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Abstract

Event-by-event fluctuations of the net baryon number and electric charge in nucleus-nucleus

collisions are studied in Pb+Pb at SPS energies within the HSD transport model. We reveal

an important role of the fluctuations in the number of target nucleon participants. They strongly

influence all measured fluctuations even in the samples of events with rather rigid centrality trigger.

This fact can be used to check different scenarios of nucleus-nucleus collisions by measuring the

multiplicity fluctuations as a function of collision centrality in fixed kinematical regions of the

projectile and target hemispheres. The HSD results for the event-by-event fluctuations of electric

charge in central Pb+Pb collisions at 20, 30, 40, 80 and 158 A GeV are in a good agreement

with the NA49 experimental data and considerably larger than expected in a quark-gluon plasma.

This demonstrate that the distortions of the initial fluctuations by the hadronization phase and,

in particular, by the final resonance decays dominate the observable fluctuations.
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I. INTRODUCTION

The aim of the present paper is to study the fluctuations of the net baryon number and

electric charge in nucleus-nucleus (A+A) collisions at SPS energies. We use the HSD [1]

transport approach which reproduces both the different particle multiplicities and longitu-

dinal differential rapidity distributions for central collisions of Au+Au (or Pb+Pb) from

AGS to SPS energies rather well [2]. (see, e.g., Refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and

references therein) reveal a new physical information. The fluctuations in A+A collisions

are studied on an event-by-event basis: a given observable is measured in each event and

the fluctuations are evaluated for a specially selected set of these events. We recall that the

statistical model has been successfully used to describe the data on hadron multiplicities in

relativistic A+A collisions (see, e.g., Ref. [13] and a recent review [14]) as well as in ele-

mentary particle collisions [15]. This gives rise to the question whether the fluctuations, in

particular the multiplicity fluctuations, do also follow the statistical hadron-resonance gas

results. Recently the particle number fluctuations have been studied in different statistical

ensembles [16]; the statistical fluctuations can be closely related to phase transitions in QCD

matter, with specific signatures for 1-st and 2-nd order phase transitions as well as for the

critical point [6, 7].

In addition to the statistical fluctuations the complicated time evolution of A+A col-

lisions generates dynamical fluctuations. The fluctuations in the initial energy deposited

inelastically in the statistical system yield dynamical fluctuations of all macroscopic param-

eters, like the total entropy or strangeness content. The observable consequences of the

initial energy density fluctuations are sensitive to the equation of state, and can therefore

be useful as signals for phase transitions [12]. Even when the data are obtained with a

centrality trigger the number of nucleons participating in inelastic collisions still fluctuates

considerably. In the language of statistical mechanics, these fluctuations in the participant

nucleon number correspond to volume fluctuations. Secondary particle multiplicities scale

linearly with the volume, hence, volume fluctuations translate directly to particle number

fluctuations.

The present work is a continuation of our recent study [17] where we have analyzed the

charged particle number fluctuations in Pb+Pb collisions at 158 AGeV within the UrQMD

and HSD transport approaches. The net baryon number and electric charge event-by-event
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fluctuations are studied in different rapidity regions of the projectile and target hemispheres.

The paper is organized as follows. Section II presents the HSD results for the fluctua-

tions of the number of nucleon participants while Sections III and IV give the net baryon

number fluctuations and electric charge fluctuations, respectively. In Section V we discuss

the fluctuations in the samples of most central collisions, Section VI shows a comparison of

our calculations with experimental data from the NA49 Collaboration, whereas Section VII

finally concludes the present study.

II. FLUCTUATIONS OF THE NUMBER OF PARTICIPANTS

In each A+A collision only a fraction of all 2A nucleons interact. These are called par-

ticipant nucleons and are denoted as Nproj
P and N targ

P for the projectile and target nuclei,

respectively. The nucleons, which do not interact, are called the projectile and target spec-

tators, Nproj
S = A − Nproj

P and N targ
S = A − N targ

P . The fluctuations in high energy A+A

collisions are dominated by a geometrical variation of the impact parameter. However, even

for the fixed impact parameter the number of participants, NP ≡ Nproj
P + N targ

P , fluctuates

from event to event. This is due to the fluctuations of the initial states of the colliding

nuclei and the probabilistic character of the interaction process. The fluctuations of NP

form usually a large and uninteresting background. In order to minimize its contribution

the NA49 Collaboration has selected samples of collisions with a fixed numbers of projectile

participants. This selection is possible due to a measurement of Nproj
S in each individual

collision by a calorimeter which covers the projectile fragmentation domain. However, even

in the samples with Nproj
P = const the number of target participants fluctuates considerably.

