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Kurzfassung 
 

In dieser Arbeit wurden neue Klassen von niedrigdimensionalen metallisch-

organischen Materialien untersucht, die es ermöglichen interessante quantenkritische 

Phänomene  (quantum critical phenomena, QCP) wie die Bose-Einstein-Kondensation (Bose-

Einstein condensation, BEC) der magnetischen Anregung in gekoppelten Spin-Dimer-

Systemen, den Berezinskii-Kosterlitz-Thouless Übergang (Berezinskii-Kosterlitz-Thouless 

transition, BKT) und die Divergenz des magnetokalorischen Effekts (magnetocaloric effect, 

MCE) in Quanten-Spinsystemen beim Anlegen eines magnetischen Feldes zu beobachten. 

Die Niedrigdimensionalität der untersuchten Systeme war sowohl für die theoretische 

Beschreibung, als auch für die experimentelle Beobachtung der Phänomene von großer 

Bedeutung. Aus theoretischer Sicht eröffnet die Beschäftigung mit diesen Systemen die 

Möglichkeit, einfache Modelle zu entwickeln, die exakt lösbar sind und erlaubt somit ein 

qualitatives Verständnis der magnetischen Phänomene. Von experimenteller Seite ist es von 

größtem Interesse, dass durch das Zusammenspiel von Niedrigdimensionalität, 

konkurrierenden Wechselwirkungen und starker Quantenfluktuation exotische und aufregende 

magnetische Phänomene (quantenkritische Phänomene) entstehen, die mit verschiedenen 

experimentellen Methoden untersucht werden können. Um die intrinsischen Eigenschaften 

der quantenkritischen Phänomene zu verstehen ist es wichtig, die Phänomene an einfachen 

und gut kontrollierbaren niedrigdimensionalen Modellsystemen wie ein- oder 

zweidimensionalen Systemen zu untersuchen. 

In dieser Arbeit wurde der Fokus auf Substanzen mit moderater oder mittelstarker 

Austauschwechselwirkung J zwischen magnetischen Ionen (J reicht von einigen Kelvin bis zu 

einigen 10 Kelvin) gelegt. Dies ermöglicht experimentelle Untersuchungen im Labormaßstab. 

Gute Kandidaten für solche Modellsysteme sind metallisch-organische Verbindungen, bei 

denen die Dimensionalität und die Größe der magnetischen Wechselwirkung durch die Wahl 

und Anordnung der organischen Liganden eingestellt werden kann. Metallisch-organische 

Verbindungen sind Materialien, die aus magnetischen Zentren bestehen (intermetallische 

Ionen oder organische Radikale), die über Brückeneinheiten (wie Carboxylat-Gruppen, 

Diamin- oder Chinon-Gruppen) verbunden sind. Die Hauptbausteine der Verbindung sind das 

magnetische Zentrum, die Brückeneinheit und der Ligand. 

Es wurden verschiedene experimentelle Techniken benutzt, um die magnetischen 

Eigenschaften zu bestimmen (DC- und AC-Magnetisierung, ESR-Spektroskopie, spezifische 

Wärme und magnetokalorischer Effekt). Durch den Einsatz dieser Techniken in einem weiten 

Temperatur- (0.015-300K) und magnetischen Feldbereich (0-17T) eröffnet sich die 

Möglichkeit, die Niedrigdimensionalität und den Phasenübergang nachzuweisen. Mittels 

hochauflösender AC-Magnetisierungsmessungen und des magnetokalorischen Effekts 

konnten detaillierte Phasendiagramme der untersuchten Systeme aufgenommen werden. 

Drei verschieden Gruppen metallisch-organischer Materialien wurden untersucht: 

1. Betaine, 

2. Hydrochinone und, 

3. Oxalat-Brücken-Systeme. 
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1. Betain-Verbindungen sind weit verbreitet und werden vielfältig in Medizin und 

Pharmazie benutzt. Diese Materialfamilie ist Bestandteil in allen biologischen Systemen und 

spielt eine wichtige Rolle in vielen interzellularen Prozessen. In der Physik haben diese 

Verbindungen großes Interesse ausgelöst nachdem bei einigen Betain-Salzen und -Addukten 

ferroelektrische und antiferroelektrische Ordnung bei tiefen Temperaturen entdeckt wurde. In 

dieser Arbeit wurden vier verschiedene Betain-Verbindungen untersucht: 

((CH3)3NCH2COO)3MnMCl4 mit M = Mn
2+

, Co
2+

, Zn
2+

 und  

((CH3)3NCH2COO)2∙3CuCl2∙2H2O. 

 

((CH3)3NCH2COO)3MnMCl4 mit M = Mn
2+

, Co
2+

, Zn
2+

 

 

Drei verschiedene Verbindungen mit Mangan(II)-, Kobalt(II)- und Zink(II)-chlorid,  

3b·2MnCl2 (BMM), 3b·MnCl2·CoCl2 (BMC) und 3b·MnCl2·ZnCl2 (BMZ), wurden in der 

Gruppe für Kristallografie des Institutes für Geowissenschaften der Universität Frankfurt am 

Main synthetisiert. Aus struktureller Sicht sind alle drei Verbindungen isomorph und bestehen 

aus MnO6-Polymerketten die über Carboxyl-Gruppen mit den Betain-Molekülen verbunden 

sind, während die anderen metallischen Ionen (M = Mn
2+

 (Spin 5/2), Co
2+

 (Spin 3/2), Zn
2+

 

(Spin 0)) leicht verzerrte tetraedrische MCl4-Plätze besetzen, die zwischen den Ketten 

lokalisiert sind, und Löcher zwischen den Trimethylammonium-Gruppen der Betain-

Moleküle ausfüllen. BMM, BMC und BMZ repräsentieren 1D magnetische Systeme, bei 

denen eine magnetische Wechselwirkung zwischen den Mn
2+

-Ionen (Spin 5/2) innerhalb der 

Kette erwartet wird. Mittels Messungen an einem hochauflösenden SQUID im 

Temperaturbereich zwischen 2K und 300K und Feldern bis zu 5T, sowie mittels Messungen 

der AC-Suszeptibilität in einem 
3
He/

4
He-Mischkyrostat für Temperaturen unter 2.5K bis zu 

0.1K wurde die magnetische Suszeptibilität bestimmt. Die magnetischen Eigenschaften aller 

drei untersuchten Verbindungen BMM, BMC und BMZ bestätigten den niedrigdimensionalen 

Charakter und zeigten keine Phasentransformation bis zur tiefsten gemessenen Temperatur. 

Die magnetischen Eigenschaften aller drei Verbindungen können gut durch eine unabhängige 

Heisenberg-Spin-Kette beschrieben werden, bei der die Kettenglieder durch angeordnete 

Mn
2+

-Ionen mit S = 5/2 gebildet werden. Für alle drei Verbindungen wurde eine schwache 

antiferromagnetische intra-Ketten Kopplung J/kB = -3K aus den Suszeptibilitätsmessungen 

bestimmt. Nur in der BMZ-Verbindung konnten die magnetischen Eigenschaften der Kette 

unmittelbar beobachtet werden. Im Gegensatz dazu konnten in BMM und BMC die Beiträge 

der Kette erst nach Abzug des paramagnetischen Anteils der isolierten Spins in den MCl4-

Tetraedern bestimmt werden. 

 

((CH3)3NCH2COO)2∙3CuCl2∙2H2O or 2b•3CuCl2•2H2O 

 

2b•3CuCl2•2H2O ist eine trinukleare Kupfer-Verbindung, die die Realisation eines 

geschichtete quasi 2D-Systems darstellt. Die geschichtete Struktur wird aufgebaut von 

magnetischen Cu
2+

-Ionen, die über ein starkes Netzwerk mit O-H···Cl-Wasserstoff-

Bindungen gekoppelt sind. Suzeptibilitätsmessungen und isothermale Magnetisierung zeigen 

den niedrigdimensionalen magnetischen Charakter dieses Spinsystems. Mit der Annahme 

eines theoretischen Modells von 2D gekoppelten Trimeren wurden die antiferromagnetische 

intra-Trimer Kopplungskonstante mit J/kB = -15K und die inter-Trimer Kopplungskonstante 
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mit Ja,b/kB = -4K bestimmt. Diese überraschend kleine antiferromagnetische intra-Trimer 

Kopplungskonstante für Cu
2+

-Ionen kann verstanden werden, da die Cu-Koordinationsebenen 

gegeneinander gekippt sind und deswegen eine deutliche Erniedrigung der magnetischen 

Kopplungskonstante erwartet wird. Andererseits kann der unerwartet hohe Wert der 

antiferromagnetische inter-Trimer Kopplungskonstante unter der Annahme verstanden 

werden, dass die Wasserstoff-Bindungen als eine chemische und magnetische Verbindung 

zwischen den Spin-Trägern fungieren. Theoretische Rechnung zeigten, dass die effektive 

inter-Trimer Kopplung Jeff ferromagnetisch wird, wenn  Jb < Ja/2. Das Modell legt nah, dass 

in einem bestimmten Bereich des Verhältnisses Jb/Ja, nicht triviale Vier-Spin-Austausch-

Prozesse über die üblichen nächsten Nachbarn Austauschwechselwirkung dominieren.   

Es bleibt noch zu zeigen, inwieweit das Verhältnis Jb/Ja in 2b•3CuCl2•2H2O durch 

chemische Substitution und/oder hydrostatischen Druck so beeinflusst werden kann, dass 

Ring-Austausch-Prozesse relevant werden. 

 

2. Zur zweiten Gruppe der untersuchten metallisch-organischen Materialien gehören 

Hydrochinon-Brücken-Systeme. Im Rahmen dieser Arbeit haben G. Margraf und Kollegen 

vom Institut für Inorganische Chemie der Universität Frankfurt am Main  neuartige Cu 

beinhaltende Koordinationspolymere synthetisiert, indem sie von Hydrochinon abgeleitete 

Linker als Verbindung zwischen magnetischen Cu(II)-Ionen benutzten. Indem sie 

verschiedene Liganden an die „Seitenarme“ der Kernstruktur der Hydrochinon-Derivate 

brachten, schafften sie es, die magnetischen Eigenschaften des Systems zu verändern. Unter 

Ausnutzung dieser Strategie wurde eine ganze Familie neuartiger Spin-Dimer-Systeme mit 

unterschiedlichen magnetischen Eigenschaften realisiert. Das zu dieser Familie gehörende 

C36H48Cu2F6N8O12S2 (im folgenden TK91 genannt) wurde aufgrund seiner interessanten 

Eigenschaften in dieser Arbeit näher untersucht. 

 

C36H48Cu2F6N8O12S2 – TK91 

 

C36H48Cu2F6N8O12S2 – TK91 stellt eine gute Realisation eines 2D gekoppelten Spin- 

Dimer-Systems dar. TK91 ist eine metallisch-organische Verbindung, bei der die Cu
2+

-Ionen 

über Hydrochinon-Brücken verbunden sind, um Dimere zu formen. Das Dimer ist über 

Wasserstoffbrücken mit den benachbarten Dimeren verbunden. Messungen der DC-

Suszeptibilität ergaben eine intra-Dimer Wechselwirkung von J/kB = 9.4(2)K. Isothermische 

Magnetisierung zeigten, dass das Spinsystem nicht hinreichend mit einem isolierten Dimer- 

Modell beschrieben werden kann.  Begleitende theoretische ab-initio Rechnungen ergaben, 

dass T91 ein 2D gekoppeltes Dimer-System mit intra-Dimer Wechselwirkung  J1/kB ~ 13.4K 

und schwacher inter-Dimer Wechselwirkung J1/kB = 1.7K and J2/kB = 1.4K ist. Gleichzeitig 

zeigten Messungen der spezifischen Wärme eine signifikante Abweichung vom isolierten 

Dimer-Verhalten. Um zu überprüfen, ob TK91 überhaupt eine feldinduzierten Umwandlung 

durchmacht, wurde die AC-Suszeptibilität als Funktion des Feldes gemessen. Es wurde keine 

Hysterese bei ansteigenden und abfallenden Feld für T  0.2K gefunden. Die Daten zeigten 

ein einzelnes breites Maximum um B = 6.2T. Für T  0.2K wird das Maximum schmaler und 

zwei scharfe Spitzen werden auf der Flanke für niedriges und hohes Feld sichtbar. Diese 

Maxima wurden als obere und untere Grenze eines neuen feldinduzierten Zustands gedeutet. 

Die Spitze bei niedrigen Feldern beschreibt das Feld  (Bc1) , bei dem die Spin-Lücke sich 
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schließt, während die Spitze bei hohen Feldern das Feld (Bc2) beschreibt, bei dem das System 

in den vollständig polarisierten Zustand übergeht. Aus diesen Daten wurde die kritischen 

Felder bei 0K mit Bc1 = 5.9T und Bc2 = 6.5T abgeschätzt. 

Quanten-Monte-Carlo-Rechnungen ergaben, dass dieses System gut mit einem 2D 

Heisenberg-Modell schwach gekoppelter Dimere beschrieben werden kann. Das 

Phasendiagramm von TK91 bei niedrigen Temperaturen zeigt, dass für  50mK  T  120mK 

der neue Zustand des Systems als kollektiv gekoppelter 2D-Dimer Zustand beschrieben 

werden kann, bei dem Vortizes und Antivortizes anfangen sich zu entwickeln. Unterhalb von 

50mK geht das System in einen Zustand der Berezinskii-Kosterlitz-Thouless topologische 

Orientierung über, bei der sich Vortizes-Antivortizes-Paare formieren.  

Diese Entdeckung muss noch mit weiteren experimentellen Methoden untermauert 

werden. Nächste Schritte wären hochauflösende Messungen der spezifische Wärme und 

magnetokalorische Messungen bei niedrigen Temperaturen T < 150mK. 

 

3. Die dritte Gruppe der untersuchten metallisch-organischen Materialen umfasst Oxalat-

Brücken-Systeme. Die Möglichkeit dieser Liganden elektronische Effekte zwischen 

paramagnetischen Metallionen, die mehr als 5Å voneinander entfernt sind zu vermitteln 

macht sie sehr attraktiv im Molekularmagnetismus. In der Literatur wurden viele 

eindimensionale Oxalat-Brücken-Systeme [Cu(µ-ox)(L)x] (L = Stickstoff Donator-Ligand 

oder Wassermolekül) beschrieben. Die Kopplungsstärke reicht von mittleren bis zu schwacher 

antiferromagnetischer oder sogar ferromagnetischer Kopplung. Es wurde auch gezeigt, dass 

es mit Oxalat-Liganden möglich ist, zwei- und dreidimensionale Homo- und Hetero-

Übergangsmetall-Netzwerke auszubilden, die eine große Vielfalt magnetischen Verhaltens 

zeigen (ferro-, ferri-, oder antiferromagnetische langreichweitige Ordnung). Es stellte sich 

heraus, dass Oxalat-Moleküle eine besonders geeignete Brückeneinheit sind, um die 

magnetische Wechselwirkung zu vermitteln. In dieser Arbeit wurden zwei Systeme 

untersucht: Cu(ox)(pyOH)⋅H2O und [Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n. 

 

  Cu(ox)( pyOH)⋅H2O 

 

Cu(ox)(pyOH)⋅H2O mit ox-oxalate (C2O4)
2-

 und pyOH-hydroxypyridine (C5H5NO) 

wurden von L. Wiehl am Institut für Geowissenschaften  der Universität Frankfurt am Main 

synthetisiert. Die magnetische Cu
2+

-Ionen (S = ½) sind über Oxalat-Moleküle miteinander 

verbunden und formen Ketten entlang der b-Achse. Die Ketten sind über Sauerstoffatome 

miteinander verbunden und bilden quasi 2D Strukturen in der bc-Ebene. Da es keine direkte 

Bindung zwischen den Ketten gibt, wird erwartet, dass die inter-Ketten-Kopplung über die 

Sauerstoffatome entlang der c-Achse sehr schwach ist. Die Hydroxypyridin-Ringe ober- und 

unterhalb der 2D Schichten separieren die Schichten entlang der a-Achse. Die neue und 

wichtige strukturelle Eigenschaft dieser Materialien ist, dass die Oxalat-Moleküle innerhalb 

der Kette zwei verschiedene Anordnungen haben, die entlang der Kette alternieren. Aus der 

Gruppe der polymeren Oxalat-Ketten ist dies das erste berichtete Beispiel einer Cu
2+

-Oxalat-

Kette mit alternierender „koplanarer“ und „planarer“ Topologie entlang der Kette. Messungen 

der DC-Suszeptibilität im Temperaturbereich 2-300K und in Feldern bis zu 5T bestätigten die 

Niedrigdimensionalität dieses Systems. Wegen dieser speziellen strukturellen Eigenschaften 

wurden die magnetischen Eigenschaften im Rahmen einer alternierenden Austausch Spin-
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Kette behandelt. Wird das Model einer antiferromagnetischen S = ½ alternierenden 

Heisenberg-Kette benutzt, so ergeben sich die Austauschkopplungskonstante  J/kB = -(442 ± 

5)K und ein alternierender Parameter α = 0.13 ± 0.06. Auf Grund einer koplanaren Cu-

Koordination war es das erste Mal, dass so eine starke antiferromagnetische Wechselwirkung 

in Cu
2+

 basierten polymeren Oxalat-Ketten beobachtet wurde. Diese starke 

antiferromagnetische Wechselwirkung klassifiziert  Cu(ox)(pyOH)·H2O als starke 

dimerisierte Spin-Kette, in der das magnetische Verhalten im Wesentlichen durch die 

Verschiebung von Cu
2+

-Ionen in Bezug zur basalen  Ebene der lokalen Umgebung bestimmt 

wird. 

 

[Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n 

 

[Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n Einkristalle wurden von A. V. Prokofiev vom 

Institüt für Physik der Universität Frankfurt am Main synthetisiert. Nach der strukturellen 

Analyse besteht C12H14CuN4O5 aus polymerischen neutralen [Cu(µ-ox)(H2O)(4-apy)2] 

Ketten, die entlang der c-Achse liegen. Der intra-Ketten Abstand Cu-Cu über die Oxalat-

Liganden ist 6.752(1)Å und damit signifikant länger als der publizierte für dimerische und 

polynukleare Komplexe [< 6.0Å], aber innerhalb des Bereichs [6.5-8.1Å], der in andere 

Verbindungen mit Oxalat-Brücken gefunden wird. Der Oxalat-Ligand ist nicht planar, 

sondern die zwei CO2-Einheiten sind um 28° um die C-C Bindung zueinander gedreht. Jedes 

Wassermolekül bildet zwei Wasserstoffbindungen mit der benachbarten Kette. Die OW-H-O 

Wechselwirkung führt zur Ausbildung von sauerstoffgebundenen Schichten parallel zur (100) 

Ebenen. Von struktureller Seite sollte sich die [Cu(µ-ox)(H2O)(4-apy)2]n Verbindung genauso 

wie eine S = ½ Heisenberg-Kette verhalten. Dieses Polymer ist das erste Beispiel einer 

Übergangsmetal-Polymer-Struktur, bei der die Brückenbindung der Metallionen über Oxalat-

Moleküle nur durch ein Sauerstoffatom realisiert wird, während das zweite frei bleibt. Wegen 

dieser außergewöhnlichen Konfiguration der Oxalat-Brücken wird eine moderate 

antiferromagnetische Austauschwechselwirkung zwischen den Cu
2+

-Ionen innerhalb der Kette 

erwartet. Messung der DC-Suszeptibilität bestätigen, dass das Modell der 

antiferromagnetischen Heisenberg-Kette angewandt werden kann. Es wurde eine moderate 

antiferromagnetische intra-Ketten Austauschwechselwirkung J/kB = 3.2(1)K bestimmt. ESR- 

Messungen bei einer Frequenz von ν = 56.039GHz, einer Temperatur T = 1.54K und im Feld 

bis zu 2.5T deuten auf eine vernachlässigbare magnetische Anisotropie um die Cu
2+

-Ionen mit 

g-Tensor Werten  gb = 2.33, gc = 2.08, ga* = 2.01 und <g> = 2.14 hin. Messungen der AC-

Suszeptibilität bei Temperaturen bis hinunter zu 0.055K und in magnetischen Feldern bis zu 

8.5T ergaben ein Sättigungsfeld um Bs = 4.1T. Messungen der spezifischen Wärme im 

Temperaturbereich 0.2-4K und in magnetischen Feldern bis zu 7.2T stützen die 

Schlussfolgerung, dass  [Cu(µ-ox)(H2O)(4-apy)2]n eine sehr gute Realisation einer uniformen 

S = ½ antiferromagnetisch Heisenberg-Kette darstellt. Die moderate 

Sättigungsmagnetisierung von Bs = 4.1T ermöglicht es, das quantenkrische Verhalten des 

Systems zu untersuchen. Wird das magnetische Feld als externer Einstellparameter benutzt, 

konnte das System an den Quantenkritischen-Punkt gebracht werden und es wurde die 

vorhergesagte Divergenz des magnetokalorischen-Effekts im B-Feld induzierten 

Quantenkritischen-Punkt beobachtet. Dies war der erste experimentelle Nachweis des 

kritischen Verhalten im MCE in einer uniformen S = ½ antiferromagnetisch Heisenberg- 
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Kette. MCE-Messungen zusammen mit den oben aufgeführten Messungen zeigen dass [Cu(µ-

ox)(H2O)(4-apy)2]n ein gutes Modellsystem einer uniformen S = ½ antiferromagnetisch 

Heisenberg-Kette darstellt. 

Mit hochauflösenden Messungen der AC-Suszeptibilität im Nullfeld bleibt noch 

nachzuweisen, ob eine logarithmische Singularität für T  0K gezeigt werden kann oder 

nicht. Des Weiteren ist die Existenz einer Dzyaloshinskii-Moriya-Wechselwirkung zu prüfen. 
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I n t r o d u c t i o n  

1 
 

 

1. Introduction 

The first written evidence about a ‘scientific discussion’ on the item magnetism dates 

from the ancient Greeks and is attributed to Aristotle and Thales [1]. In the 4
th

 century BC, the 

earliest literary reference to magnetism (found in China) appears in a book called Book of the 

Devil Valley Master: "The lodestone makes iron come or it attracts it." [2] The earliest 

mention of the attraction of a needle appears in a work written between 20 and 100 AC 

(Louen-heng): "A lodestone attracts a needle."[3] The ancient Chinese scientist Shen Kuo 

(1031-1095) was the first person to refer to the magnetic needle compass. By 1187, Alexander 

Neckham was the first in Europe to describe the compass and its use for navigation. In 1269 

Peter Peregrinus de Maricourt wrote the Epistola de magnete, the first extant treatise 

describing the properties of magnets. In 1600 William Gilbert published his On the Magnet 

and Magnetic Bodies, and on the Great Magnet the Earth. From his experiments, he 

concluded that the Earth was itself magnetic and that this was the reason compasses pointed 

north (previously, some believed that it was the pole star (Polaris) or a large magnetic island 

on the north pole that attracted the compass). 

Further development in the field of magnetism, made possible after the relationship 

between electricity and magnetism was understood, began in 1819 with the work of Hans 

Christian Oersted. Several other discoveries followed, made by Ampère, Gauss, Faraday and 

others, where links were found between magnetism and electricity. James Clerk Maxwell 

synthesized and expanded links between magnetism and electricity into Maxwell's equations, 

unifying electricity, magnetism, and optics into the field of electromagnetism. In 1905, 

Einstein used these laws to promote his theory of special relativity [4],
 
requiring that the laws 

held true in all inertial reference frames. Electromagnetism has continued to develop into the 

twentieth century, being incorporated into the more fundamental theories of gauge theory, 

quantum electrodynamics, electroweak theory, and finally the standard model. 

In the 20
th

 century, magnetism experienced a renaissance, one of the fields which 

developed and bloomed being condensed matter physics. One of the disciplines, which has 

attracted much interest recently, has been molecule-based magnetism. Molecule-based 

magnets are classes of magnetic materials that expand the materials’ properties typically 

associated with conventional transition-metal and rare-earth-based magnets and differ from 

conventional magnets in one of several ways [5]: 

1. Most traditional magnetic materials are comprised purely of metals (Fe, Co, Ni) or 

metal oxides such as CrO2. In molecule-based magnets, the structural building blocks 

are molecular in nature. These building blocks are either purely organic molecules, 

coordination compounds or a combination of both. In this case, the unpaired 

electrons may reside in d or f orbitals on isolated metal atoms, but may also reside in 

localized s and p orbitals on the purely organic species. 

2. Molecule-based magnets are prepared via different techniques and the most 

favorable ones are techniques which enable a chemical tailoring of the molecular 

building blocks and tuning of the magnetic properties. Specific materials include 

purely organic magnets made of organic radicals [6], mixed coordination compounds 
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with bridging organic radicals [7], Prussian Blue-related compounds [8], and charge-

transfer complexes [9]. 

Molecule-based magnets derive their net magnetic moment from the cooperative effect 

of the spin-bearing molecular entities, and can display bulk ferromagnetic and ferrimagnetic 

behaviour with a true critical temperature. The first synthesis and characterization of 

molecule-based magnets was accomplished by Wickman and co-workers, this was a 

diethyldithiocarbamate-Fe(III) chloride compound [10,11]. 

The mechanism by which molecule-based magnets stabilize and display a net 

magnetic moment is quite different from that present in traditional metal and ceramic-based 

magnets. The magnetic moment in molecule-based magnets is typically stabilized by one or 

more of three main mechanisms: 

1. Through space or dipolar coupling. 

2. Exchange between orthogonal (non-overlapping) orbitals in the same spatial region. 

3. Net moment via antiferromagnetic coupling of non-equal spin centers 

(ferrimagnetism). 

In general, molecule-based magnets tend to be of low dimensionality. Low-

dimensional materials became the impetus for the science after discovery of the first high-

temperature superconductor by Bednorz and Müller in 1986 [12]. In these materials, the 

electronic motion predominantly occurs in two-dimensional CuO2 layers and the compounds 

show effects of strong electronic correlations and magnetism in low dimensions. In order to 

understand the quantum correlations of such 2D systems, the theory refers first to systems 

with a lower dimensionality. A well-known example of a superconductor with low 

dimensionality is the 2D doped La2CuO4 [13]. Strong electronic correlations in low-

dimensional quantum spin systems lead to pronounced quantum many-body effects and thus 

to radically different properties of matter, e.g. high-Tc superconductivity, spintronic materials, 

Mott insulators, spin-Peierls materials, heavy-fermion materials, quasi low-dimensional 

materials. A number of unusual physical phenomena, which exist in these materials, are 

thought to be quantum critical phenomena and to be a manifestation of the proximity to 

quantum-critical point. To understand the intrinsic properties of quantum criticality it is 

important to explore its phenomenology in simple and well-controlled model systems. 

In the search for such systems, one focus is directed towards substances with moderate 

or intermediately strong exchange interactions J between the magnetic ions (J values ranging 

from a few Kelvin up to several tens of Kelvin), which enable experimental investigations to 

be performed in laboratory accessible conditions. Good candidates for such a type of model 

systems are metal–organic compounds [14-16] where the dimensionality and magnitude of the 

magnetic interactions can be tuned by choice and arrangement of the organic ligands [17,18]. 

Metal–organic compounds are materials composed of magnetic centers (intermetallic ions or 

organic radicals) connected via the bridging unit (such as carboxylate group, diamine group or 

quinon group), which is a part of the organic molecule and contains large organic ligands as 

spacer/connection between bridged entities [19-25]. In this building block scheme, the main 

components of the compound are the magnetic center, the bridging unit and the ligand. 

However, most flexibility is obtained by designing different low-dimensional structures to 

enable the combination of two different organic molecules, a large one as ligand and a small 

one as bridging unit. 
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Among the large choice of low-dimensional systems, one of the simplest quantum 

critical many-body systems is a linear chain of antiferromagnetically coupled S = ½ objects. It 

is of great interest, since it is one of a few interacting quantum many body systems, which 

analytically are exactly solvable. Quantum criticality in this system is particularly interesting 

because it is possible to continuously tune the critical exponents by the application of a 

magnetic field. Over the past thirty years, a number of anisotropic materials have been found 

that constitute a very good realization of the one-dimensional antiferromagnetic Heisenberg 

model (AFHC), e.g., SrCuO2 [26], Sr2CuO3 [27,28], KCuF3 [29-31], CsCuCl4 [32] or 

Cu(C4H4N2)(NO3)2 [33]. Their ordering temperatures are very small compared to that of the 

exchange coupling constant along the chain direction, indicating a highly one-dimensional 

character where inter-chain interactions can safely be neglected. 

