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Abstract

In order to fully understand the new state of matter formed in heavy ion collisions, it is vital
to isolate the always present final state hadronic contributions within the primary Quark-Gluon
Plasma (QGP) experimental signatures. Previously, the hadronic contributions were deter-
mined using the properties of the known mesons and baryons. However, according to Hagedorn,
hadrons should follow an exponential mass spectrum, which the known hadrons follow only up
to masses of M ≈ 2 GeV. Beyond this point the mass spectrum is flat, which indicates that
there are “missing” hadrons, that could potentially contribute significantly to experimental ob-
servables. In this thesis I investigate the influence of these “missing” Hagedorn states on various
experimental signatures of QGP.

Strangeness enhancement is considered a signal for QGP because hadronic interactions (even
including multi-mesonic reactions) underpredict the hadronic yields (especially for strange par-
ticles) at the Relativistic Heavy Ion Collider, RHIC. One can conclude that the time scales to
produce the required amount of hadronic yields are too long to allow for the hadrons to reach
chemical equilibrium within the lifetime of a cooling hadronic fireball. Because gluon fusion can
quickly produce strange quarks, it has been suggested that the hadrons are born into chemi-
cal equilibrium following the Quantum Chromodynamics (QCD) phase transition. However, we
show here that the missing Hagedorn states provide extra degrees of freedom that can contribute
to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which
possible Hagedorn states contribute to fast chemical equilibration times of XX̄ pairs (where
X = p, K, Λ, or Ω) inside a hadron gas and just below the critical temperature. Within this
scheme, we use master equations and derive various analytical estimates for the chemical equi-
libration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed,
quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn
resonances. We compare the thermodynamic properties of our model to recent lattice results
and find that for both critical temperatures, Tc = 176 MeV and Tc = 196 MeV, the hadrons can
reach chemical equilibrium on very short time scales. Furthermore the ratios p/π, K/π , Λ/π,
and Ω/π match experimental values well in our dynamical scenario.

The effects of the “missing” Hagedorn states are not limited to the chemical equilibration
time. Many believe that the new state of matter formed at RHIC is the closet to a perfect fluid
found in nature, which implies that it has a small shear viscosity to entropy density ratio close to
the bound derived using the uncertainty principle. Our hadron resonance gas model, including
the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to
entropy density ratio, η/s, of hadronic matter near Tc that is close to 1/(4π). Furthermore, the
large trace anomaly and the small speed of sound near Tc computed within this model agree
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well with recent lattice calculations. We also comment on the behavior of the bulk viscosity to
entropy density ratio of hadronic matter close to the phase transition, which qualitatively has a
different behavior close to Tc than a hadron gas model with only the known resonances.

We show how the measured particle ratios can be used to provide non-trivial information
about Tc of the QCD phase transition. This is obtained by including the effects of highly massive
Hagedorn resonances on statistical models, which are generally used to describe hadronic yields.
The inclusion of the “missing” Hagedorn states creates a dependence of the thermal fits on the
Hagedorn temperature, TH , and leads to a slight overall improvement of thermal fits. We find
that for Au+Au collisions at RHIC at

√
sNN = 200 GeV the best square fit measure, χ2, occurs

at TH ∼ Tc = 176 MeV and produces a chemical freeze-out temperature of 172.6 MeV and a
baryon chemical potential of 39.7 MeV.



Übersicht

Um ein Versändnis der in Schwerionenkollisionen gebildeten Materie zu erhalten, ist es unerläßlich,
die Beiträge des hadronischen Endzustandes aus den verschiedenen experimentellen Nachweismöglichkeiten
eines während einer solchen Kollision gebildeten Quark-Gluon Plasmas (QGP) zu isolieren.
Dabei wurden bisher alle hadronischen Beiträge aus den Eigenschaften der bekannten Mesonen
und Baryonen abgeleitet. Nach Arbeiten von Rolf Hagedorn sollten jedoch alle Hadronen einem
exponentiellen Massenspektrum folgen. Ein solcher exponentieller Abfall tritt allerdings nur bis
zu einer Hadronmasse von M ≈ 2 GeV auf, für schwerere Hadronen flacht das Massenspektrum
ab. Dies könnte darauf hinweisen, dass bislang noch Hadronen “fehlen”, die einen möglicherweise
bedeutsamen Beitrag auf den experimentellen Nachweis des QGP haben. Dieser Einfluss wird
in der vorliegenden Arbeit untersucht.

Allgemein wird der Anstieg sog. seltsamer (s-) Teilchen als ein möglicher Nachweis des
QGP angesehen, da die anhand hadronischer Wechselwirkungen berechnete Anzahl hadronischer
Teilchen am Relativistic Heavy Ion Collider (RHIC, zu Deutsch “Beschleunigerring für relativis-
tische Schwerionen”) selbst unter Hinzunahme multi-mesonischer Zerfälle zu gering ist. Daraus
kann man folgern, dass die Zeitskala, innerhalb der die benötigte Anzahl hadronischer Teilchen
gebildet werden kann, zu groß ist, damit die Hadronen noch während der Abkühlungsphase des
expandierenden Feuerballs ein chemisches Gleichgewicht erreichen. Da Gluonfusion die Produk-
tion vieler seltsamer (s-) Quarks bewirken kann, wurde ein Mechanismus vorgeschlagen, in dem
Hadronen gewissermaßen in das nach dem Phasenübergang (zwischen dem QGP und dem sich
für geringere Temperaturen anschließenden Hadrongas) auftretende chemische Gleichgewicht
”geboren” werden. Die vorliegende Arbeit zeigt jedoch, dass die Hinzunahme der fehlenden
Hagedornzustände mit ihren zusätzlichen Freiheitsgraden durchaus dazu führen kann, dass das
chemische Gleichgewicht in einem Hadrongas auf einer sehr kurzen Zeitskale (d.h. schnell) erre-
icht wird. Das in dieser Arbeit vorgestellte auf Ratengleichungen basierende dynamische Modell
demonstriert eine äußerst kurze Equilibrierungsphase für XX̄ Paare direkt unterhalb der kri-
tischen Temperatur (wobei X entweder Pionen, Kaonen, Lambda oder Omega Teilchen beze-
ichnen). Dabei wird das chemische Gleichgewicht sowohl für eine anfängliche Über- als auch
eine Unterbevölkerung der Hagedornzustände erreicht, sofern man eine Bjorkenexpansion des
während der Kollision entstehenden Feuerballs annimmt. Im Vergleich mit den neuesten Ergeb-
nissen aus Lattice-QCD Rechnungen der beiden auf diesem Gebiet führenden Arbeitsgruppen
kann gezeigt werden, dass die gebildeten Hadronen für die beiden kritischen Temperaturen von
Tc = 176 MeV und Tc = 196 MeV das chemische Gleichgewicht sehr schnell erreichen können.
Darüber hinaus stimmen die anhand unseres Modells bestimmten Verhältnisse von p/π, K/π ,
Λ/π und Ω/π sehr gut mit den experimentellen Werten überein.
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Die Auswirkung der fehlenden Hagedornzustände ist allerdings nicht allein auf die Zeitskala
des chemischen Gleichgewichtes beschränkt. Viele glauben, dass der neue am RHIC geformte
Zustand von allen bisher entdeckten Materiezuständen am ehesten einer idealen Flüssigkeit
entspricht, was sich in einem kleinen Verhältnis der Scherviskosität zu Entropiedichte, η/s,
niederschlägt. In der vorliegenden Arbeit verwenden wir ein Hadron-Resonanzgas-Modell, inklu-
sive der Hagedornzustände, um eine obere Grenze von η/s ≈ 1/(4π) in hadronischer Ma-
terie nahe Tc abzuleiten. Dabei stimmt die nahe der kritischen Temperatur bestimmte kleine
Schallgeschwindigkeit gut mit den Berechnungen von Lattice-QCD Rechnungen überein. Darüber
hinaus betrachten wir das Verhältnis von η/s in hadronischer Materie nahe des Phasenübergangs,
das ein qualitativ anderes Verhalten als ein Hadrongas mit den bekannten Resonanzen aufweist.

Außerdem wird gezeigt, dass man aus den gemessenen Teilchenverhältnisse nicht-trivialen
Informationen über die kritische Temperatur des QCD-Phasenübergangs ableiten kann. Dies er-
reichen wir durch die Hinzunahme äußerst massiver Hagedornzustände, die im Allgemeinen dazu
verwendet werden, die Anzahl der gebildeten Hadronen zu beschreiben. Diese Hinzunahme der
Hagedornzustände bewirkt eine Abhängigkeit der thermischen Fits von der Hagedorntemperatur
TH sowie eine Verbesserung der thermischen Fits. Eines der zentralen Ergebnisse dieser Arbeit
ist, dass für Au+Au Kollisionen am RHIC mit einer Schwerpunktsenergie von

√
sNN = 200 GeV

der beste χ2-Fit bei einer Hagedorntemperatur von TH ∼ Tc = 176 MeV auftritt und zu einer
chemischen Ausfriertemperatur von 172.6 MeV sowie einem baryonischchemischen Potential von
39.7 MeV führt.
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Chapter 1

Introduction

Albert Einstein once mused,

“The important thing is not to stop questioning. Curiosity has its own reason for
existing. One cannot help but be in awe when he [or she] contemplates the mysteries
of eternity, of life, of the marvelous structure of reality. It is enough if one tries
merely to comprehend a little of this mystery every day. Never lose a holy curiosity.”

It is mankind’s curiosity that has driven us to study the origins of our universe. The Hubble
constant and cosmic microwave background radiation allude to an expanding universe, which
leads to the natural question: what are we expanding away from? Our early universe was most
likely an extremely hot and dense form of matter. In the first moments after the big bang this
thick, scalding hadronic soup consisted of the basic building blocks of matter: quarks and gluons.
The asymptotic freedom [1] property of Quantum Chromodynamics (QCD) predicts that such
a phase of deconfined quarks and gluons, known as the Quark-Gluon Plasma (QGP), exists [2].

Unlike the early universe, visible mater, which is what planets and stars are composed of
and accounts for 5% of the universe’s mass [3], consists of hadrons. Below the critical temper-
ature (region) quarks and gluons are confined within hadrons. Since quarks are each given an
individual color, every hadron must be color neutral. Excluding exotic, hypothetical particles,
hadrons are either mesons (a quark and anti-quark where the two colors cancel such as blue and
anti-blue) or baryons (three quarks where a red, green, and blue color quarks combine to create
a “white”, color neutral hadron).

Because our visible world is limited to confined matter, we cannot directly measure the
properties of quarks and gluons. Thus, we are forced to look for signals in the later stages of
a man made cooled fireball following its hadronization. Comparisons must be made between
what could be experimentally measured from a pure hadronic phase e.g. in p+p collisions
versus an initial QGP phase that has cooled into a hadron gas, e.g., Au+Au or CuCu collisions
at RHIC. Some of the common signals for QGP are jet quenching, strangeness enhancement,
charm suppression, and collective flow.
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Figure 1.1: Observed energy dependence of the midrapidity particle densities from AGS, SPS, and
RHIC. Figure taken from [7].

1.0.1 Experiments

Over the past 30 years heavy ion collisions have probed the extremes of hadronic matter. Bevalac,
SIS, and AGS were the precursors to SPS [4] and RHIC [5], which have provided possible
experimental evidence for QGP. The current generation of physicists now away impatiently
for the data from LHC [6], which will push our experimental search to even further energies.
Relevant specifically to this is SPS at CERN, which explored collision energies up to

√
s ≤ 20

GeV with the experiments NA49/35, NA50/38, CERES/NA45, WA98/80, and NA57/WA97.
RHIC at BNL, which collided p+p, d+Au, Au+Au, and Cu+Cu for the energy range

√
s =

20− 200 AGeV, and LHC, which plans to reach collisions with energies above
√
s > 1 TeV.

In Fig. 1.1 a graph of the measured multiplicities of the various experiments and their
dependence on collision energy is shown. It is rather surprising that heavy ion collisions follow
such a linear behaviour in their relationship of particle densities as functions of the energy.
Morever, it is striking that p + p̄ data differs significantly from this linear behavior because of
the difference of a possible QGP medium [7].

1.0.2 The Deconfinement Phase Transition in QCD

In order to find the deconfining phase transition one looks for a rapid change in the thermody-
namic quantities such as the energy density, pressure, and entropy. This rapid change occurs
because the number of degrees of freedom changes significantly at the phase transition. Below
the critical temperature, Tc, there are roughly three degrees of freedom, which correspond to the
3 charge states of pions. However, above Tc, there are eight gluons with two helicity degrees of
freedom each and for the quarks there are roughly three active light flavors at T just above Tc

with a corresponding quark and anti-quark, two spin states, and three colors each, which gives
a total of 16 degrees of freedom for the gluons and 36 degrees of freedom for the quarks. QGP
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Figure 1.2: Energy and pressure from the RBC-Bielefeld collaboration calculated on the lattice [8].

as a whole has a total of 52 degrees of freedom, which differs significantly from the three in the
hadron gas phase. Therefore, because the thermodynamic properties are proportional to the
degrees of freedom, a rapid increase in the energy density, pressure, and entropy over a small
change in the temperature signifies a phase transition from the hadron gas phase to QGP.

The order of the phase transition can be determined by the presence of discontinuities in the
derivatives of the free energy. A first order phase transition occurs when there is a discontinuity
in the first order of the free energy and these systems involve latent heat, whereas a second
order phase occurs when there is a discontinuity in the second derivative of the free energy
(the first derivative is continuous) and the system has no latent heat but does has a divergent
susceptibility. A crossover occurs when both the first and second order derivatives are continuous
but a rapid change still occurs.

Recent lattice results reveal sharp increases in the energy density (and the pressure and
entropy) over very short temperature ranges as seen in Fig. 1.2 and Fig. 1.3. The RBC-Bielefeld
collaboration has a higher critical temperature region that ranges from about T = 180 − 200
MeV [8] whereas the BMW collaboration has a lower critical temperature region centered at
T = 176 MeV [9]. However, a crossover is most likely with dynamical quarks (see [10] and
the references therein), which means there is a critical temperature region rather than a specific
critical temperature. Thus, depending on what variables are observed in lattice QCD, a different
critical “temperature” is found. In Fig. 1.4 one can see the cross-over at low baryon chemical
potential and high temperatures, which is the region we are interested in. In the scenario of a
rapid crossover, the bulk properties of the system emulate those of a first order phase transition.

1.1 Signals of Quark Gluon Plasma

Some of the primary signs of QGP are jet quenching, strangeness enhancement, charm suppres-
sion, and collective flow effects. The most integral ones to this thesis are strangeness enhance-
ment and collective flow effects, both of which can be discussed in the context of Hagedorn
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Figure 1.3: Energy and pressure from the BMW collaboration calculated on the lattice [9] .
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Figure 1.4: Schematic QCD phase diagram.

states. Thus far, the effects of Hagedorn states on jet quenching and charm suppression have
not been studied so we leave this as an interesting problem for the future.

Charm suppression (the most famous example is J/Ψ melting [11]) was thought to be a signal
of QGP. The idea was that at the onset of the deconfined phase the screening radius would be
less than the binding radius of the quark system for J/Ψ, which consists of a cc̄ pair. Then the
quarks can no longer interact and J/Ψ would no longer exist. Instead, c and c̄ will combine with
other flavored quarks and produce open charm pairs e.g. cū. Within the hadron gas phase it
is possible to produce J/Ψ’s through multiple interaction channels. Thus, while J/Ψ’s are not
produced within the QGP phase, they are mostly produced within the hadron gas phase.

1.1.1 Jet Quenching

Immediately following the collisions before QGP reaches equilibrium, jet pairs of quarks can be
formed. If a pair of jets are formed near to the surface, then one jet immediately leaves the
QGP while only minimally being affected by the medium (known as the near-side jet) whereas
the other jet (known as the away-side jet) must pass through the medium meanwhile undergoing
Bremsstrahlung and multiple elastic collisions. The basic idea of jet quenching is that high pT
jets can be seen as “external” probes that can be uniquely used to probe the QGP medium.

In collisions where no QGP medium is present (such as ordinary p+p collisions) both jets can
be observed as seen in Fig. 1.5 for both p+p and d+Au collisions where there is clearly a peak
at 0 (the near-side jet) and π (the away-side jet). However, for the central Au+Au collisions,
the away-side jet is quenched, which can be seen by the lack of a hump between Δφ = 2 − 4
radians in Fig. 1.5.

Moreover, jets can be used as a tomographic tool to determine the initial densities of partons
within QGP. For instance, looking at PHENIX π0 data [13] using GLV opacity formalism [14, 15]
it can be shown that initial gluon density must be dNg/dy ≈ 1000±200. Additionally, this initial
dNg/dy agrees well with other measurements from: the initial entropy derived from the Bjorken
formula [16] for the the measured multiplicity, the initial conditions of QGP in hydrodynamics
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needed to reproduce the elliptic flow found in experiments, and the estimate for the maximum
gluon rapidity density from CGC gluon saturated initial conditions (see [17] and references
therein).

However, there still remains a problem to be understood within the context of energy loss.
A comparison between the energy loss in p+p and Au+Au can be made in order to compare
the effects of the medium on the energy loss of the jet. The nuclear suppression factor, RAA

provides just such a tool and it is defined as

RAA =
dNAA/dpTdy

TAA(b)dσNN/dpT dy
(1.1)

where TAA(b) is the nuclear thickness function and σNN is the cross-section. It was thought that
the energy loss for the jets should be strongly mass dependent because at RHIC heavier quarks
would not be able to reach speeds as close to the speed of light as lighter quarks would be able
to. Thus, it was thought that lighter quarks should undergo a more significant energy loss and,
therefore, have a smaller RAA than heavier quarks. However, in the experiment it appears that
the measured RAA is equivalent to that of light quarks [13], which still remains a puzzle [15].

Looking at non-photonic single electron data, which is an indirect probe of heavy quark
energy loss, a larger suppression of electrons than predicted was found in the range pT = 4− 8
GeV. In Fig. 1.7 a comparison of the calculated RAA from STAR [18] and PHENIX [19] data in
central Au+Au reactions at 200 AGeV to the calculated RAA from charm and bottom quarks
using the opacity formalism DGLV [20, 21]. When only radiative energy loss is considered the
amount the jet suppression is underpredicted. Including other energy loss mechanisms such as
elastic energy loss does help but also still underpredicts the energy loss because the fluctuations
of the jet path length in general increase RAA [15].
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1.1.2 Collective Flow

In order to produce QGP within the lab two heavy nuclei are accelerated and then collided
at ultrarelativistic energies. Following the collision thousands of hadrons are produced and
their flow behavior can be used to determine how strong the interactions are. The stronger the
coupling the larger the flow, which means that in a plasma composed of non-interacting quarks
and gluons the flow would be zero.

Originally, it was thought that the QGP should be weakly intereacting, which would indicate
that the elliptic flow (also known as “v2”, see below) should be large. However, as shown in
[22] the binary parton cross sections required reproduce elliptic flow data, which is larger than
was expected, are an order of magnitude larger than the usual perturbative estimates, which
suggests that the partons in the medium are strongly interacting. However, it has been shown
that the inclusion of inelastic 2− 3 gluon reactions can considerably increase the flow and lead
to an overall agreement with the large v2 seen in Au+Au collisions at

√
s = 200AGeV at RHIC

[23] as seen in Fig. 1.8.

The collective flow components are determined from the azimuthal dependence of the mul-
tiplicity

dNh(Np)

dydp2
T dφ

=
dNh(Np)

dydp2
T

1

2π
[1 + 2v1(y, pT , Np, h) cos φ+ 2v2(y, pT , Np, h) cos 2φ+ ...] (1.2)

where v1 is the directed flow, v2 is the elliptic flow, h is the distribution of hadrons (such as π’s,
K’s, p’s, etc. ), Np is the average number of participating nucleons. The azimuthal angle is the
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Figure 1.7: Comparison of RAA derived from non-photonic electrons from the decay of quenched heavy
quark (c+b) jets at RHIC from the STAR [18] and PHENIX [19] data in central Au+Au reactions at 200
AGeV to the calculated energy loss using DGLV [20, 21]. Shaded bars indicate systematic errors, while
thin error lines indicate statistical ones. The upper yellow band from [21] takes into account radiative
energy loss only, using a fixed L = 6 fm; the lower yellow band includes both elastic and inelastic energy
losses as well as jet path length fluctuations. The bands provide a rough estimate of uncertainties from
the leading log approximation for elastic energy loss. The dashed curves illustrate the lower extreme
of the uncertainty from production, by showing the electron suppression after both inelastic and elastic
energy loss with bottom quark jets neglected. Figure taken from [15].
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Figure 1.8: Elliptic flow v2(|y| < 1) from BAMPS using αs = 0.3 and 0.6, compared with the RHIC
data [5]. Figure taken from [23].
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angle around the beam axis for the collision and it is measured relative to a globally determined
estimate for the collision reaction plane angle.

Collective flow should provide insight into how far away the system is from local equilibrium.
Hydrodynamics can only be applied after the QGP has reached local equilibrium and this defines
a plasma thermalization time (say 1 fm/c), which is taken as an initial parameter in hydrody-
namics simulations. Ideal hydrodynamics is only applicable when local thermal equilibrium can
be maintained. Viscous corrections can be neglected if the typical scattering mean free path is
much smaller than the length scale defined by the spatial gradients of the flow field. Otherwise,
viscous corrections may be included via an expansion in powers of the gradient of the flow.

The degree of thermalization is then checked by using various initial conditions in hydrody-
namic simulations and comparing the results to experimental data. Currently, the most popular
models for the initial conditions are the color glass condensate (CGC) [24, 25, 26, 27] and
the Glauber model [28]. The initial eccentricity plays an important role in final v2 coefficient
computed within hydrodynamics. Since CGC models have a large initial eccentricity than the
Glauber model, it may not be surprising that when the two initial conditions are compared v2

for CGC initial conditions is roughly a factor of 2 larger than for Glauber initial conditions for
the same shear viscosity to entropy density ratio, η/s, [29].

Because hydrodynamics requires having the equation of state as an input parameter, the
validity of the equation of state itself can be tested. For instance, the flow pattern at RHIC
energies is consistent with the numerical equation of state from Lattice QCD. Initially, the
equation of state used for hydrodynamics was that for an ideal gas of quarks and gluons, � = 3p.
However, it is now possible to use more complicated equations of states such as a combination
of a hadron gas with Hagedorn states and lattice data [30], which is analyzed in [31]. A more
thorough discussion can be found in [32].

Recent results at BNL at RHIC have been interpreted as providing evidence that the most
perfect fluid in nature appears in Au+Au collisions. This is striking and completely unprece-
dented. Apparently, one has to use gold to strike gold (note that SPS used lead). The indication
of near perfect fluid behavior arises from the fact that hydrodynamic simulations using a very
small ratio of viscosity to entropy density can fit the RHIC data. The idea from hydrodynamic
simulations is that given a set of initial conditions the transport properties of the QGP can
be found by fitting the numerical predictions to experimental data. For Glauber-type initial
conditions a small η/s (somewhere between η/s = 0.03−0.16) is seen when v2 is fitted to exper-
imental data from PHOBOS [33] and STAR [34] as shown in Fig. 1.9 taken from [29] whereas
CGC allows for a larger η/s. Recall, though, that in [23] it was shown that including inelastic
2− 3 gluon reactions can also explain the v2 seen in the datat (see Fig. 1.8).

