBF Kernel 
As second kernel function depending on Euclidean coordinates is the Gaussian radial 
basis function (RBF) kernel (Eq. 14).12 
 
 

! 

Kif
rbf = exp "

xvi " xv j
2

2#2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
,        (14) 

 
 with " the standard deviation. We parameterized the RBF kernel in a grid 
search with " chosen according to Eq. (15) 
 

,         (15) 
 
where k was incremented in steps of 1. For 

! 

k < "1 the kernel matrix was mostly filled 
with zeros, and the eigenvalue problem is degenerated. For 

! 

k > 3 all matrix entries 
approached 1 for small molecules. The combination of MVE and the Gaussian radial 
basis function kernel will be referred to as ‘MVE RBF’. MVE RBF was applied to 2D 
layouts and 3D conformations of molecular graphs. 

 
Proximity Embedding. Proximity embedding (PE) utilizes pairwise distances between points 
to embed a dataset in arbitrary dimensions conserving the given distances. Given a pair of 
points 

! 

xvi ,xv j( ) the algorithm calculates their Euclidean distance 

! 

d(txvi ,
t xv j )  in the target 

dimension t (in our case: 1). This distance is compared to the corresponding distance 

! 

d(sxvi ,
sxv j )  in the starting dimension s. If 

! 

d(txvi ,
t xv j ) " d(

sxvi ,
sxv j ) , the position of 

! 

vi and 

! 

v j  
in the target dimension is updated using Eq. (16) and Eq. (17), respectively. 
 

! 

t xvi
new=t xvi

old +
" d(sxvi ,

sxv j ) # d(
txvi

old ,t xv j )( )
d(txvi

old ,t xv j )
* t xvi

old #txv j( )    (16) 

 

! 

t xv j
new=t xv j

old +
" d(sxvi ,

sxv j ) # d(
txvi ,

t xv j
old )( )

d(txvi ,
t xv j

old )
* t xvi #

t xv j
old( )    (17) 

 
where l is a linear learning rate that controls the update step-size of the algorithm with 

! 

l =1 for the first iteration and 

! 

l = 0 for the last iteration. We used PE for the embedding from 
two and three dimensions in one dimension with 5000n iterations. After termination the order 
of vertices in the embedding dimension starting from the lowest coordinate defines the 
canonical order. We used PE in two different variants: In stochastic proximity embedding 
(SPE)13 pairs of vertices are chosen randomly. We also evaluated a systematic algorithmic 
variation was in which all pairs of vertices were chosen 5000 times. To ensure the invariant 
ordering of vertices independent from molecule input, the molecular graph was canonically 
labeled with MVE DK before the application of PE. This version is referred to as ‘MVEPE’. 
SPE and MVEPE were applied to 2D layouts and 3D conformations of molecular graphs. 

! 

" = 2k

! 

"1# k # 3
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Connectivity Algorithms 
 
Laplacian eigenmaps, Isomap and MVE in variants EDK and RBF depend on neighborhood 
definitions for each vertex. In this study, we compared results obtained with two different 
connectivity algorithms: (i) covalent bonds, and (ii) k nearest neighbors. 
 Covalent Bonds. The graph o potential pharmacophoric points has the same topology 
as the original molecular graph with suppressed hydrogen atoms. Edges represent covalent 
bonds. Using only this information the binary connectivity matrix 

! 

C  corresponds to the 
adjacency matrix of the graph. 
 k Nearest Neighbors. Using symmetric k nearest neighbors (kNN)14 the binary 
connectivity matrix 

! 

C  was initialized with all entries 0. For each vertex 

! 

vi with 

! 

1" i " n , 

! 

Cij  
and 

! 

C ji were set to 1 if the distance calculated from 

! 

Aij  is one of the top k values for 

! 

1" j " n
. For MVE, the k nearest neighbor algorithm was applied to distances the affinity matrix, not 
the original space. Due to the symmetry condition vertices can end up having more than k 
neighbors. For k we used 2, 3, 4 and 5. 
 MVE DK and MVE PRW were used only with covalent connectivity. This was due to 
the fact that in MVE the connectivity algorithm is applied to the kernel matrix, which in these 
cases is calculated using already defined neighborhoods. 
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Parameterization of Double Dynamic Programming 
 

In order to use DDP as sequence comparison step in PhAST we switched back to 
the slower Needleman-Wunsch-1 instead of the FSM2 algorithm because it calculates the 
exact optimal global pairwise sequence alignment. Using DDP, scores for the alignment of 
particular symbols are calculated by a second level of dynamic programming based on 
structural instead of functional similarity. We will refer to these two levels as ‘residue 
level’ for the dynamic programming level equal to the normal dynamic programming and 
‘distance level’ for the dynamic programming level calculating the scores for the residue 
level. The simplest approach for proteins is to consider only Ca atoms in these calculations. 

When sequences X = x1x2…xn and Y = y1y2…ym are aligned and the score for 
aligning residues xi and yj on residue level have to be calculated, a position-specific 
distance score matrix 

! 

Dij  with entries [Eq. (1)] 
 

! 

Dkl
ij =

a
Xdi ,k

"Yd j ,l
+ b ! ! ! ! ! ! ! "#$

 

 
Because of experiences with DDP for protein comparison3 we implemented a 

slightly modified approach and modified Eq. (1) yielding Eq. (2) 
 

! 

Dk,l
i, j =

a2b2

a
Xdi ,k

"Yd j ,l

# log( k " i + l " j +1)
if k = i,l = j

else

$ 

% 
& 

' 
& 

.

  (2) 

 
To ensure that the alignment of xi and yj is included in the distance level alignment 

the score of this event was set to a2b2. The first part of the term in the ‘else’ case is the 
actual structural component of the score, expressing the structural similarity of xk and yl 
under the assumption that xi and yj are structurally equivalent. The second part is a 
sequence distance component that damps the contribution from near neighbors in the 
sequence. The idea is that it is likely that the structural similarity is high if xk (yl) is close to 
xi (yj).3 
 
With two levels of dynamic programming there are two sets of gap penalties accompanied 
by the new parameters a and b. In addition, all scores calculated during DDP are positive, 
because of the absolute value used in Eq. (20) and Eq. (21), respectively. As a result, gap 
penalties have to be low positive scores. Compared to sequence alignment with dynamic 
programming the scores calculated with DDP turned out to be huge (not shown). We 
addressed all these problems as follows: 

To have an origin for parameterization we set a = 100 and b = 2 in the calculation 
of distance level score matrices. After calculation of distance level alignment scores, a2b2 
was subtracted as this value was only used to attract the alignment algorithm to the 
alignment of xi and yj in the calculation of the distance level alignment, but it dominates the 
calculated alignment score.  

For distance level gap penalties we implemented three different solutions: i) static 
gap penalties that are used in every distance level alignment for every sequence 
comparison, ii) flexible gap penalties that are determined for each sequence pair but used 
in every distance level alignment, and iii) dynamic gap penalties that are determined for 
each distance level alignment. At the same time we determined a ‘correction value’ that is 
subtracted from each distance level alignment score, translating these scores partially in the 



negative spectrum to make the scoring system comparable to functional score matrices. 
Gap penalties and correction values were calculated under some constraints deduced from 
the original PhAST (functional) score matrix4 as template: 24% (64%) of the scores were 
below the gap open (gap extension) penalty of -5 (-1). Again, 64% of all scores were below 
0, so we used this ratio as guideline for the correction value. 
 Static Gap Penalties. We determined a gap open and a gap extension penalty using 
two molecules as example. We chose two PPAR! agonists from the COBRA library 
(Figure 1).5 They exhibit partial structural similarity and differ only slightly in size. We 
calculated all distance level score matrices and merged them in one distribution. With gap 
open (gap extension) penalty 30 (53) the constraints of 24% (64%) of the scores in this 
distribution being smaller than the corresponding penalty were fulfilled. The constraint for 
the correction value was satisfied with a value of m2n2*2.11. With this model, gap 
penalties are static, but the correction value depends on sequence lengths. We chose a non-
static correction value instead of one suitable for our toy example because preliminary 
results indicated higher retrospective performance with this choice. 
 Flexible Gap Penalties. To make the scoring system more flexible, we 
implemented a second penalty model. It is similar to the construction of the static model 
but applied to each sequence pair before its actual comparison. Before DDP was applied to 
a sequence pair, we constructed all distance level score matrices and merged all distance 
scores into a single distribution. Gap penalties were chosen to fulfill constraints. The 
correction value was optimized in a binary search approach: starting from 10,000 the 
fraction of scores below 0 obtained using this correction value was determined. If the 
correction value was too high (low), it was scaled with 0.5 (1.5). Starting from 10,000 
proved to be sufficient for all our test cases. 
 Dynamic Gap Penalties. For each distance score matrix the gap penalties were set 
to fulfill constraints. So each of the mn distance score matrices created in the comparison 
of two sequences used a different set of gap penalties. The correction value was calculated 
as described for flexible gap penalties. 

To further reduce distance level alignment scores after subtracting a2b2 and the 
correction value, each score si,j was transformed according to Eq. (22). 
 

,
       (22) 

 
where sign is the signum function and  is the golden ratio (1.618). Applying the 

logarithm to scores was already reported for DDP for protein sequence comparison47 We 
used the golden ratio because we needed a small base, and preliminary results were 
promising. Resulting scores spanned a range comparable to those calculated by PhAST 
using the original functional score matrix. Because of that fact we used gap open penalty -5 
and gap extension penalty -1, and as final similarity measure between sequences the 
residue level alignment score normalized to alignment length. 

 
 
 
 
 
 
 
 
 

 

! 

si, j
* = sign si, j( )* log" si, j( )

! 

"



 
 
 
 

 
 

 
 

 
 

Figure 1. PPAR! agonists used for parameterization of double dynamic programming. A) 2D depiction 
of the molecular graphs revealing parts of structural identity, depictions generated with MOE 
(Molecular Operating Environment, v2010.06, Chemical Computing Group Inc., Montreal, Canada), B) 
MOE rigid body alignment of CORINA (v3.46, Molecular Networks GmbH, Erlangen, Germany) 3D 
conformations. Molecules were taken from the COBRA collection of drugs and lead compounds. 

 

O
NH

SN-
O

O Cl

O
O

N

O
OS

N-

O

O
O

O-

!"# $"#



References 
 
1 Needleman, S. B.; Wunsch, C. D. J Mol Biol 1970, 48, 443. 
2 Durbin, R.; Eddy, S. R.; Krogh, A.; Mitchison, G. Biological Sequence Analysis; 

Cambridge University Press: Cambridge, 1998. 
3 Eidhammer, I.; Jonassen, I.; Taylor, W. R. Protein Bioinformatics; John Wiley & 

Sons Ltd: West Sussex (England), 2004. 
4 Hähnke, V.; Hofmann, B.; Grgat, T.; Proschak, E.; Steinhilber, D.; Schneider, G. J 

Comput Chem 2009, 30, 761. 
5 Schneider, P.; Schneider G. QSAR Comb Sci 2003, 22, 713. 



Discussion Canonization Algorithms 
 
 
PhAST employing minimum volume embedding utilizing a diffusion kernel in combination 
with covalent connectivity exhibited highest retrospective screening performance so far. Due 
to this fact, this particular version of PhAST will be referred to as ‘baseline PhAST’. 
 
We compared the retrospective performance of PhAST employing different canonization 
approaches applied to 2D layouts and 3D conformations of molecules in a series of virtual 
screenings. Table 1 presents the results evaluated using the BEDROC metric (! = 20). 
Corresponding p-values attained from the paired permutation test for significance assessment 
are given in Table 2 (significance level 0.05) and Table 3 (significance level 0.01). Table 4 to 
Table 7 give p-values for baseline PhAST compared to the other canonization algorithms 
listed in Table 3. In the following comparison, the application of a canonization algorithm to 
2D layouts is referred to as ‘2D version’, the application to 3D conformations as ‘3D version’. 

With an averaged BEDROC score of 0.3 centroid linearization performs significantly 
worse than baseline PhAST. This is true for both dimensionalities of molecular 
representations. Results obtained from the application to 2D layouts and 3D conformations 
are not identical but not significantly different either: At significance level 0.05 retrospective 
performance with 2D layouts (3D conformations) performs significantly better in 43% (46%) 
of all screenings. At 0.01 these percentages decrease to 39% and 43%, respectively. Centroid 
linearization is clearly outperformed by baseline PhAST in 77% and 75% of the performed 
screenings at significance levels of 0.05 and 0.01, respectively. 

For Isomap the retrospective performance strongly depends on the value of k used in 
determination of neighborhood relations. Worst performance results from k = 2 with an 
averaged BEDROC of 0.28 for both dimensionalities. Best performance is observed with k = 
3, with an averaged BEDROC of 0.34 for 2D and 0.35 for 3D. Only with k = 2 the 2D version 
performs significantly better than 3D, admittedly in less than 50% of all screenings. For all 
other k the 3D version significantly outperforms the 2D version at both significance levels, at 
0.05 in more than 50% of all screenings. The same is true for laplacian eigenmaps: k = 2 
yields lowest BEDROC scores for both dimensionalities, with increasing performance for 
increasing k with a slight drop again at k = 4 for the 2D version. For both significance levels 
the 3D version outperforms the 2D version significantly in more cases than vice versa for all k 
except k = 2. Baseline PhAST outperforms all versions of Isomap and laplacian eigenmaps in 
more than 50% of all screenings in both dimensionalities at both significance levels. 

The mediocre performance achieved using PCA for canonization we already knew to 
be true for 2D layouts (0.35) was affirmed for the application to 3D conformations as well 
(0.34). 

With MVE EDK for canonization the best retrospective performance is achieved using 
covalent connectivity (0.38 for 2D, 0.39 for 3D) with significant differences in 54% (45%) of 
all screenings. As for Isomap and Laplacian Eigenmaps, starting from k = 2 in k nearest 
neighbors as connectivity algorithm, retrospective performance increases with increasing k. In 
all parameterizations tested, the 3D version has higher averaged performance. For k nearest 
neighbors, highest performance is achieved for both dimensionalities with k = 3. At both 
significance levels baseline PhAST performs significantly better than any variant of MVE 
EDK in more than 50% of all screenings. 

For MVE RBF we evaluated five s in combination with five connectivity variants. The 
question is: Which one of these variables has greater influence on screening performance with 
MVE RBF as canonization algorithm? To address this problem we analyzed retrospective 
results for both dimensionalities separately. We calculated mean and standard deviations of 
averaged retrospective performance for each " with varying connectivity and each 



connectivity with varying s. From these values we calculated the corresponding coefficient of 
variation (standard deviation / mean) (CV). For fixed " (connectivity) with varying 
connectivity (s) the mean CV is 0.038 (0.049) for the 2D version. For 3D the corresponding 
values are 0.045 and 0.065. These results identify s to have a (slightly) bigger impact on 
retrospective performance, because divergence in retrospective results is higher if s varies. 
The best performing parameter combination for the application to 2D layouts is s = 22 and 
covalent connectivity, for 3D conformations s = 22 k nearest neighbors with k = 3. The 
corresponding averaged BEDROC scores are 0.37 for the 2D version and 0.39 for 3D. For the 
25 variants of MVE RBF tested, the 2D (3D) version performs better than the 3D (2D) 
version in 10 (15) cases. If we use the number of times a dimensionality outperforms the other 
in over 50% of the performed screenings at the chosen significance level as superiority 
criterion instead of just the averaged performance, these numbers further decrease for 2D 
(3D) to 1 (6) at 0.05 and only 0 (1) at 0.01. These results indicate that the assumed superiority 
in averaged retrospective performance for the usage of 3D single conformations is caused by 
the summation of insignificant differences. Compared to all variants of MVE RBF, baseline 
PhAST performs significantly better in at least 57% (49%) of all screenings in 2D (3D) at 
0.05 and 53% (45%) at 0.01 with the opposite being true in only 29 (33%) and 26% (33%) of 
all cases. Baseline PhAST performs superior to PhAST with MVE RBF, and no advantage of 
using a certain dimensionality of molecular representation could be established. 

Both variants of proximity embedding have lower averaged retrospective performance 
than baseline PhAST and are outperformed in at least 70% (65%) of all screenings at 0.05 
(0.01) significance level. For both methods of choosing vertex pairs, the application on 2D 
layouts performs slightly better, but always in fewer than 50% of all screenings. 

No parameterization of MVE PRW performs better in PhAST than baseline PhAST. 
The best performing variant (p = radius, a = 4) is outperformed in 51% (47) of all screenings 
at 0.05 (0.01), but performs better than baseline PhAST in only 25% (27%). So despite the 
fact that both kernels are based on random walks, this new variant of MVE using only 
topological information is no improvement. 
 



Table 1. Comparison of different canonization algorithms by their averaged retrospective performance. 
Algorithms were applied to molecular representations in two and three dimensions. Screenings were evaluated 
by their BEDROC score. As MVE DK and MVE PRW only use topological information, the application to 3D 
conformations yielded identical results and is not shown. 
 Ø BEDROC   Ø BEDROC 
 2D 3D   2D 3D 
Centroid Linearization 0.30 0.30  MVE RBF " = 21 kNN k = 3 0.37 0.39 
Isomap kNN k = 2 0.28 0.28  MVE RBF " = 21 kNN k = 4 0.36 0.37 
Isomap kNN k = 3 0.34 0.35  MVE RBF " = 21 kNN k = 5 0.36 0.37 
Isomap kNN k = 4 0.32 0.34  MVE RBF " = 22 covalent 0.37 0.38 
Isomap kNN k = 5 0.33 0.35  MVE RBF " = 22 kNN k = 2 0.35 0.35 
Laplacian Eigenmaps kNN k = 2 0.29 0.27  MVE RBF " = 22 kNN k = 3 0.37 0.39 
Laplacian Eigenmaps kNN k = 3 0.35 0.36  MVE RBF " = 22 kNN k = 4 0.37 0.37 
Laplacian Eigenmaps kNN k = 4 0.34 0.36  MVE RBF " = 22 kNN k = 5 0.37 0.36 
Laplacian Eigenmaps kNN k = 5 0.34 0.37  MVE RBF " = 23 covalent 0.37 0.39 
PCA 0.35 0.34  MVE RBF " = 23 kNN k = 2 0.35 0.36 
MVE EDK covalent 0.38 0.39  MVE RBF " = 23 kNN k = 3 0.37 0.39 
MVE EDK kNN k = 2 0.35 0.35  MVE RBF " = 23 kNN k = 4 0.37 0.37 
MVE EDK kNN k = 3 0.37 0.39  MVE RBF " = 23 kNN k = 5 0.37 0.37 
MVE EDK kNN k = 4 0.37 0.37  SPE 0.36 0.35 
MVE EDK kNN k = 5 0.36 0.36  MVEPE 0.32 0.32 
MVE RBF " = 2-1 covalent 0.36 0.34  MVE DK (b = 0.4) 0.40  
MVE RBF " = 2-1 kNN k = 2 0.32 0.31  MVE PRW diameter a = 2 0.37  
MVE RBF " = 2-1 kNN k = 3 0.34 0.33  MVE PRW diameter a = 4 0.38  
MVE RBF " = 2-1 kNN k = 4 0.32 0.32  MVE PRW diameter a = 6 0.39  
MVE RBF " = 2-1 kNN k = 5 0.30 0.29  MVE PRW diameter a = 8 0.39  
MVE RBF " = 20 covalent 0.36 0.37  MVE PRW diameter a = 10 0.39  
MVE RBF " = 20 kNN k = 2 0.33 0.33  MVE PRW radius a = 2 0.38  
MVE RBF " = 20 kNN k = 3 0.36 0.38  MVE PRW radius a = 4 0.39  
MVE RBF " = 20 kNN k = 4 0.34 0.34  MVE PRW radius a = 6 0.39  
MVE RBF " = 20 kNN k = 5 0.34 0.35  MVE PRW radius a = 8 0.39  
MVE RBF " = 21 covalent 0.37 0.38  MVE PRW radius a = 10 0.38  
MVE RBF " = 21 kNN k = 2 0.35 0.35     



Table 2. Comparison of different canonization algorithms by estimated significance of differences in 
retrospective performance. Algorithms were applied to molecular representations in two and three dimensions. 
For each algorithm applied to 2D and 3D representations of molecules the percentage of screenings is listed 
where this combination of algorithm and dimensionality significantly outperforms the same algorithm on the 
other dimensionality. Percentages may not add up to 100 because in some cases differences are not significant. 
Significance level: 0.05. 
 Ø ACE COX2 DHFR FXA PPAR# THR 
 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 
Centroid Linearization 43 46 68 18 20 76 28 61 79 18 41 32 21 69 
Isomap kNN k = 2 45 40 9 74 44 41 56 31 66 25 39 34 57 37 
Isomap kNN k = 3 31 52 12 62 24 74 61 19 29 60 30 39 27 62 
Isomap kNN k = 4 30 55 24 56 24 70 50 41 33 60 16 50 32 56 
Isomap kNN k = 5 28 55 12 56 28 65 25 53 48 42 25 50 28 65 
Laplacian Eigenmaps kNN k = 2 51 37 12 79 64 32 61 30 81 16 30 36 59 31 
Laplacian Eigenmaps kNN k = 3 33 53 15 71 21 70 53 34 57 32 27 48 26 65 
Laplacian Eigenmaps kNN k = 4 25 57 15 65 26 64 28 50 42 50 20 39 19 73 
Laplacian Eigenmaps kNN k = 5 25 57 18 68 26 62 27 56 38 46 16 45 23 66 
PCA 46 38 26 47 60 30 50 39 76 21 20 39 40 52 
MVE EDK covalent 29 54 12 62 32 60 25 67 33 55 18 43 54 38 
MVE EDK kNN k = 2 43 42 18 71 60 32 59 22 44 50 43 23 33 55 
MVE EDK kNN k = 3 35 50 15 59 62 28 38 41 52 40 18 66 26 67 
MVE EDK kNN k = 4 38 44 21 56 68 19 34 33 48 47 23 50 33 60 
MVE EDK kNN k = 5 42 42 24 47 77 17 48 27 53 44 18 57 31 59 
MVE RBF " = 2-1 covalent 50 36 71 9 26 60 50 31 78 19 43 34 29 62 
MVE RBF " = 2-1 kNN k = 2 44 45 26 56 82 15 58 36 57 33 14 64 31 64 
MVE RBF " = 2-1 kNN k = 3 45 43 32 53 66 28 61 30 75 20 14 59 23 68 
MVE RBF " = 2-1 kNN k = 4 41 47 44 41 18 77 25 64 79 20 32 39 49 40 
MVE RBF " = 2-1 kNN k = 5 43 41 32 15 26 67 55 38 57 37 16 70 72 21 
MVE RBF " = 20 covalent 38 44 32 26 32 60 22 70 42 45 48 25 50 37 
MVE RBF " = 20 knn k = 2 44 44 12 65 84 11 23 61 46 52 55 20 43 54 
MVE RBF " = 20 knn k = 3 33 51 18 68 63 27 19 73 38 48 20 41 38 49 
MVE RBF " = 20 knn k = 4 38 46 24 53 30 61 30 53 47 44 43 27 54 38 
MVE RBF " = 20 kNN k = 5 37 44 32 32 29 66 38 38 57 32 23 50 42 48 
MVE RBF " = 21 covalent 29 51 18 44 30 58 20 70 26 59 39 32 43 44 
MVE RBF " = 21 kNN k = 2 36 50 15 74 38 52 58 30 40 57 18 45 46 44 
MVE RBF " = 21 kNN k = 3 32 49 12 62 63 24 19 69 39 51 30 30 31 61 
MVE RBF " = 21 kNN k = 4 35 43 29 41 56 34 50 30 29 61 11 43 34 52 
MVE RBF " = 21 kNN k = 5 39 44 18 50 64 26 45 42 50 41 20 50 35 56 
MVE RBF " = 22 covalent 32 51 24 38 27 65 22 70 27 63 52 25 40 46 
MVE RBF " = 22 kNN k = 2 40 40 6 59 49 35 64 25 47 46 30 27 46 46 
MVE RBF " = 22 kNN k = 3 30 53 12 62 46 38 42 42 41 49 16 59 25 66 
MVE RBF " = 22 kNN k = 4 39 44 26 47 68 22 56 28 39 55 18 50 27 60 
MVE RBF " = 22 kNN k = 5 46 34 24 35 76 18 66 25 46 43 30 30 36 55 
MVE RBF " = 23 covalent 26 55 26 38 26 65 19 73 22 64 18 48 46 42 
MVE RBF " = 23 kNN k = 2 40 41 21 65 56 35 52 27 40 51 34 20 40 48 
MVE RBF " = 23 kNN k = 3 31 49 12 50 46 35 28 56 53 39 20 48 23 67 
MVE RBF " = 23 kNN k = 4 42 37 35 29 77 18 38 36 41 52 36 27 26 61 
MVE RBF " = 23 kNN k = 5 43 34 26 41 70 23 48 27 53 41 30 18 32 57 
SPE 45 34 18 44 57 31 50 31 51 38 50 16 45 44 
MVEPE 44 41 41 41 41 54 52 38 54 40 36 23 42 50 



