
Adequacy of Compositional Translations for
Observational Semantics

Manfred Schmidt-Schauß1, Joachim Niehren2, Jan Schwinghammer3, and
David Sabel1

1 J. W. Goethe-Universität, Frankfurt, Germany
2 INRIA, Lille, France, Mostrare Project

3 Saarland University, Programming Systems Lab, Saarbrücken, Germany

Technical Report Frank-33

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

February 28, 2009

Abstract. We investigate methods and tools for analyzing translations
between programming languages with respect to observational seman-
tics. The behavior of programs is observed in terms of may- and must-
convergence in arbitrary contexts, and adequacy of translations, i.e., the
reflection of program equivalence, is taken to be the fundamental cor-
rectness condition. For compositional translations we propose a notion
of convergence equivalence as a means for proving adequacy. This tech-
nique avoids explicit reasoning about contexts, and is able to deal with
the subtle role of typing in implementations of language extensions.

1 Introduction

Proving correctness of program translations on the basis of operational seman-
tics is an ongoing research topic (see e.g. the recent [7, 18]) that is still poorly
understood when it comes to concurrency and mutable state. We are motivated
by implementations of language extensions that are often packaged into the lan-
guage’s library. Typical examples are implementations of channels, buffers, or
semaphores using mutable reference cells and futures in Alice ML [1, 12], or
using MVars in Concurrent Haskell [13]. Ensuring the correctness of such imple-
mentations of higher-level constructs is obviously important.

In this paper we adopt an observational semantics based on may- and must-
convergence. Two programs are considered equivalent if they exhibit the same
may- and must-convergence behavior in all contexts. This definition is flexible

2 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

and has been applied to a wide variety of programming languages and calculi
in the past. The observation of may- and must-convergence is particularly well-
suited for dealing with nondeterminism as it arises in concurrent programming
[2, 17, 11].

We study implementations of language extensions in the compilation
paradigm, i.e., by viewing them as translations T : L → L′ from a language
L into another language L′. Such translations are usually compositional in that
T (C[t]) = T (C)[T (t)] for all contexts C and programs t of L. In a naive ap-
proach, one might even want to assume that L is a conservative extension of
L′ so that (non-)equivalences of L′ continue to hold in L. However, this fails in
many cases (see below) due to subtle typing problems.

A translation T : L → L′ is adequate if T (s) ∼L′ T (t) implies s ∼L t for all
programs s and t of L, where ∼L and ∼L′ are the program equivalences of the
respective languages. Adequacy is the basic correctness requirement to ensure
that program transformations of the target language L′ can be soundly applied
with respect to observations made in the source language L.

L

T T(s)

L’
T(L)

s’ = T(t)

s

t

Suppose a translation T (s) is optimized to an equivalent program s′ ∼L′ T (s)
and that s′ is the translation of some t, i.e. T (t) = s′. Any useful notion of
correctness must enforce that s and t are indistinguishable, i.e. s ∼L t. This
is precisely what adequacy of T guarantees. With respect to implementations,
adequacy opens the possibility of transferring contextual equivalences from the
target language L′ to the source language L. For non-deterministic and concur-
rent languages, such equivalences have been established for instance by inductive
reasoning using diagram-based methods directly on an underlying small-step op-
erational semantics [6, 11].

Full abstraction extends adequacy by the inverse property, i.e., that program
equivalence is also preserved by the translation. In the general situation, however,
the language L′ may be more expressive than L and allows us to make more
distinctions, also on the image T (L). Thus we can have T (s) 6∼L′T (t) for some
expressions s, t with s ∼L t.

In denotational semantics, adequacy and full abstraction are well-studied
concepts. In contrast, in this paper we provide a general criterion for proving
adequacy of translations that is not tied to specific models. More precisely, we
show that convergence equivalence implies adequacy of compositional transla-
tions, meaning it is enough to establish that all convergence tests yield the same
results before and after the translation. We also provide a criterion for the full
abstractness of compositional translations for which the target language is a
conservative extension of the source language.

Adequacy of Compositional Translations for Observational Semantics 3

In order to demonstrate these tools, we consider the standard Church en-
coding of pairs in a call-by-value lambda calculus with a fixed point operator
and nondeterministic choice. In order to reason that the encoding of pairs is
adequate, one needs to check, for all lambda terms t with pairs and projections,
that reduction from t may-converges (must-converges, respectively) if and only if
reduction from its encoding T (t) may-converges (must-converges, respectively).
However, even in this seemingly well-understood example, this condition fails if
the lambda calculus is untyped, since the implementation may remove errors,
i.e., T (t) terminates more often than t. If the source-language is typed so that
stuck expressions are excluded, then our tools apply in a smooth way and show
the adequacy of the standard translation, even for differently typed versions of
the lambda calculus that is used as target language. Since neither simple typ-
ing nor Hindley-Milner polymorphic typing are sufficient to make the source
language an extension of the target language, we cannot expect to have an ex-
tension situation under type systems that are commonly used in programming
languages.

Related work. Various proof methods have been developed for establishing
contextual equivalences. These include context lemmas (e.g., [9]), bisimulation
methods (for instance, [5]), diagram-based methods (e.g., [6, 11]), and characteri-
zations of contextual equivalence in terms of logical relations (e.g. [14]). In most
cases, language extensions and their effect on equivalences are not discussed.
There are some notable exceptions: a translation from the core of Standard ML
into a typed lambda calculus is given in [16], and full abstraction is shown by
exhibiting an inverse mapping, up to contextual equivalence. Adequate trans-
lations (with certain additional constraints) between call-by-name and call-by-
value versions of PCF are considered in [15], via fully abstract models (necessi-
tating the addition of parallel constructs to the languages) and domain-theoretic
techniques. The fact that adequate (and fully abstract) translations compose is
exploited in [8], where a syntactic translation is used to lift semantic models
for FPC to ones for the lazy lambda calculus. In a similar vein, the recent [18]
develops a translation from an aspect-oriented language to an ML-like language,
to obtain a model for the former. The adequacy proof follows a similar pat-
tern to ours, but does not abstract away from the particularities of the concrete
languages.

Shapiro [20] categorizes implementations and embeddings in concurrent
scenarios, but does not provide concrete proof methods based on contextual
equivalence. For deterministic languages (where may- and must-convergence
agree), frameworks similar to our proposal were considered by Felleisen [4] and
Mitchell [10]. Their focus is on comparing languages with respect to their ex-
pressive power; the non-deterministic case is only briefly mentioned by Mitchell.
Mitchell’s work is concerned with (the impossibility of) translations that ad-
ditionally preserve representation independence of ADTs, and consequently
assumes, for the most part, source languages with expressive type systems.
Felleisen’s work is set in the context of a Scheme-like untyped language. Although
the paper discusses the possibility of adding types to get stronger expressiveness

4 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

x, y ∈ Var

r, s, t ∈ Expcp ::= w | t1 t2 | t1 ⊕ t2

v, w ∈ Valcp ::= x | λx.t | unit | fix
| (w1,w2) | fst | snd

Fig. 1. Syntax of λcp

E ::= [] | E t | w E | | E⊕ t | w ⊕ E

Fig. 2. Evaluation Contexts E

(β-cbv) E[(λx.t) w] → E[t[w/x]]

(fix) E[fix λx.t] → E[t[(λy.(fix λx.t)y)/x]]

(⊕l) E[w1 ⊕ w2] → E[w1]

(⊕r) E[w1 ⊕ w2] → E[w2]

(sel-f) E[fst (w1,w2)] → E[w1]

(sel-s) E[snd (w1,w2)] → E[w2]

Fig. 3. Small-Step Reduction

statements, the theory of expressiveness is developed by abandoning principles
similar to adequacy.

Outline. Section 2 recalls the encoding of pairs in the non-deterministic
lambda calculus, introduces rigorous notions of observables, and illustrates the
need for types. In Section 3 a general framework for proving observational cor-
rectness as well as adequacy of translations is introduced. Section 4 shows the
adequacy of the pair encoding using a simple type system and discusses two
extensions.

