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Abstract

Although models based on independent component analysis (ICA) have been successful in explaining various properties of
sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize
such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our
model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates
neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one
independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different
independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral
inhibition.
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Introduction

Independent component analysis is a well-known signal

processing technique for extracting statistically independent

components from high-dimensional data. For the brain, ICA-like

processing could play an essential role in building efficient

representations of sensory data [1–4]. However, although many

algorithms have been proposed for solving the ICA problem [5],

only few consider spiking neurons. Moreover, the existing spike-

based models [6,7] do not answer the question how this type of

learning can be realized in networks of spiking neurons using local,

biologically plausible plasticity mechanisms (but see [8]).

Classic ICA algorithms often exploit the non-Gaussianity

principle, which allows the ICA model to be estimated by

maximizing some non-Gaussianity measure, such as kurtosis or

negentropy [5]. A related representational principle is sparse

coding, which has been used to explain various properties of V1

receptive fields [9]. Sparse coding states that only a small number

of neurons are activated at the same time, or alternatively, that

each individual unit is activated only rarely [10]. In the context of

neural circuits, it offers a different interpretation of the goal of the

ICA transform, from the perspective of metabolic efficiency. As

spikes are energetically expensive, neurons have to operate under

tight metabolic constraints [11], which affect the way information

is encoded. Moreover, experimental evidence supports the idea

that the activity of neurons in V1 is sparse. Close to exponential

distributions of firing rates have been reported in various visual

areas in response to natural scenes [12].

Interestingly, certain homeostatic mechanisms are thought to

regulate the distribution of firing rates of a neuron [13]. These

intrinsic plasticity (IP) mechanisms adjust ionic channel properties,

inducing persistent changes in neuronal excitability [14]. They

have been reported for a variety of systems, in brain slices and

neuronal cultures [14,15] and they are generally thought to play a

role in maintaining system homeostasis. Moreover, IP has been

found to occur in behaving animals, in response to learning (see

[14] for review).

From a computational perspective, it is believed that IP may

maximize information transmission of a neuron, under certain

metabolic constraints [13]. Additionally, we have previously

shown for a rate neuron model that, when interacting with

Hebbian synaptic plasticity, IP allows the discovery of heavy-tailed

directions in the input [16]. Here, we extend these results for a

network of spiking neurons. Specifically, we combine spike-timing

dependent plasticity (STDP) [17–19], synaptic scaling [20] and an

IP rule similar to [16], which tries to make the distribution of

instantaneous neuronal firing rates close to exponential.

We show that IP and synaptic scaling complement STDP

learning, allowing single spiking neurons to learn useful represen-

tations of their inputs for several ICA problems. First, we show

that output sparsification by IP together with synaptic learning is

sufficient for demixing two zero mean supergaussian sources, a

classic formulation of ICA. When using biologically plausible

inputs and STDP, complex tasks, such as Foldiák’s bars problem

[21], and learning oriented receptive fields for natural visual

stimuli, can be tackled. Moreover, a population of neurons learns

to extract several independent components if the activity of

different neurons are decorrelated by adaptive lateral inhibition.

When investigating the mechanisms how learning occurs in our

model, we show that IP is necessary for learning, as it enforces a

sparse output, guiding learning towards heavy-tailed directions in

the input. Lastly, for specific STDP implementations, we show that

IP shifts the threshold between potentiation and depression,

similar to a sliding threshold for Bienenstock-Cooper-Munro

(BCM) learning [22].

The underlying assumption behind our approach, implicit in all

standard models of V1 receptive field development, is that both input

and output information are encoded in rates. In this light, one may
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think of our current work as a translation of the model in [16] to a

spike-based version. However, the principles behind our model are

more general than suggested by our work with rate neurons. We

show that the same rule can be applied when inputs are encoded as

spike-spike correlation patterns, where a rate-based model would fail.

Results

A schematic view of the learning rules is shown in Fig. 1. The

stochastically spiking neuron [23] generates spikes as an

inhomogeneous Poisson process, with mean expressed as a

function of the total incoming current to the neuron g(u),
parametrized by variables r0, u0 and ua. This transfer function is

optimized by adapting the three parameters to make the

distribution of instantaneous firing rates of the neuron approx-

imatively exponential (for a complete mathematical formulation,

see the Methods section). Additionally, Hebbian synaptic plastic-

ity, implemented by nearest-neighbor STDP [24], changes

incoming weights and a synaptic scaling mechanism keeps the

sum of all incoming weights constant over time.

A simple demixing problem
To illustrate the basic mechanism behind our approach, we first

ask if enforcing a sparse prior by IP and Hebbian learning can yield

a valid ICA implementation for the classic problem of demixing two

supergaussian independent sources. In the standard form of this

problem, zero mean, unit variance inputs ensure that the covariance

matrix is the identity, such that simple Hebbian learning with a

linear unit (equivalent to principal component analysis) would not

be able to exploit the input statistics and would just perform a

random walk in the input space. This is, however, a purely

mathematical formulation, and does not make much sense in the

context of biological neurons. Inputs to real neurons are bounded

and —in a rate-based encoding— all positive. Nonetheless, we

chose this standard formulation to illustrate the basic underlying

principles behind our model. Below, we will consider different spike-

based encodings of the input and learning with STDP.