Hence, an asymmetry between projectile and target participants is introduced, i.e. Nproj
P is

constant by constraint, whereas N targ
P fluctuates independently.

In the following the variance, V ar(n) ≡ 〈n2〉 − 〈n〉2, and scaled variance, ωn ≡
V ar(n)/〈n〉, where n stands for a given random variable and 〈· · · 〉 for event-by-event averag-

ing, will be used to quantify fluctuations. In each sample with Nproj
P = const the number of

target participants fluctuates around its mean value, 〈N targ
P 〉 with the scaled variance ωtarg

P .

From an output of the HSD minimum bias simulations of Pb+Pb collisions at 158 AGeV

we form the samples of events with fixed values of Nproj
P . Fig. 1 presents the HSD average

value 〈N targ
P 〉 (left) and the scaled variances ωtarg

P (right) as functions of Nproj
P . One finds
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〈N targ
P 〉 ≃ Nproj

P ; the deviations are only seen at very small (Nproj
P ≈ 1) and very large

(Nproj
P ≈ A) numbers of projectile participants. The fluctuations of N targ

P are quite strong:

ωtarg
P > 2 at Nproj

P = 10 − 80.
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FIG. 1: The HSD simulations in Pb+Pb collisions at 158 AGeV for the average value 〈N targ
P 〉

(left) and the scaled variances ωtarg
P (right) as functions of Nproj

P .

The consequences of the asymmetry between projectile and target hemispheres depend

on the A+A dynamics. According to Ref. [18] different models of hadron production in

relativistic A+A collisions can be divided into three limiting groups: transparency (T-),

mixing (M-), and reflection (R-) models. The rapidity distributions resulting from the T-,

M-, and R-models are sketched in Fig. 2 taken from Ref. [18]. We note that there are models

which assume the mixing of hadron production sources, however, the transparency of baryon

flows, e.g. three-fluid hydrodynamical model [19]. R-models appear rather unrealistic and

are included for completeness in our discussion.

III. NET BARYON NUMBER FLUCTUATIONS

We begin with a quantitative discussion by first considering the fluctuations of the net

baryon number in different regions of the participant domain in collisions of two identical

nuclei. These fluctuations are most closely related to the fluctuations of the number of

participant nucleons because of baryon number conservation.

The HSD results for ωB in Pb+Pb at 158 AGeV are presented in Fig. 3. In each event

we subtract the nucleon spectators when counting the number of baryons. The net baryon

number in the full phase space, B ≡ NB−NB, equals then to the total number of participants
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FIG. 2: The sketch of the rapidity distributions of the baryon number or the particle production

sources (horizontal rectangles) in nucleus-nucleus collisions resulting from the transparency, mixing

and reflection models. The spectator nucleons are indicated by the vertical rectangles. In the

collisions with a fixed number of projectile spectators only matter related to the target shows

significant fluctuations (vertical arrows). See Ref. [18] for more details.

NP = N targ
P + Nproj

P . At fixed Nproj
P the NP number fluctuates due to fluctuations of N targ

P .

These fluctuations correspond to an average value, 〈N targ
P 〉 ≃ Nproj

P , and a scaled variance,

ωtarg
P (see Fig. 1). Thus, for the net baryon number fluctuations in the full phase space we

find,

ωB =
V ar(NP )

〈NP 〉
≃ 〈

(

N targ
P

)2〉 − 〈N targ
P 〉2

2〈N targ
P 〉

=
1

2
ωtarg

P . (1)

A factor 1/2 in the right hand side of Eq. (1) appears because only half of the total number

of participants fluctuates.

Let us introduce ωp
B and ωt

B, where the superscripts p and t mark quantities measured

in the projectile and target momentum hemispheres, respectively. Fig. 3 demonstrates that
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FIG. 3: The HSD simulations for Pb+Pb collisions at 158 AGeV for fixed values of Nproj
P . Left:

The baryon number fluctuations in full acceptance, ωB, in projectile hemisphere, ωp
B (lower curve),

and in target hemisphere, ωt
B (upper curve). The dashed line, 0.5 ωtarg

P , demonstrates the validity

of the relation (1). Right: The scaled variances of the baryon number fluctuations in different

rapidity intervals.

ωt
B > ωp

B, both in the whole projectile-target hemispheres and in the symmetric rapidity

intervals. On the other hand one observes that ωp
B ≈ ωt

B in most central collisions. This

is because the fluctuations of the target participants become negligible in this case, i.e.

ωtarg
P → 0 (Fig. 1, right). As a consequence the fluctuations of any observable in the

symmetric rapidity intervals become identical in most central collisions. Note also that

transparency-mixing effects are different at different rapidities. From Fig. 1 (right) it follows

that ωp
B in the target rapidity interval [−2,−1] is much larger than ωt

B in the symmetric

projectile rapidity interval [1, 2]. This fact reveals the strong transparency effects. On the

other hand, the behavior is different in symmetric rapidity intervals near the midrapidity.

