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1. - Introduction 

1.1. Hallmarks of cancer, the route to becoming a cancer cell 

Coordination and balance between cell proliferation and programmed cell death (apoptosis) is 

crucial for normal development and homeostasis in metazoan organisms. During early 

development only few cells abandon the cell cycle, whereas in an adult organism most of the 

cells are quiescent. In these cells, a GAP called G1 phase is incorporated between nuclear 

division (M phase) and DNA synthesis (S phase), another GAP called G2 occurred between S 

and M phases. During G1 the cell makes further decision on basis of diverse stress and 

metabolic inputs, regarding whether to self-renew, differentiate or die. In addition G1 and G2 

GAPS allow the repair of DNA damage and replication errors. Only specialized cells, such as 

those that populate the hematopoietic system or line the gut epithelium maintain active 

proliferation. All cells have the capacity to enter quiescence and all quiescent cells, with the 

exception of those that have reached a state of terminal differentiation, have the capacity to 

re-enter the cycle (Malumbres and Barbacid 2001; Massague 2004). 

Normal cells only proliferate when they receive the correct instructions from other 

neighboring cells, this collaboration results in a tissue size adequate to the body needs. But 

DNA contained in every mammalian cell is under constant attack by damaging agents and as 

a consequence cells can acquire mutations. Among the mechanisms that cells have developed 

to cope with this attack on their genetic material are DNA repair processes. In addition, cells 

respond to DNA damage by halting cell cycle progression, cell cycle checkpoints are 

mechanisms by which the cell actively halts progression through the cell cycle until it can 

ensure that an earlier process, such as DNA replication is completed. If the DNA damage 

cannot be repair, cells can respond with other mechanisms: either undergo programmed cell 

death (Kastan and Bartek 2004) or enter into a permanent withdrawal form the cell cycle, 

cellular senescence (Campisi 2005). 

Cancer results when mutated cells survive and proliferate inappropriately disrupting the 

existing proliferation-apoptosis balance. The uncontrolled cell growth is often accompanied 

with the invasion of surrounding tissue and the spread of malignant cells. Several stimuli like 

U.V.-radiation, pro-carcinogenic compounds or infection by viruses are known to increase the 

risk for developing aberrant cell growth.  
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In the last century our knowledge of the molecular mechanisms leading to cancer has greatly 

improved. The discovery that the evolution of human cells into malignant derivates is driven 

by the aberrant function of genes was one of the most important milestones in cancer 

research. This finally led to the concept that some genes have a fundamental role as positive 

(oncogenes) or negative (tumor suppressor genes) regulators of normal cell proliferation. 

Activating mutations in oncogenes and loss of function mutations in tumor suppressor genes 

are leading to cancer aberrant proliferation. Not only changes in protein structure but also 

changes in the transcription are responsible for these activation or loss of function mutations. 

Increase of transcription can activate oncogenes or tumor suppressor genes, in contrast loss of 

transcription by methylation associated silencing can inactivate certain tumor suppressors.  

 

Figure 1. The hallmarks of cancer. Tumor cells have acquired through different mechanisms six 
essential alterations, which are depicted in the figure. These alterations result in uncontrolled cell 
proliferation, invasion of surrounding tissue and spread of malignant cells. Figure from Hanahan and 
Weinberg 2000. 

For a tumor to develop there have to be mutations in a dozen or more genes that control 

proliferation (Weinberg 1996). Features acquired by the malignant cell have been recently 
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defined by Hanahan and Weinberg as the manifestation of six essential alterations in normal 

cell physiology: self sufficiency in growth signals, insensitivity to growth inhibitory signals, 

evasion of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis and tissue invasion and metastasis (figure 1). Each of these physiological 

changes represents the successful breaching of an anticancer defense mechanism (Hanahan 

and Weinberg 2000). 

Despite all the advances in oncology there is not an efficient therapy that highly specific 

destroy all kind of cancer cells. New knowledge in the molecular mechanisms leading to 

cancer should provide insights how new anticancer strategies can be devised.  

 

1.2. A link between inflammation and cancer  

Up to now most of the attention in the treatment of cancer has focus on destroying the 

malignant cell paying little attention to the cancer microenvironment (Karin and Greten 

2005); but the pre-malignant cells are not an isolated island rather a focus of intense tissue 

interactions (Weiss 1971). Among these interactions the response of the body to cancer which 

has many parallels with inflammation and wound healing has received special attention in the 

last years. The importance of this inflammatory response has been highlighted by Balkwill 

and Mantovani who made a remarkable comparison: if genetic damage is “the match that 

lights the fire” of cancer, some types of inflammation may provide the “fuel that feds the 

flame” (Balkwill and Mantovani 2001). 

Inflammation is the body's reaction to invasion by infectious agent, antigen challenge or even 

just physical damage. This biological response involves complex interactions between 

different cell types, the biological mediators include cytokines, which promote cell activation 

and proliferation, and chemokines which induce chemotaxis and cell migration. 

Inflammation and cancer association has been already suggested in the 19th century by 

Virchow who noted leukocytes in the neoplastic tissues (Balkwill and Mantovani 2001), later 

Harold Dvorak referred to this association by comparing tumors to wounds that never heal 

(Dvorak 1986). Epidemiological studies supported these observations and showed that 

susceptibility to cancer increases when tissues are chronically inflamed. Indeed, long term use 

of non-steroidal drugs like aspirin, as well as natural compounds like cucurmin, green tee 

- 3 - 



 
Introduction  - 4 - 

extract, ginseng extract or resverastol (polyphenol from red wine) reduces the risk of several 

cancers in organs susceptible to chronic inflammation ( colon, lung, esophagus and ovaries, as 

well as Hodgkin's lymphoma; Gupta and Dubois 2001; Aggarwal, Kumar et al. 2003; Garber 

2004). However, this association is more complicated than portrayed, as illustrated by the fact 

that, although non-steroidal drugs decrease the risk for certain cancers, they might increase 

the risk for others (Cerhan, Anderson et al. 2003; Chan, Giovannucci et al. 2004; 

Schernhammer, Kang et al. 2004).  

Tumorigenesis is a multistep process and inflammation seems to be associated with each step. 

During tumor initiation the DNA of the cell is mutated spontaneously or by chemical or 

physical carcinogens, leading to the activation of oncogenes or the suppression/inactivation of 

tumor suppressor genes. The role of inflammation in this early step of tumor formation seems 

to be not a general one and might be restricted to cancer that arises after massive cell 

destruction. 

Tumor promotion is characterized by the clonal expansion of initiated cells, owing to 

increased cell proliferation and/or reduced cell death. Inflammation seems to be an important 

factor during this phase of tumor development; in fact several pro-inflammatory cytokines are 

known to promote tumor growth such as tumor necrosis factor (TNFα), interleukin 1 (IL-1), 

interleukin 6 (IL-6) or interleukin 8 (IL-8) (Pikarsky, Porat et al. 2004; Karin and Greten 

2005). In addition, the link between activating mutations in oncogenes and inflammation has 

been indicated in a recent study which showed that activation of Ras proto-oncogenes in 

cancer results in up-regulation of the inflammatory cytokine IL-8 which acts as a chemokine 

and in turn promotes tumor associated inflammation, angiogenesis and eventually tumor 

growth (Sparmann and Bar-Sagi 2004; Karin 2005). 

Increased tumor size as well as invasion and metastasis, are the ultimate characteristics of 

malignant tumor progression. In addition of being immunosuppressive, infiltrating leukocytes 

might contribute to these processes by producing metalloproteinases (MMPs) as well as 

growth and angiogenic factors.  

Two cytokines are of outstanding importance in the modulation of the immune response. 

Tumor necrosis factor alpha (TNFα) plays a key role in supporting the innate immune 

response by promoting innate cell stimulation (macrophages, dentritic cells, natural killer 

- 4 - 



 
Introduction  - 5 - 

cells, neutrophils) and pro-inflammatory cytokine secretion. In contrast, TNF-related weak 

inducer of apoptosis (TWEAK, also known as Apo3L or TNF12) has recently been identified 

as crucial for curtailing the innate response. Whereas TNFα activates transcription of 

immunostimulatory genes by promoting STAT-1 activation and the association of the NF-κB 

subunit p65 with the transcriptional co-activator p300, TWEAK represses STAT-1 activity 

and induces binding of p65 to histone deacetylase 1 (HDAC-1), inhibiting pro-inflammatory 

gene transcription. TWEAK's function may have evolved to guard against the development of 

potentially harmful excessive inflammatory and autoimmune responses (Maecker, 

Varfolomeev et al. 2005). 

The molecular mechanisms connecting tumorigenesis to chronic inflammation remained 

largely unresolved until two studies showed that the molecule linking cancer and 

inflammation is the nuclear factor kappa B (NF-κB) (Greten, Eckmann et al. 2004; Pikarsky, 

Porat et al. 2004).  

 

1.3. NF-κB: a major player in cancer progression 

1.3.1. The NF-κB transcription family  

NF-κB is not a single protein but a family of closely related factors that associate in homo- or 

heterodimers, which bind a common sequence motif known as the κB site. The NF-κB family 

is best known for its functions in immune, inflammatory and acute phase responses, but also 

plays important roles in cell growth, apoptosis and oncogenesis (Kucharczak, Simmons et al. 

2003).  

NF-κB proteins can be classified in two subgroups: one consists of c-Rel, RelA (p65) and 

RelB. These proteins share a N-terminal Rel-homology domain (RHD) which includes a 

leucine zipper dimerization motif that enables them to translocate to the nucleus, form dimers 

and bind to the κB DNA sites (5'-GGGRNNYYCC-3'). The second class consists of NF-κB1 

(p105/p50) and NF-κB2 (p100/p52) which are synthesized as precursors (p105 and p100) 

with an N-terminal RHD and a C-terminal series of ankyrin repeats, the C-terminal portions 

of p150 and p100 prevent nuclear entry and are removed by ubiquitin dependent degradation 

giving the mature forms. The most abundant form of NF-κB in cells is a heterodimer of p65 
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and p50 that is sequestered in the cytoplasm through association with several IκB factors and 

as a consequence is inactive. There are two major activation pathways for NF-κB complexes: 

the canonical or classical pathway is triggered by viral and microbial infections or exposure to 

pro-inflammatory cytokines; the non-canonical or alternative pathway is activated in response 

to other stimuli such as lymphotoxin B (LTβ) and B cell activating factor belonging to the 

TNF family (BAFF) (figure 2).  

The classical activation pathway applies to dimers that are composed of c-Rel, Rel A (p65) 

and p50 which are held inactive in the cytoplasm by IκB. A more detailed view of the IκB-

NF-κB complex reveals that the IκB proteins mask only the nuclear localization sequence of 

p65 whereas the nuclear localization signal of p50 is accessible. This sequence in combination 

with the nuclear export sequences present in IκB and p65 results in constant shuttling of 

IκBα-NF-κB between the nucleus and the cytoplasm with a net accumulation in the 

cytoplasm (Huang, Kudo et al. 2000). Upon activation IκBα is degraded, altering this 

balance, which results in predominant nuclear localization. IκBα degradation is a tightly 

regulated process that is initiated upon specific phosphorylation by activated inhibitors of κB 

kinases (IKKs) (Karin and Ben-Neriah 2000). 

The non-canonical or alternative pathway affects NF-κB2 which preferently dimerizes with 

RelB. This pathway selectively activates NF-κB inducing kinase (NIK) and IKKα triggering 

phosphorylation and ubiquitination of p100. This ubiquitination induces proteolytic removal 

of the C-terminal domain of p100, allowing its translocation to the nucleus. p100 processing 

is tightly regulated with only minimal processing in unstimulated cells. Unlike p100, p105 

(p50) processing is not as strictly regulated and as a consequence p50 homodimers are present 

in the nuclei of unstimulated cells. These homodimers can associate with HDAC-1 and 

repress the transcription from κB dependent promoters. This p50 dependent HDAC-1 

recruitment to NF-κB responsive gene promoters is not a general phenomenon as shown by 

constitutively or rapidly NF-κB activated genes which have high levels of associated 

acetylated histone H4 in resting cells. Once in the nucleus, heterodimeric NF-κB complexes 

bind to most κB sites with greater affinity than the p50 homodimers and can displace them. 
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Figure 2. NF-κB activation pathways. The members of the NF-κB transcription factor family can be 
activated through two pathways triggered by different stimuli (see text for explanations). Adapted 
from Karin and Greten 2005. BAFFR, BAFF (B cell activating factor belonging to the TNF family 
receptor) receptor; BCR, B-cell receptor; IL-1R, interleukin 1 receptor; IκBα, inhibitor of κBα NF-
κB, nuclear factor kappa B; IKK α/β/γ, inhibitor of NF-κB (IκB) kinase α/β/γ; LTβR, lymphotoxin B 
receptor;  NIK, NF-κB inducing kinase; p100, p52, p50, REL-A, REL-B, NF-κB subunits; TCR, T-
cell receptor; TNFR, TNFα receptor. 

Each NF-κB dimer is likely to have distinct regulatory functions, however many of the target 

genes are common to several NF-κB factors. Genes regulated by NF-κB belong to different 

functional classes: negative feedback (inhibitor of κBα [IκBα], inhibitor of κBβ [IκBβ]), 

immunity (chemokines, cytokines), anti-apoptosis (B-cell lymphoma XL [BCL-XL], cellular 

inhibitors of apoptosis [c-IAPs]) and proliferation (cyclin D1, c-myc); most of these genes can 

contribute to the alterations observed in the malignant cell (Mayo and Baldwin 2000). 
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1.3.2. NF-κB as the link between cancer and inflammation 

Recent experimental evidence from two mouse models has led to the conclusion that NF-κB 

is a central molecule linking inflammation and tumorigenesis (reviewed by Balkwill and 

Coussens 2004; Karin and Greten 2005). 

Multidrug resistance 2 gene (MDR2) knockout mice provide a model for cholangitis (bile 

duct inflammation) caused by bile acid and phospholipid accumulation which leads to the 

appearance of hepato-carcinogenesis between 7 and 14 months after birth. Inactivation of NF-

κB, through the expression of a non-degradable IκBα variant (IκB super-repressor) under the 

control of a promoter that is highly active in hepatocytes, blocked tumor development. These 

tumor suppressive effects of NF-κB inhibition were associated to apoptosis of the 

hepatocytes. However, if the inhibition was only during the first 7 months, that is during the 

initiation and early promotion phases of tumorigenesis, non-blocking effect was detected. 

Hence, it seems that whereas NF-κB is dispensable for the early pre-malignant phase (tumor 

initiation) is essential for subsequent tumor promotion. A more detailed analysis of this 

knockout revealed an up-regulation in TNFα, a cytokine which is known to activate NF-κB, 

in the non-hepatocyte fraction of the liver. Indeed when mice were treated with a neutralizing 

antibody against TNFα, apoptosis of the hepatocytes was induced as effective as inhibiting 

NF-κB between 7-14 months which indicates that the activation of NF-κB is through the pro-

inflammatory cytokine TNFα (Pikarsky, Porat et al. 2004).  

The tumor promoting activity of NF-κB has been also shown in a mouse model of colitis-

associated cancer where NF-κB activation suppressed the apoptosis of chemically 

transformed pre-malignant cells. In this model, mice were injected first with a pro-carcinogen, 

followed by oral administration of dextran-sulphate sodium salt (DSS) which induced chronic 

colitis; through disruption of the intestinal barrier and exposure of macrophages in the lamina 

propia to enteric bacteria. This exposure resulted in the activation of NF-κB in macrophages 

leading to the production and secretion of pro-inflammatory cytokines which activated NF-κB 

in the epithelial cells. Enterocyte ablation of IKK-β blocked NF-κB activation and decreased 

tumor incidence indicating that the NF-κB pathway was necessary in this case for early tumor 

promotion. In contrast to the MDR2 knockout, most of the apoptotic cell death of IKK-β 

deficient enterocytes occurred within a few days of exposure to carcinogen and DSS, most 

- 8 - 



 
Introduction  - 9 - 

probably due to a failure in the induction of anti-apoptotic genes in enterocytes. A second 

mechanism through which NF-κB affected tumor promotion resulted from the transcriptional 

induction of pro-inflammatory factors by myeloid cells. In agreement with this observation, 

ablation of IKK-β in myeloid cells decreased not only tumor number but also tumor size. The 

decrease in tumor size was a consequence of the diminished proliferation of transformed 

epithelial cells which required growth factors (like IL-6) produced by the myeloid cells 

(Greten, Eckmann et al. 2004). 

All these evidences point to a role for NF-κB in inflammation associated tumorigenesis 

(figure 3). In the malignant cell NF-κB activated by oncogenes or inflammatory cytokines 

functions as a transcription factor for anti-apoptotic and proliferative genes. This proliferation 

effect is promoted by the leukocytes present in the tumor where NF-κB induces the 

production of cytokines, either inflammatory or proliferative, which then act on the tumor 

cells. The conclusion of these models for cancer therapy is innovative, whereas eradicating 

the primary cause of tumorigenesis is currently unattainable, disrupting the signaling context 

of the evolving tumor could be a more realistic objective. Intermittent suppression of a major 

signaling factor could be a tool to inhibit tumor progression in chronic inflammatory diseases 

associated with high cancer risk. 

Intriguingly, chronic inflammations do not always predispose to cancer. One such prominent 

exception is psoriasis, a chronic cutaneous inflammatory disease which is seldom 

accompanied by cancer. This particular inflammatory condition has been recently reviewed 

by Nickoloff, keratinocytes exposed to the cytokines present in the psoriatic plaque become 

growth arrested, resistant to apoptosis and present several senescence markers (Nickoloff, 

Ben-Neriah et al. 2005). There are other features in addition to the senescence state that 

explain the absence of cancer in the psoriatic plaques; secreted proteins like maspin and 

transforming growth factor β (TGF-β), overproduced by the senescent keratinocytes 

potentially mediate an anti-tumorigenic response (Tremain, Marko et al. 2000; Nickoloff, 

Lingen et al. 2004).  

These evidences indicate that inflammatory reactions have dualistic and perhaps even 

opposing influences depending on the cellular context, strength-persistence of the signals and 

other microenvironmental factors (Nickoloff, Ben-Neriah et al. 2005 and references herein). 
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Figure 3. Functions of NF-κB in inflammation associated tumorigenesis. In inflammatory cells NF-
κB induces the production of cytokines, growth and survival factors. In the tumor cell, the cytokines 
produced by the inflammatory cell activate NF-κB leading to the up-regulation of anti-apoptotic genes 
and secretion of chemokines which attract more inflammatory cells. Adapted from Karin and Greten 
2005. IL-1, interkeukin 1; IL1-R, interleukin 1 receptor; NF-κB, nuclear factor kappa B; p50, RELA, 
NF-κB subunits; TNFα, tumor necrosis factor α; TNFR1, TNFα receptor. 

 

1.3.3. NF-κΒ activation in tumors of different origins 

The first link between carcinogenesis and NF-κB was afforded by the identification of the p50 

NF-κB subunit as a Rel protein, since a viral member of this family (v-Rel) is the oncoprotein 

of the reticuloentotheliosis (REV-T) retrovirus which causes aggressive lymphomas in animal 

models. Additional evidence was provided by the interaction of other, unrelated viral 

oncoproteins, with the IKK complex which caused constitutive IKK and NF-κB activation. 

One example is TAX of the human T-cell leukemia virus (HTLV-1). Activation of NF-κB is 

also observed in the infection caused by herpes virus Epstein-Barr virus (EBV) which is 
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implicated in Burkitt's lymphoma or the herpes virus 8 linked to Kaposi's sarcoma 

(Kucharczak, Simmons et al. 2003). NF-κB can also be induced by cellular oncogenes, such 

as Ras (Finco, Westwick et al. 1997) or BCR-ABL (Hamdane, David-Cordonnier et al. 1997). 

Chromosomal translocations, amplifications, deletions and mutations that affect members of 

the NF-κB or IκB protein families can be found in diverse hematological diseases. 

Amplification of c-Rel is observed in non-Hodgkin's B-cell lymphomas, chromosomal 

rearrangements in the NF-κB2 locus can be detected in B- or T-cell lymphomas and the p-100 

NF-κB2 precursor (p100) is over-expressed in some breast cancer cell lines and tumors 

(Sovak, Bellas et al. 1997; Cogswell, Guttridge et al. 2000).  

Moreover, a mouse model of liver cancer has been used to demonstrate the direct association 

between NF-κB and chemically induced tumorigenesis in non-inflammatory conditions. NF-

κB activation was prevented by ablation of the gene encoding IKKβ in hepatocytes. Cancer 

was induced by the administration of pro-carcinogen, dietylnitrosamine (DEN) which induced 

hepatocyte DNA damage and mutations as well as hepatocyte death, to 2 week old mice. Pro-

carcinogen treatment of these mice resulted in increased cell death by either apoptosis or 

necrosis of hepatocytes. Thus, deletion of IKKβ should greatly increase the sensitivity of 

these cells to death inducing challenges, including the pro-carcinogen. However, upon DEN 

administration the animals showed increases in tumor size, growth rate and aggressiveness 

compared to control mice. This was attributed to the release of cytokines from Kupffer cells 

(macrophages in the liver) stimulated by the increased necrotic liver injury. These cytokines 

in turn stimulated hepatocyte growth factor (HGF)-production in stellate cells, which induced 

cell growth and hence resulted in an increased tumor size. In accordance with this 

observation, simultaneous inhibition of the IKKβ in both Kupffer cells and hepatocytes 

resulted in fewer and smaller hepatocarcinomas. These findings also raise the possibility that 

tumor necrosis might be responsible for the recruitment and activation of myeloid cells in 

other solid tumors (Maeda, Kamata et al. 2005). 

NF-κB not always performed a tumor promotion function in all the cellular contexts and with 

all the variety of stimuli. When is activated by certain inducers or when particular tumor 

suppressor proteins are active, RelA represses rather than activates anti-apoptotic gene 

expression (Perkins 2004). An example of such activation is provided by the tumor suppressor 
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gene ADP-ribosylation factor (ARF). ARF has been reported to induce the association of 

RelA with HDAC-1, thereby turning it into a repressor of gene expression without affecting 

NF-κB binding activity. In the absence of ARF, the BCR-ABL oncogene stimulates NF-κB 

activity whereas in its presence a repression of transcription was seen. ARF-modulated NF-

κB repressed also the transcription of BCL-XL which resulted in increased sensitivity to other 

apoptotic stimuli such as TNFα or ectoposide.  

Recently Campbell and co-workers have reported that certain cancer drugs (daunorobicin) 

hijack the RelA subunit of NF-κB and turn it into dominant negative repressor of survival 

gene expression. The authors indicated that a change in the phosphorylation status of NF-κB 

could be responsible for this switch; indeed U.V.-C and daunorobicin induced the association 

of RelA with HDAC and resulted in deacetylation of histones at RelA target promoters 

(Campbell, Rocha et al. 2004; Miyamoto 2004). 

 

1.4. A genomewide screen for recovery of survival genes 

1.4.1 TNFα as an inducer of NF-κB signaling 

TNFα is a pro-inflammatory cytokine produced in many cancers and its presence is generally 

associated with poor prognosis. Indeed, this cytokine is one of the strongest inducers of NF-

κB gene transcription in the malignant and inflammatory cells; TNFα chronically produced in 

the tumor microenvironment enhances development and spread of malignant cells as has been 

highlighted in the other sections. However TNFα is also a crucial effectors molecule in CD8 

and NK-cell mediated killing of some tumor cells. In addition, at supra-physiologic levels, 

this cytokine has impressive tumor destructive properties (Balkwill 2002). The causes of these 

paradoxical actions have the origin in the TNFα signaling pathway. 

TNFα is a 17 kDa polypeptide which binds to its receptor in a trimeric form; there are two 

receptors for this cytokine: tumor necrosis factor receptor one (TNFR1) which is expressed 

ubiquitously and tumor necrosis factor receptor two (TNFR2) which is expressed in 

endothelial cells and cells of the immune system. The latter receptor can only be fully 

activated by the membrane bound form but not by soluble TNFα (Grell, Douni et al. 1995). 
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TNFα is mainly produced by macrophages but is also synthesized by other tissues including 

lymphoid cells, mast cells, endothelial cells, fibroblast and neuronal tissue. 

TNFR1 signaling proceeds via the sequential formation of two distinct complexes (figure 4). 

After binding of TNFα to its receptor TNRF1, the silencer of death domain protein (SODD) 

dissociates from TNFR1 and the later recruits the adapter protein TNFR-associated death 

domain (TRADD). This activated receptor then serves as an assembly platform for binding of 

several molecules: TNFR-associated factor-2 (TRAF2) and receptor-interacting protein (RIP) 

(Wajant, Pfizenmaier et al. 2003). This first complex stimulates pathways leading to the 

activation of NF-κB (canonical pathway) and JNK. JNK activation has pro- or anti- apoptotic 

effects depending on the duration of the stimulus; an acute activation is anti-apoptotic while a 

chronic activation has the opposite effect. A second complex, death-inducing signaling 

complex (DISC) which lacks TNFR1 but includes Fas-associated death domain (FADD) and 

pro-caspases-8 and -10 is subsequently formed in the cytoplasm by modification of complex 

I. This secondary complex (complex II) initiates the apoptotic response by activation of the 

pro-caspases (Barnhart and Peter 2003; Micheau and Tschopp 2003). 

In contrast to complex I, the composition of complex II in apoptosis resistant and sensitive 

cells differs. In resistant cells, complex II comprises increased amounts of the anti-apoptotic 

proteins c-IAP1 and FLIP, the expression of which is regulated by the transcriptional activity 

of NF-κB (Wang, Mayo et al. 1998; Micheau, Lens et al. 2001). FLIP (Flice-inhibitory 

protein) availability at the moment complex II is formed is dependent on a signal triggered by 

complex I. If NF-κB activation promotes the expression of FLIP the pro-apoptotic activity of 

caspase-8 is inhibited. 

The interesting implication of this model is the prediction that the decision between life and 

death in the TNFα signaling pathway is controlled by at least one checkpoint. This checkpoint 

is triggered immediately after TNFR1 engagement but is operational only a few hours later, at 

a point when the success of the transcriptional activity of NF-κB can be assessed. Cells 

defective in NF-κB signaling, will have low quantities of anti-apoptotic proteins and will be 

eliminated through apoptosis (Micheau and Tschopp 2003).  
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Figure 4. TNFα signaling pathways. TNFα can activate a cell survival pathway and an apoptotic 
response through two different signaling complexes. Adapted from Barnhart and Peter 2003, see text 
for explanations. CASP-8, caspase 8; CASP-10, caspase 10; IKK, IκB kinase complex; FADD, Fas-
associated death domain; JNK, c-Jun N-terminal kinase; RIP, receptor interactive protein; MAPKK, 
mitogen-activated protein kinase kinase, NF-κB, nuclear factor kappa B; TNFα, tumor necrosis factor 
α; TNFR1, TNFα receptor 1; TRADD, TNF receptor associated death domain; TRAF2, TNF 
receptor-associated factor-2; pro-CASP denotes the inactive pro-caspases. 

The response to TNFα is variable and depends on the physiological context, thereby is 

important to understand the molecular basis on which the cell chooses between life and death 

(Kyriakis 2001). In type I cells, active caspase 8 recruited by complex II is sufficient to 

induce caspase 3 activity and apoptosis. However in type II cells, caspase 8 is not able to 

induce caspase 3 and therefore the apoptotic process depends on a mitochondrial 

amplification loop. Small amounts of caspase 8 are able to activate the protein BID which in 

turns translocate to the mitochondria and promotes the release of cytochrome c and 

Smac/Diablo. The release of cytochrome from the mitochondria allows the formation of the 

apoptosome consisting of cytochrome c, APAF-1 and caspase 9 (figure 5), which then 
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triggers apoptosis. In addition, Smac/Diablo binds and antagonizes the caspase inhibitors X-

chromosome-linked IAP (XIAP), cIAP1 and cIAP2 (Wajant, Pfizenmaier et al. 2003). 

 

Figure 5. Crosstalk between the mitochondrial and receptor apoptotic pathways in type II cells. 
Adapted from Hengartner 2000; see text for explanation. APAF-1, apoptotic protease activating factor; 
BID, BH3 interacting domain death agonist;CASP-8, caspase 8; CASP-3, caspase 3; Cyt.c, 
cytochrome c; FLIP, Flice-inhibitory protein; IAPs, inhibitor of apoptosis proteins; pro-CASP denotes 
the inactive pro-caspases; Smac/ Diablo, second mitochondria-derived activator of caspases /direct 
IAP-binding protein with low pI.  

There are several mechanisms in addition to the activation of survival genes through which 

NF-κB protects cells against apoptosis. Examples include the transcriptional activation of 

Gadd45β (De Smaele, Zazzeroni et al. 2001), XIAP (Tang, Minemoto et al. 2001) and 

proteins which inhibit reactive oxygen species (ROS) accumulation (Sakon, Xue et al. 2003; 

Kamata, Honda et al. 2005) and thus protect cells from a permanent activation of JNK which 

would lead them to TNFα induced apoptosis.  
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1.4.2. Combination of gene trap with Cre/loxP induced recombination allows detection 

of transiently TNFα−induced genes 

TNFR1 induces apoptosis in a variety of cell lines; therefore activation of survival genes in 

these cells is a transient event. Identification of these genes is from special interest for cancer 

research, as permanent expression of survival genes is responsible for the resistance to 

apoptosis which contribute to the cancer phenotype. These genes would provide new targets 

for diagnostic and/or therapeutic. 

The identification of transiently induced genes can be achieved by a gene trap, gene traps are 

plasmid or retrovirus-based vectors containing a reporter gene which are introduced into a 

random collection of chromosomal sites. Gene traps have evolved from enhancer-trap vectors, 

a molecular tool used to identify and characterize mammalian enhancer sequences from cell 

lines (Weber, de Villiers et al. 1984; Stanford, Cohn et al. 2001), to promoter-, poly A- and 

gene trap vectors. Specifically, the one used in this work, the promoter-trap vector consists of 

a promoter-less reporter gene and a selectable marker. Reporter expression occurs when the 

vector inserts into an exon to generate a fusion transcript that comprises the upstream 

endogenous exonic sequence and the reporter gene (von Melchner and Ruley 1989). 

However, the activation of the gene trap has to be coupled to the TNFα treatment; this can be 

achieved by conditional recombinase systems that allow gene expression to be abrogated in a 

temporally and spatially controlled manner. The promoter gene trap containing a recombinase 

has to be combined with a switch reporter system. 

The promoter gene trap might contain Cre as selectable marker, Cre recombinase of the 

bacteriophage P1 belongs to the integrase family of site-specific recombinases (Nagy 2000) 

and only few molecules are needed to induce recombination. Cre is a 38 kDa protein that 

catalyzes the recombination between 2 of its recognition sites, called loxP (Hamilton and 

Abremski 1984). The loxP consensus sequence consists of a core spacer sequence of 8 bp and 

two 13 bp palindromic flanking sequences which define the orientation of the loxP sites. A 

single recombinase molecule binds to each palindromic half of a loxP site, and then the 

recombinase molecules form a tetramer, bringing the two loxP sites together (Voziyanov, 

Pathania et al. 1999). The recombination is permanent and occurs between the spacer area of 
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the loxP sites, the post-recombination loxP site is formed from the two complementary halves 

of the pre-recombination sites and the spacer area between the loxP sites is discarded.  

The switch reporter system contains a constitutively active promoter upstream of two 

transcription units, each of which consists of a coding region with a polyadenylation signal. 

The 5'-cassette, encoding a protein conferring resistance against an antibiotic is flanked by 

tandemly arranged loxP sites. In the starting configuration only this cassette is transcribed, 

making cells with a stable integration of the switch resistant against an appropriate antibiotic. 

When Cre is present, the floxed DNA region is excised leading to transcriptional activation of 

the downstream cassette. 

The promoter trap U3Cre combined with Cre/loxP site specific recombination in a reporter 

construct has permitted the identification of genes specifically induced after different 

biological stimuli: growth factor deprivation (Russ, Friedel et al. 1996; Wempe, Yang et al. 