2 Non-deterministic Call-by-Value Lambda Calculi

In this section, we recall the call-by-value lambda calculus with a fixed point
operator and nondeterministic choice, and present its observational semantics on
the basis of may- and must-convergence. We illustrate why Church’s encoding
of pairs in this calculus fails to be observationally correct in the untyped case.

2.1 Languages

The calculus λcp is the usual call-by-value lambda calculus extended by a (de-
monic, see [21]) choice operator, a call-by-value fixed point operator for recursion,
pairs (w1,w2) and selectors fst and snd as data structure, and a constant unit.
Fixing a set of variables Var, the syntax of expressions Expcp and values Valcp is
shown in Fig. 1. The subcalculus λc is the calculus without pairs and selectors
and will be used as target language. We use Expc (Valc, resp.) for the set of
λc-expressions (λc-values, resp.).

A context C is an expression with a hole denoted with [], C[s] is the result of
placing the expression s in the hole of C. For both calculi we require call-by-value
evaluation contexts E which are introduced in Fig. 2. With s1[s2/x] we denote
the capture-free substitution of variable x with s2 for all free occurrences of x
in s1. To ease reasoning we assume that the distinct variable convention holds
for all expressions, i.e. that the bound variables of an expression are all distinct
and free variables are distinct from bound variables.

The reduction rules for both calculi are defined in Fig. 3. Small step reduction
→cp of λcp is the union of all six rules, and small step reduction →c of λc is the

Adequacy of Compositional Translations for Observational Semantics 5

enc(x) = x enc(fix) = fix

enc(unit) = unit enc((w1,w2)) = λs. (s enc(w1) enc(w2))

enc(λx.t) = λx.enc(t) enc(fst) = λp. (p λx.λy.x)

enc(t1 t2) = enc(t1) enc(t2) enc(snd) = λp. (p λx.λy.y)

enc(t1 ⊕ t2) = enc(t1)⊕ enc(t2)

Fig. 4. Translation of λcp into λc

union of the first four rules. We assume that reduction preserves the distinct
variable convention by implicitly performing α-renaming if necessary.

2.2 Contextual Equivalence

Let Exp be a language, let Val ⊆ Exp be a set of values and → be a reduction
relation. Then may-convergence for expressions s ∈ Exp is defined as s↓ iff ∃v ∈
Val : s

∗−→ v, and must-convergence is defined as s⇓ iff ∀s′ : s
∗−→ s′ =⇒ s′ ↓.

For a discussion and motivations for the latter notion see [2, 17, 11]. Note that
there is also another notion of must-convergence found in the literature (e.g. [3]),
which holds if an expression has only evaluations to values, in particular, if the
expression has no infinite evaluations (i.e. if s 6→ω).

For an expression s we also write s⇑ if s ↓ does not hold, and say that s is
must-divergent. We write s↑ if s is not must-convergent and then say s is may-
divergent. Note that may-divergence can equivalently be defined as s↑ iff ∃s′ ∈
Exp : s

∗−→ s′ and s′ ⇑. This view allows us to use inductive proofs for showing
may-divergences. For Expc,Valc, and →c we use ↓c for may-convergence and ⇓c

for must-convergence. Accordingly for Expcp,Valcp, and →cp we use ↓cp and ⇓cp

for the predicates.
Contextual equivalence for a (non-deterministic) calculus (Exp,Val,→) is

defined by observing may- and must-convergence in all contexts. We first define
two preorders for both predicates:

s1 ≤↓ s2 iff ∀C : C[s1]↓ =⇒ C[s2]↓ s1 ≤⇓ s2 iff ∀C : C[s1]⇓ =⇒ C[s2]⇓

These are combined to obtain the contextual preorder ≤ as their intersection
≤↓ ∩ ≤⇓, and the contextual equivalence ∼ as ≤ ∩ ≥. To distinguish between the
relations for λc and λcp, we index the symbols for the preorders and equivalence
with c or cp, respectively, e.g. contextual equivalence in λc is ∼c, and contextual
preorder in λcp is ≤cp.

2.3 Implementation of Pairs

We will mainly investigate the translation enc of λcp into λc as defined in Fig. 4
under different restrictions. Conversely, it is trivial to encode λc into λcp via the
identity inc(s) = s (which is more an embedding than a translation).

The following counter example shows that the implementation of pairs is not
correct in the untyped setting.

6 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

Example 2.1. Let t := fst(λz.z). Then t ⇑cp, since t is irreducible and
not a value. However, the translation enc(t) results in the expression t′ :=
(λp.p (λx.λy.x)) (λz.z), which deterministically reduces by some (β-cbv)-
reductions to λx.λy.x, hence enc(t)⇓c. This is clearly not a correct translation,
since it removes an error. Therefore, the observations are not preserved by this
translation. This example also invalidates the implication T (p1) ≤c T (p2) =⇒
p1 ≤cp p2, since enc(t′) = t′, and hence enc(t′) = t′ ≤c t′ = enc(t), but t′ 6≤cp t
by the arguments above. In the terminology of Definition 3.2 below, the trans-
lation enc is not adequate.

This counter example is also valid for deterministic calculi, where may- and
must-convergence coincide. There, it is possible to circumvent the problem by
weakening the definition of correctness to only one direction of the logical equiv-
alence, s ↓ =⇒ T (s) ↓, but this results in weaker properties and is not the
appropriate notion for compilations. In particular, this notion of correctness of a
translation (which is called weak expressibility in [4]) implies the correctness of a
trivial translation that maps all expressions to a (may-) convergent expression.

One potential remedy to the failure of the untyped approach to correctness
of translations is to distinguish divergence from typing errors. From a different
point of view, this simply means that only correctly typed programs should be
considered by a translation: in Section 4.1 we will obtain adequacy after adding
a type system to λcp.

3 Adequacy of Translations

We present a general framework for reasoning about different notions of language
translations which are related to correctness.

We assume that languages come equipped with a small-step operational se-
mantics and a notion of observables, expressed through convergence tests, with
respect to which contextual equivalence can be defined. Since we are interested
in concurrent calculi, a typical case will be the observations of may- and must-
termination behavior, as introduced in the previous section. In the following we
generalize slightly and, instead of contexts, speak of observers: this makes it eas-
ier to fit formalisms without an obvious notion of context into the framework,
like abstract machines.

Definition 3.1. A program calculus with observational semantics (OSP-
calculus) consists of the following components:

- A set T of types, ranged over by τ .
- For every type τ , a set Pτ of programs, ranged over by p.
- For every pair τ1, τ2 of types, a set of functions Oτ1,τ2 with O : Pτ1 → Pτ2

for O ∈ Oτ1,τ2 , called observers, such that also the identity function Idτ is
included in Oτ,τ for every type τ , and such that

⋃
τ1,τ2∈T Oτ1,τ2 is closed

under function composition whenever the types are appropriate.
- A set {⇓1, . . . ,⇓n} of convergence tests with ⇓i:

⋃
τ∈T Pτ → {true, false}

for all i = 1, . . . , n.

Adequacy of Compositional Translations for Observational Semantics 7

This definition is also applicable to the special case of deterministic calculi, where
usually only a single termination predicate is considered. Moreover, it allows for
untyped calculi like λcp by considering a single, ‘universal’ type. The calculus
λcp then fits this definition of OSP-calculus, after identifying a context C with
the map t 7→ C[t], and taking {⇓1,⇓2} = {↓cp, ⇓cp}.

Since this framework has arbitrary observers (not only contexts) and there
are types, the observational preorders at type τ are defined as follows, where
p1, p2 ∈ Pτ :

- p1 ≤⇓i,τ p2 iff for all τ ′ ∈ T and all O : τ → τ ′, O(p1) ⇓i implies O(p2) ⇓i.
- p1 ≤τ p2 iff ∀i : p1 ≤⇓i,τ p2.
- p1 ∼τ p2 iff p1 ≤τ p2 and p2 ≤τ p1.