From Fig. 1 (right) one observes that ωp
B in the target rapidity interval [−1, 0] is already

much closer to ωt
B in the symmetric projectile rapidity interval [0, 1]. This gives a rough

estimate of the width, ∆y ≈ 1, for the region in rapidity space where projectile and target

nucleons communicate to each others.

By assumption, the mixing of the projectile and target participants is absent in T- and

R-models. Therefore, in T-models, the net baryon number in the projectile hemisphere

equals to Nproj
p and does not fluctuate, i.e. ωp

B(T ) = 0, whereas the net baryon number in

the target hemisphere equals to N targ
p and fluctuates with ωt

B(T ) = ωtarg
P . These relations
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are reversed in R-models. We introduce now a mixing of baryons between the projectile

and target hemispheres. Let α be the probability for a (projectile) target participant to

be detected in the (target) projectile hemisphere. We denote by nt and np the number of

baryons which end uo in the target and projectile hemisphere, respectively, from the opposite

hemisphere. Then the probabilities to detect Bt baryons in the target hemisphere, and Bp

baryons in the projectile hemisphere, can be written as,

P (Bt; Nproj
P ) =

∑

N
targ

P

W (N targ
P ; Nproj

P )

N
targ

P
∑

nt=1

N
proj

P
∑

np=1

αnp

(1 − α)N
targ
P

−np N targ
P !

np!(N targ
P − np)!

× αnt

(1 − α)N
proj

P
−nt Nproj

P !

nt!(Nproj
P − nt)!

δ
(

Bt − N targ
P − nt + np

)

, (2)

P (Bp; Nproj
P ) =

∑

N
targ
P

W (N targ
P ; Nproj

P )

N
targ

P
∑

nt=1

N
proj

P
∑

np=1

αnp

(1 − α)N
targ

P
−np N targ

P !

np!(N targ
P − np)!

× αnt

(1 − α)N
proj

P
−nt Nproj

P !

nt!(Nproj
P − nt)!

δ
(

Bp − Nproj
P − np + nt

)

, (3)

where W (N targ
P ; Nproj

P ) is the probability distribution of N targ
P in a sample with fixed value

of Nproj
P . From Eqs. (2,3) with a straightforward calculation we find:

ωt
B = (1 − α)2 ωtarg

P + 2α(1 − α) , ωp
B = α2 ωtarg

P + 2α(1 − α) . (4)

A (complete) mixing of the projectile and target participants is assumed in M-models. Thus

each participant nucleon with equal probability, α = 1/2, can be found either in the target

or in projectile hemispheres. In M-models the fluctuations in both projectile and target

hemispheres are identical. The limiting cases, α = 0 and α = 1, of Eq. (4) correspond to

T- and R-models, respectively. In summary, the scaled variances of the net baryon number

fluctuations in the projectile, ωp
B, and target, ωt

B, hemispheres are:

ωp
B(T ) = 0 , ωt

B(T ) = ωtarg
P , (5)

ωp
B(M) = ωt

B(M) =
1

2
+

1

4
ωtarg

P , (6)

ωp
B(R) = ωtarg

P , ωt
B(R) = 0 , (7)

in the T- (5), M- (6) and R- (7) models of the baryon number flow. The different models

lead to significantly different predictions for ωp
B and ωt

B.

7



0 50 100 150 200
0

1

2

3

y<0
 HSD
 T-model
 M-model
 R-model

t B

Nproj
P

 
0 50 100 150 200

0

1

2

3
 HSD
 R-model
 M-model
 T-model

p B

Nproj
P

 

y>0

FIG. 4: The ωt
B (left) and ωp

B (right) of the HSD simulations in comparison to T-, M- and R-models

(5-7), with ωtarg
P taken from Fig. 1.

In Fig. 4 we show the predictions of T-, M- and R-models (5-7) with ωtarg
P from Fig. 1

for Pb+Pb collisions at 158A GeV. From Fig. 4 one concludes that the HSD results are

close to the T-model estimates for baryon flow. However, the deviations from the results

(5) are clearly seen: ωp
B > 0 and ωt

B > ωtarg
P . One can not fit the HSD values of ωt

B

and ωp
B by Eq. (4). To make ωp

B > 0 one needs α > 0, but this induces ωt
B < ωtarg

P ,

i.e. a mixing of baryons between the projectile and target hemispheres creates a non-zero

baryon number fluctuations in the projectile hemisphere on the expense of fluctuations in

the target hemisphere. Indeed, it follows from Eq. (4) that ωp
B increases with α for all α, if

ωtarg
P > 1, and for α < (2− ωtarg

P )−1, if ωtarg
P < 1. On the other hand, ωt

B increases with α if

α < (1 − ωtarg
P )(2 − ωtarg

P )−1. This shows that an increase of ωt
B with α is only possible for

ωtarg
P < 1. Thus for ωtarg

P > 1 one finds an increase of ωp
B with α and a decrease of ωt

B with

α for all physical values of α from 0 to 1. Therefore, we conclude that the HSD values of

ωt
B (i.e. the fact that ωt

B > ωtarg
P ) can not be explained by Eq. (4) with α > 0.

