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Abstract  Vibronic (vibrational-electronic) transition is one otfundamental processes
in molecular physics. Indeed, vibronic transition is esis¢moth in radiative and non-
radiative photophysical or photochemical properties ofetales such as absorption, emis-
sion, Raman scattering, circular dichroism, electrongdfem internal conversion, etc. A de-
tailed understanding of these transitions in varying systeespecially for (large) biomolecules,
is thus of particular interest.

Describing vibronic transitions in polyatomic systemshwlitundreds of atoms is, how-
ever, a difficult task due to the large number of coupled deyad freedom. Even within
the relatively crude harmonic approximation, such as fanBOppenheimer harmonic po-
tential energy surfaces, the brute-force evaluation ofi€kaCondon intensity profiles in a
time-independent sum-over-states approach is proteditivcomplex systems owing to the
vast number of multi-dimensional Franck-Condon integrals

The main goal of this thesis is to describe a variety of mdbcuibronic transitions,
with special focus on the development of approaches thatpplicable to extended molec-
ular systems. We use various representations of Fermidegotule in frequency, time
and phase spaces via coherent states to reduce the compaitatbmplexity. Although
each representation has benefits and shortcomings in itsga¢iea, they complement each
other. Peak assignment of a spectrum can be made direatly ctculation in the fre-
guency domain but this sum-over-states route is usually. slo contrast, computation is
considerably faster in the time domain with Fourier transfation but the peak assignment
is not directly available. The representation in phase esples not immediately provide
physically-meaningful quantities but it can link frequgrand time domains. This has been
applied to, herein, for example (non-Condon) absorpticacp of benzene and electron
transfer of bacteriochlorophyll in the photosyntheticatéan center at finite temperature.

This work is a significant step in the treatment of vibronirusture, allowing for the
accurate and efficient treatment of complex systems, andda® a new analysis tool for

molecular science.




Kurzfassung Absorption von Licht und der darauf folgende Elektronemséfar in pho-
tosynthetischen Systemen sind entscheidende Prozessseirem Alltag. Die Verbesserung
von Kontrolle und Effizienz dieser Prozesse ist eine Headsfung im Hinblick auf die
weltweite Nahrungs- und Energieversorgung. Diese Art vaz&ssen wird jedoch dadurch
kompliziert, dass Absorption, Emission und Lichtstreuuagschiedene strahlungslose moleku-
lareUbergange wie Ladungswanderung, innere Umwandlung urdksmbinationsiibergange
nach sich ziehen konnen. Ein genaues Verstandnis diesees$3e auf molekularer Ebene
in verschiedenen Systemen ist daher von besonderem kderes

MolekulareUbergangsprozesse werden durch Wechselwirkungen zwis@raen, Elek-
tronen, der Umgebung und aulReren Feldern (z. B. elektroetaghen) bestimmt. Das
Zusammenspiel von vibratorischen und elektronischerrduischen) Freiheitsgraden der
Molekiile spielt typischerweise eine bedeutende Rolledatekularen (vibronischer)ber-
gangen. Ein molekularer vibronischgbergang wird fiir gewshnlich durch Fermis goldene
Regel (FGR), die sich aus der zeitabhangigen Storungséhableitet, als eine das abso-
lute Quadrat voriJbergangsmomenten enthaltendeergangsgeschwindigkeitskonstante
beschrieben. Laut dem Ausdruck fir dikergangsgeschwindigkeitskonstante in der Ba-
sis der Born-Oppenheimer-Wellenfunktionen ist einer demli&selbeitrage zu vibronis-
chenUbergangen der Franck-Condon-Faktor (FCF). Der FCF ifihiget als das Abso-
lutquadrat de§Jberlappungsintegrals zwischen zu verschiedenen etéktizen Zustanden
gehorenden Schwingungswellenfunktionen.

Die theoretische Beschreibung vibronischiéergange groRer polyatomarer Systeme
(mehr als 100 Atome) ist jedoch wegen der hohen Dimenstanadine schwierige Auf-
gabe. Sogar in einer relativ groben harmonischen Nahemieglen harmonischen Born-
Oppenheimerschen Potentialhyperflachen ist die theotetbrute-forceBerechnung der
FC-Intensitatsprofile durch eine Summenbildung Uberzeitunabhangigen Zustande fur
komplexe Systeme wegen der gewaltig groRen Zahl multi-dgioaaler FC-Integrale un-
geeignet.

Das Hauptziel dieser Arbeit ist die Beschreibung eineradkl molekularer vibronischer
Ubergange, insbesondere der Entwicklung von Herangeleissn, die auf ausgedehnte
molekulare Systeme anwendbar sind. Wir haben verschiedargellungen von FGR in
Frequenz-, in Zeit- und, zur Verringerung des Rechenautesiiiber koharente Zustande,
in Phasenraumen verwendet. Jede Darstellung hat Vor- wawththile in ihrer Auswer-
tung, aber alle erganzen einander. Die SignalzuordnuisgSgektrums zu verschiede-
nen Quantenzustandsuibergangen kann direkt nach destBeireg in der Frequenzdomane
vorgenommen werden, doch ist dieser Weg Uber die Sumngermm Zustanden normaler-
weise zeitintensiv. Im Gegensatz dazu ist die Berechnureg EBouriertransformation in
der Zeitdomane schneller, aber eine Zuordnung der Signelerschiedenen Quantenzus-
tandsiibergangen ist nicht direkt moglich. Die Darstgdl im Phasenraum liefert nicht so-
fort physikalisch bedeutsamen Grol3en, kann aber FrequeazZeitdomane verknipfen.
Folglich kénnen wir die molekularedbergangsspektren effizient berechnen, einschlieRlich
thermischer und Nicht-Condon-Effekte. Zusatzlich zuiifnzsteigerung sind wir in der
Lage, die einzelnen Dynamiken der Schwingungsfreiheitdgmwahrend der elektronischen
Ubergange fir relativ groRe Systeme zu analysieren.

Unsere Methode ist nicht nur auf molekulatébergange anwendbar, sondern auf jedes
physikalische Problem, das eine Naherung Uber harmuoai®szillatoren enthalt, beispiels-
weise Nichtgleichgewichtsdynamiken dissipativer System

Vi



Contents

Acronyms
Notation

List of figures
List of tables

1 Introduction
1.1 Achievements . . . . . . . . . . . . e
1.2 Chapter summary and dissertation outline

2 Background
2.1 One-photon absorption and resonance Raman scattering .. . . . . . .
2.2 Duschinskyrotation . . . . . . . .. ... ... e
2.3 Basic properties of coherentstates . . . .. .. .. ... . ... ..
2.4 Franck-Condon transition at zeroKelvin . . . . . . ... ..
2.4.1 Coherent state-based generating function . . ... ... ...
2.4.2 Partitioning integral spaces . . . . . . ... ... e
2.5 Chaptersummaryandconclusion. . . .. .. ... ........ ...

3 Franck-Condon integrals and beyond
3.1 Franck-Condonintegrals . ... ... ... ... . .. . ........
3.2 Beyond Franck-Condonintegrals . . . . . . ... .. ... ... ...
3.3 Chapter summary andconclusion. . . . .. ... ... ...... ...

4 Thermal distribution of Franck-Condon factors
4.1 Thermalintegralkernel . . . . . . ... ... ... ... ... ... .

4.2 Sumrules . . ... e

4.2.1 Noexcitedmodesinth€space . ................
4.2.2 Oneexcited modeinthéspace ... ..............
4.3 Integralprescreening . . . . . . . ..
4.3.1 Vibrational mode couplingerror . . . ... .. ... ......
4.3.2 Vibrational mode excitationerror . . . . ... ... ... ...

4.3.3 Errorboundcondition . ... ... ... ... .

4.4 Thermal time-correlation function . . . . . .. .. ... ... .....
45 Resultsanddiscussion . . . . . . . . .. e

Xii

Xiv

Xiv

42
44
46
49

Vii



Contents

451 Formicacid . . . . . . . . .. e 62
452 Anthracene . . . . . . . o o i i e e e 65
4.6 Chapter summaryandconclusion. . . ... ... .......... ... 68
Probability density functions of Franck-Condon transiti ons 70
5.1 Time-independent cumulant generating function . . . ...... . . . ... 72
5.1.1 Cumultants of vibronic transition energies . . . . . . N ¥
5.1.2 Time-propagation with time-independent cumulanplamlon ... 15
5.1.3 Cumultants of vibrationally excited quanta . . . . . .. .. .. 77
5.2 Momentgenerating function . . . .. ... ... ... .. .. ... ... 77
5.2.1 Book keeping algorithm . . . . . ... ... L 78
5.2.2 Algorithm for evaluating partial derivatives . . .. .. .. ... 80
5.3 Resultsanddiscussion . ... ... . ... ... ... . o0 80
5.3.1 Cumulants of Franck-Condon profiles . . . . . .. ... .. ... 80
5.3.2 Thermal energy redistribution via Duschinsky modeptiog . .. 85
5.4 Chapter summaryandconclusion. . . . ... ... ......... ... 91
One-photon absorption with Herzberg-Teller effects 92
6.1 Methodology . . .. . ... .. . . . ... 92
6.1.1 Augmented generating function . . ... ... ... ....... 93
6.1.2 Time-dependent density matrix formalism . . . . . .. ....... 96
6.1.3 Franck-Condon-Herzberg-Teller sumrules . ... .. .. ..... 97
6.1.4 Spectral density functions . . . .. ... ... ... ... ... 99
6.2 Integral prescreening . . . . . . . . . .. 101
6.2.1 Vibrational mode couplingerror . . . . .. ... ... ... .. 102
6.2.2 Vibrational mode excitationerror . . . .. ... ... ..... 103
6.3 Resultsanddiscussion . ... .. .. ... ... 0. 103
6.3.1 (FC)HT generating function for benzene . . . . . . 104
6.3.2 (FC)HT profile of benzene for various electronic smm: methods 107
6.4 Chaptersummaryandconclusion. . . ... ... ... ...... ... 108
Single vibronic levels 111
7.1 Methodology . . .. . . .. . . . .. 112
7.2 Application to resonance Raman scattering . . . .. ... ... ... 115
7.3 Application to single vibronic level transition . . . . ... ... .. ... 118
7.4 Application to anharmonic transition . . . . . .. .. ... ... L. 119
7.5 Chapter summary andconclusion. . . ... ... ... ...... ... 122
Conclusion and outlook 124
Zusammenfassung 132
Supplementary data for chapter 4 139
Al Generalremarks . . . . . . . . . . e 913
A2 Formicacid . . . . . . . ... 140
A.2.1 Maximum mode excitation numbers . . . . ... ... ... ... 401
A.2.2 Modecouplingerror . . ... . .. . ... e 141

viii



Contents

A.3 Anthracene ... ... ............

A.3.1 Maximum mode excitation numbers

A.3.2 Mode coupling error . . ... ....

Supplementary data for chapter 5
B.1 Generalremarks. ... ... ........

B.2 Formicacid . .. .. ... .. ........

B.3 Anthracene ... ... ...........

B.4 Bacteriochlorophyll . . . ... ... ... ..

Supplementary data for chapter 6
C.1 Generalremarks. . .. ... ........
C2 Benzene .. ... ... . ... .. .....

C.2.2 Maximum mode excitation numbers
C.2.3 Mode coupling error . . . .. ...

Explicit expressions for chapter 7

D.1 Generalremarks . . ... ... .......
D.2 Resonance Raman scattering . . . . . . .
D.3 Single vibronic level transition . . . . . . .
D.4 Anharmonic transition . . ... ... ...

Bibliography
Acknowledgements

Curriculum Vitae

154
Y I )

................. 155
C.2.1 Electronic transition dipole moment . . . . . ... ... ....




Acronyms

BO Born-Oppenheimer

CE cumulant expansion

cF coherent-Fock

CS coherent state

DFT density functional theory

DOF degrees of freedom

DOS density of states

ECD electronic circular dichroism

ET electron transfer

FC Franck-Condon

FCF Franck-Condon factor

FCW Franck-Condon factor weighted density of states
FC/HT Franck-Condon/Herzberg-Teller interference
FFT fast Fourier transform

FGR Fermi’s golden rule

FT Fourier transform

FWHM full width at half maximum

GF generating function

HRF Huang-Rhys factor

HT Herzberg-Teller

IC internal conversion

ISC inter-system crossing

MHP multi-variate Hermite polynomial

MQM maximum excitation quantum number of modes




Contents

MSM maximum number of simultaneously excited modes
ONV occupation number vector
OPA one-photon absorption
OPE one-photon emission

PDF probability density function
PE photo-electron

PES potential energy surface
rR resonance Raman

SDF spectral density function
SVL single vibronic level

TCF time-correlation function
TD time-dependent

TDM transition dipole moment
Tl time-independent

UV ultra-violet

Xi



Notation

U1
e Underline is used for vectorse. v = (v1,--- ,on)' = : | isanN-dimensional
UN
column vectort is transpose.
e Special vectors are defined for= (0, -+ ,0)%,1=(1,--- ,1)*and} = (,--- ,3)*

e Bold font is used for matrices, for exampdeis an N-dimensional (real or complex)
square matrix.

¢ 1is an identity matrix.
e 0is asquare zero matrix.

e "diag” transforms an/N-dimensional vector to atV-dimensional diagonal square
matrix which takes the diagonal elements from the vectry = diag(v).

¢ "bldiag” constructs a block diagonal square matrix from square in®syi.e. A =
bldiag(a, b, c,d).

e A notation is defined for products of vector elements with posi.e. [[ - =

¢ A notation is defined for products of factorials of vectornamts with powersi.e.

1y

Tyay (ITx (el ) - (T (N ) ™NoF).

e A notation is defined for multi-dimensional partial derivas, i.e. 95! 7Y =
9=km™k N 9Zk"Nk
[T 0oy 5" [ ooy )

e An exponential functional is defined fof[A, b; 2] = exp(—%gtAg +b'z).
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1. Introduction

Theoretical molecular spectroscopy [1-8] plays a pivotdd in molecular physics and
chemistry in complementing experimental techniques ssalitea-high resolution molec-
ular spectroscopy and ultra-fast pump-probe laser spaxipy [9-11]. Femto- and atto-
second laser techniques can resolve fast processes likeutenl vibration in the femtosec-
ond regime or electron dynamics in the attosecond regimpedially zero kinetic energy
photo-electron (ZEKE-PE) spectroscopy in accompanyintgoubar beam techniques,g.
supersonic molecular beams [9, 10] can provide high résolt cm~! = 1.2 x 107 eV)
molecular spectra in electronic regime. Structural infation and energy levels can be
obtained from vibronically (vibrational and electronic) vibronically (rotational, vi-
brational and electronic) resolved molecular spectra. oRasce frequencies are related
to the molecular energy level differences. Such propefftiedarge molecular systems
can typically only be interpreted with the help of electmmsitructure calculations (see
e.g. Ref. [12], for applications of density functional theoryKD) [13—-15] and its time-
dependent (TD) counter-part TDDFT [16]) and correspondiibgational analyses. In ad-
dition, line strengths (intensities of spectral band ljreasd the corresponding peak widths
provide information about the molecular transition prdbitds and lifetimes of the cor-
responding molecular states, respectively. Spectra gé lpplyatomic systems (hundreds
of atoms) are usually quite congested such that analysd® cfitectra are demanding be-
cause of huge density of states (DOS). Therefore it is napess simulate the molecular
spectra theoretically with proper molecular model systésaee.g.[17—19]), especially for
complex systems.

A simple theoretical model of molecular transitions betwé&®o electronic states, ac-
companied by vibrational motiong€. vibronic transitions), is commonly adopted to ex-
plain various molecular processes. This vibronic tramsitmodel has been used to ex-
plain molecular transition processes (see Fig. 1.1) sutlme-photon absorption (OPA)
(seee.qg. Refs. [12, 21-54]), one-photon emission (OPE) (sege Refs. [55-59]), res-
onance Raman (rR) scattering (seg. Refs. [17, 60-76]), electron transfer (ET) (see
e.g. Refs. [77-89]), internal conversion (IC) (seqy. Refs. [90-95]) and inter-system
crossing (ISC) (see.g. Ref. [96]). The vibronic transition probabilities betwesvo elec-
tronic states are proportional to the Franck-Condon fadlBCFs), the absolute square of
overlap integrals between vibrational states of diffeedattronic states. For the theoretical
description of such vibronic transitions, the FCFs needeg@dmputed. The calculation
of vibronic transition spectra is, however, not an easy tastause the number of Franck-
Condon (FC) integrals to be evaluated for the spectra grayilly with increasing sys-
tem size, temperature, energy window and coupling betwédmnnic states. In this thesis
possible ways are suggested to reduce computational effoidescribe various molecu-
lar vibronic transitions of large molecular systems by bird) frequency and time domain

c.f. One-photon infrared (IR) transition (seeg. Refs. [1, 20]) can be considered as a vibronic transition
within one electronic state.
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S OPA
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OPE (fluorescence)
R
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Figure 1.1.: Intramolecular transitions are illustrated in terms ofctean coordinate (internal
nuclear coordinate) and BO PESs. Each parabgla%S S;, T1) represents electronic PES.
The transitions are illustrated only between these pasaifol simplicity. One-photon absorp-
tion (OPA) is an optical transition from singlet ground sté%)) to singlet excited state ($
with transition angular frequencw]. One-photon emission (OPE) is a radiative transition
from the singlet excited state {Bto the singlet ground state {(Bwith transition angular fre-
quency {s). Resonance Raman (rR) scattering is a two photon proceskimny the incident
light (w) and scattering light{s). wa.q is the adiabatic electronic transition angular frequency
andwy is the adiabatic transition angular frequency includirentbrational zero-point energy
difference between the two oscillators. Internal conwergIC) and ISC are the radiationless
transitions via nonadiabatic coupling without spin stdiange ($ to ;) and with spin state
change ($ to triplet T;). Electron transfer (ET) is a radiationless transition adlwo the
charge transfered state.

representations of vibronic spectra via Glauber’s cohestates (CSs) (complex Gaussian
wavepackets) [97, 98].

In the following subsection we review the two-electroniats model system of vibronic
transition between BO electronic PESs. Afterwards we gitgicnolecular transition prob-
lems treated in this thesis and outline possible soluti@weldped in the next four subsec-
tions. The achievements of this thesis are sketched in SkcThis introduction chapter is
summarized and the outline of this thesis is given in Sec. 1.2

Vibronic transition The theoretical description of molecular electronic tithmss is
primarily based on the BO approximation [99] which invoheegroduct ansatz of electronic
and nuclear wavefunctions. The fast electronic degreegetflbm (DOF)«,;) and the slow
DOF of the nuclei £,,,) are assumed to be separable within the BO approximatio® Th
electrons are assumed to be moving so fast that nuclei afipbarstationary on that scale.
The DOF of the nuclei therefore are treated as parametrighlas for the electronic wave-
functions so that the motion of nuclei changes adiabayicailan electronic energy surface
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without crossing to other surfaces. With this approximation the moleculaataatic wave-
functions (rq, r,,|¥7°!)) are expressed in a product formieth electronic (r, r,,,|$))

7,n

andn-th nuclear (r,,,[¢}%)) wavefunctionsi.e. (1, 7, [¥15") = (Tep, 7[5 ) (T | 0F0)-
The nuclear wavefunctions are often further approximated product of rotationak/(*°)
and vibrational {V'?) wavefunctions. One should employ Eckart conditions [10fin-
imize the coupling between rotational and vibrational DGE¢e(also Sec. 2.2) to support
this approximation. The molecular wavefunction is thenresped as products of three

wavefunctionsj.e.

<£el7£nu‘ zr'?rcz)l> = <&va‘¢?1><97%XW%"S%MQWX%V% (11)

wheren, andn, are quantum numbers of rotational and vibrational wavdfans respec-
tively, and (6, ¢, x) are Euler anglesQ is a normal coordinate vector witN-dimension
which is three times the number of atoms minus six(five)didOF,i.e. N = 3Natom —
6(5) for nonlinear molecules (for linear molecules). Couplirgvibeen distinct adiabatic
PESs is in this picture induced by the nuclear kinetic enepgrator. This is called diabatic
(nonadiabatic) coupling beyond the BO approximation. @oitienal electronic structure
calculations provide the BO multi-dimensional PESs as atfan of vibrational coordinates
(Q)3. The rovibrational wavefunctions are estimated from almational Hamiltonian con-
strained to a specific BO (non-crossing) adiabatic PES.

The intramolecular (optical or radiationless) processe (Fig. 1.1) are considered as
electronic transitions between two distinct BO PESs. Aditwy to BO and FC the elec-
tronic motion is so fast compared to the nuclei, that the @iudd not move during the
electronic transition. When a molecule undergoes an eleictitransition, the molecular
structure reorganizes and relaxes to the new equilibrivnetstre of the new BO PES while
the molecule is vibrating to adjust to the new PES. Varioutemdar vibronic transitions
are illustrated in Fig. 1.1. In addition to these, also othibronic transitions like electronic
circular dichroism (ECD) (see.g. Ref. [102]) and two photon absorption and emission (see
e.g.Ref. [3]) are usually described via Fermi’s golden rule (FER3, 104] resulting from
TD perturbation theory within the BO picture. The FGR equis originally a rate expres-
sion. The rate is proportional to the absolute square of tatixnelements for a transition
moment operatorN/) and the DOS(), i.e. the transition rate from staté) to | f) is

Ty = —|(f|M]i)[*p. (1.2)

To be specific, for instance the cross sections of QR#pf (w; 7')) and the rate of OPE
(Copk(w; T)) between two electronic states, initial)(= [¢5')) and final (f) = [¢F))
respectively, at a transition frequenoyand at a finite temperatur&’) is proportional to a
commort spectral density function (SDF)¢p (w; T))°. The (isotropically averaged) SDF

2cf. Two PESs of the same irreducible representation can meetno d conical intersection near crossing
points, the BO approximation breaks down (seg Ref. [2, 100]).

3¢f. In crude adiabatic approximation, the electronic wavefionchas no nuclear coordinate dependence such
that it includes only one specific nuclear structure as ampearer (see.g. Ref. [2]).