2001) or glucocorticoids (Wan and Nordeen 2002). This strategy has been used in the present 

thesis for the recovery of genes specifically induced by TNFα in the MCF-7 breast cancer cell 

line. TNFα induced apoptosis in MCF-7 cells was recovered upon Cre induced 

recombination, which transformed a transient activation of the gene trap insertion into a 

permanent switch in the reporter construct. This switch allowed the expression of the second 

marker gene (dnFADD) which blocks the apoptotic branch of the TNFα signaling (figure 6).  

Several features of this strategy made it suited for the isolation of genes transcriptionally 

regulated by TNFα in a process leading to apoptosis. First, permanent selectable switching 

between two selectable marker genes protects cells against apoptosis. Second, by uncoupling 

the expression of the trapped cellular gene from the expression of the selectable marker gene, 

the strategy allows the identification of genes that are even transiently expressed. Third, this 

technique is very sensitive, only few molecules of Cre are needed to permit recombination of 

the reporter vector allowing the identification of genes which are even at extremely low 

levels. Fourth, this technique is a genome wide scanning which might allow the identification 

of new genes in the human genome. 
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A.- 

 

B.- 

 

Figure 6. Strategy for the recovery of inducible genes. A.- Anatomy of the switch cassette. A 
selectable marker gene (marker 1), flanked by loxP sites (green triangles) in direct orientation relative 
to each other, is expressed from a constitutively active promoter (P) and simultaneously blocks the 
expression of a second, downstream marker gene (marker 2) by premature polyadenylation (pA). Cre 
deletes the upstream marker cassette by site specific recombination, resulting in expression of marker 
2. B.- Use of the one-way switch in a genetic screen for factor inducible genes. Cells with the switch 
vector inserted into their genome are transduced with a promoterless Cre gene trap vector. Insertions 
into active genes induce Cre expression which recombines the switch. Thus, at this point, selection for 
marker 1 eliminates all cells with gene trap insertions into expressed "housekeeping" genes leaving 
insertions into silent genes behind (1. OFF). Exposure to the stimulus of interest induces the 
expression of gene traps inserted in regulated genes, which activates the switch (2. ON). As a result, 
the cells express the downstream marker gene and can be selected in appropriate conditions. Since the 
switch recombination is irreversible, once activated, expression of marker 2 becomes independent of 
the trapped cellular promoter (3. ON or OFF), this enables the recovery of genes that are only 
transiently expressed. 
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The intrinsic properties of the gene traps make them complementary to RNA-based 

approaches such as microarray. First, trapping generates a single-cell reporter of the 

transcriptional activity rather than assessing mRNA abundance in the cell (Medico et al, 

2001). Second, the high sensitivity of some gene traps like the one based on Cre allows the 

detection of transcribed genes even at extremely low levels. Third, Cre integration indicates 

the transcriptional direction of the gene where is integrated allowing identification of natural 

antisense transcripts. 

 

1.5. Aim of the project 

This thesis project is focused on a new approach to identify and characterize genes involved 

in the cell survival and hence in the process of conversion from normal cells to malignancy. 

The strategy is based on the identification of genes specifically induced by TNFα in a breast 

cancer cell line.  

TNFα is not only a modulator of the immune response and thereby important in the 

inflammatory processes, but is also one of the strongest inducers of NF-κB dependent 

transcription. Indeed, TNFα induced apoptosis observed in some cells is preceded by 

transcriptional activation of survival genes. Identifying these transiently expressed genes is 

the aim of the present thesis; therefore a gene trap combined with Cre/loxP induced 

recombination was used for the identification of transiently activated genes. 

Unraveling the signaling pathways in this cellular context could provide novel insights into 

pathways endowing a survival response. Alterations in these pathways could be related to 

carcinogenesis and therefore provide with potential new markers for diagnostic or targets for 

therapy. 
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2. - Materials 

2.1. Machines and technical devices  

Autoclave VARIOKLAV® Dampfsterilisator, H+P Labortechnik GmbH, 
Oberschleiβheim, Germany 

Bacterial incubator B6030, Heraeus, Kendro Laboratory Products GmbH, Langenselbold, 
Germany 

Bacterial shaker Certomat®, HB. Braun, Melsungen, Germany 
Centrifuges Centrifuge 5415C, Eppendorf, Hamburg, Germany 

Megafuge 1.0R, Heraeus, Kendro Laboratory Products GmbH, 
Langenselbold, Germany 
Biofuge A, Heraeus, Kendro Laboratory Products GmbH, 
Langenselbold, Germany 
Sorvall® RC-5B, Du pont de Nemours GmbH, Bad Homburg, Germany 
Rotina 35 Hettich, Switzerland 

Electrophoresis  
transfer cell 

X CELLII™ Blot module, Invitrogen GmbH, Karlsruhe, Germany 

Fluorescence 
microscope 

Axioplan 2 imaging, Carl-Zeiss AG, Göttingen, Germany 

Hybridization oven Hybridizer HB-1000 UVP laboratory products, Cambridge, UK  
Hybridiser HB-ID, Techne, Burlington, USA 

Incubator BB6220, Heraeus, Kendro Laboratory products GmbH, Langenselbold, 
Germany 

Laminar flow DLF/REC4KL2A, Clean Air, Minneapolis, USA 
Microplate reader SPECTRA FLUOR PLUS, TECAN, Crailsheim, Germany 
Microscope  DMIL Leica, Solms, Germany 
Microscope camera Axio Cam HRc, Carl-Zeiss AG, Göttingen, Germany 
pH-meter pH 210, microprocessor pH Meter, Hanna instruments, Kehl am Rhein, 

Germany 
Phospho(r)imager Molecular Dynamics Phospho(r)imager SI, Amersham Pharmacia 

Biotech, Freiburg, Germany 
Power supply E455 and E312 CONSORT, Tumhout, Belgium 

200/500, Carl-Roth GmbH+Co KG, Karlsruhe, Germany 
RNA reader Agilent 2100 Bionalyzer, Agilent technologies Inc, Böblingen, Germany
Scintillation 
counter 

1500 TRI-CARB® Liquid scintillation analyzer Packard, Perkin Elmer 
LAS, Roggau-Jügesheim, Germany 

Shaker DUOMAX 1000, Heidolph instruments GmbH&Co KG, Karlsruhe, 
Germany 

Spectrophotometer Ultrospec III Pharmacia LKB, Freiburg, Germany 
Gene Quant II Pharmacia Biotech, Freiburg, Germany 

Handcounter, 
contamination 
monitor 

LB 122 Berthold, Bad Wildbad, Germany 

Thermocyclers MyCycler, Bio-Rad, Munich, Germany 
Gene amp PCR system 2400, Perkin Elmer, Wellesley, USA 
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Robocycler gradient 96, Stratagene, Amsterdam, NL 
Thermomixer Comfort, Eppendorf, Hamburg, Germany 
U.V. 
transiluminator 

E.A.S.Y. RH-3, Herolab, Wiesloch, Germany 

Vertical 
electrophoresis 
chambers 

Ei9001 X-CELLII Mini Cell, Invitrogen GmbH, Karlsruhe, Germany 

Vortex-mixer 72020 neolab, Heidelberg, Germany 
Water bath Shaking water bath 1083 GFL, Eppelheim, Germany 
X-Ray film deve-
loping machine 

KODAK M35 X-OMAT Processor, KODAK, Stuttgart, Germany 

2.2. General laboratory supplies 
Cromatography paper 3MM Chr, Whatman, Kent, UK 
Filters Millipore, Eschborn, Germany 
Membranes Trans-blot transfer Medium pure nitrocellulose membrane 0,2µM, 

BIO-RAD, Munich, Germany 
Nitrocellulose Hybond N+, Amersham, Freiburg, Germany 

X-ray films BioMax MS Film, KODAK, Sigma-aldrich, Taufkirchen, Germany  
CRONEX 5, AGFA, Agfa-Gevaert, Cologne, Germany 

Plastic cuvettes Sarstedt, Nümbrecht, Germany 
cell culture plates Costar GmbH, Bodenheim, Germany 

Greiner-bio-one GmbH, Frickenhausen, Germany 
Pre-cast SDS-PAGE 
gels  

NuPAGE™10% Bis-Tris Gel 1,0mmx15 gel, Invitrogen GmbH, 
Kalrsruhe, Germany 

2.3. Kits 
Cell proliferation kit II XTT Roche, Mannheim, Germany 
Dynabeads® mRNA purification kit DYNAL biotech, Hamburg, Germany 
DNeasy® Tissue kit Qiagen, Hilden, Germany 
RNeasy ® mini kit Qiagen, Hilden, Germany 
QIAquick® PCR purification kit Qiagen, Hilden, Germany 
QIAquick® Gel extraction kit Qiagen, Hilden, Germany 
Rediprime II™ random prime labeling system Amersham, Freiburg, Germany 
RNA 6000 Nanolab Chip® with reagents Agilent technologies, Böblingen, Germany 
Gen elute™ high performance (HP)  
plasmid midiprep kit 

Sigma-Aldrich, Taufkirchen, Germany 

2.4. Chemicals 
All chemicals used were purchased from Calbiochem, Applichem, Merck, Boehringer-
Mannheim, Becton Dickinson and Sigma-Aldrich Chemie GmbH. 
MiliQ18MΩ or HPLC water was used in all procedures if required. 
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2.5. Enzymes 

2.5.1. Restriction enzymes 

Restriction enzymes were purchased from Invitrogen GmbH, Karlsruhe and New England 
Biolabs, Frankfurt am Main, Germany.  

2.5.2. Modifying enzymes  
DNA polymerases:  Taq DNA polymerase Recombinant 
 Platinum® Taq DNA polymerase 
 Platinum® Taq DNA polymerase 

High fidelity 
Reverse transcriptase: 
 

SuperScript™II Reverse 
transcriptase 

Ligase:  T4 DNA ligase 

DNA polymerases, reverse 
transcriptase, ribonulease H and 
ligase were from Invitrogen 
GmbH, Kalrsruhe, Germany 

Nucleases:  Ribonuclease H   
 RQ1 Rnase-free Dnase  Promega, Mannheim, Germany 
Other:  
 

Calf intestinal phosphatase (CIP) 
Antarctic phosphatase  
Terminal deoxynucleotidyl-
transferase 
T4 polynucleotide kinase 

New England Biolabs, Frankfurt 
am Main, Germany 

2.5.3. Enzyme inhibitors 
RNAse inhibitors: RNAsin Promega, Mannheim, Germany 
Protease inhibitors: Aprotinin Sigma-aldrich, Taufkirchen, Germany 
 PMSF Applichem, Darmstadt, Germany 
 Leupeptin Sigma-aldrich, Taufkirchen, Germany 
 NaF Sigma-aldrich, Taufkirchen, Germany 
 Na3VO4 Sigma-aldrich, Taufkirchen, Germany 

2.6. Pre-mixed solutions 
10xtrypsin EDTA Gibco, Invitrogen GmbH, Kalrsruhe, Germany 
6xloading dye solution (for RNA) Fermentas, St. Leon-Rot, Germany 
Acrylamid solution (30%), 
mix 37.5:1 acryalmid: bis acrylamid 

Applichem, Darmstadt, Germany 

L-glutamine 200 mM Gibco, Invitrogen GmbH, Kalrsruhe, Germany 
NU PAGE® Antioxidant, Invitrogen GmbH, Kalrsruhe, Germany  
NU PAGE® LDS sample buffer Invitrogen GmbH, Kalrsruhe, Germany  
NU PAGE® MOPS SDS Running Buffer 20x Invitrogen GmbH, Kalrsruhe, Germany  
Ponceau's concentrate 2% Sigma-aldrich, Taufkirchen, Germany  
Protein Assay Reagent Bio-Rad, Munich, Germany  
RestoreTM Western blot stripping buffer Pierce, Bonn, Germany  
Sodium-pyruvate MEM 100 mM Gibco, Invitrogen GmbH, Kalrsruhe, Germany 
Trypan blue stain 0.4% Gibco, Invitrogen GmbH, Kalrsruhe, Germany 
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2.7. Reagents 
FuGENE 6 transfection reagent Roche, Mannheim, Germany 
ULTRAhyb™ Ambion, Cambridgeshire, UK 
TransPass D1 DNA trasfection reagent New England Biolabs GmbH, Frankfurt am 

Main, Germany  

2.8. Cell culture medium 

RPMI 1640 and DEMEM with/out phenol red were purchased from Gibco, Invitrogen GmbH, 
Kalrsruhe, Germany 

2.9. Cytokines 
Recombinant human TNFα R&D systems, Wiesbaden-Nordenstadt, Germany 

2.10. Antibiotics  
Antibiotic Stock solution Working concentration 

Ampicillin sodium salt 100 mg/ml in water 100 µg/ml  
Kanamicin 50 mg/ml in water 50µg/ml 
Blasticidin S 5 mg/ml in water 10 µg/ml for MCF-7 cells 
Geneticin sulphate (G418 ) 100 mg/ml in PBS 1 mg/ml for MCF-7 cells 
Penicillin-streptomicyn 10.000 units/ml penicillin G 

sodium and 10.000 µg/ml 
streptomycin sulphate in 
0.85% saline  

100 units/ml penincillin G 
100 µg/ml streptomycin 

Puromycin 1 mg/ml in PBS 1 µg/ml in MCF-7 cells 

2.11. Molecular weight standards  
DNA Ladder: 1 kb Plus DNA Ladder, 
RNA Ladder: 0.24 - 9.5 kb RNA Ladder 
Protein Ladder: MultiMark® multicolored standard 
 See Blue® Plus 2 

All Ladders were from 
Invitrogen GmbH, Kalrsruhe, 
Germany  
 

2.12. Desoxyoligonucleotides 
Synthetic desoxyoligonucleotides were purchased from Carl-Roth GmbH+Co KG, Karlsruhe 
or Invitrogen GmbH, Karlsruhe; the sequences are listed in the annex. 
Random primers (3 µg/µl) were from Invitrogen GmbH, Kalrsruhe, Germany 

2.13. Nucleotides 
dNTPs 100 mM, Invitrogen GmbH, Kalrsruhe, Germany 
[α-32P]dCTP 3000Ci/mmol, 10mCi/ml, Hartmann Analytic GmbH, Braunschweig, Germany 
ATP 10 mM, Invitrogen GmbH, Kalrsruhe, Germany 
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2.14. Antibodies  
Antibodies were purchased from Dianova, Hamburg; Santa Cruz, Heidelberg; MoBiTec, 
Göttingen and Invitrogen, Karlsruhe. 

2.15. Vectors 
The plasmids used in this work have as selection marker genes conferring resistance against 
the antibiotics ampicillin (bla gene) or kanamycin (nptII gene from transposon Tn5).  

2.15.1. Commercial vectors 

pcDNA™6/V5-HisA, Invitrogen: plasmid for the expression of fusion proteins with a V5 
epitope and a 6xHis tag in eukaryotes. 

pVPack-GP vector, Stratagene: helper plasmid required for the production of Mouse Moloney 
Leukemia virus (MMLV) based retroviral particles. Expression vector for gag and pol genes 
coding for group specific antigen and reverse transcriptase/integrase.  

pMD2.G: helper plasmid required for the production of Mouse Moloney Leukemia virus 
(MMLV) based retroviral particles. Expression vector for the VSV-G envelope, 
http://tronolab.epfl.ch/page58115.html.  

RZPD clone: IRAUp969D0665D/-IMAGE clone. This plasmid contains a ZFP67 cDNA with 
the complete coding region. 

RZPD clone: IRAUp969F0776D/-IMAGE clone. This plasmid contains a FLJ14451 cDNA 
with the complete coding region. 

2.15.2 Provided vectors 

pBabeSIN: Mouse Moloney Leukemia virus (MMLV) based retroviral vector in which all 
transcriptional regulatory sequences from the U3-region have been removed. 

pBabeU3Cre∆BII(-) provided by Joachim Altschmied: this plasmid is used for the production 
of U3Cre gene trap retrovirus particles; the Cre gene is located in the retroviral U3 region. 

pcDNA6egfpIRESblas provided by Joachim Altschmied: pcDNA™6/V5-HisA with a SV40 
driven a blasticidin IRESegfp cassette allowing selection and fluorescent visualization of 
transfected cells. 

SP100gfp provided by Hans Will, University of Hamburg: expression vector for a SP100gfp 
fusion protein. 

PML-1gfp provided by Hans Will, University of Hamburg: expression vector for a PML-1gfp 
fusion protein. 

2.15.3. Constructed vectors 

pneoPGKlxpurolxdnFADD: the plasmid contains a PGK driven floxed puro-pA cassette and 
silent dnFADD-pA cassette; additionally it contains a SV40 promoter driven neo selection 
marker. 
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pneoPGKlxdnFADD: the plasmid is a deletion mutant of pneoPGKlxpurolxdnFADD, in 
which the lxpuro-pA cassette was removed by in vitro recombination with Cre recombinase. 

pBSCMVlxtkneolxdnFADD: this plasmid carries the one way gene expression switch, it has a 
CMV promoter driven floxed tkneo-pA gene cassette and a silent dnFADD-pA cassette. 

vCMVlxtkneolxdnFADD: plasmid for the production of retroviral particles containing the 
CMVlxtkneolxdnFADD switch reporter cassette inserted in antisense orientation between the 
LTRs of a pBabeSIN vector.  

pBabepuroPGKcreS: retroviral Cre expression vector with PGK driven Cre and SV40 driven 
puromycin-acetyl-transferase selection marker. 

pCMVZFP67egfpIRESblas: eukaryotic expression vector for a V5-His fusion protein and 
SV40 driven blasticidin deaminase selection marker and egfp.  

pCMVZFP67neo: eukaryotic expression vector for a V5-HisA fusion protein and SV40 
driven neomycin-phosphotransferase selection marker. 

pCMVFLJ14451egfpIRESblas: eukaryotic expression vector for a V5-HisA fusion protein 
SV40 driven blasticidin-deaminase selection marker and egfp. 

pCMVFLJ14451neo: eukaryotic expression vector for a V5-HisA fusion protein and SV40 
driven neomycin-phosphotransferase selection marker. 

2.16. Software 
General: Photoshop 4.0, Adobe Systems Inc. 

Microsoft Office 2001 for Macintosh 
DNA analysis: ABI Prism DNA Sequencing Software, Perkin Elmer ABI 

DNA Strider™1.2, CEA 
PCR primer 
prediction: 

Oligo® 4.04-s, National Biosciences, Inc 
Primer3, http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi  

RNA analysis: 2100 Expert software 
Densitometer 
software: 

Image Quant, Molecular Dynamics  
Quantity one, Bio-Rad, Munich 

2.16.1. On line bioinformatics resources 

Protein motifs, patterns, profiles analysis: 

ScanProsite http://www.expasy.ch/tools/scnpsite.html 

Database similarity search software: 

BLAST http://www.ncbi.nlm.nih.gov/BLAST 
DNA bioinformatics data bases: 

Gen Bank http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html 
ENSEMBL http://www.ensembl.org 
Celera http://www.celera.com 
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Source http://genome-www5.stanford.edu/cgi-bin/source/sourceSearch 
Harvester http://harvester.embl.de 

Microarray database 

Oncomine http://www.oncomine.org:80/main/mainx.jsp 

Promoter and first exon prediction routines 

Dragon promoter finder version 1.5 http://research.i2r.a-
star.edu.sg/promoter/promoter1_5/DPF.htm 

Neural Network Promoter Prediction http://www.fruitfly.org/seq_tools/promoter.html
FirstEF http://rulai.cshl.org/tools/FirstEF/
McPromoter MM:II http://genes.mit.edu/McPromoter.html
promoter 2 http://www.cbs.dtu.dk/services/Promoter/ 
promoter scan http://thr.cit.nih.gov/molbio/proscan/ 

 

3. - Methods 

3.1. Purification, manipulation and detection of DNA 

3.1.1. DNA storage 

DNA was stored in TE buffer at –20°C. 

TE-buffer: 

10 mM Tris·Cl, pH 7.6 

1 mM EDTA 

Autoclave, store at room temperature 

3.1.2. Plasmid DNA isolation 

Plasmid DNA was purified with the QIAprep® Spin Miniprep kit (Qiagen, Hilden) starting 

from 1.5-2 ml dense overnight culture, if less than 10 µg were required or, for larger amounts, 

from 100 ml culture using the Gen elute™ high performance (HP) plasmid midiprep kit 

(Sigma-aldrich, Taufkirchen). Purification was performed as described by the suppliers. 

3.1.3. DNA isolation from eukaryotic cell lines  

DNA isolation was performed with the DNAeasy Tissue kit (Qiagen, Hilden) according to 

manufacturer's specifications.  
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3.1.4. Measurement of DNA concentration  

DNA concentration and purity was determined spectrophotometrically. Absorption of 1 at 260 

nm corresponds to a concentration of 50 µg/ml double strand DNA, the ratio between the 

absorptions at 260 nm and 280 nm for DNA should be between 1.7 and 2.0 (Maniatis et al., 

1982). 

3.1.5. Enzymatic manipulation of DNA 

Enzymatic modifications of DNA were done with commercial enzymes using buffer and 

incubation conditions suggested by the manufacturers. 

3.1.5.1. Endonucleolytic digestion  

Different restrictions enzymes were used, incubation time was dependent on the amount of 

DNA and enzyme concentration, as a rule of thumb 1 U enzyme should digest 1 µg DNA 

within an hour. Incubation temperatures were chosen as specified for each enzyme. 

3.1.5.2. Dephosphorylation 

5' terminal phosphate groups were removed from DNA with calf-intestinal-phosphatase or 

antarctic phosphatase according to the manufacturer's specifications. 

3.1.5.3. Ligation 

T4 DNA ligase was used for the ligation of DNA fragments. For cloning purposes, 

approximately 100-200 ng DNA with a vector:insert ratio of 1:1 and 1 U ligase were 

combined in a final volume of 20 µl ligation buffer and incubated overnight at 16°C. 

3.1.5.4. Filling in of double stranded DNA with 5'-overhangs 

The enzyme used for this purpose was the Klenow fragment of E. coli DNA polymerase I.  

3.1.6. Electrophoresis of DNA in agarose gels 

Double stranded DNA fragments can be separated according to their lengths by gel 

electrophoresis through agarose gels, with the separation range being dependent on the 

agarose concentration (0.6-2% w/v). Agarose was dissolved in 1xTAE buffer by boiling in a 

microwave oven. When the molten gel was cooled to 50°C ethidium bromide was added to a 
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final concentration of 0.1 µg/ml, thoroughly mixed by gentle swirling and then poured into an 

electrophoresis tray with an appropriate comb. After solidification the tray was transferred to 

a horizontal electrophoresis chamber and the gel covered with 1xTAE buffer. DNA samples 

were mixed with loading buffer and loaded into the gel. The gels were run at 5-8 V/cm, after 

gel electrophoresis the DNA was visualized on an U.V. transilluminator. 

TAE buffer: 

40 mM Tris·Cl pH 8.5 

40 mM glacial acetic acid 

2 mM EDTA 

6xloading buffer: 

30 % glycerol 

10 mM  EDTA 

0.1 % SDS 

0.25 % xylene cyanol FF 

0.25 % bromophenol blue 

3.1.7. DNA purification 

DNA was purified from aqueous solutions with the QIAquick® PCR purification kit and 

recovered from agarose gels using the QIAquick® gel extraction kit (both Qiagen, Hilden) 

following the manufacturer's instructions. 

3.1.8. Polymerase chain reaction (PCR) 

A mix was prepared with 0.2 mM dNTPs, 1.5 mM MgCl2, 1.5 units heat stable DNA 

polymerase (Taq polymerase from Thermus aquaticus), 10 pmol each primer and DNA 

template to 30-50 µl end volume in a PCR tube. Amplification was performed in a 

thermocycler where an initial denaturation of 5 min was followed by 30 to 40 cycles of 

denaturation-annealing-extension steps. Denaturation and extension steps were performed for 

30 sec, a rule of thumb for the extension time was 1 min for 1 kb. Denaturation temperature 

was 95°C, extension temperature 72°C for Taq DNA polymerase and 68°C for proofreading 

polymerases. Annealing temperature was adjusted according to primer composition and was 

4°C below the melting temperature of the primer template hybrid (Tm). 

 - 28 - 



 
Materials and methods  - 29 - 

Primers were designed using commercial (Oligo) or publicly available (Primer 3) software. 

They were between 17-28 nucleotides long, with one G or C at the 3'-end and Tm between 

55°C and 65°C. The melting temperature was calculated by the formula 

Tm=4x(G+C)+2x(A+T); where A is adenosine, T is thymidine, C is cytidine and G is 

guanosine.  

The amount of template was dependent on the type of amplification. For a colony PCR one 

colony was picked into 20 µl LB medium and 5 µl were used as template in the PCR reaction. 

Amplifications with DNA templates were performed with 500 ng genomic DNA, 0.2 to 2 ng 

plasmid DNA or, in the case of reverse transcriptase PCRs (RT-PCRs), with 2 to 5% of a 

cDNA synthesis reaction starting from 1 µg total RNA. 

3.1.9. Inverse PCR 

Genomic DNA (2 to 4 µg) was digested overnight with 10 units PstI or NspI. Restriction 

enzymes were inactivated for 30 min at 80°C, DNA fragments were purified with the 

QIAquick® PCR purification kit (Qiagen, Hilden) and eluted in 40 µl HPLC-water. DNA 

fragments were ligated overnight at 16°C with 3200 units T4 DNA ligase (Invitrogen GmbH, 

Karlsruhe) in a 100 µl ligation reaction. Ligase was inactivated for 15 min at 65°C, the 

reaction products purified with the QIAquick® PCR purification kit (Qiagen, Hilden) and 

eluted in 30 µl HPLC-water. A first PCR was performed under standard conditions with 10 µl 

ligation products in 50 µl volume with the addition of DMSO to 2% (v/v) and 2.5 U Platinum 

Taq polymerase (Invitrogen GmbH, Karlsruhe). After that, a nested PCR was performed 

under identical conditions with 0.1 to 1 µl from the first PCR as template. The reaction 

products were analyzed in an agarose gel and sequenced after purification with the PCR 

purification kit (Qiagen, Hilden) if only one product was present (Hui, Wang et al. 1998). The 

following primers were used: 

First PCR 
 

Cre43/SY2  
CreiPCR rev2/iPCRU3 

PstI digested DNA 
NspI digested DNA 

Second PCR 
 

Cre1P/SY1 
CreiPCRrev1/iPCRU4 

PstI digested DNA 
NspI digested DNA 

Sequencing 

 

Cre 1P   
Cre 43 

PstI digested DNA 
NspI digested DNA 
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3.1.10. Radioactive labeling of DNA fragments 

Probes were either labeled by random primed labeling or asymmetric PCR. For random 

primed labeling around 500 ng of a DNA fragment were radioactively labeled with 5 µl (0.33 

µM end concentration) [α-32P]-dCTP (3000Ci/mmol-10mCi/ml, Hartmann Analytic GmbH 

Braunschweig), in a final volume of 50 µl using the Rediprime II™ random prime labeling 

system (Amersham, Freiburg) following manufacturer's recommendations.  

Single strand radioactive probes were synthesized by linear amplification in an asymmetric 

PCR, in which only one primer was used and the unlabelled dCTP was replaced by a mixture 

of cold and radioactive dCTP, to end concentrations of 1.2 µM cold dCTP and 0.33 µM [α-
32P]-dCTP (3000Ci/mmol-10mCi/ml, Hartmann Analytic GmbH Braunschweig). As template 

10-100 ng of the DNA fragment to be labeled were used, amplification was carried out 40 

cycles with an extension time of 4 min.  

Non incorporated nucleotides were removed by chromatography using Micro spin S-200 HR 

columns (Amersham, Freiburg) following manufacturers instructions. Activity of the 

radioactive probes was measured with 1 µl radioactive-labeled DNA in a Scintillation 

counter. 

3.2. Purification, manipulation and detection of RNA 

For RNA work a series of precaution were taken to avoid RNase contamination. RNA was 

stored at –80°C, always transported on ice, gloves were always used, pipette tips were 

autoclaved or RNase free pipette tips used, glassware was autoclaved and water was treated 

with DEPC. 

DEPC water:  

0.1 % DEPC   

Stir overnight, autoclave, store at room temperature 

3.2.2. RNA isolation from eukaryotic cell lines 

Cells were grown in 9 cm cell culture dishes until they reached 80-90% confluence, 

trypsinized as described and collected by centrifugation (see section 4.2). Cells were then 
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resuspended, centrifuged at 210 g for 5 min and rinsed once with PBS. The cell pellet could 

be stored at –20°C up to 2 weeks before the RNA was isolated.  

RNA from cell pellets was extracted using the RNeasy mini kit (Qiagen, Hilden), which can 

be used to isolate molecules longer than 200 nucleotides, following manufacturer's 

recommendations. 

3.2.3. Measurement of RNA concentration 

RNA concentration was determined in an Agilent 2100 Bionalyzer (Agilent technologies Inc, 

Böblingen) with a RNA 6000 Nanolab Chip® (Agilent technologies Inc, Böblingen) 

following the manufacturer's recommendations. 

3.2.4. RNA concentration 

RNA can be concentrated with a vacuum centrifuge ("speed-vac"), which evaporates water 

from the sample. If the RNA volume to be concentrated was too large, RNA was precipitated 

with ammonium acetate. The ammonium acetate concentration was adjusted to 0.5 M with a 5 

M stock solution, then 2.5 volumes ethanol were added and the sample was incubated at          

–80°C for at least 30 min before centrifugation for 30 min in a tabletop centrifuge at full 

speed and 4°C. The precipitate was resuspended in DEPC water. 

3.2.5. mRNA isolation 

mRNA was isolated from total RNA using the Dynabeads® mRNA purification kit (Dynal 

biotech, Hamburg) following manufacturers instructions.  

3.2.6. DNA digestion 

DNA was removed from the RNA sample with RQ1 RNase-free DNase (Promega, 

Mannheim) following the manufacturer's instructions. Briefly, 2 µg RNA were incubated with 

2 units RQ1 RNase-free DNase in a 10 µl end volume reaction for 30 min at 37°C. To 

terminate the digestion 1 µl RNase stop solution was added and the reaction was incubated for 

10 minutes at 65°C. 
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3.2.7. First strand cDNA synthesis 

RNA was reverse transcribed using Superscript II reverse transcriptase (Invitrogen GmbH, 

Kalrsruhe) and random hexamer primers (Invitrogen GmbH, Kalrsruhe) following 

manufacturers instructions. Briefly, 2 µg RNA were incubated for 5 min at 65°C with 500 ng 

random hexamers, 20 pmol dNTPs and DMSO (0-9%) in a final volume of 24 µl. The sample 

was then placed on ice, 2 µl RNasin 40 U/µl (Promega, Mannheim), 4 µl DTT 0.1 M and first 

strand buffer were added  incubated for 10 min at 25°C and afterwards for 2 min at 42°C. 2 µl 

Superscript II (400 U) were added to the reaction and incubation continued for 90 min at 

42°C. cDNA synthesis was terminated with a 15 min incubation step at 70°C, afterwards the 

RNA was removed by incubation with 2 units RNase H for 20 min at 37°C.  

3.2.8. Northern blot 

3.2.8.1. RNA electrophoresis 

3.2.8.1.1. Gel preparation 

RNAs can be separated according to their length on a denaturing gel. For a 150 ml gel, 1.5 g 

agarose were dissolved in water by boiling in a microwave oven and cooled to 55°C. 15ml 

20xMOPS and 9 ml formaldehyde 37% were added in a chemical fume hood thoroughly 

mixed by gentle swirling and then poured into an electrophoresis tray with an appropriate 

comb. After solidification the tray was transferred to a horizontal electrophoresis chamber and 

the gel covered with 1xMOPS electrophoresis buffer. 