The numbers of target and projectile participants are defined as N targ
P ≡ A − N targ

S and

Nproj
P ≡ A−Nproj

S . The actual event-by-event numbers of baryons in the target and projectile

hemispheres, N t
B and Np

B, may differ from N targ
P and Nproj

P . This is because a transfer of

baryons between the projectile and target hemispheres arises from the production of baryon-

antibaryon pairs. The partners of each newly created bb-pair can be detected with non-zero

probability in different hemispheres. We introduce bt ≡ N t
B − N targ

P and the number of

antibaryons in the target hemisphere, b
t
. Similarly, bp ≡ Np

B −Nproj
P , while b

p
is the number
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of antibaryons in the projectile hemisphere. One finds:

ωt
B ≡ V ar(N targ

P + bt − b
t
)

〈Bt〉 = ωtarg
P

+
1

Nproj
P

[

V ar(bt) + V ar(b
t
) + 2 ∆(N targ

P , bt) − 2 ∆(N targ
P , b

t
) − 2 ∆(bt, b

t
)

]

,

(8)

ωp
B ≡ V ar(Nproj

P + bp − b
p
)

〈Bp〉 =
1

Nproj
P

[

V ar(bp) + V ar(b
p
) − 2 ∆(bp, b

p
)

]

, (9)

where

∆(N1, N2) ≡ 〈N1 · N2〉 − 〈N1〉 · 〈N2〉 . (10)

As Nproj
P = const in the sample, it follows that ωproj

P = 0, ∆(Nproj
P , bp) = 0, ∆(Nproj

P , b
p
) = 0,

these terms are absent in the r.h.s. of Eq. (9). Different terms of Eq. (8) and Eq. (9)

found from the HSD simulations are presented in Fig 5. One observes that terms of
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FIG. 5: Different terms of Eq. (8), left, and Eq. (9), right, are presented as a function of Nproj
P .

Eq. (8,9) expressing the fluctuations of antibaryons, V ar(b
p
)/Nproj

P , and the correlation

terms, 2∆(N targ
P , b

t
)/Nproj

P and − 2∆(bt, b
t
)/Nproj

P , with antibaryons included, are small.

Therefore, one finds, ωp
B

∼= V ar(bp)/Nproj
P . In the target hemisphere, the ωtarg

P gives the

main contribution to ωt
B in Eq. (8). The term V ar(bt)/Nproj

P also contributes to ωt
B, sim-

ilarly to that, V ar(bp)/Nproj
P , in the projectile hemisphere. However, the main additional

term to ωt
B is 2∆(N targ

P , bt)/Nproj
P , which is due to (positive) correlations between N targ

P

and bt. This implies that in events with large N targ
P (i.e. N targ

P > 〈N targ
P 〉 ∼= Nproj

P ) some

additional baryons move from the projectile to the target hemisphere, and when N targ
P is
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FIG. 6: The HSD results for Pb+Pb collisions at 158 AGeV for the rapidity distributions of baryon

numbers in nonsymmetric samples with Nproj
P = 50, N targ

P = 78 (left), and Nproj
P = 50, N targ

P = 20

(right).

small (i.e. N targ
P < 〈N targ

P 〉 ∼= Nproj
P ) the baryons move in the reverse direction from the

target to the projectile hemisphere as shown in Fig. 6.

This HSD result looks rather unexpected. We remind that Eq. (4) predicts for ωt
B the

opposite behavior: due to a simple mixing of baryons between the target and projectile

hemispheres the initially large fluctuations, ωtarg
P , are transformed into smaller ones, ωt

B.

It seems that the origin of this effect is the following: For N targ
P > Nproj

P each projectile

nucleon interacts, in average, more often than the target nucleon. The projectile participant

loses then a larger part of its energy, and in the rapidity space its position becomes closer

to yc.m. = 0 than the position of target participants. This gives to projectile participants

more chances to move due to further rescatterings from projectile to target hemisphere, in

a comparison with target participants to move in the opposite direction. For N targ
P < Nproj

P

there is a reverse situation. This fact was not taken into account in Eqs. (2,3) where it has

been assumed that the mixing probability α is the same for projectile and target participants,

and independent of N targ
P .

