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Abstract. NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model
from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP), to final non-interacting hadrons. In
this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent
quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down.
Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified
model, we reproduce the constituent quark number scaling.

1 Introduction

The elliptic flow is characterized by the second coefficient
of the Fourier expansion of the momentum distribution,
v2. It was found [1] that the v2 parameter as a function
of the transverse momentum, p⊥, scales with the number
of constituent quarks, ncq, in the detected hadron: if the
v2(p⊥) curves are re-scaled according to the constituent
quark number (NCQ), so v2/ncq is plotted as function of
p⊥/ncq for each type of hadron, the curves will coincide.
Later results showed that the scaling is more precise if
v2 is plotted versus the transverse kinetic energy, E⊥ =√

m2 + p2
⊥ − m.

This experimentally found NCQ scaling law indicates
that the elliptic flow develops before the quarks recombine
into hadrons. Therefore, the v2 can provide information
about the state of the QGP.

The scaling of the flow was studied in Fluid Dynam-
ical (FD) models, where very frequently a close to linear
v2(p⊥) dependence was predicted, which than reproduces
the NCQ scaling[2]. This, however, was a consequence of
the choice of a constant freze out (FO) temperature and
this is not a consequence of the FD approach. If different
fluid elements have different temperatures at FO, this type
of scaling does not occur. This can be demonstrated in the
simple three source model where we have a hotter central
source. See Figure 1.

The FD model describes the dynamical development of
the QGP from the (already thermalized) initial state until
the break-down of the equilibrium, where 1st the chemi-
cal equilibrium among quarks and antiquarks ceases. En-
ergy and momentum conservation and the requirement of
non-decreasing entropy is enforced in the transition, from
the ideal QGP state to the state where quark and anti-quark
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Fig. 1. (color online) v2 versus p⊥ from the three source model,
with two side sources of mass number, As = 50, velocity, ±vx,
where vx = 0.2 and temperature, Ts = 100 MeV. The 3rd central
static source has mass number, Ac = 100. Above and below the
critical temperature of the central source Tcrit = Ts/(γx − ux) the
elliptic flow tends to 0 and 1 respectively. Two sets of curves
are shown for the indicated particle masses ( m = 0.15, 0.5, 1
GeV, [red, green, blue] ) from up down, first with temperature Tc

2%-below and then 2%-above the critical one. The two groups of
curves tending to 1 and 0 respectively with increasing p⊥.

numbers are frozen out. As a consequence, the mass change
of the quarks starts in the initial QGP and we estimate the
final boundary where the FD stage of the evolution ends,
with given constituent quark masses.

In this model, a gas of quarks and anti-quarks expands
in a background field of energy density, B. Initially this
B-field includes the energy of the deconfined perturbative
vacuum and of the gluon fields. As the system expands the
deconfinement starts and the average B decreases. When
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chiral symmetry breaking starts and the quarks gain mass.
Their mass is calculated as function of the temperature and
density. This process can be considered as a simple repre-
sentation of the chiral symmetry breaking and deconfine-
ment in a dynamical transition crossing the Quarkyonic
phase [4].

The point when the quarks recombine into hadrons is
determined from the condition that the average hadron en-
ergy is equivalent to 1.0 − 1.1 GeV, as found from the
systematics of experimental data [3] At recombination, the
thermal and flow equilibrium between particles is broken.
The v2 parameter is determined using two- and three-source
models of the elliptic flow and the particle distributions ob-
tained from the hadronization model.

2 Change of Constituent Quark Mass

To present our arguments we consider the Nambu-Jona-
Lasinio model (NJL) which is motivated by QCD and is
basically a purely quark-quark-interaction theory.
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Fig. 2. Temperature and density dependence of the constituent
quark mass M f according to Eq. (7).

First, let us consider the constituent quark mass in vac-
uum. For three flavours f , i.e. for S U f (3), the constituent
quark masses in vacuum, M0

f = M f (nB = 0,T = 0) where
f = u, d, s, are given by [5,6]

M0
u = mu − 2 GS 〈uu〉0 −GD 〈dd〉0 〈ss〉0 , (1)

M0
d = md − 2 GS 〈dd〉0 −GD 〈uu〉0 〈ss〉0 , (2)

M0
s = ms − 2 GS 〈ss〉0 −GD 〈uu〉0 〈dd〉0 , (3)

where mu = 5 MeV,md = 9 MeV and ms = 130 MeV are
the current quark masses of the u-quark, d-quark and s-
quark, respectively, and GS is the coupling constant of the
scalar-current interaction, and GD is the coupling constant
of the determinantal flavour-mixing term (determinant in
flavour space). According to Eqs. (1) - (3), the constituent

quark masses are related to the chiral condensates in vac-
uum. Typical values of the chiral condensates in vacuum
are given by, cf. Refs. [7,8]:

〈qq〉0 = 〈uu〉0 = 〈dd〉0 = −(0.225 GeV)3 , (4)
〈ss〉0 = 0.7 〈uu〉0 . (5)

Typical values for the coupling constants are GS = (15 −
20) GeV−2, GV ' 0.5 GS and GD = −(160 − 240) GeV−5

[5,6].
Let us now consider the case of quarks in a hot medium

and dense medium, at early times of FD evolution. At this
initial stage we assume to have two flavours only as we
assume that in the initial FD state the flavour balance is
not established yet. Then, relations (1) - (3) for S U f (2)
simplify to

M f = m f − 2 GS 〈qq〉nB,T . (6)

The suffix nB,T at chiral condensate denotes the average
over hadron and meson states [7,9]. In the limit of high
densities and temperatures the constituent quark mass, M f ,
approaches the current quark mass, m f .

Here, in order to determine the density and tempera-
ture dependence of the chiral condensate we follow the
arguments of Ref. [6–8], where the first leading terms of
〈qq〉nB,T in the low-density low-temperature expansion have
been obtained[9] in terms of 〈qq〉0 and the temperature and
baryon density, nB =

∑
f =u,d

(
n f − n f

)
/ 3. Thus, we ob-

tained the expression for the in-medium mass of constituent-
quarks q (either u or d):

M f = m f − 2 Gs〈qq〉0

×

(
1 −

3σq

f 2
π m2

π

nB −
T 2

8 f 2
π

−
T 4

384 f 4
π

−
T 6

288 f 6
π

ln
Λq

T

)
,

(7)

where for the logarithmic scale we take Λq ' 300 MeV,
the pion mass in vacuum is mπ = 138 MeV and the pion
decay constant in vacuum is fπ = 93 MeV. The numerical
value of the quark-sigma-term is σq = 15 MeV (see e.g.
Ref. [6]), which is three times smaller than the nucleon-
sigma-term σN = 45 MeV.

The temperature and density dependence of the con-
stituent quark mass is plotted in Fig. 2. According to Eq.
(7), for sufficiently high temperatures and densities the con-
stituent quark mass will coincide with the current-quark-
mass m f .

3 Non-equilibrium Expansion

The total energy of the bag in the centre-of-mass frame of
the colliding nuclei is given by the volume integral of the
”00” component of the energy momentum tensor of each
cell i, T µν

i = (e + P)uµuν − Pgµν. Considering that our EoS
is given as a sum of the energy and pressure of the ideal
quark parton gas, ei, Pi, and the bag energy density, B, as
e = ei + B and P = Pi − B, the ”00” component becomes
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T 00
i = (ei + Pi)(γi)2 − (Pi − B). Thus the total energy of all

cells of the bag in the centre-of-mass frame of the colliding
nuclei is given by

Etotal =

N∑
i=1

V i
(
γi

)2 (
ei + Pi

)
−

N∑
i=1

V i Pi + V B ,

(8)

where the sum runs over the number of all cells of the bag.
Here, we assume a uniform bag-field energy density, B,
over the whole volume, VCM , which may depend on den-
sity and temperature of the bag, thus on the time of the
evolution of the fireball. We have used the notation ei for
the invariant scalar, rest-frame energy density, and Pi for
the pressure, V i is the volume of cell i in the centre-of-

mass frame, and γi = 1/
√

1 − v2
i where vi is the 3-velocity

of cell i.
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Fig. 3. (color online) Expansion of the gas of quarks and anti-
quarks. The thick (black) solid line is calculated assuming the
quark masses to be equal to the current quark mass, that means it
is identical with the boundary curve in Fig. 2. Beyond that curve,
at higher temperatures and densities, we take M f = m f . The
crossing points on the thick (black) solid line indicate the initial
temperature and initial baryonic density for the non-equilibrium
expansion. From here each thin (red and blue) curve shows the
path of adiabatic and iso-ergic expansion respectively. The adia-
batic expansion (red curves) cool faster and thus more energy is
converted into flow. The trajectories of the iso-ergic dissipative
expansion (blue lines) are plotted for comparison. For these the
temperature falls slower.