Table 3. Comparison of different canonization algorithms by estimated significance of differences in 
retrospective performance. Algorithms were applied to molecular representations in two and three dimensions. 
For each algorithm applied to 2D and 3D representations of molecules the percentage of screenings is listed 
where this combination of algorithm and dimensionality significantly outperforms the same algorithm on the 
other dimensionality. Percentages may not add up to 100 because in some cases differences are not significant. 
Significance level: 0.01. 
 Ø ACE COX2 DHFR FXA PPAR# THR 
 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 
Centroid Linearization 39 43 59 18 18 76 28 58 79 18 30 20 20 69 
Isomap kNN k = 2 43 39 6 74 44 40 55 31 65 24 32 30 55 34 
Isomap kNN k = 3 28 47 9 50 23 74 59 14 28 59 25 25 26 59 
Isomap kNN k = 4 28 52 21 53 23 67 45 38 31 57 16 43 30 54 
Isomap kNN k = 5 24 48 12 47 26 64 22 48 48 39 14 30 24 63 
Laplacian Eigenmaps kNN k = 2 49 36 12 74 64 32 59 28 81 15 23 36 57 29 
Laplacian Eigenmaps kNN k = 3 30 48 12 53 19 68 50 30 53 30 20 41 23 63 
Laplacian Eigenmaps kNN k = 4 23 53 9 59 26 63 28 45 40 49 16 32 18 69 
Laplacian Eigenmaps kNN k = 5 22 54 18 68 24 59 19 55 36 44 14 34 21 66 
PCA 44 33 26 35 60 26 44 34 74 20 20 34 39 51 
MVE EDK covalent 25 45 3 35 31 56 25 61 30 51 16 32 48 34 
MVE EDK kNN k = 2 40 39 21 65 59 31 58 20 41 47 32 18 31 51 
MVE EDK kNN k = 3 32 44 12 41 56 26 36 34 50 38 14 57 23 66 
MVE EDK kNN k = 4 33 40 15 50 67 18 30 30 46 46 16 39 27 59 
MVE EDK kNN k = 5 38 38 15 47 75 15 45 23 51 43 14 45 27 56 
MVE RBF " = 2-1 covalent 46 33 65 9 25 57 48 27 78 18 34 27 28 60 
MVE RBF " = 2-1 kNN k = 2 42 41 18 44 80 15 58 36 56 33 11 52 28 63 
MVE RBF " = 2-1 kNN k = 3 42 40 24 50 64 26 59 28 73 19 9 48 21 68 
MVE RBF " = 2-1 kNN k = 4 39 44 38 32 17 75 25 61 77 20 27 36 48 40 
MVE RBF " = 2-1 kNN k = 5 40 39 32 12 25 65 52 38 57 37 7 61 69 20 
MVE RBF " = 20 covalent 33 41 24 24 32 57 19 69 39 43 36 18 48 34 
MVE RBF " = 20 kNN k = 2 39 42 0 56 84 11 19 59 46 51 48 20 40 53 
MVE RBF " = 20 kNN k = 3 30 48 15 65 63 25 17 69 36 46 14 34 36 48 
MVE RBF " = 20 kNN k = 4 34 41 15 41 30 60 27 48 46 42 36 20 50 37 
MVE RBF " = 20 kNN k = 5 33 41 26 24 29 65 34 34 55 32 16 45 39 46 
MVE RBF " = 21 covalent 24 46 12 38 29 53 19 67 25 59 20 20 42 40 
MVE RBF " = 21 kNN k = 2 33 45 12 62 35 51 56 27 39 56 11 32 44 43 
MVE RBF " = 21 kNN k = 3 29 45 9 59 61 21 19 61 37 48 16 18 30 60 
MVE RBF " = 21 kNN k = 4 32 37 26 29 52 30 44 25 26 58 11 32 33 50 
MVE RBF " = 21 kNN k = 5 35 39 15 41 63 26 38 41 47 38 16 36 32 55 
MVE RBF " = 22 covalent 27 47 15 29 25 63 20 70 24 58 41 18 39 43 
MVE RBF " = 22 kNN k = 2 38 36 6 56 47 32 61 20 45 44 27 20 45 44 
MVE RBF " = 22 kNN k = 3 29 48 12 53 44 35 39 36 39 46 14 55 23 65 
MVE RBF " = 22 kNN k = 4 37 39 18 38 65 21 55 25 39 53 18 34 26 60 
MVE RBF " = 22 kNN k = 5 43 30 21 26 74 18 66 23 46 43 20 18 34 51 
MVE RBF " = 23 covalent 23 50 15 26 24 63 17 72 20 60 18 41 42 39 
MVE RBF " = 23 kNN k = 2 38 37 18 56 54 31 52 23 39 50 27 16 39 44 
MVE RBF " = 23 kNN k = 3 28 45 9 50 46 32 25 56 50 36 16 30 22 66 
MVE RBF " = 23 kNN k = 4 40 34 32 26 76 18 31 34 40 50 32 18 26 58 
MVE RBF " = 23 kNN k = 5 39 33 21 41 68 23 42 27 51 40 18 11 32 57 
SPE 41 31 15 35 57 29 47 31 51 37 34 11 43 42 
MVEPE 40 37 35 41 38 51 48 31 52 38 27 14 41 50 

 



Table 4. Percentage of significantly better screenings per target for baseline PhAST and any other canonization 
algorithm. Dimensionality of molecular representation: 2D. Significance level 0.05. B = baseline PhAST MVE 
DK ($ = 0.4), C = candidate canonization algorithm named in first column. 
 Ø ACE COX2 DHFR FXA PPAR# THR 
 B C B C B C B C B C B C B C 
Centroid Linearization 77 13 62 18 69 24 88 9 78 18 77 2 90 6 
Isomap kNN k = 2 87 6 85 0 85 9 92 6 93 6 75 5 90 8 
Isomap kNN k = 3 72 15 74 9 57 35 89 3 78 15 52 9 81 16 
Isomap kNN k = 4 80 13 82 3 67 29 84 11 87 9 70 14 86 10 
Isomap kNN k = 5 76 15 79 3 54 38 88 11 82 15 68 11 85 14 
Laplacian Eigenmaps kNN k = 2 82 10 82 3 79 17 92 8 90 8 64 14 85 8 
Laplacian Eigenmaps kNN k = 3 67 22 79 12 29 61 91 3 64 28 55 16 83 14 
Laplacian Eigenmaps kNN k = 4 71 18 74 9 54 40 89 3 75 18 57 20 80 15 
Laplacian Eigenmaps kNN k = 5 69 21 76 18 36 55 91 6 72 21 55 14 85 13 
PCA 71 21 85 6 29 64 81 11 79 15 70 16 79 16 
MVE EDK covalent 59 26 74 12 47 34 81 11 61 31 20 43 72 24 
MVE EDK kNN k = 2 66 21 76 0 40 49 86 8 76 17 34 36 83 14 
MVE EDK kNN k = 3 60 25 82 6 26 66 80 11 63 25 43 11 67 28 
MVE EDK kNN k = 4 61 26 79 6 21 70 72 11 75 19 43 27 76 20 
MVE EDK kNN k = 5 65 25 74 12 18 77 80 9 80 14 59 20 78 18 
MVE RBF " = 2-1 covalent 67 20 82 9 62 28 75 17 71 21 30 36 83 10 
MVE RBF " = 2-1 kNN k = 2 76 14 85 0 60 33 89 6 82 13 52 23 87 8 
MVE RBF " = 2-1 kNN k = 3 68 22 88 3 21 72 89 8 76 19 48 18 85 10 
MVE RBF " = 2-1 kNN k = 4 75 12 74 6 71 21 89 9 88 8 39 18 87 10 
MVE RBF " = 2-1 kNN k = 5 78 13 79 6 52 37 92 8 92 6 64 11 87 10 
MVE RBF " = 20 covalent 65 23 76 15 57 27 77 17 69 22 32 45 81 11 
MVE RBF " = 20 kNN k = 2 69 18 85 3 49 43 86 6 83 11 25 39 87 8 
MVE RBF " = 20 kNN k = 3 57 27 71 6 15 80 81 9 65 24 32 27 80 14 
MVE RBF " = 20 kNN k = 4 71 18 79 9 49 40 88 9 83 11 41 25 85 12 
MVE RBF " = 20 kNN k = 5 68 20 82 9 32 53 88 8 71 24 50 20 87 9 
MVE RBF " = 21 covalent 61 26 71 12 48 38 80 16 59 35 27 43 80 14 
MVE RBF " = 21 kNN k = 2 69 18 85 3 45 42 88 11 76 14 39 30 84 10 
MVE RBF " = 21 kNN k = 3 57 29 74 6 20 73 77 6 64 29 34 36 74 22 
MVE RBF " = 21 kNN k = 4 63 25 74 12 24 69 86 14 76 17 41 20 75 16 
MVE RBF " = 21 kNN k = 5 63 26 82 6 19 74 78 17 76 17 39 25 81 14 
MVE RBF " = 22 covalent 59 25 59 12 49 30 84 11 61 32 25 45 75 19 
MVE RBF " = 22 kNN k = 2 68 20 85 0 38 48 86 11 78 14 36 34 82 13 
MVE RBF " = 22 kNN k = 3 62 28 82 9 29 67 80 8 61 32 50 23 67 30 
MVE RBF " = 22 kNN k = 4 62 25 76 6 20 72 83 9 74 20 45 23 75 21 
MVE RBF " = 22 kNN k = 5 61 28 82 9 23 70 70 16 75 20 43 27 71 24 
MVE RBF " = 23 covalent 62 24 68 15 57 27 86 8 61 31 23 43 76 18 
MVE RBF " = 23 kNN k = 2 64 21 76 3 34 55 88 6 72 19 36 30 81 14 
MVE RBF " = 23 kNN k = 3 61 27 82 6 29 63 80 11 55 36 52 20 66 29 
MVE RBF " = 23 kNN k = 4 59 29 76 15 20 72 80 13 76 18 30 36 74 20 
MVE RBF " = 23 kNN k = 5 57 28 62 6 23 71 75 14 76 18 34 36 71 22 
SPE 69 20 88 3 40 53 80 14 76 18 52 18 78 16 
MVEPE 74 16 76 9 66 27 84 6 74 20 64 18 81 15 
MVE PRW diameter a = 2 59 23 56 12 63 22 84 8 40 48 36 32 73 16 
MVE PRW diameter a = 4 52 25 35 18 54 29 84 9 54 35 23 34 63 23 
MVE PRW diameter a = 6 52 25 41 21 52 31 83 11 46 37 32 27 57 24 
MVE PRW diameter a = 8 49 27 41 18 47 32 78 9 48 39 23 36 55 29 
MVE PRW diameter a = 10 51 28 53 21 51 29 78 9 46 40 20 41 58 27 
MVE PRW radius a = 2 55 25 50 15 52 32 86 8 52 36 27 32 62 25 
MVE PRW radius a = 4 51 27 38 24 47 37 83 9 49 39 30 30 61 24 
MVE PRW radius a = 6 53 29 44 21 54 29 80 11 52 38 27 45 58 27 
MVE PRW radius a = 8 51 26 41 32 53 26 78 9 48 38 30 20 57 28 
MVE PRW radius a = 10 54 25 53 12 50 33 77 9 47 38 39 30 57 29 



Table 5. Percentage of significantly better screenings per target for baseline PhAST and any other canonization 
algorithm. Dimensionality of molecular representation: 3D. Significance level 0.05. B = baseline PhAST MVE 
DK ($ = 0.4), C = candidate canonization algorithm named in first column. 
 Ø ACE COX2 DHFR FXA PPAR# THR 
 B C B C B C B C B C B C B C 
Centroid Linearization 77 14 85 6 44 43 83 16 85 11 80 0 87 8 
Isomap kNN k = 2 77 13 41 24 83 10 86 13 90 8 68 20 91 4 
Isomap kNN k = 3 62 25 62 21 15 76 92 6 72 22 50 11 82 14 
Isomap kNN k = 4 65 23 59 21 25 71 91 6 85 11 52 18 81 13 
Isomap kNN k = 5 65 22 50 24 30 59 91 8 84 12 61 11 77 20 
Laplacian Eigenmaps kNN k = 2 80 12 71 18 83 15 89 8 96 3 55 18 89 8 
Laplacian Eigenmaps kNN k = 3 58 27 47 24 15 77 91 8 69 22 52 14 74 19 
Laplacian Eigenmaps kNN k = 4 61 26 62 21 24 65 91 9 69 22 50 14 68 24 
Laplacian Eigenmaps kNN k = 5 55 30 38 32 25 65 88 8 67 26 41 32 74 19 
PCA 72 18 85 6 35 56 78 11 88 10 68 11 78 16 
MVE EDK covalent 49 33 44 18 38 53 83 6 44 43 14 57 73 19 
MVE EDK kNN k = 2 64 22 50 24 50 38 88 8 69 25 45 30 84 10 
MVE EDK kNN k = 3 52 32 56 15 34 55 81 9 66 25 27 41 47 46 
MVE EDK kNN k = 4 61 27 71 15 41 51 84 11 77 15 27 41 64 29 
MVE EDK kNN k = 5 59 26 53 26 38 49 81 11 87 10 32 32 66 28 
MVE RBF " = 2-1 covalent 66 24 82 12 44 46 83 16 89 9 32 36 68 23 
MVE RBF " = 2-1 kNN k = 2 72 20 71 18 87 11 89 11 82 14 25 52 81 13 
MVE RBF " = 2-1 kNN k = 3 60 31 59 26 31 63 86 13 87 11 25 52 75 21 
MVE RBF " = 2-1 kNN k = 4 67 22 68 15 30 59 88 13 94 4 41 30 84 14 
MVE RBF " = 2-1 kNN k = 5 69 23 82 6 33 59 91 8 92 6 27 52 90 6 
MVE RBF " = 20 covalent 58 25 68 21 44 48 61 14 65 30 32 25 81 11 
MVE RBF " = 20 kNN k = 2 67 20 56 21 82 15 67 17 64 30 48 27 89 7 
MVE RBF " = 20 kNN k = 3 53 32 59 15 22 68 67 22 66 24 27 45 75 17 
MVE RBF " = 20 kNN k = 4 65 20 68 18 24 66 86 13 86 8 41 7 86 11 
MVE RBF " = 20 kNN k = 5 62 28 65 15 27 69 84 9 79 17 34 41 81 17 
MVE RBF " = 21 covalent 49 29 50 21 32 54 69 6 41 48 25 30 74 14 
MVE RBF " = 21 kNN k = 2 58 27 35 35 42 48 88 5 60 32 36 32 85 8 
MVE RBF " = 21 kNN k = 3 50 32 65 21 24 62 56 20 58 33 27 41 72 17 
MVE RBF " = 21 kNN k = 4 59 27 74 6 28 65 86 9 66 28 25 39 77 18 
MVE RBF " = 21 kNN k = 5 58 27 65 12 26 64 78 11 76 17 27 36 75 19 
MVE RBF " = 22 covalent 54 30 59 18 32 59 86 6 40 52 36 25 73 19 
MVE RBF " = 22 kNN k = 2 62 23 47 21 51 38 84 3 67 25 39 43 86 11 
MVE RBF " = 22 kNN k = 3 49 36 59 15 21 66 83 6 57 34 23 57 50 39 
MVE RBF " = 22 kNN k = 4 57 28 68 12 28 58 86 9 71 23 23 39 67 26 
MVE RBF " = 22 kNN k = 5 62 26 68 12 40 50 86 9 75 20 36 36 67 26 
MVE RBF " = 23 covalent 51 32 56 18 33 56 86 6 43 45 16 52 74 16 
MVE RBF " = 23 kNN k = 2 63 23 50 24 43 50 88 5 62 28 50 25 84 8 
MVE RBF " = 23 kNN k = 3 52 33 59 18 24 58 78 9 65 29 39 39 48 43 
MVE RBF " = 23 kNN k = 4 58 26 71 9 43 45 83 9 63 27 30 39 62 29 
MVE RBF " = 23 kNN k = 5 58 27 59 18 33 57 84 6 81 13 25 41 63 30 
SPE 70 19 82 9 49 46 75 11 76 20 59 14 78 16 
MVEPE 76 14 71 9 68 27 86 13 79 17 75 7 79 14 



Table 6. Percentage of significantly better screenings per target for baseline PhAST and any other canonization 
algorithm. Dimensionality of molecular representation: 2D. Significance level 0.01. B = baseline PhAST MVE 
DK ($ = 0.4), C = candidate canonization algorithm named in first column. 
 Ø ACE COX2 DHFR FXA PPAR# THR 
 B C B C B C B C B C B C B C 
Centroid Linearization 75 11 56 9 68 22 84 9 75 18 75 2 89 4 
Isomap kNN k = 2 82 5 74 0 85 8 92 6 92 5 64 5 87 7 
Isomap kNN k = 3 69 13 68 6 55 35 89 3 77 15 48 7 80 15 
Isomap kNN k = 4 77 11 74 3 66 27 84 11 86 8 64 9 85 7 
Isomap kNN k = 5 74 13 76 3 51 34 88 9 81 14 61 5 84 12 
Laplacian Eigenmaps kNN k = 2 81 8 79 0 78 17 92 5 89 7 61 14 85 8 
Laplacian Eigenmaps kNN k = 3 63 21 74 12 26 58 89 3 61 27 48 11 80 13 
Laplacian Eigenmaps kNN k = 4 69 15 74 6 51 38 89 3 73 17 50 14 79 12 
Laplacian Eigenmaps kNN k = 5 66 19 68 15 33 51 91 3 70 19 50 14 84 11 
PCA 69 20 82 3 28 62 80 11 79 13 66 16 78 16 
MVE EDK covalent 55 20 59 6 45 31 80 9 60 29 18 23 71 22 
MVE EDK kNN k = 2 63 19 71 0 37 49 84 6 73 17 30 30 82 11 
MVE EDK kNN k = 3 58 22 76 6 24 62 78 6 61 24 39 9 67 26 
MVE EDK kNN k = 4 58 24 76 6 20 68 67 9 75 17 34 23 74 18 
MVE EDK kNN k = 5 63 22 65 9 18 73 78 8 79 12 59 14 77 16 
MVE RBF " = 2-1 covalent 64 18 79 9 59 26 73 13 70 21 23 27 82 10 
MVE RBF " = 2-1 kNN k = 2 75 13 88 0 56 33 89 6 81 13 48 18 87 8 
MVE RBF " = 2-1 kNN k = 3 63 20 82 3 20 71 88 8 75 18 30 14 85 9 
MVE RBF " = 2-1 kNN k = 4 72 11 68 6 68 19 89 9 88 8 30 16 87 8 
MVE RBF " = 2-1 kNN k = 5 75 12 74 6 51 32 92 6 92 6 52 9 87 10 
MVE RBF " = 20 covalent 60 19 56 15 54 23 75 14 68 21 25 30 80 10 
MVE RBF " = 20 kNN k = 2 69 16 85 0 48 42 86 6 82 10 25 34 87 6 
MVE RBF " = 20 kNN k = 3 53 24 68 6 13 79 81 9 62 23 16 16 79 13 
MVE RBF " = 20 kNN k = 4 68 15 74 9 46 39 86 8 83 9 32 18 85 10 
MVE RBF " = 20 kNN k = 5 65 18 79 3 30 53 86 6 71 23 36 18 87 8 
MVE RBF " = 21 covalent 58 21 68 12 40 35 80 9 57 33 25 23 79 13 
MVE RBF " = 21 kNN k = 2 68 15 82 0 45 40 86 9 73 13 36 20 84 9 
MVE RBF " = 21 kNN k = 3 54 26 74 6 18 71 72 6 62 28 23 25 73 21 
MVE RBF " = 21 kNN k = 4 58 23 68 12 21 67 81 13 75 15 27 14 74 15 
MVE RBF " = 21 kNN k = 5 59 24 82 6 16 72 78 13 74 17 25 25 79 13 
MVE RBF " = 22 covalent 56 20 50 12 45 29 84 8 60 32 23 20 74 16 
MVE RBF " = 22 kNN k = 2 62 17 68 0 37 45 78 9 77 13 30 25 81 13 
MVE RBF " = 22 kNN k = 3 56 25 71 6 26 64 78 8 58 30 34 16 67 27 
MVE RBF " = 22 kNN k = 4 58 23 68 3 19 71 83 9 72 18 32 20 75 19 
MVE RBF " = 22 kNN k = 5 55 25 68 9 21 70 66 13 74 20 34 18 70 21 
MVE RBF " = 23 covalent 58 19 59 9 51 24 86 8 60 30 18 27 75 15 
MVE RBF " = 23 kNN k = 2 63 18 74 3 34 51 88 6 71 17 32 23 81 11 
MVE RBF " = 23 kNN k = 3 56 25 79 6 24 63 78 8 53 33 36 11 65 28 
MVE RBF " = 23 kNN k = 4 56 25 71 6 19 71 75 9 75 16 25 27 73 18 
MVE RBF " = 23 kNN k = 5 53 26 53 3 22 71 73 13 75 17 25 30 70 21 
SPE 65 19 85 0 39 53 78 13 73 18 39 18 78 15 
MVEPE 71 14 62 3 63 27 81 6 74 18 64 16 81 15 
MVE PRW diameter a = 2 55 21 47 15 62 19 83 8 37 46 27 23 72 14 
MVE PRW diameter a = 4 49 22 26 18 53 25 84 9 51 32 20 25 61 21 
MVE PRW diameter a = 6 47 23 29 21 48 29 77 6 44 36 27 23 55 22 
MVE PRW diameter a = 8 45 23 32 15 46 29 75 5 45 38 16 27 54 26 
MVE PRW diameter a = 10 47 23 47 15 46 29 70 8 45 39 16 20 57 26 
MVE PRW radius a = 2 53 22 47 9 51 29 83 6 50 32 25 30 60 23 
MVE PRW radius a = 4 47 23 32 18 43 32 78 5 47 36 20 25 60 21 
MVE PRW radius a = 6 48 25 38 18 52 26 70 9 47 36 23 34 56 25 
MVE PRW radius a = 8 45 22 26 18 47 24 75 8 47 36 20 18 55 26 
MVE PRW radius a = 10 50 22 50 9 46 28 73 8 46 36 27 27 56 26 