The relations ≤⇓i,τ and ≤τ are precongruences, i.e. they are preorders, and
p1 ≤⇓i,τ p2 implies ∀O : τ → τ ′ : O(p1) ≤⇓i,τ ′ O(p2). For proving the latter
implication let O′ be an observer with O′(O(p1)) ⇓i. Then O′ ◦ O is also an
observer, hence O′ ◦ O(p2) ⇓i. Obviously, the same holds for ≤τ . The relation
∼τ is a congruence, i.e. it is a precongruence and an equivalence relation.

In the following we only consider translations between OSP-calculi that have
the same number n of convergence tests {⇓1, . . . ,⇓n}, in a fixed ordering. We de-
fine some characterizing notions of translations. In the remainder of this section
we exhibit their dependencies and prove some consequences.

Definition 3.2. A translation T : C → C′ between two calculi C = (T ,P,O,≤)
and C′ = (T ′,P ′,O′,≤′) maps types to types T : T → T ′, programs to programs
T : Pτ → P ′T (τ), and observers to observers T : Oτ,τ ′ → O′T (τ),T (τ ′) such that
their types correspond for all τ, τ ′ ∈ T and such that T (Idτ) = IdT (τ) for all τ .

Adequacy. A translation T is adequate iff for all τ , and p1, p2 ∈ Pτ ,
T (p1) ≤′T (τ) T (p2) =⇒ p1 ≤τ p2.

Full abstraction. A translation T is fully abstract iff for all τ , and p1, p2 ∈ Pτ ,
p1 ≤τ p2 ⇐⇒ T (p1) ≤′T (τ) T (p2).

Observational correctness. A translation T is observationally correct iff for
all τ , p ∈ Pτ ,O ∈ Oτ,τ ′ and all i: O(p) ⇓i if and only if T (O)(T (p)) ⇓′i.

Convergence equivalence. A translation T is convergence equivalent (i.e.
preserves and reflects convergence) iff for all p and convergence tests ⇓i:
p ⇓i if and only if T (p) ⇓′i.

Compositionality. A translation T is compositional iff for all types τ, τ ′ ∈ T ,
for all observers O ∈ Oτ,τ ′ and all programs p ∈ Pτ we have T (O(p)) =
T (O)(T (p)).

If in the following types are omitted, we implicitly assume that type information
follows from the context.

As motivated in the Introduction, we consider adequacy as the right notion
of correctness. Observational correctness is a sufficient criterion for adequacy
(see Proposition 3.3). Convergence equivalence is implied by observational cor-
rectness, since T preserves identity observers. For compositional translations,

8 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

the converse is true, i.e., it is sufficient to prove convergence equivalence in order
to prove observational correctness. Full abstraction is not necessary for the ade-
quacy of translations. If it holds in addition, for surjective translations it means
that both program calculi are identical w.r.t. ≤.

Note that Definition 3.2 is stated only in terms of convergence tests and sets
of observers, and hence only relying on the syntax and the operational semantics.
Thus it can be used in all calculi with such a description. In the case of two calculi
with convergence tests defined in terms of a small-step semantics, the definition
also allows for reduction sequences in the translation that may lead outside of
the image of the translation, i.e., that may not be retranslatable.

Proposition 3.3. For a translation T the following hold:

1. If T is compositional, then T is convergence equivalent if and only if T is
observationally correct.

2. If T is observationally correct, then T is adequate.

Proof. 1. The only if direction holds, since T preserves identity observers:
Idτ (p) ⇓i ⇐⇒ T (Idτ)T (p) ⇓′i ⇐⇒ IdT (τ)T (p) ⇓′i ⇐⇒ T (p) ⇓′i.
For the if-direction let us assume that T is compositional and conver-
gence equivalent. If O(p) ⇓i, then preservation of convergence yields
T (O(p)) ⇓′i. Compositionality implies T (O(p)) = T (O)(T (p)), hence
T (O)(T (p)) ⇓′i. If T (O)(T (p)) ⇓′i then compositionality implies T (O(p)) ⇓′i
so that reflection of convergence yields O(p) ⇓i.

2. To show adequacy, let us assume that T (p1) ≤T (τ) T (p2). We must prove that
p1 ≤τ p2. Thus let O be such that O(p1) ⇓i. By observational correctness this
implies T (O)(T (p1)) ⇓′i. From T (p1) ≤T (τ) T (p2), we obtain T (O)(T (p2)) ⇓′i,
since T (O) is an admissible observer. Observational correctness in the other
direction implies O(p2) ⇓i. This proves p1 ≤τ p2. ut

As the following counter examples show, convergence equivalence is in general
not sufficient for adequacy, and full abstraction is not implied by observational
correctness. Similarly, convergence equivalence is not even implied by full ab-
straction (and thus neither by adequacy):

Example 3.4 (Convergence equivalence does not imply adequacy). Let the OSP-
calculus L have three programs: a, b, c with a ↑, b ↓ and c ↓. Assume there are
two observers O1, O2 with O1(x) = x and O2(a) = a, O2(b) = a, O2(c) = c.
Then b 6∼L c. The language L′ has three programs A, B,C with A ↑, B ↓ and
C ↓. There is only the identity observer O in L′. Then B ∼L′ C. Let the trans-
lation be defined as T : L → L′ with T (a) = A, T (b) = B, T (c) = C, and
T (O1) = T (O2) = O. Then convergence equivalence holds, but neither equa-
tional adequacy nor observational correctness. Note that T is not compositional,
since T (O2(b)) = A while T (O2)(T (b)) = O(B) = B.

Example 3.5 (Observational correctness does not imply full abstraction). A sim-
ple example taken from [10] is the identity encoding from the OSP-calculus λcp

Adequacy of Compositional Translations for Observational Semantics 9

without the projections fst and snd into full λcp. Then, in the restricted OSP-
calculus, all pairs are indistinguishable but the presence of the observers (here
simply taken as contexts) fst [·] and snd [·] in λcp permits more distinctions to
be made.

Example 3.6 (Convergence equivalence is not implied by full abstraction). A triv-
ial example is given by two calculi C with p ⇓ for all p, and C′ with the same
programs and ¬p ⇓′ for all p. For the translation T (p) = p for all p it is clear
that ∀p1, p2 : p1 ≤ p2 ⇐⇒ T (p1) ≤′ T (p2) holds, but T does not preserve
convergence.

By standard arguments it can be shown that translations compose:

Proposition 3.7. Let C, C′, C′′ be program calculi, and T : C → C′ , T ′ : C′ → C′′
be translations. Then T ′◦T : C → C′′ is also a translation, and for every property
P from Definition 3.2, if T, T ′ have property P , then also the composition T ′◦T .

We now consider the case that only new language primitives are added to a
language, together with their operational semantics, which are then encoded by
the translation. This is usually known as removing ‘syntactic sugar’.

Definition 3.8. An OSP-calculus C is an extension of the OSP-calculus C′ iff
there is a compositional translation ι : C′ → C, called an embedding, which is
injective on the expressions, types and observers, and is convergence equivalent.

Informally, this can be described (after identifying C′-programs with their
image under ι) as follows: every C′-type is also a C-type, P ′τ ⊆ Pτ , and O′τ,τ ′ is a
subset of Oτ,τ ′ , and the test-predicates coincide on C′-programs. The embedding
of O′τ,τ ′ into Oτ,τ ′ is slightly more involved, since the C′-observers are restrictions
(as functions) of C-observers. Note that for the case of contexts as observers, the
embedding of O′τ,τ ′ into Oτ,τ ′ is unique. The conditions imply that an embedding
ι is adequate, but not necessarily fully abstract.

i

Τ

C’

C

i(C’)

If C is an extension of C′, then an observationally correct translation T : C → C′
(plus some obvious conditions) has the nice consequence of T and ι being fully
abstract.

An example for an embedding is the trivial embedding inc : λc → λcp, which
is adequate by Proposition 3.3, since the embedding inc is compositional and
convergence equivalent. This allows us to reason about contextual equivalence
in λcp and transfer this result to λc, i.e. a proof of t1 ∼cp t2 where t1, t2 are
also expressions of λc directly shows t1 ∼c t2. Disproving an equivalence in λcp,
however, does not imply that this equivalence is false in λc.