Isotropic S = ½ AFHCs, where uniform nearest-neighbor exchange interactions give 

rise to a singlet ground state with triplet excitations, is not magnetically ordered and the 

excitation spectrum is gapless. The spin dynamics are not described by magnons (bosons) as 

is the case for 3-dimensional ordered magnets, but as massless S = ½ spinons (fermions), 

which are always created in pairs. The excitation spectrum is governed by a gapless two-

particle continuum restricted by a lower and an upper dispersing boundary and has 

experimentally been verified in several one-dimensional quantum spin chains, [30,34,35]. 

While some of the physical properties of the S = ½ AFHC may be computed exactly using the 

Bethe ansatz, it is also very helpful to map, by using the Wigner-Jordan transformation, the 

spin chain onto a one-dimensional system of interacting fermions. This gives important 

insight into the spinon continuum, which may be viewed as the particle-hole continuum of the 

fermion model, and has consequences for the thermodynamic properties of the system such as 

the magnetization and the specific heat. 

Moreover, the S = ½ AFHC is unique due to its criticality to even small perturbations. 

It is therefore often referred to as a critical spin liquid, which is associated with a rich phase 

diagram and a modification of the low-energy excitations of isotropic spin chains. In this case, 

the external parameters for studying the phase diagram are pressure, frustration or the 

application of a magnetic field, the latter causing a substantial rearrangement of the excitation 

spectrum, making the soft modes incommensurate [35,36], although the spinon continuum 

remains gapless. 

The theory of critical phenomena has quite a long history dating from the 19
th

 century 

when Andrews [37] discovered a peculiar point in the P-T phase diagram of carbon dioxide, 

where the system shows critical opalescence and the properties of the liquid and of the vapor 

become indistinguishable. Thirty years later, Pierre Curie [38] discovered the ferromagnetic 

transition in iron and realized the similarities of the two phenomena. However, a quantitative 

theory appears with Landau [39] some years later, which corresponds to the mean-field 

approximation, a good qualitative description of the transitions in fluids and magnets. 

However, Onsager [40] and Guggenheim [41] showed that Landau’s model is not 

quantitatively correct. In the early 60’s, the modern notations were introduced by Fisher [42] 

and a more general framework was introduced by Kadanoff [43]. Satisfactory understanding 

was reached when the scaling ideas were reconsidered in the general renormalization-group 

(RG) framework by Wilson [44-46]. Within the new framework, it was possible to explain the 
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critical behaviour of most of the systems and their universal features; for instance, why fluids 

and uniaxial antiferromagnets behave quantitatively in an identical way at the critical point. 

Magnetic insulators, composed of weakly interacting pairs (dimers) of 

antiferromagnetically coupled S = ½ spins, offer exciting possibilities for studying at finite 

temperature critical phenomena under well-controlled conditions [47]. The possibility of 

coupled-dimer systems to build versatile crystalline networks of antiferromagnetically 

interacting S = ½ spins, enlarge the chance of studing the behaviour of interacting quantum 

particles in 3D, 2D and very interesting and sensational effects of reduced dimensionality 

(dimensional crossover [48,49]). The ground state of each dimer is a spin singlet S = 0 

separated from the excited triplet by an energy gap. Due to the finite dimer-dimer 

interaction, the triplets can delocalize by hopping to neighbouring dimer sites, leading to a 

considerable dispersion of the excitations with a bandwidth defined by the inter-dimer 

coupling strength. These coupled-dimer systems have become interesting research objects due 

to the ability of a magnetic field to generate an ensemble of Sz = +1 spin-triplet states, which 

can be regarded as forming a gas of Bosons with hard-core repulsion that carry a magnetic 

moment, but no mass or charge. The repulsion is generated by the z (Ising)-component of the 

exchange interaction which prevents more than one triplet from being present on a single 

dimer site. The ground state of the system of interacting bosons thus depends on the balance 

between the Bosons’ kinetic energy, associated with the transverse component of the inter-

dimer exchange coupling J, and their repulsive interactions given by J. When the latter 

dominates, as in the 2D dimer system SrCu2(BO3)2, the excited triplets may form 

commensurate superlattices, accompanied by distinct plateaus in the magnetization [50]. On 

the other hand, if the kinetic energy of the magnons dominates, the delocalized bosons may 

undergo a phase transition into a long-range magnetically-ordered state with a staggered 

magnetisation perpendicular to the applied field. At a critical field Bc1, the Zeeman split        

Sz = +1 branch intersects with the singlet ground-state, and a canted XY antiferromagnetic 

phase is observed between Bc1 and Bc2, where Bc2 denotes the saturation field. As has been 

suggested theoretically [51,52,53], the 3D magnetic ordering can be described as a Bose-

Einstein condensation (BEC) of triplet magnetic excitations. In the BEC terminology, the 

excited spin-triplets correspond to massless bosons, the density of which is controlled by the 

strength of the external magnetic field acting as a chemical potential μ = gμB(B−Bc1). Under 

such conditions, BEC is expected above Bc1(T), where Bc1(T = 0) represents a quantum-

critical point. Predicted theoretically, the critical magnetic field or the phase boundary of the 

long-range antiferromagnetic order follows a power-law behaviour [Bc(T)−Bc(0)]  T


 with 

an exponent  = 3/2 for the 3D and  = 1/2 in the case of 2D BEC [54]. 

The concept of BEC has been applied first to the field-induced phase transition found 

in TlCuCl3 [54]. A magnetic field-induced phase transition, indicative of a condensation of 

magnetic triplets, has been observed also for the ancient pigment BaCuSi2O6 [49,55,56,], 

where the particularly interesting aspect is the effect of dimensionality on the BEC, in 

particular the crossover from 3D to 2D. Another class of materials, where BEC is possible, 

concerns easy-plane antiferromagnets, and the complex Cs2CuCl4 [57,58] falls into this class 

of easy-plane antiferromagnets. A different situation is encountered for the related Cs2CuBr4 

compound which has been described as an S = ½ quasi-2D frustrated antiferromagnet [59]. At 

present, for the border cases of Cs2CuBr4 and Cs2CuCl4, which reflect dominant repulsive and 
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kinetic energy of the magnetic excitations, no investigation exists on the interesting crossover 

regime. 

 With the help of chemical-engineering, it is possible but very hard, to make properly a 

combination of dimers forming multilayer system, which can be used to understand 

phenomena restricted to 2D. For interacting particles in 2D, long-range magnetic order and 

BEC are destroyed by thermal fluctuations, as was rigorously shown by Mermin and Wagner 

more than forty years ago [60]. Instead, according to the Berezinskii-Kosterlitz-Thouless 

(BKT) theory, a topological order may occur resulting from the binding of vortex-antivortex 

pairs [61-63]. The BKT theory has been applied to a variety of 2D phenomena in thin films, 

specially-designed heterogeneous systems [64-68] and trapped atomic gases [69]. However, 

evidence for a BKT transition in bulk magnetic materials has remained elusive [70,71]. 

The main objectives of the study in this thesis have been directed at a search for a new 

class of materials where it is possible to study magnetic field-induced quantum critical 

phenomena (QCP) such as BEC, BKT and magnetocaloric effect (MCE) in quantum-spin 

system by the application of a magnetic field. We identified a coordination polymer 

consisting of hydroquinone-bridged Cu
II
 ions that has been shown to represent a promising 

prototype material to experimentally study a field-induced QCP. 

The outline of this thesis is as follows:  

In Chapter 2 an introduction on the issues associated with isolated and coupled dimers 

systems, trimer systems and the effect of frustration is presented. In addition, the uniform and 

alternating S = ½ antiferromagnetic Heisenberg chain will be introduced. It includes a brief 

overview of Berezinskii-Kosterlitz-Thouless transition as well as the main magnetic features 

connected with BKT quantum phase transition. The quantum criticality of the S = ½ AFHC 

will be discussed and the magnetocaloric effect connected with it. 

Chapter 3 provides a survey of the experimental techniques used in this work, i.e., DC 

and AC magnetization, ESR spectroscopy, specific heat and the magnetocaloric effect. 

Chapter 4 will provide the magneto-structural characterization of the investigated 

samples, including their crystallographic structure as well as the results of diverse magnetic 

measurements. 

The betaine compounds with low-dimensional character will be discussed starting 

from the chain S = 5/2 compounds and ending with the coupled S = ½ trimer system. 

An overview of the antiferromagnetic dimer systems on the basis of the hydroquinone-

derived organic linker will be given. The coupled 2D dimer compound TK91 will be 

discussed in a frame of the magneto-structural investigations, which enable the extraction of 

the intra-dimer coupling constant. The B-T phase diagram established with the susceptibility 

measurements will be discussed in the frame of 2D BKT transition as well as the first 

magnetocaloric effect measurements. 

The different oxalate-bridged systems, which have been studied up to now, will be 

presented. Special emphasis will be placed on the Cu coordination polymer which could be 

interpreted as a very good realization of the 1D AF Heisenberg model. Magnetocaloric 

measurements, which confirmed the quantum criticality expected for the S = ½ AFHC (now 

for the first time), will be discussed. 

Chapter 5 will summarize the results of this work. Open issues and future projects 

regarding special investigated materials will be outlined. 
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2. Molecular Magnetism 
 

Molecular magnetism is a multidisciplinary field connecting the area of molecular 

cluster physics and solid state physics. The pioneering approaches are often due to the work 

of physicists and some of these may even be considered to be the founding fathers of the field. 

On the historical scale, M. Faraday and his famous research on molecular magnetism should 

be mentioned, taking us back to the 19
th

 century. Faraday studied the magnetic susceptibility 

of a variety of organic molecular materials [95] and discovered the effect which later became 

known as diamagnetism. Two significant names in the field of molecular magnetism are J. H. 

Van Vleck and P. W. Anderson. 

The scope of molecular magnetism covers the studying of magnetic properties of 

isolated molecules (entities which contain one or more magnetic center) and assemblies of 

molecules such as molecular crystals (molecular entities which have a very weak interaction 

between the molecular species) and extended molecular systems (molecular entities built from 

molecular precursors or „bricks‟). 

 

2.1. Dinuclear S = ½ compounds – dimers 

 

2.1.1. Isolated dimer systems 

 

Dimers are molecular entities containing only two magnetic centers. The most 

investigated dinuclear compounds by far are S = ½ dimers where the interaction occurs 

between two local doublet states. If the two S = ½ ions interact through the bridge ligand 

(diamagnetic ligand), the total spin is either S = 0 or S = 1 with E(S = 0), E(S = 1) being the 

energies of these two states. Due to electrostatic reasons, these states are, in general, not equal 

but separated by an energy gap defined as: 

J = E(S = 0) - E(S = 1)     (1) 

J is the isotropic interaction parameter. When the state S = 0 is the ground state, the 

interaction is antiferromagnetic and J < 0, while for a ground state S = 1 the interaction is 

ferromagnetic, J > 0. In the absence of a magnetic field, the Zeeman perturbation neither 

affects the singlet state nor splits the components of the triplet state, as seen in Figure 1. 

If the energy of the triplet state is taken into account, the magnetic susceptibility is 

given by: 
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where NA is the Avogardro number, g is the spectroscopic g-factor, kB stands for the 

Boltzmann constant, µB for the Bohr magneton and J for the exchange interaction between the 

Cu(II) ions in the dimer. This expression was derived by Bleaney and Bowers [73]. For an 

antiferromagnetic interaction J < 0, the magnetic susceptibility reaches a maximum and then 

tends to fall to zero, when T approaches zero, where only the diamagnetic ground state is 

thermally populated. The maximum in the susceptibility is a signature of the 

antiferromagnetic inter-dimer interaction. The temperature Tmax where the maximum is 

located is related to J as: 

J / kBTmax = 1.599      (3) 

 

 

Figure 1: Energy diagram of an isolated dimer at H = 0 and in a finite field. 

 

For J > 0, T is close to 
B

BA

k
gN

2

22
for kBT >> J. On cooling, T increases due to the 

depopulation of the diamagnetic excited state in favour of the triplet ground state and tends to 

a plateau with 
B

BA

k
gN

3
2 22

, corresponding to the temperature range where the excited 

singlet state is fully depopulated. For J < 0, T decreases continuously, upon cooling. The 

isotropic interaction is purely electrostatic in nature. However, it is often formally described 

by a coupling between the local spin operators 1S


 and 2S


. A phenomenological description of 

the isotropic interaction was introduced first by Heisenberg, and then discussed by Dirac and 

Van Vleck. The Hamiltonian accounting for this interaction may be written as: 

21
ˆ SSJH


        (4) 
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and is generally referred to as the Heisenberg Hamiltonian. 

 

 

2.1.2. Coupled dimer systems 

 

In a weakly coupled spin S = ½ dimer system, where the intra-dimer isotropic 

interaction dominates, there is a spin gap between the singlet ground state (S = 0) and the first 

excited triplet states (S = 1). Excitations above the singlet ground state generally can be 

treated as a collection of bosonic particles-magnons [54]. Holstein, Primakoff [74] and Dyson 

[75] showed that the magnons behave as weakly interacting quasiparticles and obey the Bose-

Einstein statistics. As in each Bose gas, such a spin system may undergo Bose-Einstein 

condensation (BEC) but in this case of magnons
1
. An external applied magnetic field splits 

the excited triplet states and the lowest branch of the triplet S 1, +1 becomes the first 

excited state. The energy gap  between S 1, +1 and the singlet ground state decreases 

linearly with the applied field. When the external field reaches Hg = ∆/(gµB), the gap in the 

system should “collapse” and the dimers are prompted to occupy the polarized triplet state. At 

finite temperature, the “collapse” of the gap will not happen at Hg but at H = Hc > Hg while 

the thermal excitations (see Figure 2) broadening the energy branch of the triplet state. So the 

energy gap between the triplet and singlet energy states will have a value higher than the gap 

at zero temperature. 

 

 
Figure 2: Schematic presentation of a coupled dimer system at H = 0 and in a field at and 

above Hg = ∆/(gµB). 

 

                                                           
1 In the case of atomic gas BEC is chilling of atoms of dilute vapors (typically a million or so at a time) until they enter into a single quantum 

state, as if all the atoms were one atom. In the solid BEC of magnons is a monolithic static magnetic alignment or long-range magnetic order 
in the spin system (about 1023 magnons participate in the condensation). 
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 Magnetic systems composed of weakly antiferromagnetically interacting dimers with 

the S = ½ spins, offer possibilities for studying finite temperature critical phenomena under 

well-controlled conditions. A prominent example for such phenomena is the                     

Bose-Einstein-condensation (BEC) of magnetic triplet excitations (triplons), where one gets 

fascinating possibilities of exploring the behaviour of interacting quantum particles in 3D. 

Coupled-dimer systems enable the studying of effects of reduced dimensionality, especially 

those related to dimensional crossovers [49]. From this point of view, dimers with proper 

combination of exchange interactions can be regarded as a chemically-constructed multilayer 

system and may be used to understand phenomena restricted only to 2D. For interacting 

particles in 2D, long-range magnetic order and BEC are destroyed and not possible [60], 

instead a topological order may occur [61-63] known as BKT transition. 

 

Kosterlitz-Thouless transition and the XY-model 

 

 In lattice field theory, one is interested in the phenomenon of phase transitions, where 

the quantity representing the length scale of relevant physics such as correlation length or 

inverse mass gap diverges. In different spin models, the transition between phases with and 

without long-range order is defined as phase transition. In models with a temperature driven 

phase transition these phases are distinguished by negative and positive reduced temperature 

(t = 1-TC/T), respectively. A conventional phase transition is then characterized by a       

power-law divergence in the correlation length near criticality (near t = 0), for the infinite 

volume; 

                (5) 

 In two-dimensional (2D) spin models with continuous symmetry group and continuous 

interaction Hamiltonian, the existence of a phase with conventional long-range order is 

precluded by the Mermin–Wagner theorem [60]. Therefore, there is no spontaneous 

magnetization in O(n)-spin models for n ≥ 2. Physically, the reason for this is that any long-

range order which would otherwise be present is destroyed by transverse spin-wave 

excitations, i.e the Goldstone modes in two dimensions. 

 In the systems with XY-symmetry, order parameter functions at low temperature 

change algebraically rather than exponentially, as they would in completely disordered phase. 

Therefore, posing the question of whether change from an algebraically ordered                 

low-temperature phase to an exponentially disordered high-temperature phase in a XY-model 

can be considered as transition, i.e., a transition from quasi-long-range order to disorder. 

Applying the renormalization group methods to the non-linear σ–model predicts that 

transition temperature tends to zero as d  2 for all n  2, thus all these models are disordered 

in two-dimensions except at T = 0K. The non-linear σ–model gives an intermediate result for 

the transition temperature of the two-component XY-model. 

 In a d-dimensional theory, if the order parameter lies in a space G, then topological 

defects of dimension p can occur if the homotopy group πd−p−1(G) is non trivial [76]. Thus the 
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two dimensional O(2)-model can have point defects or vortices. Vortices are a special class of 

defects called topological defects. A topological defect (topological soliton) is a solution of a 

system of partial differential equations or of a quantum field theory that can be proven to exist 

because the boundary conditions cause the existence of homotopically distinct solution. 

Topological defects are stable against small perturbations and cannot decay or be undone or 

be de-tangled, because there is no continuous transformation that will map them 

(homotopically) to a uniform or "trivial" solution. Topological defects have different names 

depending on the symmetry that is broken in the particular system; in the superfluid helium 

and XY-models they are called vortices, in periodic crystals, dislocations and in nematic liquid 

crystals, disclinations. Topological defects are believed to drive the phase transition in 

condensed matter physics. Therefore, in 2D models, topological long-range order can exist 

and the pivotal role in the transition from quasi-ordered low-temperature phases to a high-

temperature disordered phase is played by topological defects. Topological defects are 

generally characterized with two regions: 

(1) core region ( a point or a line) where the order is destroyed 

(2) far-field region where an elastic variable changes slowly in space. 

 A vortex is characterized with integer number k called winding number or strength of 

the vortex. The k = 1 vortex state is a topologically and physically stable state even though it 

has much higher energy than the ground state because there is no path to the ground state that 

is not energetically costly. A single vortex has energetically costly elastic distortion far from 

its core. On the other hand, pairs of vortices with opposite winding number in a far-field 

configuration topologically are equivalent to the uniform state. Vortex pairs represent 

important excitations from the ground state of 2D systems with XY-symmetry. 

 The existence of topological point defects (vortices) in a 2D XY-system, suggests that 

maybe thermally excited vortices could be responsible for a transition from algebraically 

ordered phase to exponentially disordered phase in 2D XY-systems. 

 Kosterlitz and Thouless used approximate renormalization group methods to show the 

existence of a phase transition driven by the binding of vortices in the two dimensional XY–

model (which is also called the O(2) non-linear σ-model or the two-component Heisenberg 

model) at finite nonzero temperature [61, 63, 77]: 

   
  

 
       (6) 

where Y is the fully renormalized helicity modulus or spin-stiffness which is related to the 

fluctuations in the total winding number [78]. They also showed that this is a phase transition 

of infinite order. 

 The scenario proposed by Berezinskii [61] and Kosterlitz and Thouless [77] (BKT) 

demonstrates that at temperatures above some critical value (T > TC), the vortices and 

antivortices are unbounded and serve to disorder the system (disordered phase is a result of 

the formation of vortices). The temperature at which the BKT transition occurs (TC) is in fact 

that at which vortex generation becomes thermodynamically favorable. For the vortex 
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formation, the vortex chemical potential is a relevant variable, and for the simple square 

lattice with the spacing a, r0 a cutoff of the order of the lattice spacing a and unit strength of 

the vortex, it has a form: 

        
  

 
      (7) 

Decreasing the temperature causes the vortices and antivortices to bind in pairs of zero total 

vorticity, thereby decreasing their relevance as dynamical degrees of freedom. The model 

remains critical (thermodynamic functions diverge) for all T < TC and the critical exponents 

are dependent on temperature. In terms of the reduced temperature t, the leading critical 

behaviour of the correlation length, susceptibility and the specific heat is given as: 

        
        (8) 

        
  

        (9) 

        
               (10) 

and for t  0
+
,  = 1/2,    

 

 
, and      . 

 The exponential scaling behaviour of (8) is referred to as essential scaling to 

distinguish it from the power-law behaviour of (5). Thus the „KT scenario‟ means a phase 

transition: 

  (i) which is driven by a vortex binding mechanism and 

  (ii) exhibiting essential scaling behaviour. 

 

Field-induced XY behaviour in the two-dimensional quantum Heisenberg 

antiferromagnet 

 

 Field-induced effects in low-dimensional antiferromagnets have been the subject of 

interest in recent years; on the theoretical side, the possibility of inducing novel magnetic 

phases via application of a strong field has been pointed out [79, 80] and on the experimental 

side, fields of very high intensity have become available. 

 When the two-dimensional quantum Heisenberg antiferromagnet (2D QHAF) in a 

uniform magnetic field was considered it was found that the rich phenomenology [81] of the 

model is ruled by the interplay between the exchange and the Zeeman terms. The applied field 

breaks the O(3) symmetry of the isotropic model and induces a uniform alignment in the z 

direction; such an alignment frustrates the antiferromagnetic order along z but does not clash 

with anti-alignment on the xy-plane, where O(2) symmetry stays untouched. Hence for 

infinitesimally small fields, one expects the spins to lie anti-aligned on the xy plane, and 

progressively cant out of it as H is increased. Saturation occurs at the critical value HC, above 

which the ground state displays uniform ferromagnetic alignment along the z direction. In the 

range H  HC one may also expect thermal fluctuations of the z spin components to be smaller 
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for a larger field, while no such reduction should occur as far as the x and y components are 

concerned. From the above picture, it is clear that the model shares essential features with the 

easy-plane 2D QHAF [82]. 

 The quantum Monte Carlo calculations [82] of the S = ½ two-dimensional QHAF on 

the square lattice in an arbitrary uniform field, indicate that an arbitrarily small field is able to 

induce a BKT transition and an extended XY phase above it. The field-induced XY behaviour 

becomes more and more marked for increasing fields, while for strong fields the 

antiferromagnetic behaviour along the field axis is nearly washed out, so that the system 

behaves as a planar rotator model with antiferromagnetism surviving in the orthogonal plane 

only; the BKT critical temperature vanishes as the field reaches the saturation value HC and 

the effective rotator length goes to zero. The model in a moderately strong field represents an 

ideal realization of the XY model: the XY behaviour can be detected by measuring standard 

non-critical quantities, such as the specific heat or the induced magnetization; this opens the 

possibility for an experimental realization of the XY model in purely magnetic systems, and 

for a systematic investigation of the dynamics of vortex/antivortex excitations. 

 

Helicity modulus of the quantum XY-model 

 

 The spin-stiffness or spin rigidity or helicity modulus or the "superfluid density " (for 

bosons the superfluid density is proportional to the spin-stiffness) is a constant which 

represents the change in the ground state energy of a spin system as a result of introducing a 

slow in plane twist of the spins. The importance of this constant is in its use as an indicator of 

quantum phase transitions.  

 Mathematically it can be defined by the following equation: 

    
 

   

     

 
 
   

      (11) 

where E0 is the ground state energy, θ is the twisting angle, and N is the number of lattice 

sites. 
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Figure 3: The helicity modulus as a function of temperature, the universal jump is expected at 

the point where Y = (2)/TC. Figure is taken from [85]. 

 

The Kosterlitz renormalization-group equation [77] leads to the prediction that the Y 

jumps from the value (2)/TC to zero at the critical temperature [83]. This quantity 

corresponds to the superfluid density when the model is regarded as a Boson system with hard 

cores. According to the quantum Monte Carlo method, the helicity modulus is related to the 

fluctuation in the total winding number-W of world lines by the following equation [84]: 

                 (12) 

The helicity modulus exhibits the universal jump at the critical temperature, see Figure 3. 

Figure 3 demonstrates results from Monte Carlo simulations of Y for the different system 

sizes. The solid line is (2)/T and the cross-section with simulation curves define the critical 

temperature TC. 
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2.2. Trinuclear S = ½ compounds – trimers 
 

Trinuclear compounds are molecular species, consisting of building blocks which 

contain three magnetic centers. The macroscopic nature of the interaction between adjacent 

centers is the same as in dinuclear compounds but the presence of more than two spin carriers 

may lead to a different magnetic behaviour. There are two aspects of interest in the building 

scheme of trimer systems:  

1. irregular spin-state structure 

2. spin frustration 

which are not encountered in dimer compounds. 

 

2.2.1. Symmetrical trimers 

 

Symmetrical trimers are trinuclear compounds which can be presented either as a 

triangular or a linear trinuclear species (see Figure 4). In such compounds, the magnetic 

centers can be homo or hetero nuclear. The simplest situation is the case of the homo-nuclear 

compound. 

 
Figure 4: Basic structures of homo-nuclear symmetrical trimer compounds, (a) triangular 

structure and (b) linear structure. 

 

The triangular lattice is the simplest realization of a geometrically frustrated lattice. 

Antiferromagnetic spin systems on geometrically frustrated lattice show many unusual 

behaviours of magnetic and thermal properties, and the spin frustration plays an essential role 

in several physical fields such as magnetism [86], superconductivity [87], and even in the 

field of neural networks [88]. The interplay between the geometric frustration and quantum 

fluctuations gives rise to a number of intriguing phenomena, including the macroscopic 
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degeneracy of the ground state [86], the quantized plateaux in magnetization curves [89] and 

the double-peak structure in the specific heat [90], etc. 

The spin Hamiltonian for isolated trimers with a linear geometrical structure, a 

uniform isotropic Heisenberg intra-trimer exchange interaction J and an isotropic g−factor is 

given by: 

)ˆˆˆ()ˆˆˆˆ(ˆ
3213221 SSSHgµSSSSJH B 



    
(13) 

 This Hamiltonian corresponds to the geometrical structure shown in the Figure 5. 

 

 

 

Figure 5: The linear trimer model with uniform Heisenberg inter-trimer interaction J, the spin 

states of the isolated trimers are labeled as S = S123. S123 is the total spin      
    

    
  and 

Ŝ13 = Ŝ1 + Ŝ3 is an intermediate coupling number. 

 

 The relative energies in zero field for this spin system are given as: 

        
 

 
       

 

 
            (14) 

where          and        . The trimer has a simple energy spectrum which consists 

of doublet ground state              , with S = ½ and energy –J (in zero field) where the 

spin-down state is given by (|↑↓↓>-2|↓↑↓>+|↓↓↑>)/6 (see Figure 5). The first excited state 

(doublet)            has zero energy and also S = ½ with the spin-down state given by 

(|↑↓↓>-|↓↓↑>)/2. The highest energy state (quartet)               has S = 3/2 and energy 

J/2. The spin states of the isolated trimer are labeled according to the eigenvalues of the 

square of the total operator Ŝ123 = Ŝ1 + Ŝ2 + Ŝ3 and an intermediate coupling quantum number 



T r i m e r s  

16 
 

Ŝ13 = Ŝ1 + Ŝ3. From the partition function the magnetic susceptibility can be derived in a 

straightforward way yielding Equation (15), where x = exp (–J/2kBT): 

32
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      (15) 

The magnetization of the isolated linear trimer can be written, where h = gµB/kB: 
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In the limit J→∞ or T << J/kB, that is, x→0, the trimer is locked into a S = ½ state and M(T,h) 

reduces to the S = ½  Brillouin function. Conversely, for vanishing exchange coupling J or T 

>> J/kB, that is, x→1, the spins of the trimer are independent and M(T,h) is 3 times the S = ½  

Brillouin function. 

 

2.2.2. Competing interaction and frustration 

 

The frustration was initially introduced to describe a system‟s inability to 

simultaneously minimize the competing interaction energy between its components [91]. 

Frustrated systems were discovered and have been studied for more than 50 years, the famous 

example being the Ising spins on an antiferromagnetic triangular network studied by G. H. 

Wannier in 1950. A renewed and greater interest in such systems arose almost two decades 

later in the context of spin glasses and spatially modulated magnetic superstructures.  