Table 7. Percentage of significantly better screenings per target for baseline PhAST and any other canonization 
algorithm. Dimensionality of molecular representation: 3D. Significance level 0.01. B = baseline PhAST MVE 
DK ($ = 0.4), C = candidate canonization algorithm named in first column. 
 Ø ACE COX2 DHFR FXA PPAR# THR 
 B C B C B C B C B C B C B C 
Centroid Linearization 76 13 85 6 43 43 81 16 84 10 77 0 87 7 
Isomap kNN k = 2 75 12 38 15 82 10 86 13 90 8 64 20 91 4 
Isomap kNN k = 3 60 24 59 21 14 72 92 6 71 21 43 9 81 13 
Isomap kNN k = 4 64 21 56 15 24 68 91 6 83 11 50 16 81 12 
Isomap kNN k = 5 63 20 50 21 27 55 91 8 83 12 52 5 77 19 
Laplacian Eigenmaps kNN k = 2 77 11 59 18 82 14 89 8 95 3 52 16 87 8 
Laplacian Eigenmaps kNN k = 3 56 24 41 12 15 76 89 8 68 21 48 9 73 17 
Laplacian Eigenmaps kNN k = 4 56 24 50 15 22 65 89 6 68 21 41 11 67 23 
Laplacian Eigenmaps kNN k = 5 53 27 35 32 24 63 86 6 66 25 36 20 73 17 
PCA 69 18 76 6 34 55 78 9 86 10 61 11 76 15 
MVE EDK covalent 45 30 32 15 35 50 78 6 43 43 9 50 73 18 
MVE EDK kNN k = 2 59 16 32 9 47 32 88 5 67 23 39 20 83 9 
MVE EDK kNN k = 3 49 29 56 9 30 52 80 9 62 24 23 36 44 44 
MVE EDK kNN k = 4 58 23 65 15 38 49 78 9 75 14 27 25 64 28 
MVE EDK kNN k = 5 58 23 53 21 37 48 81 8 86 9 25 25 65 27 
MVE RBF " = 2-1 covalent 64 22 82 12 39 44 83 16 88 8 23 27 68 22 
MVE RBF " = 2-1 kNN k = 2 70 19 65 18 86 11 89 11 80 14 20 48 80 13 
MVE RBF " = 2-1 kNN k = 3 59 25 56 15 29 59 86 11 87 11 20 34 75 21 
MVE RBF " = 2-1 kNN k = 4 65 21 68 15 29 58 88 11 93 4 30 23 84 14 
MVE RBF " = 2-1 kNN k = 5 66 19 74 6 30 56 91 6 92 5 20 36 90 4 
MVE RBF " = 20 covalent 55 21 56 15 43 46 56 9 64 29 30 20 81 9 
MVE RBF " = 20 kNN k = 2 64 17 47 18 81 13 67 16 62 29 43 20 86 7 
MVE RBF " = 20 kNN k = 3 49 29 56 12 20 65 66 19 62 23 16 43 75 14 
MVE RBF " = 20 kNN k = 4 64 19 62 12 24 65 86 11 85 8 41 7 86 10 
MVE RBF " = 20 kNN k = 5 59 24 62 9 26 66 84 6 78 15 25 32 80 15 
MVE RBF " = 21 covalent 45 25 41 15 32 54 63 6 40 45 18 20 74 13 
MVE RBF " = 21 kNN k = 2 56 23 35 24 38 45 86 5 59 31 32 27 84 8 
MVE RBF " = 21 kNN k = 3 45 29 50 15 20 59 52 17 55 32 25 36 70 16 
MVE RBF " = 21 kNN k = 4 56 24 65 6 26 63 86 9 64 25 18 23 75 17 
MVE RBF " = 21 kNN k = 5 56 24 59 6 25 64 77 11 76 17 27 27 75 18 
MVE RBF " = 22 covalent 51 28 56 15 31 57 84 5 39 48 23 25 71 17 
MVE RBF " = 22 kNN k = 2 57 20 32 18 49 34 84 3 67 23 27 32 84 10 
MVE RBF " = 22 kNN k = 3 47 33 56 15 19 64 83 6 56 33 20 41 49 37 
MVE RBF " = 22 kNN k = 4 56 24 65 6 28 55 86 8 68 22 20 27 66 25 
MVE RBF " = 22 kNN k = 5 56 23 50 9 35 49 86 9 73 19 27 27 67 23 
MVE RBF " = 23 covalent 48 29 47 18 29 52 84 6 42 43 11 39 74 15 
MVE RBF " = 23 kNN k = 2 58 21 38 18 39 48 84 5 61 27 43 23 82 7 
MVE RBF " = 23 kNN k = 3 47 30 50 12 22 57 78 9 62 28 27 30 44 42 
MVE RBF " = 23 kNN k = 4 55 23 65 3 37 43 78 8 61 26 30 32 62 28 
MVE RBF " = 23 kNN k = 5 55 23 56 12 30 55 83 6 80 11 18 25 63 28 
SPE 66 18 71 9 48 43 73 9 74 18 55 11 77 15 
MVEPE 72 12 59 6 67 25 86 9 77 15 64 5 77 12 
 



Distance Matrix of Canonization Algorithms based on inverted Rank Correlation

2d Centroid 0 0.496980497 0.510772104 0.488228082
0.503957085 0.511185162 0.486235448 0.50032099
0.491802748 0.488833117 0.502616403 0.501889473
0.488701195 0.521807802 0.490530671 0.515900596
0.478422992 0.511689047 0.511130136 0.488504634
0.501088578 0.490956754 0.493545762 0.52416884
0.522395745

Isomap covalent 0.496980497 0 0.378996396 0.458508794
0.246463172 0.354690934 0.298089549 0.29707767
0.341457998 0.264956194 0.297522189 0.342163988
0.381314454 0.483057401 0.349722565 0.481012662
0.520040054 0.32251361 0.321978721 0.283620418
0.30289588 0.28159221 0.276057175 0.402156969
0.383604759

2d Isomap knn 3 0.510772104 0.378996396 0 0.50509923
0.390453052 0.344200968 0.39413458 0.396625144
0.365666641 0.393984201 0.395130681 0.353021478
0.385407356 0.50197285 0.374118161 0.498911832
0.53851896 0.401731712 0.403302545 0.395917283
0.393374415 0.394182237 0.392053442 0.43105407
0.421828856

Jochum Gasteiger 0.488228082 0.458508794 0.50509923
0 0.466898568 0.496897665 0.444838698 0.465717264
0.485940856 0.457296208 0.463170683 0.48557129
0.514654573 0.516804985 0.48965819 0.497611635
0.515062613 0.481384974 0.483999782 0.449841614
0.463545655 0.447167491 0.462009664 0.516716131
0.500214114

Laplacian Eigenmaps 0.503957085 0.246463172 0.390453052
0.466898568 0 0.360324991 0.318617623 0.317358196
0.35841598 0.297405711 0.316473848 0.357940476
0.395055621 0.478400315 0.359093316 0.476726113
0.527684371 0.335252183 0.305636537 0.312378743
0.321750917 0.314060631 0.300440164 0.421110406
0.398477665

2d Laplacian Eigenmaps knn 30.511185162 0.354690934 0.344200968
0.496897665 0.360324991 0 0.377680509 0.374550085
0.346579722 0.371429636 0.373372588 0.347079866
0.386332689 0.492175069 0.360090857 0.481706574
0.541434638 0.372199231 0.36649396 0.363805329
0.365680239 0.365558541 0.361819427 0.416818391
0.402874735

MVE Diffsuion Kernel 0.486235448 0.298089549 0.39413458
0.444838698 0.318617623 0.377680509 0 0.281884397
0.34756358 0.275944392 0.283907676 0.353361281
0.388034421 0.473502037 0.359481728 0.467546257
0.514024982 0.363033772 0.358910958 0.291309425
0.311596497 0.289507096 0.307253763 0.410749693



0.385917511
2d MVE E covalent 0.50032099 0.29707767 0.396625144

0.465717264 0.317358196 0.374550085 0.281884397
0 0.340435326 0.293995859 0.075205278 0.352693546
0.384055568 0.476890438 0.356042535 0.482288526
0.523531446 0.358570326 0.352631735 0.291306318
0.308966392 0.290366532 0.297266446 0.418154633
0.392746408

2d MVE E knn 3 0.491802748 0.341457998 0.365666641
0.485940856 0.35841598 0.346579722 0.34756358
0.340435326 0 0.348759598 0.344187713 0.278482182
0.345593931 0.481393518 0.333423843 0.485614487
0.520896856 0.385874746 0.375320943 0.346030902
0.348914189 0.347204214 0.348060262 0.405732552
0.393774533

MVE P r a 4 0.488833117 0.264956194 0.393984201 0.457296208
0.297405711 0.371429636 0.275944392 0.293995859
0.348759598 0 0.294860332 0.34456258 0.391480541
0.480634089 0.356574024 0.481999326 0.5241785
0.356414369 0.354115285 0.282399112 0.311183387
0.278234298 0.285554203 0.417881759 0.396704183

2d MVE R 2 pow 3 covalent 0.502616403 0.297522189 0.395130681
0.463170683 0.316473848 0.373372588 0.283907676
0.075205278 0.344187713 0.294860332 0 0.350627616
0.386192487 0.480407488 0.352695855 0.482994891
0.526049914 0.357410259 0.350761671 0.292126606
0.30929494 0.290203785 0.298881935 0.419339625
0.389994258

2d MVE R 2 pow 1 knn 3 0.501889473 0.342163988 0.353021478
0.48557129 0.357940476 0.347079866 0.353361281
0.352693546 0.278482182 0.34456258 0.350627616
0 0.365287401 0.494520575 0.339374166 0.496803235
0.532033454 0.387406004 0.377500675 0.343135159
0.355364276 0.342630566 0.344812567 0.415376467
0.398496446

2d PCA 0.488701195 0.381314454 0.385407356 0.514654573
0.395055621 0.386332689 0.388034421 0.384055568
0.345593931 0.391480541 0.386192487 0.365287401
0 0.499496446 0.308119927 0.498859058 0.533686158
0.408578971 0.402843106 0.387300633 0.393122484
0.390761287 0.38032514 0.421714835 0.419402161

Prabhakar 0.521807802 0.483057401 0.50197285 0.516804985
0.478400315 0.492175069 0.473502037 0.476890438
0.481393518 0.480634089 0.480407488 0.494520575
0.499496446 0 0.489634046 0.4320807 0.539480505
0.495862021 0.491699522 0.471603939 0.477466895
0.473223855 0.476877867 0.508450763 0.4975327

2d SPE 0.490530671 0.349722565 0.374118161 0.48965819
0.359093316 0.360090857 0.359481728 0.356042535
0.333423843 0.356574024 0.352695855 0.339374166



0.308119927 0.489634046 0 0.485350132 0.529010549
0.382005305 0.376835955 0.354812862 0.354488483
0.357648292 0.349046544 0.415798623 0.391027612

Weininger0.515900596 0.481012662 0.498911832 0.497611635
0.476726113 0.481706574 0.467546257 0.482288526
0.485614487 0.481999326 0.482994891 0.496803235
0.498859058 0.4320807 0.485350132 0 0.531811959
0.481911828 0.482451904 0.473164284 0.480668831
0.472455797 0.472609061 0.497674349 0.490617

3d Centroid 0.478422992 0.520040054 0.53851896 0.515062613
0.527684371 0.541434638 0.514024982 0.523531446
0.520896856 0.5241785 0.526049914 0.532033454
0.533686158 0.539480505 0.529010549 0.531811959
0 0.547794871 0.536869229 0.510902101 0.514817961
0.515160777 0.522375432 0.504979745 0.500332951

3d Isomap knn 3 0.511689047 0.32251361 0.401731712
0.481384974 0.335252183 0.372199231 0.363033772
0.358570326 0.385874746 0.356414369 0.357410259
0.387406004 0.408578971 0.495862021 0.382005305
0.481911828 0.547794871 0 0.314889421 0.354632308
0.348373592 0.350040681 0.326446516 0.422770886
0.40267234

3d Laplacian Eigenmaps knn 30.511130136 0.321978721 0.403302545
0.483999782 0.305636537 0.36649396 0.358910958
0.352631735 0.375320943 0.354115285 0.350761671
0.377500675 0.402843106 0.491699522 0.376835955
0.482451904 0.536869229 0.314889421 0 0.345297011
0.342828314 0.345736237 0.325577557 0.421624943
0.396249839

3d MVE E covalent 0.488504634 0.283620418 0.395917283
0.449841614 0.312378743 0.363805329 0.291309425
0.291306318 0.346030902 0.282399112 0.292126606
0.343135159 0.387300633 0.471603939 0.354812862
0.473164284 0.510902101 0.354632308 0.345297011
0 0.278786695 0.062982505 0.280807416 0.399403378
0.374900179

3d MVE E knn 3 0.501088578 0.30289588 0.393374415
0.463545655 0.321750917 0.365680239 0.311596497
0.308966392 0.348914189 0.311183387 0.30929494
0.355364276 0.393122484 0.477466895 0.354488483
0.480668831 0.514817961 0.348373592 0.342828314
0.278786695 0 0.280908984 0.273267078 0.388621288
0.36003185

3d MVE R 2 pow 3 covalent 0.490956754 0.28159221 0.394182237
0.447167491 0.314060631 0.365558541 0.289507096
0.290366532 0.347204214 0.278234298 0.290203785
0.342630566 0.390761287 0.473223855 0.357648292
0.472455797 0.515160777 0.350040681 0.345736237
0.062982505 0.280908984 0 0.279500807 0.400397698
0.373790654



3d MVE R 2 pow 1 knn 3 0.493545762 0.276057175 0.392053442
0.462009664 0.300440164 0.361819427 0.307253763
0.297266446 0.348060262 0.285554203 0.298881935
0.344812567 0.38032514 0.476877867 0.349046544
0.472609061 0.522375432 0.326446516 0.325577557
0.280807416 0.273267078 0.279500807 0 0.408098123
0.372169743

3d PCA 0.52416884 0.402156969 0.43105407 0.516716131
0.421110406 0.416818391 0.410749693 0.418154633
0.405732552 0.417881759 0.419339625 0.415376467
0.421714835 0.508450763 0.415798623 0.497674349
0.504979745 0.422770886 0.421624943 0.399403378
0.388621288 0.400397698 0.408098123 0 0.323786464

3d SPE 0.522395745 0.383604759 0.421828856 0.500214114
0.398477665 0.402874735 0.385917511 0.392746408
0.393774533 0.396704183 0.389994258 0.398496446
0.419402161 0.4975327 0.391027612 0.490617 0.500332951
0.40267234 0.396249839 0.374900179 0.36003185
0.373790654 0.372169743 0.323786464 0



Distance Matrix of Canonization Algorithms based on Levenshtein Distance

2d Centroid 0 15.07111058 15.14306341 11.44555408
15.1767537 15.15016244 14.95487908 14.9951871
14.93045362 15.00553483 15.00072193 14.96739261
14.81217663 15.02911804 14.86162917 15.26386716
9.904223318 15.21333173 15.2517146 14.99735291
15.01347612 14.99843581 15.00048129 14.99254001
15.00360967

Isomap covalent 15.07111058 0 8.36866803 15.19492239
4.192034653 7.704367705 7.022740946 5.985200337
6.595475875 5.065575743 5.970280351 6.736493803
7.816508242 14.34749128 7.175069185 15.72012995
15.0749609 7.063169294 6.930212971 5.741427024
5.724581879 5.718084466 5.468655998 8.14161954
7.401395741

2d Isomap knn 3 15.14306341 8.36866803 0 15.33954999
8.514739502 6.602454578 9.403200578 8.835037902
7.938274576 8.843340152 8.787751173 7.704969318
8.337624835 14.80327277 8.199975936 15.94224522
15.1553363 8.28660811 8.537721093 8.996991938
8.787871496 8.977379377 8.77150764 9.20069787
8.941162315

Jochum Gasteiger 11.44555408 15.19492239 15.33954999
0 15.31223679 15.38154253 15.05763446 15.13548309
15.22079172 15.18529659 15.13825051 15.23017687
15.28059199 14.68583805 15.24377331 14.54782818
11.91613524 15.31319937 15.36397545 15.17386596
15.18168692 15.17663338 15.19660691 15.31753098
15.27168812

Laplacian Eigenmaps 15.1767537 4.192034653 8.514739502
15.31223679 0 7.318252918 7.434003128 6.650222597
6.865359163 5.577908796 6.642281314 7.051137047
8.049452533 14.22704849 7.210804957 15.61593069
15.20743593 7.01612321 6.086511852 6.39549994
6.121766334 6.393213813 5.869811094 8.35988449
7.323667429

2d Laplacian Eigenmaps knn 315.15016244 7.704367705 6.602454578
15.38154253 7.318252918 0 8.959090362 8.349897726
7.415232824 8.315605824 8.299723258 7.303814222
8.133437613 14.55023463 7.607869089 15.73950186
15.18132595 8.082781855 7.461316328 8.416436049
8.145951149 8.389724462 8.162315004 8.831307905
8.262062327

MVE Diffsuion Kernel 14.95487908 7.022740946 9.403200578
15.05763446 7.434003128 8.959090362 0 5.609433281
7.450126339 6.299482613 5.655035495 7.70508964
8.583202984 14.18481531 8.081337986 15.64673325
14.9657081 8.91601492 8.7568283 6.272891349
7.065816388 6.241607508 7.129106004 8.952592949



8.303573577
2d MVE E covalent 14.9951871 5.985200337 8.835037902

15.13548309 6.650222597 8.349897726 5.609433281
0 6.370954157 5.620141981 0.829142101 6.894116232
7.820719528 14.27553844 7.349416436 15.6759716
14.99205872 8.403922512 8.224642041 5.568282998
6.23583203 5.532065937 6.282396823 8.52785465
7.843701119

2d MVE E knn 3 14.93045362 6.595475875 7.938274576
15.22079172 6.865359163 7.415232824 7.450126339
6.370954157 0 6.673926122 6.387077367 4.429069907
6.534953676 14.42750572 6.222115269 15.71904705
15.00890386 8.359643846 8.109613765 6.827337264
6.548911082 6.793045362 6.705691253 8.077487667
7.471784382

MVE P r a 4 15.00553483 5.065575743 8.843340152 15.18529659
5.577908796 8.315605824 6.299482613 5.620141981
6.673926122 0 5.58693298 6.79833955 8.050655757
14.28889424 7.522079172 15.6845145 15.02827578
7.911803634 7.7295151 5.386957045 5.695223198
5.353627722 5.416556371 8.555769462 7.826134039

2d MVE R 2 pow 3 covalent 15.00072193 5.970280351 8.787751173
15.13825051 6.642281314 8.299723258 5.655035495
0.829142101 6.387077367 5.58693298 0 6.807002767
7.805438575 14.2801107 7.289736494 15.67452773
14.99627 8.374684154 8.197328841 5.574780412 6.22704849
5.513776922 6.233425581 8.508001444 7.807484057

2d MVE R 2 pow 1 knn 3 14.96739261 6.736493803 7.704969318
15.23017687 7.051137047 7.303814222 7.70508964
6.894116232 4.429069907 6.79833955 6.807002767
0 7.124172783 14.47334857 6.758753459 15.77391409
14.98147034 8.477800505 8.251594273 7.062086392
6.905185898 7.029960294 6.514739502 8.320178077
7.742750572

2d PCA 14.81217663 7.816508242 8.337624835 15.28059199
8.049452533 8.133437613 8.583202984 7.820719528
6.534953676 8.050655757 7.805438575 7.124172783
0 14.57261461 5.363253519 15.77283119 14.94068103
8.827216941 8.668150644 8.089880881 7.794368909
8.072073156 7.990374203 7.652388401 7.657201299

Prabhakar 15.02911804 14.34749128 14.80327277 14.68583805
14.22704849 14.55023463 14.18481531 14.27553844
14.42750572 14.28889424 14.2801107 14.47334857
14.57261461 0 14.44146312 12.50607628 15.04812899
14.66923355 14.48887017 14.27734328 14.3427987
14.28372037 14.38130189 14.60871135 14.43231861

2d SPE 14.86162917 7.175069185 8.199975936 15.24377331
7.210804957 7.607869089 8.081337986 7.349416436
6.222115269 7.522079172 7.289736494 6.758753459
5.363253519 14.44146312 0 15.69401997 14.97774034



8.459631813 8.186259175 7.556371074 7.173865961
7.520635303 7.365178679 7.834797257 6.816147275

Weininger15.26386716 15.72012995 15.94224522 14.54782818
15.61593069 15.73950186 15.64673325 15.6759716
15.71904705 15.6845145 15.67452773 15.77391409
15.77283119 12.50607628 15.69401997 0 15.29394778
15.84983756 15.71952834 15.71940801 15.68403321
15.72783059 15.74864637 15.72337865 15.68030321