As a special case of a demixing problem, we use two

independent Laplacian distributed inputs, with unit variance:

pUi
(ui)~

1ffiffiffi
2
p e{

ffiffi
2
p

Dui D, p(u1,u2)~pU1
(u1):pU2

(u2). For the linear

superposition, we use a rotation matrix A:

A~
cos(a) sin(a)

{sin(a) cos(a)

� �
, ð1Þ

where a is the angle of rotation, resulting in a set of inputs u’~Au.

Samples are drawn at each time step from the input distribution

and are mapped into a total input to the neuron as

ut~w1u’1zw2u’2, with the weight vector w normalized). The

neuron’s transfer functions g(ut), the same as for our spiking

model (Fig. 1), is adapted based on our IP rule, to make the

distribution of firing rates exponential. For simplicity, here weights

change by classic Hebbian learning: Dwi~gu’ig(ut), with g being

the synaptic learning rate (see Methods for details). Similar results

can be obtained when synaptic changes follow the BCM rule.

In Fig. 2A we show the evolution of synaptic weights for

different starting conditions. As our IP rule adapts the neuron

parameters to make the output distribution sparse (Fig. 2B,C), the

weight vector aligns itself along the direction of one of the sources.

With this simple model, we are able to demix a linear combination

of two independent sources for different mixing matrices and

different weights constraints (Fig. 2D), as any other single-unit

implementation of ICA.

One neuron learns an independent component
After showing that combining IP and synaptic learning can

solve a classical formulation of ICA, we focus on spike-based,

biologically plausible inputs. In the following, STDP is used for

implementing synaptic learning, while the IP and the synaptic

scaling implementations remain the same.

Demixing with spikes. The demixing problem above can be

solved also in a spike-based setting, after a few changes. First, the

Figure 1. Overview of plasticity rules used for ICA-like learning.
Synapse weights w are modified by nearest-neighbor STDP and
synaptic scaling. Additionally, intrinsic plasticity changes the neuron’s
transfer function by adjusting three parameters r0 , u0 , and ua . Different
transfer functions show the effects of changing each of the three
parameters individually relative to the default case depicted in blue.
Namely, r0 gives the slope of the curve, u0 shifts the entire curve left or
right, while ua can be used for rescaling the membrane potential axis.
Here, r0 is increased by a factor of 1.5, u0 by 5 mV, ua by a factor of 1:2.
doi:10.1371/journal.pcbi.1000757.g001

Author Summary

How the brain learns to encode and represent sensory
information has been a longstanding question in neuro-
science. Computational theories predict that sensory
neurons should reduce redundancies between their
responses to a given stimulus set in order to maximize
the amount of information they can encode. Specifically, a
powerful set of learning algorithms called Independent
Component Analysis (ICA) and related models, such as
sparse coding, have emerged as a standard for learning
efficient codes for sensory information. These algorithms
have been able to successfully explain several aspects of
sensory representations in the brain, such as the shape of
receptive fields of neurons in primary visual cortex.
Unfortunately, it remains unclear how networks of spiking
neurons can implement this function and, even more
difficult, how they can learn to do so using known forms of
neuronal plasticity. This paper solves this problem by
presenting a model of a network of spiking neurons that
performs ICA-like learning in a biologically plausible
fashion, by combining three different forms of neuronal
plasticity. We demonstrate the model’s effectiveness on
several standard sensory learning problems. Our results
highlight the importance of studying the interaction of
different forms of neuronal plasticity for understanding
learning processes in the brain.

ICA with Spiking Neurons
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positive and negative inputs have to be separated into on- and off-

channels (u
z={
i ) and converted into Poisson spike trains of a

certain duration T (see Methods), with the corresponding rates

u
z={
i (note that the inputs are no longer white in this four-

dimensional space). Secondly, to avoid the unbiological situation

of having few very strong inputs, such that single presynaptic

spikes always elicit a spike in the postsynaptic neuron, each

channel consists of several (here, 25) synapses, with independent

inputs having the same firing rate. Synapses are all positive and

adapt by STDP, under the normalization
P

wi~1. A more

detailed description of the parameters can be found in the

Methods section.

The evolution of the weights is shown in Fig. 3A. The

corresponding receptive field of the neuron can be obtained by

projecting the weight vector back onto the original two-

dimensional space (details of this procedure are described in the

Methods and Text S1). As in the original formulation of the

problem, the neuron receptive field slowly aligns itself along one of

the independent components (Fig. 3B).
Foldiák’s bars: input encoded as firing rates. As a second

test case for our model, we consider Foldiák’s well-known bars

problem [21]. This is a classic non-linear ICA problem and is

interesting from a biological perspective, as it mimics relevant

nonlinearities, e.g. occlusions. In the classic formulation, for a two-

dimensional input x, of size N|N , a single bar must be learned

after observing samples consisting of the nonlinear superposition of

2N possible individual bars (see Fig. 4A), each appearing

independently, with probability
1

2N
(N~10). The superposition

is non-linear, as the intersection of two bars has the same intensity

as the other pixels in the bars (a binary OR).