In general, frustration is caused either by competing interactions due to site disorder 

(the Villain model [92]) or by lattice structure such as in the triangular, face-centered cubic 

(fcc), hexagonal-closed-packed, tetrahedron, pyrochlore and kagome lattice with 

antiferromagnetic interaction [93]. So frustration can be divided into two categories: 

(1) the spin glass, phenomenon caused by disorder in the structure and frustration 

in the spins 

(2) the geometrical frustration, phenomenon caused by an ordered lattice structure 

and frustration of spin. 

The frustration of a spin glass can be understood within the framework of the RKKY 

model, in which the interaction property, either ferromagnetic or antiferromagnetic, is 

dependent on the distance of the two magnetic ions. Due to the lattice disorder in the spin 

glass, one spin of interest and its nearest neighbors could be at varying distances and have a 

different interaction property, thus leading to a different preferred alignment of the spin. 

http://en.wikipedia.org/wiki/Antiferromagnetism
http://en.wikipedia.org/wiki/Gregory_Wannier
http://en.wikipedia.org/wiki/Gregory_Wannier
http://en.wikipedia.org/wiki/Triangular_tiling
http://en.wikipedia.org/wiki/Spin_glass
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Geometrical frustration is a phenomenon in which the geometrical properties of the 

atomic lattice forbid the existence of a unique ground state; resulting in nonzero residual 

entropy (an example of a geometrically frustrated material is ordinary water ice, which has 

residual entropy of around 3.4 J/Kmol). One simple example is shown in Figure 6 where one 

of the interactions is different and presented with J’. Three magnetic ions with Ising 

anisotropy reside on the corner of a triangle with antiferromagnetic interactions between 

them. Once the first two spins are aligned anti-parallel, the third one is frustrated because its 

two orientations (up or down) give the same energy-the third spin cannot simultaneously 

minimize its interactions with either of the other two. Thus the ground state is twofold 

degenerate (see Figure 6). 

 

 

 

Figure 6: Antiferromagnetically interacting Ising spins in a triangular arrangement. 

 

 

http://en.wikipedia.org/wiki/Antiferromagnetism
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2.3.  Quantum-spin Heisenberg chains 
 

One-dimensional (1D) magnetic compounds first attracted interest after it was found 

that they provide good examples for testing models which could not be solved in higher 

dimension [81]. In the 1970‟s, several families of magnetic compounds with linear chain 

structure were discovered and analyzed with models that had been developed a decade earlier 

[94]. In the 1980‟s, a major discovery was bimetallic chain compounds with alternating spin 

carriers because these introduced a new concept in 1D magnetism , the so-called 1D 

ferrimagnetism. The search for novel magnetic materials led to exotic systems such as    

ladder-like chains, triangle-based chains, spin-frustrated double chains, topological 1D 

ferrimagnets, and spin-frustrated topological 1D ferrimagnets.  

Due to the possible anisotropies of the exchange interaction, theoretical models 

consider the boundary cases of the so-called Heisenberg and Ising interaction. Heisenberg-

isotropic interaction refers to fully isotropic spin Hamiltonian of the form: 

'ˆˆ)'ˆ,ˆ( SSJSSH         (17) 

Positive J value corresponds to an AF interaction. The Equation (17) does not include all 

types of isotropic coupling, for instance, the isotropic biquadratic spin interaction       

(magnon-phonon interaction) [95]. 

The Ising interaction is a special case of the more general anisotropic coupling which 

has a spin Hamiltonian of the form: 

)()'ˆ,ˆ(
'''

zzzyyyxxx SSJSSJSSJSSH 
     

(18) 

where Jx, Jy and Jz are the components of the exchange coupling between the x, y and             

z-components of the spins, respectively. 

Apart from the Ising coupling, analytical solutions are possible when the spin is 

treated in the classical approximation. There is no exact solution for the infinite chain, even in 

the simple F or AF case, except for the ground state energy of the AF S = ½ chain [96]. 

The simplest case is a linear chain with Heisenberg coupling between nearest-neighbor 

quantum spins without local anisotropy. The general method for obtaining a solution is to use 

an extrapolation procedure taken from the exact results for the different finite length chains. 

The pioneering work in this field was performed by Bonner & Fisher where they discussed 

the problem of the uniform S = ½ chain, with exchange anisotropy (Jx = Jy  Jz) and with 

either F or AF coupling [97]. They considered open chains in order to evaluate finite size 

effects on the magnetic properties. Their work was expanded by Weng who experimented 

with larger spin values [98] to the AF Heisenberg chains and later by Blöte [99] who took into 

account the exchange and single-ion anisotropy. Duffy & Barr introduced alternating 

exchange interaction in the AF S = ½ Heisenberg chain [100]. 
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2.3.1. Uniform antiferromagnetic S = ½ Heisenberg chain 

 

The spin S = ½ antiferromagnetic (AF) uniform Heisenberg chain has a long and 

distinguished history in condensed matter physics, because it exhibits unusual static and 

dynamic properties unique to a one-dimensional spin system. The Hamiltonian of this system 

is: 

 
i

jiiSSJH

     

(19) 

J > 0 is AF exchange interaction 

The S = ½ Heisenberg chain is known to be exactly solvable [96], i.e., all eigenvalues 

can be obtained from the so-called Bethe ansatz equations. The direct method for evaluating 

the partition function was given in [101, 102] and is known as "thermodynamic Bethe ansatz" 

(BTA), but did not allow high accuracy calculations, especially in the low-temperature region. 

The possibility for calculating the physical properties of the S = ½ Heisenberg chain 

has enabled the path integral formulation of the transfer matrix treatment of quantum systems 

[103]. On the basis of a Bethe ansatz solution to the transfer matrix, Eggert, Affleck and 

Takahashi in 1994 obtained numerically exact results for the magnetic susceptibility χ(T) 

down to much lower temperatures than have ever been achieved before and compared this 

result with low-temperature results from conformal theory [104]. 

 

Thermodynamic Properties of the Uniform S = ½ AFHC 
 

The thermodynamic bulk properties as magnetic spin susceptibility, magnetization M 

and specific heat C can be obtained from the free energy F and the entropy S as function of 

magnetic field H and temperature T. Statistical mechanics relations were used for this: 

   
  

  
 

 
  

 

 
 

   

    
 
      (20) 

   
 

 
 

  

  
 

 
      (21) 

    
  

  
 

 
   

   

    
 

      (22) 

 

Magnetic Susceptibility of the Uniform S = ½ AFHC 

 

The magnetic susceptibility  of the uniform S = ½ AFHC was calculated for the first 

time by Bonner and Fisher in 1964 [97]. Their first results referred to the chains with ≤ 11 
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spins and were done for T ≥ 0.4J/kB. They extended their results by extrapolation to T = 0K. A 

first exact solution for (T) was obtained by Eggert, Affleck and Takahashi in 1994 using 

Bethe ansatz. They found χ(T → 0K) in the form of "logarithmic corrections" where the T0 

temperature is not predicted by the field theory. Lukyanov has done an exact theory for (T) 

at low-T, including the value for the T0 [105]. 

The uniform S = ½ AFHC has no spin gap and in the T → 0K limit, the magnetic 

susceptibility (T) has a finite value in an external magnetic field less than the saturation field 

(Hsat = 2J/gµB), see Figure 7. At zero temperature and in zero external field, the spin 

susceptibility of the uniform S = 1/2 AFHC is (0) = NAg
2
µB

2
/(2

J). At H = Hsat (red curve) 

the susceptibility diverges at T = 0K and for H > Hsat the susceptibility drops to zero at T = 0 

(see Ref. [106]). For higher temperatures and for fields lower than the saturation field, the 

spin susceptibility (T) exhibits a broad maximum  
max

 at a temperature T 
max

. In zero field 

one finds [107]: 

                 
      

 

  
    (23) 

In the limit H  0 the relation given by Equation (23) is a good initial test of whether the       

S = ½ AFHC model might be used for a particular magnetic system. For the external field     

H < Hsat, the maximum of (T) shifts to lower temperatures, becomes narrow and grows in 

height and eventually for H = Hsat endues into a divergence for T → 0K. 

 

 

Figure 7: Magnetic susceptibility  versus temperature T for the uniform S = ½ AFHC for 

various external magnetic fields as calculated by Klümper [106]. The figure is taken from 

Ref. [108]. 
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Eggert et al. [104] derived an expression for the temperature dependence of (T) by 

using the Bethe ansatz. This result differs significantly from the Bonner-Fisher result for        

T < 0.25J/kB. The result of Eggert et al. is: 

        
    

 

   
   

 

   
 

 

 
      (24) 

where F(x = J/kBT ) is an empirical rational function. Feyerherm et al. [109] found: 

     
                    

                                 (25) 

for T > 0.05J/kB. Note that F(x) → 1 for T → ∞. The theoretical result of Eggert et al. and the 

Bonner−Fisher result coincide for T > 0.5J/kB. As T → 0K, a simple expansion of the spin 

susceptibility in the variable x = J/kBT fails. Such a nonanalytic behaviour in x can be viewed 

as a consequence of the strong correlations between the quasi-particles - spinons, i.e., the 

elementary excitations of the system are not free. Hence, serial expansion of the spin 

susceptibility has to be supplemented by a term 1/log(x).  

Eggert et al. obtained the magnetic susceptibility data (T) using Bethe ansatz till       

T ~ 0.003J/kB. Their results, in a recently calculated more accurate form [107], are shown in 

Figure 8. One should note that after passing the maximum  
max

 at a temperature T 
max

, the 

slope of  starts to increase below the inflection point T
infl

  0.087J/kB, approaching infinity 

as T → 0K. For T < 0.1J/kB the magnetic susceptibility is: 

              
 

   
  
 

      (26) 

with (0) = NAg
2
µB

2
/(2

J) and T0  7.7J/kB, and as one can see is mainly dominated by the 

logarithmic corrections. 
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Figure 8: Magnetic susceptibility  versus temperature T for the uniform S = ½ AFHC in zero 

external fields. The lower graph shows an expansion of the data for 0 ≤ kBT/J ≤ 0.02 together 

with the fit. The figure is taken from Ref. [107]. 

 

Magnetic specific heat of the uniform S = ½ AFHC 
 

As in the case of the magnetic susceptibility  of the uniform S = ½ AFHC, the 

magnetic specific heat C was calculated for the first time by Bonner and Fisher in 1964 [97] 

and C(T → 0K), in the form of "logarithmic corrections" were studied for this quantity as well 

[106]. According to the recent high-accurate calculations by Klümper and Johnston [107], the 

zero-field magnetic specific heat of uniform S = ½ AFHC is given exactly in the T → 0K 

limit as: 
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       (27) 

The linear dispersion relation of the fermionic spinons at low energy implies that the 

low-temperature specific heat of the S = ½ AFHC is linear in T [110, 111] and can be 

obtained by: 

      
 

 
 

   

     
      (28) 

with       
 

      
 the field-dependent spinon velocity. E and  are determined by integral 

equations given in [112]. In zero field,    
  

 
, and the specific heat takes the form given in 

the equation (27). 

For higher temperatures in zero field the magnetic specific heat C(T) exhibits a broad 

maximum C 
max

 at a temperature TC 
max

 with: 

    

    
                (29) 

 
    

   

 
                (30) 

A universal expression for the high-temperature serial expansion-HTSE terms for C(T) 

exists and is given for S = ½ by Johnston [107]: 

    

    
 

 

  

  

  
       

  

        
 
          (31) 

 

with c1 = ½, c2 = c3 = -5/16, c4 = 7/256, c5 = 917/7680. 

The electronic specific heat coefficient C(T)/T of the uniform S = ½ AFHC approaches 

the value 
 

 

    
  

 
 as T → 0K. The initial deviation from this constant is positive and 

approximately quadratic in T.  

The zero-field data exhibit the behaviour described above, with the broad maxima and 

the zero-temperature values of C(T) and C(T)/T, respectively. With the application of an 

external field H, the maximum of C(T) is reduced and shifts to lower temperatures, see   

Figure 10. 
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Figure 9: (a) Zero-field temperature dependence of the magnetic specific heat C(T) of the 

uniform S = ½ AFHC. (b) Electronic specific heat coefficient C/T versus T from the data in 

(a). Figures are taken from Ref. [107]. 

 

 

 

 

Figure 10: The specific heat of the Heisenberg chain for different values of the magnetic field 

(a) gµBH/J = 0, 1, 1.5, 2, note the linear T dependence at low temperatures for fields less than 

the saturation value gµBHsat/J = 2. For H = Hsat the specific heat is proportional to T
1/2

 for 

sufficiently low T, as calculated by Klümper [106]. (b) Plot of the data from (a) as the 

electronic specific heat coefficient C(T)/T. Figures are taken from [108]. 
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In the vicinity of the saturation field a second maximum appears. These qualitative 

aspects of the curves in the fixed external field can be understood in the picture of spinon 

excitations. The external magnetic field acts very much like a chemical potential for the 

spinons for which there are particle and hole-like excitations. At zero field, the bands of the 

particle and the hole-type excitations are identical. However, for a sufficiently strong field H 

the band widths vary considerably, resulting in two maxima in the specific heat at different 

temperatures. 

At the saturation field, Hsat = 2J/(gµB), which represents a critical field above which 

the antiferromagnet becomes fully magnetized at zero temperature, remains a broad maximum 

at a higher temperature. For H = Hsat this behaviour is qualitatively different for the electronic 

specific heat coefficient. Here, C(T)/T diverges as T → 0K, while C(T) is equal to zero at       

T = 0K. Such anomalous behaviour is the signature of the existence of logarithmic corrections 

to the specific heat at temperatures T << J/kB [105, 106, 113], just as it was for the magnetic 

susceptibility. 

By integrating the C(T)/T data vs. T and normalizing it by S(T → ) = NAkB ln2, the 

magnetic entropy S(T) can be determined (see Figure 11). This figure allows one to estimate 

the maximum magnetic entropy that can be associated with any magnetic transition involving      

S = ½ AFHC when weakly coupled to each other [assuming that the (average) J does not 

change at the transition]. 

 

 
 

Figure 11: Entropy S vs. temperature T for the uniform S = ½ AFHC, obtained from the data 

in Fig. 9(b). The entropy is normalized by S(T → ) = NAkB ln 2. The figure is taken from 

Ref. [107]. 

 

According to the conservation of magnetic entropy, if the magnetic critical 

fluctuations increase the specific heat, and hence the entropy, above Tc than it has to be 
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reduced to a level below Tc for the same amount, compared to the values for the isolated chain 

at the same reduced temperatures. 

The electronic specific heat coefficient C(T)/T, at low temperatures, becomes 

independent of temperature (apart from logarithmic corrections), as does the spin 

susceptibility (T), exactly as in a metal (Fermi liquid). For a metal, the relevant quantity is 

the Wilson-Sommerfeld ratio-RW (see Equation 32), which for S = ½ quasiparticles is 1. 

Should some exchange-enhanced interaction be present in the metal, the Wilson-Sommerfeld 

ratio will take values 1 < RW  10. For the S = ½ Heisenberg chain, RW = 2 as T → 0K, 

according to the equation: 

      
          

       
     

       (32) 

According to the Wilson-Sommerfeld ratio, the uniform S = ½ Heisenberg chain behaves like 

a Fermi liquid at low temperatures (small logarithmic corrections being neglected). This can 

be understood from its elementary excitations, which are S = ½ spinons with a Fermi surface, 

i.e., Fermi points in one dimension. Since the spinons carry no charge, the chain is an 

insulator. The deviation of RW from unity and the existence of logarithmic corrections are due 

to spinon interactions.  
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Magnetization of the uniform S = ½ AFHC 
 

The magnetization M of the uniform S = ½ AFHC is given by    
 

 
 

  

  
 

 
. F 

denotes the free energy, which is equal to the lowest eigenvalue of the Hamiltonian of the 

uniform S = ½ AFHC in an external magnetic field H (Equation 21). The magnetization as a 

function of the external field, as obtained by the thermodynamic Bethe ansatz by Klümper 

[106], is shown in Figure 12. Starting from zero field, M(H=0) = 0 at T = 0K, M increases 

monotonically with increasing external field, as: 

     
 

 
      

 

  
 

 
 

  

   
 

       (33) 

for 0  H  Hsat = 2J/(gµB). 

 The slope of the limiting magnetization curve at H = 0 is the zero point susceptibility 

(0). M(H) has a sharp cusp at Hsat for T = 0K, the cusp is constantly rounded for 

temperatures T > 0K, and the saturation of the magnetization is delayed to fields H > Hsat. 

Considering the derivative of the magnetization,             , one can 

distinguish between three different intervals: 

(1) a monotonically increasing curve for T = 0K, which diverges towards the 

saturation field and abruptly jumps to zero at H ≥ Hsat 

(2) an intermediate regime for 0 < T < Tc, where              , passes through 

a maximum and subsequently approaches zero at a field H > Hsat, and 

(3) a regime for T > Tc, where                monotonically decreases towards 

zero. For the uniform S = ½ AFHC the inflection point Tc is given by Tc = 1.2J/kB. 
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Figure 12: Magnetization curves as calculated by Klümper [106] at temperatures                     

0  kBT/J  2.5. The figure is taken from [108]. 

 

Magnetocaloric effect of the uniform S = ½ AFHC 

 

The magnetocaloric effect (MCE) is related to the isothermal variation of the entropy 

in a magnetic field via a simple thermodynamic relation: 

 
  

  
 

 
  

        

 
       (34) 

where C is the specific heat at a constant magnetic field. A field variation of entropy can be 

found via a temperature variation of the magnetization: (∂S/∂H)T = (∂M/∂T)H. Standard 

examples of magnetic materials with a significant MCE include paramagnetic salts and 

ferromagnets near the Curie point since (∂M/∂T)H is large [114, 115]. Recently, it has been 

predicted that an enhanced MCE exists in the vicinity of field transitions in a class of 

geometrically frustrated antiferromagnets [116] as well as in systems which exhibit quantum 

phase transition [117, 118]. In some earlier works it was shown that the MCE has great 

importance as a new technique which could be used for magnetic cooling [119, 120, 121] and 

in a recent one, it was pointed out how one can use MCE for the detection and identification 

of quantum critical points [117, 118]. 

A large MCE appears near continuous phase transitions in a magnetic field for general 

one-dimensional (1D) quantum spin systems [122]. The phenomenon can be explained with 

the form of the excitation spectrum at the quantum critical point-QCP. It was observed that 

the excitation spectrum is softer compared to spectra above and below the transition. The soft 

modes increase the total magnetic entropy around the transition point which according to 

equation (34) produces a larger MCE. 
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Using the Jordan-Wigner transformation [123], the Hamiltonian of Heisenberg chain 

equation 19 can be mapped to a Hamiltonian of free spinless fermions and the fermion 

energies and saturation field are: 

                       
        (35) 

                    (36) 

            (37) 

The interaction of the z-components of the spin in the Heisenberg chain influences the 

value of the fermion energies and the saturation field. The z-component interaction induces 

the interaction between the fermions but this interaction (between the fermions) in the vicinity 

of the saturation field for the Heisenberg chain plays a minor role [124, 125, 126]. 

The adiabatic de(magnetization) curves of a Heisenberg chain in magnetic field can be 

calculated by numerical integration of the differential relation (34). The results are presented 

in Figure 13 [122]. 

 

Figure 13: Adiabatic curves as a function of temperature and magnetic field of the S = ½ 

Heisenberg chain model calculated by Zitomirksky and Honecker [122]. 

 

As can be seen, in the low-temperature region there are three different regimes of 

isentropes for the H < Hc, H = Hc and H > Hc. For T > 0, the system has an entropy 

contribution different from zero and in the applied magnetic field, the system has large 

relative changes in the entropy and therefore a large magnetocaloric effect. Below the 

saturation field, the temperature decrease is weaker than in the region above the saturation 

fields, the strongest temperature change, the system has near H = Hc. Actually the lowest 

temperature of the adiabatic process is reached at H

 < Hc and as the temperature decreases, 
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the difference between these two fields becomes minimal. At the temperature close to 

absolute zero, the cooling rate of the adiabatic process is maximal. At low temperatures       

T/J < 0.1 the isentropes shows oscillations which originate from finite-size effects in the 

calculations [122]. 

It has been shown that the frustration increases entropy at low temperatures at the 

saturation field [122] and that the frustrated systems have an enhanced magnetocaloric effect. 

Comparison of adiabatic curves for the S = ½ AFHC, the J1-J2 chain and the sawtooth chain 

are shown in Figure 14. During an adiabatic demagnetization, all three systems cool upon 

approaching the saturation field, the J1-J2 chain cools down to lower temperatures than the     

S = ½ AFHC under the same conditions, and the sawtooth chain to even lower temperatures. 

The enhancement of the magnetocaloric effect with increasing frustration is evident. 

 

 

Figure 14: Isentropes upon approaching the saturation field from above for the                        

S = ½ Heisenberg chain, the J1-J2 chain with J1 = J, J2 = 1/4J, and for the sawtooth chain with 

J1 = J, J2 = 1/2J. The bold curves present the results of numerical calculations and the two 

thin curves present a free-fermion approximation. The figure is taken from [122]. 

 

 One-dimensional quantum spin systems in an external magnetic field exhibit large 

relative changes of entropy and pronounced magnetocaloric effect. These properties enable 

these low-dimensional systems to be promising refrigerant materials in low-temperature 

physics and industry. 

 

2.3.2 Alternating-exchange chains 
 

In an alternating Heisenberg chain the nearest-neighbor spins in the chain interacting 

via the Heisenberg interaction and the spin Hamiltonian in zero field has the form: 

 

 
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iiii SSSSJH 
                                            

(38) 
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The alternation parameter is  = J’/J, the uniform Heisenberg chain is one limit of the 

alternating chain in which  = 1 and J = J’, whereas the other limit is the isolated dimer in 

which one of exchange constants is zero and  = 0. 

The spin gap of the alternating-exchange chain () was calculated by Barnes et al. 

[127] and they found: 

                           (39) 
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2.4. Quantum phase transitions - QPT 
 

Phase transitions play an essential role in nature and numerous examples abound, such 

as boiling of water, melting of ice or, more complicatedly, transition of a metal into the 

superconducting state. The universe itself is thought to have passed through several phase 

transitions as the high-temperature plasma, formed by the Big Bang, cooled to form the world 

as we know it today. Phase transitions occur usually upon variation of an external control 

parameter; their common characteristic is a qualitative change in the system properties. They 

occur at a finite temperature, where macroscopic order is destroyed by thermal fluctuations. 

A different class of phase transitions also exists in nature, namely transitions which 

take place at zero temperature known as quantum phase transitions (QPT). In the systems 

which undergo QPT, order is destroyed solely by quantum fluctuations. A control parameter 

which brings the system to the transition is non-thermal in nature such as pressure, electric 

field, magnetic field, or chemical composition. Quantum phase transitions [128] have become 

a topic of great interest, while the presence of zero temperature quantum critical points 

(QCPs) holds the key to currently unsolved puzzles in many systems, such as rare-earth 

magnetic insulators [129], heavy fermion compounds [130, 131], high-temperature 

superconductors [132, 133] and two-dimensional electron gases [134]. Quantum critical 

behaviour, arising from the peculiar excitation spectrum of the quantum critical ground state, 

can influence measurable quantities over a wide range of the phase diagram.  

Traditionally, phase transitions are classified into first-order and continuous 

transitions. At a first-order transition, the two phases co-exist at the transition temperature (ice 

and water at 0°C or water and steam at 100°C). In contrast, at a continuous transition, the two 

phases do not co-exist (for example, the ferromagnetic transition of iron at 770°C, above 

which the magnetic moment vanishes). Continuous phase transition can usually be 

characterized by an order parameter, a thermodynamic quantity that is zero in one phase (the 

disordered) and non-zero and non-unique in the other (the ordered) phase. Very often, the 

choice of an order parameter for a particular transition is obvious but in some cases finding an 

appropriate order parameter is complicated and is still a matter of debate, (the Mott transition 

[135] for example). A quantitative characteristic of an order parameter in the disordered phase 

is that its average value is zero, while its fluctuations are non-zero. If the critical point is 

approached, the spatial correlations of the order parameter fluctuations become long-ranged. 

Close to the critical point, the correlation length, ξ, diverges as: 

              (40) 

where ν is the correlation length critical exponent and t is some dimensionless measure of the 

distance from the critical point. If the transition occurs at a non-zero temperature Tc, it can be 

defined as t = |T − Tc|/Tc. In addition to the long-range correlations in space there are 

analogous long-range correlations in time. The typical timescale for a decay of the 

fluctuations is the correlation (or equilibration) time, τc. As the critical point is approached the 

correlation time diverges as: 
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                   (41) 

where z is the dynamic critical exponent. Close to the critical point, the characteristic length 

scale is ξ and the characteristic timescale is τc. The divergences of correlation length and 

correlation time are responsible for the so-called critical phenomena. At the phase transition 

point, correlation length and time are infinite, fluctuations occur on all length scales and 

timescales, and the system is said to be scale-invariant. As a consequence, all observables 

depend via power laws on the external parameters. The set of corresponding exponents 

(critical exponents) completely characterizes the behaviour near the phase transition. 

 The underlying quantum phase transition in some system manifests itself at finite 

temperatures in an unusual sensitivity of thermodynamics on tuning some of the external 

parameters. Here we will discuss some aspects of the QPT where the QCP is reached by 

tuning the magnetic field-H. At T = 0K the distance to the QCP is determined by the control 

parameter which depends on magnetic field, r = r(H) see Figure 15. 

 

 
Figure 15: Different regimes in the phase diagram of a quantum phase transition. The solid 

line shows a generic isentrope along which the entropy is constant, dS = 0. Figure is taken 

from [118]. 

 

 As can be seen from Figure 15, with respect to the QCP one can distinguish two 

regimes in the phase diagram, namely the quantum critical regime and the low-T regime. In 

both of them the measurable quantities behave differently. 

 In the surrounding of the QCP the control parameter can be linearized around its 

critical value: 

r(H) = (H – Hc)/H0       (42) 
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where H0 is a constant magnetic field and Hc is the critical field where the transition occurs. 

Generically, the critical magnetic field will depend also on pressure, Hc = Hc(p), and vice 

versa. 

 If the QPT is tuned by the magnetic field, than the free energy density is a function of 

this control parameter and temperature, f = f(H ,T). Thermodynamically, the sensitivity on the 

tuning magnetic field is measured by the derivative of the free energy density with respect to 

H and has the quantity (dM/dT)H. The quantity known as the magnetocaloric effect can be 

defined as: 

   
        

  
  

 

 

        

        
 

 

 
   

  
 
 
    (43) 

where CH is the specific heat at constant H. The magnetocaloric effect-ΓH can be 

experimentally observed under adiabatic conditions by measuring the change in temperature 

at constant entropy upon magnetic field variations. On looking at the equation (43), it is 

obvious that the magnetocaloric effect is proportional to the slope of the constant entropy 

curves (isentropes) in the phase diagram. 

 Applying the scaling analysis [117] in the quantum-critical regime, i.e., for         

it is obtained: 

   
 

            (44) 

the magnetocaloric effect is in this region magnet-field independent and depends only on the 

temperature of the system and critical exponents  and z. 

 On the other hand, in the low-T regions        , the magnetocaloric effect diverges 

inversely with applied magnetic-field: 

      
 

      
      (45) 

In this region the magnetocaloric effect depends also on the critical exponents because they 

define the value of Gr by the relation: 

     
  

    

  
       (46) 

where   
  are critical exponents which define the low-T behaviour of the specific heat of the 

system and d define the dimensionality of the system. 

 As can be seen from equation (45), where Gr has the same sign in both low-T regions, 

the sign change of this quantity takes place. The equation (45) implies a divergence and sign 

change of the magnetocaloric effect in the low-T regions, these are very strong signatures of 

this quantity. The natural question is where and when does the sign change take place? 
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Sign change of Magnetocaloric Effect 

 

 In order to understand why the magnetocaloric effect changes the sign, one should 

consider the behaviour of the entropy within the temperature-field plane. As can be seen from 

Figure 15, on the left-hand side of the QCP the isentrope line has a negative slope while on 

the right-hand side of the QCP the slope is positive. This means that somewhere in the near 

surrounding of the QCP, the sign change takes place i.e. in the quantum critical region. The 

minimum of the isentrope is directed toward the QCP because as the system approaches to the 

QCP, it accumulates the entropy and at the QCP system is frustrated (with the two possible 

different ground states which it can take). The minimum of the isentrope describes how the 

entropy accumulates around the QCP and is located at the field in the phase diagram where 

the system waves on the choice of the ground states (has frustration). 