IV. NET ELECTRIC CHARGE FLUCTUATIONS

The T-, M- and R-models give very different predictions for ωp
B and ωt

B for the samples

of events with fixed values of N targ
P . Additional interesting correlations between the Bt and

Bp numbers, as those seen in the HSD simulations, can be expected. Unfortunately, they
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may be difficult to test experimentally as an identification of protons and a measurement

of neutrons in a large acceptance in a single event is difficult. Measurements of the charged

particle multiplicity in a large acceptance can be performed with the existing detectors.

In this section we consider the HSD results for the net electric charge, Q, fluctuations.

As Q ∼= 0.4B in the initial heavy nuclei one can naively expect that Q fluctuations are

quite similar to B fluctuations. We stress, however, a principal difference between Q and

B in relativistic A+A collisions. Fig. 7 demonstrates the rapidity distributions of the net

baryon number, B = NB − NB (left), and total number of baryons, NB + NB (right), for

different centralities in Pb+Pb collisions at 158 AGeV. One observes that both quantities

are very close to each other; the y-dependence and absolute values are very close for B and

NB−NB distributions. This is, of course, because the number of antibaryons is rather small,

NB ≪ NB.
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FIG. 7: The HSD rapidity distributions in Pb+Pb collisions at 158 AGeV for the net baryon

number, B = NB − NB (left), and total number of baryons, NB + NB (right), at different Nproj
P

and in the minimum bias (m.b.) sample.

Fig. 8 shows the same as Fig. 7 but for the electric charge Q = N+ − N− (left), and

total number of charged particles, Nch ≡ N+ + N− (right). The y-dependence of dQ/dy

and dNch/dy is quite different. Besides, the absolute values of Nch are about 10 times larger

than those of Q. This implies that Q ≪ N+ ≈ N−.

In the previous section we have used the scaled variance ωB to quantify the measure of

the net baryon fluctuations. It appears to be a useful variable as ωB is straightforwardly

connected to ωtarg
P and due to the relatively small number of antibaryons. Fig. 8 tells that

ωQ is a bad measure of the electric charge fluctuations in high energy A+A collisions. One
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FIG. 8: The same as in Fig. 7 but for the electric charge Q = N+ − N− (left), and total number

of charged particles, Nch ≡ N+ + N− (right).

observes that ωQ ≡ V ar(Q)/〈Q〉 is much larger than 1 simply due to the small value of 〈Q〉
in a comparison with N+ and N−. If the A+A collision energy increases, it follows, 〈Q〉 → 0,

and thus ωQ → ∞. The same will happen with ωB, too, at much larger energies. A useful

measure of the net electric charge fluctuations is the quantity (see, e.g., [10]):

XQ ≡ V ar(Q)

〈Nch〉
. (11)

A value of XQ can be easily calculated for the Boltzmann ideal gas in the grand canonical

ensemble. In this case the number of negative and positive particles fluctuates according

to the Poisson distribution (i.e. ω− = ω+ = 1), and the correlation between N+ and N−

are absent (i.e. 〈N+N−〉 = 〈N+〉〈N−〉), so that XQ = 1. On the other hand, the canonical

ensemble formulation (i.e. when Q = const fixed exactly for all microscopic states of the

system) leads to XQ = 0. Fig. 9 shows the results of the HSD simulations for the full

acceptance, for the projectile and target hemispheres (left), and also for symmetric rapidity

intervals in the c.m.s. (right).

The Q fluctuation in the full acceptance is due to N targ
P fluctuations. As Q ∼= 0.4B in

colliding (heavy) nuclei, one may expect V ar(Q) ∼= 0.16 V ar(B). In addition, 〈Nch〉 ∼= 4〈NP 〉
at 158 AGeV, so that one estimates XQ

∼= 0.04 ωB for the fluctuations in the full phase space.

The actual values of XQ presented in Fig. 9 (left) are about 3 times larger. This is because

of Q fluctuations due to different event-by-event values of proton and neutron participants

even in a sample with fixed values of Nproj
P and N targ

P .