“However, initial and final electronic states should be resdrfor the emission process compared to the
absorption process because emission process is from thedegtate to the lower energy state.

5 H H . :« [Electric dipole moment]? [C-m]?
The dimension opop (w; T) is Enorey] e -
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is obtained from FGR (semg.Refs. [51,52, 54,65, 70, 75, 95].), such that

7T2 v
oopa(w;T) = % <G—§> (hw)pop (w; T'), (1.3)
Fope(w;T) = %36% <j—§> (hw)*pop (w; T), (1.4)

whereey, €9 andcg are the charge of a proton, the electric constant and thel sifdight

2
in vacuum, respectively, and, = (47;% is the fine-structure constant. Within the BO
adiabatic approximation the (non-Hermitian) model Hapmian of a two-electronic-state

system for the vibronic transitions would read [34]
HYP = [ HYP (| + |f) (hwaa + HY =0T /2)(f], (1.5)

wherew,q is the electronic adiabatic transition frequency (see Eitj) between electronic
states|f) and|i). T'/2 is related to the inverse lifetirfieof the final electronic state and
the initial state is assumed to have infinite lifetiméf}"> and H" are the vibrational
Hamiltonians of initial and final electronic states respety, i.e.

+VHQ), (1.6)

whereQ and Ql are the mass-weighted normal coordinates (hereafter hamoadinate
refers to the mass-weighted one) of initial and final statspectively, and® and E’ are
the conjugate momentd/; andV; are the corresponding potential enerdieBhe specific
form of the approximate interaction Hamiltoniaf¢t) at timet depends on the transition
considered. For an electric dipole transition one commtnelgts, for instance, the interac-
tion between a transition dipole moment (TDM_/)eI(%) and a time-dependent electric field
(E(t)) as classical,

H™=_p . E(t), 1.7)

Zelec —

Bee = 1HRQ) ] + [ @S, (1.8)

wherei(Q) = (f[f,, |?) is the electronic TDM which has been averaged over electroni
DOF. For freely rotating moleculeg.g. in the gas phase) the isotropic approximation can
be made to the polarization direction of ligle. the angular dependency of the electric
transition dipole momenti{ - E(t)) can be ignored after taking the isotropic rotational
average over the polarization vector of light (&g.[3, 17]). The averaged facto%I is
included already in the prefactors of Egs. (1.3) and (1.49.0ah express the SDF in terms

8n principle the line widths of vibronic levels can vary, bué assume here that the line widths depend only
on the electronic levels.e. the line widths of vibronic transitiors, .- /2 are assumed to be constakiy)
(seee.g.Ref. [17]). The assumption is related to the homogeneoediinadening arising from the (rapidly
fluctuating) system-bath interaction (s2g. Ref. [5]).

"The potential energy surfaces and the corresponding miaienasually different from each other for different
electronic states. We allow for different normal coordansystems with their origins shifted to the minimum
of each electronic PES.
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of electronic, rotational and vibrational wavefunctioria VD perturbation theory,e.

()55 )T

%, 1My

popL(w;T) = Z PnV(T)Pnr(T)K‘I’?B;K favatear

! !
Ny, Ny, Ny, N

elec

L(Wa Wad + Wn! ny + Wnlngs F), (19)
h
hp
L(w,w;T) _1 (37) — (1.10)
T (A @)+ (51)?

wherew,, ,, andw, , are the vibrational and rotational transition frequencrespec-
tively, between the two electronic states, (7') andp,, (7) are the thermal populations
of initial vibrational and rotational levels, respectiyeln Eq. (1.9) a Lorentzian line shape
function L defined in Eq. (1.10) with full width at half maximum (FWHM) 6fis used as
DOS for the two-state-model Hamiltonian (Eq. (1.5)) thatamts for a finite lifetime of
the final state L approaches to a Diracdistribution for decreasingj and SDF corresponds
in this limit to a stick representation. For spectra thatratationally not-resolvedy, »,
can be ignored in the distribution function of DOS with asgtions (v, ,,, > wn;_,m)g
and " > wy ). Then the rotational part can be factored out from the SORally the
vibronic transition problem is simplified to be a transitibetween two sets of vibrational
wavefunctions with the transition moment opergio@) (Eq. (1.11)),.e.

porL(wiT) = Y pu, (DY Q)Y )PL(w, wad +wng 03 D) (1.11)

/
Ty Ty

in which the sum ruley_,, ., pnr(T)K\III}?n;’\I[;,OnrHQ = 1 is used. Neglecting rotational
DOF would be still a reasonable approximation for large admamly oriented condensed
phase molecules because those molecules are mostly iniamtess state (semg. Refs. [6,
17]) and the polarization directional vector of the elacfield is fixed in space.

The vibrationally resolved ECD (sezg. Ref. [102]) and rR (see.g. Ref. [6]) cross
sections can be expressed in a similar way. The major diféeré¢hat appears in ECD
is that it includes a coupling term of electronic and magn&bMs, i.e. the rotational
strength (see.g. Ref. [20]). And for rR the transition moment is frequency eegent
(see Ch. 2). Radiationless processes (ET, IC and ISC) imgphhe nonadiabatic coupling
operator (see.g.Refs. [87,93-95, 105]) are described by similar expressioreq. (1.11)
with slight modifications. As mentioned already, many molac transition processes are
expressed via FGR in terms of a transition moment in the tidoral wavefunction basis.
Thus, the overlap between two vibrational wavefunctiohs,RC integrals, are important in
understanding those molecular processes.

Evaluation of the sum-over-states expression (1.11) (eddled time-independent (TI)
frequency domain expression) is rather straightforwdrtihe vibrational wavefunctions as
well as the nuclear coordinate dependence of the transitioments are known. The TI
approach is beneficial in that it can provide information whadividual peak intensities
naturally from the direct evaluation of the integrals. Thealp assignment is important for
analyzing experimental spectral data and it is the main denfar the TI method. Even if

8The vibrational structure is then assumed to be embeddém ielectronic structure and the rotational struc-
ture to be embedded in the vibrational structure.
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the evaluation of the Tl expression (1.11) is straightforhia the vibrational wavefunction
basis, the application is restricted to small moleculapi@lly tri- or tetra-atomic) sys-
tems considering the full molecular (anharmonic) Hamilion(seee.g. Refs. [53,106] and
Sec. 7.4) within the Condon approximatigi(Q) ~ K, = @ constant vector). Evaluating
FCFs of anharmonic oscillators in the Tl fashion for extehdgstems is computationally
prohibitive because the anharmonic vibrational wavefionstare typically expanded in a
large number of basis functions.§. harmonic oscillator basis set). The harmonic approxi-
mation to the BO PESs gives satisfactory results ésgeRefs. [36, 43—46]) for molecules
which have well separated initial and final BO surfaces arig small molecular structural
change? during the electronic transition. We may rewrite (approaie) the SDF (1.11)
within the harmonic oscillator model,

pL(;T) = po(T) (| (Q)|0) P L(w, wo + wy 3 T), (1.12)

where|v) and|v’) are theN-dimensional harmonic oscillator eigenstates of initiad &inal
electronic states, respectively, in the occupation numabetor (ONV) representationu

is the adiabatic vibronic transition frequency (see Fid.) hndw, , corresponds to the
vibrational frequency difference of two harmonic eigetetaexcluding the harmonic zero-
point frequency difference which has already been includedg,.

Within the validity of the FC approximation(Q) ~ 1) and the harmonic oscillator ap-
proximation there still remains a challenging problem ialagting Eqg. (1.12) in the Tl man-
ner for two multi-dimensional harmonic oscillators beirmgf pnly displaced and distorted
but also rotated. When the molecule (multi-dimensionafrimanic oscillators) undergoes an
electronic transition, it experiences the equilibriunrustaral change (displacement), po-
tential energy curvature change (distortion) and normatdioate variation (rotation). The
two sets of normal coordinates are related (approximataha linear transformation, the
so called Duschinsky transformation (Ref. [107] and see k. 2.2 for details),

Q =SQ+d (1.13)

This linear equation implies that the final statedimensional normal coordinat&®’ are
expressed by a rotation (witN x N matrix S) of the initial state normal coordﬁat@
with an N-dimensional displacement vectdr The Duschinsky effect is one of the main
reasons for asymmetry between absorption and emissiofrapéicis responsible for the
broadening of vibronic spectra and the effect is enhanaads(iecific vibrational modes)
when there are finite temperature effects @eeFig. 1.2). Small [108] pointed out that the
Duschinsky effect is as important as the vibronic couplifigats because the mode mixing
introduces a quadratic coupling between initial and finafational wavefunctions,e. the
Duschinsky effects must be considered for vibronic cogppiroblems. The importance of
Duschinsky mode mixing effect has been emphasized by mathpsuin various fields,
such as absorption processes (sag Refs. [19, 44-47, 49]), resonance Raman scattering
(seee.g. Refs. [17, 56, 61, 64, 66,67, 72,73, 75,109]), electronstiemprocesses (sexg.
Refs. [59, 82,86, 87, 110]), radiationless transitiong é&sg. Ref. [91, 94]), in photoexcited
state cooling processes (seg. Ref. [41]), vibronic coupling of electronic transitionseés

%e.g.the transitions from ground to the first excited states ot ifirsized states.
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e.g.Refs. [80, 108]) and molecular junction tunneling (seg Ref. [111]).
When there is no Duschinsky rotatiofi & I = an identity matrix), the FC integrals can
be separated into products of one-dimensional FC intedrals

N

(') = JJ(wilvs), (1.14)

i=1

which can be evaluated easily by one-dimensional Hermitgnpmials (see Sec. 2.2).
However if the Duschinsky effect is dominar (¢ I) then the multi-dimensional FC
integrals cannot be expressed as a simple product of onerdional FC integrals. Further-
more, the number of FC integrals to be evaluated grows stegfi increasing molecular
system size, temperature and vibronic transition energg€g. Ref. [112]). Evaluation
of the huge number of multi-dimensional (inseparable)graks make the Tl description
of the FC transition computationally a hard problem. Moexpwhen the zero-th order of
the TDM () is not dominant one has to consider the coordinate deperdgfithe elec-
tronic TDM (,u( ), i.e. the non-Condon effect. The computational problem becomes e
harder. FC- forb|dden\&0\ = () or weakly allowed FC|g, | ~ 0) transitions are usually
described by a vibronic coupling intensity borrowing matblm of Herzberg and Teller
(seee.g. Refs. [2, 4, 20]). Herzberg and Teller [113] expandgd?) with respect to the
normal coordinates as follows,

Q) = +ZMQ1 (1.15)

whereH; is the first derivative with respect to thigh normal coordinate(y;) at the equilib-
rium structure of the initial stat&) = Q). This expansion is called Herzberg-Teller (HT)
expansion. Usually the HT expansion contains only lineanse In this case one refers to
the linear order expansion. When the expansion includesh@her order terms it is called
the nonlinear HT expansmm in Eq. (1.15) is a first derivative of a matrix element of a
perturbed Hamiltonian, with respect to théh vibrational coordinate, between the ground
and FC-allowed other excited electronic states esee Ref. [20] or Sec. 2.1). The SDF
that is necessary for describing the non-Condon effectdedormulated as follows (in a
general form)

pL( va ( |f|v> (W, wo + wy v 1), (1.16)

which includes general operatof$P, Q) andg(P, Q), which are functions of momentum
(P) and position Q) operators. Wherf = § = p in Eq. (1.16) the FC SDF is recov-
ered. Momentum operators, coupling terms between momeananposition operators
and nonlinear operators could appear in the IC, ISC, anhaondR and vibronic coupling

problems. Therefore the ability to access the non-CondoR @L16) is essential in de-
scribing those kinds of molecular transitions beyond thadom approximation. The term
"non-Condon” is, in this thesis, restricted to any tramsitproblem involving polynomial

%The expansion can be made at any reference structure @éef. [49]).
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expression of transition operators. Here, transition ajoes could be momentum and posi-
tion operators. The term "non-Condon integral” refers ®dbrresponding matrix elements
of non-Condon operatorg (P, Q)).

Franck-Condon integrals and beyond A variety of methods to efficiently compute
multi-dimensional FC integrals within the harmonic appnaation that account Duschin-
sky mode mixing effects have been previously developed égpdref. [46] and citations
therein). Although the evaluation of FC integrals has a Ibisgory (seee.g. Ref. [114]),
fast evaluation of FC integrals is still demanding and itaatied recent interest (seeg.
Refs. [115-121]). Especially for applications of large emillar systems the fast evaluation
of FC integrals is important. In order to deal with large @atymic systems and many other
interesting quantum molecular problems like vibronic dgpeffects involving these kind
of overlap integrals, it is necessary to improve the exgstiecursive or iterative) FC integral
evaluation schemes. Usually the evaluation of linear H¥etyntegrals ((1_)’|QZ-|Q>) is based
on the FC integral evaluation schemes because the linegyrats can be decomposed into
two FC integrals exploiting the second quantized expressfgosition operators [36, 49].
In chapter 3, we suggest a general non-Condon integralai@iuscheme by exploiting the
CSs and the CS phase displacement operators [97, 98] inrtineofamulti-variate Hermite
polynomials (MHPs) (see Ch. 3).

Franck-Condon factors and beyond Even with fast integral evaluation schemes at
hand, the brute-force evaluation of all inseparable irtisgwithin a given transition en-
ergy window should be avoided due to the large vibrationaSD@® should be noticed that
usually only a tiny fraction of integrals contributes sirantly to a given photophysical
guantity of interest (see.g. Ref. [36]). There have been approaches to exploit this aspec
(seee.g. Refs. [44—46]) which classifies the integrals into vibraéibexcitation patterris
(number of simultaneously excited vibrational modeand maximum excitation quantum
number of individual vibrational modes). They give satitfaly results with the reduced
basis set for large systems.g. 156 atomic system in Ref. [46] for the FC transition at zero
Kelvin). Santoroet al. [44, 45] have devised a method to restrict the vibrationaitation
patterns according to the predefined total number of integiiderein the allowed number
of simultaneously excited vibrational modes in the FC irsésyincreases until the conver-
gence criteria are fulfilled (total number of FC integralsl éotal sum of FCFs). Similar to
other types of convergence strategies @&g Refs. [43, 122—-124]) it is difficult to guess
the quality of the calculatiom priori before the evaluation of individual FC integrals is
performed.

Jankowiak, Stuber and Berger [46] have solved this problgrimtiooducing a CS-based
generating function (GF) approach [24-29, 125] for FC titaors processes at zero Kelvin
where the initial vibrational state stays always to theafilmnal ground state. It was shown
that one can restrict the vibrational excitation pattennd estimate the error bounds of a
corresponding calculation, before individual integrais evaluated, via applying a thresh-
old to the total FC intensity (summation of FCFs). This idezhintegral prescreening [46],
because unimportant batches of integrals can be excludedeten individual integral is

Hsubset in vibrational ONV space
2number of non-zero vibrational quantum numbers in the Féyjirat's
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calculated. One is able to simulate a FC transition spectaumnero Kelvin for a relatively
large system in frequency domain with this error bound adstirategy within a reasonable
computing time. This FCF GF approach is the foundation «f thesis. To illustrate the
FC GF idea we consider an overlap integral of two identicaligd state oscillators as an
example,

(0/0) = 1. (1.17)
By expanding with the final vibrational eigenstates via @k@#on of the identity, the over-
lap integral is expressed as a sum of FCFs and the integtad istonserved as long as the
resolution of identity is retained,

[0.9]

() = 3 e 10) = 3 [0 = 1. (1.18)
v'=0

If one knows in advance a set of quantum numbers§) which makes the summation close
to unity within a given tolerance before one computes a hugehber of the individual FC
integrals,

\c
\O

S0 ~ 1, (1.19)

v'eS

one would be able to control the FC spectral calculation i threshold. Then, the
guestion is how we can find a set according to the predefinaditeensity tolerance. We
can exploits the GF idea to control the FCFs by introducingo@rameterg’, i.e.

[e.°]

G(z;T =0) Z |0|2H )% (1.20)

Ic

Comparing to Eq. (1.12) the GF parameters in Eq. (1.20) datedbto the DOE. Ex-
ploiting the analytic expression (product of determinaarisgl exponential functions) from
the CS phase space integration corresponding to the sern@mation expression (1.20),
the prescreening strategies can be constructed (Ref. fdbkee also Ch. 4). Using the
summation (1.20) by assigning numbers:oe.qg.0 for freezing the mode excitation and 1
for summing over all excitation, the precise integral paecan be extracted.

The GF approach of Jankowiadt al. [46] has to be extended, for example, for finite
temperature effects (Ch. 4) and for going beyond FC prosessg for HT vibronic in-
tensity borrowing effects (Ch. 6). The sum of FCRg/(v)|?) and the non-Condon factors
((v]g*|v") (/| f]v)) over one set of states, at finite temperature and at zerdrkeenverge
to finite numbers. Integrating the Lorentzian line shapectiom (L) over all frequency
rangé* in the non-Condon spectral density function of Eq. (1.1®)rider to sum all non-
Condon (or FCFs) factors, the summation converges to a finiteber (Ch. 6).

One could exploit this sum rule to restrict the number of hawim basis functions in
the evaluation of the non-Condon (or FC) SDF. Hereafteruhilssimply be called sum

1t will be shown, later in chapter 4, that the GF parameteesralated to the Dirag-distribution.
Mt results 1.
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rule. We derive a closed analytical functional form for thensof non-Condon factors at
finite temperature and use it for the sum rule in chapter 6. pydyahe sum rule to the
prototypical HT transition of benzene in chapter 6. To cardtthe non-Condon GF in an
analytic form for the sum rule, we utilize the CS phase disphaent operator. Similarly
to the non-Condon integral evaluation schemes in Ch. 3,Gmmdon effects can also be
included by the MHP method (Ch. 6).

Franck-Condon time-correlation functions and beyond The direct evaluation of
non-Condon (or FC) integrals with the sum rule explainedvabwould improve the com-
putational efficiency greatly but it still has limitations applications to large molecules at
high temperature. At high finite temperature the resultipgctra are typically highly con-
gested, so that assignment of individual peaks from TI ndsttame of minor importance, if
not even unnecessary. If we are interested only in the spesttapes and not in individual
peaks, we can compute the spectrum in the time domain [64f®imier transform (FT)
techniques. The non-Condon SDF in Eq. (1.16) can be writtematively by making use
of the quantum mechanical trace formalism and the Foun@eeentation of the Lorentzian
distribution in time {) domairt®,

- Tr ( gte—it/h feiﬁ(t/thiﬁ))

pL(w;T)(f’g) = hl/ dt

ei(w*WO)t*g\tl (1.21)
—o0 Tr(e—BH) 7 .

with 8 = 1/(kgT) (kp is Boltzmann constant) and harmonic vibrational Hamikmsi 21
andH’, initial and final state ones, respectivéf)The vibrational eigenstates do not appear
explicitly in the trace density matrix expression (1.21rantrast to Eq. (1.16). In principle
the traces can be evaluated over any complete basis set.whlliknown for instance
how to find an analytic functional form of the trace of the nuater in Eq. (1.21) (the
denominator trace is just a vibration partition functiorttad initial state) within the Condon
approximation in harmonic oscillator basis. For exampbait be evaluated by the Feynman
path integral [126] kernel of harmonic oscillators (ge@. Refs. [34, 79, 86]) including the
Duschinsky rotation. The trace part in Eq. (1.21) is usuedijed time-correlation function
(TCF). This eigenstate-free TD method is widely used (withie Condon approximation)
for the absorption spectrum and rR scattering @seeRefs. [17, 23, 34,64, 127]) because
the eigenstate-free formulation helps to avoid the dirgatuation of the matrix elements
by evaluating the (analytic) TCF at discrete times in casitta the Tl approach.

It is not, however, a trivial task to evaluate the non-Cond@F including Duschin-
sky effects. There have been some approaches to computerk@éamndon TCF limiting
Duschinsky effects (see.g. Refs. [38, 47,70, 91, 94]). Recently Islampour and Mirali-
naghi [93] devised a TCF for IC rate involving multi-promudi modes (which mediate
the intramolecular transition) and vibrational mode mixieffects. They exploited sec-
ond order multi-variate normal moments for the momentunraipe matrix elements of
the promoting modes. However their method is not generglplieable to other transition

BL(w,@;T) = At [ dt ei(“’w)t*g‘“, and as the FWHN" — 0 the distribution approaches to the Dirac
s-distributiond(w — @) = [°7_dt &' )",

187ero-point harmonic energies are shifted to be 0. The zemtmpnergy differences of the two multi-
dimensional harmonic oscillators are included alreadydn
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problems and the method cannot handle nonlinear couplioipigms. Pengt al. [94, 95]
also have a similar TCF development to that of Islampour am@lMaghi [93]. As one
of the main results of this thesis, we overcome the shortiegsnof Islampour and Mirali-
naghi's method with the same CS-based GF approach whichplsied for the Tl sum
rule method to prescreen the integral basis set. Within thecbBinsky-rotated harmonic
oscillator basis approximation we can use CSs easily foplizse space integration. It is
convenient to express the phase space representatiorn@i@& phase variables within the
harmonic approximation because CS is a GF of harmonic asmilkeigenstates and as a
result the overlap of two CS is a GF of harmonic FC integralse Guantum mechanical
trace is invariant in any complete basis set expansion. Wiense the CSs as basis set
for the numerator trace in Eq. (1.21) and introduce GF parammeelated to the DOS in
FGR which can absorb time dependence implicitly (Ch. 4) stme CS-based GF can be
used both in frequency and time domains (Chs. 4 and 6). Inmbifod, one only needs to
introduce simply proper TD GF parameters to have the TCFowitheeding a complicated
integration in position space. And the (complex) MHPs tdtealy order can generate the
non-Condon effects easily as well (Ch 6). The identical GF=at0 obeys the sum rule and
att # 0 provides the TCF at # 0.