 Using a scaling analysis one can determine the behaviour of the isentropes. For the 

low-temperature region it is: 

               
         (47) 

from the above relation it is clear that the isentropes have power low behaviour and the 

exponent of the power low dependence is given by the value Gr. If the Gr < 0 this means that 

the isentropes have a minimum. 

 If one considers an Ising chain as an example of the system which orders at zero-

temperature, where the critical exponents important for the discussion have values d = 1,         

z = 1,  = 1 and y0

 = , the factor Gr, which determines the behaviour of the system in the 

low-temperature region, will have the magnitude: 

               (48) 

 Calculating the thermodynamic quantities with previously mentioned critical 

exponents, the isentropes of the system will have the form shown on the Figure 16(a). The 

magnetocaloric effect-ΓH will be according to the equation (45) inversely proportional to the 

applied magnetic field. Because of the inversion symmetry with respect to the applied field    

(H – Hc  Hc – H), the sign change will take place directly at the H = Hc, see Figure 16(b). 
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Figure 16: (a) Adiabatic (de)magnetization curves-isentropes of the Ising chain. (b) 

Magnetocaloric effect at different temperatures. Figure is taken from [118]. 

 

As one can see from the Figure 16(b), on approaching the critical field from the left 

and right hand side, the magnetocaloric effect diverges. Such a divergence in a combination 

with the sign change leads to the very pronounced signature of the magnetocaloric effect in 

the surrounding of the critical field. 

 A similar behaviour of the magnetocaloric effect will have the Heisenberg chain since 

in this type of the system critical exponents have the values d = 1, z = 2,  = ½ and y0

 =  

and the factor Gr have the same magnitude as in the case of the Ising chain. This means that in 

the case of the Heisenberg chain, the MC effect will also diverge on approaching the critical 

field from the left and right hand side of the low-temperature region. This divergence, in a 

combination with the sign change (which will take place in this system also), will result in a 

pronounced signature of the MC effect as in the case of Ising chain. Therefore the 

magnetocaloric effect can be used as a very powerful tool to detect and identify the quantum 

critical point of such systems. 
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3. Experimental Methods 
 

3.1. Quantum Design MPMS XL-5 

 

DC − Magnetometer 

 

DC magnetic measurements determine the equilibrium value of the magnetization in a 

sample. The sample is magnetized by a constant magnetic field and the magnetic moment of 

the sample is then measured, producing a DC magnetization curve M(H). The moment is 

measured by force, torque or induction techniques, the last being the most common in modern 

instruments. Inductive measurements are performed by moving the sample relative to a set of 

pickup coils, either by vibration or one-shot extraction. In conventional inductive 

magnetometers, one measures the voltage induced by the moving magnetic moment of the 

sample in a set of copper pickup coils. A much more sensitive technique uses a set of 

superconducting pickup coils and a SQUID to measure the current induced in 

superconducting pickup coils, yielding high sensitivity that is independent of the sample 

speed during the extraction. Inductive magnetometers can also be used to perform AC 

magnetic measurements. 

 

AC − Magnetometer 

 

In AC magnetic measurements, a small AC drive magnetic field is superimposed on 

the DC field, causing a time-dependent moment in the sample. The field of the                 

time-dependent moment induces a current in the pickup coils, allowing measurement without 

sample motion. The detection circuitry is configured to operate only in a narrow frequency 

band, normally at the fundamental frequency (that of the AC drive field). In the case of very 

low frequencies an AC measurement is most similar to a DC measurement. In this case, the 

magnetic moment of the sample follows the M(H) curve that would be measured in a DC 

experiment. As long as the AC field is small, the induced AC moment is MAC = (dM/dH)HAC 

sin(ωt) where HAC is the amplitude of the driving field, ω is the driving frequency, and χ = 

dM/dH is the slope of the M(H) curve, called the susceptibility. As the DC magnetic field is 

changed, different parts of the M(H) curve are accessed, giving a different susceptibility. One 

advantage of the AC measurement is already evident: the measurement is very sensitive to 

small changes in M(H) . Since the AC measurement is sensitive to the slope of M(H) and not 

to the absolute value, small magnetic shifts can be detected even when the absolute moment is 

large. 
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At higher frequencies than those considered above, the AC moment of the sample does 

not follow along the DC magnetization curve due to dynamic effects in the sample. For this 

reason, the AC susceptibility is often known as the dynamic susceptibility. In this higher 

frequency case, the magnetization of the sample may lag behind the drive field, an effect that 

is detected by the magnetometer circuitry. Thus, the AC magnetic susceptibility measurement 

yields two quantities: the magnitude of the susceptibility, χ, and the phase shift, ϕ (relative to 

the drive signal). Alternately, one can think of the susceptibility as having an in-phase, or real, 

component χ’, and an out-of-phase, or imaginary, component χ’’. The two representations are 

related by: 

              (49) 

                (50) 

In the limit of low frequency where an AC measurement is most similar to a DC 

measurement, the real component χ’ is just the slope of the M(H) curve discussed above. The 

imaginary component, χ’’, indicates dissipative processes in the sample. In conductive 

samples, the dissipation is due to eddy currents. In ferromagnets, a nonzero imaginary 

susceptibility can indicate irreversible domain wall movement or absorption due to a 

permanent moment. Also, both χ’ and χ’’ are very sensitive to thermodynamic phase changes, 

and are often used to measure transition temperatures. 

 

Superconducting Quantum Interference Device – SQUID 

 

The SQUID magnetometer is one of the most effective and sensitive ways of 

measuring magnetic properties. In particular, it is the only method which directly allows 

determination of the overall magnetic moment of a sample in absolute units. The term SQUID 

is an abbreviation and stands for Superconducting Quantum Interference Device. 

Following the equations established by Brian David Josephson in 1962, the electrical 

current density flowing through a weak electric contact between two superconductors depends 

on the phase difference Δφ of the two superconducting wave functions. Moreover, the time 

derivative of Δφ is correlated with the voltage across this weak contact. In a superconducting 

ring with one (so-called RF SQUID) or two (DC SQUID, Figure 17, blue) weak contacts, Δφ 

is additionally influenced by the magnetic flux Φ through this ring. Therefore, such a 

structure can be used to convert magnetic flux into an electrical voltage. 

 

http://dx.doi.org/10.1016/0031-9163(62)91369-0
http://nobelprize.org/nobel_prizes/physics/laureates/1973
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Figure 17: SQUID: flux-to-voltage converter. 

 

In this work a commercial SQUID magnetometer system from Quantum Design, San 

Diego was utilized. The sample is located at the center of a superconducting solenoid 

producing magnetic fields up to 5T. The sample space is filled with helium at low pressure at 

temperatures ranging from 2-400K. The sensitivity of the system is 10
-8

emu or 10
-11

J/T in the 

RSO mode. The magnetic signal of the sample is obtained via a superconducting pick-up coil 

with 4 windings, see Figure 18. This coil is, together with a SQUID antenna (red in Figure 

17), part of a whole superconducting circuit, transferring the magnetic flux from the sample to 

an RF-SQUID device, located away from the sample in the liquid helium bath. This device 

acts as a magnetic flux-to-voltage converter (blue in Figure 17). This voltage is then amplified 

and read out by the magnetometer's electronics (green in Figure 17). When the sample is 

moved up and down it produces an alternating magnetic flux in the pick-up coil leading to an 

alternating output voltage of the SQUID device. By locking the frequency of the readout to 

the frequency of the movement (RSO, Reciprocating Sample Oscillation), the magnetometer 

system can achieve extremely high sensitivity for ultra small magnetic signals as described 

above. 

 

 

Figure 18: Scheme of the pick-up coils system. 
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RSO Measurements 

 

Unlike DC measurements where the sample is moved through the coils in discrete 

steps, the Reciprocating Sample Option (RSO) measurements are performed using a servo 

motor which rapidly oscillates the sample, see Figure 19. A shaft encoder records the position 

of the sample synchronous with the SQUID signal. The data received is fitted to an ideal 

dipole moment response. To ensure this assumption is applicable, samples need to be small, 

for example, a cylinder of 3mm diameter and 3mm height. Samples of this size or smaller 

match an ideal point dipole [136]. RSO measurements can be made in one of two 

configurations: Center or Maximum slope. Center mode uses large oscillations (2 to 4cm) 

around the center point of the pickup coils. The scans take a long time, the sample always 

remains properly located and a large number of measurements can be recorded. This method 

gives the most accurate readings. The Maximum Slope method oscillates the sample over a 

small region (2mm) at the most linear part of the SQUID response (as shown in Figure 19). 

The smaller amplitude makes measurements quicker and prevents the sample being subjected 

to a significant magnetic field variation; however, it also makes the measurement less 

accurate and susceptible to drift in the sample position.  

All measurements taken in this thesis using the MPMS XL SQUID were performed in 

Center mode with amplitude of 4cm.  

 

 

 

Figure 19: Illustration of an RSO measurement with the small amplitude. (a) Shows the ideal 

SQUID response for a dipole and (b) shows the movement of the sample within the SQUID 

pick-up coil. 
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3.2. 
3
He/

4
He dilution refrigerator 

 

The 
3
He/

4
He dilution refrigerator operation principle was originally proposed by Heinz 

London in 1951, but the first working systems were not built until more than ten years later. 

These days, commercial 
3
He/

4
He dilution refrigerators are available for temperatures down to 

about 4mK. The minimum temperature obtained by the method to be discussed below is about 

2mK, achieved by Frossati and co-workers. 

The essence of the dilution refrigerator method is to use a mixture of 
3
He (boiling 

temperature 3.19K) and 
4
He (4.2K) which is separated into two phases, and to dilute this 

mixture with pure 
4
He. Inside the "mixing chamber", where the mixture is condensed, two 

distinct phases are formed. The pure 
4
He cannot dissolve in the 

3
He-rich phase as this is 

already saturated with 
4
He. The additional 

4
He increases the volume of the 

4
He-rich phase, 

while at the same time 
3
He atoms from the 

3
He-rich phase pass into the 

4
He-rich phase, so as 

to maintain the equilibrium concentration. Hence, during the dilution, 
3
He atoms evaporate 

from the 
3
He-rich phase into the 

4
He-rich phase. By continuously pumping the mixture, 

3
He 

atoms are removed from the diluted phase. This allows more 
3
He atoms to diffuse out of the 

condensed phase into the diluted one, further cooling the mixture. 

All the measurements are performed in a commercial 
3
He/

4
He dilution refrigerator, 

model 400S from the Oxford Instruments company. The achievable temperature range of this 

cryostat is 15mK-6.6K, and superconducting magnet realizing the fields  15.5T, with the use 

of Lambda point refrigeration field of 17T is reachable. Around the mixing chamber, there is 

a field-compensated zone in which all thermometers can be placed (compensation field-

µ0Hkom  3mT). The mixing chamber temperature is measured with a commercial calibrated 

Ge thermometer in the temperature range 1.2K  T  6.6K, a commercially calibrated RuO2 

thermometer in the range 0.03K  T  1.2K and for the temperature T  0.1K a home made 

CMN-thermometer [137] calibrated with a fix-point device. 

 

3.2.1. AC – Susceptibility Measurements 

 

An inductive magnetometer is used to perform AC magnetic measurements. For this 

type of measurements, an ac current is used ( = 117Hz, I  0.1mA) with which a field 

amplitude µ0HAC = 100µT is accomplished. In the coil, the construction of which is explained 

below, two opposite voltages will be induced astatic in the secondary. If the sample is placed 

in one of the two secondary coils (cross section A and length l), additional voltage 

proportional to the susceptibility of the sample, is induced. The voltage signal is detected with 

the Lock-in technique, according to the electronic scheme showed in Figure 20. 
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Figure 20: Diagram of the AC - Susceptibility measurements in the bottom-loading cryostat.  

 

The induced voltage is: 

           
   

  
       

     

  
   (51) 

NS – number of windings of the pick-up coil 

µ0 – vacuum permeability 

M(t) – sample magnetization 

So from the measured voltage one has: 

    
      

 
   

  
  

  

 
      

      (52) 

    
       

 
   

  
  

  

 
      

       (53) 

VS – volume of the sample 

The phase shift between both the measured and reference signal is induced by the sample 

holder. 

The measurement coil (see Figure 21) consists of a long primary coil around which a 

couple of astatic secondary coils have been wound. In the case of perfect astatic conditions, 

the induced voltage in both the secondary coils will be mutually deleted. Because the 

secondary coils are not completely astatic, two different voltages will be induced in the coils 

and the resultant voltage will give a finite offset. To suppress the offset, two other astatic 

primary coils have been wound, so that they are parallel to a real primary coil and together 

with the changeable resistor (ca. 200kΩ) are connected to the voltage source. In this way, the 

resolution of the coil is improved. The sample in one of the pick-up coils induces a voltage, 

which is proportional to the sample susceptibility. This measurement principle permits only 

the determination of the susceptibility change. To determine the absolute values, it is 

necessary to perform additional measurements on a calibrated sample. 
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Figure 21: Schematic cross-section of the AC-susceptibility sample holder. 

 

3.2.2. DC – Susceptibility Measurements 

 

DC-magnetization measurements are performed with the home-made sample holder 

and a commercial SQUID-sensor from Oxford Instruments. The sample holder [138] is placed 

in the field-compensated zone directly below the mixing chamber. It consists of a small coil 

made from a superconducting wire which can produce a field strength of up to 8mT (µ0H = 

(0.128 mT/mA)∙I) [138]), as well as a pair of astatically wound pick-up coils. The pick-up 

coils are wound with NbTi wire and each of them has three windings. The sample is thermally 

coupled to the mixing chamber over the Cu-wires in which it is packed and placed in one of 

the pick-up coils. A signal from the pick-up coil passes over a flux transformer to the SQUID-

sensor. The flux transformer is placed in the Pb-Zn capillary [138] which serves as a shield. 

The SQUID-sensor is placed directly onto the 1K-pot of the cryostat [139]. The rest of the 

SQUID electronics are outside the cryostat. 
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3.2.3. Magnetocaloric effect (MCE) measurements 

 

Some magnetic materials heat up when they are placed in a magnetic field and cool 

down when they are removed. This is known as the magnetocaloric effect. The 

heating/cooling of a magnetic system under an adiabatic (de)magnetization process, is related 

to the isothermal variation of the entropy in a magnetic field via a simple thermodynamic 

relation, see Equation 34. 

When a material is magnetized by application of a magnetic field, the entropy 

associated with the magnetic degrees of freedom, Sm, is changed. Under adiabatic conditions, 

Sm must be compensated for by an equal but opposite change in the entropy associated with 

the lattice, Sl, resulting in a change in temperature of the material, T. The magnetocaloric 

effect can be related to the magnetic properties of the material, since magnetic properties are 

easier to measure directly than the entropy of the system. Through the thermodynamic 

Maxwell’s equation 
  

  
 
 
  

  

  
 
 

, the above relation takes the form: 

 
  

  
 
 
   

        

 
      (54) 

The MCE can be measured either by scanning the temperature during the field sweep 

under adiabatic conditions (quasi-adiabatic calorimetry) or by measuring the temperature 

dependence of the magnetization in the constant field (magnetization measurement) and the 

T-dependence of the specific heat at constant field or field dependent specific heat at different 

temperatures (specific heat measurement). An easier and more direct method would be quasi-

adiabatic calorimetry. Quasi-adiabatic calorimeter can be used for ac-calorimetry where a 

calorimeter is weakly coupled to the thermal bath. Such a microcalorimeter usually consists of 

a thermometer with an integrated sample holder with a low specific heat. In most of the 

designs published, the sample platform consists of a sapphire or diamond substrate with a 

thermometer. Such a calorimeter is mounted onto a high vacuum cryogenic inset by means of 

thin supporting wires which also act as electrical connectors to the thermometer, and which 

provide only a weak and controllable coupling to the thermal bath [140]. Thermometry is 

crucial for such a type of measurement; this means that the thermometer should have a high 

sensitivity and a short response time. Furthermore the thermometer should be well anchored 

to the sample/platform system and should be non-magnetic. In this sense, thin film resistance 

thermometry is more sensitive and reliable than the thermocouple thermometry. In the set-up 

used in this work, a commercially available thin film RuO2 thermometer was utilized. For the 

purpose of this work it was the optimal choice since it covers the desirable temperature range 

with the same sensitivity and, for low-temperatures, had sufficiently high sensitivity for 

detecting of millikelvin variations. 

The ac-calorimetry is the ideal method for measuring small changes of temperature. 

Assuming 1 is the relaxation time of the microcalorimeter/sample assembly and with 2 is the 

relaxation time of the assembly to the bath then, in the limit 11 << 22, the appropriate 

temperature change of the sample can be measured. To check if the system is in this limit 
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T versus  curve has to be traced to determine the frequency below which the heat escapes 

through the thermal links to the bath and above which the substrate is unable to follow the 

rapid heat modulations. In the range between, steady state conditions are realized. A 

photograph of the calorimeter and the sample is shown in Figure 22. For the electrical leads, 

Pt-W wires (25m in diameter and ~ 1cm in length) were used as they are thermally anchored 

to the bath over the copper frame. Wires are used as thermal and electrical contacts. For the 

mechanical support, nylon wires 0.1mm in diameter were used. Mechanical support is 

important to ensure that there are no mechanical vibrations due to the magnetic field. Bonding 

to the mechanical support is done so that the sample is correctly aligned in the magnetic field 

(parallel alignment). Since the thermal contact is made over the wires, it has to be chosen so 

that the thermal conductivity between the microcalorimeter and bath has a proper value. The 

thermal conductivity and the resulting relaxation time can be controlled by making the wires 

longer and thinner and by using higher resistivity alloys. The sample can be mounted with a 

small drop of Apiezon N-grease. The thermal conductance between the bath and the 

calorimeter was estimated to be ~ 10
-8

W/K. By applying a heat pulse to the calorimeter, the 

thermal relaxation time constant of the calorimeter to the bath temperature was found to       

be ~ 1000s at the temperatures and fields at which the MCE measurements were performed. 

 

 

Figure 22: Photo of the microcalorimeter chip mounted on the Cu frame. The sample        

(blue single crystal CuP) is mounted on one side of the chip with Apiezon N-grease. 
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3.3. Electron spin resonance 

 

Electron spin resonance (ESR) spectroscopy is a technique for studying materials that 

have one or more unpaired electrons, such as organic and inorganic free radicals or inorganic 

complexes possessing a transition metal ion. The basic physical concepts of EPR are 

analogous to those of nuclear magnetic resonance (NMR), but it is the electron spins that are 

excited instead of spins of atomic nuclei. Because most stable molecules have all their 

electrons paired, the EPR technique is less widely used than NMR. 

Every electron has a magnetic moment and spin quantum number S = ½, with 

magnetic components ms = + ½ and ms = – ½. In the presence of an external magnetic field 

with strength B0, the electron's magnetic moment aligns itself either parallel (ms = – ½) or 

antiparallel (ms = + ½) to the field, each alignment having a specific energy. The parallel 

alignment corresponds to the lower energy state, and the separation between it and the upper 

state is ΔE = geμBB0, where ge is the electron's so-called g-factor. This equation implies that 

the splitting of the energy levels is directly proportional to the magnetic field’s strength, as 

shown in Figure 23. An unpaired electron can move between the two energy levels either by 

absorbing or emitting electromagnetic radiation of energy ε = hν such that the resonance 

condition, ε = ΔE, is obeyed. Substituting in ε = hν and ΔE = geμBB0 leads to the fundamental 

equation of EPR spectroscopy:  

hν = geμBB0       (55) 

Experimentally, this equation permits a large combination of frequency and magnetic 

field values. 

 

 

Figure 23: Energy level splitting in the magnetic field-Zeeman Effect. 
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In principle, EPR spectra can be generated by either varying the photon frequency 

while holding the magnetic field constant, or doing the reverse. In practice, it is usually the 

frequency which is kept fixed. By increasing an external magnetic field, the gap between the 

ms = + ½ and ms = − ½ energy states is widened until it matches the energy of the 

microwaves, as represented by the double-arrow in the Figure 23. At this point the unpaired 

electrons can move between their two spin states. Since, there are more electrons in the lower 

state, due to the Maxwell-Boltzmann distribution, there is a net absorption of energy, and this 

absorption is monitored and converted into a spectrum.  

In real systems, electrons are normally not solitary, but are associated with one or 

more atoms. Therefore ESR spectroscopy can be used to determine: 

1) g-factor value 

An unpaired electron can gain or lose angular momentum, which can change the value 

of its g-factor, causing it to differ from ge. This is especially significant for chemical 

systems with transition-metal ions.  

2) Hyperfine coupling constant 

If an atom with which an unpaired electron is associated has a non-zero nuclear spin, 

then its magnetic moment will affect the electron. This leads to the phenomenon of 

hyperfine coupling, analogous to J-coupling in NMR, splitting the EPR resonance 

signal into doublets, triplets and so forth.  

3) Line shape of the spectral line 

Interactions of an unpaired electron with its environment influence the shape of an 

EPR spectral line. Line shapes can yield information about the type of the exchange 

interaction, degree of interaction, rates of chemical reactions etc. 

4) Anisotropy 

The g-factor and hyperfine coupling in an atom or molecule may not be the same for 

all orientations of an unpaired electron in an external magnetic field. This anisotropy 

depends upon the electronic structure of the atom or molecule (e.g., free radical) in 

question, and so can provide information about the atomic or molecular orbital 

containing the unpaired electron. 

 

The ESR measurements in this thesis were conducted by the technique in which the 

details and the measurement set-up are given in the Ref. [141]. 
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3.4. Specific heat  

 

Specific heat capacity, also known simply as specific heat, is the measure of the heat 

energy required to increase the temperature of a unit quantity of a substance by a certain 

temperature interval. The term originated primarily through the work of the Scottish physicist 

Joseph Black who conducted various heat measurements and used the phrase “capacity for 

heat.”[142] 

The symbols for specific heat capacity are either C or c depending on how the quantity 

of a substance is measured. In measurement of physical properties, the term “specific” means 

the measure is a bulk property (an intensive property), whereby the quantity of substance must 

be specified. For example, the heat energy required to raise the temperature of water by 1K 

(equal to 1°C) is 4.184J/g - the gram being the specified quantity. This measure would be 

expressed as c = 4.184Jg
–1

K
–1

. 

The specific heat (C) measurements reported in this thesis were conducted by the 

compensated heat-pulse technique [143] and the details of the measurement device and 

technique are given in the same reference. 
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4. Experimental Results and Discussion 
 

4.1. Magnetic properties of betaine adducts with transition metals 

 

 As mentioned in the Introduction, the metal-organic compounds studied in this work 

are materials composed of magnetic centers (transition metal ions) connected via the bridging 

unit (carboxylate group, diamine group or quinone group), which is a part of an organic 

molecule and contains large organic ligands that act as spacer/connection between the bridged 

entities. One of the well-known molecules which can simultaneously act as a bridging unit 

and spacer is the betaine molecule. In Chemistry, betaine is referred to as neutral chemical 

compound which consists of a positively charged (cationic) group such as ammonium ion or 

phosphonium ion and a negatively charged functional group such as the carboxylate group. 

Due to its electro-negativity (delocalized π-electron), the carboxylate group - on the one end 

of the betaine molecule - can act as a bridging ligand providing a super-exchange pathway 

between spin-bearing metal ions, while the large electro positively trimethylammonium part 

on the other end behaves like a spacer that can separate adjacent low-dimensional structures 

(see Figure 24). 

 

 
Figure 24: The betaine molecule with a trimethylammonium group on one end and a 

carboxylate group on the other end of the molecule. 

 

 Betaine compounds are represented in all biological systems and have an important 

function to play in different intercellular processes. Therefore, application of this compound 

in medicine and pharmacy is multifunctional and widespread. 

 From the physical point of view, the betain compound has attracted much attention 

after the discovery of the ferroelectric and antiferroelectric ordering which occurred at low 

temperature of some betain salts and adducts [144]. An anomalous temperature dependence of 
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dielectric and elastic properties and ferroelastic behavior, which induce phase transitions in 

commensurate and incommensurate superstructures, has been reported for a few betaine 

compounds [144]. Special attention was paid to betaine adducts after the discovery of the 

antiferromagnetic phase transition in the betaine phosphate [145]. One of the most famous 

betaine compounds which attracted lot of interests in the 80’s is known as betaine calcium 

chloride dihydrate, b·CaCl2·2H2O with b = betaine (C5H11NO2) [146, 147]. Interest in this 

compound stems from its unusually large number of phase transitions and its sensitiveness to 

external influence, and has been termed devil’s staircase. 

 

4.1.1. Betaine chain compounds ((CH3)3NCH2COO)3MnMCl4 with M = 

Mn
2+

, Co
2+

, Zn
2+

 

 

 The possibility to use betaine as a bridging ligand has attracted some attention in the 

field of crystal engineering of low-dimensional magnetic systems. A few one-dimensional 

betaine adducts have been reported up to the present day such as 2b·Cu(NO3)2·Cu(N3)2 [21], 

certain adducts of betaine with MnCl2 [22, 148, 149] and cadmium salts [23]. 

In order to search for new low-dimensional magnetic systems with betaine as bridging 

ligand, the crystallographic group from the Institute of Geosciences (Goethe Universität-

Frankfurt) synthesized a few new betaine adducts with manganese(II)-, cobalt(II)- and 

zinc(II)-chloride, namely 3b·2MnCl2 (BMM) [148, 149], 3b·MnCl2·CoCl2 (BMC) and 

3b·MnCl2·ZnCl2 (BMZ) [150]. All three compounds are isomorphous and crystallize in the 

trigonal space group P3. BMM, BMC and BMZ are 1D magnetic systems consisting of 

polymeric chains of MnO6 connected via the carboxylate groups of the betaine molecules, see 

Figure 26. Within these chains, magnetic interactions between the Mn
2+

 cations (spin 5/2) are 

expected. The other metal ions (M = Mn
2+

 (spin 5/2), Co
2+

 (spin 3/2), Zn
2+

 (spin 0)) occupy 

slightly distorted tetrahedral MCl4 sites, located in between the chains, and filling the holes 

between the trimethylammonium groups of the betaine molecules. 

 

4.1.1.1. Crystal Synthesis and Structure 

 

 BMM, BMC and BMZ were synthesized by dissolving in defined stoichometric ratio 

betaine monohydrate (C5H11NO2·H2O) and the corresponding metal (II) chlorides MnCl2, 

CoCl2·6H2O and ZnCl2, (details of the crystal growth are given in Ref. [151]). 

Using the technique of slow evaporation of the solvent, the group of L. Wiehl, 

succeeded in growing large single crystals of BMM and BMZ of diameters up to 20mm 

within four weeks at room temperature. Working with growth rates of about 0.5mm/day, 

single crystals of optical quality (BMM) could be obtained. Small crystals of 3mm in diameter 

were used as seed crystals. Crystals of BMZ show a pale pink color, BMM is light yellow and 

BMC is dark blue, see Figure 25. The morphology of BMZ, BMM and BMC consists of a 
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hexagonal prism and a pinakoid. There is a good cleavage which can be observed parallel to 

the prism faces. Contrary to the BMZ and BMM, single crystals of BMC were only up to 

3mm long and have a long-prismatic form. In the case of BMC, it was difficult to produce 

larger single crystals due to the problem of controlled growth of the crystals. The problem 

with the crystal growth occurred due to the high viscosity and the opacity of the saturated 

aqueous solution of BMC. 

 

Figure 25: Single crystals of 3b·2MnCl2 (BMM), 3b·MnCl2·CoCl2 (BMC) and 

3b·MnCl2·ZnCl2 (BMZ). 

 

The crystal structures of BMZ and BMC [150] were determined by L. Wiehl from the 

Institute of Geosciences (Goethe Universität-Frankfurt) by single crystal X-ray diffraction, 

using a four-circle diffractometer Xcalibur3 from Oxford Diffraction with CCD camera and a 

sealed tube with Mo Kα radiation. The lattice parameters and a detailed structure of the 

betaine compounds are given in Ref. [151]. 

According to the structure analysis [148, 149, 150], crystals of BMM, BMZ and BMC 

contain chains of carboxylate linked M
2+

O6 octahedra along the [001] direction (Figure 26). 