In our implementation, the input vector is normalized and the

value of each pixel xi,j is converted into a corresponding Poisson

spike train of duration on the order of a fixation duration [25].

The details of the experimental setup are described in the Methods

section. As the IP mechanism begins to take effect, making

neuronal activity sparse, the receptive field of the neuron slowly

adapts to one of the bars (Fig. 4B). This effect is robust for a wide

range of parameters (see Text S2) and, as suggested by our

previous results for rate neurons [16], does not critically depend on

the particular implementation of the synaptic learning. We obtain

similar results with an additive [26] and a simple triplet [27] model

of STDP.

The input normalization makes a bar in an input sample

containing a single IC stronger than a bar in a sample containing

multiple ICs. This may suggest that a single component emerges

by preferentially learning ‘easy’ examples, i.e. examples with a

single bar. However, this is not the case and one bar is learned

even when single bars never appear in the input, as in [28].

Specifically, we use a variant of the bars problem, in which the

input always consists of 4 distinct bars, selected at random. In this

case, the neuron correctly learns a single component. Moreover,

similar results can be obtained for 2–5 bars (see Text S2), using the

same set of parameters.

Foldiák’s bars: input encoded by spike-spike

correlations. In the previous experiments, input information

was encoded as firing rates. In the following, we show that this

Figure 2. A demixing problem: two rotated Laplace directions. (A) Evolution of the weights (w1 in blue, w2 in red) for different initial conditions,

with a~{
p

6
, and L1 weight normalization. (B) Evolution of the instantaneous firing rate g, sampled each 1000 ms, for the initial weights w1~0:4,

w2~0:6. (C) Corresponding changes in transfer function parameters, with r0 in Hz and u0 and ua in mV. (D) Final weight vector for different rotation

angles a (in red). In the first example, normalization was done by DwDL1
~1 (the estimated rotation angle is ~aa~arctan(w2=w1)~0:5215, instead of the

actual value 0.5236); for the others DwDL2
~1 was used. In all cases the final weight vector was scaled by a factor of 5, to improve visibility.

doi:10.1371/journal.pcbi.1000757.g002

ICA with Spiking Neurons

PLoS Computational Biology | www.ploscompbiol.org 3 April 2010 | Volume 6 | Issue 4 | e1000757



stimulus encoding is not critical and the presence of spike-spike

correlations is sufficient to learn an independent component, even

in the absence of any presynaptic rate modulation. To

demonstrate this, we consider a slight modification of the above

bars problem, with input samples consisting of always two bars,

each two pixel wide, with N distinct bars. This is a slightly more

difficult task, as wide bars emphasize non-linearities due to

overlap, but can be solved by our model with a rate encoding (see

Text S2).

In this case, all inputs have the same mean firing rate and the

information about whether a pixel belongs to a bar or not is

encoded in correlation patterns between different inputs (see

Methods). Specifically, background inputs are uncorrelated, while

inputs belonging to bars are all pairwise correlated, with a

correlation coefficient C~0:75 (see Fig. 5B).

As for the rate-based encoding, the neuron is able to reliably

learn a bar (Fig. 5C, D). Similar results were obtained for the

version with always two bars, each one pixel wide, but with slower

convergence. The fact that our approach also works for correlated

inputs rests on the properties of STDP and IP. In the original rate

formulation, strong inputs lead to higher firing in the postsynaptic

neuron, causing the potentiation of the corresponding synapses.

Similarly, if presynaptic inputs fire all with the same rate,

correlated inputs are more successful in driving the neuron and

hence their weights are preferentially strengthened [26]. More-

over, as before, IP enforces sparse post-synaptic responses, guiding

learning towards a heavy-tailed direction in the input (a more

formal analysis of the interaction between IP and STDP is

presented below).

Due to its stochastic nature, our neuron model is not

particularly sensitive to input correlations, hence C cannot be

too small. Stable receptive fields with a single 2 pixel wide bar are

still obtained for lower correlation coefficients (C~0:5), but with

slower convergence. We expect better results with a deterministic

neuron model, such as the leaky integrate-and-fire. An approx-

imation of IP, based on moment matching could be used in this

case. Additionally, STDP-induced competition (due to the

relatively small number of inputs, in some cases one weight grows

big enough to elicit a spike in the postsynaptic neuron) [26]

enforces some constraints on the model parameters to ensure the

stability of a solution with multiple non-zero weights. This could

be done by increasing the size of the input, restricting the overall

mean firing of the neuron m or by slightly changing the STDP

parameters (see Methods). These parameter changes do not affect

learning with the rate-based encoding, however.

Natural scenes input. The third classical ICA problem we

consider is the development of V1-like receptive fields for natural

scenes [3]. Several computational studies have emphasized that

simple cell receptive fields in V1 may be learned from the statistics

of natural images by ICA or other similar component extraction

algorithms [9,29,30]. We hypothesized that the same type of

computation could be achieved in our spiking neuron model, by

combining different forms of plasticity. Only a rate encoding was

used for this problem, partly for computational reasons and partly

because it is not immediately obvious how a correlation-based

encoding would look like in this case.