It has long been considered that the Tl and TD approachesdependent of each other
even if they are identical in principle [18]. The integrakpcreening method can be com-
pared consistently with the TD method because the TCF meathadprovide the upper
bound of the TI method within the GFs developed in this theBiwe CS, together with GF
parameters, in phase space can bridge the frequency andidimain representations of
SDFs. The resulting expression is exploited for the GF (tvibin merge the Tl and TD ap-
proaches) augmenting the thermal (Ch. 4) and non-Condor6{@&ffects in its phase space
via CSs. Similar idea is exploited for TI cumulant expansj@E)'’ (Ch. 5), rR scattering
18 (Sec. 7.2), SVL transitidh (Sec. 7.3) and anharmonic transition (Sec. 7.4).

Modifications to generating function approach The CS-based GF of a molecular
transition related to FGR is analogous to the partition fimmcin statistical mechanics in
the aspect that the GF is the fundamental functional of théecntar transition system
(see Fig. 8.1). It contains the information about the tténsi in frequency domain, in
time domain and in phase space. As with partition functioins possible to extract useful
information via proper operation onto the GF. One is ablestdeve specific information
or to invoke other quantum mechanical and environmentakeffby introducing auxiliary
parameters to the GF.

In some cases only the statistical quantitiegg( mean and variance) are required, for
example, for the Stokes shift, which corresponds to the peakmum difference between
absorption and emission spectra. This kind of informatian be obtained without calcu-
lation of the entire spectrum, neither via the Tl nor the Tprapches mentioned above.
The cumulant® (or moments) of the FCF distribution in frequency domain@mputed
by the GF approach in chapter 5 with relatively low compuotzdi effort. An auxiliary GF
parameter is used to evaluate cumulants in a Tl way. The méashdosely related to the

7Eor statistical guantities like mean, variance, skewrlagagosis and so on for the FC transition.

8The rR excitation profile involves two single vibronic les¢BVLs).

19A fluorescence from a given vibrational level in the elecizatly excited state is called SVL fluorescence.
mean, variance, skewness, kurtosis and so on.

11



1. Introduction

TD CE method (see.g.Refs. [5,35,87]). The TD CE, however, involves time-intggm,
which makes the algebra complicated even for second ordeulamts (variance). The Tl
CE method developed in this thesis, instead, can computelenis to arbitrary order. The
cumulants can provide useful information for other apphesc for instance about the time
propagation of TCH,e. time step and time propagation length (Sec. 5.1.2).

The detailed control of vibronic levels is necessary for 8L and anharmonic transi-
tions. The GFs for these vibronic transitions are develdpechapter 7 with the help of
a MHP technique. The MHP technique allows the manipulatibwilronic level excita-
tions. It can provide more concrete information about tHeational excitation patterns
whereas the previous FC development [46] can support onbaese-grained prescreening
strategy®. The cross sections of rR and SVL take into account (normibty-averaged)
excited SVLs which are not summed over in FGR [34, 58]. Theseldpments are mod-
ifications to the thermal and non-Condon GFs in the aspeatghby include SVLs of the
fixed ONV states. The GF approach for anharmonic FC tramsitidhich approximately
takes into account a few anharmonic vibrational DOF (and¢isés are harmonic), is also
suggested in the same chapter for the possible integrairpessing strategies of this special
case.
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Figure 1.2.: Temperature dependence of FC profiles for electron transéstion of Bacteri-

ochlorophyll (Bchl) in the photosynthetic reaction centgchl~ —Bchl. The FC SDFs are
computed via TCF-FFT method at 0 K (solid), 100 K (dashed), R@dot-dashed) and 300 K
(dotted). a. Duschinsky mode mixing effect is considerediischinsky mode mixing effect
is ignored. Instead of a Lorentzian line shape function, agsian line shape function with
FWHM of 200cm ! is used for the DOS in the FC profile calculation.

1.1. Achievements

The major goal of this thesis is to describe various molecularonic transitions theo-
retically and understand the transition mechanisms wighhelp of theoretical models,
especially, for large molecular systems. For instance,nwestigate an ET reaction of a
Bacteriochlorophyll (Bchl) model in the photosynthetiacgon center (see.g. Ref. [128])

ZThe maximum excitation quantum number of individual vilmaal mode is computed with given intensity
threshold neglecting correlation between other vibrationode excitation pattern.
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to study temperature dependence of the reaction and thespomding effect of Duschinsky
mode mixing. We compute the FC profiles at various tempegagwitching on or off the
Duschinsky mode mixing effects, via the TCF-FFT method (Eig). Comparing the two
figures in Fig. 1.2 one can notice significant Duschinskyaffat various temperatures. But
it would be difficult to perform a detailed analysis of thesghly congested spectra with
the existing theoretical TD or Tl tools. We need to have a edifiD and TI picture in one
common language to analyze the individual vibrational moaigribution for the detailed
analysis,e.g. thermal energy redistribution of initial state between titgrational modes
of final state in presence of Duschinsky mode mixing effeee (Sec. 5.3.2 for this specific
example).

In this thesis we extend and modify the CS-based GF idea §19p4 the various vi-
bronic transitions involving thermal excitation and noordon effects within the Duschin-
sky approximation. The methods of this thesis can providarid TD approaches with
identical functionals. The sum rules of FCFs (used in theipts work [46F2 for devis-
ing prescreening criteria) are extended to the case of tdrexcited Duschinsky rotated
multi-dimensional harmonic oscillator states at finite pemature (see the illustration 1.3
for ultra-violet (UV) absorption of anthracene) as well agtie non-Condon effects. The
GF approaches for rR scattering and SVL transition are deeel to include the thermal
and non-Condon effects in the Duschinsky rotated harmosddlator basis. The meth-
ods developed herein are general and can be applied to ady &frtransition processes
via FGR with slight modifications either in frequency or tirdemains. Some develop-
ments (thermal, HT effects and Tl CE) of this thesis are immaleted in a development
version of the vibronic structure program hotFCHT [36, 48)-4131]. The CS-based GF
approach, despite the achievements in this thesis, letilesams for future developments,
e.g.nonadiabatic coupling, full anharmonic, dissipative sys and non-equilibrium prob-
lems which are not treated in this thesis. To this end, we sanizm the developments
of this thesis as follows: The molecular transition andgnad evaluation problems in the
Duschinsky rotated harmonic oscillator basis can be tadedlinto a MHP evaluation prob-
lem. The same mathematical machinery can be used for vastbas problems, either in Tl
or TD approach and either in Condon or non-Condon approimésee Figs. 8.1 and 8.2
on pages 125 and 127, respectively).

Most of the developed methods and the results presentedsithttsis have also appeared
or will appear in:

Ref. [129F3: "Vibronic transitions in large molecular systems: Presenéng conditions for
Franck-Condon factors at finite temperature and the therinaé-correlation function”,
J. Huh, H.-C. Jankowiak, J. L. Stuber and R. Berger, (to bdighsd)

Ref. [130F*: "Vibronic transitions in large molecular systems: The theal time-correlation

223, Huh was not involved in this work.

233, Huh has contributed to this work with the thermal timeretation function theory development and the
implementation of the methods including the thermal prsieing to the vibronic structure program hot-
FCHT.

243, Huh has contributed to this work with the non-Condon tteime-correlation function theory develop-
ment, the Franck-Condon-Herzberg-Teller prescreeningldpment and the implementation of the devel-
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function and rigorous prescreening of Herzberg-Tellemst,
J. Huh, J. L. Stuber and R. Berger, (to be published)

Ref. [131F°: "Vibronic transitions in large molecular systems: Timedgpendent cumu-
lant expansion for Franck-Condon profiles at finite tempaaand at zero Kelvin”,
J. Huh, J. L. Stuber and R. Berger, (to be published)

Ref. [132F®: "Application of time-independent cumulant expansion tiwekation of Franck-
Condon profiles for large molecular systems”,
J. Huh and R. Berger, Faraday Discuss., (accepted)

Ref. [52F: "An atomic-orbital based Lagrangian approach for calcuta geometric gra-
dients of linear response properties”,

S. Coriani, T. Kjeergaard, P. Jgrgensen, K. Ruud, J. Huh an8d®ger, J. Chem. Theo.
Comput. 6, 1028 (2010)

Ref. [53F8: "Franck—Condon profiles in photodetachment-photoelattspectra ofHS,
andDS; based on vibrational configuration interaction wavefuoos”,
J. Huh, M. Neff, G. Rauhut and R. Berger, Mol. Phys. 108, 402@2

1.2. Chapter summary and dissertation outline

In this chapter the FGR expression for the OPA in the vibratiovavefunction basis set
within the BO approximation is introduced as an example faibeonic transition process.
The FCFs are the fundamental quantities in describing mibrivansitions. The FCF eval-
uation is a challenging problem even in the harmonic appnakion because of the large
number of FC/non-Condon integrals within the Duschinskprapimation. We suggest
CS-based GF methods to describe theoretically molecutaonic transition processes in-
volving the finite temperature effects (Ch. 4) and the nomdom (Ch. 6) effects. The GF
can provide efficient numerical procedures with its repmeséons in frequency and time
domain be connected via the CS phase space. We modify theoaBFEEE, rR scattering
processes, SVL transitions and anharmonic transitions {Cwith the help of MHPs (see
a summary diagram of this thesis in Fig. 8.1 on page 125).

The dissertation is organized as follows:

e The background knowledge related to the developments stlteisis is briefly pre-

oped methods to the vibronic structure program hotFCHT.

25). Huh has contributed to this work with the time-independmimulant theory development, the algorithm
for the cumulant expansion and the implementation of theeld@ed methods to the vibronic structure
program hotFCHT.

263, Huh has contributed to this work with an application of tinee-independent cumulant theory develop-
ment [131]. The method is applied for the UV/VIS absorptipectra of terrylene'(dg —* Bay).

273, Huh has contributed to this work by testing the analytiattronic TDM gradient by computing the
Herzberg-Teller profiles of benzene with the method deveddp Ref. [130] and implemented in hotFCHT.

283, Huh has contributed to this work with the integral presoieg strategy development and the implementa-
tion of the anharmonic Franck-Condon computing routinebeovibronic structure program hotFCHT.
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Figure 1.3.: lllustration of calculated Franck-Condon profiles for t‘néAg — 1 1By, ab-
sorption spectra of anthracene(ai(, 100 K, 300 K and500 K. The stick representations
have additionally been convoluted with Lorentzian linepgea The figure is reproduced with
permission fromNachr. Chem58, 331. Copyright 2010 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.”

sented in chapter 2. The OPA and rR scattering are describadthe Tl and TD
perspectives. The basic properties of CSs and the Dusghiakktion are explained
therein for the GF development. The zero Kelvin developrsit® , the foundation
of the current work, is briefly explained.

e An iterative FC integral formula is suggested in chapter thwie help of multi-
variate normal moments based Hermite polynomial evaloaihemes [133,134]. A
non-Condon integral evaluation scheme is suggested asiadiie CS displacement
operators.

e The following thermal FCF GF chapter 4 presents the CS-b&fedpproaches for
the thermal effects both in TD and Tl aspects. The integ@égeening strategy at
finite temperature and thermal TCF are developed.

e Chapter 5 follows a slightly different route to obtain the pffile from statistical
quantities like mean, variance and higher order cumulaatthe TI CE method.

e The non-Condon GF developments augmenting the Tl and TDoappes are pre-
sented in chapter 6 and the HT transition of benzene is pred@s an example.

e In the last method development chapter 7 we devise the auhEoek (cF§° GF via
the MHP technique for the GFs for rR, SVL and anharmonic ttams in the Tl and
the TD pictures.

e Finally the conclusion of this dissertation follows in ckepS.

29]. Huh was not involved in this work.
%the mixture of harmonic oscillator eigenstates and cotiestaes (Eq. (2.81)).
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2. Background

The primary goal of this thesis is describing computatiynabronic transitions (see Fig. 1.1)
such as one-photon absorption (OPA) (seg Refs. [12, 21-54]), one-photon emission
(OPE) (seee.g. Refs. [55-59]), resonance Raman (rR) scattering &sge Refs. [17,
60-76]), electron transfer (ET) (seey. Refs. [77-89]), internal conversion (IC) (seg.
Refs. [90-95]) and inter-system crossing (ISC) (e&eRef. [96]). For the purpose, we de-
vise (in this thesis) the computational frameworks for theneék-Condon (FC) and non-EC
vibronic transitions within the (adiabatic) Born-Oppeimher (BO) approximation [2, 99].
The inclusion of the Duschinsky vibrational mode mixing T]1@ogether with the tempera-
ture and non-Condon effects make the computational contypliex the vibronic processes
(prohibitively) high. Even in the harmonic oscillator apgimation, the computational de-
scription of the vibronic transitions is still challenginglerein we approximate molecular
systems asV-dimensional harmonic oscillators. Accordingly, the (ediste) vibronic tran-
sition is considered as a transition between multi-dineredi harmonic oscillators.

The interaction between radiation and molecules is a fureddah time-dependent (TD)
phenomenon. For that reason, the quantum mechanical pkimcrof such vibronic pro-
cesses usually is based on TD perturbation theory. Howedem the observables are not
explicitly TD quantities and a radiation-matter interaatis weak, for example in the OPA
process, it is sufficient to invoke Fermi’'s golden rule (FGR)3, 104] from TD perturba-
tion theory for describing the molecular transitions (eeg Refs. [3, 8, 66]). The various
representations of FGR in frequency, time and phase spaeexploited in this thesis via
the coherent state (CS)-based generating function (GRpagpp [46] to reduce the com-
putational complexity. Each representation has benefdsshortcomings of its own in its
evaluations, such that they are complementary to each (sbee.g. Ref. [18]). One of the
main achievements of this thesis is that the different asp#d-GR can be combined in one
GF based on CSs within the displaced-distorted-rotatechdaic oscillator (Duschinsky)
approximation. The molecular vibronic transition spedescribed by FGR are computed
efficiently, including thermal (Ch. 4) and non-Condon (Ch.effects with the CS-based
GF.

In order to present the CS-based GF in some detail, we neeshtdarbmind the various
representations of FGR and the relations among them (S8c.As an example, the trans-
formation between the time-independent (TI) and time-ddpat expressions of the OPA
and rR scattering cross sections are explained. We can slaghy modifications to the other
vibronic transitions (see Fig. 1.1), such as OPE, ET, aedatrcircular dichroism (ECD),
IC and ISC, so that they can be described similar to OPA andTti. Duschinsky linear
approximation and the corresponding unitary transforoma{iSec. 2.2) as well as basic
properties of CSs (Sec. 2.3), which are necessary for thba38d GF method [46], are
explained in the corresponding sections. The Franck-Qoffaltior (FCF) GF development

*non-Condone.g.linear and nonlinear Herzberg-Teller (HT) expansionsH)L.1
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2. Background
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Figure 2.1.: One-photon absorption (OPA) and resonance Raman (rResoatin the time-
dependent (TD) picture. OPA time-correlation function )@ the overlap between the initial
state|v) and the time-propagating stdi€t)) on the final potential energy surface. One-photon
emission (OPE) is interpreted in the same way as OPA, therdifte being that the initial and
final states are reversed. rR scattering is a two photon psarfehe incident light) and the
scattered lightws). waq is defined to be the adiabatic electronic transition (angélaquency
between the electronic groun) and excited |¢)) states.wy is defined to be the adiabatic
transition (angular) frequency including the vibratiomato-point energy difference between
the two oscillators. The time-dependent picture showskhscattering process. This process
implies that the initial ground vibrational stdte ) propagates on the excited state(t)) and
return to the ground vibrational stgte; ).

at zero Kelvin [46} for integral prescreening in the Tl picture is briefly presenin sec-
tion 2.4, which is based on the Duschinsky unitary transédiom and the CSs. The zero
Kelvin development serves as the basis for the method davelnt within this thesfs The
mathematical machinery, notational convention and nwakschemes are employed, as
far as possible, from the previous work [46].

2.1. One-photon absorption and resonance Raman
scattering

In this section we transform the Tl spectral density funtt{@DF) of the OPA and the
rR scattering cross section from frequency domain to timaalo via the density matrix

2J. Huh was not involved in this work.
3Thermal prescreening strategies, thermal time-cormeidtinction (TCF), non-Condon effects, TI cumulant
expansion (CE), anharmonicity, rR and single vibronic I¢8&/L)
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2. Background

trace formalism [135]. Herein the vibronic transition beem N-dimensional harmonic
oscillators are assumed to be the same as the ones introdadead (Eq. 1.5). The SDF of
OPA (Eq. (1.12)) in frequency domain reads (again), withLibentzian line shape function
(L(w)) of full width at half maximum (FWHM) ofl",

i W JA(Q)I) PL(w, wo + oy i T), 2.1)

v,

and the stick representatibwith the Diracs-distribution is, accordingly,

E_J [ (@)I) P (w — Bl + wyr ) 2.2)

v,

where the vibrational transition (angular) frequency ifirdal by the corresponding har-
monic energiese(and ¢’) of oscillators,i.e. (wy, = (¢ - v —¢€-v)/h). Prime”"” is
used, conventionally, for specifying variables belondgimghe final electronic state. Raman
scattering is a two-photon process involving the incidentgnd scattered lightJs) (see
Fig. 2.1). From second order TD perturbation theory for & photon process, we can ob-
tain the matrix elements of the polarizability tensor as(thleronic) Raman scattering [60]
amplitude in the frequency domain (seg.Refs. [3, 6, 17]).

The matrix element of the polarizability tenserin the molecular vibronic wavefunction
basi$ with polarization vectorsg™ ande® of incident and scattered photons respectively,
is the vibrational Raman scattering amplitude and cormedgdo the vibrational Raman
excitation profile ¢ 7, seee.q.[17]), i.e.

jes) vl S Tl (o' | oL V.
-~ gy = 3 QI W@l

o (w,ws) = (vg|(gle” -
R f y’:Q h(w - (Wy’,yi + (JJO) + %FQZ'&/)

O

= (| @Q)T) (W35 (Q) |v;)
" Z h(ws + (Wy’,yi + wo) + %Fyi,y’)’
(2.3)

v'=0

where we have used

fHQ) = Q)¢ 15(Q) = Q) €. (2.4)

In Eq. (2.3)|y;) and|u) are the initial and the final vibrational states in the grostate
(lg), |v/) is the virtual (or intermediate) vibrational state in thecieed electronic state
(le), see Fig. 2.1), andl,,, ./ is the line width of the initial to virtual state transitioThe
vibrational transition frequency from the initial statetb@ virtual vibrational state is given
aswy p, = (¢ - v —€-v;)/h.

At the resonance conditionv( =~ (w, ., + wo)), the non-resonance contribution of

“In practice, we evaluate the intensity profiles accordinthéostick representation and convolute the profiles
in stick representation with the Lorentzian line shape fiamc
SWe can ignore rotational wavefunctions for randomly oehninolecules (see.g.Refs. [3,6,17] and Ch. 1).
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2. Background

V; Uy

ap , the second summation term in Eq. (2.3), can be neglectealibedhe first sum-
mation (resonance) term in Eq. (2.3) is dominant. Therefloeevibrational rR scattering

V; V¢

amplitude ¢, ') is expressed in a reduced form,

X 1408 T/ (v oL V-
yi%yf(w) _ Z <_f‘:u' (Q) ’—><— ‘:u' (Qi)’—z>, (25)

YR hMw — (Wy ., +wo) + 5T
v'=0 LY, 2
where we have assumed a common homogeneous line broadentoglt, , = I' for
molecules in condensed phases @e&g[17, 65,68, 70, 72, 136]).
The (differential) rR cross section is proportional (seg. Ref. [65]) to the SDF of rR
from FGR similar to Eq. (2.1),e.

doyr 8w (@

2
dws — 9hcZ > (hw)(hws)® prr.L(w, ws). (2.6)

2
€0

The SDF of rR scattering is given with the Lorentzian linehéunctioff as in Eq. (2.1),
ie.

>
i
prrL@,ws) = Y pu(Dlogh ~ (@)PLw - ws,wy, i Ter),  (27)
v;,0,=0

and the stick representation is obtained with the Déraistribution as in Eq. (2.2), accord-
ingly,

pr(w,ws) = > puo(Dlork 7 (@)P0(h(w — ws) — hwy, ,), (2.8)
v;,0p=0

wherewgf&i = (e- vp—¢€- v;)/is the rR Stokes scattering frequency.
Time-independent (TI) evaluation of equations (2.1) an8)( limited to small molec-
ular systems. For larger systems one would need efficiestiegies, such as the integral
prescreening [46] introduced in the previous chapter 1. ddmeplementary TD approach
for theoretical molecular spectroscopy has been usedveralelecades, in electron transfer
theory [79,81,84,86,87], in Raman scattering theory [6,8%,64,66,67,72,73,75,109], in
FC absorption processes [33,34,55,137,138], in non-Qopdacesses [38,40,93-95] and
in laser cooling theory [37,40-42,48]. The energy eigdadtae TD approach (Eg. (1.21))
has long been appreciated for its computational efficiendyis wavepacket interpretation
of the transition process. It describes the transition ggswia the time-propagation of ini-
tial wavepacket on the excited potential energy surfacg [Balexpress the absorption cross
section (Eqg. (2.1)) and the rR scattering amplitude (Ed)J2n time domain, one invokes
the Fourier transformed representation of the Lorentziaa $hape functiohin Eq. (2.1)
and the half-Fourier transformed representation of theueacy dependent weight func-

Swith a line broadening factdr,x within a single electronic state.
. — r
"L(w,@;T) = h~' [%_dt /™"~ and as the FWHNI' — 0 the distribution approaches to the Dirac
§-distributiond(w — @) = [°7_dt ')t
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2. Background

tion®, the denominator in Eq. (2.5). That is for the absorptiorcess [17, 64]i.e.

jo.8}

pr(w;T) = hl/ dt Y pu(T)(W|A(Q)[0) | expli(w — (wur  +wo))t — It
T w'=0
(2.9)
and for the scattering process [17,64],
o @) == [ ar S @) Wit
v'=0
expli(w — (wy/’yi + wo))T — gT] (2.10)

Now, one can recover the vibrational Hamiltonians corresigtg to the expressions (2.9)
and (2.10) from the vibrational frequenciesg. e“»*|v) = ¢#*/"|y). The SDF of OPA is
rewritten as follows (see.g.Refs. [17, 64])

pr(w; T) = Z;lhl/ dtz ol f1(Q)" exp(—iH't/h) ')

('@ )eXp(th/ﬁ) oxp(—fH)[v) expli(w — wo)t — L] (2.11)

=Z;'ho 12/ dt(v|1(Q)" exp(—iH't /h) Q) exp(iHt/h) exp(—BH)|v)
expli(w — wo)t — 5t] (2.12)

=p! /00 dt x(t; B) expli(w — wo)t — g\t\] , (2.13)

where the vibrational partition function & = Tr <exp(—5ﬁ)> and the Boltzmann factor

po(T)|v) = Z;7 ' exp(—Bhw,)|v) = Z; ' exp(—BH)[u). From the expression (2.12), it
is clear that the TC¥for the absorption spectral density can be defined withirddresity
matrix formalism. Since equation (2.12) is just the tracerdhe initial vibrational states,
x(t; T) is the thermal TCF in a trace form as in Eq. (1.28,

x(t;T) = Z{lTlr(g(Q)Jr exp(—iH "t/h) Q) Q) exp(iHt/h) exp(—ﬁfl)). (2.14)
s = iy dt =3¢ whichisa special case of the Laplace transform.