From this point of view, the structural features of the betaine compounds are one dimensional 

(1D) in character. The charge compensation is provided by isolated [MCl4]
2−

 groups located 

between the chains. The [MCl4]
2−

 groups have the shape of distorted tetrahedron. The chains 

are surrounded by voluminous trimethylammonia tails of the betaine molecules, which are 

connected with their neighbours via weak van-der-Waals contacts. Magnetic interactions 

between the metal ions within the chains are realized over the carboxylate bridges 

(delocalized π-electron), and where the metal-metal distances are of about 4.5Å. However, the 

metal ions between the chains (in the tetrahedral positions) are too far separated from one 

another, and from the chains, to participate in magnetic interactions. In BMM, for example, 

(Mn1, Mn2 in chain, Mn3 in tetrahedra) the respective distances are d(Mn1-Mn3) = 7.68Å, 

d(Mn2-Mn3) = 7.89Å and d(Mn3-Mn3) = 8.36Å and 9.12Å. In BMC and BMZ the 

corresponding distances differ by less than 1%. 
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Figure 26: Projection of the unit cell of trigonal 2b·MnMCl4 on the (001) plane in the 

trigonal-hexagonal setting. The principal bond chains parallel to the 3-fold axis consist of 

carboxylate-bridged MnO6 octahedra. 

The main question, which appears here, is in what quantity metal ions occupy the 

octahedral and tetrahedral position, in other words which metal ions participate in the 

construction of chain structures and which metal ions are located in between. Conversely, in 

BMM where the octahedral and tetrahedral lattice sites are both occupied by manganese, this 

question has no relevance. The importance of this issue regarding BMZ and BMC is obvious 

as these are compounds consisting of different metal ions. 

Thus for BMZ, Zn occupation in tetrahedral coordination [150] was expected. A 

possible mixing of Mn and Zn on the octahedral and tetrahedral lattice sites was tested by 

refining partial site occupation factors in the final states of structure calculations. Here are two 

possible combinations involved: either the inequivalent octahedral Mn sites are partially 

occupied by Zn or the tetrahedral Zn sites are partially occupied by Mn ions. In both cases, 

according to the structural calculations, these occupation factors are refined to values of zero 

within the statistical error. These findings are compatible with the results of magnetic 

measurements, which show an amount of about 0.4% uncoupled Mn
2+

 S = 5/2 spins, for 

which it is assumed that they take the tetrahedral site positions. 

On the other hand, for BMC the situation is unclear, because the difference of atomic 

scattering factors between Mn and Co is significantly smaller than for the pair Mn-Zn. 

According to the structural data analyses, no Co was found in the octahedral positions (within 

the chains) within the experimental error and a Co occupation factor of at least 90% at the 

tetrahedral sites was found. Many examples of octahedral and tetrahedral Co
2+

 complexes 

[152] show that there are no pronounced crystallographic preferences. The deep blue color of 

the BMC crystals hints at a predominately tetrahedral coordination of Co, as this color is 
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characteristic for many compounds containing CoCl4 or CoO4 tetrahedra, whereas e.g. the 

octahedral [Co(H2O)6]
2+

 complex colored pink. 

 

4.1.1.2. Magnetic properties 

 

Magnetic measurements were performed in the temperature range between 2K and 

300K and fields up to 5T, by using a SQUID system. For temperatures below 2.5K and down 

to 0.1K the magnetic susceptibility was determined with an ac-technique adapted to a 
3
He/

4
He 

dilution refrigerator. Single crystals of BMZ, BMM and of BMC with masses of 35.0mg 

(BMZ), 65.0mg (BMM) and 44.7mg (BMC) respectively, were used for the measurements. 

The rectangular parallelepiped sample of BMM with edge lengths of about 3mm and edges 

parallel and perpendicular to the 3-fold axis was cut from a large single crystal. All 

susceptibility data were corrected for a temperature-independent diamagnetic contribution 

according to Ref. [95]. 

Figure 27 shows the temperature dependence of the molar magnetic susceptibility χmol 

measured on a single crystal of 3b∙MnCl2∙ZnCl2 (BMZ). The data have been taken in a 

magnetic field of 0.5T applied parallel to the c-axis (along the polymeric chains of the MnO6 

octahedra). The analysis of the low-temperature susceptibility in the temperature range 

between 0.1K and 2.5K, shown in the inset of Figure 27, results in a small concentration of 

uncoupled S = 5/2 spins of 0.4%. The corresponding paramagnetic Curie contribution, which 

dominates the low-temperature part of χmol(T), has been also subtracted from the data shown 

in the main panel of Figure 27. With decreasing temperature χmol(T) shows a Curie Weiss-like 

increase followed by a pronounced maximum around 28K. 

 

Figure 27: Molar magnetic susceptibility mol of 3b∙MnCl2∙ZnCl2 (BMZ) in a field of B = 0.5T 

applied parallel to the c-axis. The solid line is a fit to the experimental data based on a model 

for an antiferromagnetic Heisenberg spin chain. Inset: Low-temperature data of mol together 

with a Curie-Weiss fit which accounts for uncoupled Mn
2+

 S = 5/2 spins. 
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An extrapolation of the low-temperature data in the main panel of Figure 27 to T = 0K 

yields χmol = 0.0385cm
3
/mol. The molar susceptibility of BMZ displayed in Figure 27 is 

typical for a low-dimensional spin system governed by short-range spin correlations. From the 

high-temperature part, which can be well described by a Curie-Weiss susceptibility with S = 

5/2, a g-factor g = 2 and an antiferromagnetic Weiss temperature W = -42.5K, an average 

antiferromagnetic interaction between neighbouring Mn
2+

 spins is inferred. For a quantitative 

discussion of the susceptibility, the system was modeled by assuming independent 

antiferromagnetic Heisenberg chains, consistent with the crystal structure. The corresponding 

Hamiltonian is given by: 

 
i

ii SSJH 1
ˆˆ2

      

(56) 

 Fitting the data shown in Figure 27 with the expression given by Hiller [153], using 

the intra-chain magnetic exchange coupling constant J between Mn
2+

 (S = 5/2) ions and their 

concentration c as free parameters, a good description (solid line in Figure 27) is achieved 

with J/kB = - (3.0±0.15)K and a concentration c = 99.76% of Mn
2+

 ions in the chain. 

According to a mean field approach, where only the nearest neighbours z are taken into 

account, W = 2z(S(S + 1))J/3kB allowing for z = 2, S = 5/2 and J/kB = - (3.0±0.15)K to obtain 

W = -35K for BMZ [154]. This means that the given value of J is consistent with the Weiss 

temperature of W = -42.5K. Possible sources of inaccuracy in the applied fitting procedure 

are: 

I. Presence of magnetic impurities with spin states different from S = 5/2. 

II. Finite inter-chain interactions. 

III. Local magnetic anisotropies. 

In the inset of Figure 27 is shown the susceptibility for the temperature range       

0.12K < T  <  2.4K measured with an ac-susceptometer adapted to the 
3
He-

4
He dilution 

refrigerator. For temperatures down to about 0.4K, the data nicely follow a Curie-Weiss-like 

temperature dependence (solid line). For lower temperatures, however, the susceptibility 

increases faster than expected from the Curie-Weiss fit and reveals a peak anomaly at 0.25K. 

Since the susceptibility of uncoupled Heisenberg spin chains is constant (apart from small 

logarithmic corrections) in this temperature range, it was assumed that this anomaly is due to 

a long-range antiferromagnetic order as a result of a weak inter-chain couplings. According to 

the Oguchi criterion [155], a Néel temperature of TN = 0.25K and the intra-chain coupling 

constant of |J/kB| = 3K corresponds to a ratio of inter-chain to intra-chain coupling by less 

than  10
−4

 for S = 5/2 spin chains. From the low-temperature susceptibility data, it may be 

concluded that BMZ is a very good realization of an antiferromagnetic S = 5/2 Heisenberg 

spin-chain system. 
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Unlike the BMZ system discussed above, the magnetic susceptibilities for BMM and 

BMC are both governed by large paramagnetic contributions. This is not surprising in view of 

the structural properties of these systems, yielding-as the only difference-magnetically 

isolated MnCl4 (BMM) or CoCl4 tetrahedra (BMC) which are replaced by non-magnetic 

ZnCl4 tetrahedra in BMZ. The structural parameters, like bond distances and bond angles 

within the magnetic spin chains of BMM, BMC and BMZ, are almost identical [150]. Given 

the similar structural parameters of these compounds, it is possible to analyze the magnetic 

properties of BMM and BMC in more detail. 

In the compound BMM the magnetic contribution of the MnCl4 tetrahedra, which 

corresponds to 50% of the total amount of Mn
2+

 ions were treated as free spins with S = 5/2. 

By subtracting the corresponding Curie susceptibility from the raw data, the susceptibility 

originating from the chains of coupled MnO6 octahedra were obtained, see Figure 28. The 

resulting χmol(T) is very similar to the data for BMZ shown in Figure 27. Employing the same 

fitting procedure as for the latter system yields, within the error, the same antiferromagnetic 

intra-chain coupling constant J/kB = - (3.0±0.15)K for BMM. 

 

Figure 28: Molar magnetic susceptibility mol of 3b∙2MnCl2 (BMM) in a field of B = 0.1T 

applied parallel to the c-axis after subtracting the paramagnetic contribution due to 

magnetically isolated Mn-Cl tetrahedra. The solid line is a fit to the experimental data based 

on a model of an antiferromagnetic Heisenberg spin chain. Inset: The raw data before 

subtraction. 

 

In the case of the BMC compound, the exact analysis of the magnetic data is difficult 

to obtain due to the presence of the Co ions. Firstly, depending on the Co ion coordination 

environment, the crystal field splitting of the Co
2+

 ions can give rise to a temperature-

dependent contribution to the susceptibility. Secondly, the site-exchange between Mn and Co 

ions may have occurred within the uncertainty of  10% implied in structural analysis. 
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Assuming that at least 90% of the tetrahedral sites are occupied by the Co
2+

 ions (a value 

consistent with X-ray diffraction experiments), whereas the Mn
2+

 ions are predominantly in 

an octahedral coordination, the room-temperature susceptibility would correspond to an 

effective magnetic moment for the Co
2+

 ions of μeff  4.6μB. Such a value is compatible with 

Co
2+

 in a tetrahedral coordination [156]. Under these conditions, the effective moment of the 

Co
2+

 ion is nearly temperature independent, which enables us to perform an analysis similar to 

that employed for BMM. As a result it was found that in BMC the octahedrally coordinated 

Mn
2+

 ions forming the spin chains are also coupled antiferromagnetically with                    

J/kB = - (3.0±0.3)K, whereas the CoCl4 tetrahedra are magnetically isolated. 

 

4.1.1.3. Summary 

 

The three isomorphic compounds 3b·MnCl2·MCl2 with M = Mn
2+

, Co
2+

, Zn
2+

 have 

three different cation sites, two in octahedral and one in tetrahedral coordination, in the ratio 

1:1:2. Isomorphic replacement takes place on the tetrahedral site of the compound BMZ with 

Zn
2+

 and in BMC with Co
2+

 ions, leaving the octahedral chains occupied by manganese-Mn
2+

 

in all three compounds. The features that are common for all three betaine compounds are the 

chains of carboxylate-bridged Mn
2+

 ions (S = 5/2) which are antiferromagnetically coupled. 

The second metal in the isolated MCl4 tetrahedral position influences the magnetic properties 

of Mn
2+

 chains considerably, depending on its spin state (for Mn S = 5/2, for Co S = 3/2 and 

for Zn S = 0). This influence can be seen as an additional paramagnetic contribution of 

isolated spins in relation to the contribution of the coupled spins in the chain. Thus, the 

compound BMZ is the only one where the magnetic properties of the chains are seen in pure 

form. In BMM and BMC, on the other hand, the chain contribution could be modeled after 

subtracting the paramagnetic contribution of the isolated spins in the MCl4 tetrahedra. 

An essential point for the magnetic model calculations was the occupation of metal 

octahedral and tetrahedral sites. A possible mixing of different spin states on octahedral and 

tetrahedral lattice sites could not be modeled from the magnetic data alone, but had to be 

backed up by the knowledge of the chemical composition. For BMZ there is a clear chemical 

preference for MnO6 in the octahedral position and ZnCl4 in the tetrahedral position. The 

quantum mechanical calculations [151] show that it is energetically very unfavorable to 

incorporate Zn into the octahedral sites in BMZ. This result is confirmed by X-ray diffraction, 

which is able to deliver significant occupation factors in the Mn-Zn case. For BMC, on the 

other hand, no pronounced chemical preferences exist. X-ray diffraction can only narrow the 

extent of disorder down to less than 20%. This limit is further reduced by the results of 

magnetic measurements, which are compatible only with an amount significantly less than 

10% Co in the magnetically coupled Mn chain. 

The magnetic properties of all three betaine compounds BMZ, BMM and BMC are 

well described by the model of independent Heisenberg spin chains, formed by Mn
2+

 ions 

with S = 5/2 which are all in octahedral coordination. The weak antiferromagnetic intra-chain 
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coupling of J/kB  -3.0K, for all three compounds, is provided by the carboxylate groups at 

the ends of the betaine molecules. The metal ions, located on the tetrahedral positions in 

between the chains, are magnetically isolated and do not influence the magnetic properties of 

the spin chains. This explains the similar intra-chain exchange interaction of BMZ, BMM and 

BMC and is consistent with their structural properties. 
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4.1.2. Betaine trimer system ((CH3)3NCH2COO)2∙3CuCl2∙2H2O 

 

4.1.2.1. Crystal Synthesis and Structure 

 

The studied compound was synthesized by E. Haussühl from the Institute of 

Geoscience (Goethe University Frankfurt am Main). The raw material was prepared by the 

reaction of stoichometric quantities of betaine hydrate and copper chloride in pure water:  

3(CH3)3NCH2COO∙H2O+2CuCl2+2H2Ob3(CuCl2)2∙2H2O 

For the crystallographic characterization and for the purpose of obtaining seed crystals, single 

crystals were grown having a diameter of a few mm. Larger crystals having optical quality 

and typical dimensions about 20 x 20 x 20mm were grown from aqueous solutions by 

standard methods (controlled evaporation at about 290K, Figure 29) in air thermostats. The 

growth rate reached about 0.5mm/day. The progress of crystal growth was difficult to control 

due to the very high viscosity and the opacity of the saturated aqueous solution in 

b3(CuCl2)2∙2H2O. The crystals are stable in air at room temperature up to humidity of about 

70%. 

 

 

Figure 29: Single crystal of 2b∙3CuCl2∙2H2O. 

 

The crystal structure of 2b∙3CuCl2∙2H2O is built up of centro-symmetric trimeric 

molecular units of the form OCl2Cu–b–CuCl2–b–CuCl2O, as can be seen in Figure 30. The 

crystal consists of neutral, trinuclear betaine-CuCl2-water complexes which are connected by 

hydrogen bonds and van der Waals interactions. The copper ions are linked pairwise by the 

carboxylate groups of two betaine molecules. All Cu
2+

 ions show a nearly planar quadratic 

environment, indicating that the unpaired electron is located in the dx2-y2 orbital. The central 

Cu1 ion of the trimer is coordinated by two Cl ions in trans position (d = 2.341Å) and two 

oxygen atoms (d = 1.924Å) of two different betaine molecules. In addition, semi-coordination 

between the magnetic centres exists within the trimer via the Cl atoms. The outer Cu2 ions are 

coordinated each by the second oxygen atom (d = 2.007Å) of the bridging betaine carboxylate 

group, two Cl ions (d = 2.227-2.243Å) in cis position and a water molecule (d = 1.975Å). 
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Therefore, the central Cu1 ion has 4+2 coordination and the outward Cu2 ions exhibit only 

4+1 coordination. 

 

Figure 30: Molecular structure of the trinuclear complex 2b∙3CuCl2∙2H2O with an atom 

numbering scheme. The Cu centers are bridged by carboxylate groups O(1)-C(4)-O(2) at the 

end of the betain b molecules (b = (CH3)3NCH2COO). Dotted lines indicate the distance 

between Cu and nearest neighbor atoms. 

 

 In the ab-plane ((001) plane), a two-dimensional network of hydrogen bonds from 

water molecules to chlorine ions connect each trimer with four other trimers in a nearly 

quadratic arrangement with distances d(O1W…Cl1) = 3.107Å and d(O1W…Cl2) = 3.130Å 

and O-H-Cl angles of 167° and 148°, respectively. There are two different hydrogen bridges 

involved connecting the trimers, namely the path Cu2-O1W-H2W...Cl1-Cu1 with a total 

length of 7.439Å and the path Cu2-O1W-H1W...Cl2-Cu2
’
 with a total length of 7.441Å. 

Figure 31 shows such a layer of H-bonded trimers. 

 

Figure 31: The Cl-H bonds (dashed lines) of H2O molecules mediate trimer-trimer 

interactions of 2b•3CuCl2•2H2O in the ab-plane. The bond lengths are 2.309 and 2.407Å. 
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The layers are connected by weak van der Waals bonds along the c-axis. The betaine 

molecules have been omitted for clarity with the exception of the carboxylate groups. The 

large tails of the betaine molecules are orientated essentially in the c-direction. The shortest 

atomic contacts between neighbouring layers are C-Cl contacts at a distance of 3.67Å. 

 

4.1.2.2. Magnetic properties 

 

Temperature dependent (2-300K) magnetic susceptibility and isothermal 

magnetization measurements on the single crystal of 2b•3CuCl2•2H2O (m = 46.29mg) were 

carried out in fields B  5T. All data are corrected for the temperature-independent 

diamagnetic core contribution according to Ref. [95] and the sample holder contribution. The 

sample holder contribution of Msample holder = 8.610
-6 

emu has been determined by analyzing 

the high-temperature magnetic behavior. 

Figure 32 shows the susceptibility χ(T) = M(T)/B of the 2b•3CuCl2•2H2O compound in 

a form χmol
-1

(T) vs. T, where M denotes the magnetic moment of the sample. 
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Figure 32: The inverse magnetic susceptibility of the compound 2b•3CuCl2•2H2O in the 

temperature range 2-300K. Data were taken at a magnetic field of 0.05T. The red solid line 

represents the best fit for the model of isolated, linear S = ½ trimers with an antiferromagnetic 

intra-trimer exchange interaction J/kB = -20(1)K and g = 2.2(1). The black solid line 

corresponds to the best fit for the model of antiferromagnetically coupled trimers with intra-

trimer coupling J/kB = -15K and an inter-trimer coupling of strength Ja/kB = Jb/kB = -4K. 
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The data were found to be reversible upon cooling and heating with no indications for 

hysteretic behavior. No sign for long-range magnetic ordering was found in the temperature 

range under investigation. The inverse magnetic susceptibility χmol
-1

(T) in Fig. 32 shows two 

linear regimes corresponding to two distinct Curie-Weiss-like temperature dependences χmol = 

Cm/(T-Θ), with different Curie constants and Weiss temperatures. 

In the high temperature range 300-100K, the sample shows a simple Curie behavior, 

and the best fit to the experimental data is achieved with a Curie constant CHT = 

1.390cm
3
Kmol

-1
 and a Weiss constant ΘHT = -11.8K. The Curie constant is consistent with the 

presence of three Cu(II) ions per molecule, giving a perfect agreement for a spin-only value 

1.361cm
3
Kmol

-1
 = 30.453cm

3
Kmol

-1
 for g = 2.2. The negative Weiss constant indicates the 

presence of antiferromagnetic spin-spin interactions in the high-temperature range.  

As seen in Figure 32, the slope of the χmol
-1

 curve changes around 7K. Since χmol
-1

 is 

still approximately linear below 7K, one can fit the low-temperature data with the Curie-

Weiss function. The best result is achieved for CLT = 0.608cm
3
Kmol

-1
 and ΘLT = -2.8(2)K. A 

distinctly larger slope of the χmol
-1

 in the low-temperature range and a smaller Curie constant 

indicate a reduced magnetic moment at low temperatures. 

The susceptibility of 2b•3CuCl2•2H2O is reminiscent of that observed in a variety of 

isolated trimer systems [157-160]. This suggests that the dominant magnetic coupling is 

provided by an intra-trimer Cu-Cu exchange interaction J, where the three linked Cu(II) 

centers were considered as a linear three-spin-system with two equivalent exchange 

interactions occurring between the carboxilate bridged ions, Cu(2)-O(1)-C(4)-O(2)-Cu(1) and 

Cu(1)-O(2)-C(4)-O(1)-Cu(2), see Figure 30. 

In a first approach, isolated trimers with a uniform isotropic Heisenberg intra-trimer 

exchange interaction J and an isotropic g-factor will be considered, described by the spin 

Hamiltonian given in Equation 13. The trimer has a simple spectrum with an S = ½ ground 

state with energy - J (in zero field) with the spin-down state given by (|↑↓↓>-2|↓↑↓>+|↓↓↑>) 

  . The first excited state has zero energy and also S = ½ with the spin-down state given by 

(|↑↓↓>-|↓↓↑>)   . The highest energy state has S = 3/2 and energy J/2. The resulting 

expression for χmol T is given by the Equation 15. The magnetization of the isolated linear 

trimer is given by Equation 16 (see Ref. [160]). 

In the limit J→∞ or T  <<  J/kB, that is, x→0, the trimer is in an S = ½ state and M(T,h) 

reduces to the S = ½ Brillouin function. For vanishing exchange coupling J or T  >> J/kB, that 

is, x→1, the spins of the trimer are independent and M(T,h) is 3 times the S = ½ Brillouin 

function. 

Fitting the inverse susceptibility data in Figure 32 for the whole temperature range 

300-2K, a reasonably good agreement (solid line Figure 32) was found for an 

antiferromagnetic intra-trimer interaction of J/kB = -20(1)K. The simple isolated-trimer model 

describes the major part of the experimental data quite well, especially the increase of the 

slope of χmol
-1

(T) for temperatures above 10K, as well as the reduction of the Curie constant 

for temperatures lower than 7K. However, a closer look at the low-temperature part in Figure 
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32 reveals deviations of the model curve from the experimental data, indicating the presence 

of additional, weaker inter-trimer interactions (intermolecular exchange interaction) and a 

more complex ground state of the system. 

A finite trimer-trimer interaction can be expected because of the presence of water 

molecules, which provide exchange paths between the Cu(II) atoms in the trimer and the 

Cu(II) atoms in adjacent trimers, see Figure 31. Weak trimer-trimer interactions can arise 

through the water molecules H2O and neighbor trimers Cl ions; this exchange path involves 

rather long H-Cl bonds ranging from 2.309 to 2.407 Å. Since the Cu-O-H-Cl-Cu paths range 

from 4.555 to 4.653 Å, their coupling strength are expected to be weak. At low temperatures, 

this coupling can nonetheless become important and therefore these trimer-trimer interactions 

were included in a refined model derived by N. Hasselmann by introducing the coupling 

constants Ja and Jb that link the linear trimer centers within the molecule with neighbor 

trimers via the water molecules and Cl ions. This results in a rather interesting model of 

interacting trimers with the topology shown in Figure 33. Details of the model are presented 

in [161]. It was assumed that both Ja and Jb are antiferromagnetic (positive) and that they are 

much smaller than J. Both of these assumptions are validated by a comparison with the 

experimental data, as shown below.  

 

 

 

Figure 33: Effective interacting-trimer model with intra-trimer coupling J and two types of 

inter-trimer couplings Ja, Jb. The central region was used in the numerical calculations and 

contains four coupled trimers (with periodic boundary conditions). 

 

At low temperatures kBT << J the trimers should be mostly in their ground state. Since 

the trimer ground state has S = ½, the system can, for low temperatures, be described by a 

reduced low-energy model of coupled S = ½ spins, one for each trimer. The trimer model 
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considered here reduces then to a square lattice of S = ½ spins. If the inter-trimer interactions 

Ja, Jb are much smaller than the intra-trimer interaction J, one can use perturbation theory to 

calculate the effective exchange parameters for the square lattice model. First-order 

perturbation theory reveals that the dominant effective exchange interaction of the trimers is 

then a nearest-neighbor coupling of strength Jeff = (4/9) (Jb-Ja/2). The interesting fact here is 

that even if all bare spin interactions are antiferromagnetic, the low-energy effective 

interaction among the trimers could become ferromagnetic when Jb < Ja/2 (a similar 

dependence of the effective trimer coupling on the bare exchange parameters has been 

reported in [159] for the case of trimer chains). The low-energy states, which result from the 

12-spins model forming a plaquette of trimers, are shown schematically in Figure 34. In the 

corners, the energy levels spectra of the decoupled four trimers are shown, which consist of an 

S = ½ ground state, an S = ½ excited state and an S = 3/2 state at energy 3J/2 above the 

ground state. The weak coupling of the trimers via Ja/b mixes the S = ½ trimer ground states 

and, to leading order in perturbation theory, leads to the low-energy states shown in the center 

of Figure 34. For the application to the present model and in order to reduce the number of 

adjustable parameters to a minimum, the two inter-trimer coupling constants were set Ja = Jb. 
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Figure 34: The intra-trimer coupling yields at low energies an effective theory of coupled S = 

½ states. Leading-order perturbation theory predicts that the ground state of the plaquette is a 

singlet and the lowest excited states are S = 1 triplets separated by Jeff from the ground state 

(assuming here Jeff > 0). At another energy Jeff higher are two degenerate S = 1 triplets and an 

S = 0 singlet. The highest-energy state with all trimers still in their ground state is the S = 2 

ferromagnetic state. 

 

For a four-spin plaquette, the most general S = ½ Hamiltonian can be written as 

4321 ĤĤĤĤĤ   [162], with: 

)ŜŜŜŜŜŜŜŜ(jĤ 1443322111  ,       (57) 

)ŜŜŜŜ(jĤ 423122  ,         (58) 

))ŜŜ()ŜŜ()ŜŜ)(ŜŜ()ŜŜ()ŜŜ((jĤ 42313241432133  ,   (59) 

)ŜŜ()ŜŜ(jĤ 423144  .         (60) 
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The first term -
1Ĥ  is the nearest-neighbor exchange, the second term -

2Ĥ  describes 

next-to-nearest-neighbor exchange, the third term - 3Ĥ  arises from a four-spin cyclic 

exchange and the last term - 4Ĥ
 
describes a four-spin exchange via the diagonals of the 

plaquette. 

Comparing the evolution of the lowest eigen-energies, done by exact diagonalization 

calculation, and a first-order perturbation theory calculation, the deviation between these 

methods is observable even for small values of Ja, 0.1  Ja/J. In this case, higher-order 

perturbation terms are necessary to account for the difference. Inclusion of next-to-nearest-

neighbor interactions and four-spin interaction processes can account for the difference 

indicating the importance of these exchange processes in the magnetic behavior of the system 

(details of the calculations are given in the Ref. [161]). The most important findings in these 

calculations are the energy limit up until which the system can be considered as a plaquette of 

effective S = ½ spins and exchange processes, which may influence the behavior of the 

system. According to the theoretical calculation, the energy limit of the plaquette model is 

Ja/J = 0.4. Near the energy Ja/J = 0.4 and for higher values, new energy states appear and it is 

not possible to consider the system as a plaquette of effective S = ½ spins. For the case Ja = Jb 

the dominant interaction is the nearest-neighbor interaction and it drives the system to a 

transition from an antiferromagnetic to a ferromagnetic state. Around the transition point, the 

diagonal four-spin exchange becomes stronger but remains small compared to the nearest-

neighbor interaction. From this point of view, this system would be an ideal model system to 

probe the effect of the diagonal four-spin exchange processes at low temperatures, processes 

not known so well as those of the next-to-nearest-neighbor exchange and four-spin cyclic 

exchange processes, which are well investigated [163]. 