From Fig. 9 (right) one sees only a tiny difference between the XQ values in the symmetric
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FIG. 9: Left: The HSD simulations in Pb+Pb collisions at 158 AGeV for XQ at different values

of Nproj
P in the full acceptance (lower curve), for the projectile (middle curve) and target (upper

curve) hemispheres. Right: The same, but for symmetric rapidity intervals in the c.m.s.

rapidity intervals in the projectile and target hemispheres, and slightly stronger effects for

the whole projectile and target hemispheres (Fig. 9, right). In fact, the fluctuations of N+

and N− are very different in the projectile and target hemispheres, and the scaled variances

ωt
+ and ωt

− have a very strong Nproj
P -dependence. This is shown in Fig. 10 obtained in our

previous study [17].
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FIG. 10: The HSD results for the scaled variances of negatively (left) and positively (right) charged

hadrons in Pb+Pb collisions at 158 AGeV for the projectile (lower curves) and target (upper curves)

hemispheres.
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The XQ can be presented in two equivalent forms

XQ = ω+

〈N+〉
〈Nch〉

+ ω−
〈N−〉
〈Nch〉

− 2
∆(N+, N−)

〈Nch〉
= 2 ω+

〈N+〉
〈Nch〉

+ 2 ω−
〈N−〉
〈Nch〉

− ωch .

(12)

Eq. (12) is valid for any region of the phase space: full phase space, projectile or target

hemisphere, etc. As seen from Fig. 10, both ωt
+ and ωt

− are large and strongly Nproj
P -

dependent. This is not seen in X t
Q because of strong correlations between N t

+ and N t
−, i.e.

the term 2 ∆(N+, N−)/〈Nch〉 compensates ω+ and ω− terms in Eq. (12). This is also seen

from Fig. 11. A cancellation of strong Nproj
P -dependence in the target hemisphere takes

0 50 100 150 200
0

2

4

6

8   y<0
  y>0

Nproj
P

ch

FIG. 11: The HSD results for the scaled variances of all charged hadrons, ωch, in Pb+Pb collisions

at 158 AGeV for the projectile (lower curve) and target (upper curve) hemispheres.

place between the sum of ωt
+ and ωt

− terms of Eq. (12), and the ωt
ch-term.

Fig. 12 shows a comparison of the HSD results for XQ with NA49 data in Pb+Pb collisions

at 158 AGeV for the forward rapidity interval 1.1 < y < 2.6 inside the projectile hemisphere

with additional pT -filter imposed. As an illustration, the HSD results in the symmetric

backward rapidity interval −2.6 < y < −1.1 (target hemisphere) are also included. One

observes no difference between the XQ results for the NA49 acceptance in the projectile

and target hemispheres. The HSD values for ω+, ω−, and ωch are rather different in the

projectile and target hemispheres for the NA49 acceptance (see Figs. 10 and 11). This is

not seen in Fig. 12 for XQ. As explained above a cancellation between ω+, ω− and ωch terms

take place in Eq. (12). In fact, NA49 did not perform the XQ measurements. The XQ-data

(solid dots) presented in Fig. 12 are obtained from Eq. (12) using the NA49 data for ω+,
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FIG. 12: The HSD results for XQ for Pb+Pb collisions at 158 AGeV for the forward rapidity

interval 1.1 < y < 2.6 inside the projectile hemisphere. The solid dots are the estimates obtained

from Eq. (12) using the NA49 experimental data [20] (the errorbars are not indicated here). For

illustration, the HSD results in the symmetric backward rapidity interval −2.6 < y < −1.1 (target

hemisphere) are also presented.

ω−, and ωch as well as 〈N+〉, 〈N−〉, and 〈Nch〉 [20]. Such a procedure leads, however, to

very large errors for XQ (which are not indicated in Fig. 12) which excludes any conclusion

about the (dis)agreement of HSD results with NA49 data.

V. FLUCTUATIONS IN MOST CENTRAL COLLISIONS

In this section we consider the baryon number and electric charge fluctuations in the

symmetric rapidity interval [−y, y] in the c.m.s. for the most central Pb+Pb events. We

chose the sample of most central events by restricting the impact parameter to b < 2 fm.

It gives about 2% most central Pb+Pb collisions from the whole minimum bias sample.

Fig. 13 shows the HSD results for electric charge fluctuations in 2% most central Pb+Pb

collisions for the symmetric rapidity interval ∆Y = [−y, y] in the c.m.s. as the function

of ∆y = ∆Y/2. For ∆Y → 0 one finds XQ → 1. This can be understood as follows: For

∆Y → 0 the fluctuations of negatively, positively and all charged particles behave as for

the Poisson distribution: ω+
∼= ω−

∼= ωch
∼= 1. Then from Eq. (12) it follows that XQ

∼= 1,

too. From Fig. 13 (right) one observes that ω+, ω−, and ωch all increase with increasing

interval ∆Y . However, XQ decreases with ∆Y and – because of global Q conservation – it
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FIG. 13: The HSD results for electric charge fluctuations in 2% most central Pb+Pb collisions at

158 AGeV in the symmetric rapidity interval , ∆Y = [−y, y] as a function of ∆y = ∆Y/2 in the

c.m.s. A left panel shows the behavior of XQ, and a right one demonstrates separately ω+, ω−,

and ωch.

goes approximately to zero when all final particles are accepted.