1.1.3 Strangeness Enhancement

(Anti-)strangeness enhancement was first observed, primarily in anti-hyperons and multi-strange
baryons, however, also in kaons, at CERN-SPS energies in comparison to p+p data. Originally,
it was considered a signature for QGP because using binary strangeness production reactions
such as

π + p̄↔ K̄ + Λ̄ (1.3)
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Figure 1.10: Production of hadrons through binary collisions. Graph taken from [40].

and binary strangeness exchange reactions

K + p̄↔ π + Λ̄ (1.4)

chemical equilibrium could not be reached within the hadron gas phase [35]. The estimated time
scale of chemical equilibration for binary reactions within a hadron gas model was τ ≈ 1000
fm/c [35] (see Fig. 1.10), which is significantly longer than the estimated lifetime of a hadronic
fireball of about 10 fm/c (see later discussion in Chapter 3 about the expansion of an hadronic
fireball). In [35] rate equations were employed to estimate the time scale of the strange particles.
Moreover, the abundancies after a typical hadron lifetime where somewhere between 20-100 times
lower than the calculated chemical equilibrium values [35].

However, looking into the quark gluon plasma phase, the quarks and gluons can efficiently
produce strange particles. The production of ss̄ quarks at the lowest order of perturbation
QCD is through the collision of 2 gluons or the annihilation of a light anti-light quark pair, as
seen in Fig. 1.11. From the diagrams shown in Fig. 1.11, the invariant matrix elements can
be calculated, which leads to the corresponding cross-sections. Including the cross sections in
rate equations it was found that reactions involving gluons in the deconfined phase could more
quickly produce strange quarks. Therefore, it was conjectured that strangeness enhancement
was a signal for deconfinement because gluon fusion would be the primary contributor to the
abundance of strange particles following hadronization and rescattering of strange quarks [35].
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Figure 1.11: Feynman diagrams showing the production of strange quarks. The dashed lines represent
light quark flavors, the solid lines strange quarks while the wavy lines are the gluons.
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Figure 1.12: Production of anti-hyperons at SPS using multi-mesonic reactions. Graph taken from [37].

At the time it was assumed that multi-mesonic collisions would not play a significant role
in strangeness production because their cross section would be too small. However, Rapp and
Shuryak showed in [36] that for SPS energies it is possible for multi-pions to interact and form
anti-baryons, for example,

p̄+N ↔ nπ, (1.5)

which has a cross-section of σρp̄ ≈ 50 mb. Using a rate equations, one finds that the chemical
equilibration time is proportional to the inverse of the thermal reaction rate (see Chapter 3 and
Appendix C)

τp̄ =
1

��σp̄+N↔nπvp̄N ��ρN
≈ 1− 3 fm/c. (1.6)

There the baryonic density is ρB ≈ ρ0 to 2ρ0, which is typical for SPS.
Furthermore, Greiner and Leupold extended this idea to anti-hyperons, which could have

the following reactions:

Σ̄, Λ̄ +N ↔ nπ +K

Ξ̄ +N ↔ nπ + 2K

Ω̄ +N ↔ nπ + 3K, (1.7)
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in Ref. [37]. The anti-hyperons (as shown in Fig. 1.12) can also be rewritten into the general
equation

Ȳ +N ↔ nπ + nY K, (1.8)

which also gives time scales on the order of Eq. (1.6). Therefore, due to multi-mesonic collisions,
the chemical equilibration time scales are short enough to account for chemical equilibration
within a cooling hadronic fireball at SPS energies.

A problem arises if we use the same multi-mesonic reactions in the hadron gas phase at RHIC
temperatures where experiments show that the particle abundances reach chemical equilibration
close to the phase transition [38]. At RHIC, assuming T = 170 MeV, we use Eq. (1.6) where
σ ≈ 30 mb and ρeqB = ρeq

B̄
≈ 0.04 fm−3 (Note that at RHIC there is approximately and equal

number of baryons and anti-baryons [5]. Additionally, the density can be calculated with the
context of a grand canonical model.), and find that the equilibrium rate of Ω is τΩ ≈ 10 fm

c ,

which is considerably longer than the fireball’s lifetime of τ < 4 fm
c in the hadronic stage.

Moreover, τΩ ≈ 10 fm
c was also obtained in Ref. [39] using the fluctuation-dissipation theorem

and Ref. [40] found thrice lower populations than experiments for various anti-hyperons in the
5% most central Au+Au collisions as shown in Fig. 1.13 (also see [41]). These discrepancies led

Figure 1.13: Anti-lambda production in the most central collisions at RHIC. The bottom three dashed
lines start with no anti-lambdas at T = 180 MeV whereas the solid lines assume that the anti-lambdas
begin in equilibrium. The shaded area shows the experimental results. The set of lines shows the difference
for varying coupling coefficients. Graph taken from [40].

to the suggestion that the hadrons are “born” into equilibrium i.e. the system is already in a
chemically frozen out state at the end of the phase transition [42, 43].
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Overpopulated Mesons

It was suggested in [41] that it may be be possible to overpopulate the mesons (specifically,
pions and kaons) in order to rapidly produce anti-baryons close to Tc. However, in [41] only the
gain in anti-baryons is considered, which ignores the importance of detailed balance. According
to detailed balance, the rate for the loss terms must be the same as that of the gain terms.
Therefore, loss terms are of vital importance and cannot be ignored. Moreover, because the loss
term is not included the anti-baryons are drastically overpopulated [44]. To understand this
consider a stand multi-mesonic reaction

Ȳ +Ω↔ n1π + n2K (1.9)

where Ȳ is an anti-baryon, n1 is the number of pions in the reaction and n2 is the number of
kaons. Because strangeness needs to be conserved this would then be dependent on the number
of strange quarks in Ȳ . Assuming that Ȳ is a light baryon, we take n2 = 3 and can describe the
reaction through the rate equation

ṄΩ = −�σΩȲ vΩȲ �

�

NȲ NΩ −
N eq

Ȳ
N eq

Ω

(N eq
π )

n1 (N eq
K )

3

�

n1

BȲ Ω↔n1π3K (Nπ)
n1 (NK)3

�

, (1.10)

which we can rewrite using λ = N/N eq

λ̇Ω = −�σΩȲ vΩȲ �N
eq
Ȳ

�

λȲ λΩ −
�

n1

BȲ Ω↔n1π3K (λπ)
n1 (λK)3

�

. (1.11)

If one then overpopulates the pions and kaons by a factor of α while holding them constant, i.e.
by ignoring back reactions, one can then substitute in λπ = α and λK = α. Additionally, for
simplicity’s sake we assume n1 = 2,

λ̇Ω = −�σΩȲ vΩȲ �N
eq
Ȳ

�
λȲ λΩ − α5

�
. (1.12)

When the Ω’s reach chemical equilibrium, λΩ = 1

λ̇Ω = −�σΩȲ vΩȲ �N
eq
Ȳ

α5
�
λȲ

α5
− 1

�

. (1.13)

However, rate equations require that at chemical equilibrium at fixed point is reached, therefore,

λȲ = α5, (1.14)

which is enormous. If α = 2, the anti-baryons would be 32 times larger their its equilibrium
value! Clearly, an overpopulation of that magnitude would be see in experiments. However,
that is not the case because of results from thermal fits [45, 46], which indicate that the hadrons
match chemical equilibrium extraordinarily well. Furthermore, as we will show in Chapter 3,
due to Hagedorn states the initial conditions of the hadrons following the phase transition are
irrelevant to the chemical equilibration.
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1.2 Hagedorn States

“One day, which I [Torleif Ericson] remember vividly, some time in 1964, I ran into
you, Rolf [Hagedorn]. You were just bubbling over to a degree I have not seen you
ever. Your eyes were quite bright, and you described to me all these fireballs: fireballs
going into fireballs living on fireballs forever and all in a logically very consistent way.
This must have been only a few days after you had invented the statistical bootstrap
pictures. I really had the impression of a man who had just found the famous stone
of the philosophers, and that must have been exactly how you felt about it. Clearly,
you recognized at once the importance of the novel idea you introduced there. It
was very interesting to observe, Rolf, how deeply you felt about it yourself from the
very beginning.” [47]

Indeed, Rolf Hagedorn came up with the idea that the hadron mass spectrum should follow an
exponential law in the 1960’s [48]. We now refer to these resonances as Hagedorn states where
the very massive resonances may appear only close to the critical temperature because they are
exponentially suppressed at lower temperatures. Their large masses open up the phase space for
multi-particle decays. A recent analysis of the experimental evidence for the Hagedorn spectrum
can be found in [49] and a graph of the mass spectrum of the known particles is shown in Fig.
1.14. Moreover, thoughts on observing Hagedorn states in experiments are given in [50] and
their usage as a thermostat in [51]. Depending on the intrinsic parameters, Hagedorn states can
also be used to trigger the order of the phase transition [52, 53].

Bound and resonance states are due to strong interactions and all of them (including not-yet
discovered ones) must be included in order to simulate all the attractive hadronic interactions
[54]. Likewise, repulsive interactions must also be included and that can be done so through vol-
ume corrections [54]. According to Hagedorn, the full spectrum is then obtained by considering
clusters that are formed of clusters [48]. Thus, Hagedorn proposed [48]

g(M) =

� M

M0

A

[m2 + (m0)2]
5
4

e
m

TH dm (1.15)

to obtain the spectra from p−p and π−p scatterings where TH MeV is the Hagedorn temperature.
At that time resonances were only known up to Δ(1232). From that he ended up with a Hagedorn
temperature of TH ≈ 160 MeV.

Hagedorn’s understanding of a strongly interacting gas was known as the statistical bootstrap
model. Essentially, a strongly interacting gas is replaced with a non-interacting ideal gas of an
infinite number of clusters that follow an exponential mass spectrum and where Van der Waals
volume corrections are included [54].

The possibility then exists of heavier and heavier bound and resonance states that are com-
posed of lighter ones, while at the same time these heavy states can also be a constituents of
yet another still heavier resonance. These states are then described by their mass. Writing the
partition function for such a system with a heat bath of temperature T and a volume of V , we
have

Z = exp

�� ∞

0
ρ(m)F (m,T ) dm

�

(1.16)
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Figure 1.14: The mass spectrum of known particles is shown in the solid green line. One can see that
it follows and exponentiall behavior up until a little bit below M = 2 GeV. Graph taken from [49].

where the calculation of Z must include the sum over all possible particles and by introducing
the number of hadron states between m and m+ dm, i.e., ρ(m)dm. The function F (m,T ) is a
known function.

Alternatively, the partition can be generally expressed as

Z = exp

�� ∞

0
ρ(m)F (m,T ) dm

�

(1.17)

where σ(E) is the number of states between E and E + dE. Because we stay in the rest frame
of the fireball, E = m. Thus, σ(m) is the number of states in the mass interval {m,dm} and
ρ(M) is the number of hadron states in the inteval {m,dm}. If fireballs truly are consisting of
other fireballs, than

ln ρ(m)

lnσ(m)
−−−→m→∞1, (1.18)

which implies that for m →∞ the entropy of the fireball is the same function of its mass as is
the entropy of the fireballs of which it is composed of.

In order for Eq. (1.18) to hold, the function F (m,T ) must fall off asymptotically e.g.

F (m,T ) = m5/2e−
m
T . (1.19)

Equating Eq. (1.16) and Eq. (1.17),

Z = exp

�� ∞

0
ρ(m)m5/2e−

m
T dm

�

= exp

�� ∞

0
ρ(m)F (m,T ) dm

�

, (1.20)

which is only consistent if both ρ and σ grow exponentially. Therefore,

ρ(m)−−−→m→∞
const

m5/2
e

m
TH (1.21)
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where TH is the limiting temperature and the partition function diverges for T > TH . We refer
to TH as the Hagedorn temperature. Note that Eq. (1.19) is an ansatz and other forms could
be used, which would result in alternative forms for ρ(m).

“Most of the physicists are recognized rapidly after their contribution. After that
quick recognition, their impact as time goes on gets disseminated and integrated, and
people often notice it less and less. With Rolf [Hagedorn], the opposite happened.
It is like the best of wines. It is not so palatable in the early years, but as time goes
on it just gets more and more remarkable.” [47]

Again, Ericson’s word ring true about Hagedorn’s remarkable discovery. Recently, we have found
that Hagedorn states can account for quick dynamical chemical equilibration times within the
hadron gas phase [55, 56, 57, 58, 59]. Also, Hagedorn states have been shown to contribute to
the physical description of a hadron gas close to Tc. The inclusion of Hagedorn states leads to
a low η/s in the hadron gas phase [30, 60], which nears the supergravity bound η/s = 1/(4π)
[61]. Calculations of the trace anomaly including Hagedorn states also fits recent lattice results
well and correctly describe the minimum of the speed of sound squared, c2s, near the phase
transition found on the lattice [30]. Estimates for the bulk viscosity including Hagedorn states
in the hadron gas phase indicate that the bulk viscosity, ζ/s, increases near Tc, which agrees
with the general arguments of [62]. Furthermore, it has been shown [63, 64] that Hagedorn
states provide a slightly better fit within a thermal model to the hadron yield particle ratios.
Additionally, Hagedorn states provide a mechanism to relate Tc and Tchem, which then leads to
the suggestion that a lower critical region centered at T ≈ 170 MeV could possibly be preferred
by experimental data, according to the thermal fit analyses [63].

1.2.1 Hagedorn Temperature in Bosonic String Theory

The existence of an infinite number of resonances with an exponentially increasing mass spectrum
is difficult to prove experimentally. Currently, resonances can be measured consistently up to
about 2.5 GeV [65]. However, it is quite possible that resonances exist on extremely short time
scales with a mass of 10 GeV or even higher. Recent attempts have been made to prove that
the density of mesonic states in QCD follows a Hagedorn like behavior [66].

It is clear, however, that such an exponentially rising density of states should appear in
the confined phase of QCD. The heuristic argument for that is the following. It is known
experimentally [65] that the masses of radially excited ρ mesons increases linearly with the radial
quantum number, i.e., M2 ∼ N . However, a highly excited meson can be roughly described
as an ultrarelativistic quark-antiquark pair connected by a confining flux tube (which appears
due to the linear potential between the quarks in the confined phase). Because of the linear
potential, the energy of this configuration, or its mass, should be M ∼ σL, where σ is the string
tension and L is the size of the meson. However, in a semi-classical approximation, one can use
the Bohr-Sommerfeld quantization rule

�
p dx ∼ N (which implies that ML ∼ N) to derive that

M2 ∼ σN . This qualitative understanding of mesons as relativistic strings is especially useful
because another important behavior of mesons can be obtained from this analogy: the existence
of an exponentially increasing density of states associated with a Hagedorn temperature. In fact,
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we shall show in the following that a system of relativistic bosonic strings possesses a Hagedorn
temperature. We will take this as an indication that QCD should also display this behavior.

The following derivation is taken from [67]. In order to derive the Hagedorn temperature
we use relativistic open strings that carry no spatial momentum. Additionally, we will use
a microcanonical ensemble to describe the thermodynamics of the string modes. Recall from
thermodynamics that a microcanonical ensemble is a composition of copies of a system, A, which
is in isolation with a fixed energy E. The number of possible states of A with the energy E is
Ω(E), and, thus, the entropy is defined as (we use natural units h̄ = kB = 1):

S(E) = lnΩ(E) (1.22)

where k is the Boltzmann’s constant. Additionally, in the previous paragraph we heuristically
justified that we should see the relationship M2 ∼ N . In [67] the exact mass expression is
derived

M2 =
1

α�

�
N⊥ − 1

�
≈

N⊥

α�
(1.23)

where α� = l2s and ls is the string length. Since E = M ,

√
N⊥ =

√
α�E. (1.24)

Therefore, we can now talk about the total number of states in terms of a function of the square
root of the number of excitations of a string, i.e.,

Ω(E)→ Ω(
√
N). (1.25)

Ω(
√
N) can be found by first looking at a quantum non-relativistic string, which has the number

of partitions p(N) where p(N) = Ω(
√
N). In Appendix A we derive p24(N) for the number of

partitions of large integers where the 24 is for the number of dimensions for a bosonic string
such that

p24(N) ≈
1
√
2
N−27/4 exp

�
4π
√
N

�
. (1.26)

Then, using Eq. (A.30), we can find the entropy within the microcanonical model

S(E) = 2π

�

24N⊥

6
= 4π

√
N⊥

= 4π
√
α�E. (1.27)

We can then find the temperature using standard thermodynamics

TH =

�
∂S

∂E

�−1

=
1

4π
√
α�

(1.28)

where TH is the thermal energy associated with the Hagedorn temperature.



1.3. Outline 27

1.3 Outline

This thesis is organized as follows. In Chapter 2 we explain how we obtain the chemical equilib-
rium values for the particles (both the standard hadrons and highly massive Hagedorn states)
through a grand-canonical model, which can be used to determine the thermodynamics of the
fireball. Furthermore, cooling effects are included using Bjorken expansion. We solve master
equations to describe out of equilibrium dynamics. In Chapter 3 the hadrons are allowed to
dynamically reach chemical equilibrium via resonance decays of Hagedorn states and we find
that they match experimental data well.

In Chapter 4 we derive η/s for a hadron gas that includes Hagedorn states and it is found
that in this case this ratio is close to the string theory value 1/4π [61]. Furthermore, the equation
state in the hadronic phase including Hagedorn states is compared to lattice and it is found that
it matches almost perfectly at Tc. Finally, a comment is made on the bulk viscosity to entropy
ratio within our model.

In Chapter 5 thermal fits are calculated for a hadron gas both with and without Hagedorn
states with M > 2 GeV included. When these highly massive Hagedorn states are included the
fits appear to be improved for low values of the QCD critical temperature.

I provide a discussion of my results in Chapter 6 as well as possible continuations of this
work that would be relevant to future physics. Additionally, I have included further background
information for the derivation of Hagedorn states in bosonic string theory in Appendix A, the
derivation of the kubo formula for shear and bulk viscosities is shown in Appendix E, an expla-
nation and derivation of master equations is given in Appendix C, and the analytical derivation
of estimates for the chemical equilibration times in Appendix D.
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Chapter 2

Model

Hagedorn states are massive resonances that have large decay widths, which open up the phase
space to multi-particle collisions. Because they decay so quickly they can catalyse quick reactions
between hadrons that would otherwise have smaller cross-sections and take longer to reach
chemical equilibrium. These reactions follow the general form

nπ ↔ HS ↔ nπ +XX̄ (2.1)

where XX̄ = pp̄, KK̄, ΛΛ̄, or ΩΩ̄. Our idea is that these very massive Hagedorn states exist,
as pictured in Fig. 2.1, and are so large that they decay almost immediately into multiple pions
and XX̄ pairs.

2.1 Description of the Model

Hagedorn states have an exponential mass spectrum, which is described by Eq. (1.15). It is
repeated here for convenience

g(M) =

� M

M0

A

[m2 + (m0)2]
5
4

e
m

TH dm. (2.2)

We note that in this work we consider only mesonic Hagedorn states with no net strangeness.
The exponential in Eq. (1.15) arises from Hagedorn’s original idea that there is an exponentially
growing mass spectrum. Thus, as TH is approached, Hagedorn states become increasingly more
relevant and heavier resonances “appear”. The factor in front of the exponential may appear
in various forms [49, 51]. While the choice in this factor can vary, it was found in [49] that the
present form gives lower values of TH , which more closely match the predicted lattice critical
temperature [8, 9, 68]. Further discussion on the parameters can be found in [69].

Returning to Eq. (1.15), we assume that TH = Tc, and then we consider the two different
different lattice results for Tc: Tc = 196 MeV [8, 68], which uses an almost physical pion mass,
and Tc = 176 MeV [9]. Furthermore, we need to take into account the repulsive interactions
and, therefore, we use the following volume corrections (as also seen in [30, 70, 71]):

T =
T ∗

1−
ppt(T ∗, µ∗

b)
4B

29
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Figure 2.1: Hagedorn states decay into multiple pions and a BB̄ pair.
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which ensure that the our model is thermodynamically consistent. In the equations above, the
subscript “pt” denotes the value of the given quantity computed without the volume corrections.
Note that B is a free parameter that is based upon the idea of the MIT bag constant. The
derivation of Eq. (2.3) is shown in Appendix B.

In order to find the maximum Hagedorn state mass M and the “degeneracy” A, we fit
our model to the thermodynamic properties of the lattice. In the RBC-Bielefeld collaboration
the thermodynamical properties are derived from the quantity ε − 3p, the so-called interaction
measure, which is what we fit in order to obtain the parameters for the Hagedorn states. Thus,
we obtain TH = 196 MeV, A = 0.5GeV3/2, M = 12 GeV, and B = (340MeV)4. The fit for
the trace anomaly Θ/T 4 is shown in Fig. 2.2. We also show the fit for the entropy density
in Fig. 2.3. Both fits are within the error of lattice and mimic the behavior of the lattice
results. As discussed in [30], a hadron resonance gas model with Hagedorn states uniquely fits
the lattice data whereas a hadron resonance gas without Hagedorn states (but with excluded
volume corrections) completely misses the general behavior displayed by the lattice data. Here
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Figure 2.2: Comparison between the trace anomaly θ(T )/T 4 = (�− 3P ) /T 4 computed using a hadron
resonance gas model that includes Hagedorn states with 2 < M < 12 GeV [55] (solid black line) and a
hadronic gas model where only the known hadrons with M < 2 GeV are included (black dashed line)
[72]. The blue band between the curves is used to emphasize the effects of HS. Repulsive interactions
between the hadrons are included via an excluded volume approach [70] with B1/4 = 0.34 GeV. Lattice
data points for the p4 action with Nτ = 6 [8] are also shown.

we follow Hagedorn’s idea [54] and do not neglect the repulsive interactions between the hadrons.

BMW obtains the thermodynamical properties differently than RBC-Bielefeld and, therefore,
we fit only the energy density as shown in Fig. 2.4. From that we obtain TH = 176 MeV,
A = 0.1GeV3/2, M = 12 GeV, and B = (300MeV)4. We also show a comparison to the entropy
density in Fig. 2.5 Our results with the inclusion of Hagedorn states are able to match lattice
data near the critical temperature but do not match as well at lower temperatures in Fig. 2.2
and Fig. 2.3.

Note that lattice data does not include physical quark masses, which can affect the thermo-
dynamic properties of the lattice at lower temperatures (see [32]). If physical quark masses are
used, then the thermodynamic properties should improve, however they are not yet included in
the current lattice models.

The maximum mass M = 12 GeV is used in both cases because it is a limit on the precision
of the master equations. A maximum mass of greater than 12 GeV could be used but then
the reactions would have to be fundamentally changed. For instance, one could include decays
where multiple XX̄ pairs were produced at a time, i.e., HS ↔ n1π + n2XX̄

2.1.1 Master Equations

In order to describe the dynamics of Eq. (2.1) we use master equations. They are practical
because they give us a method to describe both the forward and back reactions, which ensures
that detailed balance is mantained. Moreover, the state of chemical equilibrium is a fixed point
of the rate equations. Additionally, master equations are naturally suited to describe multi-
particle reactions whereas the transport equations used in UrQMD [73], for example, are better
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Figure 2.3: Comparison of entropy density to lattice QCD results from [8, 68] where Tc = 196 MeV.
HS is in reference to our model including Hagedorn states.
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Figure 2.4: Comparison of energy density to lattice QCD results from [9] where Tc = 176 MeV. HS is
in reference to our model including Hagedorn states.



2.1. Description of the Model 33

Lattice

HS

140 160 180 200 220 240
0

2

4

6

8

10

12

14

T �MeV�

s�
T

3

Figure 2.5: Comparison of entropy density to lattice QCD results from [9] where Tc = 176 MeV. HS is
in reference to our model including Hagedorn states.

suited to describe the dynamics of binary collisions. A further discussion of master equations
can be found in Appendix C. Additionally, a discrete spectrum of Hagedorn states is considered,
which is separated into mass bins of 100 MeV. Each bin is described by its own rate equation.