10 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

Proposition 3.9 (Full Abstraction for Extensions). Let C be an extension
of C′, and let T : C → C′ be an observationally correct translation, and T ◦ ι is
the identity on C′-programs , on C′-observers, and on C′-types. Then ι is fully
abstract. If T is injective on types, then T is also fully abstract.

Proof. Adequacy follows from Proposition 3.3. First we show full abstraction of ι.
Let p1, p2 be C′-programs of type τ , let p1 ≤ p2 and let O be an C-observer O such
that O(ι(p1)) ⇓i. Then we can apply T and obtain by observational correctness
that T (O)(T (ι(p1))) ⇓i. Since T (ι(p1)) = p1, we obtain also T (O)(p1) ⇓i. From
p1 ≤ p2 we obtain T (O)(p2) ⇓i. This is the same as T (O)(T (ι(p2))) ⇓i. Since
ι is injective on types O(ι(p2)) is a valid application. Hence by observational
correctness, we obtain O(ι(p2)) ⇓i.

It remains to show full abstraction of T under the condition that T is injective
on types. Let p1, p2 be C-programs of type τ , and assume p1 ≤⇓i,τ p2. We have
to show that T (p1) ≤′⇓i,T (τ) T (p2). Let O′ be a C′-observer with O′(T (p1)) ⇓′i.
Then by definition of ι there exists an observer O of C with O := ι(O′). Since
T ◦ ι is the identity, we have T (O) = O′ and thus we obtain T (O)(T (p1)) ⇓′i.
Since T is injective on types, we obtain that O(p1) is a type-correct application.
Observational correctness now implies that O(p1) ⇓i. From p1 ≤⇓i,τ p2 we now
derive O(p2) ⇓i. Again observational correctness can be applied and shows that
T (O)(T (p2)) ⇓′i. This is equivalent to O′(T (p2)) ⇓′i. Since the observer O′ was
chosen arbitrarily, we have T (p1) ≤′⇓i,T (τ) T (p2).

The embedding ι is already shown to be adequate. The missing direction, i.e.
that ι(p1) ≤′⇓i,T (τ) ι(p2) implies p1 ≤′⇓i,τ

p2 follows from full abstraction of T
and the assumption that T ◦ ι is the identity. ut

We also have the following variant of the previous proposition.

Proposition 3.10 (Full Abstraction for Extensions 2). Let C be an exten-
sion of C′, and let T : C → C′ be a compositional and convergence equivalent
translation, and T ◦ ι is the identity on C′-programs and on C′-types. Then ι is
fully abstract. If T is injective on types, then T is also fully abstract.

Proof. Lemma 3.3 shows that T is observationally correct. We show that that T◦ι
is also the identity on C′-observers: For arbitrary p, the equation (T ◦ ι)(O)(p) =
(T ◦ ι)(O)((T ◦ ι)(p)) = (T ◦ ι)(O(p)) = O(p) holds due to the assumption that
T ◦ ι is the identity on programs and due to compositionality of T ◦ ι. Hence
T ◦ ι is also the identity on observers. Now the claims follow from Proposition
3.9. ut

The following example shows that the general mechanism of Proposition 3.9
cannot be applied to show full abstraction in the case that the translation is
inherited from an encoding of an abstract data type in a subcalculus, since then
usually the type is removed by the translation.

Example 3.11 (Injectivity on types is necessary). Proposition 3.9 does not hold
without the assumption that T is injective on types. To see this, let C′ be the

Adequacy of Compositional Translations for Observational Semantics 11

OSP-calculus with one type A, four elements a1, a2, a3, a4 : A, the identity ob-
server and an observer f : A → A with f(a1) = f(a3) = a3, f(a2) = f(a4) = a4,
and a1 ⇓, a2 ⇓, a3 ⇓, but a4 6⇓. Thus, a1 6∼ a2.

Let C be an extension with extra type B and b1, b2 : B, such that b1 ⇓, b2 ⇓.
Hence b1 ∼ b2. Let T : C → C′ be defined by:

T (A) = T (B) = A
T (f) = f
T (ai) = ai

T (b1) = a1

T (b2) = a2

Note that T is not injective on the types, since T (A) = T (B) = A.
Then T is compositional and convergence equivalent, hence also observa-

tionally correct. Moreover the embedding ι : C′ → C satisfies that T ◦ ι is the
identity on C′. But T is not fully abstract, since b1 ∼ b2, but T (b1) = a1 and
T (b2) = a2, and a1 6∼ a2.

3.1 Using compositionality and equivalence modulo

We also require a generalisation of the extension theorem, since some translations
do not satisfy the strong preconditions that T ◦ ι is the identity on C′-programs
and also do not satisfy compositionality. Therefore, the equivalence ∼τ on ex-
pressions is extended to observers as follows: two observers O1, O2 ∈ Oτ,τ ′ are
equivalent, i.e. O1 ∼τ ′ O2, iff for all objects p of type τ , we have O1(p) ∼τ ′ O2(p).
Note that since the ∼τ are congruences, we also have that s ∼τ t and O1 ∼τ ′ O2

imply O1(s) ∼τ ′ O2(t).
We say translation T is compositional modulo iff for all types τ, τ ′ ∈ T , for all

observers O ∈ Oτ,τ ′ and all programs p ∈ Pτ we have T (O(p)) ∼ T (O)(T (p)).
An OSP-calculus C is an extension modulo of the OSP-calculus C′ iff there is a

compositional modulo translation ι : C′ → C, called an embedding modulo, which
is injective on the expressions, types and observers, and is convergence equiva-
lent.

The following variant of Proposition 3.3 holds, where the proof is an obvious
modification of the corresponding proof.

Proposition 3.12. For a translation T the following holds: If T is composi-
tional modulo, then T is convergence equivalent if and only if T is observation-
ally correct.

This immediately implies using Proposition 3.3:

Corollary 3.13 (Adequacy modulo). For a translation T the following
holds: If T is compositional modulo and convergence equivalent, then T is ade-
quate.

12 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

Proposition 3.14 (Full Abstraction for Extensions, Generalized). Let
C be an extension modulo of C′, and let T : C → C′ be an observationally correct
translation, such that (T ◦ ι)(p) ∼ p for all C′-programs p, (T ◦ ι)(O) ∼ O for
all C′-observers O, T is injective an types, and T ◦ ι is the identity on C′-types.
Then ι is fully abstract. If T is injective on types, then T is also fully abstract.

Proof. Adequacy follows from Proposition 3.12. First we show full abstraction of
ι. Let p1, p2 be C′-programs of type τ , let p1 ≤ p2 and let O be an C-observer O
such that O(ι(p1)) ⇓i. Then we can apply T and obtain by observational correct-
ness that T (O)(T (ι(p1))) ⇓i. Since T (ι(p1)) ∼ p1, we obtain also T (O)(p1) ⇓i.
From p1 ≤ p2 we obtain T (O)(p2) ⇓i. Since ∼ is a congruence, and the type of
p2 is the same as of p1 and also T (ι(p2)), this implies T (O)(T (ι(p2))) ⇓i. Since
ι is injective on types, O(ι(p2)) is a valid application. Hence by observational
correctness, we obtain O(ι(p2)) ⇓i.