3.2.8.1.2. Sample preparation 

RNA samples were processed in parallel to a RNA ladder, the maximum sample volume was 

6 µl, if more dilute, samples were concentrated by precipitation. A maximum of 30 µg RNA 

per lane was used (lane width 0.6 cm); more RNA is not recommended as the gel is 

overloaded with the consequence of a bad RNA separation. The 6 µl RNA was mixed with 15 

µl denaturing buffer, incubated at 65°C for 20 min and chilled on ice. 4 µl 6xRNA loading 

dye solution (Fermentas, St. Leon-Rot) were added to the sample and 22 µl of the mixture 

were loaded on the agarose-formaldehyde gel. Gels were run at 6.6 V/cm for 3 hours.  
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20xMOPS electrophoresis buffer:  

400 mM MOPS 

100 mM  Na-acetate 

10 mM EDTA 

Autoclave, store at room temperature 

Denaturing buffer:   

2 x  MOPS electrophoresis buffer 

50 %  formamide (v/v) 

6.5 %  Formaldehyde (v/v) 

Always make freshly  

3.2.8.2. Transfer to nitrocellulose membranes 

Electrophoretically separated RNA was transferred to a Nitrocellulose Hybond N+ 

(Amersham, Freiburg) membrane by capillary force using 10xSSC as transfer buffer. The gel 

was equilibrated in 10xSSC for 15 min and placed head over on a Whatman paper bridge, 

which contacts a reservoir containing 10xSSC. A membrane of the same size as the gel was 

placed on top of the gel, followed by 2-4 layers of Whatman also cut to gel size, a pile of 

paper and a 0.5 kg weight on top. The transfer to the nitrocellulose membrane was done 

overnight. 

20xSSC:   

3 M NaCl 

300 mM  Na citrate 

Autoclave, store at room temperature 

3.2.8.3. Staining of RNA on nitrocellulose membranes 

After the transfer, the membrane was stained with methylene blue to check the transfer 

efficiency. Therefore, the membrane was incubated with the staining solution for 5 min at 

room temperature and washed with an excess of water. When using total RNA, two bands 

appear corresponding to the highly abundant 28S and 18S ribosomal RNAs. If mRNA was 

transferred to the membrane only weak bands with the residual 28S and 18S can be 

visualized. The methylene blue was washed out with washing solution 2. 
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Staining solution:  

0.04 %  methylene blue (w/v) 

500 mM  Na-acetate 

Washing solution 2:  
0.1 x SSC 

0.1 %  SDS (w/v) 

3.2.8.4. Hybridization 

3.2.8.4.1. Hybridization probe 

Probes to detect abundant RNAs like β-actin mRNA were radioactively labeled by random 

priming (section 3.2.10), probes for less abundant RNAs by asymmetric PCR (section 3.2.10).  

For normalization all Northern blots were hybridized with a β-actin probe (Thellin, Zorzi et 

al. 1999). 

3.2.8.4.2. Hybridization to the membrane 

After staining with methylene blue and distaining, the membrane was prehybridized with 

hybridization buffer for 1 hour at 42°C. Then, the denatured probe was added (106-2x106cpm) 

and hybridized overnight at 42°C or two hours for abundant RNAs like actin mRNA or 18S 

rRNA. To remove unbound probe the filter was washed twice for 5 min with washing solution 

1 at 42°C and once for 5 min with washing solution 2 at 42°C. A final washing step with 

washing solution 2 for 30 min at 60°C ensured removal of all unspecifically hybridized probe. 

Hybridization buffer: 

ULTRAhyb™ Ambion, Cambridgeshire 

Washing solution 1: 

2 x SSC  

0.1 %  SDS (w/v) 

Washing solution 2: 

0.1 x SSC 

0.1 %  SDS (w/v) 
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3.2.8.5. Detection 

After washing, the membrane was sealed in a transparent plastic bag with 2 ml washing 

solution 2. The plastic bag was placed in an X-ray cassette and a BioMax MS Film, KODAK 

(Sigma-aldrich, Taufkirchen) was exposed to the membrane. Exposition time was dependent 

on signal strength. In general an overnight exposition was done and further expositions if 

necessary; for quantifying, the signals were recorded with a Phospho(r)imager. 

3.2.8.6. Stripping 

For further hybridizations, the membrane was immersed in boiling 0.1% SDS solution and 

cooled to room temperature in this solution.  

3.3. Preparation, storage and detection of proteins 

3.3.2. Preparation of cell lysates/extracts 

Cells from a 9 cm plate at 70-80% confluence were detached from the growth surface with 

trypsin as described in section 3.6.2. Cells were centrifuged at 210 g for 5 min and rinsed 

once with PBS. The cells were resuspended in 150-200 µl lysis buffer and disrupted 

mechanically by vortexing. Proteins were recovered from the supernatant after centrifugation 

at full speed in a tabletop centrifuge for 10 min and stored at –20°C. 

Lysis buffer:  

50 mM Tris·Cl, pH 7.4 

150 mM  NaCl 

0.1 % NP-40 (v/v) 

10 % glycerol (v/v) 

25 mM Na-β-glycerophosphate 

Store at 4°C 

Directly before use proteinase inhibitors were added 
from concentrated stock to the following final 
concentrations: 

1 mM PMSF, stock solution 100 mM in ethanol 

10 mM  Na3VO4, stock solution 2 M in water 
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5 µM Leupeptin, stock solution 5 mM in water 

20 mM NaF, stock solution 1M in water 

8  µg/ml Aprotinin, stock solution 1.6 mg/ml  in 

0.9% NaCl and 0.9% benzyl alcohol 

3.3.3. Measurement of protein concentration 

Protein concentration in lysates was determined with the Bio-Rad protein assay (Bio-Rad, 

Munich) following manufacturers recommendations. Briefly, 1 ml Bio-Rad protein assay 

solution (diluted 1:5 with water and filtered through a paper filter) was mixed with sample (3-

18 µg) and the absorbance measured at 595 nm. Sample concentration was calculated from a 

standard curve obtained with BSA (Bradford 1976). 

3.3.4. Western blot 

3.3.4.1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

3.3.4.1.1. Gel preparation 

Proteins can be separated largely on the basis of their relative molecular mass by 

electrophoresis in polyacrylamid gels under denaturing conditions. SDS-polyacrylamid gels 

consisted of a separation gel and a stacking gel on top of it. After all components of the 

separation gel were mixed, ammonium persulfate and TEMED were added to initiate 

polymerization. The polymerization mix was poured in a vertical electrophoresis cassette and 

overlayed carefully with water. After complete polymerization of the separation gel, the water 

was poured off. The 5% stacking gel was poured on top and a comb was inserted to form the 

sample slots. 

Separation gel:  

6-15 % Acrylamid: bisacrylamid (v/v)

0.1 % SDS (w/v) 

400 mM  Tris·Cl pH 8.8  

0.1 % Ammonium persulfate (w/v) 

0.08 % TEMED (v/v) 
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Stacking gel:  

5 % Acrylamid: bisacrylamid (v/v)

0.1 % SDS (w/v) 

130 mM  Tris·Cl pH 6.8  

0.1 % Ammonium persulfate (w/v) 

0.1 % TEMED (v/v) 

3.3.4.1.2. Electrophoresis 

Protein samples (20-50 µg) were mixed with loading buffer at a ratio of 2.5:1, boiled for 10 

min and chilled on ice. Samples were briefly centrifuged and loaded onto the gel. For 

molecular weight determination, a protein molecular weight marker was loaded parallel to the 

samples. The gel was run for 2-3 hours at 100-120 V constant voltage, until the bromophenol 

blue had nearly reached the bottom of the gel.  

Loading buffer:  

Add 5 % mercaptoethanol (v/v) to the loading buffer (NuPage® LDS sample 

buffer, Invitrogen) before use, can be stored at –20°C 

Running buffer: 

25 mM Tris base 

250 mM Glycin 

0.1 %  SDS (w/v) 

Store at room temperature 

3.3.4.2. Electroblotting 

Electrophoretically separated proteins were blotted onto nitrocellulose membranes (Trans-blot 

transfer Medium pure nitrocellulose membrane 0.2 µM, BIO-RAD, Munich) in Towbin 

transfer buffer using a NOVEX Western apparatus following manufacturer's instructions. 

Briefly, after disassembling the gel electrophoresis cassette, the stacking gel was cut off and 

the separation gel was assembled into a sandwich together with the nitrocellulose membrane. 

This sandwich was prepared in a tank with transfer buffer containing the following 

components, all prewetted with transfer buffer, in the given order: 2 blots pads, 1 piece of 

Whatman paper, gel, 0.2 µM pure nitrocellulose membrane (BIORAD, Munich), 1 piece of 
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Whatman paper and 3-4 blot pads; all papers and filters were cut to the dimension of the gel. 

The gel/membrane assembly was held securely between the two halves of the blot module 

ensuring complete contact of all components. The blot module was filled with transfer buffer 

and run at 35 V for 90 min.  

Towbin transfer buffer: 

12 mM Tris base 

96 mM  glycine 

20 % methanol (v/v) 

3.3.4.3. Staining 

After blotting was completed, transfer and equal loading of the proteins were controlled by 

staining the membrane with 0.1% Ponceau red (Sigma-aldrich, Taufkirchen) 3 min at room 

temperature. The membrane was distained by washing 10-15 min with TBST before the 

immunostaining was performed. 

3.3.4.4. Immunological detection 

Proteins can be detected on the membrane with antibodies, which bind to a specific region on 

the protein (epitope). All antibodies used were diluted according to manufacturer's 

instructions in TBST-5% low-fat milk powder (w/v). The incubations and washes were done 

at room temperature on a shaker, if not indicated otherwise. 

The membrane was blocked in TBST-5% low-fat milk powder (w/v) for at least 1 hour at 

room temperature or overnight at 4°C. After blocking the membrane was placed bubble free 

in a plastic bag with 5 ml primary antibody and incubated for 1 hour. This incubation was 

followed by three washes with TBST (5 min each) to remove unbound antibody. After 

incubation with the secondary antibody conjugated to horseradish peroxidase for 1 hour the 

membrane was washed as before. The membrane was rinsed with water to replace TBST and 

incubated in the dark for 1 min with developing solution, which was made freshly in the dark 

by mixing ECL solutions 1 and 2 (1:1). Afterwards, the membrane was placed in a transparent 

plastic bag and exposed to an X-ray. Oxidation of luminol by horseradish peroxidase in the 

presence of hydrogen peroxide leads to emission of photons, which can be detected by a light 
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sensitive film. Depending on signal strength the exposure ranged from 5 sec to 30 min, after 

which no further light is emitted.  

After protein detection the membrane was stored wet at 4°C and could be reused again. For 

the detection of other proteins/antigens the antibody was stripped off in stripping solution 

(RestoreTM Western blot stripping buffer, Pierce, Bonn) at room temperature for 20 min. The 

stripping solution was discarded and the membrane washed several times with TBST. The 

membrane was blocked again and the detection repeated with another antibody.  

 Antibody Commercial supplier Working dilution 

Primary Anti FADD MoBiTec, Göttingen 1:1000 

 Anti V5 Invitrogen, Karlsruhe 1:5000 

 Anti tubulin 

Ab-4 (DM1A+DM1B) 

Dianova, Hamburg 

 
1:1000 

 

Secondary Anti mouse Dianova, Hamburg 1:2000 

 Anti mouse Santa Cruz, 

Heidelberg 
1:1000 

 Anti rabbit Dianova, Hamburg  1:2000 

All the antibodies were diluted in 5% low-fat milk 

TBST buffer: 

150 mM NaCl 

50 mM  Tris·Cl pH 8.0 

0.05 % Tween 20 (v/v) 

ECL solution 1: 

2.5 mM luminol 

400 µM  p-coumaric acid 

100 mM Tris·Cl pH 8.5 

ECL solution 2: 
0.02  %  H2O2 (v/v) 

100 mM Tris·Cl 

Store ECL solution 1 and 2 at 4°C 
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Stock solutions: 

250 mM Luminol in DMSO 

90 mM  p-coumaric acid in DMSO 

Store at –20°C 

 

3.4. Working with bacteria 

3.4.1. Bacterial strains 

The E.coli bacterial strains XL-1 blue, DH5-alpha and XL10 were used. All of them have a 

deletion in the gene for β-galactosidase, which can be compensated with a plasmid vector 

encoding the α-peptide fragment of the β-galactosidase (α-complementation; Langley, 

Villarejo et al. 1975). Such plasmids carry a short segment of E.coli DNA containing the 

regulatory sequences and the coding information for the first 146 aa of the β-galactosidase 

gene. The host encoded β-galactosidase and the plasmid encoded associate to form an 

enzymatically active protein and form blue colonies in the presence of X-Gal. Insertion of a 

foreign DNA fragment into the α-peptide coding region of the plasmid almost invariably 

results in the production of an amino-terminal fragment that is no longer capable of α- 

complementation and thus, bacteria harboring such a plasmid form white colonies in the 

presence of X-Gal. 

The bacterial strains have the following genotypes (genes listed signify mutant alleles; genes 

on the F' episome, however, are wild-type unless indicated otherwise): 

DH5-alpha F- φ80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) 

phoA supE44 thi-1 gyrA96 relA1 λ- 

XL10 Tetr ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lacHte [F´ proAB lacIqZ∆M15 Tn10 (Tetr) Amy Camr]  

XL1-blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB 

lacIqZΔM15 Tn10 (Tetr)]. 
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3.4.2. Growth and storage 

All bacterial strains, were grown at 37°C as shaking suspension cultures in LB medium or on 

LB agar plates, which were supplemented with antibiotics if required. Bacteria on agar plates 

were stored up to 4 weeks at 4°C. For long term storage at –80°C glycerol was added to LB- 

suspension cultures to a final concentration of 15% (v/v) (Ausubel et al 1989). 

LB medium: 

10 g/l bacto tryptone 

5 g/l yeast extract 

10 mM NaCl 

Autoclave, store at room temperature 

Agar plates: 

10 g/l bacto tryptone 

5 g/l yeast extract 

10 mM NaCl 

15 g/l agar 

Autoclave, cool to 55°C, add 

antibiotic if required and pour in 

Petri-plates, store in the dark at 4°C 

3.4.3. Competent bacteria  

Transformation of competent bacteria followed the protocol from Hanahan (Hanahan 1983), 

all the reagents were pre-cold at 4°C. A overnight 2 ml culture coming from a single colony 

of E.coli DH5α was used to inoculate a 50 ml culture which was grown overnight at 37°C at 

200 rpm shaking. This culture was used next day for a 1500 ml culture that was grown at 

37°C with shaking till the absorbance at 600 nm was between 0.4-0.6 O.D. The bacteria were 

then centrifuged at 1638 g at 4°C for 15 min. For all further steps pre-cold buffers were used 

and the manipulations and incubations were performed on ice. The bacteria were resuspended 

in 50 ml TFB-I buffer and incubated 90 min on ice, centrifuged as before, resuspended in 40 

ml TFB-II buffer and flash frozen in liquid nitrogen in aliquots of 200 µl, frozen competent 

bacteria were stored at –80°C. 
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TFB-I: 

15 % glycerol (v/v) 

30 mM Calcium acetate 

100 mM RbCl 

10 mM CaCl2 

50 mM MnCl2 

Adjust pH to 5.8 with acetic acid 
2 M CaCl2 and MnCl2 stock solutions were 
prepared, autoclaved and used for this buffer 

TFB-II: 

15 % glycerol (v/v) 

10 mM MOPS 

10 mM RbCl 

75 mM CaCl2 

Adjust pH to 7.0 with NaOH 

 

3.4.4. Transformation with DNA 

If commercially prepared competent bacteria were used, the manufacturer's instructions were 

followed. Competent bacteria were thawed on ice and 100 µl were mixed carefully with DNA 

(ligation reaction or plasmid DNA, up to 20 µl). The suspension was incubated for 30 min on 

ice, heat-shocked at 42°C for 90 sec before 1 ml pre-warmed LB medium was added and then 

incubated at 37°C for 20-40 min with vigorous shaking. Afterwards the suspension was 

centrifuged 4 minutes at 4000 rpm in a table centrifuge, resuspended in 60 µl LB medium and 

evenly spread on an agar plate. The agar plate was incubated 12-16 hours at 37°C.  

Recombinant plasmids were identified by colony PCR or restriction digestion of purified 

DNA. 

Plates: 

Approximately 1 hour before use, spread 60 µl 10% X-Gal 

and 50 µl 100 mM IPTG onto plate, air dray, not store 
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Stock solutions: 

100 mM IPTG stock solution 

10 % X-Gal  

Store at –20°C  

 

3.5. Work with mammalian cells 

3.5.1. Cell lines 

MCF-7 (ATCC-NR. HTB-22) 

The MCF-7 cell line is a human cell line from a pleural effusion derived from a breast 

carcinoma; the cells have an epithelial morphology and grow adherent (Soule, Vazguez et al. 

1973). Cultivation in various laboratories has given rise to different subpopulations (Prest, 

Rees et al. 1999; Devarajan, Chen et al. 2002) with distinct phenotypic features and responses 

to TNFα (Burow, Weldon et al. 1998).   

HeLa (ATCC-NR. CCL-2) 

The HeLa cell line is a human cervical-adenocarcinoma cell line. The cells have an epithelial 

morphology and grow adherent.  

293 T  

The 293T cell line is a human cell line from fetal kidney constitutively expressing the simian 

virus 40 (SV40) large T antigen. The cells have an epithelial morphology and grow adherent.  

3.5.2. Routine culturing 

All mammalian cell lines were grown at 37°C and 95% humidity in the presence of 5% CO2. 

Cell lines were maintained at subconfluent densities in culture medium supplemented with 

10% heat-inactivated fetal calf serum (BIOCHROM AG seromed®, Berlin), 100 units/ml 

penicillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate and 2 mM glutamine (Invitrogen, 

Karlsruhe). Cell culture medium was change every 2-3 days and cells were passage at 80% 

confluence.  
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For passaging, cells were detached from the growth surface with 0.05% trypsin in PBS 

(Invitrogen, Karlsruhe). Briefly, medium was removed from the plate and the cells rinsed 

once with PBS. Trypsin solution was added, distributed evenly by tilting the plate and 

removed leaving only a thin film of the solution. The plate was then incubated at 37°C until 

cells detached. At this point medium containing serum was added to inhibit trypsin, cells were 

resuspended and splitted into new culture dishes. The split ratio was between 1:10 and 1:20 

for all cell lines used. 

The following basic media were used for the different cells lines and supplemented as 

described above: 

Medium  Cell line 

RPMI 1640 with L-glutamine  Hela 

DMEM without phenol red, 4500 mg/l glucose 

without L-glutamine, without Na pyruvate 

 MCF-7 

DMEM with phenol red, 4500 mg/l glucose with 

L-glutamine, without Na pyruvate 

 293-T 

PBS buffer: 

10 mM Na3PO4·2H2O, pH7.4 

1.7 mM KH2PO4  

137 mM NaCl 

2.7 mM KCl 

Autoclave, store at room temperature 
 

3.5.3. Cell counting 

For experiment requiring exact cell numbers, cells were counted using a Neubauer chamber. 

Therefore, cells were diluted 1/5 or 1/10 with trypan blue stain 0.4% (Gibco, Invitrogen 

GmbH, Kalrsruhe), which stains only dead cells, whereas living cells do not take up the stain 

(trypan blue exclusion). 
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3.5.4. Freezing and thawing of cells 

For long term storage subconfluent cells were detached from the growth surface with trypsin 

as described. Then they were collected by centrifugation at 210 g for 5 min at room 

temperature and resuspended in freezing solution, (2 ml freezing solution for cells from a 

subconfluent 9 cm diameter dish). The cell suspension was transferred to appropriate 

cryotubes in 1 ml aliquots and these were placed into a cryocontainer with isopropanol and 

kept for 24 hours at –80°C. After that, the cells were transferred to liquid nitrogen for long 

term storage. 

For thawing, cryotubes were placed in a 37°C water bath. Immediately after thawing, the cell 

suspension was transferred into a centrifuge tube containing 5 ml regular growth medium and 

centrifuged at 210 g for 5 min at room temperature. The cell pellet was resuspended in growth 

medium and transferred into a culture dish. The next day the medium was changed to remove 

dead cells.  

Freezing solution: 

10 % DMSO in fetal calf serum 

3.5.5. Transfection of mammalian cells 

Different transfection procedures and reagents were used depending on the transfected cell 

type; if stably selected transfectants were desired, selection for antibiotic resistance was 

started 2 days after transfection. 

3.5.5.1. Transfection with FuGene 6 (Roche, Mannheim) 

One day before the transfection 5x106 MCF-7 or 4x106 293-T cells were seeded in a 9 cm cell 

culture dish. For transfection cells were washed and fresh supplemented medium was added. 

FuGene was prepared according to manufacturer's instructions. Briefly, for a 9 cm diameter 

cell culture dish, 12 µl FuGene were added to 400 µl medium without serum. After 5 minutes 

incubation at room temperature, 6 µg DNA were added and the solution mixed briefly. The 

DNA/FuGene/medium mixture was incubated for another 30 min at room temperature and 

then was added to culture dish with the cells that had been washed and refed with 5 ml 

medium; the next day the medium was replaced. 
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3.5.5.2. Transfection with TransPass D1 (New England Biolabs GmbH, Frankfurt am 

Main) 

One day before the transfection 4.5x105 MCF-7 cells were seeded in a 3.5 cm culture dish. 

TransPass D1 transfection mixture was prepared according to manufacturers instructions. 

Briefly, for a 3.5 cm cell culture dish, 12.5 µl TransPass D1 were added to 2.3 ml medium 

without serum containing 5 µg DNA, mixed and incubated for 30 minutes. Cells were washed 

with serum free medium and incubated with the transfection mixture for 3-4 hours at 37°C 

and 95% humidity in the presence of 5% CO2. Afterwards the transfection medium was 

replaced with supplemented medium.  

3.5.6. Clone production 

Transfected or transduced MCF-7 cells growing as isolated clones after selection could be 

picked from the culture dish. Therefore, the medium was removed, the cells washed with PBS 

and a thin film of PBS left on the cells. Single cell clones were dislocated mechanically with a 

pipette tip and introduced individually into wells of a 24 multiwell plate containing between 

150-200 µl 0.05 % trypsin solution (Gibco, Invitrogen GmbH, Kalrsruhe). Cells were 

trypsinized for 5 min at room temperature and the reaction was stopped with 600 µl medium 

containing serum. Clones were grown at 37°C and 95% humidity in the presence of 5% CO2. 

3.5.7. Cell proliferation assay 

Cells were plated onto 24 multiwell cell culture dishes in growth medium and allowed to 

attach for 24 hours. The cell proliferation kit II (XTT) assay (Roche, Mannheim) was used 

following the manufacturer's instructions. Briefly, for a 24 multiwell culture plate 3.4 ml of 

the XTT labeling/electron coupling mixture were added to 6.9 ml cell culture medium. Cells 

were rinsed twice with PBS and then incubated with 450 µl of the XTT/medium solution for 

4-16 hours at 37°C and 95% humidity in the presence of 5% CO2. After this incubation, the 

absorbance at 492 nm was measured using a microplate reader (Tecan, Crailsheim), the 

reference wavelength was 650 nm. 

For cell proliferation or toxicity experiments 1x104 and 1.8x104 MCF-7 cells respectively, 

were used. 
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3.5.8. Immunofluorescence 

Correct expression and subcellular localization of over-expressed, epitope tagged proteins 

were analyzed by immunofluorescence. Cells were grown to 70-80% confluence on gelatin 

coated glass coverslips, which were prepared by covering them with 0.1% gelatin in water 

(w/v) for 2-4 min directly before seeding the cells. Following fixation with 4% 

paraformaldehyde in 1xPBS (w/v) for 20 min at room temperature, cells were rinsed three 

times with PBS and permeabilized with 0.5% Triton X-100 in PBS for 15 min. After three 

washes with PBS, unspecific antibody binding was blocked by incubation with 2% BSA in 

PBS (w/v) for 20 minutes at 37°C. Incubation with the first antibody was done for 1 hour at 

37°C in a humidified chamber. The unbound antibody was removed by three washes with 

PBS. The secondary antibody, conjugated to a fluorescent dye, was then added and incubation 

was continued for one hour at room temperature in a dark humidified chamber. After washing 

as before, nuclear DNA was stained for 15 min with DAPI (10 µg/ml in PBS). Finally, 

samples were washed again and mounted in Mowiol, which hardens overnight forming a 

permanent preparation. The distribution of the antigen was visualized under a fluorescence 

microscope (Axioplan 2 imaging, Carl-Zeiss AG, Göttingen). 

Antibody Commercial supplier Working dilution 

Cy3 conjugated anti-mouse Dianova, Hamburg 1:1000 in PBS 

Anti V5 Invitrogen, Karlsruhe 1:500 in PBS 

Mowiol mounting medium: 

13.3 % Mowiol 40-88 (w/v) 

33.3 % glycerol (w/v) 

133 µM Tris base pH 8.5 

Stir at 37°C overnight or until completely dissolved  

3.5.9. Growth in soft agar  

500 cells were suspended in 2xconcentrated supplemented DMEM and mixed 1:1 to 1 ml end 

volume with 0.7% bacto agar in water (w/v, Becton Dickinson, Heidelberg) and seeded into 

3.5 cm culture dishes containing a 2 ml layer of solidified 0.7% agar in supplemented 

DMEM. Every 2 days 100 µl of DMEM containing 10% FCS was added. After growth for 2-

3 weeks, medium was removed and a thin film of 0.005% crystal violet was added to the 
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plates and incubated for at least 4 hours to stain the colonies; those colonies containing more 

than 100 cells were counted. 

Crystal violet solution: 
0.005 % crystal violet in 2% methanol (w/v) 

 

Supplemented DMEM: 

2 x DMEM with phenol red 

2 mM L-glutamine 

1 mM Sodium pyruvate 

100 U/ml Penicillin G 

100 µg/ml Streptomycin 

15 % FCS (v/v) 

 
3.6. Working with retrovirus  

For this project self-inactivating, replication deficient, VSV-G pseudotyped retroviruses were 

used, which had to be handled and stored under biosafety level 2 conditions to comply with 

German laws concerning the work with genetically modified organisms. 

3.6.1. Gene transduction with retroviral vectors 

3.6.1.1. Production of replication deficient, VSV-G pseudotyped retroviruses  

Replication-deficient (Miller, Skotzko et al. 1992; Boris-Lawrie and Temin 1993), Moloney 

Murine Leukemia Virus (MMLV)-based retroviruses were produced by transient 

cotransfection of 293T cells with a vector giving rise to the RNA to be packaged into the 

retroviral particles and two helper plasmids expressing the gag-pol and env-proteins 

(Markowitz, Goff et al. 1988). Briefly, 4x106 cells were seeded in a 9 cm cell culture plate and 

allowed to attach for 24 hours. The next day cells were transfected with a mixture of 3.3 µg of 

the retrovirus construct, 5 µg pVpack-GP and 1.2 µg pMD-G using FuGene 6 (Roche, 

Mannheim) as described. Two days after transfection, the medium containing viral particles 

was collected and filtered through a 0.45 µm polyethersulfone filter. A concentrated 

polybrene stock solution was added to a final concentration of 5 µg/ml and the virus 
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suspension was shock frozen in liquid nitrogen and stored at –80°C. If necessary, the medium 

of the transfected cells was replaced for the collection of a second batch of virus supernatant 

on the next day.  

Polybrene stock solution: 

5 mg/ml polybrene in water 

Filter sterilize, store at 4°C 

3.6.1.2. Concentration of VSV-G pseudotyped MMLV-retroviruses 

MMLV retroviral particles containing the Vesicular Stomatitis Virus G (VSV-G)-protein as 

envelope protein can be concentrated by ultracentrifugation or ultrafiltration. For this work 

concentration with Centricon Plus 20 ultrafiltration units containing a Biomax-100 filtration 

membrane, was chosen. 19 ml of virus containing culture supernatant were filled into the 

filtration units and centrifuged for 30 min at 1124 g and room temperature in a floor 

centrifuge. The filtrate in the collection tube was discarded and the filtration unit inverted. 

The concentrated virus was recovered by centrifugation for 1 min at 44 g and room 

temperature in the same centrifuge. To concentrate larger volumes of virus supernatant, 

several batches were concentrated as described, pooled and stored as above.  

3.6.1.3. Infection of human cell lines with VSV-G pseudotyped retroviruses 

For the infection with VSV-G pseudotyped retroviruses cells were seeded on regular culture 

dishes and allowed to attach overnight. Then the cells were washed with PBS and incubated 

for 5 hours with a virus suspension containing 5 µg/ml polybrene. After that, a twofold excess 

of medium was added and incubation continued overnight. The virus suspension was 

removed, the infected cells washed twice with PBS and refed with regular growth medium. If 

required, antibiotic selections were started two days after infection. 

3.6.2. Generation of the switch reporter cell line  

The switch reporter cell line was generated by retroviral infection at a very low multiplicity of 

infection to achieve single copy integration of the complete switch reporter cassette (Baer, 

Schubeler et al. 2000). MCF-7 cells were seeded at a density of 2x105 cells in 9 cm cell 

culture plates and allowed to attach for 24 hours. Then the cells were incubated with 3 ml of 

serial dilutions (1:1 to 1:10.000) of the CMVlxtkneolxdnFADD virus particles as described in 
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section 3.6.1.3. Selection for transfected cells was begun on the next day after infection with 1 

mg/ml G418. 

3.6.3. Generation of the U3Cre integration library  

3.6.3.1. Gene trap titration 

The HeLa cell clone 260 (provided by J. Altschmied and K. Sturm) which carries the stably 

integrated switch reporter cassette PGKlxpurolxβgeo, was used for the titration. 3.5 cm 

diameter cell culture plates were seeded with 3x104 cells and on the next day infected with 1 

ml of a dilution series (0, 10-1, 10-2, 10-3, 10-4, 10-5, 10-6) of the U3Cre gene trap virus on the as 

described in section 3.6.1.3. The next day the cells were collected and reseeded in 6 cm cell 

culture plates. Selection for Cre expressing cells with 1 mg/ml G418 was started two days 

after transduction. After 15 days of culture clones became visible, and were stained with 

crystal violet. Briefly, medium was removed from the plates, cells fixed for 2 min in cold 

methanol and a thin film 0.005% crystal violet in 2% methanol (w/v) was added and 

incubated for 10-20 min at room temperature until colonies were stained. 

The colony numbers on the plates were: 

Virus dilution  Colony number 

0  full 

10-1  full 

10-2  284 

10-3  44 

10-4  0 

10-5  0 

10-6  0 

Virus titer was derived by the number of colonies generated after G418 selection of HeLa 

reporter cell line infected with 800 µl virus solution. This colony number, which is indicative 

of virus integration into active genes, is multiplied by the average of U3Cre integrations in 

non active genes 100-200. The U3Cre virus titer estimation was 6x106 virus/ml.  
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3.6.3.2. Creation of the gene trap library and selection of cell clones with integrations in 

TNFα inducible genes 

Based on the dnFADD expression level after switch recombination and its response to TNFα, 

the switch reporter clone 103 was chosen for the establishment of the U3Cre gene trap library. 

1x107 cells were seeded at a density of 2x106 in five 15 cm cell culture plates and infected 

with the U3Cre gene trap virus particles at an MOI of 0.5 (1x106 virus particles per dish). 

Selection for cells, in which the switch reporter was not activated, was begun on the next day 

with 1 mg/ml G418. After 11 days of selection the cells were trypsinised and 2x107 cells 

reseeded at a density of 2x106 cells per dish in 15 cm cell culture plates. One day later 25 

ng/ml TNFα was added to the dishes. Cells were treated for 7 or 3 days with TNFα and 

resistant clones were allowed to grow for 4-5 weeks.  
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4. - Results 

4.1. Identification of TNFα induced genes in MCF-7 cells  

4.1.1. Design of a cell line reporting TNFα induced gene trap insertions  

In designing a reporter cell line capable of signaling TNFα induced gene trap insertions, two 

issues needed to be address. First, TNFα induces apoptosis in MCF-7 cells precluding a direct 

selection of productive gene trap events. Second, gene trap insertions into constitutively 

expressed "housekeeping" genes obscure the identification of regulated genes and require 

counter-selection. To address these issues the molecular switch vector shown in figure 7 (top) 

was cloned. It contains a puromycin resistance gene fused to an upstream phosphoglycerate-

kinase-(PGK) promoter and a downstream transcriptional termination (polyA) site. In this 

vector, the puromycin-polyA cassette fulfils the role of a "STOP" cassette as it prevents the 

expression of a second gene inserted downstream encoding a N-terminally truncated FADD 

protein (dnFADD). dnFADD has been shown to exert a dominant negative effect on receptor 

mediated apoptosis including that induced by TNFα (Chinnaiyan, O'Rourke et al. 1995; Hsu, 

Shu et al. 1996). Since the puromycin-polyA cassette is flanked by loxP sites in direct 

orientation, Cre mediated recombination will excise it and thus position dnFADD 

immediately downstream of the PGK promoter. This means that in a cellular context the 

expression of puromycin resistance will be replaced by dnFADD which blocks TNFα induced 

apoptosis.  