®Here the time-correlation function includes the summatioer initial vibrational occupation number vector
(ONV) space.
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Similarly, the rR amplitude is expressed in TD language as

je.o)

o) = =5 [T S wliS(Q) expl—iH /Wl 0@ exp(iF /)

| O

Q
expli(w — wp)T — gT]

= [ (@) espl-iH W@ esa(i )

expli(w — wo)7T — gT]
i o
_ —E/ A7 Xa(732;,5) explilw — wo) ™ — 57],
0

(2.15)

(2.16)

(2.17)

where the rR amplitude TCFK() is defined with the vibrational transition operatoy) (v ¢|*°,

Xa(Ti0vp) = Tr (A5(Q) exp(—ifl'r /W)™ (@Q) exp(fT/h) ;) (u1)

(2.18)

where we have used the resolution of idenfiy},_ |v) (v/| = 1. The matrix elements
in the time integration of Eqgs. (2.12) and (2.16)/v(t)) and (v¢|v;(7)) respectively’,

are interpreted as follows [61, 64] (see Fig. 2.1). Theahittavepacket propagating on its

ground potential energy surface (PES) is scattered on textieed PES by the electronic

transition dipole moment (TDM), and the scattered waveeapkopagates on the excited

PES. Then the wavepacket returns to the vibronic state ogrthend electronic state by

the electronic TDM. The Fourier transform (FT) of the timeretations corresponds to a

spectrum in the frequency domain.

The rR SDF can be expressed from Eqgs. (2.7) and (2.17) inentahd scattered photon

frequency domain with one Fourier po, oo] transformation for the functioi in Eq. (2.7)

and two half-Fourier(], oc] transformations from Eq. (2.17)e.

prL(w,ws) =Z; 1P Z / dt/ dT/ Ad7'xa (7505, 04) Xa (T3 25, 04)

v;,0 =0
expli(w — wo)(7 — 7') = (7 + )] expli(w — ws)t — H5[¢]]

=h3 dt/ dr dr' v (t, 7,7 T)
0 0

expli(w — wo) (T — 1) — g(T + 7] expli(w — ws )t — F’T'R]t]],

%0One may consider the summation in Eq. (2 15) as trace ovesiabivibrational states.
Hu(t)) = p(Q)" exp(—iH't/h)(Q) exp(iHt/h) exp(—FH)|v) and
lv,(r)) = i°(Q)" exp(—iH'/h)i*(Q) exp(iHT/h) u;)

(2.19)

(2.20)
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where we define a 3-point,(r, 7') thermal TCF in a trace form for rR intensity,
xer(t, 7,75 T) :ZflTr<exp( iHT /h)i ( VW exp(iH'7 /R) i ( )exp(—iHt/h)

/lS(Q)TeXp( iH'7/h)i 1(Q) exp( iHT/h) exp(iHt/h) exp( Bﬁ))
(2.21)

Within the Condon approximatiorii(Q) = i(Q = Q,) = p, = a constant vector)  is
the equilibrium molecular structure of the electronlc grdstate) the Rayleigh scatterlng
(w = ws) intensity can be expressed in terms of a single Fouriestoamation [66] from
Eq. (2.20) [56,66]. In Eq. (2.20), the integration ovevith the Rayleigh scattering condi-
tion (6(w — wg)) givesﬁ and the two half-Fourier integrations oveandr’ are merged
to be a (full) Fourier transformation with newly defined iptal variablesr™ = 7 + 7/ and
7~ =7 — 7'. The integration over~ results in a factof ! and the remaining integration
isthe FT inT T, i.e.

- 4
Condon—Rayleigh . r
I ) = g [ arta | explt —wo)r = Bl

a (2.22)

Note that the thermal TCF for the Rayleigh scattering intgris the Condon approximation
is expressed as the TCF of OPA in Eq. (2.14) in the Condon appation, i.e.

‘E ’4 < Fy! e ]
X(7:T) o=, — ZLITr(exp(—lH 7/h)exp(iHT/h) exp(—ﬁH))- (2.23)

The Condon-Rayleigh scattering is interpreted as theflatmlescence emission [66]. There-
fore the FCF can be viewed in two different ways: (i) For theaption process the transi-
tion amplitude is(v’|v) and the corresponding transition probability is the alteafguare,
|(v|v)]?. (i) For the total fluorescence process, the initial vilanaal statev) is excited to
the final vibrational state/'), i.e. after the transition the system stays in the vibrationaesta
|v/)(v'|v). When the system returns to the initial vibrational stdte,dorresponding ampli-
tude is(v|v’) (v |[v) = |(v/|v)|?, while this amplitude is the transition probability (FCIR) i
the absorption process.

For the treatment of FC-forbidden or weakly FC-allowed $taons (x| = 0 or [y, | ~
0, respectively), one must go beyond the FC approximatienfeyond the assumption of
Q) = Ko ) and incorporate the dependencejobn the vibrational degrees of freedom
(DOF) (e. g Eq. (1.15)). Conventionally this expansion is providedemts of the initial
state coordinate®. In this case the electronic TDM is expanded at least to tieali order,
i.e. the HT expansion (Eq. (1.15)).

MQ) = (el,..|9)
=g0+Zg;€Qk+--- : (2.24)
k

where the zero-th ordepg) and the first ordery(’) expansion vectors are determined by the
first order perturbation of electron and nuclear Coulombieriaction {._,) relative to the
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nuclear coordinate change. The electric TOM &) is given by the electronic DOFR-()),
nuclear DOF£,,,) and the charge of the prot@,ﬁ and nucleusZ,ey, i.e.

Aelec = —60 Z el ) + 60 Z Z Tnu ‘a”? (225)

which is a general expression for the electric TDM. The dgdiniin Eq. (1.8) only applies
to the two electronic state model. Evaluating the matrixnast in the BO electronic wave-
function basis|g), |e) and|l)) the nuclear contribution of the electronic TDM vanishes du
to the orthogonality of different BO electronic wavefumects. The expansion vectors are
given as

= (el , 2.26
HO < ‘Helec’g>‘QQO ( )
Oe 0g

Q:Q <8Q ‘ elec‘ >Q:Q0

o
;o ; 2.27
By an< 2o 9) (2.27)

The first order derivative of electronic TDM with respecthe k-th normal mode)),, at the
equilibrium structure @ = Q ), i.e. k can be calculated analytically either via the tradi-
tional perturbation theory formulatlon (seq.Refs. [2,21,42,139]) or the linear response
approach (see.g. Ref. [52]). The perturbation expression of the electronamitonian
with respect to the nuclear coordinate change shows the#xquupling between BO elec-
tronic eigenstates, for example according to Ref. [42] RRY) is expressed as the first
order perturbation expansion,

! OVeoon OVen
;o L<6|3Qk|l>lA <|5Qk|> Sl 208
Hy = Z EO _ EO < |Belec|g> + Z EO _ EO <6|Helec| > ’ (2.28)
I#e L e I#g ! g 0=0
i A 7))

whereL and L’ are the number of intermediate electronic stae$ \Which are allowed by
electronic state couplingsi(f, |9)lo=¢ # 0 or (e ‘Melec‘lHQ:Qo # 0) with respect to
the ground statd ¢)) and excited state}a()) respectively. The energy differences in the de-
nominators are defined to be electronic transition energit®e unperturbed electronic BO
eigenstate basis. Due to the coupling between BO electeigénstates, the HT electronic
transition mechanism is usually called a vibronic intgnbibrrowing mechanism (se=g.
Refs. [2,21,42,108,139]). The sum-over-states pertimba&xpression (2.28) is, however,
not practical because of its convergence problemsdsp®efs. [2,36]). Recently a linear
response formulation for analytic derivatives of the etmut wavefunctions (Eq. (2.27))
with respect to displacements of the nuclei was developé&deaploited for calculations
within the HT framework in Ref. [52]. The HT vibronic transibh GF developed in chap-
ter 6 is tested successfully in Ref. [52] (Sec. 6.3.2). Ugutide gradient of the electronic
TDM was evaluated numerically by shifting the molecularilogium structure along the
normal modes (see.g. Refs. [2, 36]), which leads, however, to difficulties duehe phase
of the electronic TDM.

The time-independent representation for the absorptieatsm of Eq. (2.1), the SDF,
can then be decomposed into the FC and higher order non-@aaidributions, respec-
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tively. This term-wise expansion yieltfs

pren(w;T) = ’Ho’z Z Pu(T)| {0 |0) [P L(w, wo + wyr 4 T) (2.29)
v,0'=0
for the FC contribution and
prc/mT,L(W _22“0 2 [ Z (v'|Qslv) (v |y’>L(w,w0+wy/&;F)}, (2.30)
i=1 v,0'=0
N jo.8}
P ( Z vl Z (0 Qile) (W Q1) Elw, wo + wy 5 T)] , (2:31)

0=

for the Franck-Condon/Herzberg-Teller interference @0/and HT contributions. The
FCHT term weighted density of states (FCHTW) is then defiried a

pr(w;T) ~ prcatw,L(w; T')
= prc,L(w; T) + pro/arL(w; T) + par L(w; T) - (2.32)

Those term-wise expressions and the corresponding TCFexateited for the HT GF
developments of the Tl and TD approaches in chapter 6. TheatResing SDF can also be
expressed in the term-wise fashion with the HT expansion tiguexplicit expansions will
not be exploited in this thesis. The HT expansion expres&ionR can be found in many
books and articles (seeg.Refs. [6, 60]).

For the evaluation of the SDFs and TCFs in two sets of harmasuitlator basis, we need
to consider, in which coordinate system the two sets of hartnoscillators are defined.
The matrix elements in the Tl and TD approach are typicaligiuated by integration in
position space. When the vibronic wavefunctions in thaahand final electronic states
are expressed in the corresponding normal coordinatersgsthe relation between the two
coordinate systems has to be defined for the integral evafuathis will be discussed in
the following section.

2.2. Duschinsky rotation

In evaluating overlap integrals and matrix elements in theational wavefunction basis of
two electronic states within the BO approximation, the chaif the coordinate system (in
which the vibrational wavefunctions of two different BO fages are defined) is crucial.

If the two BO surfaces can be approximated as two harmonangiat surfaces, it appears
beneficial to approximate the vibrational wavefunctionthwiarmonic oscillators centered
at the corresponding equilibrium molecular structureseims of using one common set.
One has to evaluate, therefore in the most general caspairsgge multi-dimensional over-
lap integrals for FCFs. When the vibrational wavefunctiofighe two electronic states
were expressed in one center basis sag. harmonic oscillator basis set), it would be triv-

12The corresponding stick representations with the Déralistribution are simply obtained by replacing the
Lorentzian line shape functioh with the Diracd-distribution.
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ial to evaluate the overlap integrals. However, at this poire would need a larger basis
set to describe the vibrational wavefunction properly fothbelectronic states (where the
local potential minima are shifted relative to each othdnjolv increases the computational
complexity.

Herein the two reference point approach is adopted withénhilrmonic and Duschin-
sky approximation. The corresponding matrix element of gerator f in the Duschinsky
rotated harmonic oscillator basis set reads

@'|flv). (2.33)

When f = 1, the matrix element simply becomes a FC integral, and when Q;, the
matrix element becomes a linear (first order) HT integrahefitth position operator of the
initial electronic state. The initial and final vibratiorgijenstates are described in molecule
fixed axis systems attached to each equilibrium molecutactstrer, andr{,. We choose
particular molecule fixed axis systems which minimize thgpting between rotational and
vibrational DOFs so that we can use the separation ansatotational and vibrational
wavefunctions. This assumption could be supported by tk@rfEconditions [1, 101, 140],
which minimizes, when fulfills the arrangements, the vilorzal angular momentum and
the Coriolis coupling in the molecular Hamiltonian (seg. Ref. [141]), for the initial and
final molecular systemse.

Natom Natom

Z Ml 4 X Tq =0, Z MTh g X Ty =0, (2.34)
a=1 a=1

where N,iom iS the number of atoms in the polyatomic system and the v&atith the
additional index: indicates the (3-dimensional) Cartesian coordinatesenttiiresponding
atoms and withn,, indicating the mass of atom The origins of these molecule fixed axis
systems are assigned to the center of mass.

The coordinate space representations of the vibratioasgssican be obtained by pro-
jecting on the position operator eigenstat€s and|Q’), where@ andQ’ are the mass-
weighted normal coordinatese. (Q[v) and (Q’'|v'). The Cartesian displacements from
each equilibrium structure of the initial and final elecimstates are expressed in terms of
the corresponding (mass-weighted) normal coordinags,

1

r—ry=M 2LQ, (2.35)
1

r—rl = M_iL/Q', (2.36)

whereM is the N,,, x Ny, diagonal matrix consisting of the masses of atoms,Nhe =
3Natom IS the number of nuclear DOF addand L’ are Ny, x (N, — 6) dimensional
matrices for nonlinear molecules aid,, x (N,, — 5) dimensional matrices for linear
molecules. The matricds andL’ are constructed from a normal mode analysis [1] of the
corresponding harmonic force fields from electronic strcectalculations.

Even if we could successfully separate the vibrational amstifrom the other DOF by
the Eckart transformations [1, 101, 140] (which is, howewet possible), we would need
to consider the alignment between the two coordinate systarefully, because sudden
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axis-switching [142] can cause artifacts in the vibroniecpum calculations. When the
equilibrium structures of the two electronic states aréediht, the axis systems andr’)
from the Eckart conditions (2.34) fixed on the equilibriummustures are typically differ-
ently oriented. We determine the alignment of the two axgesy via finding the Eckart
condition again but with respect to the initial equilibriwtnucturer,, as the reference struc-
ture. Then the two axis systemsdndr’) are adjusted to the initial state Eckart axes. The
Cartesian coordinates are related by a rotation matrixrdipg on the normal coordinate

Q). i.e.
r = T(Q)z. (2.37)

The rotation matrix is called Eckart transformation magexis-switching matrix) [39,143]
and it is a unitary transformation matrixe.

T(Q)'T(Q) =1. (2.38)

The corresponding Eckart condition is given as

Natom

Y margq % (Ta(@)'r}) = 0, (2.39)
a=1

whereT,, is a 3-dimensional subblock matrix @f corresponding to the atom Recently
Kudin and Dymarsky [144] showed that the root-mean-squawation minimization con-
dition, another widely used conformation alignment canoditin crystallography, leads to
one arrangement fulfilling the Eckart condition (2.39), ided that, mass weighting is
included

min > malrg, — (Ta(Q)'1))[. (2.40)

a

We can find an Eckart transition matrik(QQ) by searching for a symmetric matrix

V(Q), which is a necessary condition for the vanishing vectodpeb in the Eckart equa-
tion (2.39),i.e.

V(Q) = EIMET(Q)f = 1! <M£0 ; M%LQ> T(Q)' = V(Q)". (2.41)

We can relate the normal coordinai@sandQ’ in Egs. (2.35) and (2.36) via the transfor-
mation (2.37) using the unitary relation (2.38),

Q= L’tM%T(Q) (ro — T(Q)'rp) + L’tT(Q)LQ. (2.42)

The coordinate dependent rotation matrix, however, is dioated to include because its
coordinate dependence is not formally known in a closedyéingbrm. In order to han-
dle it, we expandI'(Q)) with respect to the normal coordinafg The zero-th order term
Ty =T(Q = QO) can be found by the symmetry condition via the singular valeeom-
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position [140, 145]. From Eg. (2.41), we obtain
Vo =V(Q,) = r¢Mr,Tf = V. (2.43)

Then we have a linear transformation between the two setemfial coordinates by in-
troducing the coordinate expansion to the Eckart transition matrices in Eq. (2.42) and
neglecting nonlinear terms. The Duschinsky linear tramsé&tion relation is given as

Q' =d+8SQ+0(Q%, (2.44)

which is already a good approximation for vibronic specit]. HereS is the Duschinsky
mode mixing matrix, which rotates the initial normal cooralies(), and the displacement
vector d is associated to the molecular structural changes shiftirgorigin of the final
harmonic oscillators to that of the initial ones,

o 1

d=L"M2T, (ry — Torp) , (2.45)
/ / l l !

S = L*"TyL + L'*ToMZ2r, (Tr(Vo)I — Vo) ' M2/ T(L. (2.46)

When the molecular structural changeg|y) are small, the second term in ti$e ma-
trix (2.46) can be ignored [39]. This will be assumed in tiiiedis. But the second term
of the S matrix and even the nonlinear terms have to be considered Wiege is a large
molecular structural deformation.

Ideally, for the/N-dimensional harmonic oscillator (complete separatiothefrotational
and translational motions from the vibrational modes), Buschinsky rotation matri
is an orthogonal matrix and its determinant is unity. Thes Buschinsky relation (2.44)
becomes exactly a linear unitary transformation and thadrigrder nonlinear expansion
terms vanish. However, in polyatomic molecular systems tiarmal coordinate trans-
formation is generally nonlinear (seeg. Refs. [39, 110, 140, 142, 147-150]) because the
Eckart axis transition matrif' (@) depends nonlinearly on the instantaneous displacements
dynamically from the equilibrium structures.

To evaluate overlap integrals of CSs, FC integrals and namd@n integrals exploiting
the coordinate space representations of CSs and harmanillatos eigenstates, we need
to transform one coordinate representation to the othesrdicy to the Duschinsky rela-
tion (2.44). The Duschinsky linear equation (2.44) is ttatesl into a unitary transformation
operator for the coordinate systems appearing in the qvertagration.

The N-dimensional harmonic oscillator Hamiltonian is definedf@sthe initial elec-
tronic state

At ~
Q Q4Q - EZp

= -a"'0%, (2.47)

P.P+

N SN =
DN =

in terms of the annihilation{¢;}) and the creation{@j}) operators corresponding to the
harmonic oscillators with harmonic energigs}. The diagonal matrix of the (square root)
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harmonic angular frequencies is defined and used,

1 1
Q = h 2diag(e)2, (2.48)

where "diag” stands for diagonal. It transforms a vector sgaare matrix with the diagonal
elements being identical to the vector and off-diagonainelets being zero. In addition,
the zero-point vibrational energyf, = %Tr(diag(g))) is subtracted from the vibrational
Hamiltonian for convenience. The operators satisfy thiefdhg relations,

Q bo~t@al +a), (2.49)

P = 1\/>Q (2.50)

corresponding to the (mass-weighted) posftoaperator and the conjugate momentum
operator. The commutation relations of the annihilatiod areation operators are

=45 (2.51)

The harmonic oscillator eigenfunctions in coordinate spai@ given as products of one-
dimensional Hermite polynomiat§

l Q2
() e, (25 Q). (2.52)

::]2

(Qluv) =

=1

where |v) is an N-dimensional ONV representation of thé-dimensional harmonic os-
cillator eigenstates with corresponding vibrational ggef, = v - e. The action of the
annihilation and creation operators on the ONV follows

a;lv) = Vilvr, ... v — 1, oN), &I\@ =V + Lvg, ... 0+ 1,...,0N).
(2.53)

Similarly the N-dimensional harmonic oscillator Hamiltonian of the finl@aronic state
is given by

= —a 1024, (2.54)
in terms of the annihilation{@;}) and the creation{@;T}) operators corresponding to the
harmonic oscillators of harmonic energigg}. The diagonal matrix of (square root) har-

monic angular frequencies is

1 1
= h~2diag(')2. (2.55)

Bin a dimension of/Mass x Length.
Y91, (z) = (—1)"e” /2L e=2"/2,

dav

28



2. Background

In addition, the zero-point vibrational energl,(, = 1Tr(diag(¢'))) is subtracted from the
vibrational Hamiltonian for convenience. The operatotissgathe corresponding relations
of Eq. (2.49)-(2.53) in which the prime$§”shall be used to indicate operators belonging to
the final states.

Doktorovet al.[24,26] defined a unitary operatdioxioroy) Which performs the Duschin-
sky transformation. It is composed of a translation operéiB,ansiation), two distortion
operators Ugistortion ANAUY . i) @Nd @ rotation operatoti{ygation). The Doktorov and
coworker’s [24, 26] unitary operator is given as

0Doktorov = [7translation [7C,1Jifstortion 0distortion Urotationv (256)

where
0translation - e\/*dtﬂl(‘ﬂ _‘1) = _%dtn/971£7 (257)
Ol — @ —3@+) n @ @ -a)+3Tr(n Q) _ 3@ QI P+5Te(ln ) (2.58)
i — o ~3(@'+a) Q@ -a)+3Tr () _ 3Q"n QE—&—%Tr(an)’ (2.59)
Urotation = %( "InSa—4"In SQT) = 82_15 [QQ’IH SQ?lE} . (260)

Instead, however, in this thesis a unitary operdfowhich also performs the Duschinsky
transformation is defined in position space similarly to fuglieezing operator (seeg.
Ref. [151]),i.e.