The rate equations for the Hagedorn resonances Ni, pions Nπ, and the XX̄ pair NXX̄ ,
respectively, in Eq. (2.1) are given by

Ṅi = Γi,π

�
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 . (2.4)

The decay widths for the ith resonance are Γi,π (for the decay into multiple pions) and Γi,XX̄ (for
the decay into multiple pions and a XX̄ pair), the branching ratio is Bi,n (clearly

�
n Bi,n = 1),

and the average number of pions that each resonance will decay into is �ni�. The equilibrium
valuesN eq are both temperature and chemical potential dependent. However, here we set µb = 0,
which is a good approximation for collisions at large

√
s.

In the rate equation for the Hagedorn states in Eq. (2.4), Ṅi, the first term describes the
reaction HS ↔ nπ. Thus, the decay with for only the pions is used, Γi,π. The loss term,
hence the minus sign, is Ni for when a Hagedorn state decays into nπ and the gain term is

N eq
i

�
n Bi,n

�
Nπ

Neq
π

�n
for the case when nπ combine together to form a Hagedorn state. The

branching ratio enters the loss term because one needs to calculate the probability that the
Hagedorn state will decay into nπ and must also include all possible n’s. The second term
describes the decay HS ↔ nπ + XX̄ . The decay width, Γi,XX̄ , is specifically for decays with
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an XX̄ pair is included and, once again, the loss term is described by Ni. The gain term is

described by N eq
i

�
Nπ

Neq
π

��ni,x�
�

NXX̄

Neq

XX̄

�2

, which is similar to the gain term for HS ↔ nπ. However,

we do not include a branching ratio in it and isntead just include the average number of pions
a Hagedorn state could decay into. Furthemore, the XX̄ pairs are also included in the term.

The pion rate equation, Ṅπ, is similar to that of the Hagedorn states. The primary differences
are that the terms are multiplied by n to include the number of pions that a Hagedorn state
can decay into. Additionally the loss and gain terms are reversed because in this case the gain
occurs when the Hagedorn states decay, which is the opposite of the first master equation. The
final master equation for the XX̄ pairs only includes terms for the reaction HS ↔ nπ + XX̄
because the reaction HS ↔ nπ does not directly contribute to the total number of XX̄ pairs in

the system. As with the pions Ni is used as the gain term and N eq
i

�
Nπ

Neq
π

��ni,x�
�

NXX̄

Neq

XX̄

�2

is the

loss term. Only one pair is produced at a time so the equation is not multiplied by any factor.

Eq. (2.4) can also be represented by the respective fugacities (λi, λπ, and λXX̄), which are
found by dividing each total number by its respective equilibrium value, for example, λi =

Ni

Neq
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, (2.5)

In Eq. (2.5) one can easily see that at chemical equilibrium, i.e. when λ = 1, the right-hand side
of the rate equations approach zero.

While it can be argued that Hagedorn states are more likely to decay into a pair of particles
(e.g., a lighter Hagedorn state and another particle), these reactions are so quick that here we
consider only the end results, which are the multiple particles (mostly pions). This could, how-
ever, be later checked by putting binary collisions of Hagedorn states into a hadronic transport
code such as UrQMD. Then the cross-section could be described similarly to what is shown in
[74]. We leave this as a challenge for the future.

2.1.2 Branching Ratios

The branching ratio, Bi,n, is the probability that the ith Hagedorn state will decay into n pions.
Since we are dealing with probabilities, then

�
n Bi,n = 1 must always hold. We have the

condition that each Hagedorn resonance must decay into at least 2 pions. Thus, our average
number of pions must be normalized to ensure that n ≥ 2 and

�
n Bi,n = 1. The branching

ratios for the reaction HS ↔ nπ are described by a Gaussian distribution

Bi,n ≈
1

σi
√
2π

e
−

(n−�ni�)
2

2σ2
i , (2.6)
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which has its peak centered at �ni� and the width of the distribution is σ2.
Because the Hagedorn states that we consider here have not been measured experimentally

we cannot know their branching ratios. Future measurements of high exotic hadronic resonances
can be used to obtain these ratios in the future. In the meantime, we can, however, look at
statistical ensembles in order to estimate the branching ratios of the Hagedorn states. Following
the principle of (maximum) missing information, we assume here that the branching ratios can be
obtained from a microcanonical calculation. Such a description is, for instance, also appropriate
for describing the annihilation of p and anti-p.

Assuming a statistical, microcanonical branching for the decay of Hagedorn states, we can
take a linear fit to the average number of pions in Fig. 1 in Ref. [44] (multiplying π+ by three
to include all pions) to find �nπ� such that

�ni� = 0.9 + 1.2
mi

mp
(2.7)

is the average pion number that each Hagedorn state decays intowhere mp is the mass of the
proton. In the microcanonical model the volume is

V = Mi/ε (2.8)

where ε is the mean energy density of a Hagedorn state (taken as ε = 0.5GeV
fm3 ). Further discus-

sions regarding this can be found in [44, 75]. The width of the distrubtion is σ2
i = (0.5mi

mp
)2.

Both our choice in �n� and σ2 roughly match the canonical description in [76].
Furthermore, we have the condition that each Hagedorn resonance must decay into at least

2 pions. Because of the nature of a Gaussian distribution there is a non-zero probability that a
Hagedorn state can decay into less than 2 pions. Therefore, we calculate the percentage of the
distribution that falls below 2 pions and redistribute that over n ≥ 2 so that

�
n Bi,n = 1. This

in turn leads to a new �ni� and σ2
i , which we find by calculating

�ni� =
�

n

nBi,n (2.9)

and
σ2
i = �n2

i � − �ni�
2 (2.10)

Thus, after we normalize for the cutoff n ≥ 2, we have �ni� ≈ 3 − 34 and σ2
i ≈ 0.8 − 510.

Examples of the branching ratios can be seen in Fig. 2.6.
For the average number of pions when a XX̄ pair is present, we again refer to the micro-

canonical model in [44, 75] and see also Fig. 2.7. We use �nπ� but then readjust it to the average
pion number according to Fig. 2 in Ref. [44] for when a baryon anti-baryon pair is present (there
the distribution is for a resonance of mass m = 4 GeV). Thus,

�ni,x� =

�
2.7

1.9

�

(0.3 + 0.4mi) ≈ 2− 7. (2.11)

where mi is in GeV. In this paper we do not consider a distribution but rather only the average
number of pions when a XX̄ pair is present. We assume that �ni,x� = �ni,p� = �ni,k� = �ni,Λ� =
�ni,Ω� for when a proton anti-proton pair, kaon anti-kaon pair, ΛΛ̄, or ΩΩ̄ pair is present. Ideally,
�ni,k�, �ni,Λ�, and �ni,Ω� should be derived separately and that may possibly be done in a future
study using a canonical model.
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Figure 2.6: The average n, �ni�, and the standard deviation σ2
i for the branching ratios are shown.

2.1.3 Decay Width

We used a linear fit for the decay width similar to that used in Ref. [77] without considering
different isospins. To do so we find a linear fit to the light, non-strange, mesonic resonances
given in [65]. The error in the decay widths varies significantly for each resonance so much so
that it is impractical to use a χ2 fit because all the resonances but 3 would be ignored, which
would result in completely missing the rising behavior of the data see in Fig. 2.8. Additionally,
we do not consider the f0(600) because it is an extreme outlier with very wide error bars that
do not even come close to the same range as the other particles (see Fig. 2.8). For the fits
we only use resonances up to M = 2 GeV, which is reasonable considering that we make the
assumption that they are missing resonances above M > 2 GeV and, therefore, it’s only up to
M = 2 GeV that we can reasonable fit the decay widths. However in Fig. 2.8 we show all the
light, non-strange mesons to show that even above M > 2 GeV they still follow and increasing
behavior.

Because a χ2 fit is impractical, we do three different fits (one using the upper bound of the
error of the decay widths, one at the given decay width and one at the lower bound of the
error)to the data to see the dependence on Γi, the results of which are shown in section 3.2.1.
Throughout the rest of this work we use the given decay width value, which is

Γi[GeV ] = 0.15mi[GeV ]− 0.03, (2.12)

which ranges from Γi = 250 MeV to 1800 MeV. Fitting the lower end of the error bars one finds

Γlo
i [GeV ] = 0.15mi[GeV ]− 0.06, (2.13)

and fitting the higher end of the errors one finds

Γhi
i [GeV ] = 0.15mi[GeV ]. (2.14)
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Figure 2.8: Linear fit for the decay width for the light (non-strange), mesonic resonances.

The total decay width has been separated into two parts in Eq. (2.4): one for the reactions
HS ↔ nπ, Γi,π, and one for the reaction in Eq. (2.1), Γi,XX̄ , whereby

Γi = Γi,π + Γi,XX̄ , (2.15)

which ensures that Eqs. (2.4, 2.5) are zero at equilibrium. Then, the relative decay width Γi,XX̄

modeled after the decay width in reference Ref. [44] is the average number of XX̄ in the system
�X� multiplied by the total decay width Γi,

Γi,XX̄ = �X� Γi. (2.16)

Essentially, a fraction of the decay of the ith Hagedorn state goes into XX̄ (set by the number
of XX̄ the ith Hagedorn state on average decays into) and the remainder goes into pions. That
means that Γi,π is then

Γi,π = Γi − Γi,XX̄

= (1− �X�)Γi. (2.17)

We find �p� by linearly fitting the proton in Fig. 2 in Ref. [44] (see Fig. 2.7) so that

p = 0.058 mi − 0.10 (2.18)

where mi is in GeV and �p� ≈ 0.01 − 0.6. Thus, Γi,pp̄ is between 3 and 1000 MeV. Clearly, Γi,π

is then Γi,π = Γi − �p�Γi,π. Analogously for the kaons, the decay width is Γi,KK̄ = �K�Γi where

K+ = 0.075 mi + 0.047 (2.19)

where mi is in GeV, which is also taken from Fig. 2 in Ref. [44] (see Fig. 2.7). We find that
�K� = 0.2 to 0.95 [75, 44]. Thus, Γi,KK̄ is between 50 and 1700 MeV.

For Λ we use a canonical model assuming that the baryon number B = 0, the strangeness
S = 0, and the electrical charge Q = 0 in order to calculate the average number of Λ’s. The
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Figure 2.9: Average number of Λ’s and Ω’s (multiplied by 50). The Ω’s are calculated within our
canonical ensemble and the Λ’s are calculated both in our canonical ensemble and a micro-canonical
ensemble.

results are shown in Fig. 2.9. We find that our �Λ� is lower than that from the micro-canonical
ensemble in [44] (see Fig. 2.7), which is also shown in Fig. 2.9. This corresponds to a decay
width of Γi,ΛΛ̄ = 3− 250 MeV.

Furthermore, the average number of Ω’s is also shown in Fig. 2.9 from our canonical model
again assuming that the baryon number B = 0, the strangeness S = 0, and the electrical charge
Q = 0. In Fig. 2.9 we multiple �Ω� by 50 in order to better view the results. The resulting decay
width is Γi,ΩΩ̄ = 0.01 − 4 MeV.

2.1.4 Initial Conditions

The equilibrium values are found using a statistical model [72], which includes 104 particles
from the the PDG [65] (only light and strange particles). As in [72], we also consider the effects
of feeding (the contributions of higher lying resonances such as the ρ or ω resonances on the
number of “pions” in our system, i.e., N eq

π includes “all” the pions from resonances from the PDG
[65]). Feeding is also considered for the protons, kaons, and lambdas (Ω’s have no resonances).
Additionally, throughout this work our initial conditions are the various fugacities at t0 (at the
point of the phase transition into the hadron gas phase)

α ≡ λπ(t0) , βi ≡ λi(t0) , and φ ≡ λXX̄(t0) , (2.20)

which are chosen by holding the contribution to the total entropy from the Hagedorn states and
pions constant, i.e.,

sHad(T0, α)V (t0) + sHS(T0, βi)V (t0) = sHad+HS(T0)V (t0) = const. (2.21)

and the corresponding initial condition configurations we choose later can be seen in Tab. 3.2 in
the next chapter. sHad(T0, α) is the entropy density at the initial temperature, i.e., the critical
temperature multiplied by our choice in α. Because the hadron resonance is dominated by
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Figure 2.10: Entropy per pion for a hadron gas in chemical equilibrium within the fireball ansatz.

pions we can assume that α represents the initial fraction of pions in equilibrium. sHS(T0, βi)
represents the entropy contribution from the Hagedorn states at Tc multiplied by the initial
fraction of Hagedorn states in equilibrium. We hold α as a constant and then find the appropriate
βi.

2.1.5 Expansion

In order to include the cooling of the fireball we need to find a relationship between the tem-
perature and the time, i.e., T (t). To do this we apply a Bjorken expansion for which the total
entropy is held constant

const. = s(T )V (t) ∼
Sπ

Nπ

�
dNπ

dy
dy. (2.22)

where s(T ) is the entropy density of the hadron gas with volume corrections.

The total number of pions in the 5% most central collisions, dNπ

dy , can be found from experi-

mental results in [78]. There they found the phase-space yields for the pions π+ (292.0) and π−

(290.9) using a Gaussian fit for yields as a function of the rapidity dNπ

dy where we used the rapidity

range y = ±0.5. We then assumed that the number of π0’s were also in that same range and took
the average of the two to find 291.5. Thus, our total pion number is

�
i Nπi =

� 0.5
−0.5

dNπ

dy dy = 874.
While for a non-interacting Bose gas of massless pions Sπ/Nπ = 3.6, we do have a mass for our
pions, so we must adjust Sπ/Nπ accordingly. In [79] it was shown that when the pions have a
mass the ratio changes and, therefore, the entropy per pion is close to Sπ/Nπ ≈ 5.5. The actual
Sπ/Nπ in our model is shown in Fig. 2.10 where Sπ/Nπ ≈ 6, which is only slightly higher.

The effective volume at mid-rapidity can be parametrized as a function of time. We do this
by using a Bjorken expansion and including accelerating radial flow. The volume term is then

V (t) = π ct

�

r0 + v0(t− t0) +
1

2
a0(t− t0)

2
�2

(2.23)
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Figure 2.11: The temperature-time relationship is directly linked to the average transversel velocity
chosen in Eq. (2.23) within the fireball model ansatz.

where the initial radius is r0(t0) = 7.1 fm, which is the radius of a gold nucleus, for TH = 196

and the corresponding t
(196)
0 ≈ 2fm/c. For TH = 176 we allow for a longer expansion before

the hadron gas phase is reached and, thus, calculate the appropriate t
(176)
0 from the expansion

starting at TH = 196, which is t
(176)
0 ≈ 4fm/c (there is a slightly variation dependent on the

choice of v0 and a0). The T (t) relation is shown in Fig. 2.11, which has almost no effect on the
results as seen later on in Fig. 3.7 and Fig. 3.8. Therefore, we choose v0 = 0.5 and a0 = 0.025
for the remainder of this work. The relation depicted allows to translate the later shown figures
labeled by the effective global temperature of the evolving system directly into the evolving
system time.

2.1.6 Effective Numbers

Because the volume expansion depends on the entropy according to Eq. (2.22) and the Hagedorn
resonances contribute strongly to the entropy only close to the critical temperature (see Fig.
2.12), the equilibrium values actually decrease with increasing temperature close to Tc for the
hadrons as seen in Fig. 2.13 and Fig. 2.14. One can clearly see from Fig. 2.12 that the Hagedorn
states contribute strongly close to Tc down to about 80% of Tc.

Therefore, one has to include the potential contribution of the Hagedorn resonances to the
pions as in the case of standard hadronic resonances, e.g. a ρ-meson decays dominantly into
two pions and, thus, accounts for them by a factor two. This is similar to what was done in
Appendix D in Eq. (D.18). Including the Hagedorn state contribution, we arrive at our effective
number of pions

Ñπ,XX̄ = Nπ +
�

i

Ni [(1− �Xi�) �ni�+ �Xi��ni,x�] (2.24)

which are shown in Fig. 2.13. In Fig. 2.13 we see that after the inclusion of the effective pion
numbers that the number of pions only decreases with decreasing temperature. Furthermore,
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Figure 2.12: Ratio of the entropy of the Hagedorn states to the total entropy.

in Fig. 2.13 the total number of Hagedorn states,
�

i N
eq
i is also shown. While there are by far

fewer Hagedorn states present than pions, we see that they are important because of their large
contribution to the entropy density as shown in Fig. 2.12. The reason that the effective number
of pions increase close to Tc is due to the large number of pions that the heavy Hagedorn states
decay into. If �ni� was smaller or no longer linear than it could be possible that the effective
number of pions would remain constant.

Moreover, it is useful to consider the effective number of XX̄ pairs

ÑXX̄ = NXX̄ +
�

i

Ni�Xi� (2.25)

because Hagedorn states also contribute strongly to the XX̄ pairs close to Tc as seen in Fig.
2.14. Again we see that only the effective number of XX̄ pairs have consistent decreasing
behaviour with decreasing temperature whereas without the Hagedorn state contributions we
see a decrease close to Tc.

2.1.7 Numerical Solutions of Rate Equations

Along with the expansion we also must solve these rate equations, Eq. (2.4), numerically 1. We
start with various initial conditions, as mentioned previously, that are described by α, βi, and
φ (see table 3.2). The initial temperature is the respective critical temperature and we end the
expansion at T = 110 MeV, which is taken to be a global kinetic freezeout temperature.

1We solve our coupled non-linear differential equations using NDSolve in Mathematica.
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Figure 2.13: Comparison of the effective pion numbers when (a) TH = 176 MeV or (b) TH = 196 MeV.
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Chapter 3

Dynamical Chemical Equilibration of

Hadrons

It has been suggested that particle ratios observed in heavy ion collisions such as SPS or RHIC
can be indicative of the properties of the phase of nuclear matter before the phase transition
into the hadron gas phase. In other words, particle ratios (specifically strangeness enhancement
to light hadrons) can be used as a signal for QGP. This assumption is based on the idea that
the particles are “born” in chemical equilibrium, i.e., that following the QGP stage the particles
are already in chemical equilibrium when they enter the hadron gas phase.

Initial lattice results appeared to give a critical temperature close to the chemical freeze-out
temperature found from thermal fits somewhere between T = 160 − 170 MeV [46]. However,
recent lattice results with almost physical quark masses have established critical temperatures
as high as 35 MeV above the stand thermal fit temperature of ∼ 160 MeV. These discrepancies
can be understood within a dynamical chemical freeze-out scenario where the hadrons are born
out of chemical equilibrium following the QGP phase. While binary collisions and multi-mesonic
reactions cannot reach chemical equilibrium at ∼ 160 MeV (as discussed in Section 1.1.3), we
will demonstrate in this chapter that reactions involving Hagedorn states can account for the
particle abundances observed at RHIC and also account for the discrepancy between the critical
temperature and the chemical freeze-out temperature.

In this chapter rate equations are used to describe Hagedorn resonances, which drive multi-
pions and XX̄ pairs into chemical equilibrium. The model used here was described in its
entirety in the previous chapter. We find analytical results for the chemical equilibration time
when the pions and Hagedorn resonances are out of equilibrium, which can be extrapolated to
the protons, kaons, lambdas, and omegas. Moreover, we include a Bjorken expansion in order
to describe the change of temperature over time in an expanding fireball. Our results show
that (anti-)protons, (anti-)kaons, (anti-)lambdas, and (anti-)omegas do not need to be “born”
into chemical equilibrium, but rather they have sufficient time within the hadron gas phase to
equilibrate. Thus, the effectiveness of strangeness enhancement as a signal for QGP is brought
into question because strangeness enhancement can be sufficiently explained within a hadron
gas model.

45
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3.1 Chemical Equilibration Time Scales at Constant Tempera-

tures

Due to the complexity of the rate equations given in Eq. (2.4), it is not a trivial problem to
solve them analytically. In order to gain a grasp on their solutions we first look at only the
reaction HS ↔ nπ in section 3.1.1, which has a significantly easier solution, while holding
the temperature constant. For the reaction HS ↔ nπ we are able to solve its rate equations
analytically (see Appendix D for the derivation). Our solution shows that there are a number of
non-linear effects, which slows down the chemical equilibration time. However, they only appear
when the species are already very close to their respective chemical equilibrium values.

Using the same methods, we are able to look at the reaction in Eq. (2.1). However, the
inclusion of an XX̄ pair significantly complicates the matter. Only when either the pions or
Hagedorn states are held constant, have we been able to determine an analytical solution. A
discussion of which can be found in section 3.1.2. For simplicity’s sake we use only the Hagedorn
temperature TH = 176 MeV and observe only KK̄. Other parameters have similar results to
those shown here.

3.1.1 A Simplified System: Pions and Hagedorn States

To understand the dynamics in more detail, we consider the simplified case when the Hagedorn
resonances decay only into pions HS ↔ nπ, which gives

Ṅi = Γi

�

N eq
i

�

n=2

Bi,n

�
Nπ

N eq
π

�n

−Ni

�

Ṅπ =
�

i

Γi

�

Ni�ni� −N eq
i

�

n=2

Bi,nn

�
Nπ

N eq
π

�n
�

. (3.1)

Assuming that the pions and the Hagedorn states described above are then allowed to equilibrate
near Tc in a static system, we are able to derive analytical solutions, the derivation of which is
shown in detail in Appendix D. The simplest case involves holding the pions constant while the
Hagedorn states are free to equilibrate. The resonance then reaches chemical equilibrium with
the time scale

τi =
1

Γi
. (3.2)

A graph of the Hagedorn states while the pions are held in chemical equilibrium at a constant
temperature is shown in Fig. D.1, although the results are temperature independent as seen in
Eq. (3.2). We then hold the Hagedorn states while the pions equilibrate. Again, we are able to
find an analytical solution. However, we must divide the equilibration into two different stages.
The first of which is when λπ(t) ≈ 0, which has a time scale of

τ0
π =

N eq
π�

i ΓiN
eq
i �n�βi

. (3.3)

Then the second is when λπ(t) ≈ 1, and has the time scale

τπ =
N eq

π�
i ΓiN

eq
i �n

2�
. (3.4)
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M2GeV M12GeV

HS τi = 1/Γi 0.8 fm
c 0.1 fm

c

0.95TB
c 0.95TR

c

λπ ≈ 0 τ0
π ≡

Neq
π�

i
ΓiN

eq
i
�ni�βi

0.5 fm
c 0.1 fm

c

λπ ≈ 1 τπ ≡
Neq

π�
i
ΓiN

eq
i
�n2

i
�

0.01 fm
c 0.003 fm

c

QE τQE
π ≡ Neq

π�
i
ΓiN

eq
i

σ2
i

+

�
QE

Neq
i
�n2

i
�

�
i
ΓiN

eq
i

σ2
i

1.7 fm
c 1.6 fm

c

Table 3.1: Chemical equilibration times from analytical estimates where QE is quasi-equilibrium at 95%
of each respective TH . Here TB

c = 176 MeV and TR
c = 196 MeV.

The results for the Hagedorn states is shown in Fig. D.2.

Finally, for the analytical solutions of the case when both the pions and Hagedorn states
are allowed to reach chemical equilibrium we divide the chemical equilibration into three stages,
the chemical equilibration times of which are shown in Tab. 3.1. The first stage (described by
τ0
π in Tab. 3.1) of the evolution is dominated by the chemical equilibration of the pions when
the pions are still far away from their chemical equilibrium values. After the pions are close to
chemical equilibrium, new dynamics take over, which are described by τπ in Tab. 3.1 and Fig.
3.1.

In both Stage 1 and 2 the equilibration of the Hagedorn states is set by the dynamics of the
pions. Finally, in Stage 3 the pions, which are already almost in chemical equilibrium, reach a
quasi-equilibrium state with the Hagedorn states. Quasi-equilibrium is reached when at least
one species of Hagedorn states has succeeded it’s chemical equilibrium time scale determined
from the inverse of its decay width, i.e., τi = 1/Γi (same as Eq. (3.2)). Since the heaviest
Hagedorn states have the shortest τi’s, then quasi-equilibrium is reached when τi of the heaviest
Hagedorn state is surpassed. During this stage non-linear affects take over and, thus, a longer
time scale, τQE

π , is seen. While this time scale may appear long, both the pions and Hagedorn
states are so close to chemical equilibrium that they are within roughly 10% (depending on the
initial conditions) or less of their chemical equilibrium values before quasi-equilibrium is even
reached. The detailed calculations are shown in the Appendix D.