It remains to show full abstraction. Let p1, p2 be C-programs of type τ , and
assume p1 ≤⇓i,τ p2. We have to show that T (p1) ≤′⇓i,T (τ) T (p2). Let O′ be a C′-
observer with O′(T (p1)) ⇓′i. Then by definition of ι there exists an observer O of
C with O := ι(O′). By the precondition on T ◦ ι, we have T (O) ∼ O′ and thus we
obtain T (O)(T (p1)) ⇓′i. Since T is injective on types, the application O(p1) can
be formed. Observational correctness implies that O(p1) ⇓i. From p1 ≤⇓i,τ p2 we
now derive O(p2) ⇓i. Again observational correctness can be applied and shows
that T (O)(T (p2)) ⇓′i. This is equivalent to O′(T (p2)) ⇓′i. Since the observer O′

was chosen arbitrarily, we have T (p1) ≤′⇓i,T (τ) T (p2).
The embedding modulo ι is already shown to be adequate. The missing direc-

tion, i.e. that ι(p1) ≤′⇓i,T (τ) ι(p2) implies p1 ≤′⇓i,τ
p2 follows from full abstraction

of T and the preconditions on T ◦ ι which enforces that p1 ∼ T (ι(p1)) ≤′⇓i,T (τ)

T (ι(p2)) ∼ p2. ut

Proposition 3.15 (Full Abstraction for Extensions, Generalized 2). Let
C be an extension modulo of C′, and let T : C → C′ be a translation that is
compositional modulo and convergence equivalent, such that (T ◦ ι)(p) ∼ p for
all C′-programs p and T ◦ ι is the identity on C′-types. Then ι is fully abstract.
If T is injective on types, then T is also fully abstract.

Proof. Proposition 3.12 shows that T is observationally correct. We have to
show that (T ◦ ι)(O) ∼ O for all C′-observers O: For arbitrary p, the equation
(T ◦ ι)(O)(p) ∼ (T ◦ ι)(O)(T ◦ ι(p)) ∼ (T ◦ ι)(O(p)) ∼ O(p) holds due to the
assumption that T ◦ ι is the identity modulo ∼ on programs modulo ∼ and due
to compositionality modulo of T ◦ ι. Hence (T ◦ ι) is also the identity modulo ∼
on observers. The claim now follows from Proposition 3.14. ut

3.2 Implications of Observational Correctness

We show that observational correctness of a translation implies that the trans-
lation is fully abstract as translation T : C → T (C), provided T is surjective on
every type.

Adequacy of Compositional Translations for Observational Semantics 13

Theorem 3.16. Let C, C′ be calculi and T : C → C′ be an observationally correct
translation. Let C′′ := T (C) be the subcalculus of C′ consisting of the images under
T , and let ≤T be the preorder defined on the the T -image C′′. Assume that for
all τ : the translation T is surjective on the programs Pτ and for every τ ′, T is
a surjective mapping T : Oτ1,τ2 → OT (τ1),T (τ2).
Then for all types τ and programs p1, p2: p1 ≤τ p2 ⇐⇒ T (p1) ≤T,T (τ) T (p2).
I.e. the translation is fully abstract as translation T : C → C′′.

Proof. Let p1 ≤τ p2 and let O′ be a C′′-observer, such that O′(T (p1)) ⇓i. Since
T is surjective on the type T (τ), for programs and observers, there is an observer
O with input type τ , such that T (O) = O′. Observational correctness now shows
O′(T (p1)) ⇓i =⇒ T (O)(T (p1)) ⇓i =⇒ O(p1) ⇓i =⇒ O(p2)) ⇓i. This in turn
implies T (O)(T (p2)) ⇓i which is equivalent to O′(T (p2)) ⇓i. Since this holds for
all observers, we have shown T (p1) ≤T,T (τ) T (p2).
The other direction follows from Proposition 3.3, by applying it to the restricted
translation T : C → C′′. ut

Similar as for the extensions above, this theorem also holds if we generalize
surjectivity to surjectivity modulo the restricted equivalence on the image T (C).

Corollary 3.17. If in Theorem 3.16 the surjectivity of T for observer sets is
replaced by the condition that T is injective on the types, then the claim of
Theorem 3.16 holds.

4 Adequacy of Pair Encoding

We analyze the translation enc on the untyped language λc. Inspecting the
definition of enc the following lemma is easy to verify:

Lemma 4.1. For all s ∈ λcp: s is a λcp-value iff enc(s) is a λc-value.

Lemma 4.2. Let t ∈ λcp with t↓cp, then enc(t)↓c.

Proof. Let t0 ∈ λcp with t ↓cp, so t0 →cp t1 →cp · · · →cp tn where tn is a
value. We show by induction on n that enc(t0)↓c. If n = 0 then t0 is a value and
enc(t0) must be a value, too, by Lemma 4.1. For the induction step we assume the
induction hypothesis enc(t1)↓c. Hence, it suffices to show enc(t0)

∗−→c enc(t1). If
t0 →cp t1 is a (β-cbv), (fix), (⊕l), or (⊕r) reduction, then the same reduction
can be used in λc, and enc(t0) →c enc(t1). If t0 →cp t1 by (sel-f) or (sel-s),
then three (β-cbv) steps are necessary in λc, i.e., enc(t0)

3−→c enc(t1). ut

For the other direction, i.e., for proving the claim enc(t) ↓c =⇒ t ↓cp the
counter example 2.1 shows that the translation enc is not adequate and not
observationally correct. Moreover, this example shows that an untyped language
does in general not permit an adequate – and hence also not an observationally
correct – translation into a subset of itself.

14 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

(.,.) :: ∀α, β.α → β → (α, β)
fst :: ∀α, β.(α, β) → α
snd :: ∀α, β.(α, β) → β

unit :: unit
⊕ :: ∀α.α → α → α
fix :: ∀α, β.((α → β) → (α → β)) → (α → β)

Fig. 5. Types of constants in λT
cp

4.1 Typing λcp

One solution to prevent the counter example 2.1 is to consider a simply typed
variant λT

cp of λcp as follows. The types are given by τ ::= unit | τ → τ | (τ, τ),
and only typed expressions and typed contexts are in the language λT

cp, where
we assume a hole [·]τ for every type τ . For typing, we treat pairs, projections,
the unit value, and the operators ⊕ and fix as a family of constants with the
types given in Fig. 5. Type safety can be stated by a preservation theorem for all
expressions and a progress theorem for closed expressions. The framework now
permits to prove adequacy via observational correctness of the translations.

Proposition 4.3. For λT
cp, the (correspondingly restricted) translation enc :

λT
cp → λc is compositional and convergence equivalent, and hence adequate.

Proof. Compositionality follows from the definition of enc (see Fig. 4).
Lemma 4.1 also holds if enc is restricted to λT

cp. We split the proof into four
parts:

1. t↓cp =⇒ enc(t)↓c: Follows from Lemma 4.2.
2. enc(t) ↓c =⇒ t ↓cp: An inspection of the reductions shows that if t1 is re-

ducible, then for every reduction Red of enc(t1) to a value, there is some t2

with t1 −→cp t2 and enc(t1)
+−→c enc(t2) is a prefix of Red . We use induction

on the length of a reduction Red of enc(t) to a value to show that a corre-
sponding reduction can be constructed. The base case is proved in Lemma
4.1. If t is an irreducible non-value, then due to typing it is an open expres-
sion of one of the forms E[(x r)], E[fix x], E[fst x], E[snd x], where x is a free
variable. But the cases are not possible, since enc(t) is either an irreducible
non-value, or enc(t) reduces in one step to an irreducible non-value.