0~ [l
— | det(S %/ QISQ + d)(Q). (2.61)
O — | det(S) %/ 1Q|Q)(SQ + d, (2.62)

or equivalently in momentum space as
0~ ([apiz) o ( [azpie)
1
— |det(S)[7 [ APIP)S'Plexp(~iP- /) (2.63)
1
0 = |deu($)/? [ APIS')ElexpliE - d/h), (2.64
1 PPN A
where the prefactordet(S)|2 is introduced to restore unitarity'U = 1. For the idealV-

dimensional harmonic oscillatorisjet(S)| = 1 but for the polyatomic systems the quantity
slightly deviates from one as discussed. The unitary opeteansforms the initial state
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operators to the final ones amite versai.e.

/

U'QU =8Q +d, (2.65)
b .

UTPU = (S7H)tP =SP. (2.66)

~

I~ 1
I

In which SS* = I is assumed for the momentum operator transformation, wisithue
only for ideal N-dimensional oscillators| let(S)| = 1) but not quite true for polyatomic
molecules which have a quasi-unitary rotation matfike((S)| ~ 1). Accordingly we can
see the following relations for the position operator egjates,

Q) =QQ). Q)=
Q) = (SQ +d)|Q), Q@) =5"1Q —d)|Q", (2.67)

and for the momentum operator eigenstates,

!/

1 1

PPy =rplP), P'|P)="P|P),
PPy =(s™Y'PP), P|P')=S'P'|P). (2.68)

The annihilation and creation operators in the initial amelfinal states are related by a
similar equation to the linear Duschinsky expression (R.4d.

a L(J+THY T-THY (a J
()= G00 3o om) @) 2 (). e
where theN -dimensional square matrikand theN-dimensional vecto§ are defined as

1
J='sQ !, s=hn29/d. (2.70)

Accordingly the vibrational Hamiltonians are mutually wertible with the Duschinsky
unitary transformationi,e.

H =U'HU. (2.71)

The primed and unprimed ONVs states’( and |v), respectively) are the eigenstates of
primed and unprimed Hamiltoniang/( and H, respectively), otherwise it will be indi-
cated with its corresponding Hamiltonian, for examjple;, is an eigenstate of the primed
Hamiltonian but with the unprimed ONV arjd’) ;; is the opposite case. As a result of the
Duschinsky unitary operatdf the harmonic eigenstates (ONV states) of each Hamiltonian
described in the respective coordinate systems are tramsfbinto each other,

i (OW)) = i (W) ) = Bw (O1)), (2.72)
A (0'w) = B (o)) B (0'1) (2.73)

where the eigenvalues are given by ONVs belong to differlutenic statesi,.e. £,y =
v € andEé = v - ¢. Precisely the harmonic eigenstates of initial and finakstin each
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phase space are transformed to the other phase space byténg transformationi.e.

Ul') =UW) g = 1) g, (2.74)
Uty = Uf|v) 5 = |v) - (2.75)

Then the FC integrals in different coordinate systems caddseribed in one coordinate
systems via the Duschinsky unitary transformation operato

W) = g W)y = g0 g = 7 @0 4. (2.76)

The CS overlap integral is exploited for the FC or non-Coniidegrals because the CS
is the GF of harmonic eigenstates.

2.3. Basic properties of coherent states

Glauber’s coherent state [97] is a special type of quanturmbaic oscillator state which
fulfills the minimal uncertainty relation of position and mentum operators. The mean
values of position and momentum of a quantum mechanical SEausvavepacket [152],
which is evolving in time without spreading over phase spémw the motion of a clas-
sical harmonic oscillator in a given harmonic potential. eTdasic mathematical proper-
ties of CSs which are exploited throughout this thesis aieflprreviewed in this section.
The Duschinsky unitary operator (2.62) is used for compgutire CS overlap integral for
Duschinsky related (Eq. (2.44)) CS. Most of the followintat®ns of CSs can be found in
Refs. [97,98], and in many other articles and books ésgeRef. [3]).

Coherent states (CSs) are defined in three different wagsah @igenstate of the annihi-
lation operator of the quantum harmonic oscillator, ii) @&%phase displacement operator
and iii) as a state satisfying the minimum uncertainty refat For simple harmonic os-
cillators all three definitions are equivalent. The minimuncertainty relation definition
of CSs is usually exploited for the CSs of general potentiads nonlinear CSs (see.g.
Ref. [153]). Only the definitions i) and ii) shall be explaitéor the method developments
in the later chapters.

The N-dimensional CS«) is defined as an eigenstate of tNedimensional annihilation
vector operatoé,

ala) = alay), (2.77)

wherea € CV is a complex-valuedV-dimensional vector. The CSs can be expanded in
the basis of harmonic oscillator eigenstates,

la) = exp(—3a’e) exp(a‘a )!0> (2.78)
= exp( —% ZH H |v), (2.79)
v=0

where we have defined and used the product notations fori@stand powers of vectors,

. =Ny —n Ny
e T = ([Tl - (TG ) andl 2 = (Tl ) -« (Tl
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respectively. ThéV-dimensional CSs can be partitioned into subspd€esidY” of dimen-
sionNx andN — Nx respectivelyj.e. |a) = |ax;ay),

lay; ay) = exp(—3ay[? - Lay [*) exp(alal + abal)0y;0y). (2.80)

Then the coherent-Fock state [19%]; ay-) can be constructed by partial derivatives with
respect to{ax.; }, i.e.

luxiay) = H 3& (eXP |QX|2)|QX§QY>)‘ o’ (2.81)

A x=U

where we have defined and used the multi-dimensional pddialative notationi.e. 8%11 i

sL N
( 92k "1k > ( §2k "N,k >
I, amrflkk o P amyzirl\kk
The spatial representation of CSs is given in a normalized fo

1

(@) = [T, o, exp ( LQ'%Q + V3'9Q ~ sa'a - —rocr?) (2.82)

The conjugate momentum space representation reads

(Pla) = ng

which is in a normalized form as well.
Coherent states (CSs) can be defined with a unitary opeth&€S displacement oper-
ator, which is defined by

[ENE

1
exp [—EﬂtQ_QB iv2a'Q 1P + 2g o — —|oz|2] (2.83)

D(a) = exp(a‘d’ - a'a)
= exp(—glal*) exp(a‘a’) exp(~—a'a). (2.84)
Under the action of)(«) CSs are created from a ground stgXeas

D(2)]0) = |a), (2.85)

and the CS displacement operator satisfies the followinggbperation rules,

Di(a) = D7'(a) = D(-a), (2.86)
D(a)D(y) = D(a +7) exp[i(yfa —1'a™)], (2.87)
[D(e), D(v)] = D(a + 7)2ilm ( exp[5(7'a — fg*)]), (2.88)
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The unitary operation on the annihilation and creation afes look like

D(y)'a'D(y) = a' + 1:. (2.89)

N

D(a)D(7)]0) = D(a)|7)
= expl3(vfa —2'a")] la + 1), (2.90)

the phase composition state from the vacuum state.

The operation of the harmonic vibrational Hamiltoni&h(2.47) on a CS appears rela-
tively trivial. A unitary (Eg. (2.91)) and the non-unitariq. (2.92)) transformations of CSs
can be shown easily by applying the transforming operatoifset occupation representation
of the CSs, Eq. (2.79). Under the exponential such operabongly shift the CS phase.g.

2 a) = a(t)a), (2.92)
wherez(t) = diag(e~*1t/2h ... e~lent/2h) The unitary operation like above is called the
phase-shifting operation. For non-unitary transformratiavith a diagonal Hamiltonian in
the harmonic oscillator basis, such as for the thermal Bwitm population of states, an
additional factor appearse.

e—BH/2‘Q> _ e—ég*(I—F*F)g’Fg> 7 (2.92)

whereI' = diag(e #<1/2, ... e~PeN/2) with the reciprocal temperaturg = 1/(kgT)
whereT is the temperature ankk is the Boltzmann constant. Comparing to the unitary
operation (2.91) the CS phase factor is rescaled as wellthélBoltzmann related factors
(") and the non-unitary operation leaves a prefactor (the rexpiial factor in Eq. (2.92))
which is related to the vibrational partition function (seec. 6.1.2).

Coherent states (CSs) are over-complete basis sets safififie following resolution of
identity [97],

1 R
N d22|2><2| =L (2.93)
Two CSs are not orthogonal [97],
(1la) = exp(—3lal® - 517[*) exp(z ). (2.94)

The overlap integral of CSgy) and|y’), described by the corresponding normal co-
ordinatesQ and Q' respectively in the Duschinsky relation (Eq. (2.44)), candiven in
the occupation representation [27] exploiting the ocdopatepresentation of the coherent
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states (Eq. (2.79)) such that

(Vla) = exp(~3ala—3710) 3 W], "I, .. @9

where|v) and |v’) are the harmonic oscillator eigenstates correspondingedOSs|«)
and |7/) respectively. The occupation representation of the opeiritegral of the CSs,
Eq. (2.95) is the GF of the FC integr&tsvith the generating function parametdrs; } and
{7} The CS overlap integral in the Duschinsky relation is thieermby

o) = (+/;Q, Ple; Q, P) = (7/;Q, P|U|a; Q, P)
— | det(S)[2 / 4Q(7'[SQ + d) (Qla)
= (0']0) exp(—3£16)T [W,r3¢] (2.96)

where the collective CS phase vector is used

¢ = (1—> , (2.97)

and the exponential functiaf is defined as7[A,b; z] = exp(—%gtAg + b'z). The over-

lap integral of CSs that is represented by the Duschinslatedtharmonic oscillators can be
integrated in a closed form by exploiting the spatial repnégtion of CSs, with the corre-
sponding spatial representati8rEq. (2.82) being expressed by exponential functions. The
Duschinsky relation, Eq. (2.44), is taken into account wiité help of Doktorov matrices
and vectors [26] as parameters,

W = (I_—ﬂ%{(? I—_2;{P> =2 ((fﬁ%g) . (2.98)

W is a self-invers& N x 2N matrix [117] and th N-dimensional vector should not be
confused with Cartesian coordinates in section 2.2. Yhdimensional symmetric positive-
definite square matricg® andP, and theN-dimensional vectod are given as

Q=(I+JJ)"', P=JQJ', R=QJ. (2.99)
The Doktorov matrices are related to each other as [117]

RR'=Q-Q% R'R=P-P? (2.100)
RP'R'=Q, R'Q'R=P, QR+RQ=R. (2.101)

The vibrational ground state overlap integrdl’(0)) is expressed with the Doktorov matri-

15<2/|Q>

8or with the corresponding momentum space representatio(2EB3)
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ces and vector as well,

1
—1 1
Ny (Il 1 1 1
'10) = <] a ——8'(TI—P)J ) | det(S
o) =2% | o ) ae@)ex p(~500 - P2 ) faer(s)
:Q%Met(R)]%exp (-%g%l-P)g) : (2.102)

Equating the occupation representation (2.95) of CS ogventegral and the expanded
spatial expression (2.96) with respect to the CS phaseblasiaand comparing CS phase
variables to collect same orders we can find the FC integrluation scheme. The CS
phase variables take a role as FC integral generating imptirameters. For example the
FC integral evaluation schemes are given in recursionioela{seee.g. Refs. [24, 26, 36]).
The recursion relations given in Ref. [46] reads

\/vl-—i— 1 |vr,..., 00+ 1,...,0n8) =
QZRZ,“/ (W], .. v — 1, vy )

+Z 2Q — 1);j /05 (¢ [v1, ..., v; — 1,...,uN)
—\f 2(RA)i(v'[v), (2.103)

for the initial state, and for the final state

v+ L, vy |e) =

N
QZRik\/U_z‘<2/\Ul7---7% —1,...,uN)

—I—Z2P—Ikg\/7<?}1,...,’l)2—1,...,’U§V‘y>
+\f[1— P)d)i(|v) , (2.104)

which are exploited in this thesis for the FC integral evatwrawith thermal prescreening
(Ch. 4) and linear HT prescreening (Ch. 6). The correspantitegral evaluation scheme
can be brought into an iterative form (seg. Refs. [44,46]). The iterative formula exploited
in Ref. [46] is presented here, to show the complexity of tkistimg iterative formula in
comparison of the iterative scheme developed in this ti{esis Ch. 3)e.g.
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lv) = (@ an|a m —
W'y = (a1, ..., an|GN+1, ..., GoN) =
v It plrel Gpg AlPd i1 plea-t Ipk plpik g1 et lop/2] gp—2
TR Dl =S i S o I L ST DJL -y < Ao
= 12, i it lpp-1! Ip;! Tl " [ Tp1! T 1y (gp—2rmp)!
fpp=1=0 i =0 lpj=1=0 lp,x=0 1p1=0 mp=0
9ji=1 pliv—1 gik ALk gi1 o Al lg5/2] mj gj—2m;
=1 ! T m;g; —2m;)!
lij1=0 777 1k =0 ok =0 ! m;=0 g =2m;)
. . . -
CEA lg2/2] AT g2 M2

120 121! om0 2m2ma!(g2—2ma)!
“ l91/2] A2
o 2m1my!(g1—2m1)!?
1=

(2.105)
with the collectively indexed vector for ONVs of final andtial states
N v
= <Q> , (2.106)
and with the setting\ = —W andp = 2N, and
p—1
Gpp—1 = min(dp, Up—1), gpr = min(a, — Z lp.iy Ur), (2.107)
i=k+1
j—1 P P g1 P
9j = min(u; — Z Lii — Z lij, vk — Z lik), gj=1u;— le,i - Zlm,
i=k+1 i=j+1 i=j+1 i=1 j+1
(2.108)

and|i] is the greatest integer less or equal.to

2.4. Franck-Condon transition at zero Kelvin

In this section we summarize the FCF GF development and #scpening strategies at
zero Kelvin [46]7. Based on this previous work, this thesis contributes tereding the
existing techniques by taking the thermal effect, non-@ondffect and time-dependence
into account. The key idea of this development is exploignGF for the FCFs obtained
from the CS representationsf. chapter 1. The resulting expressions are in the form of
a series summation of polynomials and closed integrals. €mnepartition the integral
spaces into summed-over vibrational states and frozeatidloal states with the proposed
partitioning scheme [46]. With the partitioning schemeg iitensity sum rule is exploited
for the prescreening strategies developed by Jankogtiak [46].

173. Huh was not involved in this work.
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2.4.1. Coherent state-based generating function

As mentioned, we would like to have a closed analytic exjwaedsr the FCF GF, which is
given in the occupation representation by

—2v,2v"

i ol (2.109)

=

where the fractional FCRg(v';v) = [(v'[v)|*/](0'|0)|) is used, which is a normalized
FCF with the FCF of vibrational ground stat¢&)(|0)|?). The GF parameters;, } and{z} }
belong to the initial and final states respectively and thieesponding diagonal matrices are

z = diag(z) andz’ = diag(z’). The FCF GF (2.109) corresponds to the SDF (2.2) at zero
Kelvin (po = 1 andp, = 0 for v # 0) within the Condon approximatiorii(Q) = By =2
constant unit vector). Compared to the SDF expression, 80é2A09) has GF parameters
instead of a-distribution. The relation between the GF parameters had-tistribution

in time domain is exploited in section 4.4 for the thermal FIGH- development.

It was first shown by Malkiret al.[125] in non-symmetric forrf that the CS phase space
integral of a product of two CS overlap integrals gives thatigprepresentation of the series
summation of the GF. The method was exploited by Dokt@bal. [29] for the transition
statistic4® and it was modified by Jankowiait al. [46] in a symmetric forrd® which uses
mathematically convenient symmetric matrices. Malkirds#symmetric expression [125]
reads’

Galiin (Z) = 72V |(0']0)[ / d*ad®y (y'|a)(z''|z" )", (2.110)

in which a collective block diagonal matrix is introduc&d= bldiag(z, z") where "bldiag”
denotes a matrix in block diagonal foffn The integration variables are defined as

N N
P’ =[] P, > =]]d*n, (2.111)
k=1 k=1
where
d*ay, = dRe(ay)dIm(ay) = 5 dPrdQy, (2.112)
d*y;, = dRe(y;,)dIm(v;,) = 5-dPrdQ;, (2.113)

8The orders of GF parameters in the series summation are igivgnandv;, not in even order8v;, and2v},
as in the Eq. (2.109).

19The moments of the distribution, mean and covariance faripeibrational modes. The method is further
developed in this thesis (Ch. 5).

20The orders of generating function parameters in the setiesrstion are given in even ordets;, and2v,,
as in the Eq. (2.109).

ZThis integral form is not surprising if one thinks about thace formalism (2.14) which can be traced over in
any complete basis set. In this case the over-complete &ets{2.93) is used to trace the identity operator
(in Condon approximation) with the additional GF paramet&etting the GF parameters to be 1, it is clear
to see the trace formula but the integration diverges bectusplies double summation over two ONV
spaces one for initial and the other one for final vibratictates.

22¢f, diag transforms a vector to a diagonal square matrix.
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2. Background

forallk =1,..., N. The FCF GF inintegral form was suggested as a symmetriessjon
by Jankowiaket al.[46],

G(Z)=G(Z;z)

=N |0) / dad*y (2" j2a) (22" )" (2.114)

Exploiting the occupancy representation of the CSs (2.7@) finds the series summa-
tion formula of the CS phase space integrals after insettirgoccupation representation
Eqg. (2.79) into (2.114),

G(2) = 10102 S Wlu o)

u,u’ v,v'=0
N U VK (U
z 2, )% (1
H k ( k)/ , <_/d2ake—ak|2a7];k(a7;)vk>
bt Vurlvgluglop ! \m
1 P2 N / /
(;/d%he Ml (v )u’“(%)v"’ﬂ ; (2.115)

where the GF parameters are on the unit circle in phase $pdce 1, |z, | = 1. Evaluating
the CS phase integrals in the summation via polar coordirgites®3

1
;/dzakem’“'zazk (@) = Oup 0. Uk (2.116)

which applies similarly for the;, CS phase integration. Then the GF (2.115) in the series
summation of CS phase space integrals recovers the ocoupapresentation of the FCF
GF (2.109). By replacing the GF parameters with phase paesgje e.

2, = exp(i0y/2), zj, = exp(ib}./2), Ok, 0, €R, (2.117)

we can find the phase formulation of the FCF GF,

GO0 = 3 qsv)expli[8-v+6-v]), (2.118)

v,v'=0

and thusG(¢'; 0) is the Fourier transformed FCF GF with the phase paramétgrsand
{6;.}, which is closely related to the TCF development in thisi§gShs. 4 and 6).

Returning to the evaluation of the phase space integraleofF@F GF (2.114), the corre-
sponding spatial representation of the CS overlap intégabtained* as

27 . [} n
Z% o dpexp(i(m —n)p) = dmn and [ dzexp(—z)z™ = nl.

exploiting the unit modulus properties of, z;, and the spatial representation of the CS overlap integral
Eq. (2.96).
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2. Background

G(Z) = WQN/dQQdQZ/ exp(—gé)
oxp(— 3£ ZWZE — 36 ZWZE + ' Z(E +€)). (2.119)

Partitioning¢ into real and imaginary parts,

Lo, (2.120)

1
§R:§(§+§*)’ élzzi_ >

we can separate the integration into two multi-variate Giaumsintegrals. This leads after
recasting the integration over the imaginary pﬁﬁrt,—> —11 25to a FCF GF of the form

G(Z) = Ton[1 + ZWZ, Zr|Ton[1 — ZWZ, 0] . (2.121)

The M-dimensional multi-variate Gaussian integral is defined,
Ip[A,b] = xM/2 / dzexp(—z'Ax + 2b'x)

1
= det(A)72 exp(b*' A" 1D), (2.122)

which converges when the matrik is a complex symmetric matrix with positive-definite
real part (se@.g. chapter 1 of Ref. [154]). Then the integration leads to aezdosnalytic
form,

1 1
G(Z) =det(I — ZWZ) 2 det(I+ ZWZ) 2
exp(r'Z(I+ ZWZ) ' Zr) . (2.123)

2.4.2. Partitioning integral spaces

The purpose of having the Franck-Condon factor generatingtion in the occupation and
the spatial representation is to control the vibrationalitetion via the GF parameters and
to obtain useful information about the transition patteftdseping in mind the occupation
representation (Eq. (2.109)) one can control the vibratiemcitation in the summation by
assigning the GF parametefs:£} and{z; }) to 0 or 1. When 0 is assigned to a vibrational
mode, the mode excitation contribution to the total intgnsvhich can be calculated from
the GF, is excluded and the only surviving term of the modéésground staf€ contri-
bution. If 1 is assigned to a vibrational mode then the modstation contribution to the
summation is fully included in the total intensity. Itisdilon "1’ and off '0’ of the excitation.
For the zero Kelvin case the initial state GF parametir set to0 because all vibrational
modes in the initial state are frozen to the vibrational gubstate. By freezirfd some
vibrational modes in the final state we can figure out the madéributions to the total in-
tensity. In practice, however, a partitioning scheme inGlagissian integral steps is invoked

2% daf(z) = [ d(—z)f(—x)
2602n — 577,0-
27hy setting to O
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2. Background

rather than switching the GF parameters directly on or offithwhe partitioning,G(Z)
(Eq. (2.123)) is decomposed into products of contributionghe orthogonal subspaceés
andY. The subspaceX andY have dimension&vy and Ny = 2N — Nx respectively.
The subspace& corresponds to the vibrational modes with fixed quantum rersmbThe
vibrational modes in subspadécan be excited infinitely and stay in the CS phase integral
space as a restfit The corresponding orthogonal projection operatogsandy satisfy

the usual conditions for projection operators. Applying ginojection operators to matrices
and vectors indicates the corresponding projection labeais

Tx§=8y, TYE=E,
TxAnx = Axx, 7TxAny =Axy, 7yAnx =Ayx, 7yAny = Ayy.
(2.124)

AssigningY on both initial and final state modes leads the FCF GF to darerg unless
the modes are in subspaces mutually exclusive or weightsedriog normalized distribution
such as the Boltzmann distribution for thermal weight (ske4J.