In order to determine the rest-frame energy or proper
energy of the cells, we assume a Jüttner distribution for the
quarks and anti-quarks in each cell. This makes it possible
to evaluate the quantities, ei, Pi, in therms of cell temper-
ature and chemical potential assuming still chemical equi-

librium. Similarly the total momentum and total entropy
can also be evaluated

0 = ptotal =

N∑
i=1

V i
(
γi

)2 (
ei + Pi

)
ui , (9)

S total =

N∑
i=1

V i γi si . (10)

In early stages of FO, when chemical equilibrium still
exist we can get in terms of a single chemical potential,
µq = µB/3 and µq̄ = −µB/3 the quark, anti-quark and
total and net baryon densities. In our model we assume
this until the point when the quarks start to acquire mass,
see the corresponding boundary-line on the [T, n] plane in
Figure 2. At this boundary first the chemical equilibrium
(as well as chiral symmetry) break and the quark and anti-
quark numbers are fixed separately! Thus, during the sub-
sequent, non-equilibrium expansion a unique chemical po-
tential does not determine the quark densities, to the con-
trary, the given fixed quark and anti-quark numbers (and
the corresponding decreasing densities) will provide dif-
ferent chemical potentials for quarks and antiquarks (µq ,
−µq̄)!

The reaction until this stage can be described well in
the FD model, which assumes local equilibrium. The QGP
is a nearly perfect fluid, thus a perfect FD method is ade-
quate, like the relativistic Particle in Cell (PIC) method.
One has, nevertheless, to remember that some viscosity
is needed for the stability of the flow, and on theoretical
grounds there must also be a minimal viscosity[10]. In the
PIC method, line in most perfect numerical methods this
minimal viscosity ensured by the numerical viscosity. The
numerical viscosity of the PIC method is recently studied
in reference [11].

There are indications [13,14] that freeze out and had-
ronization happen rapidly and simultaneously from super-
cooled QGP. This happens from the point when the quarks
start to acquire mass, until we reach the empirical hadron
freeze out line [3]. We estimated this boundary on [T, µB]-
plane in the Boltzmann-Jüttner gas approach, see Fig. 2 in
ref. [12]. Let us assume adiabatic expansion between these
two boundaries.

Using the condition that the total entropy is constant,
i.e. the entropy density decreases as s(T,V) = sq(T,V) +
sq̄(T,V) = V0/V s0, the expansion trajectories on the [nB,T ]
plane can be calculated numerically. These trajectories are
plotted in Figure 3.

3.1 Recombination into hadrons

Due to confining forces, finally quarks will recombine into
hadrons. This happens rapidly, out of equilibrium, at the
point of recombination when the average energy per hadron
(including the background field) decreases to EH/NH = 1.2
GeV. This value is still above the values of (1.0− 1.1) GeV
obtained by Cleymans et al. [3]. This corresponds nearly to
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the energy per hadron of the empirically observed freeze-
out. The endpoints of the expansion curves where the re-
combination happens are shown in Fig. 4. At the same
time the rest of the energy is redistributed so that different
hadron species will have different thermal and flow ener-
gies leading to different temperature parameters and flow
velocity parameters. These parameters are actually not the
intensive thermodynamical parameters, which only exist
in equilibrium, these only parametrize the non-equilibrated
distributions of the different hadron species.

Hadrons are assumed to have a mass that is the sum of
the masses of their constituent quarks at the FO, i.e.

Mb = Mb̄ = 3 M f

(
nFO

B ,T FO
)
, (11)

Mm = 2 M f

(
nFO

B ,T FO
)
. (12)
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Fig. 4. (color online) A series of curves of adiabatic expansion
of the gas of quarks and anti-quarks. The crossing points on the
adiabatic expansion curves indicate where the rapid freeze-out
and hadronization happens. These points are determined based on
the condition that the energy of the system, including the back-
ground field, divided by the estimated number of hadrons reaches
1.2 GeV hadron, still above the observed FO energy. The solid
(black) line is the same as in Figure 3.

Other differences between the various hadron species are
disregarded. Most of the anti-quarks will pair with quarks
to form mesons, but a small fraction, a, will form anti-
baryons. This ratio, a, can be estimated based on the re-
combination rates given in [16]. Thus the baryon, anti-
baryon and meson densities (nb, nb̄, and nm) are calculated
from the quark and anti-quark densities (nq and nq̄). See
reference [12].

The parameters of the distribution after recombination
are calculated from the condition of energy conservation:
the thermal energy of each hadron type will be equal to the
energy of their constituent quarks, Eth.

M = Eth.
B . Due to the

different masses of baryons and mesons, their temperature
parameters will be different. The temperature ratio Tb/Tm
will correspond to the mass ratio Mb/Mm = 3/2. The dis-
tributions of baryons and mesons for a calculation done
with initial state nB0 = 0.21 fm−3 and Tq0 = 176 MeV .
The resulting final baryon and meson temperatures become
Tb = 228 MeV and Tm = 152 MeV and Tb/Tm = 3/2,
while the final constituent quark mass 308 MeV.