We use a set of images from the van Hateren database [31],

with standard preprocessing (see Methods). The rectified values of

the resulting image patches are linearly mapped into a firing

frequency for an on- and off-input population, as done for the

bars. The STDP, IP and other simulation parameters are the same

as before.

As shown in Fig. 6A, the receptive field of the neuron computed

as the difference between the weights of the on- and the off- input

populations (depicted in Fig. 6B) evolves to an oriented filter,

similar to those obtained by other ICA learning procedures

[9,29,30,32,33]. A similar receptive field can be obtained by

reverse correlation from white noise stimuli. The least-mean-

square-error fit to a Gabor wavelet [34] is shown in Fig. 6C. As

vertical edges are usually over-represented in the input, the neuron

will typically learn a vertical edge filter, with a phase shift

depending on the initial conditions. The receptive field has low

spatial frequency, but more localized solutions result for a neural

population (see below).

Figure 3. The demixing problem with inputs encoded as spike trains. (A) Evolution of the weights for a rotation angle a~
p

6
. (B) Final

corresponding weight vector in the original two-dimensional space. The final weight vector is scaled by a factor of 100, to improve visibility.
doi:10.1371/journal.pcbi.1000757.g003

Figure 4. Learning a single independent component for the
bars problem. (A) A set of randomly generated samples from the
input distribution, (B) Evolution of the neuron’s receptive field as the IP
rule converges and instantaneous firing rate of the neuron. Each dot
corresponds to the instantaneous firing rate (g(u(t)):R(t)) sampled each
500 ms.
doi:10.1371/journal.pcbi.1000757.g004

ICA with Spiking Neurons
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ICA in a neuron population
So far, learning has been restricted to a single neuron. For

learning multiple independent components, we implement a

neuron population in which the activities of different neurons

are decorrelated by adaptive lateral inhibition. This approach is

standardly used for feature extraction methods based on single-

unit contrast functions [30]. Here, we consider a simple scheme for

parallel (symmetrical) decorrelation. The all-to-all inhibitory

weights (Fig. 7A) change by STDP and are subject to synaptic

scaling, as done for the input synapses. We only use a rate-based

encoding for this case, due to computational overhead, which also

limits the size of networks we can simulate.

We consider a population of 10 neurons. In order to have a full

basis set for the bars problem, we use 2 pixel wide bars. For this

case, our learning procedure is able to recover the original basis

(Fig. 7B). As lateral inhibition begins to take effect, the average

correlation coefficient between the responses of different neurons

in the population decreases (Fig. 7C), making the final inhibitory

weights unspecific (Fig. 7D). As decorrelation is not a sufficient

condition for independence, we show that, simultaneously, the

normalized mutual information decreases (see Methods for

details). Using the same network for the image patches, we obtain

oriented, localized receptive fields (Fig. 7E).

Due to the adaptive nature of IP, the balance between

excitation and inhibition does not need to be tightly controlled,

allowing for robustness to changes in parameters. However, the

inhibition strength influences the time required for convergence

(the stronger the inhibition, the longer it takes for the system to

reach a stable state). A more important constraint is that the

adaptation of inhibitory connections needs to be faster than that of

feedforward connections to allow for efficient decorrelation (see

Methods for parameters).

Is IP necessary for learning?
We wondered what the role of IP is in this learning procedure.

Does IP simply find an optimal nonlinearity for the neuron’s

transfer function, given the input, something that could be

computed offline (as for InfoMax [29]), or is the interaction

between IP and STDP critical for learning? To answer this

question, we go back to Foldiák’s bars. We repeat our first bars

experiment (Fig. 4) for a fixed gain function, given by the

parameters obtained after learning (r0~23:8 Hz, u0~{66:4 mV,

ua~1:1 mV). In this case, the receptive field does not evolve to an

IC (Fig. 8). This suggests that ICA-like computation relies on the

interplay between weight changes and the corresponding read-

justment of neuronal excitability, which forces the output to be

sparse. Note that this result holds for simulation times significantly

larger than in the experiment before, where a bar emerged after

5:104 s, suggesting that, even if the neuron would eventually learn

a bar, it would take significantly longer to do so.

We could assume that the neuron failed to learn a bar for the

fixed transfer function just because the postsynaptic firing was too

low, slowing down learning. Hence, it may be that a simpler rule,

regulating just the mean firing rate of the neuron, would suffice to

learn an IC. To test this hypothesis, we construct an alternative IP

rule, which adjusts just r0 to preserve the average firing rate of the

Figure 5. Bars in a correlation-based encoding. (A) Example of 20 spike trains with C~0:75. (B) A sample containing two 2-pixel wide bars and
the corresponding covariance matrix used for its encoding. (C) Evolution of the weights during learning. (D) Final receptive field and corresponding
weights histogram.
doi:10.1371/journal.pcbi.1000757.g005

Figure 6. Learning a Gabor-like receptive field. (A) Evolution of the neuronal activity during learning, (B) Learned weights corresponding to the
inputs from the on and off populations, (C) The receptive field learned by the neuron, and its l.m.s. Gabor fit.
doi:10.1371/journal.pcbi.1000757.g006

ICA with Spiking Neurons
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neuron (see Methods). With the same setup as before and the new

IP rule, no bar is learned and the output distribution is Gaussian,

with a small standard deviation around the target value m (Fig. 9A).