The partitioning scheme can be applied to the Gaussianrait€g.122) so that the inte-
gral is decomposed into airdimensional spac& and an()M — L) dimensional spac¥
with the corresponding integration variableandy [46]

ZulA,b] = 7~ M/ / dzexp(—z'Axxz + 2b% )
/dgexp(—gtAyyg + 2[by — Ayxl]tg). (2.125)
Then the space partitioned Gaussian integral is given by

1 _1 _
IM[A,b] = det(Ayy)72 det(AXX — Axy(Ayy)ilAyx) 2 exp(bg/(Ayy) 1QY)

exp([by — Axy(Ayy) by (Axx — Axy(Ayy) tAyx) 'y — Axy (Ayy) 'by]).
(2.126)

The Gaussian integral decomposition (Egs. (2.125) an@§2) Inakes the FCF GF a prod-
uct of two Gaussian integrals (Eq. (2.121)), which is decosegl into two subspacess.

G(Z) = G(Zxx,Zyy) = Gx)y(Zxx,Zyy)Gy(Zyy), (2.127)
where

Gy(Zyy) =1In, (I +ZWZ)yy,Zyyry]

1 1
=det(I4+ZWZ)yy) 2det(I—ZWZ)yy) 2
exp(ry Zyy (14 ZWZ)yy) 'Zyyry), (2.128)

ZIntegration over one phase variable belonging to one \itomtat mode corresponds to complete summation
of the individual vibrational mode contributions to theahinhtensity.

40



2. Background

and

Gxy(Zxx,Zyy)
= Iny[Ixx — Zxx Wy (Zyy)Zxx, 0]
InglIxx + Zxx W (Zyy)Zxx, ZxxT g (Zyy)]
— det(Ixx + Zxx Wy Zxx) 2 det(Lyx — Zyxx Wiy Zxx) 2
exp((T%) Zxx(Ixx + ZxxWixZxx)  ZxxTx)- (2.129)

The symbolX|Y indicates the conditional exclusion Bfspace fromX space, the integral
spaceX is separated from the spakebut the GF concerning space(G x|y (Zx x, Zyy))
still depends on the GF parameteriinspaceZyy. Here the quantities for the fixed quan-
tum number space are defined as,

W;t(X(Zyy) =Wxx F WXyZyy((I + ZWZ)yy)_1ZyyWYX, (2.130)
T (Zyy) =rxy — WxyZyy(I+ ZWZ)yy) 'Zyyry . (2.131)

The partitioning scheme of the FCF GF is exploited, in pcatttalculations of FC profiles,
to find the maximum guantum numbers for the individual vilorzl modes and the maxi-
mum number of simultaneously excited modes for given intgiisreshold. This rigorous
prescreening scheme is crucial to reduce the number ofr&igeip be computed in the sub-
sequent steps. The output of the neglected integrals ontingrated SDF is here by known
in advance. The numerical schemes for the rigorous presagestrategies are generalized
to include the thermal effect and presented in the thermd& 6E chapter 4. In chapter 6
the thermal prescreening strategy is generalized to iechah-Condon effects.

2.5. Chapter summary and conclusion

In this chapter we reviewed the basic background for ther#tmal contributions of the
thesis. The FGR can be expressed in frequency and time doM@&ipresented the trans-
formation of the SDFs, for OPA and rR cross sections, fromuescy to time domain via
Fourier integration. For the evaluation of SDFs with Dusskiy mode mixing effect, a
unitary transformation was introduced such that it trammefthe coordinates according to
the Duschinsky relation. This Duschinsky unitary operatizas exploited to compute CS
overlap integral and the overlap integral was used for thénfg€gral prescreening method
at zero Kelvin [46].

Throughout the following chapters of this thesis the coteémtroduced herein are ex-
ploited for thermal effect (Ch. 4), non-Condon effect (CBsnd 6) and time-independent
cumulant expansion (Ch. 5). In the next chapter 3 the FC@amdon integral evaluation
schemes are developed for the efficient evaluation of SDFsnamanner. The integral eval-
uation schemes are generalized to complex numbers for theeV&luation of rR, SVL and
anharmonic GFs in chapter 7.
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3. Franck-Condon integrals and beyond

In this chapter we develop integral evaluation schemes fandk-Condon (FC) and non-
Condon integrals. The efficient FC and non-Condon integrab@ation schemes are shown
to be important not only for the time-independent (TI) metbat also for the time-dependent
(TD) approach (see.g. Ref. [71]) of resonance Raman (rR) scattering and singleowib
level (SVL) transition (Ch. 7). We review first the historytbe integral evaluation schemes.
Afterwards, we suggest an iterative integral evaluatidreste for the FC integrals, which
is different from the traditional iterative method (seq. Ref. [155]) in the aspect that
it includes only a single uni-variate Hermite polynomialevbas the traditional approach
contains multiple products of one-dimensional Hermiteypomials in the iterative sum-
mation. Our iterative FC integral expression, which is espnted as multi-variate Her-
mite polynomials (MHPSs), is shown to be in a simpler form tifamtraditional expression.
Usually the non-Condon integrals in the Duschinsky retaijp.44),e.g. the Herzberg-
Teller (HT) integrals<g’|Qi|g>, are evaluated via linear combination of FC integrals (see
e.g. Refs. [36, 49]) resulting from the second quantized exjwassf position operators
(2.49). Thus the non-Condon integral evaluation is moreegjye than FC integrals. Intro-
ducing the coherent state (CS) phase displacement opetattite CS overlap integral we
can translate the non-Condon integral evaluation probtema MHP evaluation problem
even for nonlinear operators. As a result we can use the sdegral evaluation scheme for
the FC and non-Condon integrals, which are expressed as MHRsis chapter a unified
approach for the FC/non-Condon integrals is developed.

A brief history ~ Sharp and Rosenstock [114] developed the multi-dimenkiersanck-
Condon integral evaluation scheme in the displaced-diderotated harmonic oscillator
(from here on we refer to this as Duschinsky oscillator) @aBily using the Hermite poly-
nomial generating functidn(seee.g. Refs. [133, 134]), they found an equivalent series
summation formula in expansion with the generating fumc{(®F) parameters. Many other
authors (see.g.Refs. [149, 155-160]) modified the GF approach to iteratit r@cursive
integral evaluation schemes. Doktoreval. [24, 26] exploited the coherent state position
space representation (2.82) to derive the recursion sal{Eqgs. (2.103) and (2.104)) for
the FC integrals with the Duschinsky oscillators. Recursiations, identical to these ob-
tained by Doktorov and coworker’s [24, 26] CS approachesef@mulated by Kupkat

al. [161] using the Hermite polynomial GF as well and were exptbby many others (see
e.g.Refs. [80,162-166]). The two approaches (Sharp and Rasdngt14] and Doktorov
et al. [24, 26]) exploit different kinds of GFs (Hermite polynorhand CS), however, end
up in a common mathematical problem, namebyv to evaluate the multi-variate Hermite
polynomials(seee.g.Refs. [133,134] for the mathematical works), which can brégpmed
either iteratively or recursively.

le.g.the one-dimensional Hermite polynomial generating fuorctse™ ~*"/2 = °°° Ho(z)Ls
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3. Franck-Condon integrals and beyond

The recursive approach is usually faster than the iteratiee But the former has an inte-
gral storage problem which can easily cause impractical ongmequirements for large
systems and FC integrals with high excitations in vibraiolevels. To deal with the
memory size problem of the recursion relation, there hawenbearious computational
strategic advanceg,g. binary tree [43, 124, 167-169] and hash tables [170-17 2ot s
the integrals efficiently. The iterative scheme has beenifiedduntil recently (seee.g.
Refs. [117,118,120, 121]). The new versions deviate oy from the initial develop-
ment of Sharp and Rosenstock [114], for instance the usatie dummations of multiple
products of one-dimensional Hermite polynomials. For themations of one-dimensional
Hermite polynomial products, one has to sum over many terhishwcan slow down the in-
tegral evaluation. An iterative method was developed ferahe-dimensional non-Condon
integrals [173], however, it has to be extended for multirginsional non-Condon integrals
which is essential for larger system applications, anhaimand vibronic coupling prob-
lems.

Malmquist and Forsberg [115] proposed a different approd@hso called LU method,
expanding the initial and final harmonic oscillator eigatss with a set of harmonic oscilla-
tor eigenstates which can mediate the initial and final Yibnal states so that the Duschin-
sky mode mixing problem (2.44) can be avoided in the evalnath similar idea was used
in Refs. [42,84] for an iterative method explicitly expregsthe integrals in series summa-
tion with the Duschinsky parameters for three dimensioagakec These approaches can in
principle be extended for the non-Condon integral evabmatif Duschinsky oscillators. In
the LU approach, however, non-Condon integrals in the [ghfa@rmonic oscillator basis
have to be evaluated additionally even for the FC integrals.

Perturbation approaches [26,57,119,174] were proposa¢etoome the integral storage
problem of the recursion relations and the complicated @mgintation of the iterative sum-
mation formulas (see.g.Eq. (2.105)). In these perturbation approaches, the Duskhiro-
tations are approximately taken into account by effectmemeters of the non-interacting
oscillators [175] even in the zero-th order. In zero-th oithe multi-dimensional integrals
separate into products of one-dimensional integrals. éloand Peluso [119] claim that
their perturbation method with second order expansion shywantitative agreement with
the exact calculations for small systems having small Dins&ly effects. The higher order
terms, however, should be taken into account for largereayst which is shown to be a
computationally difficult task. The perturbation approashuseful for large systems hav-
ing small Duschinsky mode mixing effects, if one can furtapproximate the Duschinsky
rotation matrix to a block diagonal form by grouping the siigantly mixed vibrational
modes [43].

Svendseret al. [71] suggested a TD recursion relation for the one-photcsoidtion
(OPA) and rR time-correlation functions (TCFs) includidte thon-Condon effects. The
recursion relation is similar to those of Doktoreval. [24, 26] (Egs. (2.103) and (2.104))
but it includes a time-propagation operatem(—ilil’t/h)) and a position operator);).
Svendseret al. could construct TCFS(¢|v(t)), see Sec. 2.1) for the OPA and rR processes
with the recursion relation including a non-Condon opearafaonlinear one-dimensional
position operatorc@?). We develop, instead, a similar TD generating function@ation
method for SVL transitions in this thesis using the complexd®4 which can be evaluated
iteratively or recursively with arbitrary polynomial nddendon operators. Later on we
apply this method to SVL and rR TCF evaluation including ri@mmdon effects in chapter 7.
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3. Franck-Condon integrals and beyond

Throughout the work in this thesis, we utilize the coherdatesrecursion relation re-
ported in Ref. [46] (Egs. (2.103) and (2.104)) for the Tl aygwh with integral prescreening
methods for the finite temperature effect (Ch. 4) and the Hace{Ch. 6). The CS formal-
ism is physically intuitive and can easily be extended toRrenck-Condon factor (FCF)
sum rule at finite temperature (Ch. 4), the FCF thermal TCFE @hthe non-Condon in-
tegral scheme (Sec. 3.2), the non-Condon thermal TCF anddimiesponding sum rule
(Ch. 6), the Tl cumulant expansion (CE) to FC transition (6)).the SVL GF which is
closely related to the rR and anharmonic developments (Ch. 7

3.1. Franck-Condon integrals

One can evaluate the multi-dimensional FC integrals irinythe Duschinsky effect [107]
by relating expressions (2.95) and (2.96) via the partiaivdgves with respect to the
CS phase parameters. With the collective indexed vectoodoupation number vectors
(ONVs) of initial and final state$
v
= (;,) , 3.1

(0)pc =('|v) = (ON41,- .-, V2N |01, .., ON)

|

the FC integral reads

22y
= <Q/|Q>H@ Gﬁ—exp (_%étW§+£t£) ‘ ’ 3.2)
wherée one can notice that the FC integral is nothing but a MHP [21,26e MHP,H3, is
defined as,
Hy(z; Ac) = (—1)_ﬁexp(%fAC_1g)8yexp(—%gtA_lx), (3.3)

whered = ), 7;, andA. is a complex symmetric matrix with a symmetric positive diéin
real part. The overlap integrals of multi-dimensional hani oscillators (multi-variate
Hermite-Gaussian function (2.52)) are expressed as MHBSi4,

—~
<
S~
=
Q
Il
—
<
=)
S~
S}
DO

9y (¢ w1l w—1
(1" Hale =W W)

1
= 0] U (Wl W, (3.4)

2Note that the order of vectors is reversed comparing to E406).

Ang e Sknk TN i em
38511:...,’51]\;] — < k) k”nll?k) < lé) kz]\zivkk) andnzi,..., N _ (Hk(xl,k!)"l'k) (Hk(xN,k!)"N’k)-

[y 0z, 3 [Ty 0z LN
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3. Franck-Condon integrals and beyond

We can evaluate the MHPs by using the following recursioatiah,

2N

Hioy, oo oyt 1, o (@5 Ac) = <Z(Agl)kjwj>7-[5 oo (@5 Ac)

j—l

- Z kJUJ 01,05 — 1, ooy (23 Ac), (3.5)

which was derived by Willink [134] in a similar form of Egs..(®3) and (2.104) (see
Refs. [24, 26, 114]) for FC integrals. Together with Eq. [3uv& can rewrite the recursion
relation of Egs. (2.103) and (2.104) in a single expression,

VO + W01, 0+ 1, Dan)re =7%(01, - -+, V2n)FC
- Zwkm/@j(ﬁh'" 05— 1, Uan)FC-
=1
(3.6)

Willink [134] suggested the recursion relation, Eq. (3f6)the MHPs, which is a general
form of the one by Doktorov and coworker’s [24,27]. The autfound also the recursion
relation of multi-variate normal moments from the recunsielation of the MHPs via the
relation between the multi-variate normal momefitsnd the MHPH, i.e.

£ <ﬁy> — Ty (1A A, 3.7)

wherey is a random variable vector in a normal dlSthbutIMormal(u JAL 1y 4, Exploit-
ing the Magnus series expansion, which shall not be confustidthe multi-dimensional
time integral expansion for the TD Schrodinger equationpfoducts of variabl@Kan [176]
developed an efficient algorithm to evaluate the multiatgrnormal moments,

)5 EE0= ) () S

11=0 ~n=0 s=0

(3.8)

whereh = (01/2 — ly,--+ ,9on/2 — lon)* and[0/2] is the greatest integer less or equal
to v/2. Herein we propose an (alternative) iterative evaluatireme of the MHPs, which
can possibly be evaluated efficiently by identifyigg = —irandA. = W~ lin Egs. (3.7)
and (3.8),.e.

“The normal distribution is defined agy) = — Hﬂ))“AC (y — p_ )| with its mean

S S _ 1
Vdet(2rAaZ 1) °xp [ 2(y
vectory and covariance matria ;.

SH_ 2N vk Zzl—o szfli,v 0( )Z%N e <1l}1) T <v2N) (ﬁtg)a whereh = v — .

1 lon
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sy [/ i i (ﬁ“Wﬁ)s(htr)a—zs
. ZQN lp+s o V2N 2 — =
Ho(W lIZ:O b%:o SZ; ' <l1> <12N> s!(v — 2s)! ‘
(3.9)

Then we can evaluate the multi-dimensional FC integral in(B4) with the relation (3.9)
involving the summation of uni-variate Hermite polynorsfal This iterative formula has
simpler summation indices than the expression (2.105) msRéf. [46] which is a general-
ized expression of Refs. [116,149,155,157]. The summatidices and the corresponding
summation bounds in the iterative equation (2.105) arertig® on each other, whereas
the summation indices and the bounds in Eq. (3.9) are indigpen We can further sim-
plify the expression for a special case, whes 0 (when there is no molecular structural
changes), only one tern¥ & 2s) in the summation oves survives.

3.2. Beyond Franck-Condon integrals

When the Condon approximation, in which one computes thesFBRhe transition prob-
abilities, is not sufficient, it is necessary to take the ¢ion moment as a function of
vibrational normal coordinates. Beyond the Condon appnation, we need to evaluate
the HT (nhon-Condon) integrals which are the matrix elemeftthe position operators.
Usually the HT approximation is adopted for weakly FC-akaolvor FC-forbidden tran-
sition within the Born-Oppenheimer (BO) ansatz. In the Hpamsion of the electronic
transition dipole moment (TDM), typically, at most the laxe¢erms or the quadratic terms
are considered (see Sec. 2.1). Usually the (linear) HT iategre evaluated with a linear
combination of FC integrals via the second quantized msitiperators (Eq. (2.49) and
seee.g. Refs. [36, 49]). We propose, in this section, a general malegyvaluation scheme
for non-Condon operators so that it can be used within the Mi#uation routes in the
previous section 3.1.

Rather than solving for the specific HT-type- integr(alzé|QZ|v> we instead can gener-
ate such matrix elements from an arbitrary polynomial cjoefaf = f(P Q) cast as a

function of momentum and position operators. In the CS hhsisnatrix elements of are
given in a series expansiong 8

T

(7| fla) =exp(—3a'a — 1

)

> W[ flw) ﬁ;__Qﬁi; (3.10)

v,

l\’)|>~
Ibol= |2
(=

Like for FC integrals, the analytic expression(gf|f|g> and the series expansion will be

5The summation over thepart in Eq. (3.9) is the iterative expression of the uni-atEriHermite polynomials.
"Herein we restrict polynomials of momentum and positionrafms to integer powers. But we can possibly

consider non-integer powers such@@l via fractional calculug(seee.g.Ref. [177]).

ny

8T TR N n n
Hll,...&N = (Hk xllkk) (Hk xNNkk)'
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3. Franck-Condon integrals and beyond

compared to formulate the non-Condon integral evaluatahreme. A similar idea [173]
was previously exploited to compute the matrix elementhieftosition operator in a one-
dimensional harmonic oscillator basis. Herein we consabitrary polynomial operators
rather than only a linear position operator for the geneatithn of the development and the
possible expansions of the method to nonlinear HT termspmrib couplings and anhar-
monic oscillators.

It is precisely this action on the CS labels which is exphbiter the HT operations, by
making an identification between the CS displacement opeaaid the momentum and po-
sition operators. By introducing auxiliary parametggsandrg, connected to the momen-
tum and the position operators respectively, we can apggtneral operator expansions
by taking partial derivatives with respect to these aujliparameters. This relationship
utilizes the product of CS displacement operators (Eq87§zand (2.90))

D(np)D(ing)la) =la+ np + ing)
exp |(af — a')np + 1(af + a)ng — ing'np|. (3.11)

where

nQ = (ana""nQN)ta nqQ; € R,

ne = (e, ---,1py), 1P, € R. (3.12)

Differentiating the CSs, Eq. (3.11), with respect to theiliary parameters one can extract
the momentum and position operators from the correspondiiglisplacement operators,
for example

Hlme = ﬁ [l\/% : [ 2| B, D(p) Diing) : (3.13)
T k=1

np-nQ=0

which has been placed into a momentum and position operedering. Other orderings,
such as the reverse ordered form, can be made in a similaranbypexchanging the place-
ment of the CS displacement operators in Eq. (3.11) and nmrplicated orderings are
possible by introducing more CS displacement operators.

Returning to the central problem of evaluating CS matrixelets for the (arbitrary)
polynomial operatoPsf(P,Q), we make the identification between Eq. (3.10) and the
overlap integral exploiting Eqg. (3.11)

(| Dxo(n)la) = (o + (npr +ing)*la+ (np + ing)) exp | 56T — 3n'¢ —ifip'ig |,
(3.14)

9Strictly speaking, this is not an arbitrary polynomial besm one has to introduce many CS displacement
operators with different auxiliary parameters for moretaabiness.
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where
Dyc(n) = D™ ((ing))*) D~ (np) D(np) D(ing), (3.15)
np = (;ﬁ) ;T = (%2,) : (3.16)
n=np+ing. o (3.17)

For computational convenience we uSgy )* instead of(ing/) in Eq. (3.14) when we
multiply prefactors of the position operators as in Eq. $3.tb the corresponding partial
derivatives®. The CS overlap integral in Eq. (3.14) can be further simeglifoy factoring

the CS overlap integral{’|c)) out,i.e!!

(o + (e +ing) e+ (np + ing))
=(/|e)exp( = 3n'n) T [W, i)
exp(—5€M — 30’ — n'We). (3.18)

The occupation representation of the matrix elements &E40}) of the displacement op-
erators (Eqg. (3.14)) reads

(o 1Dxc(m)la) = exp(~36'9) 3! Drc(m)le) ﬁvf’ QH*’* (3.19)

v,v’

To restore the matrix elements in the harmonic oscillatoMddsis from the CS matrix
element (3.19) we take partial derivatives as follows

D a (Let D : 3.20
(/[ Dne(n H exp(3¢'9) (Y [Dne (n)]a) o (3.20)
We can, finally, arrive at the non-Condon integral evaluatiormula by taking partial
derivatives on Eq. (3.20) with respect to the auxiliary ghparameters to restore the mo-
mentum and position operators (Eq. (3.13)),

1%we simply can multiply the position operator prefactb‘)/» in Eq. (3.13), without considering whether a
position operator belongs to the initial or final electrostiate regarding for the sign change of the prefactor.
Otherwise (if we usgin) instead of(ing/)*) we need to take the complex conjugate of the prefactor for
the corresponding position operator belonging to the fitgadteonic state.