As demonstrated in Figure 32 the influence of the inter-trimer coupling on the 

susceptibility is small and deviations from the pure trimer model become visible only at low 

temperatures. To visualize the effect of a weak inter-trimer exchange interaction on the 

susceptibility, a representation χmolT versus T is used in Figure 35. The figure shows the best 

fit for weakly coupled trimers with an intra-trimer exchange interaction J/kB = -15K and a 

weak antiferromagnetic inter-trimer interaction Ja/kB = Jb/kB = -4K, while the red line 

indicates the results for the isolated-trimer model with J/kB = -20K. As has already been seen 

in the susceptibility data in Figure 32, Figure 35 shows that the incorporation of a small but 

finite inter-trimer exchange interaction improves the fit considerably at low temperatures, 

although small deviations of the model curve from the data are still visible. As was discussed 

by Zaspel et. al. [159], the low-temperature behavior of such a generalized coupled-trimer 

model depends sensitively on the inter-trimer coupling constants. 
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Figure 35: Magnetic susceptibility data of 2b•3CuCl2•2H2O taken at a field of 0.05T plotted 

as χmol T versus T. The inset shows the low-temperature behavior on expanded scales. The red 

line corresponds to the best fit for the isolated linear trimer model with J/kB = -20K; the solid 

line represents the result of the model for antiferromagnetically coupled trimers with          

J/kB = -15K and Ja/kB = Jb/kB = -4K. 

 

The coupling constants derived from fits to the susceptibility are further supported by 

the results of the isothermal magnetization measurements, see Figure 36. Besides the 

experimental magnetization data, Figure 36 also shows the calculated magnetization curves 

for the model of isolated trimers (red lines) and antiferromagnetically coupled (black lines) 

trimers, with the coupling geometry displayed in Figure 33 and the same coupling constants 

as described above. 
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Figure 36: Isothermal magnetization measurements in dc fields up to 5T at different 

temperatures as indicated in the figure. The red and black lines correspond to the model 

curves for isolated and antiferromagnetically-coupled trimers, respectively, with the coupling 

parameters given in the text. 

 

Below 5K, the isolated-trimer model clearly deviates from the experimental data and 

inter-trimer interactions become important. A very reasonable description of the 

magnetization curve at 2K is achieved with the model of antiferromagnetically-coupled 

trimers which describes the data well for all measured fields up to 5T. 

 

4.1.2.3. Summary 

 

 The trinuclear compound 2b•3CuCl2•2H2O consists of Cu
2+

 ions that build linear 

trimers via the carboxylate groups, which are connected over the strong hydrogen bonds O-

H···Cl and make a quasi-2D system. The low-dimensional 2D character of the compound is 

also visible in the magnetic measurements (magnetic susceptibility and isothermal 

magnetization) which show all the signatures of low dimensionality. Using an appropriate 

theoretical model developed by N. Hasselmann [161] to describe this quasi-2D system, it was 

possible to determine inter-trimer and intra-trimer interactions. In this way the intra-trimer 

interaction has been estimated to J/kB = -15K and the inter-trimer to Ja,b/kB = -4K. The value 

of the intra-trimer interaction turns out to be relatively small considering that Cu
2+

 ions have a 

planar coordination, see Figure 35. Taking into account the results of a structural analysis, it 

can be seen that the Cu
2+

 coordination planes are not coplanar, i.e. they are tilted agains each 

another. Due to this mutual tilting, a certain reduction of the intra-trimer interaction is 
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expected. However, the values of inter-trimer interactions are unexpectedly large considering 

that the trimers are linked via hydrogen bonds. From investigations carried out on purely 

organic materials with magnetic character, it is known that in addition to linking magnetic 

ions, hydrogen bonds may be responsible for the magnetic interaction i.e. they can take part in 

the process of exchange. In this case the exchange through these links can be of the order of a 

few degrees Kelvin [164, 165]. In taking this fact into account, the relatively high value of the 

inter-trimer interaction can be understood. 

 According to the trimer topology which has a 2D character, the system could be 

described by a simplified plaquette model. On the basis of this model using low-order 

perturbation theory, we came to two very interesting conclusions: 

(1) The system can have ferromagnetic interactions between the trimers in the case          

Jb < Ja/2, although the interactions Ja and Jb have antiferromagnetic character. 

(2) For the energies Ja/J  0.4 (Ja = Jb), the system cannot be described by the plaquette 

model because the processes of inter cluster (plaquette) interaction become relevant. 

Due to the above-mentioned characteristics, the trinuclear compound 2b•3CuCl2•2H2O 

presents a very interesting low-dimensional spin system. By model calculations on an 

effective trimer model parameter ranges have been identified where the four-spin diagonal-

exchange processes become dominant which allow this lesser-known processes to be studied 

in detail. The system might be brought into the parameter range of interest either by chemical 

modification of the baseline compound or by the influence of some external parameters such 

as hydrostatic pressure. 
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4.2. Hydroquinone-bridged Polymer-TK91 

 

Low-dimensional quantum magnets, exposed to strong magnetic fields, reveal a 

variety of fascinating phenomena. An example of high current interest is the possibility to 

realize a Bose-Einstein condensation of magnetic excitations in 3D coupled spin-dimer 

systems [166]. As mentioned in the Introduction and Chapter 2, the spin-dimer systems have a 

finite spin gap  between the non-magnetic ground state and the lowest excited state. The spin 

gap can be reduced by applying an external magnetic field. When the applied magnetic field 

is higher than a critical field, Bc = /gµB, the spin gap closes and a 3D long-range magnetic 

ordering develops. This field-induced phase transition has been interpreted as a Bose–Einstein 

condensation of magnons [54]. This phenomenon corresponds to a field-induced phase 

transition into a canted AFM state in the original spin system. The suggestion that BEC of 

magnons could be studied in coupled spin-dimer systems has stimulated extensive 

experimental and theoretical studies of such systems. 

 

4.2.1. Crystal syntheses and structure 

 

In an attempt to search for new quantum-spin systems with interesting spin topologies, 

G. Margraf and collaborators from the Institute for Inorganic Chemistry (Goethe University) 

have recently synthesized novel Cu-containing coordination polymers by using hydroquinone-

derived linkers to connect the magnetic Cu(II) ions [167]. Attaching different ligands to the 

‚side arms‘of the core structure of the hydroquinone derivatives, see Figure 37, one can 

modify both intra-dimer and inter-dimer interaction of the system. 

 

 

Figure 37: Chemical structure of the hydroquinone (quinol, benzene-1, 4-diol) linker. 

 

The system can be tailored to the desirable magnetic properties by choosing various 

charge-balancing anions in the synthesis process. A family of novel spin-dimer systems with 

different magnetic properties was realized by this design strategy [17, 167]. A member of the 

http://upload.wikimedia.org/wikipedia/commons/2/2b/Hydroquinone.svg
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family, C36H48Cu2F6N8O12S2 (labeled TK91 henceforth), shows the most intriguing 

properties. Details about synthesis one can find in the Ref. [18]. 

The compound is found to be a triclinic system and belongs to the     space group. 

The crystallographic inversion center of symmetry lies in the midpoint of the central six-

member carbon ring. The crystal has a polymeric structure along the crystallographic a-axis 

which corresponds to the long axis of the needle-shaped crystal of red-brown color. The 

crystal structure of TK91 is shown in Figure 38. The Cu(II) ions have a distorted octahedral 

coordination environment and are bridged by hydroquinone linkers to form dimer units. The 

equatorial plane is formed by the atoms N1, N2, O1 and O2 (DMF). The apical position have 

a Cu-O3 (DMF) bond of 2.565(2)Å and a Cu-O1 bond of 2.434(1)Å to a neighboring dimer. 

Neighboring dimers are connected via long axial Cu-O1 bonds and there are 13 of 

intermolecular hydrogen bonds, with H-O distances between 2.51Å and 2.75Å, and three H-F 

distances between 2.56Å and 2.75Å providing potential paths for inter-dimer magnetic 

exchange interaction (for details of the crystal structure, see Ref.[18]). 

 

 

Figure 38: Schematic diagram of the crystal structure of TK91. The charge-balancing anion 

CF3SO3
−
 is labeled X in the diagram. The crystallographic a-axis corresponds to the long axis 

of the needle-shaped crystal. 

 

4.2.2. Ab initio calculations 

 

Preliminary ab inito calculations, performed by the group of Prof. Roser Valenti at 

Frankfurt University, suggested that TK91 is a weakly coupled 3D spin-dimer system [17, 

168]. The calculations were based on the generalized gradient approximation (GGA) [169]. 

For this purpose the linearized muffin tin orbital method (LMTO) was used, based on the 
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Stuttgart TBLMTO-47 code [169]. The aim was to get a reliable estimate of the nature of the 

interaction paths. In addition, the tight-binding-down-folding procedure [170] was applied, 

which obtains the effective Cud-Cud hopping parameters by down folding all the degrees of 

freedom in the band structure calculation other than the Cud bands at the Fermi level. 

According to the calculations, the strongest interaction path t = 34 meV is between coppers 

that are linked by the hydroquinone group and are as far apart as 8.4Å, while the hopping 

between nearest neighbor coppers at a distance of 3.4Å is almost zero. The next relevant 

hopping term t’ is between fifth nearest neighbor Cu ions along the a-direction t’ = 23meV. 

The main conclusion from these calculations was that the Cu-dimers contain the 

hydroquinone as bridging ligand, and these dimers are weakly coupled within the 3D 

structure. An estimate of the intra-dimer coupling can be obtained by considering the 

expression J = 4t
2
/Ueff with t being the intra-dimer hopping integral. This procedure yields 

J/kB  17K which overestimates the experimental value somewhat. 

Refined ab initio Density Functional Theory (DFT) calculations together with N-th 

order muffin tin orbital calculations (NMTO) revealed that the intra-dimer and inter-dimer 

interactions have different values. The calculated Cu-Cu hopping parameters indicate that the 

Cu ions, linked by the modified hydroquinone group, have the strongest coupling and form 

dimers. A perturbative estimate of the antiferromagnetic contribution to the exchange 

constants, J, yields an intra-dimer interaction Jd/kB of about 13.4K. These dimers are weakly 

coupled in the ac-plane via t1 and t2, corresponding to intra-plane interactions J1 andJ2, 

respectively, with J1/kB J2/kB J||/kB = 1.4 - 1.7K. The resulting spin-spin interaction 

network has the topology of a 2D distorted honeycomb lattice, see Ref. [171]. Knowing that 

the exchange couplings obtained by this procedure are usually overestimated values, the very 

small inter-layer coupling JkBof 0.1K calculated in the same way suggests that the ac planes 

in TK91 are almost decoupled. 

 

4.2.3. DC susceptibility measurements 

 

DC magnetic susceptibility measurements ( = M/B) were conducted on single 

crystalline samples of TK91 down to 2K and in an applied magnetic field up to 5T. 

In Figure 39 the magnetic susceptibility  of TK91 is shown for an applied magnetic 

field of 0.1T as a function of temperature. The magnetic susceptibility (T) shows a peak at    

T  6K then it drops and extrapolates to zero at 0K, suggesting a spin gap. Moreover, (T) can 

be fitted nicely by an isolated-dimer model with g = 2.1 (obtained from the ESR 

measurements) and a small Curie contribution to account for isolated impurity spins. The 

values of the intra-dimer coupling are found from this fit to be Jd/kB = 9.4(2)K. The S = ½ 

impurity concentration is estimated to be less than 1%, showing the high quality of the 

crystals studied. In the absence of any inter-dimer interaction, the magnetic field required to 

close the spin gap would be Bc = /gµB  6.6T, where g is the g-factor and µB Bohr magneton, 

respectively. 
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Figure 39: Magnetic susceptibility of a single crystalline sample of TK91 as function of 

temperature at B = 0.1T. Squares are experimental data and the solid line is a fit for an 

isolated-dimer model. 

 

4.2.4. ESR measurements 

 

ESR measurements have been performed by V. Pashchenko from the Institute for 

Physics (Goethe University Frankfurt), on a single crystalline sample TK91 in the frequency 

range 26-40GHz and at 56GHz. The measurements were carried out at temperatures down to 

1.5K and in an applied field up to 8.5T. 

The ESR measurements detect two non-equivalent magnetic centers of copper ions at 

any orientation of the sample with respect to the applied magnetic field. Each of these has an 

axial anisotropy with the g-values in the range of 2.04-2.27 at T = 108K, Figure 40. The local 

magnetic axes of these centers are almost perpendicular to each other. The axial anisotropy is 

in accordance with the local environment of this coupled-dimer compound determined by    

X-ray crystal structure analysis. 

Figure 41 exhibits a typical ESR single crystalline spectrum of TK 91 at T=108K and 

a frequency of 39.852GHz. The narrow line is the signal of a small amount of the free stable 

radical DPPH used for calibration. The two non-equivalent Cu
II
 centers are clearly visible in 

the excitation spectrum. 
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Figure 40: Angular dependence of the ESR resonance lines for a single crystal of TK91 at T = 

108K. 

 

The inset of Figure 41 displays a picture of a single crystal of TK91. Also indicated in 

the inset is the orientation of the applied magnetic field (blue arrow) which is tilted by 48.65° 

with respect to the a-axis of the single crystal. In this orientation, the external field is parallel 

to one of the principal magnetic axes of a Cu
2+

 center with g = 2.27. In this field orientation, 

the second Cu
2+

 center exhibits a g-value of 2.09. The values of these g-factors are directly 

connected with the local environment of the Cu
2+

 ions and they are in the range which is 

expected for six-fold coordinated copper ion [172]. 

To obtain information on a possible magnetic anisotropy of TK91, ESR measurements 

have been conducted with the field aligned along and 45°± away from the a-axis. The ESR 

spectrum is displayed in Figure 42. The results show clear resonance absorption lines 

corresponding to the transition between Sz = 0 and Sz = 1 sublevels of the triplets. There is no 

indication of any thermally activated resonance absorption due to the singlet-triplet transition 

in the whole ranges of fields and temperatures studied. The results demonstrate that TK91 has 

negligible magnetic anisotropy. 
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Figure 41: ESR resonance for a single crystal of TK91 at 108K. The inset displays a picture of 

the single crystal together with the orientation of the principal magnetic axes of a Cu
II
 center. 
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Figure 42: An ESR spectrum of a single-crystalline sample of TK91 at 1.8K at 56.039GHz. 

Inset shows that there is no additional feature other than the resonance absorption lines, 

corresponding to the transitions between Sz = 0 and Sz = 1 sublevels of the triplets at B up to 

8T. 
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4.2.5. Specific heat measurements 

 

The specific heat measurements were performed by A. Brühl from Institute for 

Physics (Goethe University-Frankfurt). 

The temperature dependence of the magnetic specific heat of TK91 at different applied 

magnetic fields is shown in Figure 43. The magnetic contribution (Cmag) to the total specific 

heat was obtained by subtracting the low-temperature phonon contribution Cph  (T/D)
3
 

(using a Debye temperature D = 168K). Cmag/T at zero field can be fitted by an isolated-

dimer model with g = 2.1 and J1/kB  9.6K very well (see Figure 43), consistent with the  

data. However, this simple isolated-dimer model starts failing to fit the Cmag/T data well at     

B ≥ 4T. The deviation from the isolated-dimer model can be attributed to non-zero inter-dimer 

interactions. This hypothesis is supported by ab initio calculations which show that TK91 is a 

2D-coupled dimer system. The Cu
2+

 ions linked by the modified hydroquinone group form 

dimers with the intra-dimer interaction Jd/kB  13.4K. These dimers are weakly coupled two-

dimensionally with antiferromagnetic inter-dimer couplings J1/kB = 1.7K and J2/kB = 1.4K. 
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Figure 43: Cmag/T vs. T at different applied magnetic fields. Calculated values for an isolated-

dimer model with J1/kB  9.6K and g = 2.1 are shown by solid lines. 
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4.2.6. Thermal expansion measurements 

 

As suggested by quantum Monte Carlo simulations [173], a field-induced magnetic 

long-range ordering should develop in a 3D antiferromagnetically coupled spin-dimer system 

at low temperatures. To search for such a magnetic ordering, the thermal expansion of a 

polycrystalline sample of TK91 was examined by G. Donath from The MPI-CPfS Dresden.  

As shown in Figure 44, there are pronounced peaks in (T) when the applied magnetic 

field is about a few Tesla. Since the polycrystalline sample used in the  experiment was 

prepared under high pressure, the field-induced transition is expected to occur at a lower field 

as compared to an ambient-pressure experiment [174]. Therefore, the  data cannot be 

directly compared with the other results obtained at ambient pressure. Nevertheless, the peaks 

in (T) clearly indicate a field-induced phase transition at low temperatures. 
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Figure 44: The coefficient of thermal expansion  of a polycrystalline sample TK91 vs. 

temperature at 0, 6 and 7T, performed by G. Donath, MPI-CPfS Dresden. 

 

4.2.7. AC susceptibility measurements 

 

The ac susceptibility (ac) of a single crystal of TK91 was measured as function of 

field ac(B) and temperature ac(T). The crystal was oriented such that the a-axis is parallel to 

the applied field. Measurements were performed by using a state-of-the-art compensated-coil 

susceptometer. Empty-coil measurements were conducted as a direct measure of the sample-

independent background. Selections of ac(B) are shown in Figure 45. No hysteresis has been 
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found upon increasing and decreasing the field. For temperatures below ~ 0.2K, ac(B) has 

two features. The lower-field feature indicates the field (Bc1) where the spin gap closes while 

the high-field feature indicates the field (Bc2) where the system enters the fully polarized state. 

From these data the critical fields at 0K are estimated to be Bc1  5.9T and Bc2  6.5T, 

respectively. The Bc1 deduced from ac(B) is lower than the value predicted by the isolated 

dimer model (6.6T). This difference is presumably due to the effect of the inter-dimer 

interactions giving rise to broadened dispersive triplet states. As the temperature increases, the 

two peaks in ac(B) broaden, and at a temperature ~ 0.2K they merge into a single round peak. 

The latter is visible even up to temperatures higher than 1K, where the weak inter-dimer 

interaction should not be important. The broad peak observed in ac(B) is likely not associated 

with a field-induced phase transition but rather reflects the thermally smeared singlet-triplet 

excitations of independent dimers. On the contrary, the sharp peaks in ac(B) at low 

temperatures are likely to be associated with the phase transition to or from a long-range order 

state which exists inside the critical region [Bc1, Bc2]. The position of the sharp peaks in ac(B) 

is plotted in the inset to Figure 45, which resembles the phase diagram of other spin-gap 

systems [55, 56, 173]. 
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Figure 45: ac as a function of applied field at different temperatures. The positions of the 

sharp features in ac(B) are plotted in the inset and the solid line is a guide to the eyes. 

 

Several regimes can be immediately identified from ac(T) data. These are most 

clearly seen in Figure 46. As shown in Figure 46(a), for B < Bc1, the system is in the gapped 

state, ac(T) is almost zero at low-T and gradually increases as the temperature rises. The data 

also indicate that the spin gap decreases with field. Then the spin gap closes at Bc1< B < Bc2 

(see Figure 46b) and ac(T) increases upon cooling except at the lowest temperatures. 

Remarkably, at some fields in this region, ac(T) displays a maximum at low temperatures. 
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The arrows indicate the positions of the maximum in ac(B). (c) B > Bc2, a gap opens at higher 

fields. 
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Figure 46: ac as a function of temperature at various fields. (a) B < Bc1, a clear spin gap can 

be observed. (b) Bc1  B  Bc2, the gap closes in this field range. Data are offset for clarity. 

Arrows indicate the positions of the maximum in ac(B). (c) B > Bc2, a gap opens at higher 

fields. 

 

The drop in ac(T) at low temperatures was also detected in BaCuSi2O6 [172] and was 

identified as the onset of the condensation of magnons. At B = 6.2T, the maximum in ac(T) 

locates at  0.15K which is very close to the phase boundary interpolated from the ac(B) data 

(cf. inset to Figure 45). As B moves away from 6.2T, the maximum in ac(T) shifts to lower 

temperatures which is also consistent with the phase diagram obtained from ac(T). At higher 

fields B > Bc2, another spin gap opens (see Figure 46c)). 

At low temperatures and in high magnetic fields, the interactions between the dimers 

will determine the nature of the ground state, which is likely a canted antiferromagnet. Within 

a picture of 3D coupled dimers with negligible magnetic anisotropy, a field-induced ordered 

state would be expected in TK91 [43]. In such a scenario the peaks in ac(B) below 0.2K 

would be associated with this state. Since the system has negligible magnetic anisotropy, the 

order state would then be a magnetic BEC state. However, unlike the other coupled 3D dimer 

systems, where sharp λ-like peaks in thermodynamic quantities indicate thermodynamic 

transitions at the on- and off-set of conventional long-range order [33, 34], no indications of 

such divergences are found in TK91! Because of that and in order to get a detailed 
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understanding of the distinct low-temperature anomalies in ac(B) below 0.2K, especially with 

regard to the dimensionality of the interactions and the implications for the type of order that 

is realized here, Quantum Monte Carlo (QMC) simulations of the susceptibility have been 

performed. 

 

4.2.8. Quantum Monte Carlo Simulations 

 

Quantum Monte Carlo simulations were performed by Stephan Wessel from the 

Institute for the Theoretical Physic, University Suttgart, based on the low-energy spin-lattice 

geometry obtained from DFT and a general form of a spin-½ Heisenberg model on an 

anisotropic honeycomb lattice, see Ref [171]. The QMC simulations have been performed for 

models with different anisotropies in the magnetic couplings, including the effect of a finite 

inter-plane coupling J. 

The combinations of exchange parameters which were considered in the analysis were 

constrained by the positions of the low- and high-field peaks in ac(B). Assuming a dominant 

intra-dimer exchange Jd, the effective spin exchange parameters can be estimated from an 

expansion of Bc1 and Bc2 up to first order in the inter-dimer exchange. For the honeycomb 

lattice, by setting J1 = J2 = J||, this yields gBBc1 = JdJ||J/2 and gBBc2 = Jd+2J||+J, the 

latter formula is exact as Bc2 equals the saturation field. In his analysis S. Wessel considered 

three different inter-dimer coupling shemes: 

(1) One-dimensionally coupled dimers, 1D 

(2) Two-dimensionally coupled dimers, 2D 

(3) Strongly anisotropic three- dimensionally coupled dimers, 3D. 

The results of this analysis are presented together with the experimental results in Figure 47. 

Details of the analysis can be found in Ref [171]. 
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Figure 47: Magnetic susceptibility as a function of the magnetic field B for different 

temperatures. The solid lines (blue, green and light brown) are the results of Quantum Monte 

Carlo simulations for the 2-dimensional distorted honeycomb lattice using an intra-dimer 

coupling of Jd/kB = 9.507K and three different inter-dimer coupling schemes. Black solid line 

corresponds to singlet-triplet excitations of independent dimers. 

 

As can be seen from Figure 47, the 1D-model does not fit the data well, even though it 

generates rounded peaks, it fails in quantitatively describing the ac(B) peaks and the 

minimum at intermediate fields. The anisotropic 3D-model with an anisotropy J||/J = 6 

describes the data in the intermediate field range quite well, but it significantly deviates from 

the data around the peaks. The sharp features found in the simulations, indicating divergence 

in ac(B), reflect the on- and off-sets of usual field-induced long-range antiferromagnetic 

order, as a consequence of the 3D interactions. The model description becomes considerably 

improved, however, by considering the purely 2D-model, i.e. excluding any inter-layer 

interaction. Such a type of model yields the correct rounding around the ac(B) peaks and it 

reproduces well the ac(B) data at intermediate fields. The 2D-model provides an excellent 

description of the double-peak structure upon increasing the temperature from 39 mK to 58 

and 73mK. 

From the previous discussion it is obvious that the purely 2D Heisenberg model of 

weakly interacting dimers is a suitable basis for describing the field-induced effects observed 

in TK91 at low temperatures. The strictly 2D character of the exchange interaction implies 

that the state realized here is not the usual field-induced long-range antiferromagnetism 

(known as the BEC of triplons), but has to be assigned to a collectively-coupled dimer state of 

different type. 
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4.2.9. Berezinskii-Kosterlitz-Thouless transition 

 

As it was pointed out by Berezinskii, Kosterlitz and Thouless [61-63] long time ago, 

there is a different type of phase transition at a temperature TBKT, associated with topological 

order, which is inherent to the 2D XY model. Details of the theory are given in the Chapter 

2.1.2. 

The question which raises here is whether the 2D XY model is applicable to the TK91 

in the field range Bc1  B  Bc2. As it was pointed out by various authors [70, 175], a BKT 

transition and generic XY behaviour can be found also in an S = ½ 2D Heisenberg 

antiferromagnet by the application of a finite magnetic field along the z axis which breaks the 

O(3) symmetry of the isotropic model. In the case of the dimerized systems like TK91, this 

scenario is applicable for Bc1  B  Bc2, while then the low-energy physics of the system can 

be mapped on an effective easy-plane spin-½ XXZ model at a field B – Bc1 [176]. 

As it was discussed in the Chapter 2.1.2, the helicity modulus (spin stiffnes) Y is a 

physical quantity, which can tell us at which finite nonzero temperature the system undergoes 

the phase transition driven by the binding of vortices, Equation 6. Therefore, S. Wessel 

performed QMC calculations for the 2D model to estimate the helicity modulus Y, by using 

the same set of parameters as utilized above for the analysis of susceptibility data. On the 

upper panel of Figure 48, the helicity modulus (spin stiffnes) Y as a function of temperature at 

a field B = 6.144T is shown. All data from QMC calculations are based on the finite-size 

analysis and in order to extract the exact BKT transition temperature from the finite-size data, 

an analysis of Weber and Minnhagen [177] was employed (for the details of analysis, see Ref 

[171]).The field value of B = 6.144T is selected, because there the maximal TBKT is expected. 

In the lower panel of Figure 48, the normalized magnetization (blue spheres, derived 

from QMC calculations) is presented together with experimental data (black spheres, derived 

by integrating experimental ac(B,T = const) curves ), where Mmax corresponds to the 

magnetization of the fully-polarized state at B  Bc2. As one can observe, there is a 

pronounced minimum in the magnetization data well above TBKT. As it was discussed earlier 

[82] for a square-lattice configuration, the growth in the magnetization is a clear signature of 

the crossover to XY behaviour. 
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Figure 48: Helicity modulus and uniform magnetization. Upper panel shows QMC results of 

the helicity modulus for systems of linear size L as a function of temperature. The broken 

straight line corresponds to the universal curve 2T/, and the arrow marks the transition 

temperature TBKT obtained from the finite-size analysis. Lower panel shows magnetization 

data derived from QMC calculations together with experimental data. 

 

The results of QMC calculations are summarized in Figure 49. As it can be seen, the 

data indicating that in TK91 a BKT topological order is stabilized in magnetic fields        

5.95T  B  6.5T with a maximum BKT transition temperature of about 50mK obtained in a 

field of 6.2T. The red symbols mark points where the transition into the BKT-phase take place 

and the red solid line is a guide for the eyes. For comparison, Figure 49 includes the positions 

of the ac maxima as read off the data (green symbols), which define the range of stability of 

the 2D collectively-coupled dimer state. 

Within the effective easy-plane XXZ model, the onset of the green region can be 

assigned to the crossover from the high-T isotropic to the low-T XY behaviour. This region 

also marks the onset of the formation of vortices and antivortices emerging in the effective 

spin configurations. As it can be seen in the phase diagram, the on- and offset fields of the 

crossover range merge with the corresponding fields that delimit the BKT topological order 

for T  0K. Therefore, it can be concluded that the novel field-induced state revealed by the 

susceptibility measurements at the lowest temperature is a direct manifestation of the BKT 

topological order. 
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Figure 49: B-T Phase diagram of C36H48Cu2F6N8O12S2 (TK91) at low temperatures. 

 

According to the results of the previous analysis, the ac planes in TK91 appear to be 

essentially decoupled. The dimensional reduction of the magnetic behaviour in this system 

can be explained by the presence of effectively frustrated inter-plane interactions. Refined  

ab-initio analysis of all non-zero inter-plane interactions showed the existence of weak 

coupling terms J
’
 of energies 0.02 K < J

’
/kB < 0.1 K frustrating the contribution of J. 

 

4.2.10. Summary 

 

A new family of low-dimensional quantum-spin systems based on hydroquinone-

derived linkers connecting Cu
2+

 ions carrying a spin of S = ½ was synthesized. It has been 

shown that by such an approach a moderate antiferromagnetic exchange interaction between 

the Cu
2+

 ions can be achieved. These linkers could be chemically modified to synthesize 

compounds with desired magnetic properties. The organic compound discussed here, 

C36H48Cu2F6N8O12S2 (TK91), is a result of such a design strategy. As demonstrated in    

Figure 38, the Cu
2+

 ions have distorted octahedral coordination environment and are bridged 

by hydroquinone linkers to form dimer units. Neighboring dimers are connected via two long 

axial Cu-O bonds providing a potential path for inter-dimer magnetic exchange. The value of 

the intra-dimer coupling, from dc-susceptibility measurements, is found to be 9.4(2)K/kB. 