Figure 7 shows how reporter cells expressing the PGKpurodnFADD switch vector can be 

used in combination with a Cre recombinase transducing gene trap vector (i.e. U3Cre) to 

recover genes induced by TNFα. In a first step the reporter cells are infected with the U3Cre 

gene trap virus to produce an integration library with proviral insertions in a large collection 

of random chromosomal sites which can be either transcriptionally active (A) or inactive (B, 

C). Transcriptionally active sites induce Cre expression which recombines the switch. Thus, 

positive selection in puromycin eliminates the U3Cre insertions in constitutively expressed 

genes (A), like for example housekeeping genes. The surviving cells are now enriched for 

insertions into “silent” genes and can be used to identify genes that are activated by TNFα (B) 

by simply recovering the cells that became resistant to apoptosis induced by the cytokine.  
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Figure 7. Selection scheme for the identification of TNFα induced genes. See text for explanations. 
dnFADD, dominant negative FADD; P, promoter; pA, polyA region; res, antibiotic selection cassette. 
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4.1.2. Stable over-expression of a dominant-negative FADD protects MCF-7 cells from 

TNFα induced cell death  

As TNFα induced apoptosis was shown to be cell type specific (Fiers, Beyaert et al. 1999), it 

was essential to determine (i) the sensitivity of the MCF-7 cells against TNFα induced 

apoptosis and (ii) the efficiency with which dnFADD would block apoptosis in these cells. 

For this purpose pre-tested TNFα sensitive MCF-7 cells transfected with the plasmid 

pneoPGKlxpurolxdnFADD or its recombined derivative pneoPGKlxdnFADD (figure 8) were 

selected in G418 and exposed to 200 ng/ml TNFα for 6 days. Simple visual inspection 

quickly indicated that only some MCF-7 clones expressing the recombined plasmid survived 

in TNFα (data not shown), suggesting that dnFADD is expressed and functional in terms of 

apoptosis suppression.  

 

Figure 8. PGKpurodnFADD switch vector. In addition to a switch system with the mouse 
phosphoglycerate-kinase gene promoter (PGK) and the puromycin-acetyl-transferase gene (puro) 
which functions as a STOP cassette for the dnFADD cassette, the vector (PGKpurodnFADD) contains 
an independent selection cassette with the neomycin-phosphotransferase gene (neo) under the control 
of the simian virus 40 early promoter (SV40). The polyA (pA) regions are from the SV40 early region 
(for puro and neo) and the bovine growth hormone gene (for dnFADD). Cre induces recombination 
between the loxP sites and excises the puro-pA cassette to yield PGK-dnFADD. 
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Figure 9. High level dnFADD expression confers TNFα resistance to MCF-7 cells. A.- Expression of 
dnFADD. MCF-7 cells were stably transfected with pneoPGKlxpurolxdnFADD (PGK-puro-dnFADD) 
or its derivative pneoPGKlxdnFADD (PGK-dnFADD). FADD levels in pools of transfectants were 
analyzed by Western blot using an antibody specific for human FADD recognizing the endogenous 
protein (FADD, 28 kDa) and the transgene encoded N-terminally deleted dominant negative form 
(dnFADD). PGK-high dnFADD denotes a PGK-dnFADD transfected cell population that had been 
pre-treated with 200 ng/ml TNFα for 6 days, dnFADD is a lysate from mouse cells carrying a 
transgene encoding human dnFADD (courtesy M.Zoernig, Georg-Speyer-Haus). 55µg of total cell 
lysates were loaded, with the exception of PGK-high dnFADD and dnFADD where 33µg and 3.6µg of 
cell lysate were used respectively. B.- High levels of dnFADD protect against TNFα effects. Cells 
(1.8x104 cells per well in a 24 well plate) were treated with 50 ng/ml TNFα for several days and the 
relative cell number was measured by assaying for metabolic activity with an XTT-assay. The curves 
show the mean and standard error from 3 independent experiments, represented is the relative cell 
number corrected for proliferation by comparing to untreated cells. 

To investigate this further, levels of endogenous FADD and dnFADD were estimated in the 

transduced cells by Western blotting. Figure 9A shows that the ratio between dnFADD and 

endogenous FADD expression in PGKlxdnFADDSV40neo cells increased significantly after 

exposure to TNFα, suggesting that only cells with a vast excess of dnFADD over endogenous 

FADD are rescued from cell death (figure 9A). Moreover, cells expressing the non-
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recombined plasmid failed to express dnFADD, indicating that its transcription is effectively 

blocked by the puromycin-polyA STOP cassette. 

To further characterize the sensitivity to the cytotoxic action of TNFα, the stably transfected 

cell pools and MCF-7 wild type cells were treated with TNFα for 10 days and the cell 

viability was determined with an XTT assay (figure 9B). In contrast to wild type cells and the 

other pools, only cells expressing extremely high levels of the dnFADD protein were resistant 

to TNFα. These results provided evidence for a protective function of the dnFADD protein in 

MCF-7 cells suggesting that this cell line is amenable to the described gene trapping strategy.  

 

4.1.3. Derivation of a MCF-7 reporter cell line suitable for trapping TNFα inducible 

genes 

The previous experiments suggested that a high cellular dnFADD/FADD ratio is required for 

protecting MCF-7 cells from TNFα induced apoptosis. This is consistent with a dominant 

negative effect in which only a vast excess of the mutant dnFADD can completely block 

recruitment of caspases to the FADD-containing signaling complex. Consequently, to 

increase the conditional dnFADD expression from the switch vector, the PGK-promoter was 

replaced by a CMV-(cytomegalovirus immediate early region) promoter which has been 

shown to be highly active in mammalian cells (Foecking and Hofstetter 1986). In addition, the 

puromycin-acetyl-transferase gene was replaced with a HSV-thymidine-kinase/neomycin-

phosphotransferase fusion gene (tkneo) to enable positive/negative selection (Schwartz, 

Maeda et al. 1991; Russ, Friedel et al. 1996) (figure 10). The previous experiments also 

indicated that the MCF-7 subline employed was suboptimal in its apoptotic response to 

TNFα. As it had been reported previously, MCF-7 sublines greatly vary in their apoptotic 

response to TNFα (Burow, Weldon et al. 1998). Therefore several other sublines were 

screened of which the MCF-7F cell line showed the fastest response to TNFα. Unlike the 

cells used for the initial experiments, 97% of MCF-7F cells were killed by TNFα within 3 

days (figure 11B).  

CMVtkneodnFADD switch vector was transduced into the genome of MCF-7F cells using a 

Moloney murine leukemia (MMLV) retroviral vector. Stable transformants were selected in 

G418 and expanded. In a first screen several clones were assayed individually for dnFADD 
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expression after Cre-induced recombination. Recombination was induced by transfecting a 

puromycin-selectable Cre expression vector into each single clone and by selecting in 

puromycin. Puromycin resistant clones were then analyzed for dnFADD expression by 

Western blotting. Figure 11A shows strong interclonal variation in dnFADD expression, most 

likely due to chromosomal position effects exerted on the switch vector integration site 

(Wilson, Bellen et al. 1990).  

 

Figure 10. CMVtkneodnFADD switch vector. This vector contains the cytomegalovirus immediate 
early promoter (CMV), a floxed tkneo fusion and dnFADD cDNA, both with a polyadenylation region 
from the bovine growth hormone gene. The switch system is embedded into a Moloney murine 
leukemia virus backbone (symbolized by the long terminal repeats [LTR] of the proviral form) on the 
non-coding strand of the virus. 

Based on the finding that a high dnFADD/FADD ratio is essential for mediating resistance to 

TNFα induced apoptosis (figure 9B), two clones (103 and 107) exhibiting high but different 

dnFADD/FADD ratios following recombination (figure 11A) were selected and assayed for 

their response to TNFα. For this, both recombined and non-recombined cells from each clone 

were treated with TNFα for 3 days. As expected, both non-recombined clones died within the 

first 48 hours of TNFα treatment. In contrast, the recombined clone 103 was completely 

resistant to TNFα induced apoptosis (figure 11B left). However, clone 107 while exhibiting 

some initial resistance to TNFα was still sensitive after prolonged exposure which clearly 

reflects its lower dnFADD/FADD ratio (figure 11B right). Based on these results clone 103 

was selected for all further experiments.  
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Figure 11. Characterization of MCF-7 switch reporter clones. A.- Expression of dnFADD after Cre-
induced recombination. Cell clones stably transduced with the retroviral CMV-tkneo-dnFADD switch 
reporter were transfected with a puromycin-selectable Cre (pBabePGKcreSV40puro) expression 
vector and cultivated for 16 days in 1 µg/ml puromycin. Lysates (equivalent to 15 µg total cellular 
protein) were tested for dnFADD expression by Western blotting. Two clones with high 
dnFADD/FADD ratios are marked by red boxes. B.- TNFα sensitivity of selected switch reporter 
clones. Clones 103 and 107 (1.8x104 cells per well in a 24 well plate) were treated with different 
concentrations of TNFα for several days and the relative cell number was measured by assaying for 
metabolic activity with an XTT-assay. Rec denotes the cell pools, in which switch recombination had 
been forced by Cre expression. The curves show the mean and standard error from 3 independent 
experiments, represented is the relative cell number corrected for proliferation by comparing to 
untreated cells. 
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4.1.4. Isolation of cell clones with U3Cre integrations in TNFα inducible loci  

After a reporter clone was established and characterized, a gene trap integration library for 

identification of TNFα inducible genes was generated. For a representative distribution of 

gene trap integration sites over the cellular genome, infection conditions were adjusted to 

obtain one gene trap insertion every 1000-5000 bp. Based on the size of a haploid human 

genome, 3x109 bp, between 6x105-3x106 independent integrations were necessary for 

saturating the genome with insertions at the desired density. This approximation is based on 

random retroviral integration, however, it has been reported that MMLV integrates 

preferentially into open chromatin regions, particularly into areas surrounding transcriptional 

start sites units (Wu, Li et al. 2003). Accordingly, complete gene coverage by retroviral gene 

trap vectors seems quite unlikely.  

To obtain a library with the highest possible complexity and with mostly single copy 

integrations, 107 MCF-7 clone 103 cells were infected with U3Cre retrovirus at a multiplicity 

of infection (MOI) of 0.5. Under these conditions a theoretical infection efficiency of 100% 

would have generated an integration library with 2x106 independent gene trap integrations. 

The infected cells were selected for 10 days in G418 (1 mg/ml), to eliminate integrations into 

constitutively expressed genes, as Cre expression should have lead to Cre-mediated excision 

of the tkneo cassette and thus loss of G418 resistance. 

In a second selection step the G418 resistant population was treated with 25 ng/ml TNFα for 

3 or 7 days. U3Cre integrations in TNFα responsive genes are expected to express Cre and 

induce recombination leading to the expression of dnFADD. This converts the cells to TNFα 

resistance and enables their selection. Parallel treatment of non-infected clone 103 cells 

served as a positive control for TNFα induced apoptosis. Most clone 103 cells were killed by 

TNFα within 3 days. In contrast, clones developed from the TNFα exposed gene trap 

integration library and 99 of them were used for further analysis. 

PCR analysis of a representative fraction of these clones (28) could verify recombination in 

each case, indicating that TNFα resistance developed as a result of Cre-induced dnFADD 

expression (figure 12).  
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Figure 12. Gene trap clones show recombination in the switch system. The analysis is exemplified for 
5 clones, genomic DNA from 5 cell clones obtained from the integration library after the two-step 
selection was isolated and analyzed by PCR using primers from the CMV promoter and the FADD 
coding region (CMVfor2/FADDrev4). An amplification product of 373 bp was indicative of Cre-
mediated site specific recombination as the readout of gene trap activation. C is a derivative of the 
switch reporter cell clone 103, in which switch recombination had been induced by forced Cre 
expression. 

 

4.1.5. Recovery of genomic gene trap sequence tags by inverse PCR 

Genomic DNA sequences flanking the proviral integration sites (gene trap sequence tags, 

GTSTs) were retrieved by inverse PCR as shown in figure 13A. Amplification products 

obtained from 78 out of 99 clones were directly sequenced. Lack of amplification products 

from the remaining clones might have been the result of partial digestion of the genomic 

DNA and/or suboptimal circularization. Alternatively, high G-C content or extensive 

secondary structures are known to interfere with PCR amplification. Some clones generated 

more than one amplification product either due to oligoclonality or to partial cleavage of the 

genomic DNA. The latter was confirmed for several clones by the amplification of diagnostic 

intraviral fragments (figure 13). 

Sixty nine out of the 78 recovered GTSTs were unique and exhibited typical cell-DNA-

provirus junctions. As exemplified in figure 13B, GTSTs varied in size between 300-1500 bp.  
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Figure 13. Inverse PCR isolates provirus-cellular junctions. A.- Reaction principle. Genomic DNA 
was digested with PstI or NspI (shown as X), respectively and ligated under conditions favoring 
intramolecular circularization. The ligation products were amplified with the primer pairs Cre43/SY2 
in the case of PstI digestion and with CreiPCRrev2/iPCRU3 when NspI was used. Nested 
reamplifications were performed with Cre1P/SY1 (PstI) and CreiPCRrev1/iPCRU4 (NspI). PstI 
digestion and amplification with the indicated primers resulted in amplification of the junction 
between the 5'-LTR and the cellular DNA, whereas the combination of NspI with the corresponding 
primers yielded the 3'-junction. Primers are shown schematically as arrows. Fragments ≥310 bp (PstI) 
and ≥362 bp (NspI) were indicative of successful amplification. Provirus-internal amplification 
products of 946 bp (PstI) or 1522 bp (NspI) only occurred when restriction digests were not complete. 
B.- Analysis of iPCR products. Amplification products obtained from inverse PCRs of PstI digested 
genomic DNA of 12 gene trap clones were separated by agarose gel electrophoresis. The dashed line 
indicates the minimum size expected and asterisks denote an undesired virus-internal amplification 
product.  
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4.2. In silico analysis of GTSTs 

4.2.1. Identification of integration sites 

After removal of their proviral segments, the 69 GTSTs were aligned to the human genome 

using the BLASTN algorithm and the NCBI (http://www.ncbi.nlm.nih.gov), ENSEMBL 

(http://www.ensembl.org) and Celera (http://www.celera.com) sequence databases.  

GTSTs reported the presence of known transcripts, ESTs or genscans. Genscan is a 

probabilistic model of gene structure of human genomic sequences which incorporates 

descriptions of the transcriptional, translational and splicing signals as well as length 

distributions and compositional features of exons, introns and intergenic regions. The 

program can predict consistent sets of genes occurring on either one or both strands (Burge 

and Karlin 1997). 

 

Figure 14. Bioinformatics analysis of gene trap integrations loci. BLAST searches with GTSTs from 
78 gene trap clones retrieved integration into repetitive sequences, unannotated regions, genscans, 
known genes, hypothetical protein genes (known cDNAs with open reading frames encoding 
uncharacterized proteins) and ESTs.  

Transcripts or genscans which were found within 2.5 kbp upstream or downstream of the 

gene trap integration were considered as potential TNFα regulated genes. Some integrations 

were between 2 genes which could share regulatory regions and thereby might be co-

regulated by TNFα, therefore the number of recovered genes is higher than 69. As shown in 

figure 14, 35 (42%) GTSTs belonged to annotated genes, 14 (17%) to predicted (Genscan) 

genes, 11 (13%) to known cDNAs with open reading frames encoding uncharacterized 
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proteins (hypothetical protein genes), 8 (10%) to unannotated genomic sequence, 7 (9%) to 

ESTs and 7 (9%) to repetitive sequences. Integrations into unannotated regions were in some 

instances (3 out of 8 integrations) associated with transcription start site predictions by 

Eponine or First EF which could indicate the presence of a transcript. 

Interestingly, 2 recovered genes showed more than one independent integration event (2 for 

ESR, 4 for RACK7), corroborating in this way Cre induction through TNFα in these genomic 

regions. These genes could represent hotspots for retroviral integration, but, due to the small 

sample size, this cannot be stated with certainty. 

 

4.2.2. U3Cre insertions are mainly in 5'-introns 

In accordance with the well known preference of retroviral integrations into the 5'-end of 

genes (Wu, Li et al. 2003; Bushman, Lewinski et al. 2005), most of the U3Cre insertions into 

annotated genes were near their 5'-end. An additional factor likely to affect U3Cre's 

preference for 5'-ends is a stop codon 18 bp upstream of the Cre AUG imposing a strong 

selection for integration events in which Cre provides the first AUG in the resulting fusion 

transcript (von Melchner, Reddy et al. 1990). 

Although U3 type gene trap vectors were conceived as exon traps and therefore do not have a 

splice acceptor, the majority (22 out of 46) of U3Cre insertions were in introns. This is in line 

with similar results obtained in high throughput gene trap screens in which over 80% of the 

U3 gene trap insertions occurred in introns rather than in exons (IGTC database/ 

http://www.genetrap.org). As has been shown recently, U3 gene trap vectors frequently 

activate cryptic splice sites upstream of the insertions site resulting in fusion transcripts that 

contain intron sequences of variable size (Osipovich, White-Grindley et al. 2004). 

Surprisingly, 16 integrations were found upstream of the annotated genes, suggesting the 

presence of not yet annotated 5'-exons or genes. 

Interestingly, insertions into annotated genes were equally distributed between the coding and 

non-coding strands suggesting that the latter may have trapped non-coding RNA (table 1).  
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Integration Up- 

stream 

Exon 

1 

Intron 

1 

Intron 

X 

Last 

exon 

Down- 

stream 

Total 

Sense 3 2 8 4 0 4 21 

Antisense 13 1 6 4 1 0 25 

Total 16 3 14 8 1 4 46 

Table 1. Localization of gene trap integrations up to 2.5 kbp upstream/downstream and within known 
genes and hypothetical protein genes. X represents all introns except intron 1. 

 

              Orientation 

Integration  Sense Antisense Total 

Known genes 15 20 35 

H. protein genes 6 5 11 

ESTs 6 1 7 

Genscans 9 5 14 

Total 36 31 67 

Table 2. Orientations of gene trap integrations in recovered genes. Shown are the integrations in 
known genes, hypothetical protein genes (H. protein genes, known cDNAs with open reading frames 
encoding uncharacterized proteins), ESTs and Genscans. ESR1-005 and PRKCBP1, both of them 
known genes, have 2 and 4 independent integrations respectively. 

 

4.2.3. U3Cre traps putative antisense (non-coding?) transcripts 

Data base analysis revealed that more than 40% of the U3Cre integrations were in antisense 

orientation relative to the transcriptional orientation of the trapped genes. This percentage was 

similar for known genes and hypothetical proteins (table 2). Since the gene trap strategy 

described here is very sensitive, as only a few Cre molecules per cell are required for 

recombination (Guo, Gopaul et al. 1997), it seems quite suitable for detecting weakly 

expressed genes. These include non-coding RNAs and natural antisense transcripts (NATs) 

which are missed by most functional genomics approaches because they are focused on 
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protein coding genes. Indeed, some of the antisense insertions into annotated genes 

corresponded to regions for which overlapping antisense ESTs or Genscans have been 

identified (figure 15A). In other instances, insertions occurred in regions, where 

sense/antisense gene pairs less than 1000 bp apart suggested the presence of bidirectional 

promoters (figure 15B). 

 

Figure 15A.- 

S100PBP and YARS 

 
 
S100A10 and Genscan  
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Figure 15A.- 

TFF1 and EST 

 
LIPC and Genscan 

 
GRHL3/SOM/TFCP2L and Vega transcript 
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Figure 15A.- 

PRKCBP1/Rack7 and Q96N05_human  

 
CTNND2 and Genscan 
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Figure 15B.- 
EMSY and Genscan  

 
ARPHGAP11A and ENSESTT  

 
MBD4 and WDR10/IFT122 
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Figure 15B.- SLC12A2 and ENSTT 

 
Figure 15. Gene trap integrations into regions with sense/antisense gene pairs. Depicted are the 
regions around the integration sites. Exons are shown as boxes, introns as dashed lines, solid arrows 
indicate the direction of transcription, with colors matching the corresponding transcripts. Blast hit 
denotes the identity between the sequence obtained in the inverse PCR and the genomic sequence. The 
position of the gene trap integration is indicated by a green box identified as Cre. First EF and Eponine 
are predicted first exons and transcription start sites, respectively. A.- Gene trap integrations which 
retrieved two overlapping transcripts oriented head to head. B.- Gene trap integrations which retrieve 
two transcripts oriented head to head with a maximum distance of 1kbp between their transcription 
start sites. 

 
Figure 16. Transcription start site and exon prediction for an antisense gene trap insertion in the 
topoisomerase 1 (TOP1) gene upstream region. Depicted are 5 kbp around the transcription start site 
of the topoisomerase 1 gene. Exons are shown as boxes, introns as dashed lines, solid arrows indicate 
the direction of transcription, with colors matching the corresponding transcripts. Blast hit denotes the 
identity between the sequence obtained in the inverse PCR and the genomic sequence. The position of 
the gene trap integration is indicated by a green box identified as Cre. The topoisomerase 1 gene is 
encoded on the upper DNA strand, whereas Cre is transcribed from the lower strand. FirstEF and 
Eponine are predicted first exons and transcription start sites, respectively. The later predict putative 
transcription start sites upstream of the gene trap, specifically in the second intron and in the promoter 
of the topoisomerase 1 gene, moreover a first exon prediction is overlapping the TOP1 exon 1.  
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Since U3Cre transcription from a non-coding strand of an annotated gene requires an RNA 

pol II promoter on this DNA strand, the regions upstream of the antisense insertions were 

screened for putative promoters using several in silico promoter prediction programs (Bajic et 

al., 2004; Rogic et al., 2002). The programs used were the dragon promoter finder version 1.5 

(Bajic, Seah et al. 2002; Bajic and Seah 2003), the Neural Network Promoter Prediction 

program (NNPP, Reese 2001), First EF (first-exon and promoter prediction program for 

human DNA) (Davuluri, Grosse et al. 2001), McPromoter MM:II (The Markov Chain 

Promoter Prediction Server Massachusetts Institute of Technology Ohler, Harbeck et al. 

1999), Promoter 2 (Knudsen 1999) and Promoter scan (Prestridge 1995). 

Distance from U3Cre integration to predicted TSS (bp) 

NNPP  Promoter 
2.0 

Dragon 
Promoter finder

Mc Promoter
MM:II 

First EF 
 

Promoter 
Scan 

4810 - - - - - 
4675 - - - - - 
4140 - - - - - 
3924 - - - - - 
3332 - - - - - 
3277 - - - - - 
3110 2700 - - - - 
1998 - - - - - 
1888 - - - - - 

- 1600 - - - - 
- - 1207 - 1151 - 

986 - 934 - 952 - 
  744   - 

587 - 581 - - 798 to 548
 500  - - - 

442 -  - - - 
288 - - - - - 
280 - 280 - - - 

Table 3. Prediction of transcription start sites (TSS) and promoter regions with different programs. 
The table shows predicted TSS and promoters in a region 5 kbp upstream of the gene trap integration 
in the topoisomerase 1 (TOP1) gene, where the trap is 565 bp upstream of the TOP1 transcription start 
on the non-coding strand, using different freely available prediction programs (for details see materials 
and methods). The numbers represent the distance in bp from the U3Cre gene trap to the TSS, in the 
columns are the predictions from different TSS prediction programs. Putative promoter regions and 
TSS based on the selection criteria explained in the text are shown in bold.  
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The results obtained by such analysis are shown in table 3 using the antisense insertion 

upstream of the topoisomerase 1 (figure 16, TOP1) gene as an example. While the different 

programs identified a variety of putative transcriptional start sites upstream of the insertion, 

only 2 sites were predicted by three different programs suggesting that they are real. 

Gene Gene trap 

integration site 

relative to gene 

Predicted distance 

between TSS and 

gene trap (bp) 

Localization of 

predicted TSS  

relative to gene 

ARHGAP11 upstream 510-518  ARHGAP11, upstream 

BCL9L upstream 1782-1709   BCL9L, exon 1 

EED exon 1 151-157 

165-246    

EED, exon 1 

EED, exon 1 

KCTD5 upstream 906-984   KCTD5, intron 1 

PITPNM2 last exon 3958-3966   Q8TEM4, exon 1 

Rack7/PRKCBP1 upstream 1029-969 Rack7, upstream 

Rack7/PRKCBP1 upstream 1019-954 Rack7, upstream 

RNF184  upstream 1135-1221  RNF184, intron 1 

SLC12A2 upstream 929-1021 SLC12A2, exon 1 

TFF1 intron 1 2503-2535    TFF1, intron 2 

TOP1 upstream 935-979   

581-587 

TOP1, intron 1 

TOP1, upstream 

WDR10 upstream 931-953   WDR10, exon 1 

YARS upstream 597-675 S100PBP, intron 1 

ZFP67 upstream 1971-1903   ZFP67, intron 2 

ZNF143 upstream 958-999 

784-838 

ZNF143, intron 1 

ZNF143, intron 1 

Table 4. Putative transcription start sites upstream of gene trap integrations on the non-coding strand 
of genes. The table summarizes the analyses exemplarily shown for one gene in table 3. The numbers 
represent the distance in bp from the U3Cre gene trap to the predicted TSS. Listed are the regions 
upstream of the gene trap antisense integration where at least 3 transcription start site prediction 
programs or two such routines and a promoter search algorithm predict a transcription start within a 
window of 95 bp. The position of the U3Cre integration site and the localization of the predicted TSS 
relative to the genes are also listed. Rack7 is represented in the table by two independent integrations. 
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Accordingly, the analysis of 25 antisense insertions in known genes or hypothetical protein 

genes revealed transcription start sites (TSSs) for 15 integrations, for some of them even 2 

TSS were predicted: 4 were predicted upstream of genes, 5 in the first exon, 7 in the first 

intron and 2 in the second intron of the genes harboring the gene trap integrations on their 

non-coding strands (table 4). The EED, TOP1 and ZNF143 genes were the only examples for 

which three programs predicted two different TSSs. Overall, more than 50% of the gene trap 

integrations in antisense orientation to known or hypothetical protein genes were associated 

with a TSS on the non-coding strand of the known transcript. Most of these TSSs are 

localized either in the first exon or first two introns, substantiating the predictions made above 

about putative antisense transcripts.  

 

4.2.4. Recovered genes belong to different functional gene classes  

TNFα activates transcription of a variety of genes and evokes a wide spectrum of cellular 

reactions. Therefore it was not surprising that the trapped genes belonged to 9 different 

functional gene classes according to their gene ontology (GO) classification (table 5). 

Category Cases 

Nucleic acid binding/ regulation of transcription 11 

Transport 6 

Protein synthesis-degradation-modification 7 

Kinase and phosphatase 4 

Cytoskeleton and basement membrane 2 

Calcium binding 2 

Metabolism 2 

Cell cycle 1 

None of these categories 6 

Table 5. Gene ontology classification of trapped known and 
hypothetical protein genes.  

 - 72 - 



 
Results            - 73 - 

The largest group (11) represented nucleic acid binding proteins and/or transcriptional 

regulators. Two other groups with 7 members each represented transport proteins and 

molecules involved in protein synthesis, modification and degradation.  

Interestingly, some trapped genes (AMPO, BCL9L, JunB, KNSL1/KIF11, ZFP67), although 

belonging to different gene ontology classes, seem to be involved in related cellular 

processes, e.g. cell cycle regulation or extracellular matrix reorganization. 

 

4.2.5. Recovery of cancer-related genes 

Most of the recovered genes have not been previously linked to TNFα signaling. A likely 

reason for this is the sensitivity of the gene trap screen, which seems to recover genes that are 

not easily recovered by other methods because they are either too weakly expressed or only 

transiently induced. Nevertheless, some of the genes have been directly or indirectly 

associated with apoptosis or cancer progression in other systems as explicated below. 

a) JunB codes for a component of the activating protein-1 (AP-1) transcription factor 

complexes, which are important in the control of cell growth, differentiation and neoplastic 

transformation. Mice lacking JunB expression in the myeloid lineage developed a 

myeloproliferative disease eventually progressing to blast crisis that resembles human chronic 

myeloid leukemia (CML). The immature and hyperproliferative phenotype of JunB deficient 

myeloid cells is fully reverted by ectopic expression of JunB. These results identified JunB as 

a key transcriptional regulator of myelopoiesis and a potential tumor suppressor gene 

(Passegue, Jochum et al. 2001). Passegue and colleagues showed that JunB over-expression 

decreased the frequency of long term hematopoietic stem cells (HSCs), while JunB 

inactivation specifically expanded the numbers of long term HSCs and 

granulocyte/macrophage progenitors, resulting in chronic myeloproliferative disorder 

(Passegue, Wagner et al. 2004). 

The expression levels of JunB are significantly impaired in human CML cases due to the 

inactivation of the JunB gene by methylation (Yang, Liu et al. 2003). JunB is also under-

expresed in the majority (73.3%) of hepatocellular carcinomas (Chang, Yeh et al. 2005). 
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b) The glycolytic enzymes hexokinase I and II (encoded by HKI and HKII) bind to the outer 

mitochondrial membrane (OMM) with high affinity. This association is mediated at least in 

part, by specific interactions with the OMM voltage-dependent anion channel (VDAC). 

Furthermore, hexokinase has been implicated in the regulation of VDAC opening, as VDAC 

assumes an “open” conformation when associated with mitochondrial hexokinase that permits 

adenine nucleotide exchange. Upon disruption of this interaction, VDAC adopts a closed 

conformation that prevents further exchange such that intramitochondrial ADP becomes 

limiting for oxidative phosphorylation (Robey and Hay 2005). Over-expression of HKI 

(Gottlob, Majewski et al. 2001; Bryson, Coy et al. 2002) and of its functional variant - HKII -

(Majewski, Nogueira et al. 2004) in Rat-1 cells protects from growth factor withdrawal plus 

U.V. induced apoptosis. 

c) Estradiol (E2) is the main mitogen for normal breast epithelial cells. Its action is mediated 

by two receptors, one of which (ESRα/ESR1) is over-expressed in more than half of all breast 

cancer cases (Ali and Coombes 2000). In addition, estrogen has been shown to protect cancer 

cells against TNFα induced cell death (Burow, Weldon et al. 2001). This protective effect is 

associated with a translocation of p53 to the cytoplasm preventing it from transactivating cell 

death genes. However, it has been shown recently in MCF-7 cells that only ESRα activation 

is protective against TNFα. ESRβ activation increases the sensitivity of MCF-7 cells towards 

TNFα presumably by failing to translocate p53 to the cytoplasm (Lewandowski, Thiery et al. 

2005). 

d) EMSY is a protein that colocalizes with BRCA2 to chromosomal sites of DNA repair and 

interacts with proteins involved in the chromatin modeling. EMSY binds to the region of the 

BRCA2 responsible for transcriptional activation, an excess of EMSY silences this function 

of BRCA2. The physiological role for the BRCA2 transactivation domain remains uncertain. 

However, it has been shown that BRCA2 can stimulate transcription of androgen receptor 

regulated genes in cooperation with histone acetyltransferases. Whether EMSY over-

expression affects transcriptional regulation, DNA repair or chromatin remodeling will 

require further studies.  