The resulting scaled p⊥ and E⊥ distributions become
identical under this condition, however this is not enough
to reproduce the NCQ scaling of v2(p⊥) indicating that the
recombination influences the flow velocities of the final
hadrons. This concept was already pointed out in ref. [16]
based on the properties of the collision integral. It is im-
portant to point out that the transport theoretical treatment
and the collision integral are applicable also at situations
when the local equilibrium has ceased to exist.

4 The Elliptic Flow

The elliptic flow parameter, v2, can be calculated from the
final, post FO distribution by the Cooper-Frye formula. As-
suming an isochronous FO hypersurface, we obtain simple
expressions for final measurables just as in ref. [2].

As a first approximation, the v2 parameter was calcu-
lated in a two source model, the sources moving in op-
posite directions with the same velocity. The baryons and
mesons were given different flow energies, such that the
ratio of flow energy per quark is (FEb/ncq)/(FEm/ncq) =
3/2. This leads to different flow velocities for baryons and
mesons vM = 0, 21c , vB = 0.26c, and reproduces the
NCQ scaling of the elliptic flow parameter, up to p⊥ = 400
MeV. By this point of the evolution, all energy in the back-
ground field is exhausted and the internal, excitation and
random kinetic energies of the hadrons reach the FO value,
(1.0 − 1.1) GeV.
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Fig. 5. (color online) The re-scaled elliptic flow parameter, v2/ncq,
as a function of p⊥/ncq, calculated from the three-source model.
The dashed (black) curve represents the baryons while the solid
(red) curve represents the mesons. The curves coincide for low p⊥
value, i.e. the NCQ scaling is reproduced for the low p⊥ region
up to ∼ 1 GeV/c.
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In [16] it is shown that the NCQ scaling is more pre-
cise if the v2 coefficient is small. The three-cell model with
one large stationary central cell and two moving side cells
was also studied. The side cells were assumed to have the
same velocities as in the case of the two-cell model, and
the particle number ratio of the central cell to the side cells
was set to Nc/Ns = 10.

The temperature of all cells was the same. The obtained
scaled v2(p⊥) curves are shown in Fig. 5. The three-cell
model is able to reproduce the NCQ scaling of v2 for a
wider range of p⊥ values.

5 Summary

The model is simplified and attempts to provide an insight
to the rapid hadronization and freeze out process in view
of the NCQ scaling. We considered the breaking down of
equilibrium in terms of thermo and fluid dynamical param-
eters, ot the different, M and B, components of the matter.
We intend to implement these concepts on the one hand
in more complex models (like hybrid models) on the one
side and to search for more fundamental reasons for the
observed freeze out features.

This simple model is able of reproducing the NCQ scal-
ing of the elliptic flow. The presence of NCQ scaling in ex-
perimental data suggests that the elliptic flow develops in
the QGP phase, before the quarks recombine into hadrons.
Therefore understanding the origin the elliptic flow can
provide insight into the quark phase of matter.

Acknowledgements

Enlightening discussions with Prof. Daniel D. Strottman,
Dr. Csaba Anderlik and Dr. Etele Molnar are gratefully
acknowledged. This work was supported by the Alexan-
der von Humboldt Foundation, by the Meltzer Fund of the
University of Bergen and by the Computational Subatomic
Physics Project at Uni-Research of the Research Council
of Norway.

References

1. S. S. Adler et al. (PHENIX Collaboration), Phys. Rev.
Lett. 91 (2003) 182301; J. Adams et al. (STAR Col-
laboration), Phys. Rev. Lett. 92 (2004) 052302.

2. P. Huovinen, P.F. Kolb, U. Heinz, P.V. Ruuskanen,
S.A. Voloshin, Phys. Lett. B 503 (2001) 58

3. J. Cleymans, D. Elliott, A. Keranen, and E. Suho-
nen, Phys. Rev. C 57 (1998) 3319; J. Cleymans, H.
Oeschler, and K. Redlich, Phys. Rev. C 59 (1999)
1663; A. Andronik, P. Braun-Munzinger, and J.
Stachel, Nucl. Phys. A 772 (2006) 167; J. Cleymans,
H. Oeschler, K. Redlich, and S. Wheaton, Acta Phys.
Polonica B Proc. Suppl. 3 (2010) 533.

4. L. McLerran, and R.D. Pisarski, Nucl. Phys. A 796
(2007) 83.

5. I.N. Mishustin, L.M. Satarov, H. Stöcker, and
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