In Fig. 14 (left) the HSD results for the scaled variances are presented in full acceptance

as functions of Nproj
P . Fig.14 (right) demonstrates the probability distribution of events with

b < 2 fm over Nproj
P . One observes that even in the 2% centrality sample the values of Nproj

P
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8
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ch
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FIG. 14: The HSD results in Pb+Pb collisions at 158 AGeV. Left: The scaled variances ω+, ω−,

and ωch in the full acceptance. Right: The distributions of events over Nproj
P in most central

collisions with b < 2 fm.

are noticeably smaller than the maximum value, A = 208. As seen from Fig. 14 (left) the

HSD values of ω+, ω−, and ωch become then essentially larger than 1 in agreement with
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those presented in Fig. 13.

Fig. 15 shows the net baryon number fluctuations in the symmetric rapidity interval

[−y, y] in the c.m.s. as the function of ∆Y . As a measure of the net baryon number
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y

X
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 antibaryons
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 total 
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 B
FIG. 15: The HSD results for net baryon number fluctuations in 2% most central Pb+Pb collisions

at 158 AGeV in the symmetric rapidity interval ∆Y = [−y, y] as a function of ∆y = ∆Y/2 in the

c.m.s. The left panel shows the behavior of XB , and a right panel presents separately ωNB
, ωN

B
,

and ωNB+N
B
.

fluctuations we have used the quantity,

XB ≡ V ar(B)

〈NB + NB〉
. (13)

As for the electric charge, one finds that XB → 1 at ∆Y → 0 (this is because all ωNB
, ωN

B
,

and ωNB+N
B

go to 1 in this limit (see Fig. 15, left), and XB → 0 at upper limit of ∆Y

because of global baryon number conservation.

Writing the variance V ar(B) in the form,

V ar(B) = 2 V ar(NB) + 2 V ar(NB) − V ar(NB + NB) , (14)

we find

XB = 2 ωNB

〈NB〉
〈NB + NB〉

+ 2 ωN
B

〈NB〉
〈NB + NB〉

− ωNB+N
B
. (15)

The behavior of the different terms in Eq. (15) is the following: As seen from Fig. 15, right,

ωN
B

∼= 1 for all values of ∆Y . This is because NB ≪ NB, and baryon number conservation

does not affect the fluctuations of antibaryons. Due to the small number of antibaryons in

comparison to baryons, one also observes ωB
∼= ωNB

∼= ωNB+N
B
.
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VI. ELECTRIC CHARGE FLUCTUATIONS IN CENTRAL PB+PB COLLISIONS

AT 20, 30, 40, 80 AND 160 A GEV

In this section we present the HSD results for the event-by-event electric charge fluctu-

ations as measured by the NA49 Collaboration in central Pb+Pb collisions at 20, 30, 40,

80 and 160 A GeV [22]. The interest in this observable (as a signal of deconfinement) is

related to the predicted in Refs.[23, 24] suppression of event-by-event fluctuations of the

electric charge in a quark-gluon plasma relative to a hadron gas. However, these predic-

tions were based on the assumption that the initial electric charge fluctuations survive the

hadronization phase.

The first experimental measurement of charge fluctuations in central heavy-ion collisions

by PHENIX [25] and STAR [26] at RHIC and by the NA49 [22] at SPS showed a quite mod-

erate suppression of the electric charge fluctuations. This observation has been attributed

to the fact that the initial fluctuations are distorted by the hadronization. In particular, the

observed fluctuations might be related to the final resonance decays.

In this respect it is important to compare the experimental data with the results of mi-

croscopic transport models such as HSD where the resonance decays are included by default.

In order to quantify the event-by-event electric charge fluctuations we have calculated the

quantity Φ defined as [22, 27]:

Φq =

√

〈Z2〉
〈N〉 −

√

z2 , (16)

where

z = q − q, Z =
N

∑

i=1

(qi − q). (17)

Here q denotes a single particle variable, i.e. electric charge q; N is the number of particles of

the event within the acceptance, and over-line and 〈...〉 denote averaging over a single particle

inclusive distribution and over events, respectively. By construction, Φ of the system, which

is an independent sum of identical sources of particles, is equal to the Φ for a single source

[27, 28].

In order to remove the sensitivity of the final signal to the trivial global charge conserva-

tion (GCC) the measure ∆Φq is defined as the difference:

∆Φq = Φq − Φq,GCC . (18)
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Here the value of Φq is given by [29, 30]:

Φq,GCC =
√

1 − P − 1, (19)

where

P =
〈Nch〉
〈Nch〉tot

(20)

with 〈Nch〉 and 〈Nch〉tot being the mean charged multiplicity in the detector acceptance and

in full phase space (excluding spectator nucleons), respectively.