However, after additional parameter tuning, a bar can sometimes

be learned, as shown in Fig. 9B. In this case, the final output

distribution is highly kurtotic, due to the receptive field. The

outcome depends on the variance of the total input, which has to

be large enough to start the learning process (variance was

regulated by the parameter wtot, see Methods). Most importantly,

this dependence on model parameters shows that regulating the

mean of the output distribution is not sufficient for reliably

learning a bar and higher order moments need to be considered as

well.

Interaction between IP and STDP
A good starting point for elucidating the mechanism by which

the interaction between STDP and IP facilitates the discovery of

an independent component is our initial problem of a single unit

receiving a two dimensional input. We have previously shown in

simulations that for a bounded, whitened, two dimensional input

the weight vector tends to rotate towards the heavy-tailed direction

in the input [16]. Here, we extend these results both analytically

and in simulations. Our analysis focuses on the theoretical

formulation of zero mean, unit variance inputs used for the

demixing problem before and is restricted to expected changes in

weights given the input and output firing rates, ignoring the time

of individual spikes.

We report here only the main results of these experiments, while

a detailed description is provided as supplemental information (see

Text S3). Firstly, for conveniently selected pairs of input

distributions, it is possible to show analytically that the weight

vector rotates towards the heavy-tailed direction in the input,

under the assumption that IP adaptation is faster than synaptic

learning (previously demonstrated numerically in [16]). Secondly,

due to the IP rule, weight changes mostly occur on the tail of the

output distribution and are significantly larger for the heavy-tailed

input. Namely, IP focuses learning to the heavy tailed direction in

Figure 7. Learning multiple ICs. (A) Overview of the network structure: all neurons receive signals from the input layer and are recurrently
connected by all-to-all inhibitory synapses, (B) A set of receptive fields learned for the bars problem, (C) Evolution of the mean correlation coefficient
and mutual information in time, both computed by dividing the neuron output in bins of width 1000 s and estimating C and MI� for each bin, (D)
Learned inhibitory lateral connections, (E) A set of receptive fields learned for natural image patches.
doi:10.1371/journal.pcbi.1000757.g007

Figure 8. IP is critical for learning. Evolution of the receptive field
for a neuron with a fixed gain function, given by the final parameters
obtained after learning in the previous bars experiment. A bar cannot
be learned in this case.
doi:10.1371/journal.pcbi.1000757.g008

ICA with Spiking Neurons
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the input. When several inputs are supergaussian, the learning

procedure results in the maximization of the output kurtosis,

independent of the shape of the input distributions. Most

importantly, we show that, for simple problems when a solution

can be obtained by nonlinear PCA, our IP rule significantly speeds

up learning of an independent component.

One way to understand these results could be in terms of

nonlinear PCA theory. Given that for a random initial weight

vector, the total input distribution is close to Gaussian, in order to

enforce a sparse output, the IP has to change the transfer function

in a way that ‘hides’ most of the input distribution (for example by

shifting u0 somewhere above the mean of the Gaussian). As a

result, the nonlinear part of the transfer function will cover the

‘visible’ part of the input distribution, facilitating the discovery of

sparse inputs by a mechanism similar to nonlinear PCA. In this

light, IP provides the means to adapt the transfer function in a way

that makes the nonlinear PCA particularly efficient.

Lastly, from an information-theoretic perspective, our approach

can be linked to previous work on maximizing information

transmission between neuronal input and output by optimizing

synaptic learning [23]. This synaptic optimization procedure was

shown to yield a generalization of the classic BCM rule [22]. We can

show that, for a specific family of STDP implementations, which

have a quadratic dependence on postsynaptic firing, IP effectively

acts as a sliding threshold for BCM learning (see Text S4).

Discussion

Although ICA and related sparse coding models have been very

successful in describing sensory coding in the cortex, it has been

unclear how such computations can be realized in networks of

spiking neurons in a biologically plausible fashion. We have

presented a network of stochastically spiking neurons that performs

ICA-like learning by combining different forms of plasticity.

Although this is not the only attempt at computing ICA with

spiking neurons, in previous models synaptic changes were not local,

depending on the activity of neighboring neurons within a

population [6,7]. In this light, our model is, to our knowledge, the

first to offer a mechanistic explanation of how ICA-like computation

could arise by biologically plausible learning mechanisms.

In our model, IP, STDP and synaptic scaling interact to give

rise to robust receptive field development. This effect does not

depend on a particular implementation of STDP, but it does

require an IP mechanism which enforces a sparse output

distribution. Although there are very good theoretical arguments

why this should be the case [11,13,16], the experimental evidence

supporting this assumption is limited [12]. A likely explanation for

this situation is the fact that it is difficult to map the experimentally

observable output spikes into a probability of firing. Spike count

estimates cannot be used directly, as they critically depend on the

bin size. Additionally, the inter-spike interval (ISI) of an

inhomogeneous Poisson process with exponentially distributed

mean l(t) is indistinguishable from the ISI of a homogeneous

Poisson distribution with mean l~E(l(t)). Hence, more complex

statistical analyses are required for disentangling the two (see [35]).