3. enc(t) ⇓c =⇒ t ⇓cp: We prove that t ↑cp =⇒ enc(t) ↑c by induction on
the length of a reduction t

∗−→cp t′, where t′ ⇑cp. For the base case t⇑cp and
(2) show that enc(t) ⇑c. The induction consists in computing a reduction
sequence enc(t) ∗−→c r where r⇑cp and the correspondence is as in the proof
of Lemma 4.2, such that t

∗−→cp t′ and r = enc(t′). By type preservation, t′

is well-typed and now the base-case reasoning applies.
4. t⇓cp =⇒ enc(t)⇓c: Proving enc(t)↑c =⇒ t↑cp can be done using the same

technique as in the previous parts. ut

Note that Proposition 3.9 cannot be applied since λT
cp is not an extension

of untyped λc. As expected, full abstraction does not hold. For instance, let
s = λp.((λy.λz.(y,z)) (fst p) (snd p)), and t = λp.p. Then the equation

Adequacy of Compositional Translations for Observational Semantics 15

w ∈ Valcpig iff w ∈ Valcpg iff w ∈ Valcp

t ∈ Expcp(i)g ::= w | t1 t2 | t1 ⊕ t2 | (t1,t2)

Fig. 6. Syntax of λT
cpg and λT

cpig

Ecpig ::= [] | Ecpig t | w Ecpig | | Ecpig ⊕ t
| t⊕ Ecpig | (Ecpig,t) | (t,Ecpig)

Fig. 7. Evaluation Contexts Ecpig for λT
cpig

Ecpg ::= [] | Ecpg t | w Ecpg | Ecpg ⊕ t | w ⊕ Ecpg | (Ecpg,t) | (w,Ecpg)

Fig. 8. Evaluation Contexts for λT
cpg

enci : λT
cpg → λT

cp : enci(t) = t
encg : λT

cpig → λT
cpg: encg((t1,t2)) = (λx y.(x,y)) encg(t1) encg(t2)

: encg(t) = descending, not changing the structure otherwise;
encig : λT

cpig → λT
cp : encig = encg ◦ enci

Fig. 9. Translations between λT
cpig, λT

cpg and λT
cp

s ∼cp,(unit,unit)→(unit,unit) t holds in λT
cp by standard reasoning, but after trans-

lation to λc, we have enc(s) 6∼c enc(t). The latter can be seen with the context
C = ([·] unit), since C[enc(s)] is must-divergent while C[enc(t)] must-converges.

The extension situation could perhaps be regained by a System F-like type
system, which we leave for future research. Here we just observe that the use of
a simple type system for λc is insufficient since the encoding of pairs with com-
ponents of different types cannot be simply typed. The same holds for Hindley-
Milner polymorphic typing: to see this, let s, r ∈ λcp where s is defined as before
and r = s (unit,λx.x). The most general type of enc(s) in a Hindley-Milner
system is ((α → α → α) → β) → (β → β → γ) → γ, which essentially means
that the encoding requires the components of a pair to have equal type. The
reason for the insufficient type is the monomorphic use of the argument variable
p of enc(s). Hence, enc(r) is not typeable using a Hindley-Milner type system.

One can establish a fully-abstract translation between λT
cp and a variant of

λc by using a ‘virtual typing’ in λc which, intuitively, restricts λc to the image
of the translation (see Appendix A).

4.2 Modifying Reduction Strategies

As a final example we extend λT
cp in two steps. First, in λT

cpg, we allow pairs with
arbitrary expressions as components (see Fig. 6). Second, in λT

cpig, we relax the
reduction strategy by allowing interleaving evaluation of pair components and
of the arguments of the choice-operator. The corresponding evaluation contexts
Ecpig for the calculus λT

cpig are in Fig. 7.

Permitting General Pairs We consider the extension λT
cpg of the language

λT
cp where λT

cpg is simply typed, and where pairs are not restricted to values.
The syntax is shown in Fig. 6, the evaluation contexts in λT

cpg are introduced in

16 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

Fig. 8. The reductions are as in λT
cp. We show that encg : λT

cpg → λT
cp is a fully

abstract translation and hence nothing is lost by restricting pairs to values. Type
preservation and progress also hold for λT

cpg. Moreover, encg is compositional and
is easily seen to map well-typed terms of λT

cpg to well-typed terms of λT
cp.

Lemma 4.4. For the translation encg the following holds: For all s, if s is a
λT

cpg-value, then encg(s) is must-convergent and has a deterministic reduction to
a value. Moreover, for all s, if encg(s) is a value, then s is a λT

cpg-value.

Proof. By induction on the size of expressions and inspection of all cases.
This holds also for the case (w1,w2) 7→ (λx y.(x,y)) encg(w1) encg(w2), since
encg(w1), encg(w2) are must-convergent and independently reduce to values,
and then two deterministic beta-reductions reduce the resulting expression to a
value. ut

The correctness of β-cbv-reduction in λT
cp, i.e., that t → t′ by β-cbv implies

t ∼ t′, is required in the proof of full abstractness of the translation encg. The
reason is that the composition encg(−)◦ ι is not the identity. In particular, pairs
(x,y) of variables are not translated identically, but as (λx y.(x,y)) x y. This
forces us to use Proposition 3.14, rather than Proposition 3.9.

We also require a proof of correctness of β-cbv. As a preparation, the iu-
theorem from [19] is required. In contrast to the ciu-theorems found in the lit-
erature, the iu-theorem has a precondition for all value-instantiations of uses
of an expression, rather than just closed instances. In the following, a value-
substitution is defined as a substitution that replaces variables by (possibly open)
values only.

Proposition 4.5 (iu-Theorem). The following context lemma holds in λc. Let
s, t be two λc-expressions of the same type τ . Then:

- If for all evaluation contexts Ecp and all value-substitutions σ: E[σ(s)]↓ =⇒
E[σ(t)]↓, then s ≤↓ t holds.

- If s ≤↓ t and for all evaluation contexts E and all value-substitutions σ:
E[σ(s)]⇓ =⇒ E[σ(t)]⇓, then s ≤⇓ t holds.

Proof (sketch). This is the iu-Theorem in [19]. Before it can be applied, we
have to argue that the fixpoint-reduction rule fix can also be used in the
call-by-value calculi considered in [19]. The fix-reduction is E[fix λx.t] →
E[t[(λy.(fix λx.t)y)/x]]. In order to satisfy the reduction assumptions in [19]
we have to view the fixpoint-reduction as a sequence of two smaller reduction
steps: E[fix λx.t] → E[(λx.t) (λy.(fix λx.t)y)] → E[t[λy.(fix λx.t)y)/x]]. Now it
can be verified that the reduction assumption in [19] holds, and hence that all
the proofs can be transferred. ut

Lemma 4.6. The reduction β-cbv is a correct transformation in λc and also
in λT

cp.

Adequacy of Compositional Translations for Observational Semantics 17

Proof. This can be proved using the iu-theorem 4.5. Let s = (λx.r) t and s′ =
r[t/x]. We show that the preconditions of Proposition 4.5 hold. Since s → s′, the
reduction E[σ(s)] → E[σ(s′)] holds in any case, hence E[σ(s′)] ↓ =⇒ E[σ(s)] ↓
as well as E[σ(s′)] ⇓ =⇒ E[σ(s)] ⇓. The reverse implications E[σ(s)] ↓ =⇒
E[σ(s′)] ↓ as well as E[σ(s)] ⇓ =⇒ E[σ(s′)] ⇓ also hold, since the reduction
E[σ(s)] → E[σ(s′)] is deterministic. Proposition 4.5 then implies that s ∼ s′,
and hence β-cbv is correct in λc. Correctness in λc could be proved along the
same lines, or by using adequacy of the encoding enc : λT

cp → λc proved in
Proposition 4.3. ut

Proposition 4.7. The translation encg is fully abstract

Proof. By Proposition 3.14, and since the identity: λT
cp → λT

cpg is an embedding
(see Definition 3.8), and since encg is injective on the types, it suffices to prove
observational correctness of the translation. Note that encg(t) ∼ t due to Lemma
4.6 for all λT

cp-terms t, which makes Proposition 3.14 applicable. We have to show
four implications.

1. t↓cpg =⇒ encg(t)↓cp: This follows by a straightforward translation from the
t ↓cpg-reduction into a reduction of encg(t). In the case of non-value pairs,
(β-cbv)-reductions have to be added to produce pairs in λT

cp.
2. encg(t) ↓cp =⇒ t ↓cpg: A reduction encg(t) ↓cp can be re-translated into

one of t, by observing that (t1,t2) on the λT
cpg-side may correspond to three

different possibilities on the λcp-side: it may be (t′1,t
′
2), (λxy.(x,y)) t′1 t′2 or

(λy.(t′1,y)) t′2.
3. t⇓cpg =⇒ encg(t)⇓cp: We show encg(t)↑cp =⇒ t↑cpg. Again the reductions

correspond, up to the (β-cbv)-reductions for the pair-encoding. The base
case is that encg(t)⇑cp =⇒ t⇑cpg, which follows from (1).