The EMSY gene is amplified in 13% of sporadic primary breast cancers and 17% of ovarian 

cancers (Hughes-Davies, Huntsman et al. 2003; Brown, Irving et al. 2006).  
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e) The Methyl-CpG binding domain protein 4 (MBD4) is a mismatch repair protein which 

excises thymidine from GT mismatches in methylated regions of the chromatin. MBD4 

interacts with the mismatch repair/tumor suppressor protein mutL homolog 1 (MLH1) which 

protects cells from apoptosis induced by DNA damaging agents. Moreover, MBD4 interacts 

with the Fas-associated death domain (FADD) protein, which is crucial for TNFα induced 

apoptosis (see introduction section 1.4.1.). Interestingly, MBD4 promoted the apoptotic 

response to DNA damaging agents (Screaton, Kiessling et al. 2003). Moreover, MBD4 is 

frequently mutated in human colorectal carcinomas, exactly in the region required for its 

interaction with the MLH1 and FADD proteins (Bader, Walker et al. 2000).  

f) S100A10 is found in most cells bound to its ligand annexin A2 in the heterotetrameric 

(S100A10)2-(annexin A2)2 complex AIIt. S100A10 has been shown to regulate plasma 

membrane ion channels as well as cytosolic phospholipase A2. The heterotetrameric form of 

S100A10 is on the extracellular surface of many cells, where the S100A10 subunit functions 

as plasminogen receptor. S100A10 is down-regulated in human esophageal squamous cell 

carcinoma (Ji, Zhao et al. 2004), over-expressed in gastric cancer (El-Rifai, Moskaluk et al. 

2002), breast carcinoma (Carlsson et al., 2005) and renal cell carcinoma (Teratani, Watanabe 

et al. 2002). 

g) BCL9L/BCL9-2. The switch between β-catenin's adhesive and transcriptional functions is 

modulated by phosphorylation of β-catenin which favors BCL9-2 binding and precludes 

binding with α-catenin. Over-expression of BCL9-2 induces epithelial mesenchymal 

transition (EMT) of non-transformed cells and increases β-catenin dependent transcription. A 

reversion of this effect was obtained by siRNA mediated-downregulation of BCL9-2 in the 

colon cancer cell line SW480, which expresses high levels of this protein and β-catenin. 

Besides the induction of an epithelial phenotype, a translocation of β-catenin from the nucleus 

to the cell membrane and a drastic reduction in cell migration were observed (Kramps, Peter 

et al. 2002; Brembeck, Schwarz-Romond et al. 2004; Harris and Peifer 2005). 

h) CTNND2 (δ-catenin) is an adhesive junction associated protein that promotes cell 

scattering and is exclusively expressed in the nervous system. The region on chromosome 5p 

harboring CTNND2 is frequently amplified in cervical cancer (Huang et al., 2006). Delta 

catenin is significantly over-expressed in prostate cancer compared to benign prostate 
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hyperplasia and is considered as a potential diagnostic marker for prostate cancer (Burger et 

al., 2002; Lu et al., 1999). 

i) TFF1 is a small cysteine rich secreted protein that is expressed at high levels in malignant 

breast epithelial cells where TFF1 expression is regulated by estrogen. In addition, TFF1 

stimulates the migration of human breast cancer cells (Prest, May et al. 2002). 

j) SPATA 5 is a member of the AAA-protein family (ATPase associated with diverse 

activities) which is over-expressed at the malignant conversion stage of carcinogenesis (Liu et 

al., 2000). 

k) S100PBR is an interaction partner of S100P. Both of them are over-expressed in pancreatic 

epithelial neoplasia and pancreatic ductal adenocarcinoma compared to normal pancreata 

(Dowen, Crnogorac-Jurcevic et al. 2005). 

l) FGD3 is a member of the FGD1 family; FGD1 encodes a guanine nucleotide factor that 

specifically activates the Rho GTPase Cdc42. Like FGD1, FGD3 stimulates fibroblasts to 

form filopodia, actin microspikes formed by Cdc42 stimulation (Pasteris, Nagata et al. 2000). 

FGD3 has been reported to be up-regulated in follicular thyroid tumors carrying the PA8-

PPARγ1 translocation (Lacroix, Lazar et al. 2005). 

m) KNSL1/KIF11 (Koller, Propp et al. 2006) and TOP1 (Mialon, Sankinen et al. 2005; 

Adams, da Silva et al. 2006) are targets for chemotherapeutic treatment of cancer.  

In addition to the above mentioned genes and their protein products, several other genes 

identified in the current screen (ABCC3, EED, LIPC, SLC1A2, SLC12A2) show altered 

expression levels in tumors detectable by microarray analysis (data available online at 

http://www.oncomine.org) Overall, about 44% of the known genes (59% when including the 

microarray data from oncomine) recovered in this screen were directly or indirectly related to 

cancer suggesting that the gene trap strategy employed here is suitable for the identification of 

cancer relevant genes.  
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4.3. Validation of the TNFα inducible genes 

4.3.1. Regulation by TNFα 

To investigate whether the genes recovered in this screen are bona fide TNFα regulated 

genes, 24 genes were selected for transcriptional analysis in the parental MCF-7 cells. Since 

the TNFα induction of these genes might be only transient (see introduction section 1.4.2), 

RNAs were extracted from MCF-7 cells at different time intervals of TNFα treatment and 

hybridized on Northern blots to gene specific cDNA probes. Blots were exposed to 

Phospho(r)imager screens and signal intensities were measured using Image Quant QT 

software. Transcript levels were normalized to actin transcripts as exemplified in figure 17. 

Table 6 shows that of the 24 genes analyzed, 5 showed no regulation, and 19 were either up- 

or down-regulated by a factor of at least 1.45 at some time point following TNFα exposure. 

The regulated genes can grossly be classified into several groups: 

a.- Genes with sense integrations between coding exons indicating entrapment of the 

mRNA; regulation of more than 2 fold: C1QTNF6, SOM/TFCP2L4. 

b.- Genes with antisense integrations indicative of non-coding regulatory transcripts; 

regulation of more than 2 fold: FGD3, S100A10. 

c.- Genes showing weak up- or down- regulation (1.45 to 2 fold) with sense or antisense 

gene trap integrations: ABCC3, c20orf142, EED, ESR1, HKII, S100PBP. 

d.- Genes, in which a transcript has been trapped outside the annotated gene region, 

where the sense orientation of the trap indicates the presence of a nearby alternative 

promoter; regulation of more than 2 fold: Jun B. 

e.- Genes, in which the trap is located outside of the gene in antisense orientation; 

regulation of more than 2 fold: RNF184, SLC12A2, TOP1, WDR10. 

f.- Genes showing weak up- or down- regulation, in which a sense or antisense 

transcript has been trapped outside the gene: BCL9L, FLJ14451, KCTD5, ZFP67. 

Interestingly, as seen in table 6 the analyzed genes showed different regulation patterns: 2 

genes were permanently up-regulated (BCL9L, JunB), 1 permanently down-regulated 

(FGD3), 7 transiently up-regulated (ABCC3, ESR1, HKII, KCTD5, RNF184, SOM/TFCP2L4, 
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TOP1), 9 transiently down-regulated (C1QTNF6, c20orf142/CT142, EED, FLJ14451, 

S100A10, S100PBP, SLC12A2, WDR10, ZFP67) and 5 not regulated (CTNND2, TFF1, 

ZNF143, ZNHIT2, ZNRF1). Some of the genes classified as transiently down- or up-regulated 

showed both phenomena within the time window of the analysis, this is the case for 

FLJ14451, HKII, RNF184, S100PBP, SOM/TFCP2L4 and ZFP67 (figure 18). 

 

 

Figure 17. Selected examples of Northern blot analysis. MCF-7 cells were treated with 25 ng/ml TNF 
alpha (+) for the indicated times or left untreated (-) before RNA was extracted. 20 µg total RNA (blot 
hybridized with BCL9L probe) or polyA RNA extracted from 14 µg total RNA (blot hybridized with 
JunB probe) were separated on a formaldehyde-agarose gel and blotted onto a nitrocellulose 
membrane. The blots were hybridized with radioactive gene specific probes as indicated. 
Hybridization with the β-actin probe was performed for normalization. 
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Regulation factor at X hours after TNFα induction Gene Integration 
site 

Orientation 

2 4 6 8 24 

C1QTNF6 intron 1  sense 1.16  1.03  1.61 ⇓ 1.01  3.43 ⇓ 

SOM/TFCP2L4 intron 1  sense 1.93 ⇑ 1.50 ⇑ 1.64 ⇑ 1.51 ⇑ 5.63 ⇓ 

FGD3 intron 2  antisense 1.28  3.07 ⇓ 4.85 ⇓ 3.50 ⇓ 3.34 ⇓ 

S100A10 intron 1  antisense 1.28  1.12  1.18  1.40  2.70 ⇓ 

ABCC3 intron 8  antisense 1.06  1.08  1.35  1.64 ⇑ 1.02  

c20orf142 intron 1  sense 1.25  1.02  1.16  1.17  1.47 ⇓ 

EED exon 1  antisense 1.00  1.21  1.08  1.03  1.64 ⇓ 

ESR1 intron 1  antisense 1.38  1.83 ⇑ 1.22  1.03  1.92 ⇓ 

HKII intron 2  sense 1.14  1.31  1.63 ⇓ 1.05  1.73 ⇑ 

S100PBP intron 1  sense 1.58 ⇓ 1.18  1.40  1.03  1.15  

JunB upstream  sense 1.67 ⇑ 2.37 ⇑ 1.90 ⇓ 1.82 ⇑ 3.33 ⇑ 

RNF184 upstream  antisense 1.57 ⇑ 1.18  1.67 ⇓ 1.12  3.40 ⇑ 

SLC12A2 upstream  antisense 1.08  1.12  2.36 ⇓ 1.01  1.30  

TOP1 upstream  antisense 1.01  1.98 ⇑ 1.76 ⇑ 1.45  2.11 ⇓ 

WDR 10 upstream  antisense 1.17  1.15  1.79 ⇓ 1.01  2.61 ⇓ 

BCL9L upstream  antisense 1.76 ⇑ 1.80 ⇑ 1.61 ⇑ 1.48 ⇑ 1.53 ⇑ 

FLJ14451 upstream  sense 1.95 ⇓ 1.20  1.20  1.58 ⇓ 1.03  

KCTD5 upstream  antisense 1.56 ⇓ 1.96 ⇑ 1.93 ⇑ 1.40  1.16  

ZFP67 upstream  antisense 1.73 ⇓ 1.15  1.08  1.08  1.51 ⇑ 

CTNND2 intron 1  sense 1.29  1.05  1.38  1.06  0.00  

TFF1 intron 1  antisense 1.17  1.01  1.18  1.16  1.01  

ZNF143 upstream  antisense 1.10  1.24  1.22  1.10  1.37  

ZNHIT2 exon 1  sense 1.37  1.17  1.16  1.05  1.42  

ZNRF1 intron 1  sense 1.14  1.07  1.28  1.38  1.08  

 

Table 6. Regulation of 24 recovered genes. The table shows the U3Cre integration position, 
orientation and the regulation of mRNA levels by TNFα assessed by Northern blots and normalized 
for the amounts of β-actin RNA. Arrows indicate up ⇑ or down ⇓ regulation in comparison to 
untreated cells. Changes in RNA levels between 1.45 and 2 fold are shown in pink, changes of more 
than 2 fold in yellow. 
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Figure 18. Genes exhibited different regulation by TNFα. Northern blots were quantified in a 
Phospho(r)imager and normalized for expression of the housekeeping gene β-actin. Bar graphs show 
the normalized RNA levels of TNFα treated cells. The expression level of untreated cells was always 
set to 100, which is indicated in the graphics by a dashed red line.  
 

4.3.2. Selection of candidate genes for functional characterization 

Candidate genes for functional analyses were selected based on their response to TNFα, the 

availability of full length cDNAs and a potential association with cancer. In accordance with 
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these criteria, two genes were selected; one encodes a known protein, whereas the other 

contains an open reading frame (ORF) for which no function had been assigned so far.  

a) ZFP67/c-Krox belongs to a family of developmentally regulated genes. The first member 

of this family, Krüppel, was identified as a Drosophila segmentation gene (Schuh, Aicher et 

al. 1986). To date several homologues of krüppel have been isolated in vertebrates and are 

referred to as Krox genes. All these genes are early response genes which are transiently 

activated by serum or growth factors and some of them, such as Krox 20 and Krox 24 are 

expressed in a tissue specific manner (Lemaire, Revelant et al. 1988; Wilkinson, Bhatt et al. 

1989). The protein encoded by c-krox has a POZ domain required for protein-protein 

interactions and a carboxy-terminal DNA binding domain consisting of krüppel-type zinc 

fingers. It acts as transcriptional repressors by recruiting histone deacetylases (HDACs) to 

chromatin.  

ZFP67 is a key regulator of lineage commitment in immature T-cell precursors (Sun, Liu et 

al. 2005; Zamoyska 2005). More importantly ZFP67 was shown to repress the expression of 

extracellular matrix proteins, particularly fibronectin (Widom, Culic et al. 1997). Inhibition of 

fibronectin in several in vitro transformation assays increased the rate of transformation, 

suggesting that the protein has a tumor suppressor function (Steel and Harris 1989).  

b) FLJ14451 encodes for a hypothetical protein whose only obvious feature is the presence of 

3 copies of a C-x8-C-x5-C-x3-H type zinc finger domain. Based on this, FLJ14451 might be 

related to a class of eukaryotic zinc finger proteins involved in cell cycle regulation. This 

class includes the human TIS11B (butyrate response factor 1 also known as EGF-response 

factor) protein, which is encoded by a member of the TIS11 family of early-response genes. 

TIS11B knockout mice die in utero as a result of abnormal placentation (Stumpo, Byrd et al. 

2004). Another member of this family, the 35 kDa subunit of the human splicing factor U2AF 

was shown to play a critical role in mRNA by participating in 3' splice site selection. 

 

4.3.3. Over-expression studies 

To assess whether the selected candidate proteins are associated with the acquisition of 

oncogenic properties or other cellular alterations, they were over-expressed in MCF-7 cells. 

Towards this end, the ORF were amplified from the corresponding I.M.A.G.E. clones and 
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inserted into the expression vector pcDNA™6/V5-HisA downstream of a CMV promoter and 

in frame to a C-terminal V5/His6 tag (figure 19A). To enable the identification of transfected 

cells, a second cassette expressing egfp and blasticidin-deaminase from an SV40 promoter 

was cloned downstream of the ORF expression cassette yielding the empty control vector 

pcDNA6egfpIRESblas and the two expression plasmids pCMVegfpIRESblasZFP67 and 

pCMVegfpIRESblasFLJ14451.  

A.- 

 

B.- 

 

Figure 19. Over-expression of V5-tagged fusion proteins. A.- Expression constructs for candidate 
genes. Expression of the V5-tagged candidate proteins is driven by the CMV immediate early 
promoter (CMV). To create the fusion, the stop codon of the open reading frames (ORF) was 
removed. At the 5'-end a Kozak sequence is present for optimal translation. Outside the expression 
cassette the vectors contain the enhanced-green-fluorescent-protein gene (egfp) and the blasticidin-
deaminase (blas) gene which provides blasticidin resistance under the control of the SV40 early 
promoter (SV40). The polyadenylation sequences for egfp and blas are derived from bovine growth 
hormone gene and SV40 early region, respectively. In the constructs for stable expression the 
egfpIRESblas cassette was replaced by neo. B.- Expression of fusion proteins. MCF-7 cells were 
transiently transfected with expression vectors for the candidate proteins, and total cell lysates (20 µg 
for ZFP67, 15 µg for FLJ14451) were analyzed in a Western blot using an anti-V5 antibody. The 
predicted molecular weights of the tagged proteins are 61.4 kDa (ZFP67) and 49.3 kDa (FLJ14451) 
respectively.  

As blasticidin selection was not efficient for the selection of stably transfected MCF-7F cells, 

a second set of expression vectors was constructed, in which the egfpIRESblas cassette was 
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replaced by a neomycin-phosphotransferase gene driven by the SV40 early promoter 

(pcDNA6neo, pCMVFLJ14451neo, pCMVZFP67neo).  

To verify the functionality of the expression plasmids, they were transiently transfected into 

MCF-7 cells and the respective proteins were visualized by Western blotting using an 

antibody against the V5 epitope tag. Figure 19B shows that in both cases the transfected 

MCF-7 cells expressed a protein of the predicted size, indicating that protein translation is 

intact.  

 

4.3.4. Subcellular localization 

As a first approximation to a function, the subcellular localization of the candidate proteins 

was assessed by immunofluorescence following transient transfection of MCF-7 cells with the 

construct pcDNA6egfpIRESblas and the expression plasmids pCMVegfpIRESblasZFP67 and 

pCMVegfpIRESblasFLJ14451 (figure 20). 

 

Figure 20. Candidate proteins are located in the nucleus. MCF-7 cells were transiently transfected 
with expression vectors for V5 tagged ZFP67 and FLJ14451. Proteins were detected with a mouse 
antibody against the V5 tag followed by a Cy3 coupled anti-mouse antibody (red); DAPI was used to 
counterstain nuclei (blue). 
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As predicted by its function, the transcription factor ZFP67 was found exclusively in the 

nucleus. Similarly, FLJ14451 was also mainly in the nucleus but unlike ZFP67 was 

concentrated in discrete speckles reminiscent of PML-nuclear bodies (PML-NBs; Maul, 

Negorev et al. 2000). An association of the FLJ14451 protein with PML-NBs would shed 

some light on its function since PML-NBs contain mainly proteins involved in cell cycle 

control and apoptosis such as PML, p53, SUMO and DAXX (Bernardi and Pandolfi 2003). 

To investigate whether the FLJ14451 colocalizes with the PML-NB specific proteins SP100 

and PML-1, MCF-7 cells were transiently cotransfected with expression vectors for FLJ14451 

and GFP-fusions of SP100 or PML-1. Figure 21 clearly shows that FLJ14451 does not 

localize to PML bodies. 

 

Figure 21. PML-NB and FLJ14451 is not concentrated in PML nuclear bodies. MCF-7 cells were 
transiently cotransfected with expression vectors encoding the FLJ14451-V5 fusion and a SP100gfp or 
PML1gfp fusion. Control transfections were performed with an empty V5-vector. The FLJ14451 
protein was detected by immunofluorescence as before (red), SP100 and PML-1 via the gfp moiety 
(green); DAPI was used to counterstain nuclei (blue). 
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4.3.5. Over-expression of FLJ14451 protein inhibits colony formation in soft agar  

To directly test whether the selected candidate genes are linked to some sort of oncogenic 

process, MCF-7 clones stably over-expressing FLJ14451 and ZFP67 were isolated and tested 

for anchorage independent growth in semisolid cultures (Grossmann 2002; Wang 2004). As 

shown in figure 22, FLJ14451 but not ZFP67 significantly inhibited MCF-7 colony formation 

in soft agar cultures. Since this inhibition clearly correlated with protein expression, the 

results suggest that FLJ14451 might have tumor suppressor functions. 

 

 

Figure 22. FLJ14451 suppresses colony formation in soft agar. A pool of MCF-7 cells stably 
transfected with an empty expression vector (vector) and six different clones stably transfected with an 
FLJ14451-V5 or ZFP67-V5 expression vector were assayed for colony formation in soft agar. A.- 
Expression of fusion proteins. Lysates (90 µg) of the clones used for the experiment were analyzed in 
a Western blot using an anti-V5 antibody; tubulin was used as a loading control. B.- Colony formation 
in soft agar. 500 cells in 1 ml soft agar were plated into the wells of a 6 well plate containing 2 ml 
bottom agar. For each cell line duplicate plating was performed. After 21 days at 37°C colonies were 
counted under a microscope. The bar graph shows the colony number relative to the cell population 
stably transfected with the empty expression vector. Values represent the mean and standard error of 
three independent experiments (** ANOVA p<0.001). 
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5. - Discussion 

5.1. Recovery of TNFα induced genes by combined gene trap mutagenesis and site 

specific recombination 

By combining gene trap mutagenesis with site specific recombination a strategy was 

developed which enriches for genes induced by TNFα in the human breast cancer cell line 

MCF-7 even if the genes are transiently or weakly induced. The strategy relies on a one way 

gene expression switch which converts the transient activation of a gene trap encoded Cre 

recombinase into the stable expression of a selectable marker. Two selection steps enrich for 

gene trap integrations into genes specifically activated by the stimuli (here TNFα).  

In contrast to conventional gene trapping the present strategy allows screening of a gene trap 

event that responded to a signaling molecule, as described in the introduction, the Cre induced 

irreversible recombination in the gene expression switch, allows the gene trap expression to 

be temporally abrogated. Moreover, this Cre/loxP system is very sensitive and can thus 

identify genes, which are expressed at low levels (Thorey, Muth et al. 1998). This sensitivity 

is also reflected in a similar study using the ROSACre/loxP system (reverse orientation splice 

acceptor Cre) in mouse embryonic stem (ES) cells. The proportion of active gene traps 

detected in these experiments was 42.6%, which is much higher than the 11.6% that reported 

with the standard gene trap vector ROSAβ-gal (Chen, Liu et al. 2004).  

In designing the Cre/loxP strategy for the recovery of genes induced by TNFα, the apoptotic 

effects of the TNFα signaling had to be addressed. Binding of TNFα to its receptor TNFR1 

recruits the adapter protein TNFR-associated death domain (TRADD). This activated receptor 

then serves as an assembly platform for binding of several molecules which constitute the first 

complex that stimulates survival pathways through the activation of NF-κB (canonical 

pathway) and JNK (see introduction section 4.1.). A second complex (complex II), the death-

inducing signaling complex (DISC) which lacks TNFR1 but includes Fas-associated death 

domain (FADD) and pro-caspases-8 and -10 is subsequently formed in the cytoplasm by 

modification of complex I. This secondary complex initiates the apoptotic response by 

activation of the pro-caspases (Barnhart and Peter 2003; Micheau and Tschopp 2003). The 

apoptotic pathway can be circumvented by over-expression of a N-terminally truncated 

FADD protein (dnFADD) which has been shown to exert a dominant negative effect on 
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receptor mediated apoptosis including that induced by TNFα. Therefore, a cDNA encoding 

dnFADD was used in this project as a second marker in the reporter construct. 

With regard to TNFα regulation of target genes it is important to mention that TNFα can 

induce two modes of NF-κB activation patterns. In the monophasic mode, which is the result 

of a brief TNFα stimulus, NF-κB enters the nucleus and induces the expression of IκB 

proteins whose synthesis redistributes NF-κB into the cytoplasm restoring cellular 

homeostasis. In contrast, persistent TNFα activation produces prolonged NF-κB activation 

and continued IκB proteolysis, resulting in repeated rounds of NF-κB translocation and 

cytoplasmic recapture. This activation profile is characterized by a series of asynchronous 

damped oscillations of nuclear NF-κB (Nelson, See et al. 2004). Stimulation experiments 

producing monophasic or oscillatory modes have shown that the oscillatory mode is required 

for late gene expression (Tian, Nowak et al. 2005).  

Aside NF-κB activation, stimulation of c-Jun N-terminal kinase, which activates the 

transcription factor complex AP-1, is a second cellular response to TNFα common to all cell 

types (see introduction section 4.1.). Therefore, the recovered genes could also be targets of 

AP-1. In that context it is interesting to note that Banno and colleagues indicated that most of 

the cell cycle regulators, RNA-processing and metabolic enzymes induced by TNFα are not 

NF-κB dependent (Banno, Gazel et al. 2005). In depth promoter analyses would be necessary 

to reveal the dependence of the recovered genes on NF-κB and/or AP-1.  

Due to the sensitivity of the Cre/loxP system only 21 insertions were in protein coding genes 

of which some are known to be regulated by TNFα, thus validating the system; these proteins 

include: 

(i) JunB, a key transcriptional regulator of myelopoiesis and a potential tumor suppressor 

(Passegue et al., 2001; Schwamborn et al., 2003; Tian et al., 2005b; Zhou et al., 2003). 

(ii) SLC1A2 (GLT-1/EAAT2), which is responsible for the clearance of the neurotransmitter 

glutamate from neuronal synapses in the central nervous system (CNS) and is down-regulated 

by TNFα in a NF-κB dependent manner. Impaired glutamate uptake by glial cells induces 

excitotoxic neuronal death as a result of glutamate receptor over-stimulation. As a result, mice 

lacking SLC1A2 develop progressive neuro-degeneration and epilepsy. TNFα mediated 
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inhibition of SLC12A2 by NF-κB may contribute to glutamate toxicity and cell death in 

neuro-inflammation and disease (Sitcheran, Gupta et al. 2005). 

(iii) ABCC3, one of the hepatocellular ATP-binding cassette proteins transporting bile salts, 

17β estradiol and anti-cancer drugs (like doxorubicin or etoposide) across both intracellular 

and extracellular membranes. Indeed, the acquisition of drug resistance in cancer cells is often 

associated with increased expression of various cell surface ABC transporters (Tada, Wada et 

al. 2002). Induction of ABBC3 is hepato-protective in cholestasis and is dependent on intact 

TNFα signaling pathways (Bohan, Chen et al. 2003).  

Several other strategies have been used to identify TNFα regulated genes, among them 

microarray analysis (Schwamborn, Lindecke et al. 2003; Zhou, Scoggin et al. 2003; Banno, 

Gazel et al. 2005; Thiefes, Wolter et al. 2005; Tian, Nowak et al. 2005). Numerous 

microarray studies have been published involving various cells types and TNFα treatment 

protocols; as a result the shown to be regulated in the different surveys, were quite 

heterogeneous. Thus, it is not surprising that only a few genes recovered by expression 

profiling were also identified by gene trapping. In addition, microarray analyses report steady 

state RNA levels at fixed time points, whereas the gene trap approach used here relies on 

transcriptional induction within a time window, which if transient could escape detection by 

the chip based method. This might provide another explanation for the observed differences 

between the two techniques.  

Overall, significantly fewer TNFα regulated genes were recovered by gene trapping than by 

the microchip approach. This is mainly because cells harboring gene trap integrations in 

TNFα inducible genes already expressed in the non-induced state were eliminated during the 

initial selection, which might also explain why only a few previously characterized TNFα 

inducible genes were recovered. 

Microarray studies have indicated that TNFα mediated gene repression is far less frequent 

than induction. For example, Zhou and colleagues, who performed a microarray analysis in 

HeLa cells treated with TNFα, found no genes that were down-regulated more than 2 fold 

(Zhou, Scoggin et al. 2003). In contrast, analysis of U373 human glioblastoma cells treated 

with TNFα recovered down-regulated genes, but also indicated that down-regulation by a 

factor of two or more was rarer than up-regulation (Schwamborn, Lindecke et al. 2003). In the 
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present study only three genes were significantly down-regulated by TNFα: S100A10, 

SOM/TFCP2L4 and FGD3. The recovery of genes down-regulated in the present study is 

related to two factors: gene trap integration in FGD3 and in S100A10 is on the non-coding 

strand of these genes indicating that most likely the trapped RNA is not the FGD3 or 

S100A10 mRNA, but an antisense transcript from the same genomic region. In contrast, the 

SOM/TFCP2L4 gene trap integration is on the coding strand suggesting up-regulation of this 

gene at other time points which is shown in the northern blot analysis. 

Based on their response to TNFα in wild type cells the trapped genes belonged to one of the 

following four categories: (i) Non-responsive genes. Although no transcriptional regulation 

was observed in this category it is possible that induction does occur at some time point not 

covered by the Northern blots; (ii) genes that were either permanently induced or repressed, 

and (iii) genes that were only transiently induced.  

Interestingly, not only regulation itself, but also the specific time points at which it became 

detectable differ between the genes. Some genes such as BCL9L, FGD3, JunB and 

SOM/TFCP2L4 responded to TNFα already after 4 hours. Others such as ABCC3, C1QTNF6, 

S100A10, SLC12A2 and WDR10 required up to 24 hours to respond. Slow responding genes 

are likely to be downstream targets of transcription factors induced early in the process. In 

line with this, some of the recovered genes indeed code for transcription factors (ESR1, JunB, 

SOM/TFCP2L4, ZFP67, ZNF143), which can activate or repress specific target genes.  

These different patterns, transient and late/early induction, may reflect the complex kinetics of 

recruitment of NF-κB to its targets. These kinetics have been studied by CHIP analysis and 

led to the classification into two groups of genes (Saccani, Pantano et al. 2001). One subset of 

target genes was found to be occupied with heavily acetylated histones already before 

stimulation and therefore was subsequently accessible immediately after NF-κB activation. 

The mechanism of rapid transcriptional induction has also been associated with the pre-

formation of a transcription competent initiation complex on the promoters (Ainbinder, 

Revach et al. 2002). In contrast, other target genes had low histone acetylation levels and 

became occupied only 90-120 min after NF-κB nuclear entry (Saccani, Pantano et al. 2001).  
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5.2. Mechanisms of entrapment 

A large number of the gene trap insertions, like the ones located upstream of genes or in 

introns or in opposite orientation to annotated transcripts, cannot simply be explained, as 

U3Cre is conceived as an exon trap. The exon trap is completely devoid of regulatory 

sequences and therefore Cre transcription is dependent on the expression of the trapped gene. 

Because of the viral preference the majority of integrations will be at the 5'-end of genes. The 

integrated U3Cre then functions as a 3'-terminal exon with transcription terminating at border 

of the proviral R and U5 sequence elements.  

Interestingly, similar gene traps used for high throughput mutagenesis in ES cells also showed 

that only 20% of all the insertions present in the library were in exons, whereas the majority 

was in introns.  

The U3Cre gene trap inserts a partial terminal 3'-exon, which has a polyA site and no splice 

acceptor. Generation of an unspliced fusion transcript between cellular sequences and the 

gene trap encoding Cre should be a rare event, because polyadenylation and 3'-end formation 

are inefficient when polyA sites are placed between a 5'-splice donor and a 3'-splice acceptor 

site as in an intron (Adami and Nevins 1988; Osipovich, White-Grindley et al. 2004). 

Alternatively, the U3Cre gene trap could have activated cryptic splice acceptors 5' to the 

integration site. As a consequence a fusion transcript would be produced, that close to the Cre 

containing exon, contains more or less intronic sequence, depending on the position of the 

splice acceptor. These cryptic splice acceptors could be localized within the intron, the 

provirus sequence or might be generated by the virus insertion.  

Analysis of one such case from the work described here, where the U3Cre gene trap had 

integrated into the first intron of the TFCP2L4 gene, revealed a fusion transcript initiating in 

the cellular exon 1 and splicing into the proviral sequence downstream of the 5'-LTR (J. 

Altschmied, C. Strolz, personal communication). This kind of splicing might also occur in the 

remainder of the sense integrations in the first intron (8 out of 21 sense integrations). 

Nevertheless, transcriptional activation of the gene trap encoded recombinase has to be 

regulated in order to be positively selected. To explain this type of integrations it has to be 

assumed that before TNFα induction there was no Cre encoding transcript present, which was 

the case for the above mentioned integration in TFCP2L4. 
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Due to the sensitivity of the present system these integration events could involve other 

different processes in addition to the cryptic splicing such as trapping of additional, so far 

unknown transcripts, or the activation of alternative or bidirectional promoters.  

Alternative promoters have been already described in the human genome (Kim, Barrera et al. 

2005) and constitute prime target elements through which diversity and flexibility are created 

(Ayoubi and Van De Ven 1996). A recent report from the RIKEN, FANTOM and Genome 

Science groups assigned an average of 1.32 5'-start sites for each 3'-end (Carninci, Kasukawa 

et al. 2005), which indicates a widespread presence of alternative promoters. 

Many of the genes, which have been reported to have multiple promoters, show no variation 

in the primary structure of the resulting protein, however, the mRNA variants differ in their 

transcriptional patterns and translational efficiencies. In these cases alternative promoter 

usage results in variant 5'-UTRs that might differ by the presence of an upstream ORF which 

can affect translation (reviewed by Landry, Mager et al. 2003). Well known examples of 

genes with alternative promoters, whose products have an influence on apoptosis or 

proliferation are p53, p21, or c-myc.  

An example for alternative promoter usage in the present study is TFCP2L4/SOM, a gene 

with known multiple transcripts, where U3Cre had integrated into the first intron. The use of 

alternative first exons and differential splicing of exon 2, results in three protein isoforms 

(Ting, Wilanowski et al. 2003). Preliminary experiments indicate that two of these protein 

variants can induce cell migration in human umbilical vein endothelial cells, (J. Altschmied, 

C.Strolz, J.Haendeler, C. Schön, personal communication). 

Lastly, another possibility is that these integrations could represent additional, distinct 

transcripts. The U3Cre gene trap “selects” for events where Cre provides the first AUG in the 

resulting transcript (von Melchner, Reddy et al. 1990), therefore intron or exon integrations in 

regions distant from the UTR are expected not to provide the first AUG for translation. 