3d Centroid 9.904223318 15.0749609 15.1553363 11.91613524
15.20743593 15.18132595 14.9657081 14.99205872
15.00890386 15.02827578 14.99627 14.98147034 14.94068103
15.04812899 14.97774034 15.29394778 0 15.20021658
15.26579232 14.99578871 14.98905066 15.00625677
15.02635062 14.82120082 14.86367465

3d Isomap knn 3 15.21333173 7.063169294 8.28660811
15.31319937 7.01612321 8.082781855 8.91601492
8.403922512 8.359643846 7.911803634 8.374684154
8.477800505 8.827216941 14.66923355 8.459631813
15.84983756 15.20021658 0 5.788112141 8.217663338
7.913969438 8.196125617 7.586451691 8.969317772
8.461316328

3d Laplacian Eigenmaps knn 315.2517146 6.930212971 8.537721093
15.36397545 6.086511852 7.461316328 8.7568283
8.224642041 8.109613765 7.7295151 8.197328841
8.251594273 8.668150644 14.48887017 8.186259175
15.71952834 15.26579232 5.788112141 0 8.009024185
7.70605222 7.983515822 7.505594995 8.830104681
8.160510167

3d MVE E covalent 14.99735291 5.741427024 8.996991938
15.17386596 6.39549994 8.416436049 6.272891349
5.568282998 6.827337264 5.386957045 5.574780412
7.062086392 8.089880881 14.27734328 7.556371074
15.71940801 14.99578871 8.217663338 8.009024185
0 4.947659728 0.524004332 5.57273493 8.074359283
7.4199254

3d MVE E knn 3 15.01347612 5.724581879 8.787871496
15.18168692 6.121766334 8.145951149 7.065816388
6.23583203 6.548911082 5.695223198 6.22704849
6.905185898 7.794368909 14.3427987 7.173865961
15.68403321 14.98905066 7.913969438 7.70605222
4.947659728 0 5.009505475 4.4365299 7.729274456
6.999157743

3d MVE R 2 pow 3 covalent 14.99843581 5.718084466 8.977379377
15.17663338 6.393213813 8.389724462 6.241607508
5.532065937 6.793045362 5.353627722 5.513776922
7.029960294 8.072073156 14.28372037 7.520635303
15.72783059 15.00625677 8.196125617 7.983515822
0.524004332 5.009505475 0 5.536517868 8.056431236
7.391288654

3d MVE R 2 pow 1 knn 3 15.00048129 5.468655998 8.77150764



15.19660691 5.869811094 8.162315004 7.129106004
6.282396823 6.705691253 5.416556371 6.233425581
6.514739502 7.990374203 14.38130189 7.365178679
15.74864637 15.02635062 7.586451691 7.505594995
5.57273493 4.4365299 5.536517868 0 8.231981711
7.454939237

3d PCA 14.99254001 8.14161954 9.20069787 15.31753098
8.35988449 8.831307905 8.952592949 8.52785465
8.077487667 8.555769462 8.508001444 8.320178077
7.652388401 14.60871135 7.834797257 15.72337865
14.82120082 8.969317772 8.830104681 8.074359283
7.729274456 8.056431236 8.231981711 0 5.890265913

3d SPE 15.00360967 7.401395741 8.941162315 15.27168812
7.323667429 8.262062327 8.303573577 7.843701119
7.471784382 7.826134039 7.807484057 7.742750572
7.657201299 14.43231861 6.816147275 15.68030321
14.86367465 8.461316328 8.160510167 7.4199254
6.999157743 7.391288654 7.454939237 5.890265913
0



Distance Matrix of Canonization Algorithms based on Damerau Levenshtein 
Distance

2d Centroid 0 15.07111058 15.14306341 11.44555408
15.1767537 15.15016244 14.95487908 14.9951871
14.93045362 15.00553483 15.00072193 14.96739261
14.81217663 15.02911804 14.86162917 15.26386716
9.904223318 15.21333173 15.2517146 14.99735291
15.01347612 14.99843581 15.00048129 14.99254001
15.00360967

Isomap covalent 15.07111058 0 8.36866803 15.19492239
4.192034653 7.704367705 7.022740946 5.985200337
6.595475875 5.065575743 5.970280351 6.736493803
7.816508242 14.34749128 7.175069185 15.72012995
15.0749609 7.063169294 6.930212971 5.741427024
5.724581879 5.718084466 5.468655998 8.14161954
7.401395741

2d Isomap knn 3 15.14306341 8.36866803 0 15.33954999
8.514739502 6.602454578 9.403200578 8.835037902
7.938274576 8.843340152 8.787751173 7.704969318
8.337624835 14.80327277 8.199975936 15.94224522
15.1553363 8.28660811 8.537721093 8.996991938
8.787871496 8.977379377 8.77150764 9.20069787
8.941162315

Jochum Gasteiger 11.44555408 15.19492239 15.33954999
0 15.31223679 15.38154253 15.05763446 15.13548309
15.22079172 15.18529659 15.13825051 15.23017687
15.28059199 14.68583805 15.24377331 14.54782818
11.91613524 15.31319937 15.36397545 15.17386596
15.18168692 15.17663338 15.19660691 15.31753098
15.27168812

Laplacian Eigenmaps 15.1767537 4.192034653 8.514739502
15.31223679 0 7.318252918 7.434003128 6.650222597
6.865359163 5.577908796 6.642281314 7.051137047
8.049452533 14.22704849 7.210804957 15.61593069
15.20743593 7.01612321 6.086511852 6.39549994
6.121766334 6.393213813 5.869811094 8.35988449
7.323667429

2d Laplacian Eigenmaps knn 315.15016244 7.704367705 6.602454578
15.38154253 7.318252918 0 8.959090362 8.349897726
7.415232824 8.315605824 8.299723258 7.303814222
8.133437613 14.55023463 7.607869089 15.73950186
15.18132595 8.082781855 7.461316328 8.416436049
8.145951149 8.389724462 8.162315004 8.831307905
8.262062327

MVE Diffsuion Kernel 14.95487908 7.022740946 9.403200578
15.05763446 7.434003128 8.959090362 0 5.609433281
7.450126339 6.299482613 5.655035495 7.70508964
8.583202984 14.18481531 8.081337986 15.64673325
14.9657081 8.91601492 8.7568283 6.272891349



7.065816388 6.241607508 7.129106004 8.952592949
8.303573577

2d MVE E covalent 14.9951871 5.985200337 8.835037902
15.13548309 6.650222597 8.349897726 5.609433281
0 6.370954157 5.620141981 0.829142101 6.894116232
7.820719528 14.27553844 7.349416436 15.6759716
14.99205872 8.403922512 8.224642041 5.568282998
6.23583203 5.532065937 6.282396823 8.52785465
7.843701119

2d MVE E knn 3 14.93045362 6.595475875 7.938274576
15.22079172 6.865359163 7.415232824 7.450126339
6.370954157 0 6.673926122 6.387077367 4.429069907
6.534953676 14.42750572 6.222115269 15.71904705
15.00890386 8.359643846 8.109613765 6.827337264
6.548911082 6.793045362 6.705691253 8.077487667
7.471784382

MVE P r a 4 15.00553483 5.065575743 8.843340152 15.18529659
5.577908796 8.315605824 6.299482613 5.620141981
6.673926122 0 5.58693298 6.79833955 8.050655757
14.28889424 7.522079172 15.6845145 15.02827578
7.911803634 7.7295151 5.386957045 5.695223198
5.353627722 5.416556371 8.555769462 7.826134039

2d MVE R 2 pow 3 covalent 15.00072193 5.970280351 8.787751173
15.13825051 6.642281314 8.299723258 5.655035495
0.829142101 6.387077367 5.58693298 0 6.807002767
7.805438575 14.2801107 7.289736494 15.67452773
14.99627 8.374684154 8.197328841 5.574780412 6.22704849
5.513776922 6.233425581 8.508001444 7.807484057

2d MVE R 2 pow 1 knn 3 14.96739261 6.736493803 7.704969318
15.23017687 7.051137047 7.303814222 7.70508964
6.894116232 4.429069907 6.79833955 6.807002767
0 7.124172783 14.47334857 6.758753459 15.77391409
14.98147034 8.477800505 8.251594273 7.062086392
6.905185898 7.029960294 6.514739502 8.320178077
7.742750572

2d PCA 14.81217663 7.816508242 8.337624835 15.28059199
8.049452533 8.133437613 8.583202984 7.820719528
6.534953676 8.050655757 7.805438575 7.124172783
0 14.57261461 5.363253519 15.77283119 14.94068103
8.827216941 8.668150644 8.089880881 7.794368909
8.072073156 7.990374203 7.652388401 7.657201299

Prabhakar 15.02911804 14.34749128 14.80327277 14.68583805
14.22704849 14.55023463 14.18481531 14.27553844
14.42750572 14.28889424 14.2801107 14.47334857
14.57261461 0 14.44146312 12.50607628 15.04812899
14.66923355 14.48887017 14.27734328 14.3427987
14.28372037 14.38130189 14.60871135 14.43231861

2d SPE 14.86162917 7.175069185 8.199975936 15.24377331
7.210804957 7.607869089 8.081337986 7.349416436
6.222115269 7.522079172 7.289736494 6.758753459



5.363253519 14.44146312 0 15.69401997 14.97774034
8.459631813 8.186259175 7.556371074 7.173865961
7.520635303 7.365178679 7.834797257 6.816147275

Weininger15.26386716 15.72012995 15.94224522 14.54782818
15.61593069 15.73950186 15.64673325 15.6759716
15.71904705 15.6845145 15.67452773 15.77391409
15.77283119 12.50607628 15.69401997 0 15.29394778
15.84983756 15.71952834 15.71940801 15.68403321
15.72783059 15.74864637 15.72337865 15.68030321

3d Centroid 9.904223318 15.0749609 15.1553363 11.91613524
15.20743593 15.18132595 14.9657081 14.99205872
15.00890386 15.02827578 14.99627 14.98147034 14.94068103
15.04812899 14.97774034 15.29394778 0 15.20021658
15.26579232 14.99578871 14.98905066 15.00625677
15.02635062 14.82120082 14.86367465

3d Isomap knn 3 15.21333173 7.063169294 8.28660811
15.31319937 7.01612321 8.082781855 8.91601492
8.403922512 8.359643846 7.911803634 8.374684154
8.477800505 8.827216941 14.66923355 8.459631813
15.84983756 15.20021658 0 5.788112141 8.217663338
7.913969438 8.196125617 7.586451691 8.969317772
8.461316328

3d Laplacian Eigenmaps knn 315.2517146 6.930212971 8.537721093
15.36397545 6.086511852 7.461316328 8.7568283
8.224642041 8.109613765 7.7295151 8.197328841
8.251594273 8.668150644 14.48887017 8.186259175
15.71952834 15.26579232 5.788112141 0 8.009024185
7.70605222 7.983515822 7.505594995 8.830104681
8.160510167

3d MVE E covalent 14.99735291 5.741427024 8.996991938
15.17386596 6.39549994 8.416436049 6.272891349
5.568282998 6.827337264 5.386957045 5.574780412
7.062086392 8.089880881 14.27734328 7.556371074
15.71940801 14.99578871 8.217663338 8.009024185
0 4.947659728 0.524004332 5.57273493 8.074359283
7.4199254

3d MVE E knn 3 15.01347612 5.724581879 8.787871496
15.18168692 6.121766334 8.145951149 7.065816388
6.23583203 6.548911082 5.695223198 6.22704849
6.905185898 7.794368909 14.3427987 7.173865961
15.68403321 14.98905066 7.913969438 7.70605222
4.947659728 0 5.009505475 4.4365299 7.729274456
6.999157743

3d MVE R 2 pow 3 covalent 14.99843581 5.718084466 8.977379377
15.17663338 6.393213813 8.389724462 6.241607508
5.532065937 6.793045362 5.353627722 5.513776922
7.029960294 8.072073156 14.28372037 7.520635303
15.72783059 15.00625677 8.196125617 7.983515822
0.524004332 5.009505475 0 5.536517868 8.056431236
7.391288654



3d MVE R 2 pow 1 knn 3 15.00048129 5.468655998 8.77150764
15.19660691 5.869811094 8.162315004 7.129106004
6.282396823 6.705691253 5.416556371 6.233425581
6.514739502 7.990374203 14.38130189 7.365178679
15.74864637 15.02635062 7.586451691 7.505594995
5.57273493 4.4365299 5.536517868 0 8.231981711
7.454939237

3d PCA 14.99254001 8.14161954 9.20069787 15.31753098
8.35988449 8.831307905 8.952592949 8.52785465
8.077487667 8.555769462 8.508001444 8.320178077
7.652388401 14.60871135 7.834797257 15.72337865
14.82120082 8.969317772 8.830104681 8.074359283
7.729274456 8.056431236 8.231981711 0 5.890265913

3d SPE 15.00360967 7.401395741 8.941162315 15.27168812
7.323667429 8.262062327 8.303573577 7.843701119
7.471784382 7.826134039 7.807484057 7.742750572
7.657201299 14.43231861 6.816147275 15.68030321
14.86367465 8.461316328 8.160510167 7.4199254
6.999157743 7.391288654 7.454939237 5.890265913
0



Distance Matrix of Screening Methods based on inverted Rank Correlation

MACCS 0 0.691787486 0.604234896 0.81633558 0.825335532
0.524528856 0.545776535 0.716839538 0.763979141
0.621370817 0.626834628 0.758220312 0.596611071
0.549738521 0.586082362 0.609575465 0.566874258
0.609301341

CATS2D_raw 0.691787486 0 0.527810006 0.717152297
0.71301454 0.704920407 0.753227192 0.770079192
0.838101571 0.695314426 0.708013029 0.658030738
0.684947671 0.676120852 0.681653649 0.724987478
0.74030281 0.763610184

CATS2D_sens 0.604234896 0.527810006 0 0.802025701
0.813246498 0.586017085 0.657385092 0.644284574
0.748130893 0.637517198 0.647883523 0.762647571
0.508850369 0.498999261 0.496792499 0.567839584
0.628762922 0.660251865

ESshape3D 0.81633558 0.717152297 0.802025701 0
0.45126512 0.798631989 0.850255382 0.854053843
0.86119084 0.767022521 0.772664169 0.385778005
0.725827117 0.742129876 0.710755251 0.771803281
0.848821186 0.862117695

ESshape3D_HYD 0.825335532 0.71301454 0.813246498
0.45126512 0 0.803605862 0.848908492 0.884103682
0.870408442 0.740194649 0.739312919 0.510523939
0.791839743 0.793789164 0.765704661 0.798810694
0.834886817 0.850504202

GpiDAPH3 0.524528856 0.704920407 0.586017085 0.798631989
0.803605862 0 0.562163742 0.708450488 0.760633679
0.579464726 0.585005577 0.749366733 0.571611393
0.521768278 0.558088067 0.575014163 0.378608491
0.440989906

LINGO 0.545776535 0.753227192 0.657385092 0.850255382
0.848908492 0.562163742 0 0.756939017 0.76533775
0.592743103 0.593401818 0.792181501 0.636293415
0.598485771 0.622629691 0.664174062 0.591468277
0.610469183

LIQUID 0.716839538 0.770079192 0.644284574 0.854053843
0.884103682 0.708450488 0.756939017 0 0.852400719
0.8011805 0.813879654 0.828564188 0.639968054
0.628385508 0.673973703 0.644158009 0.71465588
0.7353891

PRPS 0.763979141 0.838101571 0.748130893 0.86119084
0.870408442 0.760633679 0.76533775 0.852400719
0 0.769186741 0.761877445 0.848115451 0.716245886
0.729228484 0.732664089 0.767157307 0.772588217
0.79839223

PhAST_2D 0.621370817 0.695314426 0.637517198 0.767022521
0.740194649 0.579464726 0.592743103 0.8011805
0.769186741 0 0.308005447 0.735167705 0.642120383



0.608697167 0.616099789 0.663466906 0.635162206
0.651219016

PhAST_3D 0.626834628 0.708013029 0.647883523 0.772664169
0.739312919 0.585005577 0.593401818 0.813879654
0.761877445 0.308005447 0 0.745893869 0.640048008
0.614684901 0.61840541 0.669957062 0.646797904
0.661973613

SIMPLE_DESC 0.758220312 0.658030738 0.762647571
0.385778005 0.510523939 0.749366733 0.792181501
0.828564188 0.848115451 0.735167705 0.745893869
0 0.71258691 0.721853104 0.693940407 0.742437411
0.797894918 0.825367109

TAD 0.596611071 0.684947671 0.508850369 0.725827117
0.791839743 0.571611393 0.636293415 0.639968054
0.716245886 0.642120383 0.640048008 0.71258691
0 0.276732262 0.246919091 0.464929319 0.623813501
0.644651874

TAT 0.549738521 0.676120852 0.498999261 0.742129876
0.793789164 0.521768278 0.598485771 0.628385508
0.729228484 0.608697167 0.614684901 0.721853104
0.276732262 0 0.331133564 0.471311977 0.568275256
0.593722361

TGD 0.586082362 0.681653649 0.496792499 0.710755251
0.765704661 0.558088067 0.622629691 0.673973703
0.732664089 0.616099789 0.61840541 0.693940407
0.246919091 0.331133564 0 0.415864882 0.630170409
0.65368489

TGT 0.609575465 0.724987478 0.567839584 0.771803281
0.798810694 0.575014163 0.664174062 0.644158009
0.767157307 0.663466906 0.669957062 0.742437411
0.464929319 0.471311977 0.415864882 0 0.614969762
0.652180369

piDAPH3 0.566874258 0.74030281 0.628762922 0.848821186
0.834886817 0.378608491 0.591468277 0.71465588
0.772588217 0.635162206 0.646797904 0.797894918
0.623813501 0.568275256 0.630170409 0.614969762
0 0.338718486

piDAPH4 0.609301341 0.763610184 0.660251865 0.862117695
0.850504202 0.440989906 0.610469183 0.7353891
0.79839223 0.651219016 0.661973613 0.825367109
0.644651874 0.593722361 0.65368489 0.652180369
0.338718486 0



Distance Matrix of Screening Methods based on Significance (0.01)

MACCS 0 0.5838641 0.010640128 0.790030577 0.811569432
0.163569129 0.127220374 0.443175522 0.150660678
0.066407638 0.027893327 0.722048465 0.032994218
0.08631428 0.01950191 0.110819333 0.154356922
0.251801684

CATS2D_raw 0.5838641 0 0.617480655 0.521846705
0.529398508 0.653498078 0.721918757 0.029298078
0.191686759 0.610583805 0.612417706 0.140256315
0.629480539 0.686522234 0.675337269 0.518477949
0.381158711 0.372293701

CATS2D_sens 0.010640128 0.617480655 0 0.657625428
0.656375518 0.150387592 0.19588545 0.526971282
0.142119346 0.220661013 0.215237205 0.518072139
0.056287607 0.171161625 0.109878752 0.170175596
0.094799979 0.111727937

ESshape3D 0.790030577 0.521846705 0.657625428 0
0.138635168 0.785230728 0.841314612 0.533563414
0.589554053 0.883092222 0.878850764 0.631539072
0.743691863 0.802970466 0.75125772 0.718059727
0.717283001 0.616297035

ESshape3D_HYD 0.811569432 0.529398508 0.656375518
0.138635168 0 0.818500503 0.844444623 0.512442405
0.583905141 0.882895071 0.884042316 0.614352418
0.747835595 0.805892011 0.761991677 0.733352957
0.725446724 0.651993887

GpiDAPH3 0.163569129 0.653498078 0.150387592 0.785230728
0.818500503 0 0.074525561 0.512853713 0.276930409
8.66E-04 0.056036478 0.661594818 0.169238744 0.108601371
0.196269563 0.289832144 0.44853586 0.464429728

LINGO 0.127220374 0.721918757 0.19588545 0.841314612
0.844444623 0.074525561 0 0.665361409 0.269062341
0.100234157 0.073858189 0.746756514 0.272109157
0.117602705 0.226519556 0.391439674 0.18185819
0.314421884

LIQUID 0.443175522 0.029298078 0.526971282 0.533563414
0.512442405 0.512853713 0.665361409 0 0.158389413
0.57420793 0.539300877 0.225108875 0.567155145
0.690576822 0.603324937 0.498448003 0.285869984
0.245238165

PRPS 0.150660678 0.191686759 0.142119346 0.589554053
0.583905141 0.276930409 0.269062341 0.158389413
0 0.105925259 0.092664066 0.404327319 0.208341965
0.251938705 0.169450538 0.084676808 0.095371278
0.039781639

PhAST_2D 0.066407638 0.610583805 0.220661013 0.883092222
0.882895071 8.66E-04 0.100234157 0.57420793 0.105925259
0 0.13690565 0.754991296 0.132313222 0.055691443
0.147568579 0.316434124 0.151444885 0.254436578



PhAST_3D 0.027893327 0.612417706 0.215237205 0.878850764
0.884042316 0.056036478 0.073858189 0.539300877
0.092664066 0.13690565 0 0.692774034 0.149946669
0.071998586 0.17469046 0.327335398 0.108870375
0.245285266

SIMPLE_DESC 0.722048465 0.140256315 0.518072139
0.631539072 0.614352418 0.661594818 0.746756514
0.225108875 0.404327319 0.754991296 0.692774034
0 0.619272767 0.664631312 0.598881402 0.531870547
0.521349357 0.459981098

TAD 0.032994218 0.629480539 0.056287607 0.743691863
0.747835595 0.169238744 0.272109157 0.567155145
0.208341965 0.132313222 0.149946669 0.619272767
0 0.28972976 0.036647118 0.219710379 0.084167012
0.162089831

TAT 0.08631428 0.686522234 0.171161625 0.802970466
0.805892011 0.108601371 0.117602705 0.690576822
0.251938705 0.055691443 0.071998586 0.664631312
0.28972976 0 0.262943161 0.352678713 0.212732023
0.264410096

TGD 0.01950191 0.675337269 0.109878752 0.75125772
0.761991677 0.196269563 0.226519556 0.603324937
0.169450538 0.147568579 0.17469046 0.598881402
0.036647118 0.262943161 0 0.290615754 0.058684846
0.189966805

TGT 0.110819333 0.518477949 0.170175596 0.718059727
0.733352957 0.289832144 0.391439674 0.498448003
0.084676808 0.316434124 0.327335398 0.531870547
0.219710379 0.352678713 0.290615754 0 0.014665438
0.035279019

piDAPH3 0.154356922 0.381158711 0.094799979 0.717283001
0.725446724 0.44853586 0.18185819 0.285869984
0.095371278 0.151444885 0.108870375 0.521349357
0.084167012 0.212732023 0.058684846 0.014665438
0 0.041746778

piDAPH4 0.251801684 0.372293701 0.111727937 0.616297035
0.651993887 0.464429728 0.314421884 0.245238165
0.039781639 0.254436578 0.245285266 0.459981098
0.162089831 0.264410096 0.189966805 0.035279019
0.041746778 0