4. encg(t) ⇓cp =⇒ t ⇓cpg: We show t ↑cpg =⇒ encg(t) ↑cp. As above, the
reductions correspond up to the (β-cbv)-reductions for the pair-encoding.
The base case is t⇑cpg =⇒ encg(t)⇑cp, and follows from (2). ut

Remark 4.8. Our version of the translation encg : λT
cpig → λT

cpg in a previous
version of this paper was:

encg,prev ((t1,t2)) = (λx y.(x,y)) encg,prev (t1) encg,prev (t2) if {t1, t2} 6⊆ Var
encg,prev ((x,y)) = (x,y) otherwise

This, however, is not compositional, since the translation is not local and depends
on the surrounding context. A witness for this is the context ([],y), which cannot
be translated unambiguously.

Nevertheless, this translation is compositional modulo ∼, as defined in Sub-
section 3.1, and which can be proved using correctness of β-cbv (see Lemma
4.6). E.g. for C = ([],y), we have encg,prev (C[x]) = encg,prev ((x,y)) = (x,y),
encg,prev (C[]) = (λx y.(x,y)) [] y, and encg,prev (x) = x. Now we have
encg,prev (C[x]) ∼ encg,prev (C[])(encg,prev (x)), since β-cbv is correct w.r.t. ∼.

18 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

Remark 4.9. The combined translation from λT
cpg to λc is encgc := enc ◦

encg. It operates on pairs of non-variables s, t as follows: encgc((s,t)) =
enc(λxy.(x,y)) encgc(s) encgc(t) = (λxy.(λp.p x y)) encgc(s) encgc(t). The naive
translation T ′((s,t)) = (λp.p T ′(s) T ′(t))) is not convergence equivalent, since
for example T ′((Ω,Ω)) = λp.p Ω Ω. However, (Ω,Ω) must-diverges, whereas
λp.p Ω Ω is a value and thus converges.

Permitting Interleaved Reductions In this subsection we will show that it is
also correct to modify the reduction strategy in the OSP-calculus λT

cpg, where we
allow that the arguments of choice and of pairs may be evaluated independently
(i.e. interleaved, in any order). The OSP-calculus λT

cpig, i.e. its syntax and the
evaluation contexts Ecpig used for reduction have been introduced in Fig. 6 and
Fig. 7. The translation enci : λT

cpig → λT
cpg is just the identity (see Fig. 9).

However, it is not immediately obvious that the convergence predicates of λT
cpig

and λT
cpg are the same, due to the independent reduction possibilities in λT

cpig.
We denote the reduction in λT

cpig with −→cpig and the reduction in λT
cpg with

−→cpg.

Proposition 4.10. The identity translation enci from λT
cpig into λT

cpg is fully
abstract.

Proof. Obviously enci (and its inverse) are compositional. Thus, to prove obser-
vational correctness it suffices to establish convergence equivalence. We have to
show four implications:

1. enci(t)↓cpg =⇒ t↓cpig: This follows by using the same reduction sequence.
2. t ↓cpig =⇒ enci(t) ↓cpg: A reduction corresponding to t ↓cpig can be rear-

ranged until it is a reduction w.r.t. λT
cpg, since the reductions are at inde-

pendent positions, and the final result is a value without any reductions.
3. enci(t)⇓cpg =⇒ t⇓cpig: We show the equivalent t↑cpig =⇒ enci(t)↑cpg. Let

Red be a λT
cpig-reduction of enci(t) to a must-divergent expression. We use

induction on the measure (l, n), where l is the number of reductions and n is
the number of non-value surface positions of enci(t), i.e. positions not within
abstractions. Now consider the λT

cpg-redex in enci(t). If the reduction of the
redex is contained in Red , then we can shift it to the start, and we obtain a
shorter reduction, i.e. l is decreased. Otherwise, if the reduction of the redex
is not contained in Red , there are two possibilities. If the redex is must-
divergent, then we are finished, since then enci(t) is also must-divergent.
Otherwise, if the redex is not must-divergent, then we simply select a con-
verging reduction of the redex to a value. This reduction can be integrated
into Red . In this case the number of reductions does not change, but the
number n of the measure will be reduced. In any case, we can use induction.
The base case follows from (1).

4. t⇓cpig =⇒ enci(t)⇓cpg: We show enci(t)↑cpg =⇒ t↑cpig. We can leave the
reduction unchanged. The base case is enci(t)⇑cpg =⇒ t⇑cpig, which follows
from (2).

Adequacy of Compositional Translations for Observational Semantics 19

Finally, since the translation enci is injective on the types, full abstraction fol-
lows from Proposition 3.9, since the proof also shows that the inverse of enci is
convergence equivalent. ut

Remark 4.11. Note that in languages with shared variable concurrency (for in-
stance, extensions of λcp with reference cells) the modification of the reduction
strategy given in this subsection is no longer correct: permitting interleaving re-
ductions of the arguments can be observed through their read and write effects
on shared variables.

Using Proposition 3.7 we have:

Theorem 4.12. The translation encig is fully abstract. For enc : λT
cp → λc the

combined translation enc ◦ encig : λT
cpig → λc is adequate.

Conclusions and Outlook

Motivated by translation problems between concurrent programming languages,
this paper succeeded in clarifying the methods, and providing tools, to assess the
correctness of translations. The framework is general enough to apply directly
to an operational semantics and the derived contextual equivalences, without
relying on the availability of models.

In future research we want to exploit these results, to prove the correctness of
various implementations of synchronization constructs in concurrent languages.

References

1. The Alice Project. Saarland University, http://www.ps.uni-sb.de/alice, 2007.

2. A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of McCarthy’s
amb in the pi-calculus. Theoret. Comput. Sci., 330(3):439–473, 2005.

3. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoret. Com-
put. Sci., 34:83–133, 1984.

4. M. Felleisen. On the expressive power of programming languages. Sci. Comput.
Programming, 17(1–3):35–75, 1991.

5. A. D. Gordon. Bisimilarity as a theory of functional programming. Theoret.
Comput. Sci., 228(1–2):5–47, 1999.

6. A. Kutzner and M. Schmidt-Schauß. A nondeterministic call-by-need lambda cal-
culus. In Proc. ICFP, pages 324–335. ACM, 1998.

7. J. Matthews and R. B. Findler. Operational semantics for multi-language pro-
grams. In 34th ACM POPL, pages 3–10. ACM, 2007.

8. G. McCusker. Full abstraction by translation. In Advances in Theory and Formal
Methods of Computing. IC Press, 1996.

9. Robin Milner. Fully abstract models of typed lambda calculi. Theoret. Comput.
Sci., 4(1):1–22, 1977.

10. J. C. Mitchell. On abstraction and the expressive power of programming languages.
Sci. Comput. Programming, 21(2):141–163, 1993.

20 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

11. J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Observational
semantics for a concurrent lambda calculus with reference cells and futures. Elec-
tron. Notes Theor. Comput. Sci., 173:313–337, 2007.

12. J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus with
futures. Theoret. Comput. Sci., 364(3):338–356, 2006.

13. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In 23rd ACM
POPL, pages 295–308. ACM, 1996.

14. A. D. Pitts. Parametric polymorphism and operational equivalence. Math. Struc-
tures Comput. Sci., 10:321–359, 2000.

15. J. G. Riecke. Fully abstract translations between functional languages. In 18th
ACM POPL, pages 245–254. ACM, 1991.

16. E. Ritter and A. M. Pitts. A fully abstract translation between a lambda-calculus
with reference types and Standard ML. In Proc. 2nd TLCA, pages 397–413.
Springer, 1995.

17. D. Sabel and M. Schmidt-Schauß. A call-by-need lambda-calculus with locally
bottom-avoiding choice: Context lemma and correctness of transformations. Math.
Structures Comput. Sci., 2008. accepted for publication.

18. S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive aspects by
translation. In Proc. 6th OASD, pages 135–148. ACM, 2007.

19. Manfred Schmidt-Schauß and David Sabel. On generic context lemmas for lambda
calculi with sharing. Frank report 27, Institut für Informatik. Fachbereich Infor-
matik und Mathematik. J. W. Goethe-Universität Frankfurt am Main, August
2007.