ESR measurements suggested that the magnetic anisotropy of this compound is negligible. 

Specific heat data in magnetic fields B ≥ 4T revealed marked deviations from isolated dimer 

behaviour and these observations have been attributed to the presence of a significant dimer-

dimer interaction. Actually, clear indications for inter-dimer interactions were found in        

ab initio calculations yielding a ratio of intra- to inter-dimer couplings of 10:1, Jd/kB  13.4K, 

J1/kB =1.7K and J2/kB = 1.4K. The ac-susceptibility data showed that at T ≥ 0.2K, a single 
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broadened peak around 6.2T appears. Upon cooling below 0.2K, the peak narrows 

significantly and two increasingly sharp features appear on its low- and high-field side. The 

positions of the sharp maxima in χac(B) are assign as the lower and upper boundary of a new 

field-induced state. AC-susceptibility data together with QMC simulations show that a new 

field-induced ground state has developed in the field range 5.9 T  B  6.3T. Employing 

detailed QMC analysis for the ac-susceptibility data, it was shown that field-induced state has 

a distinct 2D character. Even more, it was shown that that this 2D state is actually the 

topological order predicted by Berezinskii, Kosterlitz and Thouless. 
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4.3. Oxalate-bridged Materials 

 

As mentioned in the Introduction, metal-organic compounds usually consist of 

magnetic metal ions bridged by an organic molecule (such as CO2 - carboxylate,               

C2O4
 
- oxalate, diamine etc.) and some side organic ligands such as betaine, aminopyridine, 

hidroquinone, isoquinoline etc. Metal-organic compounds with one-dimensional (1D) 

magnetic interactions are often chains of metals, bridged by carboxylate groups of organic 

molecules and contain additional large organic ligands as spacers to separate the chains. The 

bridging and spacer functions can be assumed by one entity as in the case of betaine 

molecules [151], where one has a carboxylate group and a large chemically inactive tail which 

plays the role of the spacer. 

 

 

 

Figure 50: Oxalate bridging unit and building block scheme. 

 

More flexibility in designing magnetic chain structures offers the combination of two 

different organic molecules, a large molecule as spacer (to separate the chains) and a small 

dicarboxylate or diamine molecule, for instance, to bridge the metal ions. The oxalate 

molecule turned out to be an especially suitable bridging unit for mediating the magnetic 

interactions. There are several compounds with oxalate metal chains known as one-

dimensional ferro- or antiferromagnets at low temperatures. Most of them are of composition 

[M(ox)L]n
 
with M = Co

2+
, Ni

2+
, Cu

2+
 and the ligand L = hydroxypyridine [178, 179], 
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isoquinoline [179], amino-pyridine [180, 181] or even just water [182] , for a building scheme 

see Figure 50. 

In the theoretical studies [20, 183] correlations between the strength of magnetic 

interaction and the structural configuration of the magnetic ions were investigated and 

classified. According to Cano [20]
 

there are basically four different configurations of the 

singly occupied molecular orbitals (SOMOs) realized experimentally: coplanar, 

perpendicular, parallel and trigonal-bipyramidal, see Figure 51. In the crystals cited above 

there are many examples of “parallel” configuration, but only two examples of “coplanar” 

configuration, one with Ni
2+

 and one with Co
2+

. 

 

 

Figure 51: Different oxalate topologies according to the orientation of the SOMO‟s orbitals. 
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4.3.1. Alternating Heisenberg chain Cu(ox)(pyOH)⋅H2O 

 

4.3.1.1. Crystal Synthesis and Structure 

 

Crystals of Cu(ox)(pyOH)⋅H2O with ox-oxalate (C2O4)
2-

 and pyOH-hydroxypyridine 

(C5H5NO) were grown by L. Wiehl from the Institute of Geosciences (Goethe University-

Frankfurt), according to the recipe of Castillo et al. [178]. During the evaporation of the 

solvent, two different phases emerged, blue isometric crystals of Cu(ox)(pyOH)2, which have 

already
 

been described and light-green plates of Cu(ox)( pyOH)⋅H2O, which proved to be a 

new phase, see Figure 52. 

 

 

 

Figure 52: Single crystals of the two different phases, Cu(ox)( pyOH)⋅H2O light-green plates 

and Cu(ox)(pyOH)2 blue crystals. 

 

The crystal structure of Cu(ox)(pyOH)⋅H2O was determined by L. Wiehl, by single 

crystal X-ray diffraction, using a four-circle diffractometer from Oxford Diffraction with 

CCD detector. Experimental details and structure data have been published previously by L. 

Wiehl et al. [150]. 

The crystals of Cu(ox)(pyOH)·H2O are monoclinic, space group P21/c (No. 14), with 

lattice constants a = 12.915Å, b = 9.162Å , c = 8.247Å , β = 98.49°. The crystal structure is 

built up from oxalato-bridged copper ions, hydroxypyridine molecules and crystal water. Each 

Cu
2+

 ion has slightly distorted bipyramidal coordination, formed by the nitrogen atom from a 

hydroxypyridine molecule and five oxygen atoms from three different oxalate molecules, see 

Figure 53-55. 

The basal plane of the bipyramid is formed by the nitrogen atom and three oxygen 

atoms (O1A, O2A and O1B) with copper-ligand distances in the range of 1.98-2.01Å. The 

apical positions are occupied by oxygen atoms (O2B, O2B
‟
) at larger distances of 2.35 and 

2.41Å. Each of these apical oxygen atoms is shared by two Cu polyhedra, building a quasi-2D 
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structure, see Figure 53. The hydroxypyridine rings lie above and below the 2D layers, and 

the layers are separated by the length of the a-axis. 

 

 

 

Figure 53: Two-dimensional network of oxalato-bridged Cu
2+

 ions in Cu(ox)(pyOH)·H2O. 

The copper coordination sphere is a slightly distorted CuNO5 octahedron. The dashed lines 

indicate the contacts of the copper ions with two apical oxygen atoms. ox-A and ox-B are two 

non-equivalent oxalate molecules. 3-hydroxypyridine and water molecules have been omitted 

for clarity. 

 

There are direct bonds only between copper and the four atoms in the basal plane of 

the bipyramid, forming -Cu-oxalate-Cu-oxalate- chains along the b-axis, see Figure 53. Due 

to the lack of direct bonds perpendicular to the basal plane, the inter-chain coupling via the 

apical oxygen atoms along the c-axis is expected to be very small. The new and important 

structural feature of Cu(ox)(pyOH)·H2O, manifests itself in the alternation of two centro-

symmetric oxalate molecules ox-A and ox-B which are symmetrically non-equivalent. Both 

molecules bridge pairs of copper ions, but the oxalate molecule shows different orientations 

relative to the bipyramid basal plane. For ox-A, the bridging oxalate molecule joins corners of 

a bipyramid basal plane, leading to a configuration where the two basal planes of the Cu 

bipyramids and the ox-A molecule lie in a common plane, see Figure 54. This corresponds to 

the „coplanar‟ configuration according to the classification given by Cano et al. [20]. 
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Figure 54: The Cu–oxalate–Cu bridge via ox-A, representing a „coplanar‟ configuration. 

 

On the other side, the ox-B molecule is oriented perpendicular to the two neighbouring 

copper basal planes and its carboxyl groups each connect a corner of a basal plane with its 

apex, see Figure 55. The two pyramidal bases are parallel to each other (as in the case of     

ox-A) but are in different planes, corresponding to the „parallel‟ configuration. 

 

 

 

Figure 55: The Cu-oxalate-Cu bridge via ox-B, representing a „parallel‟ configuration. 

 

If the coordination of the central metal ion were to be ideally octahedral, then these 

two types of oxalate bridges would be indistinguishable as each square section of the 

octahedron could be taken as the basal plane. For the d
9 

configuration of Cu
2+

, however, the 
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energies of the dx2−y2 and the d
2

z orbitals are significantly different due to the Jahn–Teller 

effect. In an elongated octahedral ligand field, the single electron occupies the dx2−y2 orbital. 

Therefore, the terms „coplanar‟, „parallel‟ or „perpendicular‟ characterize the relative 

orientations of the dx2−y2 orbitals of the bridged copper ions. Depending on the case, none (ox-

A) or two (ox-B) of the oxygen atoms of the oxalate bridge are orientated towards the 

antibonding d
2

z orbital. This is the origin of the large differences in magnetic interaction 

strength found in oxalato-bridged binuclear copper complexes [20, 183], which is high for 

„coplanar‟, intermediate for „perpendicular‟ and low for „parallel‟ complexes. 

The previously discovered and studied crystals of Cu(ox)(pyOH)2 reveal 1D 

ferromagnetic interactions with J/kB = -1.9K [178]. In this material, all oxalate molecules, and 

hence all Cu-ox-Cu bridges, are equivalent and adopt the „parallel‟ configuration consistent 

with the observed weak ferromagnetic interaction. 

In contrast to the magnetic properties of Cu(ox)(pyOH)2, the newly discovered phase 

of Cu(ox)(pyOH)·H2O exhibits two different exchange paths alternating along the b-axis. 

This feature, along with the presumably very small inter-chain coupling along the c-axis, as 

described above, suggests a description of the magnetic properties in terms of an alternating-

exchange spin-chain. Exchange anisotropy due to a Dzyaloshinskii–Moriya interaction 

between two neighbouring Cu
2+

 ions is not expected, because the two centrosymmetric 

oxalate molecules ox-A and ox-B both exhibit a centre of inversion symmetry. However, the 

existence of a staggered g-tensor along the b-axis cannot be excluded. 

 

4.3.1.2. Magnetic properties 

 

The magnetic measurements were performed on single crystalline 

Cu(ox)(pyOH)·H2O, in the temperature range 2-300K and in fields of up to 5T. Single 

crystals of the Cu(ox)(pyOH)·H2O were separated from other materials of different 

appearance, including the Cu(ox)(pyOH)2 and a phase of unknown composition. A bundle of 

well-shaped single crystals with a total mass of 7.89mg was selected for the experiments. 

These crystallites, randomly oriented, were immersed in a small amount of paraffin inside the 

sample holder. Due to this procedure, the individual crystals were unable to move, leading to 

a significant increase of the signal-to-noise ratio. 

The molar magnetic susceptibility χmol of Cu(ox)(pyOH)·H2O in the temperature range 

2K  T  300K measured in a field of 1T is shown in Figure 56. These data are corrected for a 

temperature-independent diamagnetic contribution of paraffin and the diamagnetic core 

contributions of Cu(ox)(pyOH)·H2O estimated according to [95]. 

At around 270 K, a broad maximum in χmol(T) is visible, characteristic for a low-D 

spin system, where χmol(T) is governed by short-range spin correlations. Below 270K, the 

susceptibility is continuously decreasing down to 60K. The steep increase at low temperatures 

is attributed to a Curie-contribution, resulting from uncoupled Cu
2+

-ions. This is corroborated 
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by plots of the inverse susceptibility of the data below 10K in the inset of Figure 56, which 

shows an approximate linear behaviour extrapolating to zero for T → 0K. From the slope of 

the straight line, a concentration of the uncoupled Cu
2+

 (S = ½)-ions of (1.5 ± 0.2) % is 

estimated. This small value directly reflects the considerably high quality of the single 

crystals. 

 

Figure 56: Temperature dependence of the molar magnetic susceptibility χmol of randomly 

oriented single crystals of Cu(ox)(pyOH)·H2O in the temperature range 2-300K in a magnetic 

field of 1T. The solid line is a least-square fit according to [107]. Inset: inverse susceptibility 

in the low-temperature range. 

 

For a quantitative analysis of the χmol(T) data, the theoretical results for an 

antiferromagnetic S = ½ Heisenberg spin chain with alternating exchange coupling constants 

J and J
’
 = αJ were applied [107]. For this model, the Hamiltonian in the form given by the 

Equation 38 is used. There J and J
’
 = αJ are the alternating Heisenberg exchange interactions 

between neighbouring spins along the chain. For the alternating Heisenberg chain, the 

position of the maximum in χmol(T) is determined by the dominant coupling constant J [107]. 

The maximum is located at kBT
max

 = 0.64J, and is practically independent of the alternation 

parameter α. Performing a least-squares fit of the χmol(T) data, three adjustable parameters 

were used: the dominant magnetic exchange constant J, the alternation parameter α and the g-

factor. A fourth parameter, associated with the Curie contribution of uncoupled S = ½ spins, 

was added. The result of this fitting procedure, shown as the straight line in Figure 56, nicely 

describes the experimental data. The following parameters have been derived:                     

J/kB = -(442 ± 5)K, α = 0.13 ± 0.06, i.e. J’/kB = -(58 ± 17)K, and a g-factor of                          

g = (2.19 ± 0.03). In addition, the fit yields a concentration of about 1.5% of uncoupled S = ½ 

impurities, consistent with the concentration determined from the slope of 1/χmol(T) at            

T  10K. The g-factor revealed from the fit is in accordance with the expectation for randomly 
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oriented single crystals containing Cu
2+

 ions in a distorted octahedral environment [184]. 

Employing Equation 39, the zero-field excitation gap is estimated to  = (410 ± 20)K. 

In view of the structural properties and supported by relative bond strengths, it appears 

justified to model Cu(ox)(pyOH)·H2O as a dimerized spin-chain. Along the b-axis of the 

crystal, one finds two distinct oxalate bridges, „coplanar‟ ox-A and „parallel‟ ox-B, which 

alternate from bond to bond, resulting in an alternating exchange spin S = ½ chain. In [20], 

Cano et al. summarize various experimental and theoretical results found for dinuclear 

oxalato-bridged compounds. For the „parallel‟ configuration, they obtained experimental 

values for the exchange coupling ranging from -2 to 53K, whereas they listed coupling 

constants for the „coplanar‟ orientation from 430 to 575K. The same magnitude of the 

magnetic coupling constants was calculated using density functional theory (DFT) methods 

on selected oxalato-bridged model systems [20]. Although the material investigated here 

consist not from isolated dimers but from a dimerized spin chain (a much more complicated 

magnetic structure), the coupling constants of Cu(ox)(pyOH)H2O, derived from susceptibility 

measurements, are comparable to the ones listed in [20]. 

For a dinuclear oxalato-bridged model compound, Cano et al. showed that despite the 

influence of the electronegativity of the terminal ligands and some other structural parameters, 

the most important effect governing the strength of the magnetic coupling constant J is the 

displacement hM of the Cu atoms away from the basal plane of the coordination polyhedra. 

This displacement hM is schematically displayed in Figure 57. 

 

 

 

Figure 57: Sketch of the local Cu environment indicating the displacement hM of the Cu atom 

away from the basal plane of the coordination polyhedra. 

 

A basal plane was fitted with the four atoms (one nitrogen N, three oxygen O1A, O2A, 

O1B) forming the basal plane of the bipyramids. The given value for hM is the distance of the 

Cu
2+

 ion to this plane. For the coplanar ox-A bridge in Cu(ox)(pyOH)·H2O, a displacement 

out of the basal plane for the Cu
2+

 ion of hM = 0.035Å was obtained. In comparison to some of 

the isolated dimer compounds, this is only a moderate displacement. Comparing this 

displacement with the experimental and theoretical results shown in Ref.[20], one expects for 

hM = 0.035Å, Jtheo/kB = -415K and a Jexp/kB = -(570 ± 40)K. In fact, the dominant (intra-dimer) 
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coupling J/kB = -(442 ± 5)K of the present dimerized spin-chain Cu(ox)(pyOH)·H2O is close 

to these values, lying in between the theoretical and experimental values for the displacement 

hM realized here. This observation suggests that, similar to isolated dimers, the strength of the 

magnetic couplings in oxalato-bridged coupled dimer systems is mainly determined by the 

displacement of the Cu
2+

 ion out of the octahedral plane. 

 

4.3.1.3. Summary 

 

A new low-dimensional quantum-spin system Cu(ox)(pyOH)·H2O, based on oxalate 

linker connecting Cu
2+

 ions carrying a spin of S = ½, was synthesized. Each Cu
2+

 ion has 

slightly distorted octahedral coordination. The Cu
2+

 ions are bridged by oxalate molecules and 

form chains along the b-axis. The oxalate molecules have two different arrangements 

alternating along the chain. Among the polymeric oxalate chains reported up to now, the 

compound Cu(ox)(pyOH)·H2O is the first example of a Cu
2+

 oxalate chain with an alternation 

of „coplanar‟ and „parallel‟ topologies along the chain. Due to these specific structural 

properties, magnetic properties were analyzed in the framework of an alternating-exchange 

spin-chain. Using the model of antiferromagnetic S = ½ alternating Heisenberg chain, an 

exchange coupling constant of J/kB = -(442 ± 5)K and an alternation parameter                        

α = 0.13 ± 0.06 were derived. Due to the presence of a „coplanar‟ Cu-coordination, this is the 

first time that such a strong antiferromagnetic interaction has been found in a Cu
2+

-based 

polymeric oxalate chain. Such a strong antiferromagnetic interaction classifies 

Cu(ox)(pyOH)·H2O as a strongly dimerized spin-chain compound. In this strongly dimerized 

chain the magnetic behaviour is mainly determined by the displacement of the Cu
2+

-ions with 

respect to the basal plane of the local environment. 
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4.3.2. Heisenberg chain [Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n 

 

Metal-organic coordination polymers, containing a bridging oxalate ligand, have 

played a key role in the development of new concepts in molecular magnetism over the last 

two decades. The ability of this ligand to mediate electronic effects between paramagnetic 

metal ions separated by more than 5Å make this ligand very attractive in molecular 

magnetism. A plethora of oxalato-bridged dinuclear complexes has been well-characterized 

and intensive magneto-structural studies have been analyzed, from both experimental [185, 

186] and theoretical [20, 187] viewpoints. Of particular interest have been the structural and 

electronic factors (orbital topology, coordination polyhedra, donor atoms, nature, and 

substituents of the periphedral ligands) that govern the value of the magnetic coupling through 

oxalate. Many of the one-dimensional oxalato-bridged systems [Cu(µ-ox)(L)x] (L = nitrogen 

donor ligand or water molecule) have been described, showing that the coupling ranges from 

mediate [188, 189] to weak [190, 191] antiferromagnetic and even ferromagnetic [19, 192, 

193, 194]. 

It has been shown, that with the oxalate anion, it is possible to construct two- [195] 

and three-dimensional [196] homo- and hetero- transition metal networks, which form 

molecular-based magnetic materials, exhibiting a great diversity of magnetic behaviours 

(ferro-, ferri-, or antiferromagnetic long-range ordering). 

 

4.3.2.1. Crystal Synthesis and Structure 

 

Single crystals of [Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n typical size of        

5×0.5×0.2 mm
3
 (Fig. 58) were grown by A. V. Prokofiev from the Institute of Physics 

(Goethe University-Frankfurt), using the slow diffusion technique (details of the crystal 

growth are given in Ref. [197]). Most of the crystals have a form of needles with the shortest 

dimension in the crystallographic a-direction and the needle axis in b-direction. 

 

Figure 58: Crystals of the polymer [Cu(µ-ox)(H2O)(4-apy)2]n. 
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Single crystals of another habit grew alongside the plate-like and needle crystals of polymer 

[Cu(µ-ox)(H2O)(4-apy)2]n. A structural study has shown the crystals to be a copper polymer 

which differs from polymer [Cu(µ-ox)(H2O)(4-apy)2]n by a bridging ligand: a carbonate 

group instead of oxalate ion [198]. 

The crystal structure of the polymer [Cu(µ-ox)(H2O)(4-apy)2]n was determined by 

Castillo et al. [181]. According to the structure analysis, C12H14CuN4O5 consists of polymeric 

neutral [Cu(µ-ox)(H2O)(4-apy)2] chains in which the metal atoms are bridged sequentially by 

oxalate anions, see Figure 59. The Cu
2+

 ion is placed on a 2-fold axis and has a distorted 

square-pyramidal environment, see Figure 61. The basal plane is formed by two symmetry-

related oxygen atoms of two oxalato ligands [Cu-O: 2.004(3) Å] and the nitrogen atoms of 

two 4-apy ligands [Cu-N: 1.983(5) Å]. The 4 + 1 coordination sphere of the copper atom is 

completed by an apical oxygen atom from a water molecule with the Cu-O bond (2.315 Å) 

lying on a 2-fold axis. The copper atom is displaced from the mean basal plane towards the 

apical site by 0.08 Å. The polymeric chains run along the c-axis of the unit cell, and the basal 

plane is parallel with the ac-plane. The mean planes of the aromatic ligand and the oxalate are 

perpendicular to each other and with respect to the basal plane of the Cu
2+

 ion coordination 

pyramid. 

 

Figure 59: Polymer chain of the Cu(µ-ox)(H2O)(4-apy)2]. 
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Figure 60: Coordination environment of the Cu
2+

 in a chain [Cu(µ-ox)(H2O)(4-apy)2]. 

 

 The intra-chain Cu-Cu distance across the oxalato ligand is 6.752(1)Å, which is 

significantly longer than those published for dimeric and polynuclear complexes [< 6.0Å] 

[181], but within the range [6.5-8.1Å] found in other polymeric compounds with the oxalate 

bridge. The oxalato ligand is not planar and the two -CO2 entities are twisted by 28° with 

respect to each other around the C-C bond. The bond C-O distance [1.272(6) Å] is only 

slightly longer than the C-O (free) one [1.235(7) Å] owing to the involvement of the free 

oxygen atoms in an extensive network of hydrogen bonds. Each water molecule forms two 

hydrogen bonds, related by a 2-fold axis, with two free oxygen atoms from the oxalato bridge 

belonging to a neighbouring chain, see Figure 61. 

 

Figure 61: Sheets of chains [Cu(µ-ox)(H2O)(4-apy)2] formed by hydrogen-bonds (dashed 

lines) involving the coordinated water molecules. 
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 The Ow-H-O interactions lead to the formation of hydrogen-bonded sheets parallel to 

the (100) plane. The shortest inter-chain Cu-Cu distance is 6.357(1)Å. No face-to-face - 

interactions between the aromatic rings have been found in the crystal structure. 

 

4.3.2.2. DC susceptibility measurements 

 

Magnetic susceptibility measurements were performed on the single crystals of  

[Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n in the temperature range of 2-300K and in magnetic 

fields up to 1T. For temperatures 0.1K ≤ T ≤ 5.0K, the susceptibility was determined by using 

an Oxford dilution refrigerator equipped with a SQUID magnetometer in a field of 0.002T. 

Ten single crystals of [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n with a total mass of 4.83mg 

were oriented and fixed on a sample holder with vacuum grease, see Figure 62. This 

arrangement was used for the experiments. The obtained data were corrected for the 

contribution of the sample holder χholder = 1.75·10
-4

 cm
3
/mol and for the temperature-

independent diamagnetic contribution χdiam according to [95]. The samples had a needle-like 

shape with the b-axis along the needle direction. 

 

 

Figure 62: Sample holder with the crystals oriented in the needle direction. 

 

The magnetic susceptibility, per mol of the Cu
2+

 ions of                                        

[Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n for the field along the needle direction (b-axis) and 

perpendicular to it, is shown in the main panel of Figure 63. The anisotropy of the magnetic 

susceptibility between both directions is consistent with the anisotropy of the g-values 

observed in the ESR measurements. 
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Figure 63: Temperature dependence of magnetic susceptibility χmol of                              

[Cu(µ-ox)(H2O)(4-apy)2]n for temperatures 2-40K in a magnetic field of 1T for two different 

orientations: parallel (circles) and perpendicular (triangles) to the b-axis. The solid lines 

correspond to the best fits for the model described in the text with an AF exchange coupling 

constant. The inset shows the low-temperature data together with the simulation with the 

parameters given in the text. 

 

An incipient maximum is observed for both directions around 2K (see inset in Figure 

63). The low-temperature data for the field parallel to the b-axis in the temperature range 

between 0.15K and 3K, shown in the inset of Figure 63, revealed the whole maximum. In 

addition, an increase of χmol(T) is observed below 0.4K. This low-temperature upturn can be 

attributed to paramagnetic moments resulting from a small amount of non-coupled spins in 

the sample. After subtraction of the paramagnetic Curie contribution from the experimental 

data, the χmol(T) shows the pronounced maximum around 2K and non-zero susceptibility as    

T → 0. Such a magnetic behaviour indicates the existence of a weak antiferromagnetic (AF) 

interaction between the Cu
2+

 ions within the polymeric chain. The molar susceptibility, shown 

in Figure 63, is typical for a 1D spin system governed by short-range spin correlations. A 

model, where the system is composed of isolated AF Heisenberg chains, was used for the 

quantitative discussion of the susceptibility data. This model is consistent with the crystal 

structure. The observed temperature dependence of χmol is described as: 

χmol (T) = χchain (T) + χC (T)      (61) 

where χchain is the susceptibility of the uniform Heisenberg spin chain, given by an empirical 

rational function according to [153] and C = C/T is the Curie susceptibility arising from the 

non-coupled spins in the system. The Hamiltonian being used for the χchain is given in 

Equation 19. From a fit of the data for the temperature range 2-40K , see Figure 63, where the 
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intra-chain magnetic exchange coupling constant J between the Cu
2+

 ions and their 

concentration (1-n) as free parameters are used (with n denoting the percentage of uncoupled 

spins), a good description of the data is achieved with the following numbers:                     

J/kB = (3.4 ± 0.1)K, n = (0.7 ± 0.3)% for the field parallel to b-axis and J/kB = (3.2 ± 0.1 )K,   

n = (0.6 ± 0.3) % for the field B normal to b-axis. The g-values were taken from the ESR 

experiments. For the external field normal to b-axis, an averaged value of ga and gc of       

2.05 ± 0.01 was used. The small concentration n of uncoupled S = ½ moments reflects the 

high quality of the present single crystals. 

The inset of Figure 63 displays the low-temperature data for temperatures              

0.1K ≤ T ≤ 2.4K (open circles), together with a calculation (solid line) according to    

Equation 61 using the magnetic coupling constant J and the concentration determined from 

the high-temperature data. Good agreement between the experimental data and the calculation 

is clearly visible. 
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4.3.2.3. ESR measurements 

 

Single crystal ESR experiments of the [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n were 

performed with a specially designed spectrometer using a frequency of ν = 56.039GHz at a 

temperature T = 1.54K and in an applied field of up to 2.5T. In order to obtain information on 

a possible magnetic anisotropy of [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n, the measurements 

were carried out at temperatures down to 1.5K and in an applied field of up to 2.5T with a 

different field orientation. The ESR measurements at a temperature T = 1.54K detect one 

magnetic center of copper ion at any orientation of the sample with respect to the applied 

magnetic field; see Figure 64 and Figure 66. 
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Figure 64: Angular dependence of the ESR resonance line for a single crystal of [Cu(µ-

ox)(H2O)(4-apy)2]n at 1.54K in a bc-plane in steps of 10°. Resonance lines are shifted 

vertically for clarity. 

 

This magnetic center has an axial anisotropy in the bc-plane with the g-values in the 

range of 2.01 - 2.33 at T = 1.54K, see Figure 65. 
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Figure 65: Angular dependence within the bc-plane of the resonance field (left axis) and the 

corresponding g-tensor values (right scale). 

The ESR spectrum for the ba*-plane is displayed in Figure 66. The results show clear 

resonance absorption lines, and demonstrate that [Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n has 

a negligible magnetic anisotropy. 
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Figure 66: Angular dependence of the ESR resonance line for a single crystal of [Cu(µ-

ox)(H2O)(4-apy)2]n at 1.54K in a ba*-plane in a steps of 10°. Resonance lines are shifted for 

clarity. 
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The axial anisotropy of the Cu
2+

 magnetic center in the ba*-plane with the g-values in 

the range of 2.08 - 2.33 at T = 1.54K is shown in Figure 67. 
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Figure 67: Angular dependence within the ba*-plane of the resonance field (left axis) and the 

corresponding g-tensor values (right scale). 