Therefore, the most important chemical equilibration time is then that from the pions in
Stage 1, i.e., τ0

π . The time scale from Stage 2 is so short that it is not of much importance.
Additionally, by the time that Stage 3 is reached both the pions and Hagedorn states are
essentially in chemical equilibrium and, therefore, the non-linear affects do not play a large
role in the overall chemical equilibration time. One can see this more clearly in Fig. D.3a
in Appendix D where the pions and heavier Hagedorn states are extremely close to chemical
equilibrium, while the lighter Hagedorn states are still only moderately close to their chemical
equilibrium values. Therefore, the Hagedorn states and pions are able to be roughly in chemical
equilibrium on the order of < 1fm

c according to our analytical solution when held at a constant
temperature.
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Figure 3.1: Comparison of the chemical equilibration times of the pions to the total chemical equilibra-
tion time for (a) TH = 176 MeV and (b) TH = 196 MeV.
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Figure 3.2: Comparison of the chemical equilibrium times for p’s, K’s, Λ’s, and Ω’s when α = 1 and
βi = 1 where (a) TH = 176 MeV and (b) TH = 196 MeV. The gray band is the range of chemical
equilibrium times for the Hagedorn states (see Tab. 3.1).

3.1.2 Hagedorn States, Pions, and XX̄ Pairs

We first estimate the chemical equilibration time of the XX̄ by looking at the XX̄ rate equation
in Eq. (2.5), when both the pions and Hagedorn states are held constant. Then we will hold the
pions constant and allow all the XX̄ pairs and Hagedorn states to equilibrate. Finally, we hold
the Hagedorn states constant and allow all the XX̄ pairs and pions to equilibrate.

Hagedorn States and Pions held Constant

Returning to Eq. (2.4), we first hold both the Hageodorn states and pions constant at βi and α,
respectively. That means that we set Ni = βi and Nπ = α in Eq. (2.4) and solve for NXX̄ . We
must also assume that α �= 0 because we will need to divide by α. The XX̄ rate equation then
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becomes

λ̇XX̄ =
�

i

Γi,XX̄

N eq
i

N eq
XX̄

�
βi − α�nx�λ2

XX̄

�
, (3.5)

which we can integrate

λXX̄ = ζ






�
φ+ζ
φ−ζ

�
e

2t
τ
XX̄ + 1

�
φ+ζ
φ−ζ

�
e

2t
τ
XX̄ − 1




 (3.6)

where

τXX̄ ≡
N eq

XX̄��
i Γi,XX̄N eq

i βi
��

i Γi,XX̄N eq
i α�nx�

, (3.7)

ζ ≡

� �
i
Γi,XX̄Neq

i
βi�

i
Γi,XX̄Neq

i
α�nx�

, and λXX̄(0) ≡ φ. Substituting in α = 1 and βi = 1 when the pions and

Hagedorn states are in chemical equilibrium, we rederive Eq. (7) in Ref. [58]

τXX̄ =
N eq

XX̄�
i Γi,XX̄N eq

i

, (3.8)

which is shown in Fig. 3.2. From Eq. (3.8) we see that the time scale has an indirect dependence
on the decay width. Since the decay width has a linear dependence on the mass, the time scale
decreases when more Hagedorn states are included. However, N eq

i also decreases with increasing
mass so above a certain point very many Hagedorn states need to be included in order to see
an effect in the time scale. Furthermore, the chemical equilibrium values have a dependence on
the temperature, which makes the time scale shortest for the highest temperatures.

In Fig. 3.3 and Fig. 3.4 we hold the Hagedorn states and pions and let the XX̄ pairs reach
chemical equilibrium. That means that in Eq. (2.4) we set Nπ = N eq

π and Ni = N eq
i in the ṄXX̄

equation. Fig. 3.3 shows the results for pp̄, KK̄, and ΛΛ̄, respectively, for TH = 176 MeV and
Fig. 3.4 shows the same for TH = 196 MeV. In all cases the temperature is held constant while
the rate equations are solved over time. At T = Tc all XX̄ reach chemical equilibrium almost
immediately (on the order of t < 0.2fm/c). As T is decreased the chemical equilibrium time
obviously increases, which is clear from Fig. 3.2.

Even as the temperature is lowered we still see quick chemical equilibrium times. For the
pp̄ and ΛΛ̄ pairs at T = 0.9Tc the chemical equilibrium time is still about t < 1fm/c. The
KK̄ pairs do have a slower chemical equilibrium time due to their larger chemical equilibrium
abundances, which is directly related to the chemical equilibration time through Eq. (2.4).
This again represents the main idea, which is the importance of potential Hagedorn states in
understanding fast chemical equilibration of hadrons close and below Tc. The Hagedorn states
increase dramatically in number close to the critical temperature and, thus, by its subsequent
decay and re-population they will quickly produce the various hadronic particles.

The equilibration of XX̄ pairs then shown in Fig. 3.3 and Fig. 3.4 where the analytical result
in Eq. (3.6) matches the numerical result exactly. From Fig. 3.3 and Fig. 3.4 it can be seen that
all XX̄ pairs equilibrate quickly close to the critical temperature τ < 1fm

c . Clearly, though,
as the temperature decreases the chemical equilibration time lengthens. However, at TH = 196
MeV chemical equilibrium is still reached quickly, τ < 1fm

c .
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Figure 3.3: Graph of the number of proton anti-proton pairs, kaon anti-kaon pairs, and lambda anti-
lambda pairs when both the resonances and pions are held in equilibrium for TH = 176 MeV.
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Figure 3.4: Graph of the number of proton anti-proton pairs, kaon anti-kaon pairs, and lambda anti-
lambda when both the resonances and pions are held in equilibrium for TH = 196 MeV.
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If α = 0 Eq. (3.6) is no longer valid because τXX̄ requires dividing by α. Instead we return
to Eq. (3.5) and substitute in α = 0

λ̇XX̄ =
�

i

Γi,XX̄

N eq
i

N eq
XX̄

βi, (3.9)

which has practically the same form as Eq. (D.6). After integration

λXX̄ =
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
t

τβ
XX̄

+ φ



 (3.10)

where

τβ
XX̄

=
N eq

XX̄�
i Γi,XX̄N eq

i βi
. (3.11)

Pions held constant

When the pions are held constant at α

λ̇XX̄ =
�

i

Γi,XX̄
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i
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XX̄

�
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XX̄
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�
α�nx�λ2

XX̄ − λi

�
. (3.12)

Assuming that the resonances start at βi ≈ 0 the XX̄ equation becomes

λ̇XX̄ = −
�

i

Γi,XX̄

N eq
i

N eq
XX̄

α�nx�λ2
XX̄

λXX̄ =
φ

φt
τα
XX̄
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where

ταXX̄ =
N eq

XX̄�
i Γi,XX̄N eq

i α�nx�
. (3.14)

Then the resonance equations becomes

λ̇i = Γi,π�α
n�+ Γi,XX̄α�nx�




φ

φt
τα
XX̄

+ 1


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ταi
+ Γi,XX̄α�nx�φταXX̄



1−
1

φt
τα
XX̄

+ 1



+ βi (3.15)

where ταi = 1
Γi,π�αn� , which explains the longer time scales we see with the addition of XX̄ pairs.

The results for the pions held constant for pp̄ pairs for TH = 196 MeV can be seen in Fig. 3.5.
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Figure 3.5: pp̄ pair results for α = 1, βi = 0, and φ = 0 when the pions are held in equilibrium.
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Figure 3.6: pp̄ pair results for α = 0, βi = 1, and φ = 0 when the Hagedorn resonances are held in
equilibrium.



56 Chapter 3. Dynamical Chemical Equilibration of Hadrons

Hagedorn states held constant

When the resonances are held constant at βi
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To solve Eq. (3.16) analytically we need to consider first the case when both the XX̄ and pions
start roughly at zero. Then we can rewrite Eq. (3.16) as

λ̇π =
�
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which after integration gives
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Incidentally, Eq. (3.18) for the XX̄ pairs is identical to Eq. (3.10). This is because the pions
and resonances do not affect each other in the earliest stage of their equilibration.

Once the pions and XX̄ pairs near equilibrium we need to rewrite our rate equations. Unlike
before where we said that the pions treated the resonances as if they were constant and then later
we substituted in the pion equation into the resonance equation, here both the pions and XX̄
pairs see each other as constant. Thus, in order to solve the pion and XX̄ pair rate equations
we hold the other constant and solve it analytically. Since the pions are near their equilibrium
value we can once again use λπ = 1− �, which gives the pion rate equation

� = −
�

i

Γi,π
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Following integration

λπ = 1 + γx + (η − 1− γx) e
−

t−t0
τπ,b (3.21)
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The XX̄ pair equation is almost the same as in Eq. (3.6) except that we substitute in λXX̄(to)
for φ and we assume that ζ = 1 even though the pions are near equilibrium and not actually in
equilibrium. If we do not take ζ = 1 then the XX̄ pairs can never reach equilibrium, thus, the
assumption is necessary. The XX̄ pair rate equation then becomes

λXX̄ =
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The results for the Hagedorn states held constant for pp̄ pairs for TH = 196 MeV can be seen
in Fig. 3.6.

At high temperatures i.e. T > 170 MeV are results change little from Figs. 3.3-3.4 for the
XX̄ pairs and Fig. 3.6 for the pions. It is only at low temperatures that we see a significant
deviation from our original results in Fig. 3.3-3.4 and Fig. 3.6. This implies that if the resonances
are in equilibrium that the pions and XX̄ pairs treat each other as if they were in equilibrium.
It is only at low temperatures that they affect each other, however, only indirectly.

3.1.3 All Particles Out of Equilibrium

When we allow the pions, Hagedorn resonances, and XX̄ pairs to all equilibrate simultaneously
we find results similar to that in Section 3.1.1. However, the individual time scales are slightly
longer due to the addition of the XX̄ pairs as shown in Fig. D.3b in Appendix D for a pp̄
pair. The time scale for the pions and Hagedorn states are slightly longer when the pp̄ pairs
are present. The same goes for the estimated chemical equilibration time of the pp̄ pairs in the
previous section, τpp̄. We still have yet to find an analytical solution when the XX̄ pairs are
included. The addition of a XX̄ pair complicates this task quite a bit compared to what we
were previously able to do. Thus, we leave this as a problem for the future.
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α = λπ(t0) βi = λi(t0) φ = λXX̄(t0)

IC1 1 1 0
IC2 1 1 0.5
IC3 1.1 0.5 0
IC4 0.95 1.2 0

Table 3.2: Initial condition configurations, recalling Eq. (2.20)

3.2 Expanding Fireball

The details of our Bjorken expansion are already outlined in Sec. 2.1.5. Here we no longer use
the fugacities, but rather we look at the total number of pions, Hagedorn states, and XX̄ pairs
as seen in Eq. (2.4). For the remainder of this work we include only results for an expanding
fireball, which are solved numerically. As an initial test we hold both the pions and Hagedorn
states in chemical equilibrium and allow just XX̄ to equilibrate as seen in Fig. 3.7 and Fig. 3.8.
The black solid line in each graph is the chemical equilibrium abundances and the colored lines
are the dynamical calculations for various expansions that follow the T (t) shown in Fig. 2.11.
We see that regardless of our volume expansion they all quickly approach equilibrium. In Fig.
3.7 and Fig. 3.8 the XX̄ all reach chemical equilibrium almost immediately, well before 0.9Tc

the chemnical equilibration time is < 1fm
c . The only exception is the KK̄ pairs for TH = 176

MeV. However, we see later on that the K/π ratio matches the data.

More interestingly, we consider the case when the pions, Hagedorn states, and XX̄ all are
allowed to chemical equilibrate. We then vary the initial conditions and observe their effects.
The results for pp̄ pairs are shown in Fig. 3.9 and Fig. 3.10. In Fig. 3.9 and Fig. 3.10 we show
the evolution of both the pp̄ pairs and the pions for the reaction nπ ↔ HS ↔ nπ +XX̄ . Note
that in all the following figures the effective numbers are shown so that the contribution of the
Hagedorn states is included.

One can see that the chemical equilibration time does depend slightly on our choice of βi,
i.e., a larger βi means a quicker chemical equilibration time. For instance, if the Hagedorn states
were overpopulated coming out of the QGP phase than chemical equilibrium times would be
slightly shorter. However, even when the Hagedorn resonances start underpopulated the pp̄
pairs are able to reach chemical equilibrium immediately. Additionally, when the pp̄ pairs start
at about half their chemical equilibrium values, it only helps the pp̄ pairs to reach equilibrium at
a slightly higher temperature (on the order of a couple of MeV). Additionally, we see a greater
dependence on βi for TH = 176 MeV than for TH = 196 MeV. Throughout the evolution we see
from the pions that they remain roughly in chemical equilibrium. Thus, our initial analytical
approximation appears reasonable.

In Fig. 3.11 the ratio of p/π+’s is shown. We also compare our results to that of experimental
data. We see that for TH = 176 MeV that our results enter the band of experimental data
before T = 170 MeV and remain there throughout the entire expansion regardless of the initial
conditions. However, for TH = 176 MeV the results are slightly different. In this case, the ratios
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Figure 3.7: Results for the (a) pp̄, (b) KK̄, and (c) ΛΛ̄ when the pions and Hagedorn resonances are
held in equilibrium for TH = 176 MeV.
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Figure 3.8: Results for the (a) pp̄, (b) KK̄, and (c) ΛΛ̄ when the pions and Hagedorn resonances are
held in equilibrium for TH = 196 MeV.
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Figure 3.11: Results for the ratio of p/π− with various initial conditions for (a) TH = 176 MeV or
(b) TH = 196 MeV. Note that for STAR [5, 117] p/π−0.11 and p̄/π− = 0.082 and for PHENIX [118]
p/π−0.10 (p/π+ is actually measured but we convert it to p/π− to match STAR) and p̄/π− = 0.047 .
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Figure 3.12: Results for the K’s with various initial conditions for (a) TH = 176 MeV and (b) TH = 196
MeV.

match the experimental data early on at around T = 190 MeV. However, they become briefly
overpopulated around T = 160 − 170 MeV but then quickly return to the experimental values,
except for the case when we have the initial conditions such that the pions are overpopulated.
This could imply that there are a few too many Hagedorn states and a fit for the Hagedorn
states with a lower A (degeneracy of the Hagedorn states) may produce better results.

As with the protons, the total number of kaons are also slightly dependent on our chosen
initial conditions, more specifically, our choice in βi. In Fig. 3.12 and Fig. 3.13 the temperature
of the evolving system after the phase transition at which chemical equilibrium among standard
hadrons is basically reached and maintained is between T = 160 − 170 for TH = 176 MeV and
they have also already reached chemical equilibrium by T = 170 for TH = 196 MeV, below
which the Hagedorn states basically die out. The one exception is when the Hagedorn states
begin underpopulated i.e. that βi < 1. In this case, the kaon pairs take longer to reach chemical
equilibrium. However, when we look at K/π in Fig. 3.14, lower βi actually fits the data better.

Moreover, the pions again remain roughly at chemical equilibrium throughout the expansion
as seen in Fig. 3.12 and Fig. 3.13 . While the pion graphs look roughly similar in Figs. 3.9-3.13,
they are not. The difference is how the pions are affected in the presence of a pp̄ pair compared
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Figure 3.14: Results for the ratio of K+/π− with various initial conditions for (a) TH = 176 MeV or (b)
TH = 196 MeV. Note that for STAR [5, 117] K+/π− = 0.16 and K−/π− = 0.15 and for PHENIX [118]
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Figure 3.15: Results for the Λ’s with various initial conditions for (a) TH = 176 MeV and (b) TH = 196
MeV.

to a decay that includes a kaon anti-kaon pair.

In Fig. 3.14 the ratio of kaons to pions is shown for TH = 176 MeV and for TH = 196 MeV. For
TH = 176 MeV our results are roughly at the upper edge of the experimental values. However,
for TH = 196 MeV our results are slightly higher than the experimental values. Although, the
results at T = 110 MeV are almost exactly those of the uppermost experimental data point.

We can also observe the effects of the expansion on the ΛΛ̄ pairs as seen in Fig. 3.15 and
Fig. 3.16. We see that both reach the experimental values almost immediately (T > 170 for
TH = 176 MeV and around T = 190 for TH = 196 MeV). The one exception is again for
an underpopulation of Hagedorn states, which reaches chemical equilibrium at T ≈ 165 for
TH = 176 MeV and already by T = 170 for TH = 196 MeV).

The ratio of Λ/π’s is shown in Fig. 3.17. In both cases the Λ/π’s match the experimental
values extremely well. For TH = 176 MeV our results reach the equilibrium values at T ≈ 170
MeV and for TH = 196 MeV the experimental values are reached already by T ≈ 170 MeV.

A summary graph of all our results is shown in Fig. 3.18. The gray error bars cover the
range of error for the experimental data points from both STAR [5, 117] and PHENIX [118].
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Figure 3.16: Results for the π’s with various initial conditions for (a) TH = 176 MeV and (b) TH = 196
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Figure 3.17: Results for the ratio of Λ/π−’s with various initial conditions for (a) TH = 176 MeV or (b)
TH = 196 MeV. Note that for STAR [5, 117] Λ/π− = 0.54 and Λ̄/π− = 0.41 and Λ/π is not measured
for PHENIX.
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Figure 3.18: Plot of the various ratios including all initial conditions defined in Tab. 3.2. The points
show the ratios at T = 110 MeV for the various initial conditions (circles are for TH = 176 MeV and
diamonds are for TH = 196 MeV). The experimental results for STAR [5, 117] and PHENIX [118] are
shown by the gray error bars.
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Figure 3.19: Plot is identical to Fig. 3.18, however, Γhi
i from Eq. (2.14) is used.

The points show the range in values for the various initial conditions at T = 110 MeV. We see
in our graph that our freezeout results match the experimental data well.

What the graphs in Figs. 3.9-3.17 show us is that a dynamical scenario is able to explain
chemical equilibration values that appear in thermal fits by T = 160 MeV. In general, TH = 176
MeV and TH = 196 give chemical freeze-out values in the range between T = 160 − 170 MeV.
These results agree well with the chemical freeze-out temperature found in [63].

Moreover, the initial conditions have little effect on the ratios and give a range in the chemical
equilibrium temperature of about ∼ 5 MeV, which implies that information from the QGP
regarding multiplicities is washed out due to the rapid dynamics of Hagedorn states. Lower βi
does slow the chemical equilibrium time slightly. However, as seen in Fig. 3.18 they still fit well
within the experimental values. Furthermore, in [58] we showed the the initial condition play
pretty much no role whatsoever in the ratios of K/π+ and (B+ B̄)/π+, thus, strengthening our
argument that the dynamics are washed out following the QGP.

While the variance in the chemical equilibration time arising from the initial conditions may
seem contradictory to the K/π+ and (B + B̄)/π+ ratios in [58], it can be explained with the
pion populations. In Figs. 3.9-3.13 quicker chemical equilibration times and, thus, larger total
baryon/kaon numbers translated into a larger number of pions in the system. Thus, the K/π+

and (B + B̄)/π+ ratios do not depend on the initial conditions.

3.2.1 Dependence on Decay Width

Up until this point we have used a decay width dependence on the mass, which was calculated
using the light hadrons from the particle data book [65] as shown in Fig. 2.8. It is clear to see
in Fig. 2.8 that the decay widths do not follow a very consistent behvior. Thus, it is important
to also look at the effects of changing the decay on the final particle ratios. At first we see if the
upper and lower bounds that we found on the decay widths have any affect. In Fig. 3.19 and
Fig. 3.20 we see that the bounds of the decay with, which were dependent on the upper/lower
bounds of the the measured particle decay widths do not have a significant effect on the final
state of the particle ratios.
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Figure 3.20: Plot is identical to Fig. 3.18, however, the lower bound of the Γlo
i from Eq. (2.13) is used.
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Figure 3.21: Plot is identical to Fig. 3.18, however, the decay widths are divided in half.

To further investiage the dependence on the decay width when return to Γi in Eq. (2.12) be
we see what happens, if one were to divide the decay width in half Γ�i ≡ Γi/2. We find that the
particle ratios still match surprisingly well as seen in Fig. 3.21. The same can be said if we take
Γ�i ≡ Γi/4 as seen in Fig. 3.22.

In Fig. 3.21 the p/π’s, K/π’s, and Λ/π’s all still fit within the experimental data points
wheras the Ω/π’s are below the experimental data. This indiciates that (with the exception of
the Ω/π’s) there is still a significant amount of leeway for the decay widths. Furthermore, if the
decays widths are in turn divided by a fourth than the p/π’s and K/π’s match the experimental
data points well still. However, the Λ/π’s are somewhat below the experimental data points
(especially for TH = 176 MeV) and the Ω/π’s are substantially underpopulated. If it turns out
that we overperdict the decay widths in this paper and they are significantly smaller this could
imply that strange baryons (and multi-strange baryons) require decays from strange and/or
baryonic Hagedorn states and that non-strange, mesonic Hagedorn states alone are not enough
to populate them.
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Figure 3.22: Plot is identical to Fig. 3.18, however, the decay widths are divided in fourth.

3.3 Production of ΩΩ̄

We can also use our model to investigate the possibility of Ω’s. In [44], they discussed the
possibility of Ω’s being produced from the following decay channels:

HS ↔ ΩΩ̄ +X

HS (sssq̄q̄q̄) ↔ Ω+ B̄ +X

HSB(sss) ↔ Ω+X. (3.24)

The first decay channel of a mesonic non-strange Hagedorn state we can implement straight-
forwardly with our model by employing the canonical branching ratio via Fig. 2.9. The results
are shown in Fig. 3.23 for TH = 176 MeV, in Fig. 3.24 for TH = 196 MeV, and the Ω/π ratio
is shown in Fig. 3.25. We are able to find the average number of Ω’s using a canonical model
as seen in Fig. 2.9. We see that, using only the first reaction, we are still impressively able to
adequately populate the ΩΩ̄ pairs so that they roughly match the experimental data. On the
other hand, from Fig. 3.2 we see that for the Ω particle the equilibration time is short only very
close to Tc. The scenario is thus more delicate. If one would take, for example, one half the
decay width of that of Eq. 2.12 as seen in Fig. 3.21, or one fourth of the decay width as in Fig.
3.22, the total production of Ω is not sufficient up to 25 %, or up to 50%, respectively, to meet
the experimental yield (the other ratios are not significantly affected by such a change of the
decay width).

In a future work, it would be interesting to observe the other decay channels as given in
Eq. 3.24 and advertised in [44]. The second reaction includes a mesonic, three times strange
Hagedorn state whereas the third decay channel includes a baryonic, strange Hagedorn state.
Both states are much more likely to directly decay into a Ω. These are, admittedly, exotic states,
but should also occur in the spirit of Hagedorn states. In order to observe these decay channels
a method, e.g. a microscopic quark model, must be found to find the appropriate Hagedorn
spectrum for strange mesonic/baryonic Hagedorn states.

In [81] a canonical model was used in order to calculate branching ratios, more specifically,
the average number of baryons and mesons that a single Hagedorn state could decay into. One
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Figure 3.23: Results for the Ω’s with various initial conditions for (a) TH = 176 MeV and (b) TH = 196
MeV.
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Figure 3.24: Results for the π’s with various initial conditions for (a) TH = 176 MeV and (b) TH = 196
MeV.
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Figure 3.25: Results for the ratio of Ω/π−’s with various initial conditions for (a) TH = 176 MeV or
(b) TH = 196 MeV. Note that for STAR Ω/π− = 9.5× 10−4 and Ω̄/π− = 9.6× 10−4 STAR [5, 117] and
Ω/π is not measured for PHENIX.