UT[A, b z] = exp(— 32" Az + b'z).
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3. Franck-Condon integrals and beyond

,—m’,l'ylm
(v |HQ’£’,P,Q o)
N o [T €}, Wiy [ 1™ 1 [ 52 1™ ALl mom’ I
=[] Ve (W] 4] o mrie s @IDxc@i|
k=1 T ==
N
— iG_klkiil;“l‘/ﬁ_zmkl ﬁm;“
- 2 2 1V 2 i/ 2,
k=1
1
/ 2 e w1l
(0']0) Hf, Hy o L1/ (WNCIENCH WNCI) ) (3.21)

where the MHP dimensional order (g,v’,1,1’, m,m’), and the collective matriWNCI
and the vectofy; are defined as

N W I+W —i(I-W)
Wyar=| I+W  I+W iI+W) |, (3.22)
SiI-W) iI+W) I-W

(3.23)

IR

nct =

—
=3

Note that the ordering of operators in Eq. (3.21) is symrogtre. position-momentum-
momentum-position such that the first position-momenturaraors belong to the final
state and the other belongs to the initial state. Other ¢meoaderings are possible by
placing the CS displacement operators of auxiliary pararaddifferently. Now we can
evaluate the non-Condon integrals for arbitrary polyndmjeerators with the MHP evalu-
ation schemes either in recursive (Eg. (3.5)) or iterativg. (3.9)) way. Even if the para-
metric matrix Wycr, Eq. (3.22)) and vectofi 1, EQ. (3.22)) are composed of complex
numbers, the implementation of the integral formula can laeleneasily in real number
arithmetic because only the off diagonal block matricedaiorpurely imaginary numbers.
Normally the dimensionality of the integral can be reddédsecause usually the dimen-
sions of momentum operatord’f < 2N) and position operators\y < 2/N) are smaller
than the dimension of Duschinsky oscillato?s\{). This non-Condon integral formula has
not been implemented in software, but in this thesis the rg¢fimmework has been suc-
cessfully applied to the linear HT GF development in chaptén time-independent and
time-dependent approaches.

3.3. Chapter summary and conclusion

The integral evaluation schemes for the Franck-Condon amdQondon factors in the
Duschinsky oscillator basis were developed. First, thaifitee integral strategy of the col-

2Wcr andiy; can be reduced in smaller ones.
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3. Franck-Condon integrals and beyond

lective feature in a uni-variate Hermite polynomial sumiorat(seee.g. Eq. (3.9)) was
shown to be of much simpler form than the existing multipledorcts of one-dimensional
Hermite polynomial summation formulas (seg.Eqg. (2.105)). The non-Condon integrals
were transformed into the MHPs via the CS phase displaceoparators like the FC in-
tegrals. As a result the FC and non-Condon integrals candlaated by MHP evaluation
schemes either recursively (Eqg. (3.5)) or iteratively (E339)). Numerical tests have not
been made yet, but the key idea herein to transform everyapvertegral in the Duschin-
sky oscillator basis to the MHP problems is valuable for apgmp new integral evaluation
schemes. We apply the key idea to the later chapter develupnme. thermal FCF GF
(Ch. 4), thermal non-Condon GF (Ch. 6). The complex numbePdlHllow the evaluation
of the TCFs for single vibronic level transition, anharnmmimansition, rR scattering (Ch. 7).
The CS displacement operator technigue is numericallyiegj the thermal FCHT GF
chapter 6. Now we have evaluation schemes for the FC and naddDd integrals, we will
try in the next chapter to reduce the number of FC integraldhfe thermally excited FC
transition system based on the FC integral prescreeninglafawent at zero Kelvin [46]
(see Sec. 2.4).
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4. Thermal distribution of
Franck-Condon factors

In this chapter we introduce techniques to take into accthenthermally excited initial or
final vibrational states with the Boltzmann distributiorfiaite temperature by including an
integral kernel into the Franck-Condon factor (FCF) getiregefunction (GF) (Sec. 2.4). In
the time-independent (TI) approach, the correspondingdir&€ondon (FC) integral pre-
screening schemes at finite temperature are rigorouslyapmaewith the GF. The FCF sum
rule is used in the previous work [46for searching prescreening conditions at zero Kélvin
This method is extended to the case of thermalized Duschivsstillators (Ch. 2.2). By de-
vising temperature-dependent Doktorov matrices and w&dteq. (2.98)), we derive the
thermal FCF GF similar to the zero Kelvin development [46j.(R2.123)) so that we can
use similar integral prescreening steps at zero Kelvin. diig differences between the
functional structure of the resulting thermal FCF GF (2)128d that of the zero Kelvin
is manifested in the former as an additional normalizingdia¢the reciprocal vibrational
partition function). The sum rules and integral prescnegmsitrategy (Eqg. (4.16) and (4.20))
at finite temperature can directly be translated from the Kexlvin development with the
(thermal) integral kernel.

Additionally, the GF approach is directly applicable to ttmmputation of the thermal
time-correlation function (TCF) (Eq. 2.14). It is shown thle prescreening parameter
matrix Z in a FCF GF can play a role as a Diradistribution in the frequency domain.
After applying Fourier transform (FT) in time domain, the Gikes rise to the correspond-
ing (thermal) TCF. Our formulation of the coherent state Y8&ed TCF and its FT also
provides convenient access to the spectral contributiomdi¥idual modes unlike other
time-dependent (TD) approaches (seg. Refs. [17, 34, 35, 37, 64, 137]). The validity of
the prescreening conditions at finite temperature has bedied by comparison of the Tl
and TCF approaches. As first applications of the thermalkpeesing, the FC profiles of
thel *A" — 1 2A" band in the photo-electron (PE) spectrum of formic acid dredRC
contribution to the lowest energy ultra-violet (UV) abstiop band { *A, — 1 'By,) for
anthracene at elevated temperatures are presented.

This chapter is presented as follows. In section 4.1 thartakimtegral kernel is in-
troduced to the coherent state-based GF with thermal wemght=CFs. The FC integral
prescreening strategies for the TI method that also insltigermal effects are developed in
sections 4.3 and 4.2 exploiting the GF at finite temperatackthe corresponding integral
space patrtition (Sec. 2.4.2). We derive the thermal TCF fiteensame GF for the TD ap-
proach. The results from the two different approaches (dI'ER) via the identical GF are
compared in section 4.5. The chapter is concluded in sedt@n

1J. Huh was not involved in this work.
2Seecf. Refs. [44, 45] the FC intensity convergence methods.
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4. Thermal distribution of Franck-Condon factors

4.1. Thermal integral kernel

Boltzmann distributed vibrational states corresponding thermally averaged initial state
is required for the description of FC transition at finite terature. For this reason, a pa-
rameterized integral kerné{ (A; §) is introduced to the CS GF for the FCFs (Eq. (2.114)).
This leads to

G (Z:A) = 7T_2N|<Q’IQ>|_2/dZQde’K(A;§)(Zl*z'lzg><Z'1'IZ*Q>*, (4.1)

with an ansatz for the thermal integral kerhel
K(A;€) = N det(I+ A) exp(—£TAE). 4.2)

Here the parameter matriX is assumed to be diagonalifg) with real-valued entries
A = diag()) and\’ = diag()’), so thatA = bldiag(X, X’). This matrix will be associated
with the Boltzmann factors V' is a normalization factor which turns out, later, to be a
reciprocal vibrational partition function.

We evaluate the GF (Eg. 4.1) in the occupancy representaxpression (2.79) with the
Ccs¢ and find

A) = N0 727D (' |u) (' |o)*

wu' v
N sz-ka (zk)“k'H’k

det(I+ A) H _
L Vuklvglug !

(5 [ @aue Py ) (1 [ aveiFooient)] . @

Rescaling of the integration variables reduces to the auiomal GF expression (2.109)

with a scaling factor. Consequently
)\
1+ Ak 1+ N,

2vk / / (QtB§+y/tB/§/) (4.4)

ﬂ |

jo.o)

_/\/Z

’UU7

where the parameters, which are related to the Boltzmann factors, are used botth®
initial and final states for the sake of generality to copehwiite absorption and emission
processes and their possible thermal integral prescrgesimeeme. Making this relationship
more explicit, they are connected via

(L+X) = eXP(—ﬁkEk) (4.5)
(1+ X)) = exp(—Brer) (4.6)

3Contribution by J. L. Stuber to J. Hut al.[129].
4See Eq. (2.115) for the corresponding expression at zevinkel
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4. Thermal distribution of Franck-Condon factors

wheres, = 1/(kpTy) (with Boltzmann constantg and temperaturé}). These parame-
ters are combined in the mat = diag(f1, . . ., Br) with analogous expressions holding
for primed quantities. All energy parametefsande) are assumed to be positive real quan-
tities. Having ag, for each mode rather than a common value allows to selecifigpec
modes. Choosing, = 0, for example, keeps mode from being Boltzmann weighted
which is analogous to the integral space partitioning inise@.4.2 for the fully integrated
space ). Our choice of the integral kernel (4.2) thus leads to [melgithe required ex-
pression (4.4) for the thermally weighted FCFs.

Utilizing the spatial representation of the CS (2.96) foe thermal GF expression of
Eqg. (4.1) we have then

GE(Z; A) = No7 2N det(T+ A

)
/d2gd21’ exp(—&(I+ A)E) exp(—3E'ZWZE — LETZWZE + ' Z(E + £7)),
4.7)

which differs from the zero-temperature formulation (2)Lanly in the normalization fac-

1
tor and the prefactor of the first exponential. After a reiagabf variablest — (I 4 A)2¢,
this again becomes the conventional GF expression (2.119),

GE(Z;A) = Nn~2N / d*ad*y exp(—£'€)
exp(— &' ZWrZE — L ZWZE* + rhZ(E+ €7)) (4.8)

however the quantitie’V; = W(T') andr, = r(T') are now temperature dependent.
Specifically,

1 1 1
Wr=(T+A)2W(I+A)"2, rp=(I+A)2r, (4.9)

and the temperature dependence enters via the associadid® previously in Egs. (4.5)
and (4.6) with the Boltzmann factors. After formal integpat this leads to

1 1
GE(Z;A) =N det(I — ZW1Z) 2 det(I+ ZW1Z) 2
exp(rhZ(1+ ZWrZ) ' Zry) (4.10)

in the same functional form of zero-temperature GF (2.12i8h vemperature dependent
parameters and a normalizing factor.

Evaluating the normalization constaif, the reciprocal vibrational partition function, is
necessary for subsequent interpretation of the entriesifigr thermal FCF sum rules and
FC transition probabilities, and for the subsequent appba of the sum rules on the FC
integral prescreening. As indicated previously, we capcidhe states which participate
in the Boltzmann weighting scheme by choosifig > 0 and prevent thermalization of
selected modes by fixing, = 0, corresponding td, = 0. Using the polynomial expres-
sion for the GF in Eq. (4.4) together with the formal integrikhe spatial representation
(Eq. (4.10)),
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4. Thermal distribution of Franck-Condon factors

= {0'10)P G (T; A)

2 exp(—v'Be) exp(—v"*B'¢) (4.11)

\c M‘g

- |<g’|g>|2/\/det(1 - WT)—% det(I + W)~ 2
exp(rir(I+ W) 'rg). (4.12)

The choice of the normalization constant which must theeche taken is

N = [{0]0)] 2 det(T — W) 2 det(T + Wr)2
exp(—rr(I+ W) 'rp). (4.13)

The factor\V|(0’|0)|? can be viewed as the effective temperature dependence @¥'thg
integral. The series summation in Eqg. (4.11) can be rewritiea density matrix form, if
we invoke the (harmonic) vibrational Hamiltonians (Eqs4{@d and (2.54)),

1 = N'Tr(exp(—f - h) exp(—f3' - h)) (4.14)

where the vibrational Hamiltonians are in mode separate i = " 7, and ' =
Z]kv B; for the initial and final state respectively. This shows tNais the reciprocal vibra-
tional partition function.

For the special casg, = 0 one has to substitute in Eq. (4.12) the terp(—vgSker)
by 6,0 = limg, ¢, 00 e~veBkes which is unity forv, = 0 and vanishes otherwise. With
these changes, namely that of the normalizatign énd coefficientsW andr,), the sum
rules and prescreening conditions corresponding to thequework [46] can be translated
directly to the thermal case (Secs. 4.2 and 4.3).

4.2. Sum rules

Analogously to the integral partitioning scheme in secch?2, we can decompose the GF
GX(Z; A) into terms depending on variables belonging to the orthagsmbspace& and

Y. The spaceX is associated with modes for which quantum numbers are ke, fivhile

Y contains modes which involve summation over all harmonillasor states, possibly
weighted by a Boltzmann factor at finite temperature. Thditfmared expression for the
thermal FCF GF &

GK(Zxx,Zyy;A) = G§|y(ZXX, Zyy; AN)GE (Zyy; A). (4.15)

We can apply the sum rules arising from this partitioned eggion to prescreen FCFs at
finite temperatures. And we can obtain rigorous bounds omtbgrated FC profile accord-
ing to the maximum number of simultaneously excited modeSNMand the maximum

5See Eq. (2.127) for zero Kelvin development.
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excitation qguantum number of modes (MQM), which are reglimeachieve a given toler-
ance level. Specifics of the prescreening strategy are givire following subsections.

4.2.1. No excited modes inthe X space

When all vibrational modes in the the fixed quantum numbecspia(see Sec. 2.4.2 for the
integral space partitioning convention in this thesis)feseen in their vibrationless ground
states, the generating function componeanlrspaceGQY is factored out as a value of

unity so that one only needs to care about the componeYitspacej.e. GE. A specific
example of practical use is setting the GF parameter matiixspace to the identity matrix
(Zvy = Iyy), the parameters ok space to the zero matriZ x = Oxx), SO that the
Boltzmann factor weighted partitioned GF reads

@ /
G (0xx,Iyy; A) = G (Iyy; A) =N Z g(vy;vy)e By rere Y Brysy

A
Vy,vy-=0

N det((T+ Wi )yy )2 det((T — Wy)yy) 2
exp(rlry (T+ Wr)yy) ey ). (4.16)

Usually only the initial states are thermally excited areltdmperature dependent Doktorov
guantities (Eqgs. (4.9)) are given precisely for this case,

(I+A) 3(I-2Q)I+A)3 —2(I+A) 3R

Wi = 1 . @)
—2RY I+ )72 I-2P
1
_ —I+X) 2RJ
ry ﬂ( 1 P)s ) (4.18)

in which the thermal factors are weighted only on the initiegrees of freedom (DOF).

4.2.2. One excited mode inthe X space

When a mode in the spack is excited to a certain vibrational state, say the méds
excited ton-th vibrational excited state, the GF componé@gy in X space is no longer
factored out as unity but a portion Gf‘g‘y is weighted on the GE. This provides a criterion
for the MQM required in each mode. The resulting expressioitife GF Eq. (4.15) in this
case is given by

GM(Zxx, Iyy; A) = Gxy (Zxx, Tyy; A)GE (Iyy; A) - (4.19)

The modek under consideration corresponds withthe vibrational quantum number con-
strained ton, the expression for the factor of interest is obtained viaaegy series expan-

5This number, the partial summation @g;y, can be considered as a contribution ofrafold excitation on
the k-th mode to the total intensity.
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sion of G- with vl = n,

N E q(vy vy )e” vy Byyey oty By e
vy v V) =n

= GE (Iyy; NG(WiE (Tyy); i (Tyy); ks 15 0, 1.0,0), (4.20)
where

W% vx(Zyy) =Wrxx F WrxyZyy(1+£ ZWrZ)yy) ' ZyyWryx, (4.21)

T% v(Zyy) =rp.x — WrxyZyy (I + ZW1Z)yy) ' Zyyryy, (4.22)
with the GF parameter matriZyy = Iyy, corresponding to the zero-temperature quanti-
ties (2.130) and (2.131), respectively, and the power sesipansion functional,

Q(W%;f}“;k'n' agp, by, co, do) =
n—do n—I— do W;kk) (2~,1tk)2m+a0(Wﬁkk)n—l—m—do

1
Z Z IN(2m + ap)!l(n =1 —m — dy + ¢9)!
F(l+m+b0)F(n—l—m—do+co). (4.23)

4.3. Integral prescreening

The prescreening strategies taken by the previous workgddé]the current thesis invoke
several subspaces in vibrational occupation number véCotNiV) space classified by the
MQM and the MSM. The goal of this numerical scheme is to deiteemestriction on the
vibrational quantum excitations such that the partial swer dractional FCFs reaches a
desired threshold, before we calculate individual FC irgksgi.e. finding MQM and MSM
according to the intensity threshold. For a given errorrtoieec'  in the FC total inten-
sity’ (the integrated FC profile), the vibrational ONV subsp&d@ which FC integrals are
evaluated later) is systematically expanded until theutated total FC intensity err®e;
drops below the desired intensity eredf. . such that

€ror = 1 — Fi < et (4.24)

max )

where the total intensity in the ONV subspace is

=N 3 |@o)[? e Bee v B, (4.25)

v,v'eS

A coarse-grained FC integral prescreening strategy détesrfor instance a maximum
harmonic oscillator quantum number in each normal mode #saw@ MSM, such that all
FCFs in line with these restrictions yield an integrated Ffile that deviates at most by

"The FC spectral density function (Eq. (2.29)) is normalingith the absolute square of electronic transition
dipole moment (TDM) in Condon approximatiohig?) to make the total intensity unity when all FCFs
are summed.

8Error is defined as the remaining intensity summation of és¢ of vibrational ONV space/( S).
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the user defined thresholff!  from the complete integrated FC profile. Instead of utiligin
etol directly, it is convenient to employ auxiliary parametets][t,, andt, satisfying

cione = 1= [ ]I = (fe + Nytm)], 0 < te+ Nyt < 1, (4.26)
v

wheret,, andt. are associated to the mode and coupling tolerances, reshgcandy is
a index over all irreducible representations in the molacaystem. N, is the number of
vibrational modes belonging to the irreducible repred@nay.

4.3.1. Vibrational mode coupling error

We can obtain the minimum number of simultaneously excitedies that are required
to reach the threshold. by repeated application of Eq. (4.16). All integrals involy a
large number of simultaneously excited modes are then ctegle For the different modes
belonging to theX andY spaces, the MSM/ is increased from\/ = 0 until the desired
vibrational mode coupling errdis achieved for the coupling tolerantg i.e. according to
Ref. [46]

M
e=1-> R =1-F <t., (4.27)
m=0

whereFIffg,)C is an increment for the contribution af simultaneously excited modes to

the total intensity aan(]gz =M, FF(ZL)C Each increment can be determined from the
intermediate quantity,

By = > N0)PGE (Tyy; A), (4.28)
YeCzN

whereC?" is the set from the spadé given by choosingn modes for summation out of
possible2 N, via the relation

m m "\ (2N —m +1 m—i
R =Bl -3 ( , >FI§C;C ). (4.29)

. (2
=1

Here we have useﬂ’é%);c = N|(0'|0)[2.

9This quantity is directly related to the Duschinsky modeineffects. When there is no Duschinsky mode
mixing the error is already zero &f = 1. When the Duschinsky mode mixing is significahf,is increased
to make the error drop below the requested tolerance.
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4.3.2. Vibrational mode excitation error

We define a mode contributioﬁF('g,m(n) associated with a fixed vibrational quantum num-
berv;, = n for modek while other modes are summed oviez,

Fnm =N 3 |@/y)fe BB, (4.30)

.0 |vy=n

The total mode contribution of modeto the total intensity can be given by Eq. (4.16) sum-
ming over the quantum numbers of all other modes while |gattie modek atv; = 0,

i.e. the partial contributionFé’g,m(O) is the contribution excluding excitations of mode

We determine the contributioﬁé’g_m(n) with the finite series summation for a fixed quan-

tum number Eq. (4.20). To obtain the maximum quantum nuntrea Epecific vibrational
mode, we determine a minimum guantum numiét>* satisfying

ng) - ( - FFC;UZmaX) < tm7 (431)

Whereefff) is the corresponding vibrational mode excitation error and

"
max
Uk

k
FFC;U;CI"‘aX = Z FIE‘C),m(n) (432)
n=0

4.3.3. Error bound condition

The error bound can be deduced from the intensity errorseoifteducible representations
(7) of the corresponding molecular symmetry group. The Dustlyimotational matrixS

is in a block diagonal form for a symmetric molecule. The kbare separated by the
irreducible representation of the molecular point groums\etry. This separation feature
can reduce the effort to evaluate the multi-dimensional €grals and the FC integral
prescreening conditions can be made accordingly with tharaged from of the GF,

GM(Z; A) = [ GE)(Z) )5 M), (4.33)
v

wherey indicates the irreducible representations g ) is the corresponding parameter

matrix. The quantities oa‘fff) ande. are written asgf”) andefﬂ) respectively corresponding
to the irreducible representations. With the following wtities defined as follow,

e, = max(e(?), (), (4.34)
and
L O Y (4.35)
key
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where

) = max k) (4.36)

it is found [46] that the following bound condition is satésti

1
€min < €tot < Emax < e . (437)

max

Here the lower and upper bounds are given in terms of irréticepresentation contribu-
tions,

€min = 1 — H <1 - egi)n) , (4.38)
i
emax = 1 - | <1 - eﬁggx) : (4.39)

v

4.4. Thermal time-correlation function

The Franck-Condon factor weighted density of states (FCMa)stick representatiatycw (w; ) =

limp_,q |@|—2pFC,L(w; T') at a given transition frequencyis given by
orew(@; T) =N D [/ [0)2o((0) - € — v+ €) — h(w — wp))e” @ BB - (4.40)

with wy corresponding to the frequency of tle- 0 transition. Bearing in mind the Fourier
representation of the Diradistribution, §(w — @) = [*7_dt e!@~®) ands(h(w — w)) =
h~16(w — w), we can expresgrcw (w) according to Eq. (4.4) with the help of the GF via

orcw (w; T) = N(0'|0) 2Rt / - dt GE(Z(t); A)elwwolt (4.41)

where we choos&(t) = bldiag(z(t),z (t)) as with

z(t) = diag(eielt/(%), . ,eieNt/(Qh)), (4.42)
7 (t) = diag(e /M) eTient/(2N)y (4.43)

introduced in Egs. (4.42) and (4.43) respectively. The@ssion . |>2N[(0'|0)[2GE (Z(t); A)
corresponds to the TCF in Eq. (2.14) within the Condon agpration. A convolution of
orcw (w; T') with a Lorentzian line shape function of full width at half ri@um (FWHM)

I" can be achieved by introducirdg¢) = exp(—T'|t|/2) in the expression for the TCF (4.41)
via

orow L(w; T) = N|(0'|0)[* A / - dt GE(Z(t); A)L(t)e!@—w0)t (4.44)

— 00
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If only the initial states are thermally excited in the modeitation active spac&’, as
required in many practical applications, the explicit wogkequation is given by

[e’9) 1
orew L (w) = N(0'|0) 24! / dt det(I — Z({WrZ(t)) "2

det(1 + Z ()W Z(t) 2

exp(rhZ (1) (1 + Z(H)WpZ ()" Z()rp) L(t)el o)t |
(4.45)

with the Doktorov quantities in Egs. (4.17) and (4.18). Q@tlypes of line shape functions
such as the Gaussian line shape function can also be used drecased together with
the Lorentzian line shape function. Therefore, the FC mafdn be obtained with the
help of the fast Fourier transform (FFT) technique as in Bg4g). In contrast to the TI
approach, this does not facilitate the direct assignmemtdi¥idual vibronic transitions
which contribute to the FC profile. With different setsZft), however, it is possible to
extract further useful information by exploiting the FFTté resulting TCF. Contributions
of individual normal modes may be filtered, for instance, bgvpnting time-propagation
of some vibrational modes assigning some of the diagonateiés inz(¢) andz’(¢) to 1
(t = 0), similar to the TI prescreening approaches in the preweark [46] and this work.
Furthermore, if one sets all to 1 and all¢; to 1 in Eq. (4.42), one can obtain the FC
contributions of sums of quantum number differenyé, ¢/ — v;) and one may also obtain
further useful prescreening criteria for the Tl approachhos basis. In the present work,
however, such additional prescreening conditions are xubited. The TCF can also be
expressed in a product form of irreducible representationg TCFs as in Eq. (4.33)e.