 

The local magnetic axes of Cu
2+

 are almost perpendicular to each other. The axial 

anisotropy is in accordance with the local environment of the [Cu(µ-ox)(H2O)(4-apy)2]n 

compound determined by the X-ray crystal structure analysis. 
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4.3.2.4. AC susceptibility measurements 

 

The ac-susceptibility (ac) of a single crystal of [Cu(µ-ox)(H2O)(4-apy)2]n was 

measured as a function of field ac(B) and temperature ac(T). The crystal was oriented such 

that the b-axis is parallel to the applied field. Measurements were performed by using a state-

of-the-art compensated-coil susceptometer. Empty-coil measurements were performed as a 

direct measure of the sample-independent background. Selections of ac(B) are shown in 

Figure 68. 
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Figure 68: ac as a function of applied field at different temperatures. The position of the 

sharp feature in ac (B) becomes clearer with decreasing of temperature. 

 

No hysteresis behaviour has been found upon increasing and decreasing the field. For 

temperatures below ~ 1K, ac(B) has one field-induced feature. According to the theory [106], 

this field-induced structure indicates the field (Bs) where the system enters the fully polarized 

state. Upon cooling, the drop becomes sharper and tends to diverge. From these 

measurements, the critical field at 0K is estimated to be Bs  4.1T. It should be noted that Bs 

deduced from ac(B) is lower than the value predicted by the S = ½ AFHC (4.3T). This 

difference is presumably due to the error bar in the value of the exchange interaction J/kB, 

obtained from dc-susceptibility measurements. The isothermal magnetization (M), obtained 

by integrating the corresponding ac data, together with the thermodynamic Bethe ansatz 

calculations [106], based on the exchange coupling constant J/kB = 3.2(1)K and g = 2.33, are 

shown in Figure 69. 
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Figure 69: Field dependence of magnetization at T = 0.5K, T = 0.3K and T = 0.055K. Open 

circles are experimental data, solid curves are the thermodynamic Bethe ansatz calculations 

using J/kB = 3.2(1)K and g = 2.33. Oscillations in the Bethe ansatz calculations at T = 0.055K 

are due to finite-size effects.  

 

The good agreement between the experimental data and the calculations suggest that 

the system represents an excellent model system for a uniform S = ½ AFHC. 

According to theory, the magnetic susceptibility for T < 0.32K should be dominated 

by the logarithmic correction, see Equation 26. A rapid decrease of the susceptibility is 

expected to occur below 0.03K, considering the J/kB value 3.2(1)K. Comparison between the 

experimental data and the Bethe ansatz calculation for J/kB = 3.2(1)K and T0  7.7 J/kB is 

shown in Figure 70. The experimental (T) shows a steep decrease at around 0.15K with a 

minimum value 6.8×10
-2

 emu/mol, whereas the Bethe ansatz calculation shows a rapid 

decrease at 0.03K and reaches 7.1×10
-2

 emu/mol for T  0K. Considering the qualitative 

similarities, the isotropic drop in (T) at low temperature might indicate the asymptotic (lnT)
-1

 

term revealed by the Bethe ansatz. As can be seen, the experimental and theoretical results 

coincide very well in the temperature range above  0.1K. In the lowest temperature range, 

the coincidence is not as good. The reason for the rapid drop of ac at low temperatures is 

unclear at present and requires further investigations. 
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Figure 70: (T) for [Cu(µ-ox)(H2O)(4-apy)2]n (solid line) compared to theoretical calculations 

by                             with J/kB = 3.2(1)K  and g = 2.3 and g = 2.33 (dash 

line) in the temperature range below 0.5K. 
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4.3.2.5. Specific heat measurements 

 

The specific heat measurements were performed by G. Donath from the Max-Planck-

Institute for Chemical Physics of Solids (Dresden). The sample was composed of several 

single crystals, the ac-planes of which were aligned parallel to the applied field, and a total 

mass of 36.3 mg. 

The temperature dependence of the specific heat in zero magnetic field in the full 

temperature range 0.2-4K, see Figure 71, can be well described as a sum of the magnetic 

contribution to the specific heat of the uniform S = ½ AFHC, Cmagnetic, derived from the 

thermodynamic Bethe ansatz calculations [106], and the low-temperature phonon contribution 

- a term proportional to T 
3
: 

                           (62) 

                  

             

with Cmagnetic calculated for g = 2.33 and J/kB = 3.2(1)K, and B = 0.003 Jmol
-1

K
-3

 derived from 

a least-squares fit to the data at 0.15T. The phonon contribution was subtracted from all the 

data, and Figure 72 shows the resulting magnetic contribution to the specific heat in               

B = 0.15T in the low-temperature range. The linear dispersion relation of the fermionic 

spinons at low energy implies that the low-temperature specific heat of the S = ½ AFHC 

should be linear in T. It is given by Equation 28. The linear T-behaviour of the magnetic 

specific heat observed in zero field for kBT / J < 0.08, is accompanied with the slope 0.64(1). 

Discrepancy between the theoretical value 0.7 given by Equation 27 [107] and experiment 

may be the consequence of the Dzyaloshinskii-Moriya interaction in the system (a fact which 

has yet to be investigated) or the error bar of the exchange interaction. 
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Figure 71: Specific heat of [Cu(µ-ox)(H2O)(4-apy)2]n vs. T at constant magnetic field              

B = 0.15T, the solid red line is a fit to an exact diagonalization model as described in the text. 

The solid black line is the phonon contribution determined from the fit. 
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Figure 72: Magnetic heat capacity C of [Cu(µ-ox)(H2O)(4-apy)2]n vs. T in B = 0.15T (after 

subtraction of phonon contribution), the red solid line is a linear fit as described in the text. 
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The temperature dependence of the total specific heat of [Cu(µ-ox)(H2O)(4-apy)2]n for 

a number of magnetic fields B is shown in Figure 73. As the magnetic field B is increased, the 

broad maximum observed in zero field is suppressed, and gradually shifts to lower T. The 

solid lines are the results of a calculations based on the thermodynamic Bethe ansatz 

calculations [106], as described below with the phonon contribution used as a fit parameter. 

The dashed line is the phonon contribution determined from the fit. 

The theory curves were provided by A. Honecker from the Institute for the Theoretical 

Physics (Georg-August-University, Göttingen), based on Bethe ansatz calculations in [106]. 

All experimental data shown on Figure 73 were fit simultaneously to the expression: 

                                            (63) 
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Figure 73: Specific heat of [Cu(µ-ox)(H2O)(4-apy)2]n vs. T at constant magnetic field 0.15T, 

1.19T, 2.38T and 3.57T. Solid lines are a fit to an exact numerical and analytical model as 

described in the text. The dashed line is the phonon contribution determined from the fit. 

 

The S = ½ AFHC model accounts for the data very well, with A = 0.96(1),               

J/kB = 3.2(1)K, and B = 4.1(1) mJ/molK
4
. The deviation of A from 1 can be assigned to a 

systematic error in the normalization of specific heat data. 

An expanded view of the experimental data in Figure 73 for T < 0.55K and fields       

B  2.38T is shown in Figure 74, plotted as C/T vs. T
2
. Predominantly linear behaviour of the 

specific heat in T including the small positive slope is observed. The positive slope is caused 

by the field-induced shift of spectral weight to lower temperature. An increase of the slope 

with field is also visible. 
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Figure 74: Specific heat of [Cu(µ-ox)(H2O)(4-apy)2]n below T < 0.55 K, plotted as C/T vs. T
2
 

for constant magnetic field 0.15T, 1.19 T and 2.38 T. 

 

As mentioned in Chapter 2.3.1, the low-temperature specific heat of the S = ½ AFHC 

is linear in T and is given by Equation 28. There, vs(B) is the field-dependent spinon velocity, 

which in zero field takes the form    
  

 
. Correspondingly the specific heat can be described 

by Equation 27, a result which has been confirmed experimentally [199, 200]. According to 

the theory, vs(B) decreases with the field and goes to zero as the system approaches the critical 

field. On the other side, the Sommerfeld constantB, given by    
 

 
 

  

     
, increase with 

the field. This means that the slope of the linear T dependence of the specific heat also 

increases with the field. Figure 74 shows exactly such a behaviour and provides direct 

experimental evidence of the spin velocity behaviour in the S = ½ AFHC and indicates a 

renormalization of the spinon velocity with field. 

In the case of the existence of a field-induced gap (B) in the system, one should 

observe a suppression of C below its zero-field value in finite fields and at low temperatures   

T << /kB. Such a signature was not observed in the experiment (ac-susceptibility) down to   

T = 50mK. It is possible that the field-induced gap exists but its value would be smaller than 

50mK. 

As described in Chapter 2.3.1, some qualitative aspects of the specific heat in finite 

external field can be understood in the picture of spinon excitations. The external magnetic 

field acts like a chemical potential for the spinons (for which there are particle-hole like 

excitations). At zero field, the bands of the particle- and hole-like excitations are identical, 
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and for a sufficiently strong field B, the band widths are considerably different resulting in 

two maxima in the specific heat at different temperatures (see the theory curves at the Figure 

75). For fields stronger than the saturation field B > Bs, an energy gap opens in the 

ferromagnetically polarized state. 
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Figure 75: Temperature dependence of the specific heat of [Cu(µ-ox)(H2O)(4-apy)2]n for 

different values of the external field. The solid curves are the thermodynamic Bethe ansatz 

calculations [106]. 

 

 

The agreement between the experiment and theory is reasonably good for fields lower 

than the saturation field at low temperatures as well as in the high-temperature region. The  

in-T linear behaviour of C for fields lower than the saturation field is obvious. The 

discrepancy between the experiment and theory is explicit for the field B = 3.57T close to the 

saturation field and for the field higher than the saturation field B = 4.2T, especially in the 

low-temperature region, see Figure 75. The high-temperature region for the latter two field 

values overlaps quite well with the theoretical predictions. However, the low-temperature 

maximum, expected by theory, is not well pronounced. Here, one can observe only a shoulder 

in the specific heat data. Part of this discrepancy can be related to the arbitrary orientation 

within the ac-plane of the crystals with respect to the field, giving rise to a smearing of the 

maximum. Above the saturation field, the overlap between the theoretical prediction and 

experimental data is very good. Such a good agreement between the C data and theory gives 
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further credibility to the conclusion that [Cu(µ-ox)(H2O)(4-apy)2]n is a very good realization 

of a uniform S = ½ AFHC.  
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4.3.2.6. Magnetocaloric effect measurements 

 

The magnetocaloric effect measurements were performed by Y. Tsui from the Institute 

of Physics (Goethe University-Frankfurt). Measurements of the MCE were performed on 

several single crystals attached to the calorimeter by first applying a small amount of Apiezon 

N-grease. The calorimeter consists of a sapphire plate (550.3 mm
3
) and a RuO2 resistor, 

which served as a thermometer. The external field was parallel to the b-axis of each crystal. 

First, the standard MCE measurements on a single-crystalline sample were performed by 

monitoring the change of the sample temperature T while sweeping the external magnetic 

field continuously at the rate 0.1T/min. The field dependence of T for the up-sweep data is 

plotted in Figure 76. In general, T(B) decreases slowly as B initially rises. Then it reaches a 

minimum at B ~ 4.1T and starts to increase much more rapidly when B goes up further. The 

minimum becomes sharper and moves to a higher field as the temperature drops. These results 

are consistent with the theoretical calculations [122]. 
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Figure 76: Change of the sample temperature T as the external magnetic field was increasing. 

The initial temperature of the sample was T = 0.9K (black line), T = 0.59K (red line),             

T = 0.45K (green line), T = 0.33K (blue line) and T = 0.3K (cyan line). 

 

As discussed in Chapter 3.2.3., the thermal relaxation time constant () of the 

calorimeter to the bath temperature is about 1000s at low temperatures. Therefore, the time 

(tsweep) required to accomplish a field sweep shown in Figure 76 is about 2. Hence, the curves 

displayed in Figure 76 do not represent the real MCE, requiring the experimental condition 

tsweep << ,  which makes a quantitative comparison with the theory difficult. In order to 

measure the MCE of the sample as accurately as possible, a modified technique was used. At 
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a fixed bath temperature Tb and the sample initially in thermal equilibrium with the bath, the 

field was swept in small steps of B  20mT and the corresponding variation of the sample 

temperature, T, was recorded, see Figure 77. 
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Figure 77: An example of a temperature-profile for a single MCE measurement with reduced 

signal-to-noise ratio (at an early stage of the experiment development). The sample was at 

thermal equilibrium with the bath and at B = 4.2T. The field was then swept to 4.22T in 60s. 

After roughly 200s, the field was swept back to 4.2T within 60s. 

 

The sweep time for the change of B was kept within 60s, which was small enough to 

ensure quasi-adiabatic conditions and big enough to give a measurable T. The effect from 

eddy-current heating in the metallic part of the calorimeter was eliminated by sweeping the 

field up and down and taking the average value of the corresponding T. An example of such 

a sequence of field sweeps is plotted in Figure 77. As shown in the figure, there is a sign 

change in T as the direction of the field sweep reverses and T for the up-sweep and    

down-sweep data are very close. This shows that heating, due to other processes, such as eddy 

current heating, was not significant during the measurements. It is worth noting that T relaxed 

very slowly towards the bath temperature after the change of the external field. Hence, the 

temperature change caused by the relaxation to the bath was much less than that due to the 

MCE during the field sweeps. Therefore, we can conclude that the measured T was mostly 

caused by the MCE. By improving the experimental setup a rigorous comparison between 

experimental results and theoretical calculations on a uniform S = ½ AFHC now has become 

possible. The MCE (B) was calculated according to Equation 43 and plotted in Figure 78. 
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As can be seen upon increasing the field, the MCE shows a characteristic sign change 

close to the saturation field. The sign change of B reflects a maximum in the finite-

temperature entropy in the vicinity of the saturation field. As already discussed in Chapter 

2.4., an accumulation of entropy is expected near a QCP since, directly at the QCP, the system 

is frustrated due to the competing ground states. The solid lines in Figure 78 are the result of 

quantum Monte Carlo calculations and exact diagonalization for the S = ½ AFHC for         

J/kB = 3.2K and the appropriate g-factor. The agreement between experimental data and 

theory is quite good. The small deviations between experiment data and theory, which grow 

with increasing field, might indicate an opening of a small B-induced gap. The field-induced 

gap may result from a finite Dzyaloshinskii-Moriya interaction (a fact which has not been 

proved until now), permitted by the lack of a center of inversion symmetry in its crystal 

structure. The existence of a field-induced gap would tune the system progressively away 

from quantum criticality (entropy is shifted to higher fields). This behaviour is consistent with 

the experimental observations. 

 Figure 78: Magnetocaloric effect-B as a function of field at different temperatures. Data 

were taken with an improved experimental setup. Solid lines are the results of quantum Monte 

Carlo simulations and exact diagonalization from A. Honecker [122]. 
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4.3.2.7. Summary 

 

Single crystals of the polymer [Cu(µ-ox)(H2O)(4-apy)2]n have been grown using a 

slow-diffusion technique with a monoammine copper complex and a ligand mixture solutions. 

The size of the crystals is typically 5×0.5×0.2 mm
3
. As is demonstrated in Figure 65,        

Cu
2+

 ions have a distorted square-pyramidal environment and are bridged by an oxalate linker 

to form chains along the c-axis of the unit cell. The intra-chain Cu-Cu distance across the 

oxalate bridge is significantly longer than those described and published for dimeric and 

polynuclear complexes with oxalate bridges, but within the range found in polymeric 

compounds in which the oxalate bridge is bound to the two metal centers by two oxygen 

atoms. The oxalate bridge is not planar and the two -CO2 entities are twisted by 28° with 

respect to each other around the C-C bond. Such an unusual configuration of the oxalate 

bridge in the [Cu(µ-ox)(H2O)(4-apy)2]n polymer enables the formation of a moderate 

antiferromagnetic exchange interaction between the Cu
2+

 ions within the chain. The hydrogen 

bonds between the chains help to enable the formation of the 2D structure in the (100) plane 

but, considering the path of the inter-chain interaction, this should be weaker than the      

intra-chain one. From the structural point of view, the [Cu(µ-ox)(H2O)(4-apy)2]n compound 

should behave in the same way as a S = ½  Heisenberg chain. 

Magnetic measurements (DC susceptibility measurements) confirm the applicability 

of the model of the AF Heisenberg chain and enable the value of the intra-chain exchange 

coupling to be determined to J/kB = 3.2(1)K. 

ESR measurements suggest a negligible magnetic anisotropy around the Cu
2+

 ion with 

g-tensor values gb = 2.33, gc = 2.01, ga* = 2.08 and <g> = 2.14, this value indicates a d(x2-y2) 

ground state and is in accordance with the square-pyramidal geometry of the Cu
2+

 ion. 

AC susceptibility measurements taken at temperatures down to 0.055K and a magnetic 

field up to 8.5 T revealed that the saturation field of the system is around 4.1T. When 

compared with the theoretical calculations, the magnetization data showed good agreement 

and confirmed the magnetic exchange interaction between nearest-neighbour spins to be    

J/kB = 3.2(1)K, indicating that the magnetic system [Cu(µ-ox)(H2O)(4-apy)2]n is an excellent 

model system for a uniform S = ½ AFHC. 

Specific heat data in magnetic field show that the data qualitatively agree very well 

with the rigorous numerical calculations, for the magnetic exchange interaction between 

nearest-neighbour spins of J/kB = 3.2(1)K and g-factor values g = 2.33. The excellent 

agreement between the specific heat data and theory gives further credibility to the conclusion 

that [Cu(µ-ox)(H2O)(4-apy)2]n is a very good realization of a uniform S = ½ AFHC. 

The measurements of the magnetocaloric effect presented in this work provide the first 

experimental demonstration of the critical behaviour of the MCE of a uniform S = ½ AFHC 

when the external field is swept across the saturation field. Measurements of the 

magnetocaloric effect at low temperatures across the saturation field yield a very large MCE 

response with a characteristic sign change close to the quantum critical point. The data are in 
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good agreement with the quantum critical behaviour calculated on the basis of exact 

diagonalization and quantum Monte Carlo simulations for J/kB = 3.2K and g = 2.33. The 

MCE measurements demonstrated that [Cu(µ-ox)(H2O)(4-apy)2]n is an ideal model system for 

a uniform S = ½ AFHC. 
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5. Conclusion and Outlook 

Low-dimensional quantum spin systems have been intensively studied theoretically 

and experimentally in the last decades due to the wealth of exciting phenomena originating 

from reduced dimensionality. From the theoretical point of view, the great interest, increasing 

during recent decades, entered on the understanding of magnetic phenomena on the 

qualitative level, and developing models which are exactly solvable, providing insight into 

quantum many-body effects. On the experimental side, the major interests in the low-

dimensional spin systems stem from the discovery of the high-temperature superconductor in 

the mid-eighties. High-temperature superconductivity in the cuprates raises the question of the 

link between the superconductivity and spin fluctuations and magnetic order in one- and two-

dimensional spin- ½ antiferromagnets, and in order to get better insight of the problematic, a 

wealth of the magnetic systems with reduced dimensionality has been created. The new 

magnetic materials, on their own, have exhibited a wealth of new quantum phenomena such 

as Luttinger liquid behavior in one-dimensional systems, and a wealth of new states of matter 

such as valence bond solids, magnetic plateaux, spin-liquid states or spin-Pearls states, etc. In 

all these new low-dimensional magnetic materials interplay of low dimensionality, competing 

interactions and strong quantum fluctuations generate exotic and exciting magnetic 

phenomena. An example of high current interest is the realization of a Bose-Einstein 

condensation (BEC) of magnetic excitations in three-dimensionally (3D) and two-

dimensionally (2D) coupled spin-dimer systems. Other examples are quantum critical 

phenomena observed in systems such as heavy fermion materials, two-dimensional electron 

gases and magnetic insulators. In these systems, the presence of zero-temperature quantum 

critical point (QCPs) holds the key to the unusual behavior found in the systems. The 

extraordinarily interesting quantum critical system is the spin S = ½ antiferromagnetic 

Heisenberg chain, which is inherently quantum critical. Fine-tuning of the magnetic field 

drives the system to a QCP which gives rise to unusual behaviour in the thermodynamics of 

the system. Particularly interesting is the proposed divergence of the magnetocaloric effect 

(MCE) at such a B-induced QCP. 

In this thesis, low-dimensional spin systems ((CH3)3NCH2COO)3MnMCl4 with         

M = Mn
2+

, Co
2+

, Zn
2+

, ((CH3)3NCH2COO)2∙3CuCl2∙2H2O, C36H48Cu2F6N8O12S2 – TK91, 

Cu(ox)( pyOH)⋅H2O and [Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n, have been investigated and 

discussed. All systems are metal-organic compounds consisting of magnetic transition metal 

ions bridged by organic molecules (CO2 - carboxylate, C2O4
 
- oxalate) and side organic ligand 

(betaine, aminopyridine, hidroquinone) in low-dimensional structures. 

 

((CH3)3NCH2COO)3MnMCl4 with M = Mn
2+

, Co
2+

, Zn
2+ 

 

The three isomorphous compounds 3b·MnCl2·MCl2 with M = Mn
2+

, Co
2+

, Zn
2+

 

(BMM, BMC and BMZ) have three different cation sites, two in octahedral and one in 

tetrahedral coordination. Isomorphic replacement takes place on the tetrahedral site leaving 
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the octahedral chains occupied by manganese in all three compounds. The common feature of 

all three compounds is the chain of carboxylate-bridged Mn
2+

 ions (S = 5/2), which are 

coupled antiferromagnetically. The Mn-Zn compound (BMZ) is the only one where the 

magnetic properties of the chains are seen in pure form. In BMM and BMC, on the other 

hand, the chain contribution could be seen after subtracting the paramagnetic contribution of 

the isolated spins in the MnCl4 tetrahedra. The magnetic properties of all three compounds 

BMZ, BMM and BMC are well described by an independent Heisenberg spin chains model, 

where the chains are formed by octahedrally coordinated Mn
2+

 ions with S = 5/2. The weak 

antiferromagnetic intra-chain coupling of J/kB = - 3K, for all three compounds, is provided by 

the π-electron system of the carboxylate groups at the ends of the betaine molecules. The 

metal ions on the tetrahedral positions are magnetically isolated and have no impact on the 

magnetic properties of the spin chains. 

 

((CH3)3NCH2COO)2∙3CuCl2∙2H2O or 2b•3CuCl2•2H2O 

 

2b•3CuCl2•2H2O is a trinuclear copper compound which presents the realization of the 

layered quasi-2D system. The layered structure is built from magnetic Cu
2+

 ions connected 

via a strong network of O-H···Cl hydrogen bonds. The magnetic susceptibility and isothermal 

magnetization showed the low-dimensional magnetic character of the spin system. Using a 

theoretical model of 2D coupled trimers, the antiferromagnetic intra-trimer coupling constant 

J/kB = - 15K and the inter-trimer coupling constants Ja,b/kB = - 4K were extracted. For Cu
2+

 

ions linked by the carboxylate in a nearly planar coordination, this antiferromagnetic       

intra-trimer coupling constant appears surprisingly small, when it is known that the Cu 

coordination planes are tilted against each other, so significant reduction of the magnetic 

coupling constant would be expected. On the other hand, the antiferromagnetic inter-trimer 

coupling constant has an unexpectedly large value, which can be understood when one takes 

into consideration that hydrogen bonds may serve not only as a linker between the spin 

carriers but as a magnetic bridge. The lowest-order perturbation theory showed that the 

resulting effective inter-trimer coupling Jeff becomes ferromagnetic if Jb < Ja/2. The model 

suggested that for certain ranges of the ratio Jb/Ja, non-trivial four-spin exchange processes 

dominate over the usual next-neighbor exchange interactions. 

It remains to be seen to which extent the ratio Jb/Ja in 2b•3CuCl2•2H2O can be 

influenced by chemical substitution and/or hydrostatic pressure to a point where magnetic 

ring-exchange processes become relevant. 

 

C36H48Cu2F6N8O12S2 - TK91 

 

C36H48Cu2F6N8O12S2 - TK91 presents a good realization of a 2D coupled spin-dimer 

system. TK91 is a metal organic compound where the Cu
2+

 ions in distorted octahedral 
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coordination geometry are bridged by the hydroquinone linker to form dimers. The dimer is 

connected by hydrogen bonds with the neighboring dimer. DC magnetic susceptibility data 

point out an intra-dimer interaction of J/kB = 9.4(2)K. The isothermal magnetization showed 

that this spin system cannot be properly described with the isolated dimer model. 

Concomitantly theoretical ab inito calculations reveal that TK91 is a 2D-coupled dimer 

system with intra-dimer interaction J1/kB ~ 13.4K and weak inter-dimer interactions of     

J1/kB = 1.7K and J2/kB = 1.4K. At the same time the low-temperature specific heat 

measurements in magnetic fields B  4T revealed significant deviations from isolated-dimer 

behaviour. In order to check whether TK91 undergoes a field-induced transition at all, the   

ac-magnetic susceptibility was measured as a function of field at various temperatures down 

to 0.05K. No hysteresis was found upon increasing and decreasing the field, at T  0.2K. The 

data reveal a single broad peak around B = 6.2T. For T  0.2K the peak narrows and two 

sharp features appear on its low- and high-field side. These maxima were assigned to the 

lower and upper boundary of a new field-induced state. The lower-field feature indicates the 

field (Bc1) where the spin gap closes, while the high-field feature marks the field (Bc2) where 

the system enters the fully polarized state. From these data the critical fields at 0K are 

estimated to be Bc1 = 5.9T and Bc2 = 6.5T, respectively. 

Quantum Monte Carlo calculations reveal that the system can be well described with 

the 2D Heisenberg model of weakly interacting dimers. The low-temperature phase diagram 

of TK91, in the 50mK  T  120mK indicates that the new state of the system can be 

described as a collectively-coupled 2D dimer state, a state where vortices and antivortices 

start to emerge. Below 50mK the system enters into a state of Berezinskii-Kosterlitz-Thouless 

topological order, a state where the vortices-antivortices pairs are formed. To our knowledge 

TK91 is the first bulk magnetic material showing the evidence for a BKT-transition. 

These discoveries need to be confirmed with other experimental methods. To achieve 

this goal, the next steps would be high-resolution specific heat measurements as well as the 

magnetocaloric effect (MCE) measurements in the low-temperature region T  150mK.  

 

Cu(ox)( pyOH)⋅H2O 

 

To the best of our knowledge Cu(ox)( pyOH)⋅H2O is the first example of a          

metal-oxalate chain with an alternating arrangement of oxalate bridge molecules, ‘coplanar’ 

and ‘parallel’ topologies along the chain. Due to such specific structural properties,              

Cu(ox)( pyOH)⋅H2O belongs to the group of strongly dimerized spin-chain compounds or 

alternating spin chain compounds with J1 = (442 ± 5)K and α = 0.13 ± 0.06. To our 

knowledge this compound is the first Cu
2+

-based polymeric oxalate chain with such a strong 

antiferromagnetic interaction. 
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[Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n 

 

[Cu(µ-C2O4)(4-aminopyridine)2(H2O)]n is a good realization of the uniform S = ½ 

AFHC. This 1D compound is the first example of a transition metal polymeric structure in 

which the oxalate molecule bridges the metal ions through one oxygen atom only while the 

second one remains free. Due to such an unusual configuration of the oxalate bridge in the 

[Cu(µ-ox)(H2O)(4-apy)2]n polymer formation, the moderate antiferromagnetic exchange 

interaction J/kB = 3.2(1)K between the Cu
2+

 ions within the chain was enabled. A moderate 

saturation field of Bs = 4.1T enabled the study of the quantum critical behavior of the spin      

S = ½ antiferromagnetic Heisenberg chain. Using the magnetic field as an external tuning 

parameter, the system was driven to a quantum critical point (QCP) and the proposed 

divergence of the magnetocaloric effect (MCE) at the B-induced QCP was observed. This was 

the first experimental demonstration of the critical behaviour of the MCE of uniform S = ½ 

AFHC. The MCE measurements, together with all previous studies (dc-susceptibility,         

ac-susceptibility, isothermal magnetization, ESR and specific heat), demonstrated that         

[Cu(µ-ox)(H2O)(4-apy)2]n is a good model system for a uniform S = ½ AFHC. 

It remains to be seen by high-resolution ac-susceptibility measurements in zero field 

whether or not the logarithmic singularity can be resolved for T  0K. The existence of 

Dzyaloshinskii-Moriya interaction remains to be proven as well. 
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