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Investigation of shear stress and shear flow within a
partonic transport model

Felix Reining,a Christian Wesp,a Zhe Xu,ab and Carsten Greiner a

a Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität
Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany

b Frankfurt Institute for Advanced Studies
Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main, Germany
E-Mail: reining@th.physik.uni-frankfurt.de

Starting from a classical picture of shear viscosity we construct a steady velocity gradient in the
partonic cascade BAMPS. Using the Navier-Stokes-equation we calculate the shear viscosity co-
efficient. For elastic isotropic scatterings we find a very good agreement with the analytic values.
For both elastic and inelastic scatterings with pQCD cross sections we find good agreement with
previously published calculations.
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shear stress an shear flow

1. Introduction

Experimental data of ultra-relativistic heavy-ion-collisions at RHIC indicate that the Quark-
Gluon-Plasma behaves like an ideal fluid above and close to TC, and thus can be described by
hydrodynamic models. Fundamental for this ansatz is the smallness of the viscosity coefficients.
Using the partonic cascade BAMPS (Boltzmann Approach of Multi-Parton Scatterings) [2, 3] we
calculate the viscosity-to-entropy-ratio of a gluonic medium with pQCD-cross sections using a
steady fluid setup with a flow gradient. Motivated by the classical picture for investigation of
viscosity, as introduced in [1], we consider a particle system embedded between two plates, as seen
in Fig. 1. The two plates move in opposite directions each with a velocity vwall . In the classical
limit the shear stress T xz is proportional to the gradient of the flow velocity.

T xz =−η
∂vz

∂x
(1.1)

where η is the shear viscosity.

Figure 1: The classical definition of viscosity. Two
plates moving in opposite directions with velocity
±vwall . A flow gradient is established between the
plates. The viscosity is proportional to the Force.

Figure 2: Velocity profile in z-direction. BAMPS re-
sults for vwall = ±0.964c and mean free path λm f p =
0.01 f m .

2. The cascade

We use the partonic cascade BAMPS as introduced in [2, 3] with elastic isotropic crossections
σ22 .The mean-free-path λm f p is kept constant using

λm f p =
1

nσ22
(2.1)

where n is the local particle density.
When a particle hits one of the plates, it will be reflected into the box, but with a new momen-

tum sampled according to the Boltzmann distribution for a massless gas with fixed temperature and
velocity vwall in z-direction.
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shear stress an shear flow

3. Shear flow

A gradient of the flow velocity vz(x) is established due to the interactions among particles. A
naive solution for vz(x) is a linear function. However, this is an approximate solution, which is only
valid for non-relativistic fluids. For a relativistic fluid we claim that difference in velocity between
two points in the local rest frame of one of the points should only depend on the space difference
of the two points. This is equivalent to the demand that the profile should look the same, if shifted
in space and Lorentz boosted.:

Λv(a)v(x) = v(x+a) (3.1)

We find a differential equation

d2v(x)
dx2 = 2α

2(v3(x)− v(x)) (3.2)

which is solved by
v(x) = tanh(αx) (3.3)

These assumptions are valid in the ideal case, when effects from the boundaries can be neglected. In
the classical limit α becomes small and tanh(αx)≈ αx. With Eq. (3.3) the rapidity yz(x) becomes:

yz(x) = arctanh(vz(x)) = αx (3.4)

vz(x) is shown in Fig. 2 as an example with vwall = 0.964c.

4. Finite-size-effects

For imperfect fluids there exists a relation between the value of a gradient at the points x and
x′. We assume that, as long as all particle scatterings are elastic and isotropic, the probability of
one particle moving from x′ to x without interacting with the medium decreases exponentially with
the distance. Thus we assume that Ix(x′) the influence of x′ on x, decreases exponentially, too:

Ix(x′) ∝ yz(x′)× exp
− |x−x′|

λm f p (4.1)

Taking the normalized integral of (4.1) over all space points we obtain:

yz(x) = cnorm

∫
∞

−∞

dx′Ix(x′) =
1

2λm f p

∫
∞

−∞

dx′yz(x′)× exp
− |x−x′|

λm f p (4.2)

One can show, that for yz(x) in Eq. (4.2) the following equation holds:

d2yz(x)
dx2 = 0 (4.3)

This implies, that only linear functions of the form yz(x) = mx+n solve Eq. (4.2). As this equation
should also be valid in the ideal limit where λm f p→ 0, we use rapidity instead of velocity. Fixing
the value of yz(x) outside the interval [−L/2,L/2] to ±ywall , we obtain the solution for Eq. (4.2):

yz(x) =
2ywall

L+2λm f p
x = αx (4.4)

Results from BAMPS show a very good agreement with Eq. (4.4), as demonstrated in Fig.3.
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shear stress an shear flow

Figure 3: rapidity gradient in BAMPS with
ywall = 0.55, Boxlength = 2 f m and variable λm f p.
Comparison with results from Eq. (4.4).

Figure 4: Viscosity over box position for λ =
0.08 f m. Analytic fit with Eq. (5.6) reproduces
BAMPS very good.

5. Shear viscosity

To calculate the shear viscosity η we use the Navier-Stokes-Approximation:

π
µν = 2η∇

<µuν> (5.1)

where uµ is the four-velocity and πµν = T µν −T µν
eq . With

uµ = (γ,0,0,γv) = (cosh(αx),0,0,sinh(αx)) (5.2)

Eq. (5.1) becomes

π
xz =−ηγα (5.3)

Since T xz
eq = 0, Eq. (5.3) reduces to Eq. (1.1) in the non-relativistic case.

In comparison to our calculations we use the relation from deGroot [6] and Huovinen, Molnar [7]

η
NS ≈ 0.8436

T
σtr

(5.4)

for isotropic 2⇔ 2 cross sections where σtr is given by [5]

σtr =
2
3

σ22 =
2
3

1
nλ

(5.5)

Finally we obtain

η
NS ≈ 1.2654T nλ (5.6)

This we refer to as the analytic value.
For given temperature T , particle density n and mean-free-path λm f p one can calculate ηNS

according to Eq. (5.6). The result of such calculation employing BAMPS is shown in Fig. 4, where
we observe a perfect agreement with the analytic value.
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shear stress an shear flow

Implementing elastic and inelastic pQCD-cross sections in BAMPS [2, 3, 8], we calculate the
shear viscosity to entropy density ratio for a gluonic gas. Using the entropy density of an ideal
ultra-relativistic gas, s = 4n, we obtain for αs = 0.3:

η

s
= 0.118 (5.7)

which is in very good agreement with dynamical calculations by Xu, Greiner [5] and Muronga, El
[8] and the static setup calculations by Wesp [9]

6. Summary

The gradient of a shear flow is analytically derived and confirmed numerically within BAMPS.
The influence of finite-size effects to the flow velocity is analysed. Using the Navier-Stokes ap-
proximation we calculated viscosity η and the viscosity to entropy ratio η

s for both isotropic elastic
scattering and inelastic scattering with pQCD-cross sections.
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