From a computational perspective, our approach is reminiscent

of several by-now classic ICA algorithms. As mentioned before, IP

enforces the output distribution to be heavy-tailed, like in sparse

coding [9]. Our model also shares conceptual similarities to

InfoMax [29], which attempts to maximize output entropy

(however, at the population level) by regulating the weights and a

neuron threshold parameter. Maximizing information transmission

between pre- and post-synaptic spike trains under the constraint of a

fixed mean postsynaptic firing rate links our method to previous

work on synaptic plasticity. A spike-based synaptic rule optimizing

the above criterion [23] yields a generalization of the BCM rule

[22], a powerful form of learning, which is able to discover heavy-

tailed directions in the input [36,37] and to learn Gabor receptive

fields [38] in linear neurons. We have shown that, sliding threshold

BCM can be viewed as a particular case of IP learning, for a specific

family of STDP models.

It is interesting to think of the mechanism presented here in

relation to projection pursuit [39], which tries to find good

representations of high-dimensional spaces by projecting data on a

lower dimensional space. The algorithm searches for interesting

projection directions, a typical measure of interest being the non-

Gaussianity of the distribution of data in the lower dimensional

space. The difference here is that, although we do not explicitly

define a contrast function maximizing kurtosis or other similar

measure, our IP rule implicitly yields highly kurtotic output

distributions. By sparsifying the neuron output, IP guides the

synaptic learning towards the interesting (i.e. heavy-tailed)

directions in the input.

From a different perspective, we can relate our method to

nonlinear PCA. It is known that, for zero mean whitened data,

nonlinear Hebbian learning in a rate neuron can successfully

capture higher order correlations in the input [40,41]. Moreover,

it has been suggested that the precise shape of the Hebbian

nonlinearity can be used for optimization purposes, for example

for incorporating prior knowledge about the sources’ distribution

Figure 9. Mean firing constraint is not sufficient for reliable learning. (A) Evolution of neuron activation for a neuron with a gain function
regulated by a simplified IP rule, which adjusts r0 to maintain the same mean average firing m. wtot~2:5 or wtot~10, in the first and second row,
respectively. Inset illustrates final receptive field for each case. (B) Corresponding evolution of weights and (C) their final distribution.
doi:10.1371/journal.pcbi.1000757.g009
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[40]. IP goes one step further in this direction, by adapting the

transfer function online, during learning. From a biological

perspective, there are some advantages in adapting the neuron’s

excitability during computation. Firstly, IP speeds up the nonlinear

decorrelation of inputs. Secondly, the system gains great

robustness to changes in parameters (as demonstrated in Text

S2). Additionally, IP regulation plays a homeostatic role, making

constraints on the input mean or second order statistics

unnecessary. In the end, all the methods we have mentioned are

closely related and, though conceptually similar, our approach is

another distinct solution.

Our previous work was restricted to the a rate model neuron

[16]. Beyond translating our results to a spiking neuron model,

we have shown here that similar principles can be applied when

information is encoded as spike-spike correlations, where a

model relying just on firing rates would fail. It is a interesting

challenge for future work to further investigate the exact

mechanisms of receptive field development for different types

of input encoding.

Methods

Neuron model
We consider a stochastically spiking neuron with refractoriness

[23]. The model defines the neuron’s instantaneous probability of

firing as a function of the current membrane potential and the

refractory state of the neuron,which depends on the time since its

last spike. More specifically, the membrane potential is computed

as u(t)~urz
P

j,f wje(t{t
f
j ), where ur~{70 mV is the resting

potential, while the second term represents the total incoming

drive to the neuron, computed as the linear summation of post-

synaptic potentials evoked by incoming spikes. Here, wj gives the

strength of synapse j, t
f
j is the time of a presynaptic spike, and

e(t{t
f
j ) the corresponding evoked post-synaptic potential,

modeled as a decaying exponential, with time constant

t~10 ms (for GABA-ergic synapses, t~20 ms) and amplitude

1 mV.

The refractory state of the neuron, with values in the interval

½0,1�, is defined as a function of the time of the last spike t̂t, namely:

R(t)~
(t{t̂t{tabs)

2

t2
refrz(t{t̂t{tabs)

2
:H(t{t̂t{tabs),

where tabs~3 ms gives the absolute refractory period,

trefr~10 ms is the relative refractory period and H(:) is the

Heaviside function.

The probability r(t) of the stochastic neuron firing at time t is

given as a function of its membrane potential and refractory state

[23] r(t)~1{e{g(u(t))R(t)Dt&g(u(t))R(t)Dt, where Dt~10{3 s is

the time step of integration, and g(u(t)) is a gain function, defined

as: g(u)~r0 log 1ze

u{u0
ua

� �
: Here r0 , u0 and ua are model

parameters, whose values are adjusted by intrinsic plasticity, as

described below.