Distance Matrix of Screening Methods based on Significance (0.05)

MACCS 0 0.58122645 0.034658251 0.791172755 0.809738037
0.1708456 0.109176271 0.445693149 0.146374522
0.048483634 0.020804981 0.720631868 0.027922818
0.093327197 0.025623974 0.120515872 0.154447319
0.255419391

CATS2D_raw 0.58122645 0 0.639036612 0.527416382
0.52982844 0.64879737 0.731433048 0.046705853
0.202057622 0.616744663 0.612708867 0.133947825
0.625414384 0.668634378 0.680928446 0.528387647
0.375176152 0.363295715

CATS2D_sens 0.034658251 0.639036612 0 0.680729989
0.659787395 0.130285253 0.189451626 0.532436083
0.162200186 0.226751997 0.205458564 0.539399969
0.071499172 0.177012329 0.104099696 0.168219112
0.098714478 0.138340815

ESshape3D 0.791172755 0.527416382 0.680729989 0
0.095913596 0.787681709 0.837646512 0.536578765
0.60649768 0.884970461 0.88477488 0.650745311
0.739214524 0.798220161 0.752977706 0.716954015
0.717025003 0.62430756

ESshape3D_HYD 0.809738037 0.52982844 0.659787395
0.095913596 0 0.821872131 0.851525885 0.534540988
0.585245821 0.88511462 0.886604704 0.607094388
0.751928316 0.803261278 0.760766187 0.735392753
0.715668083 0.638077763

GpiDAPH3 0.1708456 0.64879737 0.130285253 0.787681709
0.821872131 0 0.06085882 0.521340538 0.280358782
0.005497824 0.046232877 0.667786833 0.159663438
0.110424394 0.188261854 0.297306394 0.440678522
0.464001878

LINGO 0.109176271 0.731433048 0.189451626 0.837646512
0.851525885 0.06085882 0 0.667923798 0.267230947
0.105021725 0.075954731 0.74392116 0.254850787
0.127768459 0.197411349 0.396806749 0.205808137
0.326512489

LIQUID 0.445693149 0.046705853 0.532436083 0.536578765
0.534540988 0.521340538 0.667923798 0 0.179335685
0.574634082 0.542629441 0.238201112 0.56510222
0.695811722 0.605281422 0.501282071 0.289546454
0.250251534

PRPS 0.146374522 0.202057622 0.162200186 0.60649768
0.585245821 0.280358782 0.267230947 0.179335685
0 0.109107233 0.08172248 0.403253486 0.216998641
0.258094253 0.172507423 0.063859175 0.113380444
0.027391746

PhAST_2D 0.048483634 0.616744663 0.226751997 0.884970461
0.88511462 0.005497824 0.105021725 0.574634082
0.109107233 0 0.13188391 0.764139165 0.126674467



0.061893835 0.124167058 0.31962978 0.14248208
0.242564764

PhAST_3D 0.020804981 0.612708867 0.205458564 0.88477488
0.886604704 0.046232877 0.075954731 0.542629441
0.08172248 0.13188391 0 0.687335799 0.139842007
0.087425562 0.175345228 0.336621241 0.088492255
0.233133401

SIMPLE 0.720631868 0.133947825 0.539399969 0.650745311
0.607094388 0.667786833 0.74392116 0.238201112
0.403253486 0.764139165 0.687335799 0 0.615481904
0.672920113 0.605203573 0.535570048 0.511031458
0.459238505

TAD 0.027922818 0.625414384 0.071499172 0.739214524
0.751928316 0.159663438 0.254850787 0.56510222
0.216998641 0.126674467 0.139842007 0.615481904
0 0.300333985 0.043709142 0.253342771 0.086677722
0.169737714

TAT 0.093327197 0.668634378 0.177012329 0.798220161
0.803261278 0.110424394 0.127768459 0.695811722
0.258094253 0.061893835 0.087425562 0.672920113
0.300333985 0 0.274446302 0.347312603 0.21438495
0.262665317

TGD 0.025623974 0.680928446 0.104099696 0.752977706
0.760766187 0.188261854 0.197411349 0.605281422
0.172507423 0.124167058 0.175345228 0.605203573
0.043709142 0.274446302 0 0.294093956 0.068430324
0.191973438

TGT 0.120515872 0.528387647 0.168219112 0.716954015
0.735392753 0.297306394 0.396806749 0.501282071
0.063859175 0.31962978 0.336621241 0.535570048
0.253342771 0.347312603 0.294093956 0 0.009482217
0.039568479

piDAPH3 0.154447319 0.375176152 0.098714478 0.717025003
0.715668083 0.440678522 0.205808137 0.289546454
0.113380444 0.14248208 0.088492255 0.511031458
0.086677722 0.21438495 0.068430324 0.009482217
0 0.030590502

piDAPH4 0.255419391 0.363295715 0.138340815 0.62430756
0.638077763 0.464001878 0.326512489 0.250251534
0.027391746 0.242564764 0.233133401 0.459238505
0.169737714 0.262665317 0.191973438 0.039568479
0.030590502 0
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ABSTRACT 
 
The text-based similarity searching method PhAST is grounded on pairwise comparisons of 
potential pharmacophoric points between a query and screening compounds. The underlying 
scoring matrix is of critical importance for successful virtual screening and hit retrieval from 
large compound libraries. Here, we compare three conceptually different computational 
methods for systematic deduction of scoring matrices: assignment-based, alignment-based, 
and stochastic optimization. All three methods resulted in optimized pharmacophore scoring 
matrices with significantly superior retrospective performance in comparison to simplistic 
scoring schemes. Computer-generated similarity matrices of pharmacophoric features turned 
out to agree well with a manually constructed matrix. We introduce the concept of position-
specific scoring to text-based similarity searching so that knowledge about specific ligand-
receptor binding patterns can be included, and demonstrate its benefit for hit retrieval. The 
approach was also used for automated pharmacophore elucidation in agonists of peroxisome 
proliferator activated receptor (PPAR) gamma, successfully identifying key interactions for 
receptor activation. 
 
 
KEYWORDS 
 
Global alignment, Virtual screening, Similarity, Pharmacophore elucidation, Line notation 
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INTRODUCTION 
 
The Pharmacophore Alignment Search Tool (PhAST) is a string-based approach to virtual 
screening utilizing topological molecule information.1-3 It reduces each molecule to an 
unambiguous linear representation by describing its potential pharmacophore in three steps: i) 
each non-hydrogen atom of the molecular graph is replaced by a potential pharmacophoric 
point (PPP) symbol, and hydrogen atoms are removed, ii) vertices of this ‘pharmacophore 
graph’ are canonically labeled, and iii) vertex symbols are concatenated into a string in 
increasing order according to their canonic labels. For virtual screening, both the screening 
compound collection (compound ‘library’) and the query molecule(s) are converted as 
described, and the resulting ‘PhAST-sequences’ are compared using pairwise global sequence 
alignment4. Molecular similarity is calculated as the ratio of the alignment score and the 
alignment length for the purpose of retrieving pharmacophorically similar molecules from 
compound libraries. 

Previously, we analyzed the impact of structure canonization algorithms, 1-3 sequence 
alignment evaluation,1,2 and the dimensionality of molecular representation3 on the virtual 
screening performance of PhAST. Here, we investigate the effect of the PPP scoring system 
for matches and mismatches in the alignment on virtual screening performance. For this 
purpose we adapted methods that are related to the approach used for score calculations in the 
Point-Accepted-Mutation (PAM) matrix5 and BLOcks SUbstitution Matrix (BLOSUM)6 used 
for protein sequence alignments. Scores for matches and mismatches are determined from i) 
kernel-based assignments of potential pharmacophoric points7 as well as from ii) global 
pairwise sequence alignments,4 both created from bioactive reference ligands. As reference 
datasets we employed a dataset collected by Krier & Hutter8 for the construction of a score 
matrix. In addition to systematic determination of scores from reference alignments we 
performed stochastic optimization of match- and mismatch-scores. The overall aim was to 
quantify the influence of PPP scoring on similarity searching with PhAST.  
 A second aim was to assess the usefulness and effect of position-specific scoring. 
PhAST employs a general score matrix for matches and mismatches of PPPs. However, 
sequence alignment allows for using a position-specific scoring matrix9 that scores the same 
matches and mismatches differently depending on PPP symbol positions. For protein 
sequences, it is common practice to use explicit position-specific scoring matrices with a 
specific set of match- and mismatch-scores for each residue position.9,10 In analogy, we have 
implemented a weighting scheme based on an implicit definition of a position-specific score 
matrix: Here, positional specificity is achieved through a weighting factor associated with a 
particular position of the query sequence. This way it is possible to incorporate knowledge 
about the relative importance of pharmacophoric features into a PhAST similarity search. A 
weighting factor > 1 increases the influence of this position on alignment generation and the 
alignment score used for similarity assessment, potentially resulting in better contrasting 
between compounds with and without this particular feature.  
 We compared the different score matrices and the effects of positional weighting of 
PhAST-sequences by retrospective virtual screening of a collection of drugs and lead 
compounds (COBRA).11 For statistical evaluation we used the Boltzmann-enhanced 
discrimination of receiver operating characteristic (BEDROC)12 in combination with a paired 
permutation test for significance assessment.13 
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METHODS 
 
Sequence Alignment 
 
Sequence alignment is used in bioinformatics to estimate the phylogenetic relationship 
between two sequences (DNA, RNA, amino acid sequences). To create the alignment of two 
sequences X = x1x2…xn and Y = y1y2…ym, their symbols are matched. Thereby the symbol 
order is retained and gaps may be inserted to improve the matching (insertion of paired gaps 
is forbidden). Three cases exist: (i) xi is aligned to yj and xi  = yj (match), (ii) xi is aligned to yj 
and xi ! yj (mismatch), (iii) xi is aligned to a gap in Y, or yj is aligned to a gap in X. In protein 
sequence alignment, matches represent ‘conserved’ residues. Mismatches may arise from 
mutations, and gaps from insertions or deletions in an assumed evolutionary process of the 
compared sequences. Consequently, matches are rewarded with a positive score, mismatches 
are -- depending on the specific case -- either rewarded with a positive score or penalized by a 
negative score contribution, and gaps are always penalized by a negative score. The optimal 
alignment is the one with the highest score (summed over the whole alignment). It can be 
computed using dynamic programming14. Instead of the original Needleman-Wunsch 
algorithm14 we employed a faster method described by Durbin et al..4 It can be derived from a 
simple finite state machine and therefore will be referred to as ‘FSM algorithm’. We 
previously demonstrated that it runs 60% faster than the Needleman-Wunsch algorithm and 
the calculated alignments are nearly identical.2 
 
Alignment Evaluation 
Sequence alignments are used for similarity assessment between PhAST-sequences. In a 
previous study,2 we identified the alignment score normalized to the alignment length to be 
the best performing alignment evaluation method for our purpose so far. In the present work 
we only considered this evaluation method for comparison of PhAST screening performance. 
 
 
Matrix Calculation 
 
The main focus of this study lies on the systematic construction and evaluation of scoring 
schemes for PPPs using a set of bioactive reference compounds. The pharmacophore model 
employed in PhAST is presented in Table 1 and Table 2, the current scoring scheme is given 
in Table 3. 
 
Dataset 
We used a dataset of reference compounds compiled by Krier & Hutter for score calculation.8 
This set was used for the construction of a score matrix. It contains molecules of 33 
therapeutic classes. For evaluation of new scoring schemes, we performed retrospective 
screenings using the COBRA collection of drugs and lead compounds11 (version 6.1, 8311 
bioactive compounds; see Table 4 for a list of the selected targets). We removed duplicates 
and eliminated overlap between the Krier dataset and our COBRA library, resulting in a total 
of 1268 compounds for the Krier dataset distributed among compound classes as shown in 
Table 5. Both datasets are fairly similar with respect to their PPP composition (Table 6). 
 
Methodology 
PAM5 and BLOSUM6 matrices used in protein sequence alignment had been constructed 
based on the idea that scores should reflect the frequency of point mutations in proteins: 
Frequent events should receive low scores, and rare events should contribute to the overall 
alignment score by high score values. For this purpose, multiple sequence alignments of 
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closely related protein sequences were constructed, and the numbers of symbol occurrences in 
gap-free regions used for the calculations of log-odds scores. We adopted this idea by using 
PhAST-sequences generated from compounds of the same activity class (instead of closely 
related protein sequences) and pairwise vertex assignments and symbol alignments (instead of 
a multiple sequence alignment). The usage of multiple sequence alignments for estimation of 
symbol alignment frequencies was not possible, as each PhAST-sequence would have to be 
aligned in its original and inverted orientation. This is due to the PhAST canonization 
algorithm which employs minimum volume embedding, where small modifications to the 
molecular graph can invert the one-dimensional coordinate system. For a dataset with n 
molecules we would have to create 2n multiple sequence alignments in each iteration, which 
is practically not feasible. Scores of matches and mismatches were calculated according to 
Eq. (1): 
 

s( pi, p j ) ! round c * logb

h( pi ,p j )

hpi
* hp j

"#

$#
%#%#

&#

'#
(#(# ,     (1) 

 
where c  is constant, b the logarithm base, hpi

the relative frequency of PPP type i , 

hp j
the relative frequency of PPP type j   and h( pi ,p j )the relative frequency of the event of 

alignment or assignment of PPPs of type i  and type j . We used c  = 10 and b = 10, as these 

settings yield scores in a range that are comparable to our original score matrix. As default 
frequency for assignment / alignment types not observed we used a value of 10-5 to avoid 
calculating log(0) . 

Meaningful assignments or matches and mismatches in alignments between molecules 
from the same activity class are only obtained if reference compounds have the same binding 
mode at the same biological target. For both datasets used in this study the target binding 
modes of most of the compounds are unknown. In studies specifically investigating 
bioisosteric replacement the related problem of identifying related compound pairs is tackled 
by computing a similarity measure between compounds in combination with a threshold t :16 
Compound pairs exhibiting a similarity > t  are treated as if they had the same binding mode 
and it is assumed that structural differences are caused by the exchange of bioisosters. We 
adopted this idea and used MACCS keys17 and the Tanimoto coefficient18 as similarity index: 
Only compound pairs with Tanimoto similarity < 0.98 were included in the process of score 
calculation to exclude identical molecules and trivial analogues. For t  as lower bound we 
used 0, 0.5, 0.75, and 0.90. For each compound class presented in Table 5, we included each 
unique pair of non-identical compounds exactly once. 
 
Assignment-based matrices 
The iterative similarity optimal assignment (ISOA) kernel7 generates assignments between 
two labeled graphs A  and B, assigning each vertex of the smaller structure to exactly one 
vertex of the larger one. In a first step, ISOAK computes a similarity value for each vertex 

pair vi

A ,v j

B) *. The similarity of two vertices is influenced by two components. The first 

component compares the isolated vertices based on their labels. For this purpose ISOAK uses 
the Dirac kernel that returns ‘1’ if two vertices have identical labels and ‘0’ otherwise. The 
second component of vertex similarity considers the environment of each vertex for similarity 
assessment and returns high similarity values if these neighborhoods are similar. Recursive 
measurement incorporates vertex similarities of neighboring vertices as well as a comparison 
of the connecting edges. For edge comparison, a Dirac kernel based on the bond order labels 
is applied. The recursive nature of the given vertex similarity definition is expressed by an 
iterative computation, where vertex similarities of pairs of neighboring vertices incorporated 
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in the actual calculation of iteration i  are taken from results of the previous iteration i +1. In 
iteration 0, only direct vertex comparisons are employed and the neighborhood is ignored. 
The final similarity of two vertices is expressed as a weighted sum of the two components, 
where the influence of each component is controlled by parameter 0 , - ,1. Component 1 
(vertex label) is weighted by 1+- , whereas component 2 (neighborhood) is weighted by - . 
As a result, high -  increase the influence of the topological graph neighborhood on vertex 
comparison. 

We applied the ISOA kernel to graphs of PPPs created from reference compounds. We 
used the ISOA kernel with settings for - : 0.25 (high influence of vertex label), 0.5 (equal 
influence), and 0.75 (high influence of vertex neighborhood). Background frequencies of 
PPPs necessary for the calculation of log-odds scores were determined from all PPPs involved 
in assignments, and unassigned vertices were ignored. Combining three settings for -  with 
four different thresholds for minimum similarity of molecules, we calculated 12 different 
score matrices based on symbol and assignment frequencies following Eq. 1. 

Gap penalties were optimized using grid-search, as it is difficult to choose them by 
intuition.19 For each score matrix based on ISOAK assignments each penalty combination 
starting from gap open penalty = -2 and gap extension penalty = -1 up to gap open penalty = -
28 and gap extension penalty = -27 with the gap extension penalty lower than the gap open 
penalty was evaluated in a series of retrospective screenings (cf. Screening Protocol 1). Gap 
penalties exceeding -28 seem unreasonable as no mismatch penalty exceeds this value. 
 
Alignment-based matrices 
BLOSUM matrices used for scoring matches and mismatches in protein sequence alignments 
are constructed in an iterative process:6 First, scores are estimated from symbol- and symbol 
alignment-frequencies in gap-free blocks of multiple sequence alignments of closely related 
protein sequences. These scores are then used to recalculate the multiple sequence alignments, 
yielding altered frequencies and new scores. This process is iterated three times. We adopted 
this BLOSUM concept for the construction of score matrices for PPPS in PhAST: Based on 
all pairwise alignments within each compound class fulfilling the similarity constraints we 
determined background frequencies of symbols and alignment events, yielding a first matrix 
of log-odds scores calculated according to Eq. 1 (gapped regions were excluded). Using this 
score matrix, the same sequences were re-aligned, resulting in new frequencies and a new 
score matrix. We iterated this process until convergence: When the actual matrix was 
identical to any of the matrices generated in previous iterations, the process was terminated. 

We performed the iterative construction of score matrices with fixed gap open penalty 
= 5 and gap extension penalty = 1. We chose this combination because of its good 
performance with our original score matrix.1,2 Using variable gap penalties as additional free 
parameters is unnecessary because in this approach scores are adapted to the penalty 
combination. For the initial start scoring scheme we used a primitive match = +2 mismatch = 
-1 system and our original score matrix (Table 3). Combining these two basic scoring systems 
with four different similarity thresholds for pair filtering resulted in a total of eight alignment-
based scoring matrices.  
 
Stochastic Optimization 
As an alternative approach to deducing alignment scores from reference alignments we 
optimized score matrices in a multi-start stochastic optimization: 50 score matrices were 
randomly initialized with uniformly distributed scores in [+20,20]. All matrices were 
evaluated on the Krier dataset as training data, results were evaluated using the BEDROC 
metric.12 The matrix with highest averaged performance served as template for the generation 
of 49 new score matrices. With probability 0.1 scores were modified by adding a uniformly 
distributed number from in the interval [+10,10]. A fiftieth score matrix was again built 
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randomly with uniformly distributed scores. The template matrix was not part of the next 
cycle. This procedure was repeated for 100 iterations. The best performing matrix of each 
generation was evaluated in a set of virtual screenings on the COBRA library as test data (see 
Screening Protocol 1). We performed three independent optimization runs. 

We chose targets with IDs 5, 6, 10, 13, 17, 23, 24, 29 and 31 from the Krier dataset 
(Table 5) for matrix evaluation by retrospective screening. This choice was guided by 
recommendations by Truchon and Bayly,12 who suggest ratios of actives to decoys that avoid 
saturation effects in retrospective evaluation. BEDROC is mainly influenced by the early part 
of a ranked list. If the ratio between active and inactive compounds exceeds a certain 
threshold, and actives ‘saturate’ the early ranks, and BEDROC values become meaningless. 
We chose targets so that the saturation effect remained below 20%, calculated as described by 
Truchon and Bayly.12 Sequence alignments were computed with fixed gap open penalty of 5 
and gap extension penalty of 1, as these values yielded good results with the original score 
matrix (Table 3). 
 
 
Screening Protocol 1 
 
All score matrices were evaluated in a series of retrospective screenings. For each target 
(Table 4) each active was used once as query, resulting in 689 screenings. Each screening was 
evaluated with the (BEDROC) metric.12 BEDROC scores were calculated with .  = 20, the 
suggested default value for evaluation.12 We first evaluated screening performance for each 
target by averaging the corresponding BEDROC scores. Total retrospective performance was 
expressed as the mean of these averages. We used the mean of averages to give equal weight 
to each target although the COBRA library contains unequal numbers of actives for different 
targets. Best performing matrices from all three approaches presented in this study were 
compared to the basic +2 (match) -1 (mismatch) scoring scheme in combination with gap 
open penalty = 5 and gap extension penalty = 1 (baseline total averaged BEDROC = 0.28) 
 
 
Significance Assessment 
 
We compared the retrospective performance of PhAST with each new scoring matrix to the 
result obtained with the original matrix (Table 3). To assess whether differences in screening 
performance are statistically significant we used a paired permutation test13 that was recently 
found to be the most powerful available significance test for this purpose.20 It has the null 
hypothesis that virtual screening method P performs significantly better than method Q. 
Assuming p and q are rank lists of actives resulting from the virtual screening methods, the 
null hypothesis requires that BEDROC(p) > BEDROC(q). As each active has two ranks, one 
in p and one in q, new rank lists p* and q* can be created by swapping ranks in p with 
corresponding ranks in q for each active with a probability of 50%. This was repeated 10,000 
times and the frequency of the event that (BEDROC(p) – BEDROC(q)) < (BEDROC(p*) – 
BEDROC(q*)) is the type I error rate for the null hypothesis, which was used as p-value for 
significance estimation. As significance levels we used 0.05 (5%) and 0.01 (1%). 

As we performed the paired permutation test with 104 permutations, the lowest 
measurable p-value equals 10-4 and results if only for one out of 104 permutations 
(BEDROC(p) – BEDROC(q)) < (BEDROC(p*) – BEDROC(q*)).  
 
 
Weighted PhAST 
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The flexible scoring system of PhAST allows for incorporation of a priori knowledge about 
important PPPs into the alignment process. The idea is similar to the construction of a 
position-specific score matrix,9,10 but with our approach it is constructed implicitly. Utilizing 
a general score matrix, the alignment of symbol xi from PhAST-sequence X  (query 

compound) and symbol y j  from PhAST-sequence Y  (library compound) is scored with score 

s(xi, y j ). If a weighting factor wi is applied to symbol xi the score wi * s(xi,y j ) is computed 

instead. The unweighted version of PhAST is identical to the application of weight 1 to every 
position of . We applied weighted PhAST to four peroxisome proliferator activated 

receptor gamma (PPAR-*#agonists (Figure 1). For these molecules it is known that a negative 
charge in the carboxyl group is critical for receptor activation.21 We used weights 1, 2, 3, 4, 5, 
10, 15, and 20, where a weight value of 1 corresponds to ‘no weighting’, in combination with 
the original PhAST scoring matrix (Table 3).1 

As an alternative, using explicit of match- and mismatch-scores for each position in a 
query sequence would be possible with a position-specific scoring matrix. We chose implicit 
weighting factors as our aim was the extension of PhAST to position-specificity in a simple 
way. For explicit position-specific scores, each match- and mismatch-score has to be 
determined, which is a more complex problem and might be not as intuitive as our simplistic 
approach. 
 