However there are several examples where U3Cre is integrated far downstream of the first 

exon. This is the case for ABCC3, SLC12A2 and SPATA 5 where the gene trap is integrated in 

intron 14, 8 and 5, respectively. These integrations could report the presence of 

uncharacterized transcriptional units embedded in the same orientation in the apparent host 

gene. Though this possibility appears unlikely, it is not impossible, as there are examples of 
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such a situation in the human genome, in which the embedded transcriptional unit consist of 

one unique exon (Bejanin, Cervini et al. 1994; Conrad, Vianna et al. 2002).  

 

Antisense U3Cre integrations: bidirectional promoters or antisense transcripts? 

A striking point in the present study is that a large proportion of the gene trap integrations are 

on the non-coding strand of known transcripts (see results section 4.2.3.). Antisense U3Cre 

integrations represent roughly 40% of all integrations in annotated genes and Genscan gene 

predictions. The high percentage of integrations on the non-coding strand of transcripts might 

be due to the stringent selection for integrations in genes specifically regulated by TNFα and 

the MMLV preference for integrations into actively transcribed regions. This combination 

would enrich for integration events into genes not active in the absence of TNFα, which are at 

the same time located in actively transcribed regions.  

One of the most intriguing questions regarding the antisense gene trap integrations is the 

nature of the recovered transcripts. A recent report indicates that mouse natural sense-

antisense transcripts tend to be polyA negative and nuclear localized (Kiyosawa, Mise et al. 

2005); this and other options will be discussed in detail in section 5.3.  

Independent of the nature of the trapped RNA is the mechanism gene trap activation, when 

the trap is antisense relative to an annotated gene. In particular, integrations close to the 5'-end 

could reflect the activity of a bidirectional promoter or could be indicative for the presence of 

a long transcript originating within the gene, a so called naturally occurring antisense 

transcript (NAT).  

Promoters are the central processors of transcriptional control. They comprise the genomic 

DNA sequences found upstream of transcription units and sometimes extend into the first 

exon of a gene. Interestingly, analysis of the human genome indicated that transcript pairs 

arranged head to head with less than 1000 bp separating their transcriptional start sites are 

controlled by bidirectional promoters. A common feature of these bidirectional promoters is 

the presence of a CpG island between the genes which can overlap partially or entirely with 

the first exons (Adachi and Lieber 2002; Trinklein, Aldred et al. 2004). 

Individual examples of bidirectional gene pairs have been known for years, some serve to 

maintain a stoichiometric relationship between proteins required in a certain ratio (histones, 
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Ahn and Gruen 1999), others regulate the co-expression of genes that function in the same 

pathway (collagen type IV genes, Schmidt, Fischer et al. 1993), control transcripts in a 

temporal fashion (genes regulated during the cell cycle Guarguaglini, Battistoni et al. 1997) or 

provide coordinated responses to induction signals such as in the case of heat shock protein 

genes (Hansen, Bross et al. 2003).  

A comparison of the activity and directionality of 258 bidirectional promoters with 56 random 

promoters in four cell lines revealed that the cellular context is important for the bidirectional 

activity of a promoter. Whereas 33% of the random promoters analyzed showed bidirectional 

activity in half of the cell lines and unidirectional activity in the other half, 29% showed 

bidirectional activity in all four cell lines. In contrast, 57% of the bidirectional promoters 

assayed showed bidirectional activity in all four cell lines (Trinklein, Aldred et al. 2004). 

Consistent with this study, two non exclusive scenarios would be possible to explain U3Cre 

integrations found 5'-upstream and in antisense orientation to known transcripts. The 

orientation of the provirus could reflect the presence of a bidirectional promoter with stringent 

transcriptional activation in the sense and/or antisense direction in a specific cellular context. 

Alternatively, such integrations could reflect the presence of transcriptional noise coming 

form a spurious bidirectional promoter, in this case the transcript coming from the opposite 

strand might be stabilized by the presence of a complete reading frame and a polyA tail. In the 

present project U3Cre integrations in genomic regions with transcripts arranged head to head 

with less than 1000 bp that might represent bidirectional transcript pairs, were observed in 7 

integrations events. In two of these cases both transcripts are derived from annotated genes, 

whereas in the others the pairs consist of a fully annotated transcript on one strand and an 

EST or Genscan prediction on the other. 

On the other hand, U3Cre integrations on the non-coding strand could report natural antisense 

transcripts. In recent years NATs have been linked to many aspects of eukaryotic gene 

expression including genomic imprinting, RNA interference, X-chromosome inactivation and 

RNA editing. NATs have also been implicated in some diseases, an example being a heritable 

α-thalassemia, where a chromosomal deletion results in juxtaposition of a truncated, widely 

expressed gene (LUC7L) close to a structurally normal α globin gene (HBA2). As a result an 

antisense transcript originating from the LUC7L promoter extends into the HBA2 CpG island 

leading to methylation and silencing of the gene (Kleinjan and van Heyningen 2003; 
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Tufarelli, Stanley et al. 2003). Several computational approaches have been developed to 

identify antisense transcripts (Li et al., 2006; Shendure and Church, 2002; Yelin et al., 2003) 

and have supported the view that antisense regulation might be more pervasive in the genome 

than previously appreciated. 

The current strategy yielded only four U3Cre integrations, in which the gene trap had 

integrated close to regions, where two annotated, overlapping RNAs are transcribed from the 

two DNA strands. In three cases the complete transcripts on both strands are known 

(RACK7/Q8TE85, S100PBP/YARS, TFCP2L4/OTTHUMG00000003039), whereas in the 

other an EST is found on the non-coding strand within an intron of a known gene (TFF1). 

However, so far nothing is known about the function of these antisense transcripts or their 

regulation under specific conditions. The overlapping region between the transcripts can be 

either in introns or exons, the later is represented only by one pair (S100PBP/YARS), where 

both transcripts overlap with their respective UTRs. 

Noteworthy, in spite of not being within transcripts in the same transcriptional direction, some 

of the gene trap integrations on the non-coding strand of known or hypothetical protein genes 

are downstream of putative transcription start sites, which in most instances are located in the 

first intron or exon of the non-coding strand of these genes. 

It would not be surprising if the antisense transcripts were implicated in regulatory processes 

after TNFα treatment, as there have been examples for regulation through NATs. A natural 

collagenα1(I) antisense transcript is found in chicken chondrocytes, where the sense transcript 

level is low. Upon 5-bromo-2’-deoxyuridine (BrdU) treatment, antisense transcription 

decreases while expression of the sense transcript rises, being exactly correlated with overall 

collagenα1(I) mRNA accumulation. These results suggest that either the activity of the sense 

and antisense promoters is differentially regulated and/or that there is interference between 

sense and antisense transcription (Farrell and Lukens 1995). Other examples of regulation in 

opposite direction are the regulation of the thymidine kinase (Sutterluety, Bartl et al. 1998) 

and eIF-2α (Silverman, Noguchi et al. 1992; Noguchi, Miyamoto et al. 1994) genes, where 

antisense promoters have been described in intron 3 and intron 1, respectively.  

Following the example of collagenα1(I), the expression of genes with U3Cre integrations on 

the non-coding strand would be expected to be down-regulated as result from the transcription 
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of the non-coding strand. Surprisingly, in the present work, northern blot analysis of candidate 

genes in most cases showed no correlation between gene trap orientation and the regulation of 

the coding transcript. This absence of a correlation between sense/antisense pairs has also 

been observed in a study from the RIKEN, FANTOM and Genome Science groups, which 

showed that most of the sense/antisense gene pairs were positively correlated in their 

expression. A possible explanation for this co-expression would be that the transcription of 

the sense/antisense pairs is controlled by the same enhancer elements (Katayama, Tomaru et 

al. 2005). 

In some instances, in particular gene trap integrations antisense and upstream to known genes, 

a transcript involved in the regulation of an alternative promoter might have been trapped. 

This could be the case for the integrations in the genes coding for topoisomerase 1, ckrox or 

the estrogen receptor 1. For the first there is an exon prediction upstream to the 

experimentally validated first exon, the upstream regions of the latter two genes are 

characterized by the presence of several alternative exons. All these examples may have 

alternative promoters active under different cellular contexts, where antisense transcripts 

could help to fine-tune the transcript levels of hypothetical alternative variants in response to 

TNFα.  

 

5.3. Nature of the recovered transcripts 

Polyadenylated versus non-polyadenylated 

As far as the nature of the trapped transcripts is concerned, these do not necessarily require to 

be polyadenylated. Since polyadenylation stabilizes transcripts, polyA negative transcripts are 

harder to detect presumably due to a shorter half life. By providing a polyA tail, U3Cre 

insertions presumably stabilize such transcripts making them easier to detect. 

Transcriptome analyses have traditionally focused on cytoplasmic polyA RNA to exclude 

rRNAs, tRNAs and incompletely processed primary transcripts. It was then assumed that 

most transcripts were derived from protein coding genes, processed to polyadenylated 

mRNAs, which were transported to the cytoplasm for translation (Frith, Pheasant et al. 2005).  

Histone RNAs have been long considered to be the only transcripts synthesized without 

polyA tails (Birnstiel, Busslinger et al. 1985). Moreover, 30% of the RNAs associating with 
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polysomes in actinomycin D-treated HeLa cells were found to be polyA negative (Milcarek, 

Price et al. 1974) and in Chinese hamster cells the fraction of polysome associated transcripts 

with 5'-cap structures exceeds the polyA positive fraction by 3 fold (Salditt-Georgieff, 

Harpold et al. 1981). Recent analyses of the transcriptome indicated that the number of non-

polyA transcripts is higher than expected and that polyA negative RNAs constitute the bulk of 

the RNA in both nucleus and cytoplasm (Cheng, Kapranov et al. 2005). 

 

New transcripts 

Two large scale efforts sponsored independently by the National Cancer Institute (Strausberg, 

Feingold et al. 1999; Strausberg, Feingold et al. 2002) and RIKEN (Okazaki, Kikuno et al. 

2004; Ota, Suzuki et al. 2004) are based on the identification of new cDNAs. However, many 

transcripts will escape this type of analyses, because they are present in small quantities or 

only transiently. With the present strategy some of these transcripts might have been 

localized. 

As might have been expected from the sensitivity of the gene trap, bioinformatics analysis of 

gene trap sequence taqs (GTSTs) has shown that some of the U3Cre integrations were in 

unannotated genomic regions, which in several instances contained putative transcriptional 

start sites or predicted transcripts. These transcriptional start sites were localized several 

hundred or thousand bp upstream of the gene trap integrations, supporting the presence of a 

transcript within these regions. Integrations into such regions could reflect the specific 

activation of transcripts in a defined cellular context (TNFα stimulus). If such transcripts can 

be validated experimentally, this would indicate that gene trapping with such a system of high 

sensitivity could be helpful in the annotation of the human genome sequence.  

 

Coding versus non-coding 

Recently, genome tiling arrays (Frith, Pheasant et al. 2005) have shown that the transcribed 

fraction of the human genome is not limited to protein coding genes and is much larger than 

previously thought including introns and many not yet annotated regions. Part of the non-

coding transcripts could simply result from a low level transcriptional noise without having 

any biological significance. Alternatively, these transcripts may help to increase accessibility 
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of nearby protein coding genes for regulatory proteins (Cheng, Kapranov et al. 2005; 

Kapranov, Drenkow et al. 2005). About 98% of all transcriptional output mapped to the 

human genome is non-coding, including the untranslated regions and introns of protein 

coding RNAs (Mattick and Makunin 2005). Actually, only 1.2% of the annotated human 

genome encodes proteins, although a much larger fraction is transcribed (Frith, Pheasant et al. 

2005). 

As gene prediction algorithms like Genscan are based on structural features including 

translational signals, it is likely that integrations in unannotated genomic regions reflect 

trapping of non-coding RNAs, which could belong to different categories: 

(i) Large non-coding RNAs (ncRNAs); such transcripts seem to be involved in many 

processes. Willingham and colleagues who were able to characterize the biological function 

of some of these ncRNAs, identified one of them as a modulator of the transcriptional activity 

of the nuclear factor of activated T cells (NFAT), a function which is achieved by regulating 

the subcellular localization of the protein. Another one was found to function as a repressor of 

Hedgehog signaling and six ncRNAs were described to be essential for cell viability 

(Willingham, Orth et al. 2005). In addition, ncRNAs apparently can contribute to local 

chromatin modification or methylation when they overlap with promoters. 

(ii) Small non-coding double stranded (ds) RNAs. One such dsRNAs has been proven to play 

a critical role in mediating neuronal differentiation, the mechanism of action appears to be 

mediated through a dsRNA protein interaction (Kuwabara, Hsieh et al. 2004). 

(iii) Small non-coding RNAs. Recently transcripts, which are derived from the thritorax 

response elements (TREs) located in the ultrabithorax (Ubx) locus, have been shown to play 

an important role in the activation of gene expression. These ncRNAs transcribed through the 

TREs are retained at the TREs by DNA-RNA interactions and provide a RNA scaffold that is 

bound by Ash1, a protein without intrinsic DNA-binding capabilities, which is essential for 

the expression of the homeotic gene Ubx (Sanchez-Elsner, Gou et al. 2006). 

(iv) Another class of non-coding RNAs, which have received a lot of attention recently, are 

microRNAs (miRNAs). These are small RNAs processed from pre-microRNAs in the nucleus 

by the ribonuclease III Drosha. Processing results in small double stranded RNAs with a 

hairpin structure and unpaired nucleotides at both ends which are recognized by importin 5. 
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After export to the cytoplasm they are processed by the ribonuclease III Dicer, separated by a 

helicase and one strand is incorporated into the RNA induced silencing complex (RISC) 

(Zamore and Haley 2005). RISC can target protein-coding messenger RNA (mRNAs) 

resulting in a translational block or mRNA degradation. Base pairing between the miRNA and 

its complementary target mRNA gives the process its specificity. The choice between 

translation inhibition and destruction is thought to be governed by the degree of mismatch 

between the miRNA and its target mRNA, with degradation being the outcome for best-

matched targets (Meltzer 2005).  

Although nowadays a large number of miRNAs are known (Griffiths-Jones 2004; Mattick and 

Makunin 2005) only a few miRNA targets have been identified in mammals. The 

physiological importance of miRNAs has been experimentally demonstrated in vivo by 

Krützfeldt and colleagues, who made use of a molecule complementary to miRNA-122 (miR-

122) called antagomir-122. Intravenous administration of antagomir-122 in mice resulted in a 

marked reduction of miRNA-122 levels. Several hundreds of genes were affected by the 

antagomir. Interestingly, the 3'-UTRs of up-regulated genes were strongly enriched in 

miRNA-122 recognition motifs whereas down-regulated genes were depleted in these motifs. 

The functional annotation of the down-regulated genes predicted that cholesterol biosynthesis 

should be affected. Indeed, plasma cholesterol levels were reduced in antagomir treated 

animals (Krutzfeldt, Rajewsky et al. 2005).  

The present gene trapping strategy has not recovered known human miRNAs genes; however 

one gene trap integration was localized 10 kbp downstream of a known miRNA (mo-mir21). 

miRNAs are synthesized as pre-mRNAs which are processed post-transcriptionally, therefore 

it is conceivable that the gene trap is localized somewhere in a large precursor. Alternatively, 

the integration could have occurred in a so far unannotated downstream miRNA gene within a 

miRNA cluster. As a matter of fact, miRNA clustering is significantly higher than expected at 

random; from the human known miRNA genes analyzed by Altuvia and colleagues 37% 

appeared in clusters of two or more with pairwise chromosomal distances of less than 3 kbp 

(Altuvia, Landgraf et al. 2005). Another study suggested that clustered miRNAs are expected 

to be found within a range of 50 kbp (Baskerville and Bartel 2005). 

 

 - 98 - 



 
Discussion  - 99 - 

5.4. Functional validation of the trapped genes 

Functional validation was performed with two trapped genes (see results section 4.3.2.); the 

reasons for selecting these genes were based on the response to TNFα, their availability as 

full length cDNAs from the RZPD and a reported association with cancer:  

a) ZFP67/c-Krox belongs to a family of developmentally regulated genes and was shown to 

repress the expression of extracellular matrix proteins, particularly fibronectin (Widom, Culic 

et al. 1997). Inhibition of fibronectin in several in vitro transformation assays increased the 

rate of transformation, suggesting that the protein has a tumor suppressor function (Steel and 

Harris 1989).  

b) FLJ14451 is a hypothetical protein whose only obvious feature is the presence of 3 copies 

of a C-x8-C-x5-C-x3-H type zinc finger domain, which is also found in a class of eukaryotic 

zinc finger proteins involved in cell cycle regulation. 

The evaluation of the influence of the FLJ14451 and ZFP67 proteins on anchorage 

independent growth showed differences between the two proteins. Over-expression of 

FLJ14451 in MCF-7 cells suppressed soft agar colony formation, whereas ZFP67 had no 

effect on this process.  

The lack of difference in colony formation in soft agar between ZFP67 overexpressing clones 

and control cells is surprising as the ZFP67 protein (cKrox) regulates extracellular matrix 

genes, which are known to affect oncogenic transformation. One explanation for this 

discrepancy could be the molecular alterations already present in the MCF-7 cell line which 

might compensate ZFP67 up-regulation. Moreover, the levels of cKrox could be already so 

high in the cells that it could saturate all the genomic binding sites and therefore no additional 

effect would be observed upon ZFP67 up-regulation. Additional down-regulation experiments 

are required to clarify the role of ZFP67 in oncogenic transformation. 

Inhibition of anchorage independent growth by the FLJ14451 protein might be important for 

controlling the spread of cells from the site of a primary tumor to distant locations. FLJ14451 

may be involved in regulation of pathways implicated in cell proliferation and in 

circumstances where the survival signals fail, like in anchorage independent growth, slow 

down cell growth or induce apoptosis.  
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It is well known that adhesion of cells to the extracellular matrix stimulates signal 

transduction cascades that have been shown to impinge on cell growth, differentiation and cell 

death. Indeed, detachment of a cell from is supportive matrix induces anoikis, a specific type 

of apoptosis (Reddig and Juliano 2005), which might be triggered by FLJ14451. 

Interestingly, microarray studies support a role of FLJ14451 in maintaining a non-malignant 

state, specifically in two particular instances. In the first case, FLJ14451 showed progressive 

down-regulation in breast tumors from grade 1 to 3 (van 't Veer, Dai et al. 2002). The 

histological grade of breast carcinomas has long provided clinically important prognostic 

information. Grade 1 is the lowest grade with well-differentiated cells, grade 2 is the 

intermediate with moderately differentiated cells and grade 3 is the highest with poorly 

differentiated and fast growing cells. In the second case, a decrease in the FLJ14451 mRNA 

levels of primary cancers in patients who developed metastasis after 5 years was reported (van 

't Veer, Dai et al. 2002). Altogether these data indicate that FLJ14451 expression could be 

inversely correlated with malignancy and metastasis. Therefore, the protein might be a new 

tumor suppressor. 

 

5.5. Future perspectives 

Several proteins identified in this study merit future consideration. One of them, FLJ14451, is 

a putative tumor suppressor which needs further validation in both in vitro and in vivo 

experiments. The other is the SOM/TFCP2L4 transcription factor which appears to be a potent 

inducer of cell migration and is thus likely involved in tumor metastasis and angiogenesis. 

The high percentage of gene trap integrations into non-coding regions of the genome suggests 

that the strategy might be useful in disrupting non-coding genes. Pending further validation of 

the trapped non-coding transcripts, the combination of gene trap mutagenesis and site specific 

recombination as described here could be applicable to the high throughput mutagenesis of 

non-coding genes for which no alternative method is presently available. 
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7. - Summary 

One of the hallmarks of cancer is the escape of the transformed cells from apoptosis. 

Therefore, the identification of survival genes, allowing cancer cells to circumvent 

programmed cell death, could provide new diagnostic markers as well as targets for 

therapeutic intervention. A well known transcription factor regulating the balance between 

pro- and anti- apoptotic factors is NF-κB, which is strongly induced by tumor necrosis factor 

alpha (TNFα). When cells are stimulated by TNFα their response is biphasic with an initial 

NF-κB induction of survival genes which is overridden by the subsequent activation of 

initiator caspases triggering apoptosis.  

By combining gene trap mutagenesis with site specific recombination a strategy was 

developed, which enriches for genes induced by TNFα in the human breast cancer cell line 

MCF-7. The strategy relies on a one way gene expression switch based on Cre/loxP mediated 

recombination, which uncouples the expression of a marker gene from the trapped cellular 

promoter thereby enabling the recovery of genes that are only transiently induced by TNFα. 

The marker gene used in these experiments was a dominant negative variant of the TNFα-

receptor associated protein FADD (dnFADD), which blocks the apoptotic branch of the 

TNFα induced signaling pathway.  

Initial experiments indicated that MCF-7 cells expressing high levels of dnFADD were 

insensitive to TNFα induced apoptosis and therefore suitable for the installment of a one way 

gene expression switch susceptible to Cre/loxP mediated recombination. A MCF-7 reporter 

clone harboring the recombinase dependent gene expression switch was infected with the 

gene trap retrovirus U3Cre, which inserts the Cre recombinase gene into a large collection of 

chromosomal sites. Insertion of Cre downstream of an active cellular promoter induces 

dnFADD expression from the gene expression switch enabling the cells to block TNFα 

triggered apoptosis.  

From a gene trap integration library containing approximately 2x106 unique proviral 

integrations, 69 unique TNFα inducible gene trap insertion sites were recovered in a two step 

selection procedure. Sequencing of the genomic regions adjacent to the insertion sites, which 

were obtained by inverse PCR (gene trap sequence tags, GTSTs), and data base analysis 
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revealed that 42% of the GTSTs belonged to annotated genes, 13% to known cDNAs with 

open reading frames, 17% to Genscan predicted genes, 9% to ESTs, 9% to repetitive 

sequences and 10% to unannotated genomic sequence. Overall, 44% of the annotated genes 

recovered in this screen were directly or indirectly related to cancer, indicating that the gene 

trap strategy developed here is suitable for the identification of cancer relevant genes.  

Analysis of the expression patterns of the trapped and annotated genes in wild type cells 

revealed that 19 out of 24 genes were either up- or down- regulated by a factor of at least 1.45 

by TNFα.  

A large fraction of the gene trap insertions were located upstream, in introns or in opposite 

orientation to annotated transcripts, indicating that the strategy efficiently recovers non-

coding RNAs (ncRNAs). While the biological significance of these transcripts still needs to 

be elucidated, they fall into two main categories. The first category includes gene trap 

insertions upstream of genes, which could either represent regulatory RNAs interacting with 

promoter elements or transcripts driven by bidirectional promoters. The second includes 

inverse orientation gene trap insertions in introns of annotated genes suggesting the presence 

of natural antisense transcripts (NATs). Interestingly, more than 50% of all antisense 

integrations are located downstream of transcription start sites predicted by different 

algorithms supporting the existence of RNAs transcribed from the corresponding genomic 

regions. Intronic integrations on the coding strand could be derived from cryptic splicing, 

alternative promoter usage or additional, so far uncharacterized transcripts.  

Preliminary functional analysis of two genes recovered in this screen encoding the 

transcription factor ZFP67 and the FLJ14451 protein revealed that FLJ14451 but not ZFP67 

inhibited anchorage independent growth in soft agar, suggesting that FLJ14451 might have 

some tumor suppressor functions. 

In summary, besides identifying a putative tumor suppressor protein, the present experiments 

have shown that gene trapping is useful in identifying non-coding transcripts in living cells 

and may turn out to be the method of choice in characterizing these transcripts whose 

functions are still largely unknown. 
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8. - Zusammenfassung 

Krebszellen sind nicht unabhängig von ihrer Umgebung, sondern stehen vielmehr im Fokus 

vielfältiger Interaktionen mit anderen Zelltypen, darunter Stroma-, Gefäß- und Immunzellen. 

Die Reaktion des Körpers gegenüber Tumoren weist viele Parallelen zur Wundheilung und zu 

entzündlichen Prozessen auf. Die Bedeutung dieser inflammatorischen Reaktionen spiegelt 

sich wider in dem Vergleich der, der Krebsentstehung zugrunde liegenden, genetischen 

Schädigung mit einem "Funken, der ein Feuer entzündet" und der Gleichsetzung mancher 

Entzündungsarten mit "Öl, das ins Feuer gegossen wird". Entzündliche Prozesse wurden mit 

allen Stufen der Tumorentstehung und -progression in Verbindung gebracht, dabei stellte sich 

der Transkriptionsfaktor NF-κB als Bindeglied zwischen Krebs und Entzündungen heraus. In 

malignen Zellen reguliert NF-κB nach seiner Aktivierung durch Onkogene oder 

inflammatorische Zytokine antiapoptotische und proliferative Gene. Einer der stärksten 

bekannten Induktoren NF-κB abhängiger Genexpression in malignen und inflammatorischen 

Zellen ist Tumornekrosefaktor alpha (TNFα), ein Zytokin, das in vielen Tumoren produziert 

wird. Aufgrund der Besonderheiten des TNFα-Signalweges kann TNFα sowohl pro-, als auch 

antiapototische Effekte haben. Zellen, die TNFα Rezeptor 1 (TNFR1) exprimieren, zeigen 

eine biphasische Reaktion auf TNFα. Nach einer initialen, NF-κB vermittelten Induktion von 

Überlebensgenen kommt es zur Modifikation des TNFR-Signalkomplexes und Rekrutierung 

des Adaptor-Proteins FADD ("Fas associated death domain protein"). Dies führt zur 

Aktivierung von Initiator-Caspasen und letztendlich zur Einleitung des programmierten 

Zelltods. Der Beweis dafür, dass die primär aktivierten Gene antiapoptotische Funktionen 

haben, wurde durch die simultane Behandlung von Zellen mit TNFα und 

Translationsinhibitoren erbracht, welche den apoptotischen Prozess auslösen oder 

beschleunigen können. Die Deregulation solcher Überlebensgene ist für die 

Apoptoseresistenz von Tumorzellen, ein zentrales Charakteristikum von Krebserkrankungen, 

verantwortlich. Daher ist die Identifizierung dieser Gene von besonderen Interesse für der 

Krebsforschung, da ihre Genprodukte als diagnostische Marker oder als Angriffspunkte für 

neuartige Therapieansätze dienen könnten. 

In dem hier beschriebenen Projekt wurde die Herausforderung, TNFα regulierte 

Überlebensgene zu identifizieren, mit einer Genfallenstrategie angegangen. Genfallen sind auf 
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Plasmiden oder Retroviren basierende Vektoren, mit Hilfe derer ein Reportergen zufällig über 

das Genom verteilt inseriert werden kann. Die hier verwendete Genfalle U3Cre enthält ein 

Cre-Rekombinasegen anstelle eines konventionellen Reporters. Die Kombination dieser 

Genfalle mit einem Cre-abhängigen, irreversiblen, molekularen Schalter ermöglicht die 

Identifizierung von transient exprimierten Genen. 

Dieser Schalter besteht aus einem konstitutiv aktiven Promoter 5'-oberhalb von zwei 

Reportergenen, die beide ein eigenes Polyadenylierungs-(polyA-)Signal tragen. Die 5'-

Kassette kodiert für eine Neomycin-Phosphotransferase (neo), die Neomycin-Resistenz 

vermittelt. Sie ist von zwei gleichartig orientierten loxP-Sequenzen flankiert und verhindert 

aufgrund ihrer Polyadenylierung die Transkription der 3' dazu liegenden Kassette. Diese 

enthält ein Gen für eine dominant negative Variante des FADD Proteins (dnFADD), welche 

in der Lage ist, TNFR-vermittelte Apoptose zu blockieren. Im Grundzustand exprimiert das 

Schalterkonstrukt neo, aber nicht dnFADD. Cre-induzierte Rekombination führt zur Deletion 

der neo-Kassette und damit verbunden zur Transkription von dnFADD, da dieses nun unter 

die Kontrolle des Promotors kommt. Dadurch verlieren die Zellen ihre Neomycin-Resistenz 

und auch, aufgrund der Expression von dnFADD, die Sensitivität gegenüber TNF -

induzierter Apoptose. 

Die erste zu klärende Frage war, ob die für das Vorhaben ausgewählte Brustkrebszellinie 

MCF-7 nach dnFADD-Expression resistent gegenüber TNF  wird. Vorexperimente zeigten, 

dass extrem hohe dnFADD-Level zur TNF -Resistenz führen. Daher wurden mit einer 

retroviralen Transduktion MCF-7 Reporterzellklone generiert, welche den molekularen 

Schalter zur konditionalen Expression von dnFADD tragen. Diese Klone wurden auf 

dnFADD-Protein-Level und TNF -Resistenz nach Cre-induzierter Rekombination 

untersucht. Ein Klon, der die gewünschten Charakteristika aufwies wurde zur Erzeugung der 

U3Cre Genfallen-Integrationsbank benutzt. Um eine repräsentative Verteilung der 

Genfallenintegrationen über das Genom zu erreichen, wurden die Bedingungen so eingestellt, 

dass eine Integrationsbank mit ungefähr 2x106 unabhängigen proviralen Integrationen erzeugt 

wurde. Um aus dieser Bank Zellen mit Genfallen-Integrationen in TNF -induzierbaren 

Genen anzureichen, wurde eine zweistufige Selektionsstrategie eingesetzt. Im ersten Schritt 

wurden in Abwesenheit von TNF  Zellen mit Integrationen in konstitutiv aktiven Genen 

eliminiert. Die zweite Selektion in Gegenwart des Zytokins diente der Anreicherung von 
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Zellen mit Insertionen in TNF -induzierten Genen. Aus diesen Selektionsprozeduren wurden 

78 Zellklone erhalten und in diesen die mit der Genfalle markierten Gene identifiert. Dazu 

wurden die flankierend zu den proviralen Sequenzen liegenden genomischen Abschnitte 

(GTSTs, "gene trap sequence tags") in einer inversen PCR amplifiziert und sequenziert. Von 

den so erhaltenen 69 unterschiedlichen GTSTs lagen 42% in annotierten Genen, 13% in 

Genen mit offenen Leserahmen unbekannter Funktion, 17% in hypothetischen Genen, die mit 

dem Genscan-Algorithmus vorhergesagt wurden, 9% in ESTs ("expressed sequence tags"), 

9% in repetitiven Elementen und 10% in nicht annotierten genomischen Regionen. 44% der 

aus diesem Screening-Verfahren erhaltenen, bekannten Gene liessen sich direkt oder indirekt 

mit Krebserkrankungen korrelieren. Dies ist ein Indiz dafür, dass der hier entwickelte, 

experimentelle Ansatz zur Identifizierung Krebs-relevanter Gene geeignet ist. 

Die U3Cre Genfalle basiert auf einem Maus Moloney Leukämie Virus (MMLV), der 

präferentiell in die 5'-Enden von Genen inseriert. Ein zusätzlicher Faktor, der diese Präferenz 

verstärken könnte, ist ein Stopcodon im gleichen Leseraster wie das AUG des Cre-Gens, was 

zu einem starken Selektionsdruck für Integrationen führt, in denen das Cre AUG das erste 

Initiationscodon im enstehenden Fusionstranskript ist. Da die Genfalle zudem keinen 

Spleißakzeptor enthält, ist sie konzeptionell eine Exon-Genfalle. All dies führte zu der 

Erwartung, dass die Mehrzahl der Integrationen in 5'-Exons der getroffenen Gene liegen 

sollte. 

Überraschenderweise wurden auch andersgeartete Integrationen erhalten. Generell konnten 

die Genfallen-Insertionen in verschiedene Gruppen unterteilt werden, welche sich bezüglich 

der Position der Genfalle innerhalb des getroffenen Gens und ihrer Orientierung relativ zur 

Transkriptionsrichtung des Gens unterschieden. 

Integrationen in oder zwischen Exons auf dem kodierenden Strang ("sense") von Genen 

weisen auf die Entstehung eines Fusionstrankripts aus dem 5'-Ende einer mRNA und dem 

Genfallen-kodierten Cre hin. Die häufig beobachteten Integrationen in Introns, die auch für 

vergleichbare Exon-Genfallen beschrieben worden waren, könnten das Resultat der 

Aktivierung kryptischer Spleißakzeptoren 5' zum Genfallen-Provirus sein. Eine alternative 

Erklärung wäre die Insertion der Genfalle in unabhängige Transkriptionseinheiten innerhalb 

eines Introns. "Sense"-Insertionen oberhalb von Genen können als Indiz für die Aktivierung 

benachbarter, alternativer Promotoren angesehen werden können, welche im Genom 
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weitverbreitet sind, was in einer kürzlich veröffentlichten Studie belegt wurden. In dieser 

konnten im statistischen Mittel jedem 3'-Ende von Genen 1.32 Transkriptionsstarts 

zugeordnet werden. 