Intrinsic plasticity
Our intrinsic plasticity model attempts to maximize the mutual

information between input and output, for a fixed energy budget

[16,42]. More specifically, it induces changes in neuronal

excitability that lead to an exponential distribution of the

instantaneous firing rate of the neuron [13]. The specific shape

of the output distribution is justified from an information theoretic

perspective, as the exponential distribution has maximum entropy

for a fixed mean. This is true for distributions defined on the

interval ½0,?), but, under certain assumptions, can be a good

approximation for the case where the interval is bounded, as it

happens in our model due to the neuron’s refractory period (see

below). Optimizing information transmission under the constraint

of a fixed mean is equivalent to minimizing the Kullback-Leibler

divergence between the neuron’s firing rate distribution and that

of an exponential with mean m:

D~d(pneuronEpexp)~

ð
fY (y)log

fY (y)

1

m
e{y=m

0
BB@

1
CCAdy

~{H(Y )z
1

m
E(Y )zlog(m),

with y~g(u) and H(:) denoting the entropy and E(:) the expected

value. Note that the above expression assumes that the

instantaneous firing rate of the neuron is proportional to g(u),
that is that R(t)&1. When taking into account the refractory

period of the neuron, which imposes an upper-bound R~
1

tabs
on

the output firing rate, the maximum entropy distribution for a

specific mean mƒR is a truncated exponential [43]. The deviation

between the optimal exponential for the infinite and the bounded

case depends on the values of m and R, but it is small in cases in

which m%R. Hence, our approximation is valid as long as the

instantaneous firing rate m is significantly lower than 1=tabs, that is

when the mean firing rate of the neuron is small. In our case, we

restrict mƒ10 Hz. If not otherwise stated, all simulations have

m~2 Hz. Note also that the values considered here are in the

range of firing rates reported for V1 neurons [44].

Computing the gradient of D for r0, u0 and ua, and using

stochastic gradient descent, the optimization process translates into

the following update rules [42]:

Dr0~
gIP

r0
(1{

g

m
),

Du0~
gIP

ua
1z

r0

m

� �
1{e

{
g
r0

� �
{1

� �
,

Dua~
gIP

ua

u{u0

ua
1z

r0

m

� �
1{e

{
g
r0

� �
{1

� �
{1

� �
:

Here, gIP~10{5 is a small learning rate. Here, the instantaneous

firing rate is assumed to be directly accessible for learning.

Alternatively, it could be estimated based on the recent spike

history.

Additionally, as a control, we have considered a simplified rule,

which adjusts a single transfer function parameter in order to

maintain the mean firing rate of the neuron to a constant value m.

More specifically, a low-pass-filtered version of the neuron firing

rate is used to estimate the current mean firing rate of the neuron
dg

dt
~{

g

tm1
zd(t{t

f
f ), where d is the Dirac function and t

f
f is the

time of firing of the post-synaptic neuron and tm1~100ms. Based

on this estimate, the value of the parameter r0 is adjusted as

r0~r0{gm1(g{m): Here, m is the goal mean firing rate, as before

and gm1 is a learning rate, set such that, for a fixed Gaussian input

distribution, convergence is reached as fast as for our IP rule

described before (gm1~10{4).
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Synaptic learning
The STDP rule implemented here considers only nearest-

neighbor interactions between spikes [24]. The change in weights

is determined by:

Dwij~
Aze

{Dt
tz , if Dtw0

A{e
Dt
t{ , if Dtv0

8<
: ,

where Az={ is the amplitude of the STDP change for potentiation

and depression, respectively (default values Az~1:03:10{4 and

A{~{0:51:10{4), tz={ are the time scales for potentiation and

depression (tz~12 ms, t{~38 ms; for learning spike-spike

correlations tz~10 ms)[19], and Dt~tpost{tpre is the time

difference between the firing of the pre- and post-synaptic neuron.

For the lateral inhibitory connections, the STDP learning is faster,

namely Ainh
z={=Aexc

z={~10. In all cases, weights are always positive

and clipped to zero if they become negative.

This STDP implementation is particularly interesting as it can

be shown that, under the assumption of uncorrelated or weakly

correlated pre- and post-synaptic Poisson spike trains, it induces

weight changes similar to a BCM rule, namely [24]:

Dw&xy
Az

t{1
z zy

z
A{

t{1
{ zy

� �
,

where x and y are the firing rates of the pre- and post-synaptic

neuron, respectively.

For the above expression, the fixed BCM threshold can be

computed as:

n~{
Az=t{zA{=tz

AzzA{

,

which is positive when potentiation dominates depression on the

short time scale, while, overall, synaptic weakening is larger than

potentiation:

AzwDA{D,

DA{Dt{wAztz:

In some experiments we also consider the classical case of

additive all-to-all STDP [26], which acts as simple Hebbian

learning, the induced change in weight being proportional to the

product of the pre- and post-synaptic firing rates (see [24] for

comparison of different STDP implementations). The parameters

used in this case are: Az~8:33:10{6, A{~{2:63:10{6 and the

same time constants as for the nearest neighbor case. Additionally,

the simple triplets STDP model used as an alternative BCM-like

STDP implementation is described in Text S4.