 
Pharmacophore Elucidation 
 
Given sets of active and inactive compounds for a certain target, the idea of weighted PhAST 
can be used for automated pharmacophore elucidation through interaction profiling for a 
particular query structure. For this purpose we applied weights from the interval [+20,20] to 
each position of a query PhAST-sequence and performed retrospective screening using the 
dataset of known actives and inactives. If retrospective performance increases with a specific 
weight at a particular position, then the increase in performance indicates relative greater 
importance of this particular pharmacophoric feature. Positive weights identify important 
potential pharmacophoric points. Negative weights indicate variable positions in PhAST-
sequences for which mismatches are tolerated. Applying the paired permutation test to ranked 
lists received from weighted and unweighted screenings allows for the identification of 
features responsible for significant differences. As example we used actives and decoys for 

PPAR- available in the COBRA dataset, as we know that for the four PPAR- agonists 
depicted in Figure 1 the only negative charge present in these molecules should be identified 
as the most important feature. 
 
 
Screening Protocol 2 
 
Effects of weighted features on retrospective performance were evaluated by retrospective 

screenings using the COBRA library. As the PPAR- agonists used as queries with weighted 
features were taken from this dataset, the query molecule was removed from the screening 
library. We performed exactly one screening for each combination of a query and a weighting 

scheme. The resulting ranked lists were evaluated using the BEDROC metric (.#= 20).12 
Significance of improvements was assessed by computing p-values in a paired permutation 
test.13 
 
 
Library Preparation 

Page 8 of 38

John Wiley & Sons, Inc.

Journal of Computational Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Hähnke et al. 9!

 
All molecules were protonated using the ‘wash’ function of MOE (Molecular Operating 
environment, version 2010.06, Chemical Computing Group Inc., Montreal, Canada). For 
similarity assessment between molecules we calculated MACCS keys17 and the Tanimoto 
coefficient18 as implemented in MOE. 
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RESULTS AND DISCUSSION 
 
Score Matrices 
 
We deduced log-odds scores for the alignment of symbols representing potential 
pharmacophoric points (PPPs) from symbol frequencies observed in a reference set of 
compounds. Observed exchange frequencies of PPPs were estimated from pairwise kernel-
based assignments of graphs of potential pharmacophoric points as well as pairwise global 
sequence alignments. 
 
Assignment-based scoring  
For each matrix created based on pairwise assignments of vertices between graphs of 
potential pharmacophoric points attained using the ISOA kernel we performed a grid-search 
for best performing gap penalties (Table 7). For all subsequent calculations, scoring matrices 
were only used in combination with the best performing set of gap penalties. 

For all three values of - , best retrospective performance was observed with a 
similarity threshold of 0.9 for the molecule pairs used as reference. Differences in averaged 
retrospective performance were marginal, but highest performance (BEDROC = 0.35) was 
observed with the matrix calculated from ISOA kernel assignments generated with -  = 0.75 
and similarity threshold = 0.9, in combination with gap open penalty = 9 and gap extension 
penalty = 1. This score matrix is presented in Table 8. The superiority of the original PhAST 
score matrix with average retrospective performance of 0.40 is significant: We calculated the 
percentage of screenings per target in which PhAST with the original score matrix 
outperforms PhAST with the best performing ISOA kernel score matrix and vice versa (Table 
9). On all targets and both significance levels PhAST with the original score matrix 
performed significantly and exclusively better to a higher percentage, with values above 50% 
for COX2, DHFR, FXA, and THR. Averaged over all targets this superiority manifests in a 
total of 67% (65%) for all screenings at 0.05 (0.01) significance level. Notably, the best 
performing ISOA kernel score matrix performs significantly better than simple scoring 
(averaged BEDROC = 0.28) on both significance levels in more than 50% of all screenings 

with only three exceptions: COX2 at 0.05 and 0.01, and PPAR- at 0.01 (Table 9). 
Score matrices created with different parameterizations of the ISOA kernel and 

similarity thresholds are not only similar judged from their retrospective performance but 
from the actual scores as well. The averaged absolute difference per score between the 
original PhAST score matrix and the best performing ISOA kernel score matrix was 9.02, 
which is even smaller than the highest averaged difference within the ISOA kernel matrices 
(9.69 between matrices calculated with  = 0.5 (0.75) and similarity threshold 0.9 (0)) (see 
also the complete dissimilarity matrix in supplemental Table S1). For each kernel matrix, the 
remaining matrices calculated with the same similarity threshold are most similar, indicating 
that changing this parameter has a greater overall effect than kernel parameterization. The 
good agreement of matches between the original PhAST score matrix and the best performing 
ISOA kernel score matrix is reflected in a mean difference of match scores of 4.78 and 10.08 
for mismatch scores. Taking relations of match scores into account both matrices agree as 
well: In both matrices the most frequent symbols (R, L, O) have the lowest scores for 
matches. On the other hand, rarely occurring symbols (P, N, E, Q) correspond to high match 
scores. Divergences are bigger for mismatch scores, with the maximum difference of 24 for 
the mismatch (A,Q) and (L,Q). 
 
Alignment-based scoring  
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Figure 2 presents the development of retrospective performance for scoring matrices created 
through iterated alignment and determination of symbol- and symbol-alignment frequencies 
necessary for calculation of log-odds scores (see also supplemental Table S2 and Table S3). 

At no point during this process a matrix was created with better retrospective 
performance than the original PhAST score matrix. Iteration processes starting from the 
original PhAST score matrix lost retrospective performance in each step. Although processes 
starting from the +2 (match) -1 (mismatch) scoring scheme yielded matrices with a slightly 
increased retrospective performance after the first step, after convergence the final matrices 
were always inferior. Irrespective of the starting conditions, all final matrices showed an 
averaged retrospective performance between BEDROC = 0.33 and 0.35 compared to 
BEDROC = 0.40 of the original PhAST scoring matrix. The best performing (converged) 
matrix created in this approach (starting from +2/-1 scoring and a similarity threshold of 0.9) 
with averaged retrospective performance of BEDROC = 0.34 is presented in Table 10. The 
superiority of the original PhAST score matrix is significant (Table 11): On five out of six 
targets (with exception of ACE) and on both significance levels PhAST with the original 
score matrix performed significantly better to a higher percentage, with values above 50% for 
COX2, DHFR, FXA and THR, with the opposite being true only for ACE at 0.01 significance 
level. Averaged over all targets this superiority manifests in 69% (66%) of all screenings at 
0.05 (0.01) significance level. Still, the best performing iterated alignment score matrix 
performs significantly better than simple scoring (averaged BEDROC = 0.28): Except for 
COX2, simple scoring was significantly outperformed on each target in more than 50% of all 

screenings at the 0.05 significance level, and at 0.01 except for COX2 and PPAR-. 
The mean averaged absolute score difference between all matrices created through 

iterated alignment is 6.34, indicating that these matrices diverge more from each other than 
the matrices created using ISOAK assignments (see the full dissimilariy matrix in 
supplemental Table S4). The averaged difference per score between the original PhAST score 
matrix and the best performing matrix created in our iterated approach was 13.8, i.e. greater 
than the largest distance between any pair of these matrices. As for the ISOAK matrices, 
agreement between both matrices is best for match scores with an averaged match score 
difference of 4.4 compared to 16.2 for mismatch scores. The relation of match scores agrees 
also: Matches of L, R, and O get lowest scores, and matches between P, N, E, and Q receive 
high scores. Scores for mismatches concur less well, with the highest difference of 37 for the 
(A, L) mismatch. 

Summarizing, both of our systematic approaches to generating scoring matrices for 
PPPs from a set of reference compounds yielded matrices that perform significantly better 
than simple +2/-1 scoring. Still, none of the resulting matrices exhibited better averaged 
retrospective performance than the original PhAST score matrix (Table 3). The best 
performing matrices from both approaches agree well with an averaged difference per score 
of 5.44. In both approaches highest performance resulted from using only closely related 
molecule pairs from the collection of reference compounds, indicating that the quality of the 
reference set has an influence on matrix properties. As none of the used datasets was built 
explicitly to contain only examples of observed bioisosterisms, this might present a possibility 
to further increase the quality of systematically constructed scoring matrices for molecular 
similarity assessment. 
 
Stochastically optimized scoring 
We performed stochastic optimization of match and mismatch scores using the averaged 
retrospective performance on nine targets from the Krier dataset as evaluation function. The 
best performing matrix from each generation was evaluated in a set of retrospective 
screenings on the COBRA library as test dataset. Results for three independent optimization 
runs are presented in Figure 3. For all three optimizations, retrospective performance steadily 
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increases on the training dataset. Retrospective performance on the test dataset increases 
overall as well. For both datasets the increase flattens after 20 generations. At no time the 
performance on the test dataset decreases strongly, suggesting that the optimization does not 
greatly suffer from overfitting to the training data. The matrix with the highest retrospective 
performance was created in run no. two in generation 85 yielding an averaged BEDROC of 
0.38. Still, we chose the final matrix based on retrospective performance on the training 
dataset for further experiments; for all optimization runs this was the best performing matrix 
from the last optimization cycle (averaged BEDROC: 0.37) (Table 12). 

Retrospective performance of the best stochastic scoring matrix was inferior to the 
original PhAST score matrix (averaged BEDROC = 0.40). This difference is significant 
(Table 13): For three targets (COX2, DHFR, THR) the best stochastic scoring matrix is 
outperformed in more than 50% of all screenings at both significance levels with the opposite 
being true only in one case (FXA). Averaged over all targets, this superiority manifests in 
53% (51%) of all screenings at 0.05 (0.01) significance level, whereas the best stochastic 
scoring matrix performs significantly better only in 35% (32%) of all screenings. On the other 
hand, the best performing stochastic scoring matrix outperforms simple +2/-1 scoring in 84% 
(81%) of all screenings at the 0.05 (0.01) significance level. Its averaged retrospective 
performance (BEDROC = 0.37) is statistically significantly better compared to the best 
ISOAK score matrix (BEDROC = 0. 35) and iterated alignment score matrix (BEDROC = 
0.34). 

Compared to the matrices created using the ISOA kernel and iterated alignment, 
matrices resulting from stochastic optimization are more diverse: the top-performing matrix in 
the last cycle of run no. two has an averaged per-score difference to that of the first (third) run 
of 16.9 (10.4). The top-performing matrices from the last optimization cycle of the first and 
second run diverge by 15.2. The best-performing stochastic score matrix diverges from the 
original PhAST score matrix to an even higher degree, as the averaged per-score difference 
between those two matrices is 16.8. This value is mainly influenced by scores for matches, for 
which alone the averaged difference is 30.8. With 13.4 the averaged difference for 
mismatches is comparatively small. But even with the high divergence of match scores 
relations between them agree fairly well: Matches for L, O, and R received the lowest score 
(only the score for an (A,A) match is lower); and P, N, E, and Q are scored higher. 
 Summarizing, these results demonstrate that stochastic optimization yielded score 
matrices that significantly outperform simple scoring and the score matrices attained using the 
presented systematic approaches for score calculation. But even the best matrix resulting from 
this approach is inferior to the original PhAST score matrix. 

Despite the fact that retrospective performance differs significantly between matrices, 
and scores for matches and mismatches differ highly in some cases, all matrices seem to 
describe connatural relationships between PPPs. We brought scores for matches and 
mismatches in sequential order for each of the four matrices (row-to-row concatenation in the 
order given in this publication) and calculated Pearson’s correlation coefficient (Table 14). 
Similarity of score relations is highest between the best performing ISOA kernel and iterated 
alignment matrices with a correlation of r = 0.9. The matrix with most dissimilar relations to 
all other matrices is the original PhAST score matrix. With an averaged correlation coefficient 
of r = 0.68 it still has scoring principles common to the other ones. The scores in the original 
PhAST score matrix were determined based on chemical intuition and PPP frequencies. 
Apparently, there are certain properties and relations between molecular features that were 
recognized by chemists and computer-based methods alike. 
 
 
Weighted PhAST 
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We evaluated the influence of the application of weights to known key interaction features in 

virtual screenings with PhAST using the example of PPAR-#agonist retrieval. For four test 

cases of PPAR- agonists, a set of weights was applied to a negative charge known to be 
essential for activity and the resulting ranked lists were evaluated using the BEDROC metric 
(Table 15). In all cases hit retrieval was significantly improved. Each combination of query 
and PPP feature weights weights outperformed unweighted virtual screening. Best results 
were obtained with different weights for different queries. Highest retrospective performance 
averaged over all four PPAR agonists results from the application of a weight value of 10. For 
each query, the paired permutation test between the unweighted and the best performing 
weighted screening resulted in a p-value < 10-4, meaning that the improvements are 
statistically significant. The outcome of this preliminary study demonstrates that by 
incorporation of knowledge about relevant PPPs virtual screening by PhAST can be 
improved. Which particular weighting scheme should be applied certainly depends on the 
target, the particular interaction type, and the dataset used for screening. 
 
 
Pharmacophore Elucidation 
 
Finally, we used weighted PhAST in a series of retrospective screenings for automated 

identification of important PPPs. Again, PPAR- agonists served as an example. For our four 
test compounds the weights for each position resulting in highest retrospective performance 
are given in Table 16. Notably, up-weighting the sole negative charge present in the query 
compounds resulted in highest retrospective performance compared to each other combination 
of weight and position in the PhAST-sequences. The increase in retrospective performance is 
significant (p < 10-4). This result proves that our approach can be used to identify critical 
PPPs.  

Systematic application of weights revealed additional PPPs whose weighting 
significantly increased retrospective performance (p < 10-4). For each query, we selected the 
four PPPs causing highest performance when emphasized with the identified best weight 
(Figure 4) and used these for retrospective screening. For query structure A (B) [C] {D} 
screening performance was again significantly improved from BEDROC = 0.24 (0.29) [0.12] 
{0.15} to 0.36 (0.54) [0.42] {0.39} with p-values < 10-4. For query structure A, the 
improvement is smaller than with weighting of the negative charge alone (BEDROC = 0.40). 
Visual inspection of the molecule revealed that the acceptor functionality identified as a 
potentially important interaction is part of the same carboxyl group as the negative charge. So 
weighting this substructure twice might be redundant. When the weight of this acceptor was 
decreased to one and the screening was repeated with only the remaining three weights 
retrospective performance increased to BEDROC = 0.44 (p < 10-4). Surprisingly, weighting of 
the acceptor functionality in the carboxyl group of query B did not cause a decrease in 
retrospective performance, and when omitted caused performance to decrease to BEDROC = 
0.5. In this case the acceptor functionality weighted with -1 resulted in best performance, 
inverting the scores of the original PhAST score matrix (Table 3). Apparently, exchanges at 
this position are rewarded, contrary to query structure A where this feature was weighted with 
weight = 5, preferring a conservation of this functionality at this position. Apparently favoring 
exchange of functionality at this position is beneficial. Some additional potential 
pharmacophoric points of types L and O were suggested as ‘important’ interaction. This 
exposes the significance of increase in retrospective performance as a necessary but 
insufficient indication for the relative importance of a PPP.  
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CONCLUSIONS 
 
In this study we investigated the influence of modified scoring schemes on our text-based 
virtual screening approach PhAST. The impact of this study is three-fold. 

First, we proposed and validated three approaches for the generation of scoring 
systems for potential pharmacophoric points. These approaches can be applied to custom sets 
of reference compounds and yield scoring systems that are significant improvements to 
simple scoring (matches +2, mismatches -1). The two systematic methods calculate scores 
within minutes. Runtime of stochastic optimization is subject to parameterization. Besides 
their general applicability, these methods can be used in the future for rapid evaluation of 
modifications to the pharmacophore model employed in our screening method PhAST. Matrix 
quality might be increased by a set of reference compounds containing proven examples of 
bioisosterism, as we could show that retrospective performance increases if only very similar 
molecules are used for score calculations. 

Second, we demonstrated the importance of knowledge about receptor-ligand 
interactions being incorporated into the virtual screening process. With our screening method 
PhAST as example we could show that such weighting of interactions significantly improves 
screening performance. Previously,3 we demonstrated that the overall performance of PhAST 
is comparable to other ligand-based virtual screening techniques. This increase in screening 
performance renders PhAST a potentially valuable tool for hit retrieval from very large 
compound collections. 

Third, we demonstrated the pharmacophore elucidation capabilities of text-based 
virtual screening. Given a set of compounds with known pharmacological (in)activity, PhAST 
may be used to construct a set of optimal positional weights that indicate key interaction 
points common between active compounds. This set of weights can instantly be used for 
weighted prospective screenings. Expanding the protocol used for pharmacophore elucidation 
to the generation of a complete set of match- and mismatch-scores for a position instead of a 
weight applied to all scores might also provide reasonable suggestions for substitutions of 
functional groups in a molecule. This aspect will be subject to further investigations. 
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Legends to the Figures 
 
 

Figure 1. Selected PPAR--agonists.11 These four compounds were used as queries in 
weighted virtual screening and as test cases for automated pharmacophore elucidation with 

PhAST. The negative charge highlighted by circles is essential for PPAR- activation.21 
 
Figure 2. BEDROC performance of scoring matrices based on iterated alignment. O = 
original PhAST score matrix used for initial alignments, S = simple +2 (match) -1 (mismatch) 
scoring used for initial alignments, t = similarity threshold for aligned molecule pairs. 
 
Figure 3. Performance of the stochastic score matrix optimization. For each iteration the 
retrospective performance on test and training dataset is given as averaged BEDROC score. 
A) first optimization run, B) second optimization run, C) third optimization run. Final 
averaged BEDROC scores on the test dataset are: A) 0.34, B) 0.37, C) 0.36. 
 
Figure 4. Automated pharmacophore elucidation with PhAST. For each marked atom of the 

four PPAR- agonists the weight of the corresponding pharmacophoric feature is given. Larger 
values indicate potentially greater importance. 
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TEXT FOR GRAPHICAL ABSTRACT 
 
Various scoring schemes assessing the similarity of potential pharmacophoric points in 
bioactive compounds were generated by algorithmic optimization, and compared to a scheme 
based on chemical intuition. We demonstrate that screening performance of text-based 
similarity searching is significantly increased by position-specific weighting of ligand-
receptor interaction sites, and suitable sets of weights can be generated fully automatically. 
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Table 1. Potential pharmacophoric points used in PhAST and their corresponding 
symbols. 
 
possible interactions symbol 

hydrogen bond acceptor A 
charge positive P 
charge negative N 
lipophilic L 
aromatic R 
hydrogen bond acceptor, hydrogen bond donor E 
hydrogen bond acceptor, polar Q 
hydrogen bond acceptor, hydrogen bond donor, polar U 

no possible interactions O 
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Table 2. MQL queries defining pharmacophoric points in PhAST. Symbols are 
assigned to atoms used in queries from left to right. Queries are used in the given 
order from top to bottom. 
 
MQL query PPP symbols 

c R 
n R 
*[charge<0] N 
*[charge>0] P 
C(=O)-O-H O;N;E 
P(=O)-O-H O;N;E 
S(=O)-O-H O;N;E 
N[allHydrogens=0&totalConnections=3] Q 
N[allHydrogens=1&totalConnections=3](-C')-C' U 
N[allHydrogens=2&totalConnections=3]-C' U 
N[allHydrogens=1&totalConnections=2]=C' E 
N[allHydrogens=0&totalConnections=2](=C')-C' A 
O-H E 
C=O O;A 
C[!bound(~N)&!bound(~O)]-*'[C|F|Cl|Br|I|S] L 
Cl L 
Br L 
I L 
S[!bound(~N)&!bound(~O)]~*'[C|H] L 
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Table 3. Original PhAST score matrix for matches and mismatches of potential 
pharmacophoric points. 
 

 A E L N O P Q R U 

A 8 2 2 -1 -2 -4 4 -4 -2 

E  12 -4 -9 -4 -6 -4 -9 0 

L   2 -2 -2 -2 -4 1 -6 

N    10 -2 -6 -7 -4 -10 

O     2 -2 -4 -4 -6 

P      10 6 -5 4 

Q       14 -9 6 

R        3 -13 

U         16 
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Table 4. Targets in the COBRA library version 6.1 used for retrospective virtual screenings. 
Shown are abbreviations used in this study as well as the number of active compounds. The 
total number of molecules in the COBRA library is 8311. 
 

Target Abbreviation No. Actives 

Angiotensine-
converting 
Enzyme 

ACE 34 

Cyclooxygenase 2 COX2 136 

Dihydrofolat-
reductase 

DHFR 64 

Factor Xa FXA 228 

Peroxisome-
proliferator activated 

receptor ! 
PPAR! 44 

Thrombin THR 183 

Total  689 
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Table 5. 31 therapeutic classes of the Krier dataset used for score matrix calculation. For each 
class the number of compounds and the number of unique pairs with similarity above 
similarity threshold t measured by MACCS keys and the Tanimoto coefficient is shown. As 
additional constraint pairwise similarity has to be below 0.98 to exclude trivial analogues 
from score matrix calculation. 
 

ID Therapeutic class 
No. 

Compounds 
No. Pairs 
(t = 0.0) 

No. Pairs 
(t = 0.5) 

No. Pairs 
(t = 0.75) 

No. Pairs 
(t = 0.90) 

1 ACE inhibitors 43 902 742 128 16 
2 anabolic steroids 51 1261 1092 592 144 
3 androgens 39 726 697 338 120 
4 angiotensin II-antagonists 25 300 272 23 1 
5 antiarrhythmics (class III) 17 135 41 7 0 
6 barbitals 23 252 250 103 13 
7 benzodiazepams 97 4653 2825 203 33 
8 beta-blockers 50 1224 1047 217 9 
9 calcium channel blockers 30 435 259 52 9 

10 carbonic anhydrase inhibitors 8 28 25 3 0 
11 antifungals (Conazoles) 54 1424 1002 119 28 
12 COX inhibitors 73 2628 520 77 24 
13 dazoles 17 136 56 9 2 
14 floxacines 39 740 677 270 51 
15 histamine H1-antagonists 28 378 208 12 2 
16 histamine H2-antagonists 26 325 132 15 3 
17 HIV protease inhibitors 18 153 113 21 6 
18 leukotriene antagonists 58 1653 221 7 0 
19 local anesthetics (Caines) 64 2011 1257 135 21 
20 nitrofuranes 29 405 374 40 2 
21 penicillines and derivatives 163 13196 11420 1329 78 
22 phosphodiesterase IV inhibitors 11 55 6 1 0 
23 pramines 22 231 181 41 7 
24 antiulcers (Prazoles) 18 153 87 27 2 
25 progestogens 59 1688 1678 739 107 
26 reverse transcriptase inhibitors 66 2145 1189 215 26 
27 serotonin antagonists 25 300 164 14 1 
28 sulfonamides 54 1427 1373 286 28 
29 tetracyclines 18 152 152 86 24 
30 anticoagulants 29 406 112 8 0 
31 tyrosine kinase inhibitors 14 91 49 4 0 

 Total 1268 39613 28221 5121 757 
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Table 6. Relative frequencies of potential pharmacophoric point symbols in datasets. Shown 
are the percentages of each symbol in PhAST-sequences created from all molecules of the 
respective compound collection. 
 