3.3. Production of ΩΩ̄ 77

example of this was shown already in Fig. 2.9. The canonical model observes the conservation
of charge, Q, baryon number, B, and strangeness, S. In this thesis we use the results only when
B = S = Q = 0, which would be for non-strange, electrical neutral mesons. The canonical model
considers only clusters with the conserved quantities that have a certain mass, which we assume
describe Hagedorn states. However, in [81] other configurations of B, S, and Q were considered,
which means that we could use these results for the branching ratios of strange and/or baryonic
Hagedorn states.
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Chapter 4

Effects of Hagedorn States on

Transport Coefficients

4.1 Introduction

Collective flow measurements [5] performed at RHIC indicate that the new state of matter
produced in heavy ion collisions behaves almost as a perfect liquid [82]. In fact, the large
elliptic flow coefficient measured at RHIC [5] supports the idea that this new state of matter
is a strongly interacting quark-gluon plasma [17] characterized by a very small shear viscosity
to entropy density ratio that is compatible with the lower bound η/s ≥ 1/(4π) [83] derived
within the anti-de Sitter/conformal field theory (AdS/CFT) correspondence [84]. It was further
conjectured by Kovtun, Son, and Starinets (KSS) [61] that this bound holds for all substances in
nature. Possible counterexamples that would violate the bound involving nonrelativistic systems
with very large number of particle species were discussed in [85, 86].

Recent lattice calculations [87] in pure glue SU(3) gauge theory have shown that η/s remains
close to the KSS bound at temperatures not much larger than Tc. Additionally, calculations
within the BAMPS parton cascade [88], which includes inelastic gluonic gg ↔ ggg reactions,
showed that η/s ∼ 0.13 in a pure gluon gas [89]. Moreover, it was argued in [90] that this ratio
should have a minimum at (or near) the phase transition in quantum chromodynamics (QCD).
This is expected because η/s increases with decreasing T in the hadronic phase [91] while it
increases with T in the deconfined phase according to the perturbative calculations done in
[92]. Note, however, that in general perturbative calculations are not reliable close to Tc (see,
however, Ref. [93]).

Before our work [30], there have been several attempts to compute η/s in the confined phase
using the known hadrons and resonances [94, 95, 96, 97]. However, these studies have not
explicitly considered that the hadronic density of states in QCD is expected to be ∼ exp(m/TH)
for sufficiently large m [48, 98], where TH ∼ 150 − 200 MeV is the Hagedorn temperature [48].
This hypothesis was originally devised to explain the fact that an increase in energy in pp and
pp̄ collisions does not lead to an increase in the average momentum per particle but rather to
production of more particles of different species [48]. Moreover, hadron resonance models that
include such rapidly increasing density of states are known to have a “limiting” temperature,
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Tmax, beyond which ordinary hadronic matter cannot exist [48].

In this chapter, a hadron resonance gas model which includes all the known particles and
resonances with masses m < 2 GeV [65] and also an exponentially increasing number of Hagedorn
states (HS) [30, 55, 56] is used to provide an upper limit on η/s for hadronic matter close to
the critical temperature that is comparable to 1/4π. Additionally, we show that our model
provides a good description of the recent lattice results [8] for the trace anomaly and also the
speed of sound, cs, close to Tc = 196 MeV. We also study how the inclusion of HS affects the
bulk viscosity to entropy density ratio, ζ/s, of hadronic matter near Tc.

4.2 Trace Anomaly and the Speed of Sound

The main assumption behind hadron resonance models is that the thermodynamic properties of
an interacting gas of hadrons can be described by a free gas with the same hadrons and their
respective resonances. For instance, it is known [99] that the pressure of a gas of interacting
pions calculated within the virial expansion nearly coincides with that of a free gas of pions
and ρ mesons. In this case there is an exact cancelation between the attractive and repulsive
S-wave channels but the same is not true for an interacting gas of pions, kaons, and nucleons
[100]. Thus, in general one also has to include the repulsive interactions between the hadrons
when computing thermodynamic functions [70, 100, 101].

Here we assume that attractive interactions can be described by the inclusion of resonances
which for large masses follow a Hagedorn spectrum as discussed in Chapter 2. The system’s
mass spectrum is assumed [55, 56] to be a sum over discrete and continuous states ρ(m) =
ρHG(m) + ρHS(m), where ρHG(m) =

�M0
i gi δ(m −mi) θ(M0 −m) involves a sum over all the

known hadrons and resonances [65] with their respective degeneracy factors up to M0 < 2 GeV

[72] and for larger masses it is shown in Eq. (1.15) where we take m0 = 0.5 GeV, A = 0.5 GeV
3
2

[55], and TH = Tc. As mentioned in Chapter 2, effects from repulsive interactions are included
using the excluded-volume approach derived in [70] where the volume excluded by a hadron
equals its energy divided by 4B, where B plays the role of an effective MIT bag constant. The
thermodynamic quantities can be obtained using Eq. (2.3) and the standard thermodynamic
identities at zero baryon chemical potential [70]. When Ppt(Tc)/4B < 1 there is still a limiting
temperature that is larger than Tc because then the denominator is then less than 1 in Eq. (2.3),
which means that at T ∗ = TH then T > TH . We take B1/4 = 0.34 GeV in our calculations, which
implies that Tmax > Tc. We restrict our discussion to T ≤ Tc because at higher temperatures a
description involving quarks and gluons should be more adequate.

Our results for the trace anomaly are shown in Fig. 2.2 where the mass of the heavier
Hagedorn state was set to be Mmax = 20 GeV. Note that the inclusion of HS correctly captures
the trend displayed by the lattice data in the transition region whereas the hadron gas curve
does not. This remains true if other values of B are used. We checked that our results did not
change appreciably in this temperature range when Mmax is increased to 80 GeV. This happens
because the divergences normally associated with the limiting temperature only occur in this
case at Tmax ∼ 210 MeV. Were TH < Tc, the dependence of the thermodynamic quantities with
Mmax would be much more pronounced. In general, a very rapid increase in the number of
particle species (specifically heavier species) around Tc is expected to strongly reduce the speed
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Figure 4.1: c2s for the model including HS with 2 < M < 12 GeV (solid red line) and for the hadron gas
model of Ref. [72] which does not include HS (dashed black curve). The lattice results for the p4 action
with Nτ = 6 [8] are depicted in the dotted curve. The dotted-dashed blue curve was computed using HS
with 2 < M < 80 GeV.

of sound c2s = dP/d� at the phase transition. While c2s → 0 at the transition would certainly
lead to very interesting consequences for the evolution of the RHIC plasma [102], recent lattice
simulations have found that c2s � 0.09 near Tc [8]. It is shown in Fig. 7.3 that c2s(T ∼ Tc) ∼ 0.09
in the model with HS while for the model without them c2s ∼ 0.25 near the transition. Note
that when Mmax = 80 GeV (dashed blue curve) c2s is only a bit smaller than 0.09 near the phase
transition. Other quantities such as the total entropy density near Tc are found to agree with
lattice results within the uncertainties present in those calculations [68].

4.3 Shear Viscosity

The total shear viscosity of our multi-component system computed within kinetic theory [103]
is

ηtot ∼ α
�

i

ni�pi�λi, (4.1)

where ni is the number density, �pi� is the average momentum, and λi is the mean free path for
discrete states and HS (α ∼ O(1)). The derivation of Eq. 4.1 for the case of a fluid composed of
a single type of particles is shown in section 4.3.1 and then generalized for a multi-particle fluid
and used to determine the shear viscosity contribution from the Hagedorn states in section 4.3.2.

4.3.1 Derivation of Shear Viscosity for Non-relativistic Dilute Gas

The cartoon in Fig. 4.2 illustrates a fluid flowing in the positive x direction between two plates.
The lower plate is fixed and has no velocity whereas the upper plate flows with the liquid at a
speed of u0. Thus, a gradient of the flow ∂ux/∂z appears. The distance between the plates is L.
Additionally at some point where z = const. the fluid below exerts a stress Pz (a mean force per
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Figure 4.2: Two plates contain a fluid flowing in the positive x direction. The lower plate is at rest and
the upper plate has the velocity u0.

unit area) on the fluid above and according to Newton’s third law the fluid above exerts Pz on
the fluid below. Moreover, Pz is simply a measurement of the mean pressure in the fluid. Thus,
when the fluid is in equilibrium Pzx = 0 (z for orientation of the plane and x the component of
the forced exerted on the plane), otherwise known as the pressure tensor.

When the fluid is out of equilibrium such as in Fig. 4.2, the flow velocity in the z direction
depends on z i.e. uz (z). Thus, ∂ux/∂z �= 0 and Pzx ∝ ∂ux/∂z. Assuming that ∂ux/∂z is small,
we can expand use a power series expansion where only the first term is needed. Thus, we have
the equation

Pzx = −η
∂ux
∂z

(4.2)

where η is the viscosity. The minus sign is introduced in order to ensure that the viscosity is
positive. For instance, if uz increases with z (∂ux/∂z > 0) then the fluid below slows down the
fluid above and exerts a force in the −x direction i.e. Pzx.

Assuming that we have a dilute gas (a good assumption for the hadron gas phase) and
suppose that mean fluid velocity is dependent on z such that ux(z), then the stress Pzx arises
because particles above a plane z = constant have a somewhat larger component of x than those
below. Basically, the gas below the plane gains momentum in the x direction from the molecules
above the plane.

Given that there are n molecules per unit volume, roughly one-third of them have velocities
in the z direction and half of these (so n/6) have the mean velocity v̄ in the +z direction. Then
on average nv̄/6 molecules in unit of time cross a unit area of the plane z=constant. Additionally,
the particles that have crossed the plane from below experienced on average their last collisions
within a distance of λ, where λ is the mean free path, below the plane. Therefore, each particle
transfers across the plane a mean x component of moment px = mux(z − λ). Thus, the mean x
compnent of momentum transported upward per unit time per unit area is

p̄x+ =
1

6
nv̄mux(z − λ) (4.3)
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and downward is

p̄x− =
1

6
nv̄mux(z + λ). (4.4)

Then the stress Pzx is then the net molecular transport of the x component of momentum per
unit time per unit area i.e.

Pzx =
1

6
nv̄mux(z − λ)−

1

6
nv̄mux(z + λ)

=
1

6
nv̄m [ux(z − λ)− ux(z + λ)] . (4.5)

Then ux(z) can be expanded using a taylor series where higher order terms are neglected since
the velocity gradient ∂ux/∂z is assumed to be small so that the stress is

Pzx =
1

6
nv̄m

�

−2
∂ux
∂z

l

�

= −η
∂ux
∂z

(4.6)

where

η =
1

3
nv̄mλ =

1

3
np̄λ. (4.7)

4.3.2 Shear Viscosity to Entropy Density Ratio

In kinetic theory, the total shear viscosity of a gas composed of different types of particles is given
in (4.1). Basically one has to sum over the individual contributions of each particle species but

now the mean free path of a given species is λi =
��

j nj σij
�−1

, with σij being the scattering
cross section.

Due to their very large mass, the particle density of a HS is much smaller than that of discrete
states. Thus, one can neglect the small contribution to the mean free path from terms involving
the interaction between the standard hadrons and the HS. In this case, ηtot = ηHG + ηHS where
ηHG is the shear viscosity computed using only the interactions between the standard hadrons
while

ηHS =
1

3

�

i

ni�p�i λi (4.8)

includes only the contribution from HS, which move non-relativistically since mHS/T � 1 and is
clearly taken from Eq. (4.7). Note that the approximation for ηtot used here provides an upper
bound for this quantity since the inclusion of the interactions between HS and the standard
hadrons would only decrease ηtot. Using the results above, one sees that

�
η

s

�

tot
≤

sHG

sHG + sHS

��
η

s

�

HG
+

ηHS

sHG

�

. (4.9)

While the entropy dependent prefactor in Eq. (4.9) can be easily determined using our model,
the detailed calculation of ηHG and ηHS requires the knowledge about the mean free paths of
the different particles and resonances in the thermal medium.
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In the non-relativistic approximation, we can set

�pi� = mi�vi� =
�
8mi T/π (4.10)

in Eq. (4.9). Note that HS with very large mi’s are more likely to quickly decay. We assume that
λi = τi �vi� where τi ≡ 1/Γi = 1/(0.151mi − 0.0583) GeV−1 is the inverse of the decay width of
the ith HS obtained from a linear fit to the decay widths of the known resonances in the particle
data book [55, 56, 77] discussed in Chapter 2. Our choice for λi gives the largest mean free path
associated with a given state because it neglects any possible collisions that could occur before
it decays on its own. The inclusion of collisions here would only shorten λi, which would further
decrease ηtot. Further studies of the relationship between HS and η could be done, for instance,
using the cross sections discussed in [74]. Substituting the results above in we find that

ηHS = 8T
�

i

niτi/3π. (4.11)

The remaining ratio (η/s)HG has been computed in Refs. [95, 96, 97] using different models
and approximations. Since our main goal is to understand the effects of HS on (η/s)tot, here
we will simply use the values for (η/s)HG obtained in some of these calculations to illustrate
the importance of HS. We chose to obtain (η/s)HG for a gas of pions and nucleons from Fig. 5
in [95] and for a hadron resonance gas with (constant) excluded volume corrections from [96].
Note that the results for η/s obtained from the calculation that included many particles and
resonances [96] are already much smaller than those found in [95] where only pions and nucleons
are considered. A linear extrapolation of the results in [95, 96] was used to obtain their η/s
values at high temperatures. One can see in Fig. 4.3 that (η/s)tot drops significantly around Tc

because of HS. This result is especially interesting because η/s in the hadronic phase is thought
to be too large (according to viscous hydrodynamics calculations) to be compatible with elliptic
flow data. One can see that the contributions from HS should lower η/s to near the KSS bound.
Thus, the drop in η/s due to HS could explain the low shear viscosity near Tc already in the
hadronic phase. We used Mmax = 20 GeV in the calculations shown in Fig. 4.3 but the results
do not change significantly if Mmax is increased by a factor of 4.

4.4 Bulk Viscosity

The large value of the trace anomaly near Tc observed on the lattice has been used as an
indication that ζ/s of QCD may be large at the phase transition [104, 105]. This is very
different than at high temperatures where ζ/s is predicted to be small [106]. This may have
some interesting phenomenological consequences such as the formation of clusters at freeze-
out [107]. Using the QCD sum rules derived in [108], one can extract the (zero-momentum)
Euclidean correlator of the trace of the energy-momentum tensor, θµµ, as follows

GE(0,0) =

�

d4x �θµµ(τ,x)θ
ν
µ(0,0)�

= (T∂T − 4) (�− 3p) , (4.12)
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Figure 4.3: η/s is shown for a gas of pions and nucleons [95] (upper dashed black line) and for a
hadron resonance gas with (constant) excluded volume corrections [96] (lower dashed black line). An
upper bound on the effects of HS on η/s is shown in solid red lines. The blue band between the curves
is used to emphasize the effects of HS. The solid black line at the bottom is the AdS/CFT lower bound
η/s = 1/4π [61].

the derivation of which is shown in Appendix E. The authors of Ref. [105] have argued that ζ
can be obtained via GE using πρ(ω,0)/9ω = ζω2

0/(ω
2 +ω2

0) as an ansatz for the small frequency
limit of the �θθ� spectral density at zero spatial momentum, ρ(ω,0). The parameter ω0(T )
defines the energy scale at which perturbation theory is applicable. The validity of this ansatz
has been recently studied in Refs. [109]. Here we assume that this ansatz can at least capture
the qualitative behavior of ζ around Tc and we use it to estimate how HS change the ζ/s close
to Tc. The results for ζ/s ≡ GE(0)/(9ω0 s) are shown in Fig. 4.4 where ω0 = 1 GeV. Note that
while ζ/s decreases near Tc for the hadron gas model with m < 2 GeV, when HS are included
ζ/s increases close to Tc and this enhancement does not vary much with Mmax.

Summarizing, in this chapter we used a hadron resonance gas model including all the known
particles and resonances with masses m < 2 GeV and also an exponentially rising level density
of Hagedorn states for m > 2 GeV to obtain an upper bound on η/s for hadronic matter near
Tc that is comparable to the KSS bound 1/(4π). This indicates that the small η/s necessary to
explain the large elliptic flow observed at RHIC could be already reached in the hadronic phase.
It is clear that Hagedorn states with masses above m > 2 GeV are needed for a small η/s in the
hadronic phase because URQMD using only the know hadrons has been used to calculate η/s and
found that η/s ≈ 1 [110]. Additionally, the results in this section were recently independently
confirmed in [111].

Also, the large trace anomaly and the small speed of sound near Tc MeV computed within
this model agree well with recent lattice calculations [8]. An estimate for the bulk viscosity of
QCD using the proposal written by [105] generally indicates that HS increase ζ/s close to Tc.
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Figure 4.4: Estimates for ζ/s ≡ GE(0)/(9ω0 s) (ω0 = 1 GeV) for a model that includes HS with
2 < m < 20 GeV (solid red line) and 2 < m < 80 GeV (dotted-dashed blue line) and a hadron gas model
with m < 2 GeV (black dashed line).



Chapter 5

Thermal Fits + Hagedorn States

5.1 Introduction

Lattice QCD is the main non-perturbative theoretical tool used to probe bulk thermodynamics
quantities of QCD such as its pressure, entropy density, and the speed of sound. The QCD phase
transition at vanishing baryonic chemical potential is a (rapid) crossover where the thermody-
namic quantities vary significantly near a critical temperature, whose value lies between 170−200
MeV. In fact, according to the Bielefeld-BNL/RIKEN-Columbia collaboration (RBC-Bielefeld)
the critical temperature is around Tc = 196 MeV [8] (although recently it has been concluded
that the range could be Tc = 180 − 200 MeV [68]) whereas the Budapest/Marseille/Wuppertal
(BMW) collaboration has found a lower value Tc = 176 MeV [9]. Because the value of the
critical temperature is vital to many phenomenological models of QCD, it is clearly important
to find experimentally driven signals able to distinguish between these two critical temperature
regions. We shall show that thermal fits for the measured particle ratios in Au+Au collisions
at
√
sNN = 200 GeV at RHIC can provide some nontrivial information about the critical tem-

perature of the QCD phase transition at nonzero baryonic chemical potential as long as effects
from highly massive Hagedorn resonances are included.

Thermal fits computed within a grand canonical statistical models are normally used to
reproduce hadron yield ratios in heavy ion collisions [72, 112, 45, 46, 113, 114]. Thermal models
computed at AGS, SIS, SPS, and RHIC energies can be used to construct a chemical freeze-out
line in the QCD phase diagram [115, 116], which is shown in Fig. 5.1. For Au+Au collisions at
RHIC at

√
sNN = 200 GeV, specifically, estimates for the chemical freeze-out temperature and

baryon chemical potential range from Tch = 155−169 MeV and µb = 20−30 MeV [46, 113, 114].
These thermal models give reasonable fits to the experimental data, which leads to the conclusion
that chemical freeze-out is reached in these experiments.

As discussed in previous chapters, it was thought that the chemical freeze-out temperature
and the critical temperature coincided because early calculations for Tc were around Tc = 160−
170 MeV, which is where the chemical freezeout temperature lies. However, recent lattice
results indicate a higher critical temperature, which leads to a difference of ΔT = 7 − 45
MeV between Tc and Tch. At SPS this difference was explained by allowing hadrons, especially
exotic anti-baryonic states, to be “born” out of chemical equilibrium at Tc and reach chemical
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Figure 5.1: Temperatures and baryonic chemical potentials which are determined using thermal fits for
various experiments. Taken from [115].

equilibrium through multi-mesonic collisions [36, 37] because chemical equilibration times of
binary collisions are too long [35]. At RHIC, multi-mesonic collisions are no longer adequate to
explain chemical equilibration times [39, 40] and this has led some to believe that hadrons are
“born” in chemical equilibrium [42, 43]. A way out of this scenario involving an overpopulation
of pions and kaons has been suggested in [41]. Another solution that has provided very promising
results is the inclusion of Hagedorn states, which are heavy resonances with an exponentially
growing mass spectrum [48] that open up the phase space and help drive hadrons quickly into
chemical equilibrium [44, 55, 56, 58]. When a reaction of the form

nπ ↔ HS ↔ nπ +XX̄ (5.1)

is used where XX̄ = pp̄, KK̄,, ΛΛ̄ or ΩΩ̄, hadrons are able to reach chemical equilibrium at
about Tch ≈ 160 MeV [55, 56] using various lattice critical temperatures [56], see also Chapter
3. Moreover, it was shown that p/π, K/π, Λ/π and Ω/π ratios match RHIC data well [55, 56].

As we have seen in previous chapters, not only have Hagedorn states provided a mechanism
for explaining the temperature difference between Tc and Tch, but they have also been used to
find a low η/s in the hadron gas phase [30] and see Chapter 4, which nears the string theory
bound η/s = 1/(4π) [61]. Calculations of the trace anomaly including Hagedorn states also fits
recent lattice results well and correctly describe the minimum of c2s near the phase transition
found on the lattice [30]. Furthermore, estimates for the bulk viscosity including Hagedorn
states in the hadron gas phase indicate that ζ/s has a peak near Tc.

Since Hagedorn states have been shown to affect the chemical equilibration times, thermo-
dynamic properties, and transport coefficients of hadron resonance gases close to Tc it is natural
to expect that they may also be relevant in the thermal description of particle ratios. Moreover,
because Hagedorn states are dependent on the limiting Hagedorn temperature TH = Tc, a rela-
tionship between the chemical freeze-out temperature and the critical temperature can be found
by including Hagedorn states in thermal fits. This uniquely gives us the ability to distinguish
between different critical temperature regions depending on the quality of the fit obtained using
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the statistical model.

5.2 Model

In this chapter we use a grand-canonical model to describe the particle densities from which
we can calculate the corresponding ratios as described in detail in [72]. We do not include any
strangeness suppression factor or, in other words, we assume γs = 1. Unlike in previous chapters
we do not assume that µb = 0 but rather we allow change the baryonic chemical potential (and
also temperature) to best fit the data.

In order to calculate the baryonic chemical potential µb and the strange chemical potential
µs we use the following conservation relation

0 =

�
i niSi

�
i niBi

, (5.2)

which means that the total strangeness per baryon number is held at zero. There ni is the density
of the ith particle that has a corresponding baryon number Bi and strangeness Si. The Hagedorn
states are implemented in our model as previously discussed in Chapter 2. Furthermore, as in
Chapter 3, we use two different scenarios regarding TH . First we assume that TH = Tc, and then
we consider the two different different lattice results for Tc: Tc = 196 MeV for the RBC-Bielefeld
collaboration [8] and Tc = 176 MeV from the BMW collaboration [9]. Furthermore, we take into
account effects from repulsive interactions between the hadrons [70, 71] via excluded-volume
corrections [70]. Only mesonic, non-strange Hagedorn states are considered in our calculations.

In our model we do not just consider the direct number of hadrons but also the indirect
number that comes from other resonances. For example, for pions we consider also the contri-
bution from resonances such as ρ’s, ω’s etc. The number of indirect hadrons can be calculated
from the branching ratios for each individual species in the particle data book [65]. Moreover,
there is also a contribution from the Hagedorn states to the total number of pions, kaons, and
so on as described in [55, 56]. Thus the total number of “effective” pions can be described by

Ñπ = Nπ +
�

i

Ni�ni� (5.3)

whereas the total number of “effective” protons, kaons, or lambdas (generalized as X) can be
described by

ÑX = NX +
�

i

Ni�Xi� (5.4)

where �X� is the average number of X = p’s, K’s, or Λ’s. We take all �Xi�’s from the micro-
canonical model [75] discussed in Chapter 2. Here N is the total number of each species and �ni�
is the average number of pions that each Hagedorn state decays into. We have discussed this
also in other chapters but we reiterate the equations to ease understanding. We assume here
that the branching ratios can be obtained from a microcanonical calculation. Such a description
is, for instance, also appropriate for describing the annihilation of p and anti-p.
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It is important to note here that because the Hagedorn states always produce pairs of XX̄’s
that the entire contribution to ratios like K+/K− must come from the known particles. There-
fore, in our calculations the baryonic chemical potential, which is directly related to the strange
chemical potential, is somewhat inflated. If we were to include baryonic and/or strange Hagedorn
states then µb would be lower.