By construction, the value of ∆Φq is zero if the particles are correlated by global charge

conservation only. It is negative in case of an additional correlation between positively

and negatively charged particles, and it is positive if the positive and negative particles are

anti-correlated [30].
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FIG. 16: The dependence of the Φq (l.h.s.) and ∆Φq (r.h.s.) on the fraction of accepted particles

for central Pb+Pb collisions at 20-158 AGeV. The NA49 data [22] are shown as full symbols,

whereas the open symbols (connected by lines) stay for the HSD results. The dashed line shows

the dependence expected for the case if the only source of particle correlations is the global charge

conservation Φq,GCC , Eq. 19.

Figure 16 shows the HSD results for the dependence of Φq (l.h.s.) and ∆Φq (r.h.s.) on

the fraction of accepted particles 〈Nch〉 and 〈Nch〉tot (calculated for ten different rapidity

intervals increasing in size from ∆y = 0.3 to ∆y = 3 in equal steps) for central Pb+Pb

collisions at 20, 30, 40, 80 and 158 A GeV. The NA49 data [22] are shown as full symbols,
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whereas the open symbols (connected by lines) reflect the HSD results. The dashed line

shows the dependence expected for the case if the only source of particle correlations is the

global charge conservation Φq,GCC (Eq. (19)).

The data as well as the HSD results for Φq (Fig. 16, l.h.s.) are in a good agreement and

show a monotonic decrease with increasing fraction of accepted particles. After substraction

the contribution by global charge conservation (the dashed line in Fig. 16), the values of

∆Φq vary between 0 and −0.05 which are significantly larger than the values expected for

QGP fluctuations (−0.5 < ∆Φq < −0.15 [30]).
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FIG. 17: The energy dependence of ∆Φq measured in central Pb+Pb collisions for a narrow rapidity

interval ∆y = 1.2 (l.h.s.) and a broad rapidity interval ∆y = 3 (r.h.s.). The NA49 data [22] are

shown as full symbols, whereas the the open symbols (connected by lines) reflect the HSD results.

Figure 17 presents the energy dependences of ∆Φq for two selected rapidity intervals – the

intermediate rapidity interval ∆y = 1.2 (l.h.s.) and for the largest rapidity interval ∆y = 3

(r.h.s.). The both, data and HSD results, show the a weak decrease of ∆Φq with increasing

energy.

The fact that the HSD model, that includes no explicit phase transition, describes the

experimental data can be considered an independent proof that the event-by-event charge

fluctuations are driven by the hadronization phase and dominantly by the resonance decays

(which are naturally included in HSD) and no longer sensitive to the initial phase fluctuations

20



from a QGP.

VII. SUMMARY AND CONCLUSIONS

The goal of this study was to investigate the sensitivity of event-by-event fluctuations

of baryon number and electric charge to the early stage dynamics of hot and dence nu-

clear matter created in heavy-ion collisions at SPS energies and the influance of the futher

hadronization and rescattering phase. For that perpose we have explored the microscopic

HSD transport model which allows also to investigate (on event-by-event basis) the influence

of the experimental acceptance and the set-up on the final observables.

It has been found that the fluctuations in the number of target participants strongly

influences the baryon number and charged multiplicity fluctuations. The consequences of

this fact depend crucially on the dynamics of the initial flows of the conserved charges and

inelastic energy.

For a better quantitative understanding of the microscopic transport model (HSD) results

we have considered 3 limiting groups of models for nucleus-nucleus collisions: transparency,

mixing and reflection. These ”pedagogical” considerations indicate that the HSD model

(as well as UrQMD, cf. Ref. [17]) shows only a small mixing on initial baryon flow and is

closer to the T-model. This supports the findings from Ref. [2] about the influence of the

partonic degrees of freedom on the initial phase dynamics which might increase the mixing

by additional strong parton-parton interactions. Thus, the measurement of the net baryon

number fluctuations helps to quantify the mixing of initial baryon flow.

The first microscopic event-by-event calculations of the charge fluctuations ∆Φq within

the HSD model show a good agreement with the NA49 data at SPS energies. Thus, this

observable is dominated by the final stage danymics, i.e. the hadronization phase and the

resonance decays, and rather insensitive to the initial QGP dynamics.
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M.I. Gorenstein, M. Gaździcki, and O.S. Zozulya, ibid. 585, 237 (2004); M. Gaździcki, J.
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H. Stöcker, Phys. Rev. C 73, 034902 (2006).
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