Ein verblüffender Befund bei der Analyse der Genfallen-Integrationen war der hohe 

Prozentsatz an "antisense"-Integration, von ca. 40%. Im Gegensatz zu den bisher 

geschilderten Kategorien deuten diese Insertionen auf die Existenz von Promotoren auf dem 

nicht-kodierenden Strang hin, welche die Transkription von "antisense"-Transkripten 

kontrollieren, die möglicherweise regulatorische Funktionen haben. Eine Analyse mit 

mehreren frei verfügbaren Promotor-Vorhersageprogrammen ergab, dass mehr als 50% dieser 

Integrationen mit potentiellen Transkriptionsstarts 5'-oberhalb der proviralen Insertionsstellen 

assoziiert sind. "Antisense"-Integrationen könnten die Aktivität bidirektionaler Promotoren 

widerspiegeln, die die Transkription zweier gegenläufig angeordneter Gene steuern, oder ein 

Hinweis auf die Existenz natürlicher "antisense"-Transkripte (NATs) sein. Beispiele 

individueller, bidirektionaler Genpaare sind seit langem bekannt. Diese Anordnung kann dazu 

dienen stöchiometrische Verhältnisse zwischen Proteinen aufrecht zu erhalten oder Gene, 

deren Produkte in einem gemeinsamen Signalweg benötigt werden gemeinsam zu regulieren. 

Zudem können so auch zeitlich regulierte Transkriptionsprogramme kontrolliert und zelluläre 

Antworten auf äußere Stimuli, wie z.B. TNF , koordiniert werden. Natürliche "antisense"-

Transkripte, auf der anderen Seite, sind mit vielen Aspekten eukaryotischer Genregulation in 

Verbindung gebracht worden, darunter Imprinting, RNA-Interferenz und –Editing, sowie der 

Inaktivierung eines der beiden X-Chromosomen bei weiblichen Säugetieren. Es wäre daher 

nicht überraschend, wenn "antisense"-RNAs auch Teil des von TNF  aktivierten 

regulatorischen Netzwerks wären. 

Die Frage, um welchen Typ von Transkripten es sich bei den RNAs handelt, die von bisher 

nicht charakterisierten Loci ausgehen und mit der Genfalle identifiziert wurden, kann nicht 

schlüssig beantwortet werden. Eine vor kurzem veröffentlichte Transkriptom-Analyse deutete 

darauf hin, dass polyadenylierte Transkripte wesentlicher häufiger vorkommen als erwartet 

und dass diese RNAs den Großteil der gesamten RNA im Zellkern und Zytoplamsa 

ausmachen. Normalerweise werden nicht polyadenalierte RNAs sehr schnell abgebaut, sie 

könnten aber durch die von dem Genfallenvektor ausgelöste Polyadenylierung stabilisiert 

werden. 
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Bedingt durch die hohe Sensitivität der hier eingesetzten Genfallen-Strategie ist es 

wahrscheinlich, dass neue Transkripte identifiziert wurden, die sich mit anderen 

Nachweistechniken nicht detektieren lassen. Dies wird unterstützt durch drei GTSTs, die in 

nicht annotierten Regionen des menschlichen Genoms liegen, in den aber zumindest von dem 

Genscan-Algorithmus Gene vorhergesagt werden. Da Gen-Voraussageprogramme wie 

Genscan auch strukturelle Eigenschaften mit einbeziehen, wie z.B. das Vorhandensein von 

offenen Leserahmen mit Initiations- und Terminationscodons, entgehen ihnen nicht-

kodierende RNAs ("non-coding" RNAs, ncRNAs). Genfallen-Integrationen in genomische 

Regionen ohne jegliche Annotation könnten somit durchaus in Gene für ncRNAs erfolgt sein. 

Die bisher beschriebenen ncRNAs haben alle regulatorische Funktionen. Unter diesen 

Funktionen ist auch die epigenetische Translationssuppression durch micro RNAs (miRNAs), 

welche in den letzten Jahren Gegenstand intensiver Untersuchungen geworden sind. Eine 

Genfallen-Integration befand sich 10 kbp 3' zu einer bekannten miRNA (mo-mir21), was nahe 

legt, dass in diesem Fall eine prä-miRNA, die oft sehr große, im Kern lokalisierte Vorstufe 

der micro RNAs, "abgefangen" wurde. 

Um Gene für funktionelle Ananlysen auszuwählen, wurde zunächst die Regulation von 24 

GTSTs durch TNF  in Northern Blots untersucht. Dabei erwiesen sich 5 Gene als nicht 

reguliert, während die 1 anderen 9 eine Hoch- oder Herunterregulation um einen Faktor von 

mindestens 1.45 zeigten. Kandidatengene für funktionelle Untersuchungen wurden anhand 

der Regulation durch TNF , einer möglichen Assoziation mit Krebserkrankungen und der 

Verfügbarkeit von cDNAs mit kompletten offenen Leserastern ausgewählt. Eine vorläufige 

funtkionelle Analyse von zwei dieser Kandidaten, dem Transkriptionsfaktor ZFP67 und dem 

FLJ14451 Protein, ergaben, dass FLJ14451, aber nicht ZFP67, in der Lage ist, das Substrat-

unabhängige Wachstum von MCF-7 Zellen in Weichagar zu inhibieren. Dies weist auf eine 

mögliche Tumorsuppresorfunktion des Proteins hin. 

Zusammenfassend lässt sich sagen, dass die im Rahmen dieser Dissertation durchgeführten 

Experimente nicht nur zur Identifizierung eines potentiellen, neuen Tumorsuppressorgens 

führten, sondern auch zeigten, dass Genfallen ein nützliches Werkzeug bei der Suche nach 

nicht-kodierenden RNAs in lebenden Zellen sein können und ihr Einsatz möglicherweise die 

Methode der Wahl für die Identifizierung derartiger Transkripte darstellt.  
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9. - Annex 

9.1. Plasmids maps 

Plasmid containing the PGKpurodnFADD switch vector 

 

bla: beta lactamase conferring ampicillin 
resistance  
neo: neomycin-phosphotransferase 
conferring G418 resistance  
puro: puromycin-acetyl-transferase 
conferring puromycin resistance  
PGK: promoter from the mouse 
phosphoglycerate-kinase gene 
SV40P: promoter from the Simian virus 
40 (SV40) 
bGHpA: bovine growth hormone 
polyadenylation sequence 
SV40epa: SV40 early polyadenylation 
sequence 
dnFADD: human 5' truncated dominant 
negative FADD 
lx: loxP sites from bacteriophage P1 
 
 
 
 

Plasmid for forced recombination of the switch vector 
 
bla: beta lactamase conferring ampicillin 
resistance 
puro: puromycin-acetyl-transferase 
conferring puromycin resistance  
PGK: promoter from the mouse 
phosphoglycerate-kinase gene 
bGHpA: bovine growth hormone 
polyadenylation sequence 
cre: Cre recombinase gene from 
bacteriophage P1 
U3: U3 region from the Moloney murine 
leukemia virus  
U5: U3 region from the MMLV  
En.del.U3: enhancer and promoter 
deleted U3 region from the MMLV 
R: R region from the MMLV l 
gag N-term: truncated open reading 
frame gag necessary as extended 
packaging signal 

PGK
lx

puro

SV40epA

lx

dnFADD

bGHpA

SV40Pneo

SV40epA

bla

pneoPGKlxpurolxdnFADD

6147 bp

U3 R U5

gag N-term.

PGK

cre

SV 40

puro

en.del. U3
R

U5

bla

pBabepuroPGKcre

6306 bp
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Plasmid containing the CMVtk-neodnFADD switch vector 
           bla: beta lactamase conferring 

ampicillin resistance 
tkneo: fusion between timidin-
kinase and neomycin-
phosphotransferase conferring 
G418 resistance and gancyclovir 
sensitivity 
CMV: promoter from 
cytomegalovirus immediate early 
region 
bGHpA: bovine growth hormone 
polyadenylation sequence 
dnFADD: human 5' truncated 
dominant negative FADD 
lx: loxP sites from bacteriophage P1 
U3: U3 region from the MMLV  
U5: U3 region from the MMLV  
En.del.U3: enhancer and promoter 
deleted U3 region from the MMLV 
R: R region from the MMLV l 
gag N-term: truncated open reading 
frame gag necessary as extended 
packaging signal 

 
 
Plasmid used for the gene trap virus production 

 
 
 
 
 
bla: beta lactamase conferring 
ampicillin resistance 
gag N-term: truncated open reading 
frame gag necessary as extended 
packaging signal 
U3: U3 region from Moloney 
murine leukemia virus (MMLV)  
U5: U5 region from the MMLV  
En.del.U3: enhancer and promoter 
deleted U3 region from the MMLV  
R: R region from the MMLV long 
terminal repeat region (LTR) 
cre: Cre recombinase gene from 
bacteriophage P1 
 
 
 
 

U3
R

U5

gag N-term.

en.del. U3

creR
U5

bla

pBabeU3cre

4786 bp

U3 R U5

gag N-term.

bGHpA

dnFADD

lx

bGH pA

tkneo
lx

CMV

en.del. U3
R
U5

bla

vCMVlxtkneolxdnFADD

7814 bp
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Plasmid used for ORF over-expression  
 
 
 
bla: beta lactamase conferring ampicillin 
resistance 
Blasticidin: blasticidin deaminase 
conferring blasticidin resistance  
CMV: promoter from the 
cytomegalovirus immediate early region 
SV40P: promoter from the Simian virus 
40 (SV40) 
bGHpA: bovine growth hormone 
polyadenylation sequence 
SV40epa: SV40 early polyadenylation 
sequence 
EGFP: enhanced green fluorescent 
protein 
ORF: Open reading frame 
IRES: internal ribosomal entry site 
V5: V5-his epitope 
 
 
 

 
 
Plasmid used for ORF over-expression  

 
 
 
 
bla: beta lactamase conferring ampicillin 
resistance  
neo: neomycin-phosphotransferase 
conferring G418 resistance   
CMV: promoter from the 
cytomegalovirus immediate early region 
SV40P: promoter from the Simian virus 
40 (SV40) 
bGHpA: bovine growth hormone 
polyadenylation sequence 
SV40epa: SV40 early polyadenylation 
sequence 
ORF: Open reading frame  
V5-his: V5-his epitope 
 
 

CMV

ORF

V5-His

bGHpA

SV40P
egfp

IRES

Blasticidin

SV40epA

bla

pCMVORFegfpIRESblas

7628 bp

CMV

ORF

V5-His

bGHpA

SV40P
neo

SV40epA

bla

pCMVORFneo

6760 bp
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9.2. Primers 

9.2.1. For probe amplification 

These primers were used in RT-PCRs to amplified short regions to obtain gene specific 

probes for Northern blot. 

 

Gene Primer name  Sequence  sonde 

length 

ABCC3 MOAT D for 5'- GTCGCCCTGCCCTGCTACTTG -3' 319 bp 

 MOAT D rev 5'- AGGTGGTGAAGCGGAAGGGGT -3'  

BCL9L BCL9 for 2 5'- AGCCAATGCACCCAGAAAATAA -3' 492 bp 

 BCL9 rev 2 5'- CTGGCACGCTGCTCTCGCTGAG -3'  

C1QTNF6 TNF6 for1 5'- TAGTATTGCAGACATGGGCCAAGG -3' 820 bp 

 TNF6 rev1 5'- AAGTCGTTGCTGTAGATGGCGTTC -3'  

c20orf142 c20orf142 5'- GTTGTCCCCGTTGCCCGAGA -3' 433 bp 

 c20orf142 5'- AGGGTGGTGATGGCGGTGTG -3'  

CTNND2 CTNND2 for 5'- GGGTCCGCGTAATTGGAGG -3' 238 bp 

 CTNND2 rev 5'- GGGTCCGCGTAATTGGAGG -3'  

EED EED for 2 5'- TGAGCAGTGACGAGAACAGCA -3' 347 bp 

 EED rev 2 5'- TTCATCAGCATCAGCATCCAC -3'  

ESR1 ESR-1 for 5'- TGCCCTACTACCTGGAGAAC -3' 650 

 ESR-1 rev 5'- GCCCATCATCGAAGCTTCAC -3'  

FGD3 FGD3 for 2 5'- TGCTGGGCAAGGAAGAGATTTT -3' 586 bp 

 FGD3 rev 2 5'- GGGGTGTTCTCAGAGTCAGGTT -3'  

FLJ14451 NM_032786 for 5'- GCAGAACCCAGCAGTGATGT -3' 787 bp 

 NM_032786 rev 5'- CAAAATGAGGGCCATCAGGG -3'  

HexII Hex for  5'- CTGCTTGCCTACTTCTTCACG -3' 351 bp 

 Hex rev 5'- CACTGCCTCGCATGATGTCCT -3'  

JunB Jun B for 5'- AGCCCTTCTACCACGACGACT -3' 533 bp 

 Jun B rev 5'- GGTTGGTGTAAACGGGAGGTG -3'  
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Gene Primer name  Sequence  sonde 

length 

KTCD5 FLJ20040 for 5'- GAGTGTTGGAGGAAGCAGAAT -3' 220bp 

 FLJ20040 rev 5'- GTACAAAGTTCTCTTGCCTGG -3'  

RNF184 QLHC17 for 5'- AATGAACCCCGTGAATGCTAC -3' 331 bp 

 QLHC17 rev 5'- TTATATCCCGTGCCAGTGTAG -3'  

S100A10 S100A10 for 5'- CTTCAACGGACCACACCAAA -3' 346 bp 

 S100A10 rev 5'- TTATCAGGGAGGAGCGAACT -3'  

S100PBP FLJ12903 for 5'- GCCCCAGCTCTCTTCTTCAAA -3' 621 bp 

 FLJ12903 rev 5'- TGCTGATGGGATGACACAAAT -3'  

SOM Q8TE85 for 5'- GTGCGGCTGCTAAAGAACGA -3' 331 bp 

 Q8TE85 rev 5'- CAAATCTGGGTACTCTGGGG -3'  

TFF1 TFF1 for 5'- AACAAGGTGATCTGCGCCCT -3' 195 bp 

 TFF1 rev 5'- GGGACGTCGATGGTATTAGG -3'  

Top1 TOP I for 2 5'- ACACAAAGATCGAGAACACCG -3' 339 bp 

 TOP I rev 2 5'- AGGAGGAACAAAATAGCCATC -3'  

WDR10 WDR10 for 2 5'- GACACCTCTGATGGCACCTTA -3' 458 bp 

 WDR10 rev 2 5'- CGCCATTTTTGTTCCGTATGC -3'  

ZFP67 ZFP67 for 5'- ACGGCTGAGAGGAGAAGATG -3' 661 bp 

 ZFP67 rev 5'- CAGGGACTAGGTGGTTTGCT -3'  

ZNF143 ZNF 143 for 5'- CGTGGCAGATGGTGACAACTT -3' 368 bp 

 ZNF 143 rev 5'- AGATGGTGTCAGACTGCGGGA -3'  

ZNHIT2 C11 orf 5 for 5'- CATACTCTCGCCCTGTATCACG -3' 245 bp 

 C11 orf 5 rev 5'- GTAGCCTTTCTGGTTGGTCGG -3'  

ZNRF1 NIN283 5'- AAACCTCGCCTCTCCTACAAC -3' 320 bp 

 NIN283 5'- GGAAGGGAGAACCATGATCTG -3'  

-actin actin for 5'- TCGAGCACGGCATCGTCACCAACT -3' 551 bp 

 actin rev 5'- ACCGCTCATTGCCAATGGTGATGA -3'  
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9.2.2. For ORF amplification  

These primers were used for amplification of ORF required for ORF expression vectors. 

Gene  Forward   Reverse  

FLJ14451 5'- AGCAGGATCCACCatgcct

gaccgggacagctatgcc 

-3' 5'- GGTAGCTCTAGAgtgtgg

catggccgtgatgcgcat 

-3' 

ZFP67 5'- AGCAGGATCCACCatgggg

agccccgaggatgacctg 

-3' 5'- GGTAGCTCTAGAagagga

ctccatggcaccttcagc 

-3' 

 

9.2.3. For recombination test  

These primers were used to analyze successful recombination in the reporter switch vector. 

Primer  Sequence  

CMV for 2 5'- GTACGGTGGGAGGTCTATATAAGCAG -3' 

FADD rev 4 5'- GATGCTGTCGATCTTGGTGTCTGA -3' 

 

9.2.4. For inverse PCR 

These primers were used for inverse PCR. 

Primer  Sequence  

Cre 43 5'- CGGTCAGTAAATTGGACACCTTCC -3' 

SY2 5'- GCTAACTAGCTCTGTATCTGGCGGAC -3' 

CreiPCRrev2 5'- GAGTGAACGAACCTGGTCGAAATCAG -3' 

iPCRU3 5'- CCTCCGATTGACTGAGTCGCCC -3' 

Cre1P 5'- GCATGCTAGCTTGCCAAACC -3' 

SY1 5'- ACCCGTGGTGGAACTGACG -3' 

CreiPCRrev1 5'- AACAGCATTGCTGTCACTTGGTCG -3' 

iPCRU4 5'- TACCCGTGTATCCAATAAACCC -3' 
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9.3. Sequences obtained by inverse PCR 

The genomic DNA sequences flanking the U3Cre integration site are listed without the 

U3Cre-DNA junction and together with their clone identification (clone ID). 

 

Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MI3K01 
 

GTAGAACCCACTGCATCACAACTGGAACTGATCTCTGGTTATGCCAATCTAGGTCTGCCTGGCAG

GGTGAGTCTACCGCTCGAAAGCTGCACAGAGGAAATCCTCCCTCCTCCAGGTTCAGGCCCGGAGT

TACGAGCGGAGATTCGCGGCGGCGGGTCAGAGCCCAGAGCAAACCAGGCTGGGGAACGCACCTCG

CCCGCGGCTCCGGAAGCGGCTGCGGCCCCGACCGGAAAGCCCCCACATCGCCCGAAGGAATCGCG

GCTGGCCTGCGG 

MI3K02 
 

CCTGCATTACTCAGCAGGCAACTGGCTTCCCTCACCCCACCCCAAACTGAGAAGCCTCAACTGTC

AGCGGATCTGACTTCAAATCCAAACCATTAGGGAGGAGAAAAGCAAGAAACCTTTCTGTTCAAGT

AACCCAGCTTCAGAAACACATACCCCCTAACGTGCAGTAATGAATAGATTCTTGTCTGTAGCCTC

CGCAGTTTTAGCCAGCAAATTTAAGTGGGATGGAGACACATGTCAAGA 

MI3K03 
 

GACCAGAAAGAGATGGAGGAAGAGCAGGCTTGATGAAGGATCTTCCAATCATAGATTAATTTGGC

CCGGTGCAGTGAAACAGACAGACGTGCCTTTGGTACTTGGTTCACCACCTGTGCTTTGGCCGAAG

GAATGGCGCTGCCCCTAGCCGTGGACACTGCTGCCCTGTCCAGCCTCAGTCCAGCTTTGCCTAAA

TGAAACCAGGAACTCTGC 

MI3K04 GAGGATGCAGTCATTGGCTATGGTGGTTGTGGCTTCCTATGTGTGTGGAGGAGGGCTGCAGGGAG

GAGGGGTGTCAGGGAA 

MI3K05 ATCAGACCCTTGGTGACCCAGGGCTACATGTACTCGGCGGAAAACTGGGGTTAAACCGGACCCTT

GGTTGGTTGAAAAATTAAAATAATTTTTAAAAAGTGGGCGGTGAAATAATCCAGAAGTTGGAGGG

CCTGGACAAAGGCTGGGGAGGGG 

MI3K09 
 

GGGTGCACTTTTATCATAAACTCCAGCAGCCTTCAGTTTTCCATCGTTAAGTATAAATGTACGTG

TTGTATATTTTTTCTGTGCTCCAGTGGACTCGTCGACATTATATAACTTAAAAGCATTTGGAGTG

AGATGGAAAGTAGGAGTTGGCTGTTTCTCACTCAGAAATGTTGGATTCAGCTGATCCTCCTCCTG

AAACTTTTGAACTTAAAGAGCAGGTTTGGGTCATTTCCTTTGCAAAAAGCAGCCTTAGG 

MI3K10 CCCAACACCCCCCACTCACTCATGTGCAAGGGGCCCACTCTCGTTTTAGTC 

MI3K11 
 

GACCAGTAAGAGGGAGGAAGAGCAGGCTTGATGAAGGATCTTCCAATCATAGATTAATTTGGCCC

GGTGCAGTGAAAAGACAGACGTGCCTTTGGTACTTGGTTCACCACCTGTGCTTTGCCGAAGAATG

CGCTCCCCTAGCCGTGGACACTGCTGCCTGTCCAAGCCTCAGTCAGCTCTGCCTAAGTGAAACCA

GGAGCTCTGCTTTGTGGCTTGGGGTGAATCAGAGGTTAAGCAAGCCAGCCAAGGGAGCCCTAAGC

CAGATTTTGGAAGCCTTAAGGCCACCCCGTTTTTTGCCCCAACCAGTTCCGTTTTCGGGAGTTTT

TG 

MI3K12 GCCTGGTTCCAAGGAGAGCTCCCTGGGAAGCAAAGGCTGAGAGAAGCGCTCTCTCTCTCTCTTTC

TGCATCTGCCGGGAGACTGCAGAGGACAAGAACGCGCGGGTTT 

MI3K13 AGGGCAGGCAGCCTGACTTCATTTCTCGCCTGAACAAGGACCATGCTGTCCTGCACGCTGGGTCT

GACCGTCTGCCCTCTCTCCCCAGCACCAAGCGTGACCTTGGCTGTGGCGCTCAACGGCCAGCTCC

GGCGGCCCCTCTGCTGCTCCTCGGCTTTCCCGGAAGTGGGAGAAGCCTGCCTGGCCTCGGCCTTT

GTCCAACGACA 

MI3K14 TTTCCCCAGGGACACAAACACTGCGGAAGGCCGCAGGGTCCTCTGCCTAGGAAAACCAGAGACCT

TTGTGCACTTGTTTATCTGCTGACCTTCCCTCCACTATTGTCCTATGACCCTGCCAAATCCCCCT

CTGCGAGAAACACCCAAGAATGATCAATAAAAAAAAAAAAAAAAAAAA 
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Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MI3K16 
 

 

CTCTGGGCGAGGCGACAGCGGGCCGGCTCGGGCGGGGACAGCGGAGGACCGGGGTGCACTCACAC

GTTGAGGACGTTGCGCTTGTTGCTGAGGTAGCTCTCGGGCAACGGGGACAACTCCTTGAGGAGGG

AGCCCGCCAGCATGGAGGCCACCAGGGCCCAGGGCAGGTAGCGCCGCACGGCCGCCCGCACCAGC

GTCCCCCGCAACAACCACTCGCAGCGCTCCAGATGCTCCATGCCGGATCTCGTCAGCCACCGTCC

TCCTCTCCGTGCCCTCTCGGCCACCGTATCGCCCTTCGCCCGGACCTGCGCCTCCACCTCCCTTC

GAGCGCATGCGCACTGCCCGCGA 

MI3K17A 
 

GCGCTGACCCAGCTTTTCTAACGAATTCGACCCTGTGTACCCCTTGACCCGCTAACGGTCGGCAG

GCTTTGACTGCT 

MI3K18 GTATGTGCCCTCCAAAATTCCATGTTGGAACTTAATATCCTATGTAATGGTATTAAGAGGTGGGG

CCTTTGGAGAAGTGAGTAGGTTCTGAACATCCCGCCCTTATGAACAGGATTAGGTGTTCTTATAG

AAGAGGTTGATGGGAGTGCCTAGTCCCTTGTGCCCTTCTGTCTTCCCCTATGTGAGGCTGTAGAA

ACAAGATGCCATATTAGTAGCAGAGAGTAAATCTTCACCAGACACTACATCTGCTGGCACCTTGA

CCTTTTACTTT 

MI3K21 
 

CCGAGCACGTGGTCGGCTCCGCGGGGGTCTTCCGGCGTCCCGGGGTGGGGGACTTGTGGGTGCCT

TTACCGCAGCCCATTGGACCAATCCGGCATGCACTTCCTTCCCCTTCTTGAGGCTTCATAAAAAG

CCCCTTGGGACTTCAAGCCAAGGAGCAGGAGAGGAAGCCAAGTT 

MI3K22 
 

TTTTCACTGTGAGTCACTTCTGTTTCTATCCACCCTAGGGGATTTGTTCTCCATGCGATCAGGGT

GGACAGCTCACGGCTTCCCTTGAGTGGATTTCATTTTAGGGGCCCTCACTCCCCCAACCTCTGCC

TTCACGCCATCTTGAATTGCCACAGTGTGCTAGTCCAGAAACCCCACACAGCGCACGATCAGCCT

TACCATCCAGGGTGAGGGAGGAAAAAGAAGCTGTTAAAAAGTCATCTTTCGGATTTAAATCAGCC

CTGCTGAAATAATCGAGGGAACTCGGAACTATGGAAAGGtCAAAGGTTTGCAGGTTTAGGGTTCG

TGG 

MI3K23 
 

AGACCACCATGTCCAGCTAATTTTTCTAGTTTTTAGTTTAGTCCGGCGTTTCTCCATGTTAGGCC

AGGCTCGGTCTTGAACTCCTGCCTCAAGTGACTCGCCCACCTCAGCCTCCCAAAGTGCTGGGATT

ACAGGCCTGAACCACTGTGCCTGCCGAGATATCCCATTTTGGATAGGAGCCTGGGACATATTCTC

AACTTCCGTGGGTCTGCCACTACTTATCAGAAGTTTCTGCTCACCTTACACAACTGTGAGTGATG

CCCAGGGAGCAGCCTCAGTGGCCCAAGGGGAAAAACCTCTGGATGAAGCCCTGACCCCTCACATC

TCAGCCTCCATCACTGCCCCTGCTACCCAAAGTCAAGCCCAGAAACCAGATGTGAGCCAAACCCG

GCAGCCCATAAAGG 

MI3K24 
 

GTCCCAGCTACTCGGGAGGATGAGAAGAAGAATTGCTTGAACCTGGAGGCAGAGGTTCACGGAGC

CAAGATTGTAGCCACTCGCTGCCCAGCCTGTACAACAGAGCAAGACTCCATCTCAAAAAAAAAAA

A 

MI3K36 AAGCACTTATGCAAGTGCGGGGCACAGAGAAAATTCTGGTAACACTCCTCCCCTCAATTCTGATC

AGGTCCCAGTCTCAACTAATCAGTTCAGGGATGGGCCCTTTGCCACCTTTTTCCTAACCAAAGCC

ACTCTCAAGGGGAAACTTCTATTAACGGCCAGTAAGCAAGACACACAAC 

MI3K37 GATTGACACCCGTCAGCGGGGTCTTTCAGGGAAGCAGGCAGCCCGGGGGAGCCCCGAAAAATCAG

CAGAGAGCAGCCCTGGCTTCTCAGAGGAGCGAGGAGTAGCTGCTGAGGGGAGGAGGGGAGCAGAG

TGGTCAAGTTTGCATAGTCATTGTCCCCATGCCTCCTTGCAAGGCAGGCCAGGGAGCCGTGGGCC

TCTCGCGCCCTGCTTAGCCAGTCCTGCAGGCAAAATCAACGTGGGTTCCTGTCGCCCTGCCACGA

TGCCAAGGGGGACCCCTCTCGGTCCTTACCCTAAGAAAAACCCAAAGCCCTCCTCGCAGGCC 

MI3K39A 
 

CAAGTTACTGATGTAGTTGTTACGACCAATCTTTCATACTTCTTGGTTAAGAATCTGTCCGGTTC

TAAAGAGTGCATTTCATATCCTTGCTAAGCCTACTAATAAGCTTCATCCCTTTTTTTTTTTTTTT

TTTT 

MI3K40 CTAGTAGCTAAGTCCCCACCTCCTTGCCCTCCGTG 
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Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MI3K44 
 

GATTTAATCATATAATTATGAATCTGTTCTTTTTTTCCCCCCAAATATTTGTAGCTTTAGGTAGT

AGTTACCAGAATGATGAATTTTCCTCCTATGCTCCGTAGTCTTGTAATAAAAAGCATGTACAGTG

TAGACGTTTGCTAGGCATGGCTCTTCCTTTGACCAGTTCATGAACTGGAGTCAGGGTGGGGGTGA

AGGCTAGGGTCCGAGGTCTGGGTCAGGCGCTCGTGCACCGTCGTGGGAGGTCGAGGCTGATGTCC

GCTGCTCCCCATCAGCGTTAGTGCCCAGATCACCCCGTGCTCCGTCCCGCCGGGAAGCG 

MI3K47 
 

CTGTGAGCTCAGTCCAAAACTTGCTACAGGTAAGCCTGTGGGCAAGTCACATGGGTTGTCTCGGG

CCTTGGTTTCCCCTTTCGAGGAGGGAGAAGGAGGGAGGTCCCCTGTGTAAAGTCTCCCAGCACCA

GTTCAATGTTCTTTTCTCCTATTCATGCCACCCAAAGTAGGGGGATCATGTCCAGAAATGCTCGT

GCCTTTCACCAGTGTTATAGGGGTCCTTTGCCAGGGGACCTTCAACCAGCTGAGGGCATGTGTCT

AGGGACTGCCCTCAAGTGTGGAAAATACCTGGGCTTCCTTCCCCTTCCTAGG 

MI3K61 
 

GATCCTGGGCAGGTCGACACACATGCCAGCTGGGCCGACCCTGTACTTCCCTGGCCCTGGGGGGA

CAAGGGAAATTGCAAGTGAATCGCTCGCCAGGTTATCAGGGGGTAACCATTTCCTGGAGAGCCCA

AAGGCCTGGGACTCAAGAAGGGCCTG 

MI3K62 
 

CCAGAAGAGTGGAGGAAGAGAGCTTGTGAAGGATCTTCCAATCATAGATTAATTTGGCCCGGTGC

AGTGAAAAAGACAGACGTGCCTTTGGTACTTGGTTCACCACCTGTGCTTTGCCGAAGAAATGGCG

CTCCCTAGCCGTGGACACTTGCTTGCCCTGTCCAGCCTCAGTCCAGCTCTTGCCTTAAGTGAAAC

AGGAGCTCTGCCTTGTTGCTTGGGGGTGGAATGCAGGAGCGCTCCAAGCAGGCCAAGCCAGGGAG

CCCTAAGCCAGATTCTGGGATGCATTAAGCCACCCCGTTTCTGCCCCAACCAAGTCC 

MI3K66 
 

GGGATGAGCTGGTTCCAGGAGAAAGGCCGCGAGCCCGTTTGGGGGCCTGGCCGCGGTTTTTTCT 

MI3K67 
 

ACACTTCACACACAACCCCCAGCCCACCTGCTCCAGGCTTTGGGTGGGGGGCGGAGGGTACTGCC

TGGGAGCTGCATTTGGGGGTTCACCTGAGGGTTGTCATCTGTTAGCACTGACTCTGGTTGTTTCT

CCC 

MI3K76 
 

GTATGTATCTCAGTCTTGATTTAAGAAACACTTTTTTTTCAACTGGAGAATACAGTTTAATTTTG

TGTTACCCCATGATACCATTTTATTAGTACGATTTTCTTCAAGGACTCAAAAATAGCTCTGTTCA

TTAATCTGAGCACACAGGTAACTGCACATTAGTACAGTCCAACTAACTGAGCTTGTCTTGCATAT

GGAAGACACATCCTTAACAACTAACGTCAAATACTGGCAATGTTCTAACTACATACAACACCGTT

CAGCTGGAAGTGCAGTCACCAGCTTCTCACTTCTTACATCCAATCCCATCCTAGTTGTCCTTCTG

CTCTCAAAA 

MI3K80 
 

CTGAGGAAGTACAGGAGGGGTGAATTCCACCATGGAGAAAGTATTCAATAACAAGCCTACAGAGA

AGTTGAGGAAGGTGGAGGAGTAAAGGACAATGATGTCCTCGAGAAACCTGCTCATGAAACCTGCT

CAAGAAACCTGAGGAGGCAAAAGCTGATTCTAAAGTGTTGAGAGACAACAGCACAAACCTGGG 

MI3K81 
 

GTAGGGCTGTTGGAAGGATGGAAGGAGTTCAGAAACAGAAAGCTCCCAGCACAGAGCCTGGCCGT

AATAAACAGTCTATGTGTTTGCTATCACGAGGGTACTTTTAAAGAAATTTAGGTGCAGGATGAGT

ATAAATGAGACGTGGAGTGAGTAGCAGAATCAACACAAGGTTTTTCTTATAATGGATGAGAGATT

GTAAAACACATTTGCATTGGGGAGAAGGACA 

MI7K07 AGGGCTGGAGGTGGGCATGCGGCAGATTACTGTTGTAAAGCATTGAGATGTTTATGTGTATGCAT

ATCTAAAAGCACAGCACTTAATCCTTTACATTGTCTATGATGCAAAGACCTTTGTTCACGTGTTT

GTCTTGCTGACCTCTCCCCACAA 

MI7K08 
 

AAAGGAAAAAAAAAAAGGTTGGTCCTGGCCGGTGCTGTGGCTCACGCCTGTAATCCTAGCATTTG

GGAGG 

MI7K20 
 

GGGAAAAAAAGCCTGGTGTGGTGATGAGTCTTTTGGTCCCATCTACTCGGGATGCTGAGGAAGAA

GGATCGCTGAACACGGGAGA 

MI7K26 GGCTTCGGGGTGGAATCTCACGATCGAAAGGAAAGTGGGCCCAAGGTTGGGTGGAGGCTCCCTAG

TAGTTTTAAGCCCCCCCGTCTCCAAAGCACTTCAATTTTCTTCTCCCCATCCAGGTTCAGGACCT

GGGT 
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Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MI7K27B 
 