In order to get an idea of the quality of the thermal fits, we define χ2 as

χ2 =
�

i

�
Rexp

i −Rtherm
i

�2

σ2
i

(5.5)

where Rtherm
i is our ratio of hadron yields calculated within our thermal model whereas Rexp

i is
the experimentally measured value of the hadron yield with its corresponding error σ2

i .

In this work we look at only the experimental values at mid-rapidity and we used only
the systematic error given by each respective experiment. We vary the temperature and µb

according to the conservation laws in Eq. (5.2), in order to get the smallest χ2. We use the
experimental data from both STAR [117] and PHENIX [118] for Au+Au collisions at RHIC at
√
sNN=200 GeV. Specifically, we observe the ratios: π−/π+, p̄/p, K−/K+, K+/π+, p/π+, and

(Λ + Λ̄)/π+. All of which are calculated by STAR [117]. However, only π−/π+, p̄/p, K−/K+,
K+/π+, p/π+ are given by PHENIX. Because there is such a difference between p/π+ from
PHENIX and STAR we choose only the value from STAR so that we can compare are results to
[113] where they also exclude p/π+ from PHENIX. It should be noted that Ref. [113] includes
more ratios than we do such as multi-strange particles and resonances, which are not include
in this paper. This is because the purpose of the present study is not to confirm their results,
which have already been confirmed in [114], but rather to compare thermal fits that include the
contribution of Hagedorn states and those that exclude them.

5.3 Results

The following results are given for the minimal χ2 for a given µb and Tch. Initially, we found
the thermal fit for a hadron gas excluding Hagedorn states, which is shown in Fig. 5.2. There
Tch = 160.4 MeV, and µb = 22.9 MeV, which gave χ2 = 21.2. Our resulting temperature and
baryonic chemical potential are almost identical to that in [113] where Tch = 160.5 and µb = 20
MeV.

The inclusion of Hagedorn states is our primary interest. Starting with the fit for the RBC-
Bielefeld collaboration, we obtain Tch = 165.9 MeV, µb = 25.3 MeV, and χ2 = 20.9, which is
shown in Fig. 5.3. The χ2 is actually slightly smaller than in Fig. 5.2. The contributions of the
Hagedorn states to the total number of the various species at this temperature and chemical
potential are shown in Tab. 5.1.

When we consider the lattice results from BMW, which are at the lower end of the critical
temperature spectrum where Tc = 176 MeV, we find Tch = 172.6 MeV, µb = 39.7 MeV, and
χ2 = 17.8. The lower critical temperature seems to have a significant impact on the thermal
fit. The lower χ2 is due to the larger contribution of Hagedorn states at at Tch = 172.6 MeV,
which is much closer to Tc. The contributions of the Hagedorn states to the total number of the
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Figure 5.3: Thermal fits including Hagedorn states for Au+Au collisions at RHIC at
√
sNN = 200 GeV.

various species at this temperature and chemical potential are about 30− 50% as shown in Tab.
5.1.

The difference in the χ2’s for BMW and RBC-Bielefeld collaboration is directly related to
the contribution of Hagedorn states in the model. Because the RBC-Bielefeld critical temper-
ature region is significantly higher than its corresponding chemical freeze-out temperature the
contribution of the Hagedorn states is minimal at only 4-11% (see Tab. 5.1.). To further prove
this point we can vary the parameters that define the influence of Hagedorn states in the model.
If, for instance, we double the maximum mass we see in Fig. 5.4 that our thermal fits are
not affected. This effect arises the true limiting temperature after volume corrections is larger
than the critical temperature [30]. The effects of changing the maximum mass are only seen at
temperatures larger than the critical temperature, which are not considered in this study.

While the maximum mass does not affect the quality of the fit, the parameter A, which is
essentially the degeneracy of the Hagedorn states, does. The results of this are shown in Fig.
5.5. If we double A then we find that the minimum χ2 for Tc = 196 MeV has dropped down
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Figure 5.4: Thermal fits including Hagedorn states for Au+Au collisions at RHIC at
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when the maximum mass of the Hagedorn states is doubled.
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Figure 5.5: Thermal fits including Hagedorn states for Au+Au collisions at RHIC at
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when the degeneracy of the Hagedorn states is doubled.

to χ2 = 18.4, which is only slightly higher than the best fit for Tc = 176 MeV in Fig. 5.3. This
indicates that at Tc = 196 MeV more Hagedorn states would be needed in order to get a better
fit. However, we also see that for Tc = 176 MeV and A=1.0 GeV3/2 that χ2 = 20.4. The reason
for this is that there is an overpopulation of Hagedorn states. If we look at the contribution
of Hagedorn states to the individual particle species we see that the optimal contribution of
Hagedorn states is around ≈ 40± 10%, which is what we get for the fits Tc = 176 MeV, A=0.5
GeV3/2, M=15 GeV and Tc = 196 MeV, A=1.0 GeV3/2, M=20 GeV as seen in Tab. 5.1.

A summary of our results is seen in Tab. 5.2. We find that the inclusion of Hagedorn states
should not only provide a better fit but they also affect the chemical freeze-out temperature and
the baryonic chemical potential. The more mesonic Hagedorn states are present the larger µb

becomes. Furthermore, our fits also have higher Tch’s than seen in the fit without the effects of
Hagedorn states.

In this chapter we assumed that the particle ratios measured in Au+Au collisions at RHIC
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Tc (MeV) A (GeV3/2) M (GeV) π’s K’s p’s Λ’s

176 0.5 15 48.5% 41.6% 29.1% 41.0%
196 0.5 20 11.2% 10.5% 4.7% 6.2%
176 0.5 30 48.7% 41.6% 29.1% 41.2%
196 0.5 40 11.2% 10.5% 4.7% 6.2%
176 1.0 15 62.5% 56.0% 40.6% 53.4%
196 1.0 20 44.0% 38.9% 21.9% 30.3%

Table 5.1: Contribution of the Hagedorn states to the total number of hadron species.

Tc (MeV) A (GeV3/2) M (GeV) Tc (MeV) µb (MeV) χ2

176 0.5 15 172.6 39.7 17.8
196 0.5 20 165.9 25.3 20.9
176 0.5 30 172.6 39.8 17.8
196 0.5 40 165.9 25.0 20.9
176 1.0 15 172.3 51.7 20.4
196 1.0 20 182.2 33.5 18.4

Table 5.2: Comparison of the chemical freeze-out temperature, baryonic chemical potential, and χ2 for
various fits including Hagedorn states.

at
√
sNN = 200 GeV admit a purely statistical description at chemical freeze-out. Our results

for thermal fits without Hagedorn states concur well with other thermal fit models [113] where
the chemical freeze-out temperature (Tch = 160.4 MeV) is almost identical and the baryonic
chemical potential (µb = 22.9 MeV) is only slightly larger. The thermal fit with the known
particles in the particle data group provides a decent fit with χ2 = 21.2. However, the inclusion
of Hagedorn states provides an even better fit to the experimental data where χ2 = 17.8 for the
BMW collaboration and χ2 = 20.9 for the RBC-Bielefeld collaboration. This provides further
evidence [30, 55, 56, 58] that Hagedorn states should be included in a description of hadronic
matter near Tc.

Furthermore, because Hagedorn states provide a bridge between the chemical freeze-out
temperature and the critical temperature, we were able to make a qualified statement about
which critical temperature region is more appropriate according to the quality of the thermal fits.
We find that lower critical temperature regions are somewhat favored in this study because more
Hagedorn states are present close to the chemical freeze-out temperature and that a substantial
number of Hagedorn states (i.e. a contribution of about 40% to the total particle numbers) are
needed in order to provide the best fit to the hadron yield ratios.

A lower χ2 can be obtained for the higher critical temperature region when we double the
degeneracy of the Hagedorn states, which would lead to a mismatch between our thermodynamic
quantities and those computed on the lattice (recall that the parameters that define the exponen-
tial spectrum in this case are obtained by fitting the results of the RBC-Bielefeld collaboration
at µb = 0). As we can see from Tab. 5.2 a change in the parameters even when they are doubled
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still gives a better fit than the thermal fits without Hagedorn states because a contribution of
Hagedorn states as small as 4-11% still contribute enough to lower χ2. Therefore, this reconfirms
the importance of including Hagedorn states in the hadron gas phase and, consequently, in the
computation of thermal fits. Moreover, our results indicate that hadronization and chemical
equilibration do not need to occur at the same temperature in order to explain RHIC data.



Chapter 6

Summary and Outlook

In this work we have used an old idea, Hagedorn states, to understand the new physics involved
in hadronic matter close to Tc formed in relativistic heavy ion collisions. The idea that hadronic
resonances follow an exponential mass spectrum came from Hagedorn in the 1960’s. However,
today the ramifications of this idea are still being explored as these states appear to play an
important role in the physics close to Tc at RHIC. Since Hagedorn’s initial work, many new
resonances have been discovered and they still fit an exponential mass spectrum up to M = 2
GeV. Beyond that point the mass spectrum flattens, deviating from an exponential behavior,
which indicates that there are possible “missing” resonances. In this thesis, I assumed that these
“missing” resonances indeed exist, which affects various signals of QGP because the previous
assumptions about the hadron gas phase are significantly altered.

Dynamical reactions with the known hadronic particles cannot account for the particle abun-
dances seen at RHIC. The chemical equilibration times are too long and do not fit within the
calculated time scale of the hadronic fireball. This has led to the assumption that the chemi-
cal freeze-out temperature and the critical temperature coincide. However, we have shown in
Chapter 3 under the assumption that these heavy, quickly decaying Hagedorn states exist that
chemical equilibrium can be achieved on short enough time scales that fit within a hadronic,
cooling fireball i.e. on the order of ≈ 1 − 2 fm/c. Moreover, Hagedorn states states provide a
very efficient way for incorporating multi-hadronic interactions (with parton rearrangements).
This work indicates that the population and repopulation of potential Hagedorn states close
to phase boundary can be the key source for a dynamical understanding of generating and
chemically equilibrating the standard and measured hadrons.

In this thesis only the following hadrons were considered: pions, protons, kaons, lambdas,
and omegas, as described in Chapter 2. However, a possible future outlook would be to consider
a wider range of hadrons using branching ratio data from a microcanonical or canonical model.
Due to the large decay width of Hagedorn states and their prominence close to Tc it is reasonable
to believe that all light and strange hadrons will be able to quickly reach chemical equilibrium.
In fact, according to our chemical equilibration time estimates Eq. (3.8), the only component
of the time scale that would be affected is N eq

XX̄
/�X� (recall that Γi,XX̄ = �X�Γi where Γi is

unaffected by our choice in X). Both N eq
XX̄

and �X� should increase/decrease roughly by the
same order of magnitude in the system because both are calculated in statistical models, which
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are dependent on the same quantities: temperature, volume, chemical potential, mass of the
particle, degeneracy, and its quantum numbers. Thus, it is possible that Hagedorn states can
account for all particles reaching chemical equilibrium close to Tc.

Furthermore, our analytically derived chemical equilibration time depends only on the tem-
perature, decay widths, and branching ratios, but not the initial conditions. While this changes
slightly when an expanding fireball is considered, the initial conditions still only play a small role
and only minimally affect the ‘freeze-out’ temperature at which chemical equilibrium is reached
(the summary graph in Fig. 3.18 illustrates this nicely). This demonstrates that regardless of
the population of hadrons cooling out of the QGP phase, the initial conditions are washed out
and the hadrons can reach chemical equilibrium by the freezeout temperatures found in [63].
Moreover, the particle ratios p/π, K/π , Λ/π, and also Ω/π match the experimental values
regardless of the initial conditions. Especially, in Fig. 3.18 one can see: Regardless of the initial
conditions, our dynamical scenario can match experimental data. We do find, however, that
TH = 196 MeV fits within the experimental data box for K/π whereas TH = 176 MeV is slightly
above. This appears to reconfirm the findings in [63]. Our results imply that both lattice tem-
peratures can ensure that the hadrons reach their chemical equilibrium values by T = 160− 170
MeV. Although the ratios for TH = 176 MeV do fit the data somewhat better, both match the
experimental values reasonably well. This implies that independent of the critical temperature
the hadrons are able to reach chemical freeze-out.

These results raise the idea that the strangeness enhancement observed in heavy ion collisions
may not be a true signature for the formation of the QGP since it could be explained using only
the physics within the hadronic phase. Thus, it would interesting in the future to include
strange and/or baryonic Hagedorn states (currently, only non-strange, mesonic Hagedorn states
have been used). With these new Hagedorn states new decay channels could be considered,
which might contribute to multi-strange particles such as Ω.

One clear extension of my work is to include a finite baryon chemical potential µb, which is
currently held at µb = 0 in all dynamical calculations (the thermal fits do include finite µb but
all those calculations are done in equilibrium). In order to implement this, the decay channels
must also include effects from finite µb whereas in the current work the total baryon number is
set to zero i.e. a baryon anti-baryon pair is always produced instead of a single baryon. Another
interesting possibility is to include Hagedorn states in numerical transport theory descriptions
of the hadronic phase. Current transport models only include binary reactions when detailed
balance is preserved (in general 2 → 3 reactions are possible but only if the backreactions are
not included). Even though my work, thus far, has always included multi-mesonic reactions, it
should be possible to include Hagedorn states via binary reactions in a ladder approach. There,
a heavy Hagedorn state could decay into a lighter Hagedorn state plus a hadron.

Because of the success of decays from Hagedorn states in reproducing experimental particle
ratios, it was only logical to extend their use to other areas. Hadronic models with the known
particles are not able to reproduce the low shear viscosity to entropy density ratio that seems
to be required to explain the large elliptic flow observed at RHIC. One might expect that by
increasing the number of particles in a gas the mean free path would subsequently decrease,
which would in effect decrease the total η/s. In fact, including the “missing” Hagedorn states
also decreases η/s for hadronic matter near Tc near to the string theory value 1/(4π) as seen in
Chapter 4. Moreover, according to the general result that small η/s implies strong jet quenching
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[120], our significant reduction of η/s indicates that hadronic matter near the phase transition
is more opaque to jets than previously thought. Since the system should spend most of its time
near Tc (because of the minimum in the speed of sound), the fact that η/s can be very small
in that region in the hadronic phase may imply that the key observables for the QGP, i.e., the
strong quenching of jets and the large elliptic flow, can receive significant contributions from the
hot Hagedorn resonance gas.

As discussed in the Chapter 1, the equation of state, i.e., the relationship between the
pressure and energy density, is one of the necessary input parameters for hydrodynamics. Using
only the known particles the equation state for the hadron gas phase one is not able to match
that for the lattice near Tc if repulsive interactions are taken into account. In fact, we believe
that repulsive interactions between hadrons in a Hagedorn gas should be included since there
are no fundamental physical reasons to neglect them at such high temperatures (this was also
Hagedorn’s idea). However, note that at lower temperatures the repulsive interactions do not
contribute significantly and a sudden freeze-out scenario is still valid.

Hydrodynamic simulations of heavy ion collisions typically use either the simplified � = 3p
that describes a non-interacting ideal gas (or conversely an infinitely strong interacting conformal
plasma such N = 4 super-symmetric Yang Mills [?]) or an interpolation between an equation of
state based on lattice results above Tc and an ansatz for the equation state of hadronic matter
using the known hadrons. The latter is currently used more often. However, an interpolation
at Tc is required because the equations of state do not match at the transition and at best a
guess must be made to connect the two because hydrodynamics requires a continuous equation
of state. This can be avoided with the inclusion of Hagedorn states in determining the hadronic
equation of state (here the pressure and energy are related via the speed of sound, c2s and the
trace anomaly also matches the lattice well) because it uniquely matches the lattice results at
Tc and, thus, no interpolation is required. Note that once the mass of the hadrons computed
on the lattice match the physical masses the value of the model parameters determined by the
fit to the lattice data near Tc will be slightly different but this change can be straightforwardly
incorporated in our calculations. It would be interesting to use the calculated equation of state
here in hydrodynamic simulations. In fact, one could study how the temperature dependence
of viscous coefficients, which so far has been mostly neglected in the viscous hydrodynamic
simulations, affects key signatures of QGP formation such as the elliptic flow of hadrons.

Finally, in Chapter 5 I continued my research into the effects of the missing Hagedorn states
in thermal fits. I assumed that the particle ratios measured in Au+Au collisions at RHIC at
√
sNN = 200 GeV admit a purely statistical description at chemical freeze-out. The results

for thermal fits without Hagedorn states concur well with other thermal fit models [113] where
the chemical freeze-out temperature (Tch = 160.4 MeV) is almost identical and the baryonic
chemical potential (µb = 22.9 MeV) is only slightly larger. The thermal fit with the known
particles in the particle data group provides a decent fit with χ2 = 21.2. However, the inclusion of
Hagedorn states provides an even better fit to the experimental data. In fact, we find χ2 = 17.8,
Tch = 172.6 MeV, and µb = 39.7 MeV for the BMW collaboration while for the RBC-Bielefeld
collaboration we obtained χ2 = 20.9, Tch = 165.9 MeV, and µb = 20.9 MeV. This implies
[30, 55, 56, 58] that Hagedorn states are important in a description of hadronic matter near Tc.
Since the chemical freeze-out temperature was found to increase from 160 MeV to roughly 165
MeV (RBC-Bielefeld) or 172 MeV (BMW) when including Hagedorn states, this exemplifies the
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degree of uncertainty in extracting chemical freeze-out thermodynamical parameters by means
of such thermal analyzes.

Furthermore, it would be interesting to calculate the hadronic susceptibilities, which can be
done by taking the second derivative of the free energy with respect to the chemical potential.
The susceptibilities are interesting because lattice calculations show that quadratic fluctuations
increase rapidly in the phase transition region and continue to increase about Tc until they near
the ideal-gas value at T ≈ 2Tc. Because my statistical model including Hagedorn states matches
lattice data well, it would be interesting to see if it has the same results for the susceptibilities in
the hadronic phase. It would be also interesting to study the new properties of hadronic matter
that appear near the conjectured QCD critical point.

Hopefully, in the next few years results from LHC will begin to flood scientific conferences and
papers. Thus, it is normal to wonder what role the Hagedorn states will play at LHC. The work
I have done on dynamical chemical equilibrium using Hagedorn states should be almost entirely
unaffected by a longer QGP phase during the collision. The reason is that all calculations are
made following the cooling into the hadronic phase, so as long as the temperature is close to Tc

it is irrelevant how long QGP has existed beforehand. Furthermore, because the initial number
of hadrons following freeze-out is washed out because of the quick decays of Hagedorn states,
even if the initial conditions for the protons, pions, etc. at LHC are different then at RHIC,
this difference will not affect my results. Here I have assumed that µb = 0, which means that
if anything my calculations are even more applicable at those higher collision energies because
LHC has a smaller chemical potential than RHIC.

The only step in our calculations that could be affected by different results from LHC is
the way the fireball expansion is setup. In Eq. (2.22) the term dNπ

dy is taken from experimental
results in [78]. Therefore, if the number of pions is drastically increased it could possible affect
our results. Because the entropy density at a given temperature would be unchanged an increase
in the number of pions would increase the volume, which would in turn increase the total number
of particles. However, our time scale estimate in Eq. (3.8) would be unaffected by a change in
the volume because this factor would be cancelled out. Obviously, the caluclated particle ratios
would remain the same because the volume would cancel. Thus, if the mechanism proposed in
this thesis indeed correctly captures the corresponding physics at RHIC, one should still expect
to see quick chemical equilibration times at LHC.

A change in the total number of pions would also have no effect on η/s because the volume
cancels out. As for the trace anomaly, c2s, and the bulk viscosity they would be unaffected. The
same goes for thermal fits because the volume would be cancelled out due to only considering
particle ratios. Therefore, we conclude that the “missing” Hagedorn states discussed in this
thesis should be just as vital to understand the physics at the new energy frontier at the LHC
as it has been at RHIC and SPS.



Chapter 7

Zusammenfassung

Die vorliegende Arbeit greift das bekannte Konzept von Hagedornzuständen auf, um damit
neue physikalische Effekte in hadronischer Materie nahe der kritischen Temperatur Tc

1 in einem
Beschleunigerring für relativistische Schwerionen zu untersuchen. Dieses Konzept wurde in den
1960er Jahren von Rolf Hagedorn eingeführt und beruht darauf, dass hadronische Resonanzen
einem exponentiellen Spektrum folgen. Seit den Arbeiten von Hagedorn wurden viele neue
Resonanzen gefunden, jedoch weisen sie bis zu einer Masse von M = 2 GeV weiterhin ein
exponentielles Spektrum auf. Für größere Massen flacht das Spektrum allerdings ab, was darauf
hinweist, dass bislang noch nicht alle Resonanzen bekannt sind. In dieser Arbeit wird die
Existenz solcher Resonanzen angenommen und ihre Auswirkungen auf verschiedene Signaturen
des Quark-Gluon Plasmas untersucht.

Dynamische Zerfälle der bekannten hadronischen Teilchen können die Anzahl der verschiede-
nen am RHIC (dem Relativistic Heavy-Ion Collider am Brookhaven National Laboratory on
Long Island, USA) auftretenden Teilchen nicht erklären. Die Zeitskala des chemischen Gle-
ichgewichtes ist zu groß und sie stimmt nicht zu der berechneten Zeitskala des expandieren-
den hadronischen Feuerballs überein. Dies führte zu der Annahme, dass die Temperatur des
chemischen Ausfrierprunktes (d.h. die Temperatur, an dem Teilchen nicht mehr durch Stöße
miteinander wechselwirken) und die kritische Temperatur übereinstimmen. In dieser Arbeit
konnte gezeigt werden, dass unter Hinzunahme der bereits erwähnten schweren, schnell zerfall-
enden Hagedornzustände das chemische Gleichgewicht innerhalb von ≈ 1−2fm

c erreicht werden
kann. Diese Zeitskala stimmt mit einem expandierenden, sich abkühlenden Feuerball überein.
Darüber hinaus bieten Hagedornzustände einen wirksamen Mechanismus, die Wechselwirkung
von Hadronen untereinander zu beschreiben. Die Ergebnisse dieser Arbeit weisen darauf hin,
dass die Besetzung potentieller Hagedornzustände nahe der Phasengrenze eine essentielle Rolle
im Verständnis der dynamischen Prozesse spielt, die zur Produktion und zur Ausbildung des
chemischen Gleichgewichtes der gemessenen Hadronen führen.

Diese Arbeit betrachtet nur die folgenden Hadronen: Pionen, Protonen, Kaonen, Lambdas
und Omegas. Zukünftig wäre eine Erweiterung des in der Arbeit vorgestellten Modells denkbar,
das eine größere Auswahl von Hadronen berücksichtigt und dabei Verzweigungsverhältnisse (sog.