Symbol COBRA Krier 

A 4.95 6.44 

E 1.44 1.37 

L 19.65 24.38 

N 1.22 1.75 

O 24.63 26.35 

P 1.80 1.72 

Q 1.58 1.99 

R 41.61 33.49 

U 3.11 2.49 
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Table 7. Retrospective performance of score matrices for potential pharmacophoric points 
calculated based on ISOAK assignments. For all combinations of a in the ISOA kernel and 
the similarity threshold for molecule pairs used as reference the best performing combination 
of gap penalties and averaged retrospective performance are shown. t = similarity threshold 
for molecule pairs, GO = gap open penalty, GE = gap extension penalty. 
 

ISOAK ! t GO GE Ø BEDROC 

0.00 9 2 0.3349 

0.50 7 1 0.3353 

0.75 9 1 0.3396 
0.25 

0.90 9 1 0.3505 

0.00 9 2 0.3343 

0.50 7 1 0.3345 

0.75 9 1 0.3399 
0.50 

0.90 9 1 0.3505 

0.00 8 1 0.3329 

0.50 7 1 0.3359 

0.75 8 1 0.3386 
0.75 

0.90 9 1 0.3506 
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Table 8. Best performing score matrix calculated based on ISOAK assignments. 
 
 A E L N O P Q R U 

A 12 1 -15 -4 -11 -11 -20 -23 -20 

E  17 -19 -4 -12 -6 -5 -26 -8 

L   3 -14 -11 -19 -28 -8 -15 

N    19 -14 -4 -13 -10 -13 

O     6 -11 -25 -13 -13 

P      20 -12 -12 -2 

Q       18 -24 -3 

R        7 -14 

U         18 
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Table 9. Comparison of the best performing ISOAK score matrix to the original PhAST score 
matrix and simple +2  (match) -1 (mismatch) scoring. Shown are percentages of retrospective 
screenings PhAST employing one score matrix outperforms PhAST in combination with the 
other one at 0.05 (0.01) significance level. 
 

 Ø ACE COX2 DHFR FXA PPAR! THR 

ISOAK best 72 (69) 94 (91) 11 (9) 92 (91) 79 (78) 64 (59) 91 (88) 

Simple 20 (19) 0 (0) 85 (83) 3 (3) 14 (14) 16 (14) 4 (3) 

        

ISOAK best 19 (17) 26 (26) 13 (12) 6 (3) 28 (28) 32 (27) 8 (8) 

PhAST original 67 (65) 41 (41) 85 (85) 88 (86) 66 (65) 39 (34) 84 (80) 
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Table 10. Best performing score matrix based on iterated alignment. 
 

 A E L N O P Q R U 

A 11 1 -35 10 -14 -18 -20 -31 -20 

E  16 -30 -14 -13 -5 -15 -26 -16 

L   3 -28 -23 -26 -29 -28 -18 

N    17 -24 -11 -13 -24 -13 

O     7 -12 -25 -36 -13 

P      20 -12 -22 -12 

Q       18 -25 -14 

R        7 -17 

U         18 
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Table 11. Comparison of the best performing score matrix calculated based on iterated 
alignment to the original PhAST score matrix and simple +2  (match) -1 (mismatch) scoring. 
Shown are percentages of retrospective screenings PhAST employing one score matrix 
outperforms PhAST in combination with the other one at 0.05 (0.01) significance level. 
 

 Ø ACE COX2 DHFR FXA PPAR! THR 

Iterated best 69 (67) 94 (91) 14 (13) 86 (84) 82 (80) 52 (45) 89 (86) 

Simple 20 (19) 0 (0) 79 (79) 6 (5) 13 (12) 18 (14) 4 (3) 

        

Iterated best 18 (16) 35 (29) 12 (12) 5 (3) 29 (27) 23 (18) 6 (6) 

PhAST original 69 (66) 35 (26) 86 (86) 95 (92) 66 (66) 43 (41) 85 (83) 
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 Table 12. Best performing score matrix resulting from stochastic optimization. 
 
! A E L N O P Q R U 

A "! #$%! #$&! $! #%! #%'! #$(! #%%! (!
E ! )*! #%&! +! &! #+(! %(! &! #$"!
L ! ! '$! #'+! #+! #'(! #$)! "! '!
N ! ! ! *)! #%$! #$,! #,! #'(! #%!
O ! ! ! ! '%! (! #$'! *! '!
P ! ! ! ! ! *%! $+! #"! #$(!
Q ! ! ! ! ! ! ')! +! "!
R ! ! ! ! ! ! ! $)! '!
U ! ! ! ! ! ! ! ! &'!
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Table 13. Comparison of the best performing score matrix attained from stochastic 
optimization to the original PhAST score matrix, simple +2  (match) -1 (mismatch) scoring 
and the best performing score matrices calculated based on ISOAK assignments and iterated 
alignment. Shown are percentages of retrospective screenings PhAST employing one score 
matrix outperforms PhAST in combination with the other one at 0.05 (0.01) significance 
level. 
 

 Mean ACE COX2 DHFR FXA PPAR! THR 

Stochastic best 84 (81) 88 (88) 62 (57) 91 (91) 89 (88) 77 (68) 96 (96) 

Simple 10 (10) 3 (3) 33 (32) 5 (3) 7 (6) 11 (11) 3 (3) 

        

Stochastic best 35 (32) 32 (24) 28 (26) 0 (0) 68 (67) 48 (43) 35 (34) 

PhAST original 53 (51) 41 (32) 68 (65) 98 (97) 26 (25) 27 (27) 60 (58) 

        

Stochastic best 54 (50) 35 (21) 85 (85) 14 (14) 69 (68) 43 (41) 74 (74) 

ISOAK best 31 (30) 35 (32) 12 (10) 73 (73) 24 (23) 23 (20) 22 (20) 

        

Stochastic best 54 (52) 18 (15) 80 (79) 20 (19) 72 (69) 57 (52) 75 (75) 

Iterated best 32 (29) 56 (47) 13 (11) 64 (61) 22 (20) 18 (14) 20 (20) 

        

Iterated best 30 (26) 47 (35) 35 (31) 5 (5) 41 (36) 16 (14) 35 (33) 

ISOAK best 47 (42) 18 (15) 41 (35) 78 (69) 48 (46) 52 (43) 45 (42) 
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Table 14. Comparison of score matrices by Pearson correlation coefficient. 
 

 Original ISOAK Iterated Stochastic 

Original 1 0.76 0.67 0.62 

ISOAK  1 0.90 0.72 

Iterated   1 0.71 

Stochastic    1 
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Table 15. Retrospective performance of weighted PhAST. Shown are BEDROC scores 

calculated for screenings of PPAR! -agonists with upweighted key interaction, the difference 
between unweighted and the maximum of weighted performance as well as the p-values 
calculated for the improvement from unweighted to the best performing weighted screening.  
 

 Compound  

weight A C B D Ø BEDROC 

1 0.24 0.12 0.29 0.15 0.20 

2 0.32 0.15 0.40 0.19 0.26 

3 0.37 0.18 0.44 0.23 0.30 

4 0.39 0.22 0.45 0.26 0.33 

5 0.40 0.25 0.45 0.29 0.35 

10 0.40 0.30 0.44 0.32 0.37 

15 0.40 0.32 0.42 0.33 0.37 

20 0.40 0.32 0.40 0.34 0.37 

      

BEDROC (unweighted) 0.24 0.12 0.29 0.15  

BEDROC (max weighted) 0.40 0.32 0.45 0.34  

p-Value < 10-4 < 10-4 < 10-4 < 10-4  
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Table 16. Results of the pharmacophore elucidation for four PPAR!-agonists. Shown are 
PhAST-sequences, weights resulting in highest retrospective performance, corresponding 
BEDROC score and significance estimation for performance increase as well as the BEDROC 
scores of the corresponding unweighted screenings (shown in parentheses). S = symbol 
corresponding to a potential pharmacophoric point, W = weight resulting in highest 
retrospective performance for this position, B = BEDROC score obtained with the given 
weight, P = p-value indicating the significance of increase in retrospective performance of the 
weighted screening performed with the given weight at this position; if no p-value is given, no 
weight could increase retrospective performance compared to the unweighted screening; “-“ 
indicates p-values below 10-4. Bold positions were used in a combined retrospective 
screening. 
 

Structure A  Structure B  Structure C  Structure D 

(BEDROC 0.24)  (BEDROC 0.29)  (BEDROC 0.12)  (BEDROC 0.15) 

S W B P  S W B P  S W B P  S W B P 

O -1 0.26 -  R 1 0.29   L 20 0.14 0.00  R 14 0.17 0.00 

O -1 0.25 0.03  R 1 0.29   R 7 0.12 0.02  R 20 0.16 0.01 

O -1 0.25 0.07  R 0 0.30 0.01  R 11 0.12 0.42  R 20 0.16 0.00 

L 0 0.25 -  R 1 0.29   R 0 0.12 0.09  R 13 0.16 0.00 

O 3 0.25 0.14  R 0 0.30 0.24  R 0 0.12 0.06  R -1 0.16 0.06 
N 12 0.40 -  R 1 0.29   R -1 0.12 0.13  O 20 0.19 0.00 

A 5 0.29 -  R 0 0.30 0.08  R 4 0.12 0.00  R 12 0.17 0.00 

O -1 0.26 0.01  O -2 0.32 0.00  L -1 0.13 0.07  Q 2 0.15 0.36 

O -1 0.28 -  O -1 0.32 0.00  O 16 0.16 0.00  O 19 0.17 0.00 

O 0 0.25 0.08  R 10 0.32 0.00  O 14 0.15 0.00  O 19 0.17 0.00 
L 20 0.30 -  Q 0 0.32 0.00  R 5 0.12 0.39  O 19 0.17 0.00 

R 2 0.24 0.37  O 0 0.30 0.01  R 4 0.12 0.02  R 10 0.16 0.01 

R 3 0.25 0.02  O 17 0.32 0.00  R 4 0.12 0.03  R 12 0.16 0.00 

R 3 0.24 0.09  O 17 0.32 0.01  R 5 0.12 0.03  R 12 0.16 0.00 

R 0 0.25 0.21  R 9 0.30 0.23  R 6 0.12 0.06  R 12 0.16 0.00 

R 0 0.24 0.39  R 6 0.30 0.03  R 6 0.12 0.02  R 12 0.16 0.00 

R 0 0.24 0.51  R 6 0.30 0.13  L 20 0.15 0.00  R 12 0.17 0.00 

R 0 0.26 0.01  R 6 0.30 0.03  O 5 0.12 0.08  L 20 0.18 0.00 

O 11 0.28 -  R 5 0.30 0.06  O 4 0.12 0.03  O 19 0.16 0.08 

R -1 0.27 -  R 8 0.30 0.14  U 0 0.16 0.00  O 20 0.17 0.00 

L 10 0.26 0.01  L 20 0.34 0.00  R 20 0.12 0.03  U 0 0.20 0.00 

R 2 0.24 0.46  O 0 0.29 0.46  A -10 0.13 0.10  R 1 0.15  

R 2 0.24 0.46  O 0 0.32 0.00  N 20 0.32 0.00  A 8 0.16 0.06 

R 3 0.24 0.16  O -1 0.32 0.00  R 0 0.12 0.34  N 20 0.34 0.00 

O 9 0.26 0.07  A -1 0.35 0.00  R 1 0.12   R 0 0.16 0.17 

R 0 0.24 0.31  N 5 0.45 0.00  O 0 0.12 0.21  R 0 0.16 0.00 
L 15 0.28 -  O 4 0.33 0.00  R 1 0.12   O 6 0.16 0.14 

R 0 0.25 0.01  L -1 0.32 0.00  R 0 0.12 0.39  R 0 0.16 0.00 

R 0 0.24 0.03  O -1 0.33 0.00  R 0 0.12 0.15  R 0 0.16 0.02 

R 0 0.25 -  O -1 0.32 0.00  A 20 0.14 0.00  R 0 0.16 0.00 

R 0 0.25 0.13  O -1 0.33 0.00  R 0 0.12 0.07  A 20 0.17 0.03 

R 1 0.24        R 0 0.12 0.29  R -1 0.17 0.01 

R 2 0.24 0.37       R 0 0.12 0.36  R -1 0.18 0.01 

          R 2 0.12 0.31  R -1 0.18 0.00 

          R 2 0.12 0.47  R -1 0.16 0.14 

          R 1 0.12   R -1 0.17 0.05 

               R 0 0.16 0.04 
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Table S1. Matrix of averaged differences between score matrices calculated based on ISOAK 
assignments. ! = parameter of the ISOA kernel, t = similarity threshold for aligned molecules 
pairs. 
!

 !=0.25 
t=0.00 

!=0.25 
t=0.50 

!=0.25 
t=0.75 

!=0.25 
t=0.90 

!=0.50 
t=0.00 

!=0.50 
t=0.50 

!=0.50 
t=0.75 

!=0.50 
t=0.90 

!=0.75 
t=0.00 

!=0.75 
t=0.50 

!=0.75 
t=0.75 

!=0.75 
t=0.90 

!=0.25 
t=0.00 

0.00 0.89 3.87 9.40 0.07 0.89 3.87 9.42 0.49 1.02 3.67 8.93 

!=0.25 
t=0.50 

 0.00 3.07 8.60 0.91 0.09 3.07 8.62 1.07 0.58 2.78 8.13 

!=0.25 
t=0.75 

  0.00 5.62 3.89 3.11 0.22 5.64 4.13 3.38 0.56 5.16 

!=0.25 
t=0.90 

   0.00 9.47 8.64 5.62 0.07 9.67 8.87 6.00 1.00 

!=0.50 
t=0.00 

    0.00 0.91 3.89 9.49 0.42 1.00 3.69 9.00 

!=0.50 
t=0.50 

     0.00 3.11 8.67 1.02 0.53 2.78 8.18 

!=0.50 
t=0.75 

      0.00 5.64 4.13 3.38 0.60 5.16 

!=0.50 
t=0.90 

       0.00 9.69 8.89 6.02 1.02 

!=0.75 
t=0.00 

        0.00 0.93 3.80 9.20 

!=0.75 
t=0.50 

         0.00 3.04 8.40 

!=0.75 
t=0.75 

          0.00 5.53 

!=0.75 
t=0.90 

           0.00 

 



Table S2. Development of retrospective performance during iterated alignment. Shown is the 
averaged retrospective performance on the COBRA dataset, iterated alignment was performed 
on the Krier dataset. t = similarity threshold for aligned molecule pairs. The original PhAST 
score matrix was used as scoring scheme for the first alignment step, gap penalties were fixed 
at gap open penalty 5 and gap extension penalty 1. 
 

Iteration t = 0.00 t = 0.50 t = 0.75 t = 0.90 
1 0.4001 0.4001 0.4001 0.4001 
2 0.3790 0.3691 0.3536 0.3518 
3 0.3617 0.3590 0.3396 0.3464 
4 0.3539 0.3367 0.3379 0.3449 
5 0.3450 0.3330 0.3373 0.3436 
6 0.3365 0.3303 0.3370 0.3425 
7 0.3341 0.3295 0.3367 0.3424 
8 0.3297 0.3269 0.3368  
9 0.3305 0.3263 0.3368  

10 0.3282 0.3263 0.3368  
11 0.3280 0.3261 0.3370  
12 0.3280 0.3261 0.3369  
13 0.3280 0.3261 0.3369  
14 0.3280 0.3260 0.3368  
15 0.3280 0.3260 0.3368  
16  0.3260   
17  0.3260   
18  0.3260   
19  0.3260   
20  0.3260   

 
 



Table S3. Development of retrospective performance during iterated alignment. Shown is the 
averaged retrospective performance on the COBRA dataset, iterated alignment was performed 
on the Krier dataset. t = similarity threshold for aligned molecule pairs. Simple +2 (match) -1 
(mismatch) scoring was used as scoring scheme for the first alignment step, gap penalties 
were fixed at gap open penalty 5 and gap extension penalty 1. 
 

Iteration t = 0.00 t = 0.50 t = 0.75 t = 0.90 
1 0.2801 0.2801 0.2801 0.2801 
2 0.3367 0.3382 0.3443 0.3456 
3 0.3406 0.3363 0.3397 0.3482 
4 0.3305 0.3298 0.3396 0.3452 
5 0.3325 0.3298 0.3389 0.3440 
6 0.3321 0.3296 0.3382 0.3435 
7 0.3322 0.3284 0.3377 0.3433 
8 0.3310 0.3283 0.3374 0.3433 
9 0.3296 0.3278 0.3374 0.3433 

10 0.3297 0.3272 0.3374  
11 0.3296 0.3264 0.3374  
12 0.3297 0.3262 0.3374  
13 0.3298 0.3259   
14 0.3298 0.3260   
15 0.3299 0.3260   
16 0.3296 0.3260   
17 0.3296 0.3260   
18  0.3260   
19  0.3260   
20  0.3260   
21  0.3260   
22  0.3260   
23  0.3260   
24  0.3260   
25  0.3260   
26  0.3260   
27  0.3260   
28  0.3260   
29  0.3260   
30  0.3260   

 
 



Table S4. Matrix of averaged differences between score matrices calculated based on iterated 
alignment. O = alignment iteration beginning with the original PhAST score matrix, S = 
alignment iteration beginning with simple +2 (match) -1 (mismatch) scoring scheme, t = 
similarity threshold for aligned molecules pairs. 
!

 O 
t=0.00 

O 
t=0.50 

O 
t=0.75 

O 
t=0.90 

S 
t=0.00 

S 
t=0.50 

S 
t=0.75 

S 
t=0.90 

O 
t=0.00 0.00 3.13 7.07 10.20 3.91 5.07 7.71 10.89 

O 
t=0.05  0.00 5.58 8.80 3.80 4.24 6.36 9.49 

O 
t=0.75   0.00 4.87 6.98 7.33 2.51 5.87 

O 
t=0.90    0.00 9.18 9.27 4.89 1.44 

S 
t=0.00     0.00 3.20 6.02 9.29 

S 
t=0.50      0.00 6.16 9.07 

S 
t=0.75       0.00 5.09 

S 
t=0.90        0.00 

 



 

Appendix D 
 

 

Authors:  Zander, J. 

Hartenfeller, M. 

Hähnke, V. 

Proschak, E. 

Besier, S. 

Wichelhaus, T. A. 

Schneider, G. 

 

Title: Multistep Virtual Screening for Rapid and Efficient 

Identification of Non-Nucleoside Bacterial Thymidine Kinase 

Inhibitors 

 

Publication Year: 2010 

 

Journal: Chemistry – a European Journal 

Volume 16 

Pages 9630-9637 

 



DOI: 10.1002/chem.201001347

Multistep Virtual Screening for Rapid and Efficient Identification of Non-
Nucleoside Bacterial Thymidine Kinase Inhibitors

Johannes Zander,[b] Markus Hartenfeller,[a] Volker H!hnke,[a] Ewgenij Proschak,[c]
Silke Besier,[b] Thomas A. Wichelhaus,[b] and Gisbert Schneider*[a]

Introduction

Staphylococcus aureus (S. aureus) causes multiple diseases
ranging in severity from minor skin infections to life-threat-
ening conditions, such as endocarditis, pneumonia, and
sepsis.[1] Methicillin-resistant S. aureus (MRSA) has been
widespread and has become a serious pathogenic bacterium,
leading to high morbidity and mortality.[2,3] MRSA is not
only resistant to treatment with ß-lactams, but often also to
other antibiotics such as aminoglycosides, macrolides, linco-
samides, and fluoroquinolones, because many MRSA strains
possess a multidrug resistant genotype. Moreover, the ap-

pearance of vancomycin and linezolid resistance limited op-
tions for therapy against MRSA.[4,5] This evolution points to
an urgent need for new anti-MRSA compounds and for the
optimization of established ones with high antimicrobial ac-
tivity.

Folic acid antagonists, such as trimethoprim/sulfamethoxa-
zole (SXT), possess a wide antimicrobial spectrum and show
good antimicrobial activity against S. aureus including
MRSA.[6,7] These bioactive agents inhibit different enzymat-
ic steps of the folic acid pathway leading to cessation of the
bacterial synthesis of deoxythymidine monophosphate
(dTMP) by thymidylate synthase. However, several bacterial
species including S. aureus possess an alternative pathway
for synthesis of intracellular dTMP by uptake of extracellu-
lar thymidine and subsequent intracellular phosphorylation
to dTMP. Thus, the effect of folic acid antagonists can be an-
tagonized by a high extracellular thymidine concentration as
detected in tissues with necrotic cells such as pus and
sputum from cystic fibrosis patients.[8–10] Indeed, there are
several reports of unsuccessful treatment with folic acid an-
tagonists, supposedly due to elevated thymidine concentra-
tions in human tissues containing necrotic cells.[9,11, 12]

We recently showed that, in the presence of thymidine, si-
multaneous inhibition of the folic acid pathway by SXT and
the bacterial thymidine kinase (TK; EC 2.7.1.21) by nucleo-
side analogues, especially halogenated 2’-deoxyuridine de-
rivatives, results in synergistic antimicrobial activity against
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S. aureus.[10] Halogenated 2’-deoxyuridine derivatives such as
5-chloro-2’-deoxyuridine (5-CldU) and 5-iodo-2’-deoxyuri-
dine (5-IdU) have been shown to inhibit bacterial TK.[13,14]

However, nucleoside analogues can be associated with cyto-
toxicity when phosphorylated to triphosphates and incorpo-
rated into DNA, thereby leading to single-strand
breaks.[15,16] Screening for non-nucleoside analogues as po-
tential thymidine kinase inhibi-
tors is therefore of particular
interest for the development of
novel antibiotics.

This study was aimed at
1) screening for non-nucleoside
analogue inhibitors of S. aureus
thymidine kinase by multistep
virtual screening, and 2) deter-
mining the in vitro activity of
these thymidine kinase inhibi-
tors against S. aureus in combi-
nation with SXT in the pres-
ence of thymidine.