CCCTACACAGGGCTCCTAGCCATAAGCACTTATGCAAGTGCGGGGCACAGAGAAAATTCTGGTAA

CACTCCTCCCCTCAATTCTGATCAGGTCCCAGGCTCAACTAATCAGTTCAGGGATGGGCCCTTTG

CCACCTTTTTCCTAACCAAAGCCACTCTCAAGGGGAAACTTCTATTAACGGCC 

MI7K28 
 

CCGAGACCTGGGAACTGCTAGCATTCTGTTTCTCCTGCTTCTGGGTTATGCAGCAGGAAGAGAGG

GCATGGAGTTTGGAGCCACACAGACCTTAGGTTCAAATCCAGCTCTGTGACTTTGAAAAGTTACT

TAACATCTCTGAGCCTTAGTTTCATCATGCAAAGATAGGACATTTCTCCTGAGGTGGTTGTGAGG

GTTAAATAAAGTAAGTCAAGAGCCCAAGACATAATAGGAAAGCAATGAATCGTCTCTATTATTAA

TTTTTATTTTTATATATCAAAGTCTGGGGTACAGTGGCCTTGCTTAAAAATGGAATCCCCTTTCC

TTTGAATTACTTTTTCTCCCCATATGATAGTCTCAAATATTTATTCATTTTTCTTTTCTTTCTTT

TTTTTTTT 

MI7K29 
 

AAGGAGTATCCTTTCCACCACCGCCTCGAGACGAGGCGAAACTCAGGGGATGCTCCCTCACCCCC

TTCCTCCTTCCAAAGACGTTTCAGCCGCAATTGGCCCGTTCCTTCGATCTCCGACCCGCTGCTAG

GGAGCGAAAGTCTGTGGAATGGGCTACACCACCAATGTCCCAGGAAACGGGGGAAGATACAAGAC

GTCACCTCTTGCTTT 

MI7K30B GTGAGCCTTCCTCTCCTGCTGAAATTCCGGCGGCTTGGCAACCGGCCGGGGGGTCTTGGATTCCT

CGGGGAGACACCACTGATGCTTTGTGGTTTCACGTAATTTGGATTTAAAAGTTAA 

MI7K31 
 

GTTACAAAGCAGGACTTCCTCATAGGGAGTAAAGTGTTTTCTTTTCATAAATATAACCTATTTAT

TTATATTTTCAAGTAATCTATTGCAGCCTTAGTTGTAGTAGGTCACTAGTTCATGCCTTCAATAA

ACTGTCATTTAGTGCTTACTGTGTGTGAGGCATTGCACTAGTAAAGAAAGAGGATATAAAACAAA

AATCACTGCATAGAAAATAAAGTGCAGTGGGAATTTGGAAACAAGCTGTTTTTT 

MI7K32 AGACGGGCCTCCTAAAGCACTGGGATTATAGGCGTGAGCC 

MI7K34 ATAAATGATTACATTTGTAGGACATTTTGGTGCCTAATGCCAGTCAGCAAGGGTTGGTTGCACAA

TGAGTTTGGACAGG 

MI7K48 
 

GTGTTAGTAAATGCATACTATTTTGTCTGTATTTAAATCGAGTCCAAATCTCTCGCTCTACAGCC

CGCCTTGGGATGTTTCTTATATCCCAAGAAACAGAATATTTTGATGGGATCGCTGATGTTTCAGA

CTGCAAAAGCAGCTCAGGGCGTTTCAGTCGTGAAGTCAACAAGATAACCGTCTGGACCGGAAGCT

GGCTCCTCCCGGTCT 

MI7K49 
 

GACCTCCTGGCCACATGGTGAAAGCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGTGGTG

GCACGTGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAAGTGCTTGAACCCAGGAGGC

AGAGGTTGCAGTGAGCCCAAGATCTTGCCACTGCACTCCAGCCAGGGCAGAAGAACGAGACTCCG

TCTCAAAAAAAAAAAAAAAAAAAAAAGGGTTTTTTTAAAAAATT 

MI7K50 GTAACGTGACTATGAGATTCTACAACTGTAAAGCACCCTTGCTCCTTCAATGATGATTTACCGAG

CACGGATTTTGCTATAGCCCAGTACCAGTGTGCCTACCCCGGGGCTCGCAGCCAGGTTAGGAGAG

CAACCAGCACTCCAGCAGGGACCACATAGCAAGACCCCATCTGTACTAAGAATAAAACAAATTA 

MI7K51 
 

CGGACATGTTCTTAGAATCCCCCACTACTATCTGATGATGTTAAGCATCTTTATTTATTTATTTT

GAGAGCTCTGCTCTGCACCCC 

MI7K53 
 

GATGCCTCCGCCGCGGAGCCCGCGGCCGCCGAGCGGGTTCTTGGAGATGTCCCGGGGGCCTGCAC

GCCCGTCGTACCCACCCGCATCCCCGCGATAGTCAGCCTGAGCCGCGGCCCAGTCTCGCCGCTCG

TGCGCTTCCAGCTGCCCAATGTGCTGTTCGCCTACGCGCATACTCTCGCCCTGTATCACGGCGGT

GACGACGCGCTGCTCTCTGACTTCTGTGCCACACTGCTCGGCGTTTCCGGAGCCCTGGGTGCCAG

CAAGTCTTCGCCTCTGCGGAA 

MI7K54 
 

CCCCTGCCTTTGATTTCCAACCTTTCCCAAATGCAATACATGTGAAGCACACAGCACGAAACGCA

CTCAGCAGGCTTTATCACTCCATAAAAAATAGGCACAACATTTACAAAAAATCAAAAAGAACTGG

AAATTATCTGTAACAGTTTTGCAAATTCCTTCGAAGTAACTAAAAACA 

 



 
Annex  - 132 - 

 - 132 - 

Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MI7K57 
 

CTGAGGCAGTACAGGAGGGGTGAATTCCACCATGGAGAAAGTATTCAATAACAAGCCTACAGAGA

AGTTGAGGAAGGTGGGAGGAGTAAAGGACAATGATGGTCCTCGAGAAACCTGCTCATGAAACCTG

CTCAAGAAACCTGAGGAGGCAAAAGCTGATTCTAAAGTGTGAGAGAGCAACAGCACGAACCTGGG

GAGGTGGGGTATCAAGTCCGAACCAAGGGTGAAGGGCAGGGACTCAGGTGCTGGAGTGTTTCAAT

GTGGATCTTGGGGTTGCACTTGCTTGTTGAGTTACCTTGGGCAAGTTACTATGTGGTCTTAGTTT

CTGTAAAATGGAGATCATGATGTAACCACTTGGTAAGGGCTGTTTGGAAGGATGGAAGAGTTCAG

AAACAGAAAGCTCCCAGCACAAGCCT 

MI7K59 GATTTAATCATATAATTTAATGAATCTGTTCTTTTTTTCCCCCCAAATATTTGTGCTTTAGGTGT

AGGTTACCAGAATGATGAATTTTCCTCCTATGCTCCGTAGTCTTGTAATAAAAAGCATGTACAGT

GTAGGACGTTTGCTAGGCATGGCTCTTCCTTTGACCAGTTCATGAACTGGAGTCAGGGTGGGGGT

GAAGGCTAGGGTCCGAGGTCTGGGTCAGGCGCTCGTCACCGTCGTGGGAGGTCGAGGCTGATGTC

CGCTTGCTCCCCATCAGCGTTAGTGCCCAGATCACCCCGTGCTCCGTCCCGCCGAAGCGGA 

MI7K60 ACGCATAATGGGGGCTCTTGTTTCCGGGCTGAGCGTCATCTTTCTGTCTCCCTCTGGATTGAAAT

GGCTTCTCAGCCCGAGAGG 

MI7K63 CCACCACGACCTTTGCATAGGCCGTTCCCTCCGCTGGGCACAGCAATTCCCGCTGCTTTCTGCAT

GGTTGCTCCTGAGACTCCTTCCCTCCCCC 

MI7K64A CATATTCACTAGGAGTTTAGGAGTTAGGAAGCCTAAGATAGAGAATATTACAGGCCCCACCATCC

TATTGGTCATTATCGCCCCTCCACATATTCAAAACAGAATAGTCTCGTCTTCCTCAGACTTGCCT

CCTTTATATTCCTGGCTTGGGGATGGGCATTGCTGTCTTTTCAGGGGTTCTTTGGGTCCTTCCTC

GCCATTTT 

MI7K65 
 

CCTAAATTCTTTCAGCTAATTGATCTTCACTCGATTCGCGTTATCTATCTAGTATCACCATTCCG

AGATGTCTTAAGTCTTAATCAGACAAGATAGTCTCTTTCGCAGAAGGCAGGAGTGCACTCCTTCC

TTTCCTTGTATACGAGAAGGGGCAAAATCCACAGTTAAAGGCCTAGAAGCCGCGCACTCCG 

MI7K69 AGTTCAGGCGTGAGCATAGAAAGCCAAAATATTTAGGCGGATAAACTCACGGAATATATTTT 

MI7K71 
 

CTCCCTGATTCACAAGAGAGCCTCCCTGGAAGCAAAGGCTGAGAGACAGCGCTCTCTCTCTCTCT

TTCTGCATCTCCGGGAGA 

MI7K72 
 

GTAGGGCTCGTGGAAGGATGGAAGGAGTTCAGAAACAGAAAGCTCCCAGCACAGAGCCTGGCCCG

TAATAAACAGTCTATGTGTTTGCTATCACGAGGGTACTTTTAAAGAAATTTAGTGCAGATGAGTA

TAAATGAGACGTGGAGTGAGTAGCAGAATCAACACAAGGTTTTTCTTATAATGGATGAGAGATTG

TAAAACACATTTGCATTGGGGAGAAGGACACATGGGAGAGGGAAGAAATGGAAGACACGGAAGAT

TTGTTGGAGGCAAATTTAGATCCACGACAAAAGTACGGGAGTAAGTGCATGGGGAAAACTTAGTA

TTGGAGGGAGGAAAAATGGCCTCACTTTGCACTTCGAATAACATCTACTTTCTTTCCTGGTCCTC

CAAAGGCCACCAGGGCCAGCCTCTGGCCGTTCTTTGCCGTACTCCTCATTCTCCCCGGTGCATTT

GCCATCTTGATTT 

MI7K73 
 

TTTGCCTGCCTTGGCCTACCAAAGTGCTAGAATTACAGGCATGAGCAACCATGATAACCAATATT

CTTTATAATGAAAATAAATTAGAAAATGGTCAATATTTTCAGGTGGGAAAGTTAAAAAACTGTTT

TTGGTTTTAAATT 

MI7K74 
 

CCCCCACCAGCCTATCCCTAACCTCTCATACCCTTCCCTCCTGAGGTCCTGACCTACAGAGAGCC

CCTCTTGAAGGAGAGGGAGCCCCTGTAG 

MII3K02 
 

TAACGAACATAAAATACTTAGAACTTTGCCTGGGAGAAAATAAACAATATATGTGTTTAGTGTCA

TCATTTTATTTTTTCTTTTCTTTCTGCTCTAATCATCACCGCTCCTGCCACCACGCAGCCATCAG

GGAATATGAGAACTCATCTTCCTTCAATTCTTTTTTCCTGGATCTAACTTTGATTTAGCAGAATT

GATTCTAACGTGCTATTCCCCAAGGCCACTCTGTTGCTTGTTCCTACCCAGAGTTACCCTTCCTT

TGAAATCTGGTTGACAGTATGGCGGGCTTGGCAGGGAACCCGTCTTGCTCCACCCCGACGCCTGC

TGCTGACCAGAGTTACCCTTGCTTTGAAATCTAGGTGACAGTGTGGG 
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Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MII3K04 
 

CCAGGCCTCCTGAGAGTACCCACCTGCCCGGCTTTCGGGGCTCATCTAAAAGGCTCCTCCGCAAG

ACTAGGGGACACGGAATTGGGTTTGTTTAGCGGTCCTCTGAAGGGGCAAGATGGCGACAGGTAAC

AGGGCGCAGGCTC 

MII3K05 
 

CCACAATTCAATTTTTGATGGCCAAACTGATTGCAATTTAATAACAACATGAGATACCATTTATT

AGGAGCCACAGCACTTTTATTTTCTTTTTTTTTTA 

MII3K11 GGGCAGGTGGATCACCTGAGGTCAGGAGTTTGAGATCAACCTGACCAACATGATGAAACCCCATC

TCTACTAAAAATACAAAAAATTAGCCGGGCATGGTGCAGACACCTGTAATCCTAGCTACTCATGA

GCCTGAGGCAGGAGAATCACTTGAACTTGGGAGGCGGAGGTTGCAGTGAT 

MII3K13 
 

ATGTATAAAAACCCTCCAAAACATGGTGGTTTAAAACGATGCATTACGTTGATTACAATGATTCA

TTCCTCTCCTGTGTCCTGGGGGTTGATGAACTCAGCTGGGTGGTTCTTGCTTATTGGGGTACCTC

ATGTGGTTGCAGTCAGATAGTTGCTGATGCGGAGACATCTGAAGCTTCATCCCTT 

MII3K27 
 

GTTTCTCAACAGTCTAACTTCCCTTGGCTTTCCAGAGCCTTGATCTGCACTTGGATGGAAACCGT

ATTCAGCTTGTAATTTTTCTTTGTAAACATTGCCTAATTGAAATTGCTCACTGGAACGGGGGTGT

TGCATCTGAACAAAACCCTCTTGGACTTGGCCGCTGGGGTTACAGAGTAGTGAGTTGTGTTGAAA

CTCCCCAGTAGAGCCAAAGGTCCTGTGACTTCCCAGAATCCACCAAGACTCTGGAAACAACCAGG

AAAGTCTTTGAATGATTCACTCCAAAGCCCTGGCCCCATTGTTCATGGCCTCAAGCTCCTCCTGA

GTATGGAGAAGACTGAGGAACACTTTGACAAAAGGGGGTTGGGTGTTTAAGTTATGACCCACCAG 

MII3K34 
 

AAAGCGAAGGGCGCCAAGGTAATGTGTGCCCTACACAGGGTCCTAGCCATAAGCACTTATGCAAG

TCGGGGACAGGAGGAAAATTCTTGGTAACACTCCTCCCCTCAATTCTTGATCAGGGTCCCAGGCT

CAACTTAATCAGTTCAGGGATGGGCCCCTTTGCACCTTTTTCC 

MII3K35 
 

GAGTTGAGATGCAAACACTTCCCAAGGAAGCAAGAATGGCCTCCTCCTCCACTCCCTAGAAGGAC

CCAGGGCAACCGATCCACTTGACAACACCAGGGAATATGGGTTGCCAGCCACGCACTCATGAGAG

AGGTGGCTTTGACTCCCAGACATGGATCCCAGGGGAGCCCAGGAACCTGTAGGAGTCGGTCTCCC

AGTTGGCCACCATGGGATGGGCATTCGGGCCTGTGGCAGAGGG 

MII3K36 CTGGTAGTCCAAAGAAACACGCACAGGGCCATAGATACAGCAACAGACTTACACAAACACAGAGG

CCTCACCCAACCGCCCCCAGCCCTGGCTCCCCCCTCGCCTCCCCTACCCGCCCTCCAGCAGCCCT

CCAGCAGCCGATCCCGGTCAAAGGGGAGGAGTCTTGGGCCCAGGAGCTTCGTCCCGGTGACAGGC

CCGGCCAGACACCGGTGCACACTCCTGATGCTCCCTGCGGGGCTGCTGGAGGCTGGC 

MII3K38 
 

TGATGTATTCGAGCACGATTCTACTTAAGCCCTTTCCTTCCTGGATTTTGAGGGAGAATATCTTG

CCTCTGTCCTTTAGGTTGACTGGAACATAGAGAACCCCAAAAGATCACGGAG 

 

MII3K41 
 

GAGACCTCCTGGCTAACATGGTGAAACCCCATCTCTACTAAAAATACAAAAAAAAAAATTTGCCG

GG 

MII3K46 
 

CCCTTCTTTTTCCCAGCCCAGATATGACCTCTGAGAAAAGCTGAGGTCTTAGAGTCAAATCTGAG

ACCCAGAATAGTTTGCAAGCTGTGTGACCTAGGGCTAGTGGCTGAACCTCTCTGGGCTTCCTGCT

CCTTGATACTTACAAGGAAATGACACCACCCTTTCCCTCCCAGGTAATTTGGAAGGATTTCAATG

CAGGAAAAGTGCCTGCCTTAT 

MII3K48 TTAGAGAAAAAATACTGAAGCCTGGTGGAATCAGCACAAACTCTTAAGAGACTGGGGCTCAAATT

CCAGCTCTACCAGCTGTAAGTTTAGCAGCAAGTTACTTAACATCTCAAAGTCTCGGTAAAAGACT

CTGTAAAAAGAAGGTGATGCCTCTTTCAAAGTAGTTCTTAGTATTAAATTTTGAAAAAAGTAGGT

AAATCTTAACCTCCTATCACACACGTAGTCTAATGACTTCCTAGGATCCTCCAACCCCAAGGGGA

CCTCTTTCACAAAACCTCCCGGCTCCCCCCCA 

MII3K55 
 

CTAGACAGTGGTCTCAGCCTTTTTTTCTAATTTGATATATACCCGGAACAAATGACACTCACTTG

CCAGAATGTCTCCACCCTACAGCTTCTCAAACTGTGTGATGTAATATATTGACCCCCCAGTCCTC

AGGGCCTTTGGGTAGGATGTTAGGGTGGGTGACTAGAGCCCTTGG 
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Clone ID 
 

GTSTs without the U3Cre-DNA junction 

MII3K65 
 

GTGGCCTGCTCAGTCTTTTATCTGTTCAATGGGTCCGGCGCTCCCACTCAGCCCTCGGACAGCCC

CGGTGTCTGCGCCGTCCCAGGTTGTCTCCGCGCCTCCCGTTCCGCCGGCGTTCCCTGGCCTCCGC

GCGC 

MII3K74 
 

AGACCTCCTGGCTAACATGGTGAAACCCCTCTCTACTAAAAATACAAAAAAAAAA 

MIK78 
 

CTGTCCCTGGATTCCAAGGACACGCCTCCCTGGGAAGCAAAGGCTGAGAGACAGCGGCTCTCTCT

CTCTCTTTCTGCATCT 

MI7K77 
 

CCACCACGAGATCCTTTGCATAGGCCGTTCCCTCCGCTGGGCACAGCATTCCCGCTGCTTTCTGC

ATGGTTGCTCCTGAGACTCCTTCCCTCCCCCGA 

MIK83 
 

AAGCAAGGGCGCCCCAAGGTAATGTGTGCCCTACACAGGGCTCCTAGCCATAAGCACTTATGCAA

GTGCGGGGCACAGAGAAAATTCTGGTAACACTCCTCCCCTCAATTCTGGATCAGGTCCCAGGCTC

AACTAATCAGTTCAGGGATGGGCCCTTTGCCACCTTTTTCCT 

 

9.4. Bioinformatics analysis 

Homology of the inverse PCR sequences with the human genome recovered different genes 
which are listed in the following table (table 7). 

 

Clone ID Enzyme 
for iPCR 

Gene  
(GeneCard nr.) 

Transcript 
(Ensembl/NCBI) 

Direction of 
integration 

Location 
within gene 

MI3K01 PstI SLC12A2 
(GC05P127447) 

ENST00000262461 
NM_001046.2 

antisense 1013 bp  
upstream 

MI3K01 PstI – ENSESTT000000 
48701 

sense exon 1 

MI3K02 PstI  RP11-10N16.3-001 antisense intron 1 

MI3K02 PstI GRHL3 
(GC01P024392) 

ENST00000361548 
NM_198173 

sense intron 1 

MI3K03 
MI3K62 
MI3K11 

(identical) 

PstI S100A10 
(GC01M148768) 

ENST00000358003 
NM_002966.1 

antisense intron 1 

MI3K03 
MI3K62 
MI3K11 

(identical) 

PstI Genscan – sense intron 2 

MI3K04 NspI HKII 
(GC02P074971) 

ENST00000290573 
NM_000189.4 

sense intron 02 
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Clone ID Enzyme 
for iPCR 

Gene  
(GeneCard nr.) 

Transcript 
(Ensembl/NCBI) 

Direction of 
integration 

Location 
within gene 

MI3K05 PstI TOP1 
(GC20P039090) 

ENST00000361337 
NM_003286.2 

antisense 565 bp  
upstream 

MI3K09 PstI USP40 
(GC02M234168) 

ENST00000251722 
NM_018218.1 

antisense intron 4 

MI3K10 PstI JUNB 
(GC19P012763) 

ENST00000302754 
NM_002229.2 

sense 1950 bp  
upstream 

MI3K12 PstI PRKCBP1 
(GC20M045271) 

ENST00000311275 
NM_183047.1 

antisense 2206 bp  
upstream 

MI3K13 PstI PITPNM2 ENST00000280562 antisense exon 26 

MI3K13 PstI Q8TEM4_ 
HUMAN 

ENST00000300798 sense 2016 bp 
downstream 

MI3K14 PstI Repetitive 
sequence 

   

MI3K16 PstI CT142/ 
C20orf142 

(GC20M042364) 

ENST00000360847 
XM_371399.2 

sense intron 1 

MI3K17A PstI HNRPH1 
(GC05M178973) 

ENST00000356731 
NM_005520.1 

sense exon 1 

MI3K18 PstI Genscan – sense intron 1 

MI3K21 PstI SPATA 5 ENST00000274008 
NM_145207 

sense intron 14 

MI3K22 NspI Genscan – antisense exon 1 

MI3K22 NspI Genscan – sense downstream 

MI3K23 NspI Genscan – antisense intron 1 

MI3K23 NspI LIPC 
(GC15P056511) 

ENST00000299022 
NM_000236.1 

sense intron 1 

MI3K24 PstI Repetitive 
sequence 

   

MI3K36 
MI7K27B 
(identical) 

NspI Genomic sequence   – 

MI3K37 NspI PRKCBP1  
(GC20M045271) 

ENST00000311275 
NM_183047.1 

antisense 1584 bp  
upstream 
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Clone ID Enzyme 
for iPCR 

Gene  
(GeneCard nr.) 

Transcript 
(Ensembl/NCBI) 

Direction of 
integration 

Location 
within gene 

MI3K39A NspI EST ENSESTT000000 
69582 

sense intron 2 

MI3K40 NspI ABCC3 
(GC17P046067) 

ENST00000285238 
NM_003786.2 

sense 

 

intron 8 

 

MI3K44 
MI7K59 

(identical) 

PstI KCTD5 
(GC16P002672) 

ENST00000301738 
NM_018992.1 

antisense 428 bp  
upstream 

MI3K44 
MI7K59 

(identical) 

PstI P461 
(GC16M002592) 

ENST00000356048 
AC005591 

sense 2198 bp  
upstream 

MI3K47 PstI Genscan – sense 201 bp  
upstream 

MI3K61 PstI PRSS36 ENST00000268281 
NM_173502.2 

sense 147 bp 
downstream 

MI3K66 PstI RNF184 
(GC03M137351) 

ENST00000309993 
NM_018133.2 

antisense 1085 bp  
upstream 

MI3K67 PstI FGD3 
(GC16M002592) 

ENST00000262555 
AL389924 

antisense intron 2 

MI3K76 PstI Genscan – antisense intron 2 

MI3K76 PstI CTNND2 
(GC05M011024) 

ENST00000304623 
NM_001332.2 

sense intron 1 

MI3K80 
MI7K57 

(identical) 

PstI ESR1-005 
(GC06P152220) 

ENST00000206249 
NM_000125 

antisense intron 1 

MI3K81 
MI7K72 

(identical) 

PstI ESR1-005 
(GC06P152220) 

ENST00000206249 
NM_000125 

antisense intron 1 

MI7K07 PstI Repetitive 
sequence 

   

MI7K08 NspI Repetitive 
sequence 

   

MI7K20 PstI KIF11 ENST00000260731 
NM_004523.2 

sense 1057 bp 
upstream 

MI7K20 PstI Genscan – sense intron 3 
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Clone ID Enzyme 
for iPCR 

Gene  
(GeneCard nr.) 

Transcript 
(Ensembl/NCBI) 

Direction of 
integration 

Location 
within gene 

MI7K26 PstI Genscan – antisense intron 1 

MI7K28 PstI SLC7A2 
(GC08P017440) 

ENST00000004531 
NM_003046 

antisense 21039 bp  
upstream 

MI7K28 PstI Genscan – sense 3966 bp  
downstream 

MI7K29 NspI EED 
(GC11M118272) 

ENST00000351625 
NM_003797.2 

antisense exon 1 

 

MI7K30B NspI ZNF143 
(GC11P009439) 

ENST00000299606 
NM_003442.3 

antisense 654 bp  
upstream 

MI7K31 NspI Genomic sequence – – – 

MI7K32 PstI Repetitive 
sequence 

   

MI7K34 NspI Genscan – sense intron 4 

MI7K48 PstI ARHGAP11A 
(GC15P030694) 

ENST00000361235 
NM_014783.2 

antisense 813 bp  
upstream 

MI7K48 PstI EST ENSESTT000000 
49155 

sense exon 1 

MI7K49 NspI PARD6B 
(GC20P048781) 

ENST00000262600 
NM_032521.1 

antisense 29517 bp  
upstream 

MI7K50 PstI Several ESTs – sense intron 1 

MI7K51 PstI PRKCBP-1 
(GC20M045271) 

ENST00000262975 
NM_183047 

antisense intron 2 

MI7K51 PstI Q96N05_human ENST00000360965 sense 70 bp 
downstream 

MI7K53 NspI ZNHIT2 
(GC11M064640) 

ENST00000310597 
NM_014205.2 

sense exon 1 

MI7K54 PstI YARS 
(GC01M032909) 

ENST00000257116 
NM_003680.2 

antisense 564 bp  
upstream 

MI7K54 PstI S100PBPR 
(GC01P032953) 

ENST00000263536  
NM_022753.2 

sense intron 1 

MI7K60 PstI Genscan  
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Clone ID Enzyme 
for iPCR 

Gene  
(GeneCard nr.) 

Transcript 
(Ensembl/NCBI) 

Direction of 
integration 

Location 
within gene 

MI7K63 
MI7K77 

(identical) 

PstI Genomic sequence – – – 

MI7K64A PstI EST ENST00000362134 – – 

MI7K65 PstI Genomic sequence – – – 

MI7K69 PstI Genomic sequence – – – 

MI7K73 NspI Genomic sequence – – – 

MI7K74 PstI ZBT7B/ZFP67 
(GC01P151790) 

ENST00000326770 
NM_015872.1 

antisense 675 bp  
upstream 

MII3K02 PstI C9orf3/FLJ14675 
(GC09P094568) 

ENST00000311678  
NM_032823.3 

antisense intron 5 

MII3K04 PstI Genscan – antisense 121 bp  
upstream 

MII3K04 PstI EMSY 
(GC11P075833) 

ENST00000343878  
NM_020193.3 

sense intron 1 

MII3K05 PstI ZNRF1 
(GC16P073590) 

ENST00000320619  
AL834440 

sense intron 1 

MII3K11 PstI NTN4 
(GC12M094554) 

ENST00000343702  
NM_021229.2 

antisense 10643 bp  
upstream 

MII3K11 PstI EST ENSESTT0000009
4509 

sense 1845 bp  
upstream 

MII3K13 NspI Genscan – sense 6769 bp? 
downstream 

MII3K27 PstI SLC1A2 
(GC11M035229) 

ENST00000278379  
NM_004171.2 

sense intron 5 

MII3K34 PstI Genomic sequence – – – 

MII3K35 NspI TFF1 
(GC21M042655) 

ENST0000291527 
NM_003225.2 

antisense intron 1 

MII3K35 NspI EST ENST00000339657 sense intron 1 

MII3K38 PstI Genscan – sense exon 14 

MII3K41 PstI Repetitive 
sequence 

– – – 
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Clone ID Enzyme 
for iPCR 

Gene  
(GeneCard nr.) 

Transcript 
(Ensembl/NCBI) 

Direction of 
integration 

Location 
within gene 

MII3K46 PstI C1QTNF6 
(GC22M035900) 

ENST00000255836  
NM_182486.1 

sense intron 1 

MII3K48 PstI WDR10 
(GC03P130641) 

ENST00000348417 antisense 904 bp  
upstream 

MII3K48 PstI MBD4 
(GC03M130632) 

ENST00000249910  
NM_003925.1 

sense intron 1 

MII3K55 PstI TEX14 
(GC17M053989) 

ENST00000240361 
NM_198393.2 

antisense intron 1 

MII3K65 
MII3K36 

PstI BCL9L 
(GC11M118272) 

ENST00000334801 
NM_182557.1 

antisense 156 bp  
upstream 

MII3K71 PstI PRKCBP1 
(GC20M045271) 

ENST00000311275 
NM_183047.1 

antisense 2641 bp  
upstream 

MIK78 
MI7K71 

(identical) 

PstI PRKCBP1 
(GC20M045271) 

ENST00000311275 
NM_183047.1 

antisense 2215 bp  
upstream 

MIK83 NspI Genomic sequence – – – 

 
Table 7. Bioinformatic analysis of gene trap sequence taqs (GTSTs). Clone ID denotes the cell clone 
obtained after the final selection for cells with gene trap integrations in TNF  inducible loci, enzyme 
for inverse PCR indicates the enzyme used in the inverse PCR, if PstI was used the retrieved GTST is 
upstream to the U3Cre integration site, if NspI was used, downstream. Gene indicates the gene in or 
close to which the gene trap integration occurred together with the unique gene card identifier 
(www.genecards.org). Other classification categories are EST (homology to expressed sequence tag); 
GenScan, when only a gene prediction was identified; repetitive sequence and genomic sequence, 
when the integration occurred in a region, where no genes have been assigned or predicted. Transcript 
provides the transcript accession number of the recovered gene from the Ensembl and NCBI 
databases. Direction of integration and location within gene indicate the orientation of the gene trap 
encoded Cre gene relative to the recovered gene and the position of the U3Cre gene trap within this 
gene. 
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