1Die kritische Temperatur bestimmt den Phasenübergang von der hadronischen Materie zum Quark-Gluon

Plasma.
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Figure 7.1: Diagramm der verschiedenen Teilchenverhältnisse bei verschiedenen Anfangsbedingungen.
Die Punkte stellen die Teilchenverhältnisse bei T = 110 MeV dar, wobei unterschiedliche Hagedorn-
temperaturen von TH = 176 MeV (Kreise) und ein TH = 196 MeV (Rauten) betrachten werden. Die
experimentellen Ergebnisse für STAR [5, 117] und PHENIX [118] sind durch graue Balken angezeigt.

branching ratios) zwischen den verschiedenen Hadronen in Betracht zieht, die anhand von kanon-
ischen oder mikrokanonischen Modellen gewonnen werden können. Aufgrund der großen Zer-
fallsbreite der Hagedornzustände und ihres Einflusses nahe Tc kann man davon ausgehen, dass
alle leichten und seltsamen Teilchen schnell das chemische Gleichgewicht erreichen. Es lässt sich
zeigen, dass die chemische Zeitskala die Form

τXX̄ =
N eq

XX̄�
i Γi,XX̄N eq

i

(7.1)

annimmt. Daher ist N eq
XX̄

/�X� die einzige Komponente der Zeitskala, auf die eine Änderung
eines Verzweigungsverhältnisses einwirken würde, da die Relation Γi,XX̄ = �X�Γi gilt, wobei Γi

unabhängig von der Wahl von X ist. Die Terme N eq
XX̄

und �X� nehmen ungefähr mit der gleichen
Größenordnung im System zu/ab, weil sie die gleiche Abhängigkeiten von der Temperatur, dem
Volumen, dem chemisches Potential, der Masse, dem Entartungswert und den verschiedenen
Quantenzahlen aufweisen. Daher ist es möeglich, dass aufgrund der Hagedornzustände alle
Teilchen chemiches Gleichgewicht erreichen können.

Unsere analytisch abgeleitete Zeitskala des chemischen Gleichgewichtes hängt ausschließlich
von der Temperatur, der Zerfallsbreite und Verzweigungsverhältnissen zwischen verschiedenen
Hadronen, aber nicht von den gewählten Anfangsbedingungen ab. Dies ändert sich jedoch, wenn
ein expandierender Feuerball betrachtet wird. Allerdings spielen auch dann die Anfangsbedin-
gungen nur eine untergeordnete Rolle und haben nur eine minimale Wirkung auf die Temperatur,
an der das chemische Gleichgewicht erreicht wird (siehe Fig. 7.1). Dies verdeutlicht, dass trotz
der Bevölkerung verschiedener hadronischer Zustände während der Abkühlphase aus dem QGP
die Anfangsbedingungen nahezu vollständig verwaschen und die Hadronen bei einer Temperatur
von Tch = 160 MeV ein chemisches Gleichgewicht erreichen, die als typische chemische Aus-
friertemperatur angesehen werden kann (siehe [63]). Darüber hinaus stimmen die mit unserem
dynamischen Modell berechneten Teilchenverhältnisse p/π, K/π , Λ/π und Ω/π unabhängig von



101

den gewählten Anfangsbedingungen gut mit den experimentell gemessenen Werten überein wie
Fig. 7.1 zeigt. Die einzige Ausnahme hierbei bildet das Verhältnis K/π, das für eine Hagedorn-
temperatur von TH = 176 MeV, jedoch nicht für ein TH = 196 MeV innerhalb der Fehlerbalken
liegt. Diese Ergebnisse implizieren, dass beide Hagedorntemperaturen von TH = 176 MeV und
TH = 196 MeV, die anhand von verschiedenen Lattice-QCD Rechnungen bestimmt wurden,
ein chemisches Gleichgewicht zwischen T = 160 − 170 MeV erzeugen. Obwohl die Verhältnisse
für eine Hagedorntemperatur von TH = 176 MeV die experimentellen Daten etwas besser zu
beschreiben scheinen, führen beide Temperaturen zu einer guten Übereinstimmung mit den ex-
perimentellen Werten. Dies weist darauf hin, dass die Hadronen das chemische Gleichgewicht
unabhängig von der kritischen Temperatur erreichen.

Diese Ergebnisse werfen die Frage auf, ob der in Schwerionenkollisionen beobachtete Anstieg
seltsamer Teilchen ein eindeutiges Indiz für die Ausbildung des QGP ist, da dieser Effekt auch
allein anhand der Physik in der Hadrongas-Phase erklärt werden kann. Daher wäre es interes-
sant, unser Modell um seltsame und/oder baryonische Hagedornzustände zu erweitern (bisher
haben wir nur nicht-seltsame, mesonische Hagedornzustände berücksichtigt). Mit diesen neuen
Hagedornzuständen könnten außerdem zusätzliche Zerfallskanäle berücksichtigt werden, die zur
Produktion von Teilchen beitragen könnten, die wie das Ω aus mehreren seltsamen Teilchen
aufgebaut ist.

Da die experimentell gemessenen Teilchenverhältnisse sehr gut durch den Zerfall von Hage-
dornzuständen reproduziert werden konnten, wurde ihre Anwendung auch auf andere Gebiete
ausgedehnt. Aus hadronische Modellen, die alle bekannten Teilchen berücksichtigen, lässt sich
kein Verhältnis von Scherviskosität zu Entropiedichte (η/s) ableiten, das klein genug wäre, um
den großen elliptischen Fluss zu beschreiben, der am RHIC beobachtet wurde. Man könnte
erwarten, dass durch die Erhöhung der Teilchenzahl in einem Gas die mittlere freie Weglänge
deutlich nachlässt, was zu einem kleineren η/s führen würde. In der Tat führt auch die Hinzu-
nahme der fehlenden Hagedornzustände zu einem kleineren Wert von η/s für hadronische Ma-
terie nahe Tc, der ungefähr den aus der Stringtheorie abgeleiteten Wert von η/s = 1/(4π) hat,
wie man Fig. 7.2 entnehmen kann. Da ein kleines η/s eine starkt Abschwächung von Jets be-
deutet (das sog. Jet Quenching) [120], weist der aus unseren Rechnungen gewonnene, kleinere
Wert von η/s darauf hin, dass hadronische Matterie nahe der Phasenübergang Jets stärker
abschwächen dürfte als gedacht. Da sich das System (aufgrund des Minimums der auftre-
tenden Schallgeschwindigkeit) längere Zeit in dem Bereich nahe der kritischen Temperatur Tc

aufhalten sollte, könnte ein kleines η/s in diesem Bereich der Hadrongas-Phase bedeuten, dass
die wichtige Signaturen des QGPs wie Jet Queching oder elliptischer Fluss stark vom heißen
Hagedorn-Resonazgas beeinflusst werden.

Darüber hinaus bietet die Einbeziehung der Hagedornzustände die Möglichkeit, eine Zu-
standsgleichung abzuleiten, die ein Hadrongas kontinuierlich mit der aus Lattice-QCD Rech-
nungen bestimmten Zustandsgleichung für ein QGP verbindet (siehe Fig. 7.3). Bislang wurde
häufig eine Interpolation zwischen den Lattice-QCD Resultaten und einem Hadrongas (ohne
Hagedornzustände) verwendet. Es wäre äusserst interessant, eine derartige Zustandsgleichung in
einem hydrodynamischen Modell zu verwenden. So ließe sich beispielsweise die Abhängigkeit der
Transportkoeffizienten von der Temperatur untersuchen, die bislang größtenteils vernachlässigt
wurde, jedoch einen Einfluss auf bestimmte Signaturen des QGPs wie den elliptischen Fluss von
Hadronen haben könnte.
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Figure 7.2: Das Verhältnis von η/s als Funktion der Temperatur T für ein Gas von Pionen und
Nukleonen [95] (obere gestrichelte schwarze Linie) und für ein Hadron-Resonazgas [96] (untere gestrichelte
schwarze Linie). Die rote durchgezogene Linie stellt die minimale Einwirkung von Hagedornzuständen auf
das Verhältnis von η/s dar und das blaue Band verdeutlicht den möglichen Effekt von Hagedornzuständen.
Die durchgezogene schwarze Linie repräsentiert den aus der Stringtheorie abgeleiteten Wert von η/s =
1/4π [61].

Darüber hinaus beschäftigt sich die Arbeit auch mit der Auswirkung von Hagedornzuständen
auf thermische Fits. Hierbei wurde angenommen, dass die in Au+Au Kollisionen am RHIC (bei
Schwerpunktsenergien von

√
sNN = 200 GeV) gemessenen Teilchenverhältnisse einer rein statis-

tichen Beschreibung am chemischen Ausfrierspunkt folgen. Die aus unserem Modell gewonnenen
thermischen Fits ohne Einbeziehung von Hagedornzuständen stimmen gut mit anderen ther-
mischen Fits [113] überein, wobei wir fast dieselbe Ausfrierstemperatur (Tch = 160.4 MeV)
und ein nur leicht größeres baryonischchemisches Potenzial (µb = 22.9 MeV) erhalten. Unter
Berücksichtigung der von der Particle Data Group gemessenen Teilchen liefern die thermischen
Fits mit einem χ2 = 21.2 ein zufriedenstellendes Ergebnis (siehe Fig. 7.4). Das Einbeziehen
der Hagedornzustände jedoch liefert eine noch bessere Beschreibung der experimentellen Daten.
Mit einem χ2 = 17.8 erhalten wir eine Ausfriertemperatur von Tch = 172.6 MeV und ein bary-
ochemisches Potential von µb = 39.7 MeV für eine Hagedorntemperatur von TH = 176 MeV,
während wir für eine Hagedorntemperatur von TH = 196 MeV bei einem χ2 = 20.9 eine Aus-
friertemperatur von Tch = 165.9 MeV und ein baryochemisches Potential von µb = 20.9 MeV bes-
timmen konnten (siehe Fig. 7.5). Dies zeigt, wie wichtig Hagedornzustände für die Beschreibung
hadronischer Materie nahe der kritischen Temperatur Tc ist [30, 55, 56, 58]. Hierbei verdeut-
licht das Ansteigen der chemischen Ausfriertemperatur von Tch = 160 MeV auf Tch = 165 MeV
bzw. Tch = 172 MeV unter Berücksichtigung von Hagedornzuständen die Unsicherheiten beim
Extrahieren der thermodynamischen Parameter am chemischen Ausfrierspunkt.

In den nächsten Jahren wird der Large Hadron Collider (LHC, zu Deutsch “Großer Hadronen-
Speicherring”) viele neue wissenschaftliche Ergebnisse hervorbringen. Somit stellt sich die Frage,
welche Rolle Hagedornzustände am LHC spielen werden. Die in dieser Arbeit vorgestellten
Ergebnisse für ein dynamisches chemisches Gleichgewicht sollten von einer längeren QGP-Phase
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Figure 7.3: Das Quadrat der Schallgeschwindigkeit (c2s) als Funktion von ε21/4 für ein dynamisches
Modell mit Hagedornzuständen zwischen 2 < M < 12 GeV (durchgezogene rote Linie) und für ein
Hadrongas ohne Hagedornzustände (gestrichelte schwarze Linie) [72]. Die Punkte stellen die Ergebnisse
aus Lattice-QCD Rechnungen dar [8]. Die blaue Linie wurde anahnd von Hagedornzuständen mit 2 <
M < 80 GeV berechnet.

nahezu unbeeinflußt bleiben. Der Grund hierfür ist, dass alle Berechunungen erst nach Erreichen
der hadronische Phase gemacht wurden. Solange die Temperatur nahe der kritischen Temperatur
Tc ist, ist es irrelevant, wie lange das QGP vorher existierte. Da die ursprüngliche Anzahl von
Hadronen, die während des Ausfrierens erzeugt werden, aufgrund der schnellen Zerfälle aller
Hagedornzuständen verwaschen ist, werden die Ergebnisse selbst dann nicht beeinflußt, wenn
sich die Anfangsbedingungen für die unterschiedlichen Teilchen wie Pionen, Kaonen usw. von
RHIC zu LHC unterscheiden. Da in dieser Arbeit das baryochemische Potential zu Null gesetzt
wurde (µb = 0) und am LHC vermutlich sehr kleine baryochemische Potentiale auftreten, kann
das vorgestellt Modell sogar noch besser bei höheren Kollisionsenergien angewendet werden.

Jedoch könnte die Expansion des Feurballs am LHC die Ergebnisse durchaus beeinflussen,
vornehmlich durch die Anzahl von Pionen. Da sich die Entropiedichte bei einer gegebenen Tem-
peratur nicht verändert, würde ein solcher Anstieg der Pionenanzahl das Volumen vergrößern
und damit zu einem Gesamtanstieg der Teilchenzahl führen. Die berechneten Teilchenverhältnisse
blieben jedoch unbeeinflusst. Somit kann man erwarten, dass auch am LHC das chemische Gle-
ichgewicht innerhalb sehr kurzer Zeit erreicht wird.

Eine Änderung in der Gesamtanzahl der Pionen hätte keine Wirkung auf das Verhältnis von
η/s, da sich auch hier die Volumina gegenseitig wegheben. Ebenso bliebe die Zustandsgleichung,
c2s, und die Scherviskosität unbeeinflusst. Daher sind die in der vorliegenden Arbeit untersuchten
“fehlenden” Hagedornzustände für ein Verständnis der ablaufenden physikalischen Prozesse am
LHC ebenso unerlässlich wie sie es für die am RHIC gewonnenen Resultate sind.
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Figure 7.4: Thermische Fits für Au+Au Kollisionen am RHIC bei einer Schwerpunktsenergie von
√
sNN = 200 GeV ohne Hagedornzustände.
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Appendix: Hagedorn States in

String Theory

The purpose of this appendix is to derive the number of partitions, p(N), where N � 1. The
end result should be

p24(N) ≈
1
√
2
N−27/4 exp

�
4π
√
N

�
. (A.1)

In order to find the formula for the number of partitions of large integers we look to a quantum
non-relativistic string, which has an infinite set of vibrating frequencies that are all multiples of
the basic frequency ω0. Thus, the quantum string is a collection of simple harmonic oscillators
with the frequencies ω0, 2ω0, etc. The energy of a simple harmonic oscillator, assuming that the
total number of excitations N is large, is

E = ω0N (A.2)

N is a large fixed positive integer. The number of states with the eigenvalue N̂ (N̂ =
�∞

l=1 la
†
lal

where al and a†l annihilation and creation operators, respectively) equal to N is known as p(N)
or the number of partitions of N. p(N) is determined by the number of different sets of positive
integers that add to N . For example, the partitions of N = 5 are: {5}, {4, 1}, {3, 2}, {3, 1, 1},
{2, 2, 1}, {2, 1, 1, 1}, and {1, 1, 1, 1, 1}, which means that p(5) = 7. A formula to describe p(N)
for all N is unknown but for large N , lnN can be described. Recalling the entropy in Eq. (1.22)
and using Eq. (A.2), we find

S(E) = ln p(N) = ln p

�
E

h̄ω0

�

(A.3)

where Ω(E) is nothing other than p(N). The entropy can be determined by calculating the
partition function Z for the quantum non-relativistic string, which can then be used to calculate
the free energy F . The free energy, F, can be determined through

F = E − TS, (A.4)

which leads to
dF = −SdT − pdV. (A.5)
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Additionally, the free energy can be calculated from the partition function

F = −T lnZ. (A.6)

The free energy then allows us to calculate the temperature, entropy and pressure (using S =
(E + P )/T the energy could also be calculated)

T =

�
∂S

∂E

�−1

S = −

�
∂F

∂T

�

V
, p =

�
∂F

∂V

�

T
. (A.7)

It is only possible to explicitly determine F at high temperatures and from there S(E) is found.
The partition function of a quantum non-relativistic string is

Z =
�

α

exp

�

−
Eα

T

�

=
�

n1,n2,n3,...

exp

�

−
ω0

T
(n1 + 2n2 + 3n3 + ...)

�

=
�

n1

exp

�

−
ω0

T
n1

�

·
�

n2

exp

�

−
ω0

T
2n2

�

=
∞�

l=1

∞�

nl=0

exp

�

−
ω0lnl

T

�

. (A.8)

However, Eq. (A.8) contains a geometric series, which can be rewritten as

Z =
∞�

l=1

�

1− exp

�

−
ω0l

T

��−1

. (A.9)

Substituting Eq. (A.9) into Eq. (A.6), we find the free energy

Z = T
∞�

nl=0

ln

�

1− exp

�

−
ω0l

T

��

. (A.10)

If we look only at high temperatures, such that ω0l
T � 1, the difference between the terms in the

sum shrink such a way that we can approximate the sum by an integral

F = T

� ∞

l=1
ln

�

1− exp

�

−
ω0l

T

��

dx. (A.11)

and choosing l=1 plays (as compared to another small number) no role. We can then integrate
over ’x’ instead where

x =
ω0

T
(A.12)

so that

F ≈
T 2

ω0

� ∞

0
dx ln(1− e−x) (A.13)

and then use the expansion

ln(1− y) = −

�

y +
1

2
y2 +

1

3
y3 + ...

�

, (A.14)
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which is valid as long as 0 ≤ y < 1. It follows then that

F ≈
T 2

ω0

� ∞

0
dx

�

e−x +
1

2
e−2x +

1

3
e−3x + ...

�

≈
T 2

ω0

�

1 +
1

22
+

1

33
+ ...

�

. (A.15)

The sum can be expressed as a zeta function

ζ(2) = 1 +
1

22
+

1

33
+ ... =

π2

6
, (A.16)

which can be substituted into Eq. (A.15)

F ≈ −
T 2π2

ω06
= −

π2

ω06β2
. (A.17)

From the free energy we can calculate the energy

E =
∂ lnZ

∂β
= −

π2T 2

6ω0
(A.18)

and the entropy

S = −
∂F

∂T
=

π2T

3ω0
, (A.19)

which leads to

S(E) = π

�
2

3

E

ω0
(A.20)

and substituting in Eq. (A.2)

S(E) = 2π

�
N

6
. (A.21)

Then using Eq. (A.3),

ln p(N) ≈ 2π

�
N

6
, (A.22)

which is the first term in the Hardy-Ramanujan asymptotic expansion of p(N) [67]

p(N) ≈
1

4N
√
3
exp



2π

�
N

6



 . (A.23)

Assuming that a quantum string can vibrate in b transverse directions, we have b harmonic
oscillators for each frequency lω0. Thus, we have the partition function Zb with the occupation
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numbers n
(q)
k where k = 1, 2, ...,∞ and q = 1, 2, ..., b such that (in natural units h̄ = kB = 1)

Zb =
�

n
(1)
k

,...,n
(b)
k

exp



−
ω0

T

∞�

t=0

b�

q=1

ln
(q)
l





=
�

n
(1)
k

exp

�

−
ω0

T

∞�

t=0

ln
(1)
l

�

...
�

n
(b)
k

exp

�

−
ω0

T

∞�

t=0

ln
(b)
l

�

= (Z)b. (A.24)

The free energy Fb is then
Fb = −T lnZb = −Tb lnZ = bF, (A.25)

which implies that the entropy is
Sb = bS (A.26)

and the energy is
Eb = bE = ω0N (A.27)

where N =
�

l,q ln
(q)
l , because they are both simply derivatives of the free energy and b being a

constant can be pulled out of the derivative. From Eq. (A.21) we see that the entropy becomes

Sb = 2π

�
Nb

6
. (A.28)

Recalling Eq. (A.3),

ln pb(N) ≈ 2π

�
Nb

6
(A.29)

Here we consider only bosonic strings, which have b = 24 transverse light-cone directions

p24(N) ≈
1
√
2
N−27/4 exp

�
4π
√
N

�
, (A.30)

which allows us to arrive at our desired p24(N).
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Derivation of Volume Corrections

The volume corrections given in Chapter 2 in Eq. (2.3) are derived in this appendix for µb = 0.
The derivation of which is originally shown in [70] (see also [71]).

Initially we start with the partition function of a non-interacting point particle where the
particles are treated relativistically but with Boltzman statistics

Zpt(β, V ) =
∞�

N=0

1

N !

N�

i=1

�
d3p

(2π)3
dmiρ(mi)V

Ne−β�i (B.1)

where ρ(mi) is the mass spectrum, β = 1/T , and �i =
�
p2 +m2

i

�1/2
.

Then the point particle thermodynamic quantities can be found

Ppt(β) =
lnZpt (β, V )

βV

=
1

β

�
d3p

(2π)3
dmiρ(mi)e

−β�

npt(β) = βPpt(β)

=

�
d3p

(2π)3
dmiρ(mi)e

−β�

�pt(β) = −
dPpt(β)

dβ

=

�
d3p

(2π)3
dmiρ(mi)�e

−β�

Spt(β) =
Ppt(β) + �pt(β)

β

=

�
d3p

(2π)3
dmiρ(mi) [1 + β�] e−β�

. (B.2)

According to the MIT bag model, hadrons have a mass dependent volume, V = m/(4B)
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where B is the bag constant. If we replace the volume in Eq. (B.1) by

V → V −
∞�

j=1

�j
4B

, (B.3)

then the available volume that the hadrons are allowed to move in is diminished by the volume
size of the hadrons themselves. The energy is used instead of the mass due to relativity. Eq.
(B.1) then becomes

Zpt(β, V ) =
∞�

N=0

1

N !

N�

i=1

�
d3p

(2π)3
dmiρ(mi)



V −
∞�

j=1

�j
4B





N

e−β�i . (B.4)

To simply future calculates, we let V0 =
�∞

j=1
�j
4B . In order to further solve Eq. (B.4), we use

the Laplace transform

Ẑ (β, ζ) =

� ∞

0
dV Z (β, V ) e−ζV . (B.5)

Substituting in Eq. (B.4) into Eq. (B.5),

Ẑ (β, ζ) =
∞�

N=0

1

N !

N�

i=1

�
d3p

(2π)3
dmiρ(mi)e

−β�i

� ∞

V0

dV [V − V0]
N e−ζV . (B.6)

Then integral over the volume can be solved such that

� ∞

V0

dV [V − V0]
N e−ζV =

e−ζV0

ζN+1
Γ(1 +N) =

e−ζV0

ζN+1
N !, (B.7)

which can be substituted into Eq. (B.6)

Ẑ (β, ζ) =
∞�

N=0

N�

i=1

�
d3p

(2π)3
dmiρ(mi)e

−β�i
e−ζV0

ζN+1
. (B.8)

Substituting in V0,

Ẑ (β, ζ) =
1

ζ

∞�

N=0

�
1

ζ

�
d3p

(2π)3
dmρ(m)e−�(β+ ζ

4B )
�N

. (B.9)

Using the indentity,
∞�

N=0

xN =
1

1− x
, (B.10)

we can rearrange Eq. (B.9)

Ẑ (β, ζ) =

�

ζ −

�
d3p

(2π)3
dmρ(m)e−�(β+ ζ

4B )
�−1

. (B.11)
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However, we can define

β∗ = β +
ζ

4B
(B.12)

and substitute it into Eq. (B.11)

Ẑ (β∗, ζ) =

�

ζ −

�
d3p

(2π)3
dmρ(m)e−�β∗

�−1

= [ζ − F (β∗, ζ)]−1 . (B.13)

Then Eq. (B.13) has a pole of ζ∗ at ζ = F (β∗, ζ), which is the pressure in the thermodynamic
limit i.e.