Synaptic scaling
As in approaches which directly maximize kurtosis or similar

measures [16,30,40], the weight vector is normalized:P
i wi~wtot, with wtot~2:5, with weights being always positive.

This value is arbitrary, as it represents a scaling factor of the total

current, which can be compensated for by IP. It was selected in

order to keep the final parameters close to those in [23].

Additionally, for the natural image patches the normalization

was done independently for the on- and off- populations, using the

same value for wtot in each case.

In a neural population, the same normalization is applied for

the lateral inhibitory connections. As before, weights do not

change sign and are constrained by the L1 norm:
P

i winh
i ~winh

tot ,

with winh
tot ~{12.

Currently, the normalization is achieved by dividing each

weight by

P
i wi

wtot
, after the presentation of each sample.

Biologically, this operation would be implemented by a synaptic

scaling mechanism, which multiplicatively scales the synaptic

weights to preserve the average input drive received by the neuron

[20].

Setup for experiments
In all experiments, excitatory weights were initialized at random

from the uniform distribution and normalized as described before.

The transfer function was initialized to the parameters in [23]

(r0~11 Hz, u0~{65 mV, ua~2 mV). Unless otherwise speci-

fied, all model parameters had the default values defined in the

corresponding sections above. For all spike-based experiments,

each sample was presented for a time interval T~100ms, followed

by the weight normalization.

For the experiments involving the rate-based model and a two-

dimensional input, each sample was presented for one time step

and the learning rates for IP and Hebbian learning were

gIP~10{4 and gsyn~10{7, respectively. In this case, the weight

normalization procedure can influence the final solution. Namely,

positive weights with constant L1 norm always yield a weight

vector in the first quadrant, but this limitation can be removed by

a different normalization, which keeps the L2 norm of the vector

constant (DwDL2
~1).

For the demixing problem, the input was generated as described

for the rate-based scenario above. After the rectification, the firing

rates of the input on the on- and off- channels were scaled by a

factor of 20, to speed up learning. After convergence, the total

weight of each channel was estimated as the sum of individual

weights corresponding to that input. The resulting four-dimen-

sional weight vector was projected back to the original two-

dimensional input space using: DwD~max(won,woff ), with a sign

given by that of the channel with maximum weight (positive for

wonwwoff , negative otherwise). This procedure results by a

minimum error projection of the weight vector onto the subspace

defined by the constraint won
:woff~0, see Text S1 for details.

For all variants of the bars problem, the input vector was

normalized to DxD~N, with D:D defining the L1 norm, as in [45].

Inputs were encoded using firing rates with mean fbkgndzxi,j
:fmax,

where fbkgnd~0:1Hz is the frequency of a background pixel and

fmax~100Hz gives the maximum input frequency, corresponding

to a sample containing a single bar in the original bars problem.

When using the correlation-based encoding, all inputs had the

same mean firing rate (f ~25Hz). Inputs corresponding to pixels

in the background were uncorrelated, while inputs belonging to

bars were all pairwise correlated, with a correlation coefficient

C~0:75. Poisson processes with such correlation structure can be

generated in a computationally efficient fashion by using

dichotomous Gaussian distributions [46].

When learning Gabor receptive fields, images from the van

Hateren database [31] were convolved with a difference-of-

gaussians filter with center and surround widths of 1:0 and 1:2
pixels, respectively. Random patches of size 10|10 were selected

from various positions in the images. Patches having very low

contrast were discarded. The individual input patches were
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normalized to zero mean and unit variance, similar to the

processing in [45]. The rectified values of the resulting image were

mapped into a firing frequency for an on- and off-input population

(f
on=off

i,j ~fbkgndzx
on=off
i,j

:fmax) and, as before, samples were

presented for a duration T .

For a neuronal population, input-related parameters were as for

the single component, but with m~5Hz, to speed up learning. The

initial parameters of the neuron transfer function were uniformly

distributed around the default values mentioned above, with

variance 0.1, 5, and 0.2 for r0, u0, and ua, respectively.

Additionally, the inhibitory weights were initialized at random,

with no self-connections, and normalized as described before. The

mutual information (MI), estimated within a window of 1000 s,

was computed as MI�(X ,Y )~
MI(X ,Y )

H(X )zH(Y )
, with H(:) denoting

the entropy (see [45]), applied for the average firing rate of the

neurons for each input sample.
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Text S1 Receptive field estimation for the spike-based demixing
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Found at: doi:10.1371/journal.pcbi.1000757.s001 (0.04 MB PDF)

Text S2 Parameter dependence for learning one IC

Found at: doi:10.1371/journal.pcbi.1000757.s002 (0.07 MB PDF)

Text S3 Learning with a two-dimensional input

Found at: doi:10.1371/journal.pcbi.1000757.s003 (0.53 MB PDF)

Text S4 A link to BCM

Found at: doi:10.1371/journal.pcbi.1000757.s004 (0.15 MB PDF)
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