Results and Discussion

Substances that interact with
viral and human thymidine kin-
ases have been studied for
many decades and several com-
pounds have been found that
exhibit high antiviral or anticancer activity.[17,18] In contrast,
inhibitors of bacterial thymidine kinases have not attracted
much attention in antibacterial research.[10,15,19,20] In most
bacteria intracellular dTMP can be synthesized by two dif-
ferent pathways, which suggests combinations of bioactive
agents inhibiting both pathways simultaneously.[10] Thymi-
dine kinase inhibitors impair the salvage pathway for dTMP,
which is initiated by thymidine kinase catalyzing the transfer
of a gamma-phosphate group from adenosine-5’-triphos-
phate (ATP) to thymidine.[21] Folic acid antagonists inhibit
different enzymatic steps of the bacterial synthesis of meth-
ylenetetrahydrofolate, an essential cofactor of thymidylate
synthase for generation of dTMP from deoxyuridine mono-
phosphate (dUMP). Simultaneous inhibition of both path-
ways therefore results in an intracellular lack of dTMP[22]

and synergistic antimicrobial activity in the presence of thy-
midine.[10]

Comparative protein model : Here we used a virtual screen-
ing protocol to find potential thymidine kinase inhibitors
with non-nucleoside structures. A crucial step of our screen-
ing protocol comprised automated docking of selected com-
pounds into a homology model of S. aureus thymidine
kinase (SaTK). Several bacterial thymidine kinases can be
crystallized, such as thymidine kinases from S. aureus
(SaTK, PDB identifier: 3e2i), Ureaplasma urealyticum, Ba-
cillus cereus, and Bacillus anthracis.[13,20,23] As a crystal struc-

ture of SaTK in the presence of a natural ligand (thymidine)
is not known, we used the structure of Bacillus anthracis
thymidine kinase (BaTK, PDB identifier: 2j9r, resolution:
2.7 #)[20] as template for this purpose as the best available
model. A sequence alignment between BaTK and SaTK ex-
hibits sequence identity of 63% overall and 100% in the
thymidine binding-site residues (Figure 1). Consequently,

the resulting homology model (SaTK) shows excellent struc-
tural agreement with the template (BaTK), especially in the
thymidine binding site (Figure 2). A continuous sequence
stretch from BaTK comprising 17 residues is missing in the
template structure. This part is predicted to form a helix in
the homology model of SaTK. TKs of ATCC 29213 and
ATCC 700699 have perfect sequence identity. This justifies
employing one homology model for both proteins.

We explicitly did not perform docking studies on an exist-
ing crystal structure of SaTK (PDB identifier: 3e2i).[23] The
need for a homology model regardless of an existing struc-
ture of the target protein is rationalized by the fact that the
structure of SaTK has been crystallized in its apo form (i.e.,
no bound thymidine). It was shown that TKs of several mi-
croorganisms undergo substantial structural changes in a
loop region forming the upper part of the binding pocket
upon thymidine binding.[24] This renders the existing X-ray
structure of the SaTK in its apo form unsuitable for docking
efforts. It is therefore not surprising that a comparison be-
tween the homology model of SaTK and the respective crys-
tal structure of the apo form exhibits a relatively high root-
mean-square deviation (RMSD) of 3.9 #. This finding origi-
nates from 1) a deviation in the position of the loop region
of SaTK that depends on the missing ligand binding and
2) the fact that a part of the sequence corresponding to the
one missing in the template structure of BaTK is also absent
in the structure of the SaTK apo form (Figure 3).

Figure 1. Sequence alignment of thymidine kinases. The first two sequences represent the alignment that was
used for the homology model (63% sequence identity). PDB entry 2j9r of B. anthracis thymidine kinase
misses some parts of the complete sequence (highlighted by black boxes and white letters) in the complete
protein sequence, third line. A continuous gap was inserted at the corresponding position. Complete sequence
identity of binding pocket residues (gray boxes) can be observed.
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Reference ligands : For our ligand-based screening efforts
we used 5-chloro-2’-deoxyuridine (5-CldU, 3) with a minimal
inhibitory concentration (MIC) of 0.0625 mgL!1 against
both S. aureus strains when combined with SXT in the pres-
ence of thymidine (1). The same MICs were determined for
5-iodo-2’-deoxyuridine (5-IdU, 2), another ligand of bacteri-

al thymidine kinase.[14] SXT alone in the presence of thymi-
dine showed MIC values of >128 mgL!1 against both S.
aureus strains (not shown). 5-CldU and 5-IdU were chosen
as reference ligands because halogenated 2’-deoxyuridine
derivatives have recently been reported as thymidine kinase
inhibitors showing significantly improved antimicrobial ac-
tivity against S. aureus when combined with SXT in the
presence of elevated thymidine concentrations.[10] Moreover,
Kosinska and co-workers showed that thymidine kinase
from Ureaplasma urealyticum exhibits pronounced phos-
phorylation activity with 5-CldU as substrate.[13] In a first
study, we re-docked the natural ligand thymidine and the
screening reference 5-CldU to obtain a reference value for
the assessment of docking scores and to evaluate the perfor-
mance of our docking protocol. Notably, automated ligand
docking was able to reproduce the binding pose of thymi-
dine. Thymidine and 5-CldU achieved favorable comparable
docking scores of 37 and 38, respectively (higher docking
scores suggest better ligand binding; Table 1).

Virtual screening protocol : We followed a stepwise virtual
screening protocol (Figure 4). A diverse screening library
containing approximately 557000 readily available com-
pounds from two different suppliers was prepared. The first
virtual screening step consisted of a rigorous reduction of
the screening library (“negative design”) by similarity analy-
sis of pool compounds with the reference ligand 5-CldU
(Table 1). For this purpose an in-house implementation of a
self-organizing map (SOM)[25] was employed to map the
screening pool (represented in a high-dimensional space
spanned by uncorrelated molecular descriptors) to a two-di-
mensional (2D) regular grid, as described.[26] The SOM al-
lowed for the identification of a cluster of 912 compounds

Figure 2. Binding-site model of SaTK. Left: Comparison of a homology
model of S. aureus thymidine kinase and the template structure of B. an-
thracis thymidine kinase (PDB entry: 2j9r, chain A), together with bound
native ligand thymidine. The missing part of the template (cf. Figure 1) is
predicted to form a helix (arrow) flanked by two loop regions. Right:
Perfect alignment between amino acid side chains of the model (transpar-
ent) and the template (solid). Identifiers of selected pocket residues of
the model and a short stretch of the backbone (sketched) are shown for
orientation.

Figure 3. Comparative “homology” model of SaTK. Comparison of the
homology model of S. aureus thymidine kinase (light gray) and an exist-
ing X-ray apo structure of the same protein (dark gray, PDB entry: 3e2i).
Structural difference can be found mainly in the position of the loop de-
fining the upper part of the binding cavity upon ligand binding (arrow).
Bound glycerol (not shown) does not populate the thymidine binding
pocket in structure 3e2i. As within the structure of thymidine kinase of
B. anthracis that was used as template for homology modeling, an equiva-
lent part of structure 3e2i is missing (dashed circle).

Table 1. Reference compounds and values. Minimal inhibitory concentra-
tion (MIC) values measured for both S. aureus strains, and docking
scores.

Structure MIC [mgL!1] Docking
ATCC
700699

ATCC
29213

score
(ASP)

1
– – 37

thymidine

2
0.0625 0.0625 38

5-iodo-2’-deoxyuridine (5-
IdU)

3
0.0625 0.0625 38

5-chloro-2’-deoxyuridine
(5-CldU)
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that exhibit high similarity to the reference compound
(“positive design”).

These candidate ligands were considered for the next
screening steps. Three ligand-based screening techniques—
each one focusing on a different aspect of ligand similari-
ty—were applied on this small pre-filtered compound collec-
tion with respect to the same
reference ligand (5-CldU):

1) The pharmacophore align-
ment search tool
(PhAST)[27] compares mole-
cules by aligning strings of
pharmacophoric feature
types devised from their 2D
representation.

2) Pseudoreceptor point simi-
larity (PRPS)[28] computes
pseudoreceptor representa-
tions of molecules based on
three-dimensional (3D) con-
formations.

3) ShaEP[29] calculates a simi-
larity score by comparing
3D conformers with respect
to spatial overlap of shape
and electrostatic potentials.

PhAST was applied in two
different modes of structure
canonization (for more infor-
mation, see the Experimental
Section) resulting in a total of
four individual screening runs.
Each method provided us with
a sorted list of the remaining
912 screening compounds,
ranked according to the scoring

schemes of the methods. Molecules ranked among the top
50 of each individual list were subsequently docked into a
homology model of S. aureus thymidine kinase. Compounds
from the top scoring ranks with plausible docking poses
yielding high docking scores and hydrogen bridges similar to
the reference ligands were considered for further investiga-
tion. We selected and ordered 14 compounds, which were
tested in vitro for their biological activity on S. aureus thy-
midine kinase. A bacterial whole-cell assay was chosen to
see whether virtual screening can cope with antibacterial ac-
tivity without explicitly predicting this property. Out of the
14 tested compounds, seven compounds (4–10) exhibit anti-
microbial activity against S. aureus strain ATCC 700699 and
S. aureus ATCC 29213 when combined with SXT in the
presence of thymidine (Table 2). None of these compounds
had any intrinsic antimicrobial activity (data not shown).
The fact that 50% of the 14 compounds chosen for in vitro
screening showed antimicrobial activity when combined
with folic acid antagonists argues for an effective first
screening round. Based on the findings of the first screening
two parallel strategies were applied to select compounds in
a second screening round:

1) A second pseudoreceptor model using our software
PRPS was employed to screen the complete compound

Figure 4. Virtual screening protocol. The second test round was per-
formed on the complete screening compound library with the best hits
from the first screening round.

Table 2. Results of the first round of virtual screening and in vitro tests. MIC values represent the median of
three experiments.

Structure MIC [mgL!1] Docking Virtual screening rank
ATCC 700699 ATCC 29213 score (ASP) P1[a] P2[b] PRPS ShaEP

4 128 128 36 3 2 – –

5 128 128 38 11 41 – –

6 128 128 39 17 18 – –

7 128 >128 31 – – 2 –

8 128 128 26 – – 6 –

9 32 64 42 – 8 5 –

10 32 64 41 – – – 18

[a] PhASTwith Isomap canonization. [b] PhASTwith Prabhakar canonization (cf. Experimental Section).
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library ("557000 molecules) again. The model was built
from all seven active compounds found in the first
screening round. Reference compounds were aligned ac-
cording to their docking poses.

2) Compound 10 contains a catechol moiety that is buried
deep inside the thymidine binding site according to the
docking hypothesis. This “head group” is of particular in-
terest as it is structurally distinct from nucleosides.
Therefore, we performed a substructure search for com-
pounds featuring this head group.

The top-scoring 100 molecules of the PRPS screening
with the second pseudoreceptor model were docked into the
homology model, and seven compounds were selected for
testing, from which six compounds (11–16) exhibit antimi-
crobial activity in combination with SXT. Compound 16 has
higher activity than the best compounds 9 and 10 found in
the first screening round (Table 3). In addition, we retrieved
50 compounds containing the head group identified as
promising in round one and docked them into the homology
model. Compounds 17–24 were selected for testing accord-
ing to plausibility of generated poses, high docking scores,
and structural variations of the “tail group”. All eight sub-
stances exhibit the desired effect (hit rate 100%) with six
compounds showing improved MIC values with respect to
compounds of test round one. The most potent compound,
24, exhibits a MIC value of 0.25 mgL!1 on both S. aureus
strains when combined with SXT in the presence of thymi-
dine, which is only fourfold less potent than 5-CldU and 5-
IdU (Table 4). Again, docking of 24 suggests that the head
group is buried in the binding pocket while the methylqui-
noline tail group interacts with the protein surface outside
the cavity (not shown).

Compound 24 has a rather poor ligand efficiency[30] [LE=
!ln ACHTUNGTRENNUNG(MIC)/(no. of non-hydrogen atoms)] of 0.06. For both
reference compounds, 5-IdU and 5-CldU, we obtained an
LE value of 0.16. Although the primary aim of this work
was to identify non-nucleoside inhibitors of SaTK, the moti-
vating findings suggest that there is room for further optimi-
zation with respect to both binding affinity and molecular
mass.

Five compounds (19, 20, 21, 23, 24) exhibit intrinsic anti-
microbial activity. MICs of these compounds in the presence
of thymidine against S. aureus strains ATCC 29213 and
ATCC 700699 are given in Table 5. MICs are substantially
higher than those obtained in combination with SXT. The
fact that the substances tested in this study showed no or
only weak intrinsic antimicrobial activity is consistent with
mainly thymidine kinase inhibition. It is known that some
thymidine kinase inhibitors such as 5-fluoro-2’-deoxyuridine
also inhibit thymidylate synthase and as a consequence have
intrinsic antimicrobial activity.[15] Future studies aiming at
hit-to-lead structure optimization should use direct bacterial
thymidine kinase inhibition assays to verify thymidine
kinase being the target of these non-nucleoside antibiotics.

Conclusion

Our study demonstrates that multistep virtual screening can
help identify bioactive substances from a large screening
compound pool with limited experimental effort. Rapid fo-
cusing on promising candidate structures was possible, so
that inhibitors of bacterial thymidine kinase with non-nu-
cleoside scaffolds were identified. These inhibitory com-
pounds exhibit moderate to high antimicrobial activity when
combined with folic acid antagonists in the presence of thy-
midine, and provide rich opportunity for further optimiza-
tion. Notably, at least two subsequent screening rounds were

Table 3. Screening results of the second PRPS model based on the active
compounds of the first round. MIC values represent the median of three
experiments.

Structure MIC [mgL!1] Docking
ATCC
700699

ATCC
29213

score
(ASP)

11 128 128 45

12 128 128 41

13 128 128 41

14 64 128 42

15 32 128 43

16 16 16 45
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required to yield potent hits. The trick was to use informa-
tion gained about the structuring of the chemical space
spanned by the screening compound pool for “adaptive” op-
timization based on iterative learning.[31] We suggest explo-

ration of the full potential of
adaptive multistep and multi-
method virtual screening in
early drug discovery projects,[32]

which might speed up the tran-
sition from biological target val-
idation to chemical hit and lead
structure optimization.

Experimental Section

Strains and genetic sequence determi-
nation of bacterial thymidine kinase :
S. aureus strain ATCC 700699 is resist-
ant to methicillin (MRSA) and exhib-
its reduced susceptibility to vancomy-
cin.[33] The genetic sequence of its thy-
midine kinase-encoding tdk gene was
published in 2001 as part of the whole
genome sequence.[34] Methicillin-sus-
ceptible S. aureus strain ATCC 29213
serves as a quality-control strain for
antibiotic susceptibility testing.[35] The
chromosomal tdk gene of S. aureus
strain ATCC 29213 was amplified by
polymerase chain reaction (PCR) with
forward primer P1 (5’-GCGAT-
TATGTTTTGAAAAAGGTGG-3’)
and reverse primer P2 (5’-
GTTCGTATCTTTCTTCTACAA-
TATC-3’). The nucleotide sequence of
the tdk gene of S. aureus ATCC 29213
was determined by cycle sequencing
using an ABI PRISM DNA sequencer
(Applied Biosystems, Foster City,
USA).

Compound library : Virtual screening
was performed with a structurally di-
verse set of compounds from supplier
catalogues of Specs (v01/2009, Specs,
Delft, The Netherlands) and Asinex
Gold and Platinum collections (v11/
2008, Asinex, Moscow, Russia). Proto-
nation states of all compounds were
standardized (“washed”) using the
“wash” function of MOE (v2008.10,

Chemical Computing Group, Montreal, QC, Canada). Single three-di-
mensional conformations for each screening compound were computed
with the software CORINA (v3.2, Molecular Networks, Erlangen, Ger-
many).

Self-organizing map : The reference compound 5-CldU was added to the
screening library before the calculation of all 184 2D descriptors of MOE
for each molecule. Principal component analysis[36] revealed that 95% of
the variance in the dataset could be explained using the 40 first principal
components, so these uncorrelated descriptors were used for representing
the screening compound library. We used an implementation of the self-
organizing map (SOM)[25] algorithm to further reduce the dimensionality
of the dataset.[26] The SOM performed a nonlinear mapping from the
original descriptor space (here: 40-dimensional) on a two-dimensional
map. Each molecule is assigned to one of the receptive fields (clusters) of
the SOM. We used a SOM with a topology of 20$30 neurons (600 recep-
tive fields) organized as a torus. The SOM was trained in 5$106 cycles.
The parameter defining the decay of weight update during training was
initialized with 1. The initial width of the Gaussian neighborhood func-
tion was 5. Distances were calculated as the Euclidean distance. From

Table 4. Results of substructure screening. The dihydroxyphenyl head group is preserved in all active mole-
cules. MIC values represent the median of three experiments.

Structure MIC [mgL!1] Docking
ATCC 700699 ATCC 29213 score (ASP)

17 128 >128 37

18 128 128 39

19 16 8 43

20 8 8 46

21 4 2 41

22 4 2 45

23 1 1 38

24 0.25 0.25 39

Table 5. Intrinsic antimicrobial effect of non-nucleoside analogues. MIC
values were measured in the presence of thymidine (200 mgL!1) and ab-
sence of SXT against both S. aureus strains. Values are medians of three
experiments.

MIC [mgL!1]
ATCC 700699 ATCC 29213

19 128 128
20 64 128
21 64 64
23 16 32
24 32 32
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the trained SOM we selected the 912 compounds assigned to the neuron
containing the reference compound for the virtual screening process.

PhAST: The pharmacophore alignment search tool (PhAST) is a string-
based approach to virtual screening.[27] It reduces each molecule to an un-
ambiguous linear representation describing its pharmacophoric fea-
tures—called %PhAST-sequence&—in three steps: 1) each non-hydrogen
atom in the structure graph is replaced by a potential pharmacophoric
point symbol; hydrogen atoms are removed; 2) vertices of this pharmaco-
phoric feature graph are canonically labeled, and 3) vertex symbols are
concatenated into a string in increasing order of their canonical labels.
For virtual screening, both the screening compound collection (%library&)
and the query molecules were converted and the resulting PhAST se-
quences were compared using pairwise global sequence alignment.[37] As
a result, molecular similarity values are computed from the pairwise
alignments, which were used for the retrieval of molecules with similar
pharmacophoric features from a compound database. PhAST distin-
guishes between nine different potential pharmacophore points: positive
charge; negative charge; aromatic; lipophilic; hydrogen-bond donor; hy-
drogen-bond donor and acceptor; hydrogen-bond acceptor and positive
charge; hydrogen-bond donor and acceptor and positive charge; no inter-
action. The original version of PhAST uses the algorithm of Weininger
et al.[38] for canonization. In this work we employed the algorithm by
Prabhakar and Balasubramanian[39] (referred to as %PhAST Prabhakar’)
and the Isomap algorithm[40] (referred to as %PhAST Isomap’). PhAST
Prabhakar was used with gap open penalty=5 and gap extension penal-
ty=1; PhAST Isomap with gap open penalty=8 and gap extension pen-
alty=1. With all versions of PhAST the published standard score matrix
was used.[27] In contrast to the original version of PhAST, we calculated
the alignment score normalized to the alignment length as a similarity
measure between aligned sequences instead of sequence identity. These
modifications were shown to be superior to the original approach.[41]

PRPS : Pseudoreceptor point similarity (PRPS) is a virtual screening tool
bridging receptor- and ligand-based screening techniques.[28] Starting
from a 3D conformation of a ligand, PRPS projects potential interaction
points into the surrounding space mimicking a surrounding “idealized”
receptor pocket. Location of interaction points depends on known pre-
ferred distances and angles of the respective hypothetical interaction, as-
sumed to be possible at this position of the ligand. The type of an interac-
tion point (hydrogen-bond donor, hydrogen-bond acceptor, p stacking
(“aromatic”)) is complementary to the respective potential pharmaco-
phoric point of the ligand. The spatial arrangement of generated interac-
tion points is then transformed into an alignment-invariant representa-
tion as a cross-correlation descriptor. PRPS compares two molecules by
calculating the Euclidian distance between their descriptor representa-
tions. A PRPS model can be computed for a single ligand or for a set of
multiple ligands. In the latter case the model is built based on an align-
ment of all compounds, and projected interaction points are weighted by
the number of molecules that projected them to the same location.

ShaEP : ShaEP is a tool for 3D ligand-based virtual screening that evalu-
ates the similarity between two molecules by means of spatial overlap in
volume and calculated electrostatic potential fields.[29] Rigid body align-
ment of the molecules is performed to optimize overlaps. Ligand flexibili-
ty can be addressed implicitly by not only comparing a single conforma-
tion of both molecules but instead by performing an exhaustive pairwise
comparison of conformation ensembles. For ShaEP screenings, up to 10
conformations of both the reference ligand and each screening compound
were generated using the stochastic conformer generation routine of
MOE. Partial charges for every conformation were calculated according
to the MMFF94 parameter set available in MOE. Only the highest score
of all pairwise comparisons was considered for the final ranking of
screening compounds.

Homology model : A comparative protein model (“homology model”) of
SaTK was built using the web service of Swiss Model[42,43] in automated
mode. The crystal structure of Bacillus anthracis thymidine kinase (PDB
identifier: 2j9r, chain A) served as template. The query sequence was de-
rived from S. aureus ATCC 700699 thymidine kinase (access number:
NP_372643).

Automated ligand docking : Docking experiments were performed using
the software GOLD[44] with the ASP scoring function. Residues F92,
L116, D119, F120, F125, T155, R157, I170, I171, L172, V173, G174, and
Y179 defined the binding site. Initial 3D conformations of docked com-
pounds were calculated by CORINA prior to docking.

Microdilution assay : Minimal inhibitory concentrations (MICs) of the po-
tential different thymidine kinase inhibitors alone and in combination
with SXT against S. aureus strain ATCC 700699 and S. aureus ATCC
29213 in the presence of thymidine were determined according to Clini-
cal and Laboratory Standards Institute (CLSI) guidelines with some
modifications.[34] Therefore, a bacterial suspension (95 mL, exponential
growth phase) of S. aureus strains (ca. 5$105 cellsmL!1) in cation-adjust-
ed Mueller–Hinton broth (Becton, Dickinson and Company, Sparks,
USA) supplemented with thymidine (200 mgL!1; Sigma–Aldrich, Munich,
Germany) and with or without trimethoprim/sulfamethoxazole (40 mg)
in a ratio of 1:19 (both Sigma–Aldrich) was added to each well of a 96-
well microtiter plate (Greiner, Monroe, USA). A solution (5 mL) of dif-
ferent potential thymidine kinase inhibitors in various dilutions was
added to each well (range of final concentrations: 0.03125 to 128 mgL!1).
After 20 h of incubation at 37 8C, MICs were determined. Experiments
were performed in triplicate.
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