ζ∗ = βPcor(β) =

�
d3p

(2π)3
dmρ(m)e−�β∗ . (B.14)

For the point particle (using Eq. (B.2)),

β∗Ppt(β
∗) =

�
d3p

(2π)3
dmiρ(mi)e

−β∗�

= βPcor(β) (B.15)

or in other words

β = β∗ −
β∗Ppt(β

∗)

4B
=

β∗Ppt(β
∗)

Pcor(β)

Pcor(T ) =
Ppt(T

∗)

1−
Ppt(T ∗)

4B

, (B.16)

which also leads to

T =
T ∗

1− Ppt(T ∗)
4B

. (B.17)

Using Pcor(T ) and T the rest of the thermodynamic quantities can be calculated as see in Eq.
(2.3).
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Appendix C

Master Equations

C.1 Markov Process

A Markov process is a process in which the probability of a transition at time tn−1 to time tn
from a point yn−1 to yn is dependent only at the value of y at point tn−1 and not on y at any
time before t < tn−1. The condition probability is P1|1 (y2, t2|y1, t1), which is defined using the
following relation

P2 (y1, t1; y2, t2) = P1|1 (y2, t2|y1, t1)P1 (y1, t1) . (C.1)

Basically, Eq. (C.1) describes the probability of finding both y1 at t1 and y2 at t2, which
is found by multiplying the probability (P1 (y1, t1)) of finding y1 at t1 with the probability
(P1|1 (y2, t2|y1, t1)) of finding y2 at t2 given that y1 is at t1. Moreover, the conditional probabil-
ity must also satisfy the following

• P1|1 ≥ 0

•
�
P1|1 (y2, t2|y1, t1) dy2 = 1

• P1 (y2, t2) =
�
P1|1 (y2, t2|y1, t1)P1 (y1, t1) dy1

Using the 3rd relation it means that integrating Eq. (C.1) over y1 yields

�

P2 (y1, t1; y2, t2) dy1 = P1 (y2, t2) . (C.2)

Therefore, a Markov process would then be defined by Eq. (C.1)

P1|n−1 (yn, tn|yn−1, tn−1; ...; y1, t1) = P1|1 (yn, tn|yn−1, tn−1) (C.3)

where t1 < t2 < ... < tn because all early times and positions before tn−1 are irrelevant. For
n ≥ 3 in a Markov process all the probabilities can be rewritten in terms of P1 and P1|1. Looking
specifically at n = 3,

P3 (y1, t1; y2, t2; y3, t3) = P1|2 (y3, t3|y1, t1; y2, t2)P2 (y1, t1; y2, t2)

= P1|1 (y3, t3|y2, t2)P1|1 (y2, t2|y1, t1)P1 (y1, t1) . (C.4)
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Then integrating Eq. (C.4) over y2, the left side of the equation becomes

�

P3 (y1, t1; y2, t2; y3, t3) dy2 = P2 (y1, t1; y3, t3)

= P1|1 (y3, t3|y1, t1)P1 (y1, t1) (C.5)

and the right side of the equation in Eq. (C.4) becomes

P1 (y1, t1)

�

P1|1 (y3, t3|y2, t2)P1|1 (y2, t2|y1, t1) dy2. (C.6)

We can then divide both Eq. (C.5) and Eq. (C.6) by P1 (y1, t1) and equate them, which allows
us to arrive at the Chapman-Kolmogorov equation

P1|1 (y3, t3|y1, t1) =

�

P1|1 (y3, t3|y2, t2)P1|1 (y2, t2|y1, t1) dy2, (C.7)

which implies that a process starting at t1 with the value y1 reaches y3 at time t3 via any possible
values for y2 at the time t2.

C.2 Deriving Master Equations

The Chapman-Kolmogorv uses a special notation for the transition probability:

P1|1 (y2, t2|y1, t1) = Tτ (y2|y1) (C.8)

Tτ+τ � (y3|y1) =

�

Tτ � (y3|y2)Tτ (y2|y1) (C.9)

We can then expand the transition probability using a Taylor series over zero

Tτ � (y3|y2) = δ(y3 − y2) + τ �W (y3|y2) +O
�
τ �2

�
(C.10)

where

W (y3|y2) =
dTτ (y3|y2)

dt
|τ �=0. (C.11)

The delta function in Eq. (C.10) is the probability to stay at the same state after time zero
equals one whereas the probability to change state after time zero equals zero.

Due to the second property above that the transition probability must be normalized, the
integral over y3 must be equal to one. Therefore, a correction term is added

Tτ � (y3|y2) =
�
1− α0τ

�� δ(y3 − y2) + τ �W (y3|y2) +O
�
τ �2

�
(C.12)

where the −α0τ
� term takes into account the possibility for no transitio to take place and must

then equal

α0 (y2) =

�

W (y3|y2) dy3. (C.13)
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Substituting Eq. (C.12) into Eq. (C.9),

Tτ+τ � (y3|y1) =

�

Tτ � (y3|y2)Tτ (y2|y1) dy2

=

�
��
1− α0τ

�� δ(y3 − y2) + τ �W (y3|y2)
�
Tτ (y2|y1) dy2

=

�

Tτ (y2|y1) δ(y3 − y2)dy2 − τ �
�

α0Tτ (y2|y1) δ(y3 − y2)dy2

+ τ �
�

W (y3|y2)Tτ (y2|y1) dy2

= Tτ (y3|y2) + τ �
�

[W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)] dy2

Tτ+τ � (y3|y1)− Tτ (y3|y1)

τ �
=

�

[W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)] dy2. (C.14)

Taking the limit of τ � → 0, we arrive at the master equation

δTτ (y3|y1)

δτ
=

�

[W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)] dy2. (C.15)

Master equations, otherwise known as rate equations, are a set of first-order differential equa-
tions. We can then relabel the indicies in Eq. (C.15)

δP (y, t)

δt
=

�
�
W

�
y|y�

�
P

�
y�, t

�
−W

�
y�|y

�
P (y, t)

�
dy�. (C.16)

Additionally, if all y’s are discrete

δpn(t)

δt
=

�

n�

�
Wnn�p

�
n(t)−Wn�npn(t)

�
dy�. (C.17)

The first term in Eq. (C.17) is the gain term from other n� → n states, while the second term is
the loss term from n→ n� states. Thus, Eq. (C.17) has the form

ṅ = “gain” + “loss” (C.18)

where we can observe the change in the number of n over time.

C.3 Detailed Balance

There could be multiple gain and/or loss terms depending on the reactions the master equations
describe. For instance, for the decay k ↔ i + j where k, i, and j are all either particles or
resonances,

Ṅk = −ΓkNk + �σijvij�NiNj (C.19)

where Γ is the decay width, which is the inverse of the mean lifetime for a particle and,therefore,
the probability for the k particle to decay is contaiend within Γ, �σijvij� is the thermally averaged
total cross-section for the i and j particles, and N is the total number of particles (we use n to
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describe the density of particles and N is the total number). but at equilibrium rate equations
reach a fixed point such that Ṅk = 0,

ΓkN
eq
k = �σijvij�N

eq
i N eq

j

�σijvij� =
N eq

k

N eq
i N eq

j

Γk (C.20)

where the prefactor in front of Γk ensure detailed balance. Therefore, Eq. (C.19) becomes

Ṅk = −Γk

�

Nk +
N eq

k

N eq
i N eq

j

NiNj

�

(C.21)

or in the λ = N/N eq form
λ̇k = −Γk [λk + λiλj] . (C.22)
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Appendix: Analytical Solutions

In order to make an estimate for the chemical equilibration time we first look at what happens to
the rate equations at a constant temperature. Moreover, we consider only the dynamics between
the Hagedorn states and the pions, i.e., HS ↔ nπ,

Ṅi = Γi

�

N eq
i

�

n=2

Bi,n

�
Nπ

N eq
π

�n

−Ni

�

Ṅπ =
�

i

Γi

�

Ni�n� −N eq
i

�

n=2

Bi,nn

�
Nπ

N eq
π

�n
�

, (D.1)

which is repeated here from Eq. (3.1) for convenience. Using this simplified set of rate equations
we are then able to find an analytical solution at high temperatures. Additionally, it provides us
with a better understanding of the underlying mechanics that drive the hadrons into chemical
equilibrium.

D.0.1 Pions in Equilibrium

The simplest case is when the pions are held constant at α. Substituting in α for λπ, the rate
equation for the Hagedorn resonances becomes

λ̇i = Γi [�α
n� − λi] (D.2)

where �αn� =
�

n=2 Bi,nα
n ,which we can solve analytically

λi = �αn�+ (βi + �α
n�) e

− t
τi (D.3)

where βi is the initial value for the ith resonance. Clearly, the pion rate equation is equal to zero
because the pions are held constant. The chemical equilibration time is then the inverse of the
decay width so

τi =
1

Γi
. (D.4)

Taking α = 1 and βi = 0, which implies that the pions are held constant at equilibrium, we
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Figure D.1: Fugacity of the Hagedorn resonances for various masses. No temperature is given because
the time scale is independent of the temperature; it just depends on the decay width as seen in Eq. (D.4).

can plot our numerical results as shown in Fig. D.1. Additionally, the equilibrium times of the
Hagedorn states are shown in Fig. 3.1.

There is no temperature dependence in Eq. (D.3). The resulting equation is only dependent
on the intial conditions (α and βi) and on the decay widths of the Hagedorn states. However,
when the pions are not held constant, the rate equations are then dependent on the temperature
as seen in the next section. Because the chemical freezeout time is the inverse of the decay
width, the heavier Hagedorn states equilibrate the quickest.

D.0.2 Hagedorn States in Equilibrium

When the resonances are held constant at βi and the pions are allowed to freely equilibrate, we
can once again solve Eq. (3.1) analytically. Using this assumption, the rate equation for the
pions becomes

λ̇π =
∞�

i

Γi
N eq

i

N eq
π

�

βi�n� −
�

n=2

Bi,nnλ
n
π

�

. (D.5)

However, Eq. (D.5) is not as easy to solve analytically as Eq. (D.2) due to the sum over the
branching ratios. Instead, we must first consider the initial value of λπ. If α ≈ 0 then

λ̇π =
∞�

i

Γi
N eq

i

N eq
π

βi�n�, (D.6)

which can easily be integrated

λπ =

�
t

τ0
π

+ α

�

(D.7)
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Figure D.2: Results for fugacity of the pions when the Hagedorn resonances are held in equilibrium.

where the equilibration time is defined as

τ0
π =

N eq
π�

i ΓiN
eq
i �n�βi

. (D.8)

Unlike in the case where the pions were held in chemical equilibrium, Eqs. (D.7,3.3) are de-
pendent on the temperature due to N eq

π and N eq
i being in the chemical freezeout time. As

before there is a dependence on the initial conditions and the decay widths. Moreover, there is
a dependence on the branching ratios, which appears in �n�, and on the initial conditions from
βi.

As the pions near chemical equilibrium, our approximation of λπ ≈ 0 no longer holds and
we instead assume λπ ≈ 1. Returning to Eq. (D.5), we can substitute in λπ = 1− � and use the
approximation (1− �)n = 1− n�

�̇ = −
�

Γi
N eq

i

N eq
π

�
(βi − 1)�n�+ �n2��

�
.

(D.9)

After integration we use �(t0) = 1 − η where η is a point when the pions are near equilibrium
and t0 is the time when the pions reach η. We then take η as a free paramenter and choose a
value that best fits the data. We obtain

λπ =

�

1 + γ − (1 + γ − η) e−
t−t0
τπ

�

(D.10)

where γ =

�
i
ΓiN

eq
i

(βi−1)�n��
i
ΓiN

eq
i
�n2�

and our equilibration time is defined as

τπ =
N eq

π�
i ΓiN

eq
i �n

2�
. (D.11)
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Thus, we see linear growth when there are no initial pions. However, as they approach chemical
equilibrium they undergo an exponential growth. A comparison betwen both τ0

π and τπ is later
shown in Fig. 3.1. Again, we see a dependence on the temperature, the decay widths, and
branching ratios. However, here there is no dependence on the initial conditions.

D.1 All Particles Out of Equilibrium

If our initial conditions are such that both the pions and Hagedorn states begin far out of chemi-
cal equilibrium, we can find an analytical solution by subdividing the analysis into three distinct
stages. Initially, during stage 1 the pions are underpopulated such that we can say that they
approximately begin at α ≈ 0 (we can also start the pions above zero and the approximation
works well). Because the pions reach chemical equilibrium much quicker than the Hagedorn
states due to all the Hagedorn states decaying quickly into pions, then we can make the approx-
imation that the Hagedorn states are held at their initial value of βi. One can see this from the
difference in the time scales from Tab. 3.1 where τi > τ0

π and τi > τπ. Since α ≈ 0 we let λn
π ≈ 0,

then substituting this into Eq. (3.1) we obtain

λ̇π =
�

Γi
N eq

i

N eq
π

βi�ni�,

λπ =

�
t

τ0
π

+ α

�

, (D.12)

which is the fugacity of the pions in stage 1 and gives τ0
π ≡

Neq
π�

i
ΓiN

eq
i
�ni�βi

. Again using the

approximation α ≈ 0 and substituting Eq. (D.12) into the Hagedorn state rate equation in Eq.
(3.1), with the solution

λ̇i = Γi

��
t

τ0
π

��ni�

− λi

�

,

λi =

�

1− �ni�

�
−t

τi

�−�ni�

e
−

�
t
τi

� � − t
τi

0
x�ni�−1e−xdx

�

·

�
t

τ0
π

��ni�

+ βie
−

�
t
τi

�

. (D.13)

Substituting x = t
τi
ξ into the integral in Eq. (D.13), expanding the exponential inside the

integral so ey =
�∞

j=0
yj

j! , and integrating over ξ, provides us with the fugacity of the Hagedorn
states in stage 1

λi =

�
t

τ0
π

��ni�


1− e
−

�
t
τi

�
∞�

j=0

�ni�

j!(�ni�+ j)

�
t

τi

�j




+ βie
−

�
t
τi

�

. (D.14)
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Therefore, Eq. (D.12) and Eq. (D.14) describe the behaviour of the pions and Hagedorn states
during the initial stage of the evolution towards chemical equilibrium. They are then compared
to the numerical results in Fig. D.3.

As the pions near equilibrium our approximation of λπ ≈ 0 no longer holds and we switch
to stage 2 where we assume λπ ≈ 1 at time t1. Here t1 is a time when the pions are almost
in chemical equilibrium, which is normally taken when the pions reach about ∼ 95% of their
chemical equilibrium value. Returning to the pion equation in Eq. (3.1), we can substitute in
λπ = 1− � and use the approximation (1− �)n ≈ 1− n�

�̇ = −
�

Γi
N eq

i

N eq
π

�
(βi − 1)�ni�+ �n

2
i ��

�
. (D.15)

Additionally, we substituted in βi for λi as an approximation since the Hagedorn states do not
change significantly in Stage 1 (the majority of the evolution is done by the pions). Recall that
βi = λi(t = 0) and it is a constant. In its present form, Eq. (D.15) can be integrated. We also
define �(t1) = 1 − η where η is close to 1 (η is the measurement of how close the pions are to
their equilibrium value when we switch from Stage 1 to Stage 2). Then, after integration

λπ =

�

1 + γ − (1 + γ − η) e−
t−t1
τπ

�

(D.16)

where γ =

�
i
ΓiN

eq
i

(βi−1)�ni��
i
ΓiN

eq
i
�n2

i
�

and τπ ≡
Neq

π�
i
ΓiN

eq
i
�n2

i
�
. Analogously to stage 1, we substitute the

pion equation, i.e., Eq. (D.16) into the Hagedorn resonance equation in Eq. (3.1) and integrate

λi =

�

de
−

t−t1
τi + 1 + �ni�γ

−

�
τπ

τπ − τi

�

�ni� (1 + γ − η) e−
t−t1
τπ

�

(D.17)

where d = ωi− 1+ �ni�γ +
�

τπ

τπ−τi

�
�ni� (1 + γ − η) and λi(t1) = ωi. Thus, our equations for the

evolution of the pions and Hagedorn states are Eq. (D.16) and Eq. (D.17), respectively. As with
stage 1, the evolution equation for the Hagedorn states is dictated by that of the pions.

Stage 3 i.e. quasi-equilibrium begins once the pions and at least one species of Hagedorn
resonances (τ7GeV is the shortest chemical equilibration time) has surpassed its equilibration
time (τπ and τi, respectively). To understand quasi-equilibrium we must use the effective pion
number

Ñπ = Nπ +
�

i

Ni�ni� , (D.18)

because we need a variable that can observe the effects of both the pions and resonances. The
effective pion number essentially includes the number of effective pions that each Hagedorn state
could decay into. Thus, we start by taking the derivative of Eq. (D.18) in terms of its fugacity

˙̃λπ =
1

Ñ eq
π

�

N eq
π λ̇π +

�

i

N eq
i λ̇i�ni�

�

=

�
i ΓiN

eq
i

Ñ eq
π

�

�ni�
�

n

Bi,nλ
n
π −

�

n

Bi,nnλ
n
π

�

. (D.19)
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Figure D.3: (a) Numerical and analytical results for the fugacity of pions and Hagedorn states where
η = 0.9 at T = 175 MeV for TH = 176 MeV when βi = 1.1 and α = 0.9 and (b) the numerical results for
the same initial conditions including pp̄ pairs with φ = 0.
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Once again we make the substitution λπ = 1− � so that

˙̃� = −
1

Ñ eq
π

�

i

ΓiN
eq
i σ2

i � . (D.20)

where σ2
i = �n2

i � − �ni�
2 in the Gaussian distribution of our branching ratios. To relate � and

�̃ we return to Eq. (D.18) and separate λi into a sum over the resonances in quasi-equilibrium
and one over the “freely” equilibrating resonances

λ̃π =
1

Ñ eq
π



N eq
π λπ +

�

QE

N eq
i �ni�λi +

�

free

N eq
i �ni�λi



 . (D.21)

Since the pions reach quasi-equilibrium first, i.e., τπ < τi near Tc, we set the π rate equation in
Eq. (3.1) equal to zero, which gives λi ≈

1
�ni�

�
n Bi,nnλ

n
π, so

λ̃π ≈ 1−

�
N eq

π +
�

QE N eq
i �n

2
i �
�
�

Ñ eq
π

−

�
free�ni�(N

eq
i −N eq

i λi)

Ñ eq
π

. (D.22)

Eq. (D.22) then has the form λ̃π ≈ 1− �̃ where

�̃ =

�
N eq

π +
�

QE N eq
i �n

2
i �
�
�

Ñ eq
π

+

�
free�ni�(N

eq
i −N eq

i λi)

Ñ eq
π

. (D.23)

We can then solve for � in Eq. (D.23) and substitute � into Eq. (D.20), which in turn can be
integrated. This leads us to the solution

�̃ = �je
−

t−τj

τ
QE
π +

�

free

�ni�N
eq
i −

�
i ΓiN

eq
i σ2

i

Ñ eq
π

�
QE Ni�n2

i �

·
�

free

N eq
i �ni�e

−
t−τj

τ
QE
π

� t

0
e

x−τj

τ
QE
π λi(x)dx . (D.24)

where j stands for the latest resonance to reach chemical equilibrium at that point in time and

τQE
π ≡

N eq
π�

i ΓiN
eq
i σ2

i

+

�
QE N eq

i �n
2
i �

�
i ΓiN

eq
i σ2

i

(D.25)

is the quasi-equilibrium time. Clearly, once all the Hagedorn states have reached chemical
equilibrium than j symbolizes the resonance of M = 2 GeV, since it is the slowest Hagedorn
state to equilibrate. The sums over “free” is the sum over the Hagedorn states that have not
yet surpassed their respective chemical equilibrium time, τi. Once τ2GeV is reached those sums
equal zero. Therefore, after τ2GeV all that remains is

�̃ = �2GeV e
−

t−τ2GeV

τ
QE
π (D.26)
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where τQE
π is shown in Tab. 3.1. Finally, we rewrite Eq. (D.26) in terms of the pion evolution

equation

λπ = 1− (1− κ)e
−

t−τ2GeV

τ
QE
π (D.27)

where κ = λπ(τ2GeV ).
Because the resonance equation depends on the population of the pions we substitute Eq.

(D.27) into the Hagedorn resonance rate equation in Eq. (3.1), assuming the pions are near
equilibrium (i.e., we use the approximation λ = 1− � and (1− �)n ≈ 1− n�)

λi =

�

θi − 1 +
τQE
π

τQE
π − τi

�ni�(1− κ)

�

e
−

t−τ2GeV
τi

+ 1−
τQE
π

τQE
π − τi

�ni�(1− κ)e
−

t−τj

τ
QE
π . (D.28)

where θi = λi(τ2GeV ). Thus, for stage 3 the population equations for the pions and the Hagedorn
states are Eq. (D.27) and Eq. (D.28) so long as t ≥ τ2GeV .

Fig. D.3 reveals a remarkable close fit with our numerical results for T = 175 MeV i.e.
T < TH . Thus, the quasi-chemical equilibrium time, τQE , depends only on Γi, �ni�, σ2

i , and
N eq, which is temperature dependent, but not on our initial conditions. As mentioned in the text,
though, τQE includes many non-linear affects that only occur close to the chemical equilibrium.
Thus, the more appropriate time scale is τ0

π in order to describe the dynamics.
We also see from Fig. D.3 that when pp̄ pairs are included that the pions and Hagedorn

resonances equilibrate in roughly the same amount of time, which implies that our analytical
solution can still be approximately applied when pp̄ pairs are present.
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Zero-momentum Euclidean

Correlator

In this appendix we will be proving that the following statement

GE(0,0) =

�

d4x �θµµ(τ,x)θ
ν
µ(0,0)�

= (T∂T − 4) (�− 3p) . (E.1)

at a finite temperature. We consider only one quark flavor that has the mass m0. The derivation
of this is shown in [119] for finite T and µb. However, since we consider µb = 0 the following
derivation will only contain a finite temperature.

In the imaginary time approach the partition function is

Z =

�

DĀDqDq̄ exp






1/T�

0

dτd3x

�

−
1

4g2
0

F̄µν
a F̄ a

µν + q̄(i∂ − 1
2Āa λa −m0)q

�




(E.2)

where λa denote the generators fo color SU(3) and the gluon fields and field strength tensors
are scaled by the bare coupling constant g0 such that Āµ

a = g0A
µ
a and F̄ a

µν = g0F
a
µν At first let

us assume that the quark mass is zero (m0 = 0). The grand potential of the systems is

Ω = −T lnZ

. Substituting in Eq. (E.2),

∂

∂(−1/g2
0)

Ω

V
= −

g2
0

4

�
Fµν
a (0,µ0)F a

µν(0,µ0)
�

(E.3)

where the angle brackets denote the thermal average.
Alternatively, Ω can also be derived using an explicit form of Ω/V determined on the basis

of dimensional analysis. The theory has a mass scal M at which the subtractions are performed,
therefore, the results can be written in terms of a nonperturbative dimensional parameter

Λ = M exp






∞�

αs(M)

dαs

βs(αs)





, (E.4)
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where αs = g2
0/4π and βs is the Gell-Mann-Low function: Mdαs/dM = βs. We can then write

Ω

V
= Λ4f

�
T

Λ

�

, (E.5)

where f is some function that is not dependent on g0. Thus, taking the derivative of Eq. (E.5)
in respect to −1/g2

0

∂

∂(−1/g2
0)

Ω

V
= −

4πα2
s

βs(αs)

�

4− T
∂

∂T

�
Ω

V
. (E.6)

Recalling Eq. (E.3),

−
4πα2

s

βs(αs)

�

4− T
∂

∂T

�
Ω

V
= −

g2
0

4

�
Fµν
a (0,µ0)F a

µν(0,µ0)
�
, (E.7)

which leads to
�

4− T
∂

∂T

�
Ω

V
=

βs(αs)

4αs

�
Fµν
a (0,µ0)F a

µν(0,µ0)
�
=

�
θµµ(0,µ0)

�
= E − 3P . (E.8)

where we have used the standard QCD result for the trace of the energy-momentum tensor
density, θµµ.

Leads to

(−1)n
�

4− T
∂

∂T

�n+1 Ω

V
=

�

T
∂

∂T
− 4
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θµµ

�

=

�

d4xn · · ·

�

d4x1

�
θµµ(τn,xn) · · · θ

µ
µ(τ1,x1)θ

µ
µ(0,0)

�

c
. (E.9)

and, therefore, when n = 1

�

d4x �θµµ(τ,x)θ
ν
µ(0,0)� =

�

T
∂

∂T
− 4

�

(�− 3p) , (E.10)

which is the property that we wanted to prove in Eq. (4.12).
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