20. E. Shapiro. Separating concurrent languages with categories of language embed-
dings. In 23rd ACM STOC, pages 198–208. ACM, 1991.

21. H. Søndergaard and P. Sestoft. Non-determinism in functional languages. Comput.
J., 35(5):514–523, 1992.

Adequacy of Compositional Translations for Observational Semantics 21

A Using Virtual Typing

We consider the issue of full abstraction of the pair encoding for simply typed λT
cp

and assume a variation of simple typing for λc in order to describe the structure
of the image of λT

cp under the translation enc(.).
We define the language λVT

c as a typed variant of λc that is sufficiently large
to serve as a target language for enc. The syntax of expressions in λVT

c is extended
as follows. We assume that every expression s and subexpression is decorated
with a pair 〈τ, β〉 of labels: a type label τ , and a selector-label β, written as
s :: 〈τ, β〉, where we write s :: τ , if only the type label is of interest. Here, τ is
either a λT

cp-type (i.e., including pair types), or the special symbol † (indicating
no type), and the selector-label can be either fst, snd or #. Intuitively, # can
be interpreted as the absence of a selector-label. The objects of the language
λVT

c are triples (s, 〈τ, β〉). Thus there may be different objects corresponding
to the same λc-expression. Below, we give more conditions that will only accept
certain triples as valid λVT

c -expressions. We assume that variables are partitioned
by assigning a fixed type (or †) to each, which is also its type-label. Constants
are labeled with a type that is an instance of the type as given in Fig. 5.

Instead of type derivation rules, we assume that the following consistency
rules must be satisfied by λVT

c -expressions and their type- and selector-labeling.
That is, types are not inferred for expressions and subexpressions, but verified
against the term structure and the type- and selector-labeling.

Definition A.1. The type consistency rules for λVT
c are:

- An application (s t) is type-labeled as: ((s :: τ1 → τ2) (t :: τ1)) :: τ2, if it is
not one of the exceptions in 2 below.

- There are different possibilities for abstractions. The expression λx.t is con-
sistently typed if the term and the type labeling satisfies one of the following
patterns:
1. λ(x :: τ1).(t :: τ2) :: τ1 → τ2.
2. (λ(sel :: †).sel (w1 :: τ1) (w2 :: τ2)) :: (τ1, τ2), the variable sel does not

occur free in s, t, w1, w2 are λc-values after stripping off the labels, and
w1, w2 have to be type-consistent. Type consistency is not necessary for
the applications (sel (w1 :: τ1)) and sel (w1 :: τ1) (w2 :: τ2)). This kind
of expression is the only possibility for a variable to be labeled with † as
a type.

3. (λp.p (λx.λy.x)) :: 〈(τ1, τ2) → τ1, fst〉 where p :: ((τ1 → τ2 → τ1) → τ1);
(λx.λy.x) : (τ1 → τ2 → τ1).

4. (λp.p (λx.λy.y)) :: 〈(τ1, τ2) → τ2, snd〉 where p :: ((τ1 → τ2 → τ2) → τ2);
(λx.λy.y) : (τ1 → τ2 → τ2).

Whenever an expression has a selector-label fst or snd, then it must be one
of the cases (3),(4) above.

Typing of the constants is as for λT
cp. An expression t of λVT

c is well-typed
of type τ if t is type-labeled τ , and the type consistency rules hold for the

22 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

subexpression of t according to Definition A.1. A λVT
c -value is defined to be a

(labeled) abstraction or a constant.
The action of the reduction rules in λVT

c on the expressions and hence the
label components is the obvious one, with the exception of the cases where the
redex is an application of a selector-labeled expression to a pair, which is defined
explicitly:

Definition A.2. We define the type behavior of the reduction rules in λVT
c for

the critical cases of an application of an implemented selector to a pair.

- Let the redex be an application (s t), where s has selector-label fst,
s = λp.p (λx.λy.x) :: (τ1, τ2) → τ1, t :: (τ1, τ2), (s t) :: τ1, the term t must
be an abstraction
(λ(sel :: †).sel (w1 :: τ1) (w2 :: τ2)) :: (τ1, τ2).
Then the beta-reduction will produce the expression

(λ(sel ′ :: τ1 → τ2 → τ1).sel ′ (w1 :: τ1) (w2 :: τ2)) (λx.λy.x)

with the type label τ1. The selector-label fst is removed.
- Similarly for selector-label snd.
- Beta-reduction must give priority to the the selector-labels fst, snd over the

label #. The latter may be overwritten.

Note that the reductions on the underlying λc-expression are exactly the same
as the untyped reductions in λc.
A case-analysis results in the following:

Proposition A.3. The following holds for λVT
c :

- The type of a closed expression is not changed by reduction.
- A closed well-typed expression is either reducible or a value.

As observers in λVT
c we use the contexts of λVT

c with the following restrictions:
The hole is also typed, an expression with a selector-label cannot have a hole in
it; and a context or a term cannot contain a free variable with type label †.

The translations enc(.) and inc(.) are adapted to the labeling (see Fig. 10 and
11): enc(.) keeps the type labeling and adds the select-labels. The translation
inc(.) maps abstractions to pairs controlled by the type labeling, and uses the
selector-labels to map abstractions to the appropriate selectors.

The type labeling of contexts shows that the translations between λT
cp and

λVT
c are compositional, and that the type mapping is the identity.

It is easy to verify that if s is a well-typed expression in λT
cp, then enc(s) is

well-typed as a λVT
c -expression, and conversely if s in λVT

c is well-typed then
inc(s) is well-typed as a λT

cp-expression. Thus enc and inc are translations also
w.r.t. the typed languages.

Lemma A.4. For the mappings enc and inc, the following holds:

- For all s: s is a λT
cp-value iff enc(s) is a value.

Adequacy of Compositional Translations for Observational Semantics 23

enc((w1,w2) :: (τ1, τ2)) = λs. ((s :: †) enc(w1) :: τ1 enc(w2) :: τ2) :: (τ1, τ2)

enc(fst :: (τ1, τ2) → τ1) = λp. (p λx.λy.x) :: 〈(τ1, τ2) → τ1, fst〉
enc(snd :: (τ1, τ2) → τ2) = λp. (p λx.λy.y) :: 〈(τ1, τ2) → τ2, snd〉

Fig. 10. Adaptations of translation enc

inc(λs. ((s :: †) w1 :: τ1 w2 :: τ2) :: 〈(τ1, τ2), #〉) = (inc(w1),inc(w2)) :: (τ1, τ2)

inc(λp. (p λx.λy.x) :: 〈(τ1, τ2) → τ1, fst〉) = fst :: (τ1, τ2) → τ1

inc(λp. (p λx.λy.y) :: 〈(τ1, τ2) → τ2, snd〉) = snd :: (τ1, τ2) → τ2

Only the top-types are indicated and the †-label of s.

Fig. 11. Adaptations of translation inc

- For all s: s is a λVT
c -value iff inc(s) is a value.

Proof. Follows by inspecting all the cases. ut

Theorem A.5. The translations inc and enc are fully abstract translations be-
tween λT

cp and λVT
c .

Proof. Compositionality follows from the definition of the translations. Values
are preserved and observational correctness of inc holds. The proof of observa-
tional correctness of enc is analogous to the proof of Proposition 4.3.

Full abstraction of both translations holds, since types are preserved, and the
translations are partial inverses of each other:
enc(inc(s)) = s for each λVT

c -expression s (modulo α-renaming), and
inc(enc(s)) = s for each λT

cp-expression s (modulo α-renaming).
Then it is easy to show that the observers are also equivalent, and hence that
full abstraction of both translations holds. ut

This result can be interpreted as an isomorphism between λT
cp and λVT

c ,
which may sloppily be formulated as “the pair-constructor can be encoded in
the types”. However, note that λT

cp is not an extension of λVT
c , since the λVT

c -
expressions are not contained in λT

cp. In particular, an abstraction in λT
cp may

correspond to several objects in λVT
c due to the type labeling.