GH(Z(1); A) = [ GE)(Zirym) (1); A), (4.46)
v

which is useful in fast TCF evaluation.

The important aspect of our time-dependent developmehtisaur TCF is constructed
from the generating function in the time-independent appino(Eq. (4.4)). The identical
generating function can be used for the FC intensity sumantk TCF calculation. The
extension to the non-Condon application is shown in chaiterhe link between the TD
and Tl approaches are made via the GF parameters (Egs. @d2|.43)), which are
related to the Diraé-distribution. The GF derivation from the time-dependegitspective
in the trace formalism is presented in section 6.1.2 for tre@ondon effects.

4. 5. Results and discussion

The Franck-Condon profiles of the photo-electron and wliméet absorption spectra re-
ported herein have been calculated with the vibronic strecprogram hotFCHT [36, 46,
129-131}*% using the FC integral prescreening conditions developéukiprevious section
for FCFs, and the finite temperature TCF method. The FC ialegrre evaluated with the
recurrence relations of Egs. (2.103) and (2.104). For peesing steps before FC integral

1%The thermal prescreening routine and thermal TCF methobirarlemented by J. Huh.
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4. Thermal distribution of Franck-Condon factors

calculations, one first selects thresholgsandt. for the mode and coupling tolerances to
determine a first error estimatfs. . via Eq. (4.26) for the integrated FC profile. Tighter er-
ror bounds: i, andey, ., at a given finite temperature are then calculated in the presing
stage (Sec. 4.3). The FC profile is then obtained for the EftEIC integrals selected at the
prescreening stage and the resulting total ex@ris compared to the rigorous prescreening
error bounds, satisfying the inequality Eq. (4.37).

One difference between the integral prescreening at fieitgoeratures and the integral
prescreening at zero Kelvin is that tliespace in the latter case includes only modes from
the final electronic state, whereas in the former case theemofkhe initial electronic state
also belong to this space. Consequently, the number oftiobed DOF IV, in Eq. (4.26) is
twice as large for finite temperatures as compareio so that!! values differ even for
the same tolerance sets. For formic acid and anthraceneyftihe application examples
for the previous 0 K development [46], the influence of défetrthreshold choices on the
accuracy of the calculation at different finite temperaduaee investigated (see Table 4.1
and Table 4.2).

In the evaluation of Eq. (4.45), corresponding to the FT efltbrentzian weighted TCF,
the FFTW [178] library (version 3.1.2) for the FFT is usediwit grid size of2'6 and a
time increment ofA¢t = 0.51 fs, and the time interval [-16.7 ps, 16.7 ps]. The time reversal
symmetry relation of the TCR7 X (Z(—t); A) = GE(Z(t); A)* is also exploited. The real
part of the FT is taken for the FC profile. For these plots (Fg$ and 4.3) the relation
between the frequency and the wavenumber representations () = hcoorcw,1(w)
have been exploited.

Equilibrium structures and harmonic force fields of formiteand anthracene have been
taken from the previous work [46] and molecular symmetryr{pgroups of the equilibrium
structures ar€’; for formic acid andDy;, for anthracene) is exploited at the prescreening
stage. Symmetry leads to a block diagonal Duschinsky mé&trand allows us to treat
modes according to different irreducible representatindependently.

The M.y in Tables 4.1 and 4.2 represents a maximum of the MSMs ambsgnainetry
blocks that is necessary to achieve the tolerapcAdditionally, in the tables the individual

MQQX of each symmetry block is given, such thehk,,, = max, MQQX. The behaviour

of the resulting coupling errar, = 1 — E(M) with increasing number of simultaneously
excited moded/ in formic acid and anthracene is displayed in Figs. 4.2 aAd obtain
plots in accordance with the results given in Table Il of H46] and Table | of Ref. [44]
e (M) are combined for different values 87 such that a value of.(M) for each
distinct M = ZV M©) is obtained. The coupling error obtained in this way coroasis
to prescreening without exploiting the point group symmeirdirect comparison between
Table 4.1 and Figure 4.2 as well as between Table 4.2 andd~gdifor the mode coupling
errors cannot be made due to the symmetry argument and theediftolerance settings. In
the TCF method calculation, the molecular symmetry is nptated, even if it is straight-
forward in Eq. (4.46), due to the relatively low computatiboost of this method for the
small size of molecules (formic acid and anthracene).

The supplementary data (harmonic wavenumbers, integescpgening data, etc.) for
this chapter are given in appendix A.
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4. Thermal distribution of Franck-Condon factors

45.1. Formic acid

Leachet al.[179] measured PE spectra of various formic acid isotopsedor thel 1 A" —
12A’ transition from the electronic ground state of the neutrahe electronic ground state
of the formic acid cation. The authors assigned most of tfibmationally resolved spectral
peaks, with the help of vibrational frequencies obtaineithwarmonic force fields frorab
initio quantum chemical calculations, leaving a few peaks unasdigRudbergt al.[180]
simulated the vibronic spectra of the formic acid isotogolkes with zero Kelvin assump-
tion by computing FCFs with molecular structures and haimforce fields from density
functional theory (DFT) calculations, and completed thekpassignments. Jankowiak
al. [46] computed the vibronic spectrum of formic acid (HCOOM}earo Kelvin with FCF
calculation to test their FC integral prescreening tealmiq The equilibrium molecular
structures and harmonic force fields in Ref. [46] were olg@ifrom CCSD(T) quantum
chemical calculations.

The results obtained for zero Kelvin for formic acid (HCOC&t¢ also presented herein
(see Table 4.1 and Fig. 4.1) to see the finite temperaturetgff&éhe time-independent FC
calculations at zero Kelvin are identical to those of Re®] @ith the integral prescreening
technique. The experimental PE spectrum of Leetchl. [179] is compared with our FC
profile at zero Kelvin in Fig. 4.1(c). The overlay of the expgental curve to the theoret-
ical one is based on the peak assignments in Ref. [179] anclitve height is rescaled to
fit its 0/ — 0 peak to our computed one. The most prominent feature of tbetrgpn is a
progression on the €0 stretching mode, because the-O bond length increases when an
electron is removed from the correspondingrbital. The experimental spectrum and the
theoretical one from harmonic approximation agrees welhéf/the theoretical calculation
of C=0 stretching modei = 1566 cm ') shows a longer progression in the computed
spectrum. This is due to a slightly overestimated@bond length in the ionized ground
state. The corresponding experimental fundamental wanbauis1495 cm~!. The unas-
signed peak in Ref. [179], the 7-th peak 2800 cm~!) in Fig. 4.1(c), is assigned Hs3}4}
with the corresponding theoretical wavenumbes- 7, = 2966 cm™!. In spite of the over-
estimation of the €0 bond length the theoretical study [46] could confirm thevjones
peak assignments of Refs. [179, 180] for the 16 peaks of Lebah[179] in Fig. 4.1(c).

We compute, herein, the FC profiles of the PE spectra fornmigt @COOH) at given
finite temperatures for different choices of toleranceirsgst (Table 4.1). For all tolerance
sets and temperatures the error bound condition Eq. (3W)merically satisfied. Looser
tolerance settings naturally give rise to a larger numb@re$creened FCFs as indicated in
the Table 4.1 with larger total intensity erragr;. The FC profile is, even with the coarse-
grained prescreening employed herein, available for teatpess as high akd00 K, with
a value ofe; on the order of 0.7%. Fig. 4.1 displays the temperature digrere of the
FC profile. The temperature effect on the profile3ad K is barely visible on the scale
given here, whereas a much more congested FC structuranlithisame energy range is
obtained for1000 K.

If it were not for the finite accuracy of the numerical FT, thmestra from the TCF
approach should always be an upper bound to the spectra fi@mpréscreening FCF cal-
culation, as the FC profile from the TCF should integrate tavliereas it approaches the

"The peaks are denoted witlf which indicates a vibronic transition froma-th vibrational mode irb-th
vibrationally excited initial state ta-th vibrational mode ire-th vibrationally excited final state.
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Figure 4.1.: Calculated FC profiles for the 'A" — 1 2A’ PE transition band of formic
acid at (a)1000 K with tolerance set Ill, (bB00 K with tolerance set | and (d) K with
tolerance set I. Tolerance set descriptions are providékhile 4.1. Each line in the stick
spectra [right axis{orcw (¥))] represents the averaged FC weighted density of states in a
wavenumber intervalz = 10 cm 1. The (orcw (7)) of all intervals sums t@1 — ;o) /AP
for a given temperature. The stick representations havéiawmially been convoluted with
Lorentzian line shapes with full width at half maximum (halidth) of 100 cm ™! [solid, left
axis, grcw 1. (7)] and compared to the results obtained from the TCF appradashid, left
axis, orcw 1,(7)]. Differences are, however, barely visible on the currasstles. Herery
corresponds to the wavenumber of tife- 0 transition for this band. The experimental PE
spectrum of Leachkt al.[179] is additionally compared with the FC profileK in (c).
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Table 4.1.: Prescreening and error bound performance for formic acigl latand at finite

temperatures300 K and 1000 K). For a given tolerance set (Tol. Set), the associated er-

ror tolerance {*2..), prescreening stage rigorous error bounds.{ and ey;,), maximum
value for the maximum number of simultaneously excited nsaxfall irreducible representa-

tions and maximum number of simultaneously excited maddég, of each symmetry block
(Mmax(Mélaa,l; Mé?a,ﬁ)) as well as the error of the integrated FC profidg) are provided.

| T | TOI SEt(tmvtC) Egﬂm €max €tot €min ]\/Ima.x(A[r(I?e/‘x)x) ‘
[(107°,107%) 1.1x107% 0.29x 107* 0.29 x 10~* 0.10 x 1074 6(6;2)
0K (10=%,107%) 1.1 x1073 0.17 x 103 0.17 x 103 0.09 x 1073 5(5;2)
N(1073,1073) 1.1x 1072 0.38x10~2 0.30 x 1072 0.13 x 1072 4(4;1)
[(107°,107%) 2.0x10~% 0.42x10* 0.39 x 107* 0.15 x 1074 7(7:4)
300K | M(107%,107%) 2.0x102 041 x 10> 0.35x 1073 0.15 x 1073 6(6;4)
M(1073,1073) 2.0 x 1072 0.28 x 102 0.26 x 102 0.08 x 1072 5(5;2)
1000 K [ 11(1073,1073) 2.0 x 1072 0.80 x 1072 0.66 x 1072 0.14 x 1072 8(8;4)
100
*——¥k 1000 K
[3—+F1 300K
GC—O ok
10 =
SN
=
=,
&
o1
0.1 T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12
M

Figure 4.2.: Dependence of the coupling errar = 1 — ﬁ%g on the largest number of

simultaneously excited modag for the FC profile of thel A" — 1 2A" PE transition band
of formic acid. The coupling error is shown on a logarithmiale for temperatures of K,
300 K and 1000 K. Lines are drawn only to guide the eyd/ is different from Mpmax in
Table 4.1, these are identical only when we sesymmetry in the caculation.
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integral value of 1 from below in the latter case. In Fig. /& spectra of the two methods
are almost identical. It is difficult to see the 0.7% diffezerin Fig.4.1(a) at this scale and
theeot is even smaller in Figs. 4.1(b) and (c).

As shown in Fig. 4.2, we require up to 4 simultaneously exlciteodes (of the final
electronic state only) in the coarse-grained prescreestamto achieve a value af smaller
than 0.1% at K. At 300 K and1000 K we need up to 5 and 11 simultaneously excited
modes respectively (out of the total 18 modes composed afiflliand 9 final state modes)
to achieve a similar target value of the coupling error. lg. Bi2 M is different fromMmax
in Table 4.1, these are identical only when thesymmetry is used for the calculation.

4.5.2. Anthracene

Fergusoret al.[181] measured a spectrum for théA, — 1 !By, UV transition 8y — S1)

of anthracene. The spectrum is not vibrationally well-hesth but, at least, it shows major
vibrational progressions. The reason of the low resolutimnd be the finite temperature ef-
fect because the measurement was made at 298-313 K. Thegatiref of the spectrum is a
progression on the C—C stretching modes, because the $eofigii+-C bonds having double
bond nature increase and the lengths of C—C bonds havinig $iogd nature decrease when
an electron is excited from the ground to the first exciteteqtE?]. In previous theoretical
works of others [12,44,46] the experimental spectrum of&sonet al. was compared with
the FC profile calculation at zero Kelvin. The FC profile cédtions at zero Kelvin shows
already good agreement with the experimental spectrunukedae calculated spectrum at
300 K does not deviate much from the one at zero Kelvin (seed=ggb)(d)).

We compute the FC profile of tHe' A, — 1 !By, UV transition §o — S;) of anthracene
at given finite temperatures for different choices of tabeea settings in the prescreening
step (see Table 4.2). Again, the error bound conditions of£87) are numerically satis-
fied. The resulting FC profiles are displayed in Fig. 4.3, Wwtghow a pronounced temper-
ature dependence due to the number of normal modes with lowvdméc frequency (low
vibrational temperature). The experimental spectrum offsonet al. [181] is compared
with the FC profile calculation at 300 K in Fig. 4.3(b). The dag is made according to the
experimental energy scafeand the experimental spectrum height is rescaled to have the
samel’ — 0 peak height of the computed one. The calculated spectru0ak3its to the
experimental one better than the zero Kelvin one does. Edlyethe thermal excitation
part below0 cm ™! fits well with the experimental one, which cannot be expldibg the
zero Kelvin calculation. The shoulder arou@D0 cm ! next to the second highest peak
also agrees to the experiment better than the zero Kelviuledilon. The peak assignment
at300 K is difficult because the spectrum is highly congested. Tketspm, however, does
not deviate sharply from the zero Kelvin one. According te fiero Kelvin calculation the
major vibration progression is from the in-planar middieyrdeformation totally symmetric
vibrational mode s = 1356 cm ') belonging to irreducible representatiap

The FC profile computed fo500 K with an e,y of 4.0% is extremely congested and
calculating it without integral selection requires a sahsitl effort. The coarse-grained
prescreening employed here is not ideal for this case. Aarshio Fig. 4.4, only up to 6
simultaneously excited modes (out of the final state alore}kafficient ald K to reach a

12The second highest peaks ar@327 cm ! and1423 cm ™ in the theoretical and the experimental spectrum,
respectively
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Table 4.2.: Prescreening and error bound performance for anthraceéh&atnd finite tem-
peratures 100 K, 300 K and 500 K). For a given tolerance set, the associated error tol-
erance ¢'°!.), prescreening stage rigorous error bounds.{ and e,,;,), maximum value
for the maximum number of simultaneously excited modes bfiredducible representa-
tions and maximum number of simultaneously excited maddég of each symmetry block
big b b: u b b b:
(Moo (MS2); M M8 M) M) MR s M2 M), and the error of
the integrated FC profile:(,;) are provided.
| T | Tol. Set(tmvtc) ffg;llx €max €tot €min ]\/Lnax(]\ﬂ(y;é)x) |
[(107°,107%) 74 x107%" 1.6x 107" 16x10"" 0.6x 107"  6(6;2;3;4:3;3;2;3)
0K | 1(107%,107%) 74 x1073 18x1072 1.7x107% 0.6 x 1073  5(5;2;2;4,2;2;2;2)
M10=3,1073) 72x1072 22x102 20x1072 0.7x1072  4(4,2;2;3;2;2;2;2)
[(107°,107%) 14 x107° 0.23x 1073 0.22x 1073 0.05 x 103 6(6;4,4:4,5;5,4;3)
100K [ 1(107%,1077) 1.4x 1072 025 x 1072 0.23x 1072 0.06 x 1072 5(5;2;4,4,4,4;3;2)
M(1073,1073) 1.3 x 1071 0.26 x 1071 022 x 10~1  0.06 x 10°1  4(4,2;2;3;4;4;2;2)
)
)
)

3
4
3
300K | 11(107%,107%) 14 x 1072 0.35x 1072 0.29 x 1072 0.06 x 1072 8(8.6,6,7,7:8,6;4)
M(1073,1073) 1.3 x 1071 037 x 1071 030 x 10T 0.06 x 101 7(6;4,6,6,6,7,4;4)
500K | 11(1073,107%) 1.3 x 107! 0.54 x 1071 0.39 x 1071 0.07 x 10~} 10(9;8,7;8;8;10;8;6)

coupling error below 0.1%. At higher temperatures, howewprto 9, 20 and 32 simulta-
neously excited modes out of a total 132 modes composed aofitiél iand 66 final state
modes are necessary to reach a similar threshold.fatr100 K, 300 K and500 K, respec-
tively. In Fig. 4.4M is different fromMmax in Table 4.2. These are identical only when one
usesC; symmetry in the calculation.

The resulting number of prescreened FCFs could be signilfjcartreased in the finite
temperature case by employing a finer-grained strateggadsdf the coarse-grained pre-
screening approach reported herein. This is possible hlnélp of the equations reported
herein in a straightforward manner. An alternative routeildoe to perform for each sig-
nificantly populated pure initial state (or for collectiotigereof) the corresponding mode
couplings and mode excitations in the final vibronic statgch&igorous prescreening con-
ditions for FC integrals are developed in the single vibcdevel (SVL) transition chapter 7.
Related ideas were reported in Ref. [44,45], where, howevsmewhat heuristic selection
scheme rather than rigorous prescreening based on sunhavedeen exploited.

In Fig. 4.3(a), one can see the differeneg£4.0%) between the results obtained from
the prescreening method and the TCF method due to the edaldose tolerance settings
for the prescreening. As indicated for formic acid, the T@Bdm FC profiles should be an
upper bound to those obtained from the prescreening FCHlatitin. Looking closely at
the two Lorentzian weighted spectra in Fig. 4.3(a), howewee is able to observe crossing
points of these two spectra. This is attributed to the faat the averaged Franck-Condon
factor weighted density of states has been evaluated i fimitvenumber intervals. If
finer wavenumber grids<{( 10 cnT!) were employed, such crossings should, in principle,
vanish. In the present work, the finer wavenumber grids aradapted due to the somewhat
higher computational cost in the time-independent methtitizing the FCF prescreening
and TCF methods together, analysis of the difference betwhesse two spectra, can thus
indicate the quality of the prescreening conditions andthdreany significant peaks are
still missing in the prescreening FCF calculation in the edramework of the generating
function approach.
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Figure 4.3.: Calculated FC profiles for the' A, — 1 !B,, absorption spectrum of anthracene
at (a)500 K with tolerance set I, (b300 K with tolerance set 11, (c}00 K with tolerance set

I and (d)0 K with tolerance set |. Tolerance set descriptions are peavid Table 4.2. Each
line in the stick spectra [right axigorcw (7))] represents the averaged FC weighted density
of states in a wavenumber intenAb = 10 cm~!. The {(orcw (7)) of all intervals sums to
(1—e0t)/ AP for a given temperature. The stick representations havidalaly been convo-
luted with Lorentzian line shapes with FWHM 080 cm~! [solid, left axis,orcw . (7)] and
compared to the results obtained from the TCF approach ggdadéft axis,orcw 1(7)]. Dif-
ferences are, however, barely visible on the current seeer, corresponds to the wavenum-
ber of the0’ — 0 transition for this UV absorption band. The experimental Epéctrum of
Fergusoret al.[181] is additionally compared with the FC profile30 K in (b).
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Figure 4.4.: Dependence of the coupling errer = 1 — ﬁF(]gZ on the largest number of si-

multaneously excited modead for the FC contribution to thé 1Ag — 1By, UV absorption
spectrum of anthracene. The coupling error is shown on aitbgac scale for temperatures
of 0 K, 100 K, 300 K and500 K. Lines are drawns only to guide the eyd. s different from
Mmaxin Table 4.2, these are identical only when we Gsesymmetry in the calculation.

4.6. Chapter summary and conclusion

Herein we extended the rigorous prescreening criterigh®FCFs in the finite temperature
case with Boltzmann weighted harmonic oscillator states ttkis purpose, we have derived
sum rules which provide upper and lower bounds for the iatiegk FC profile on the basis
of selected FCF batches. We present only the results of tlsé coarse-grained version for
prescreening, which already led to a significant reducticihé number of calculated FCFs,
as explicitly demonstrated for the vibronic spectra of farracid up to temperatures of
1000 K and that of anthracene with temperatures up0® K. Finer-grained prescreening
can easily be facilitated (seeg.Sec. 7.3 for multi-dimensional’ space development), for
instance by determining restrictions for the final state esodiepending on a specific choice
in the initial state. This demonstrates the particulamgjtie of sum rule based prescreening
in large-scale vibronic structure theory.

This GF approach is also directly applicable to the compmradf the thermal TCF,
which is of particularly advantageous at elevated tempezat The two approaches, time-
independent and time-dependent, show excellent agreemiet testing applications. The
TCF method is computationally much cheaper than the TI ntethonin. vstwo weeks for
anthracene on a 32 bit single processor machine, however akpense that individual peak
assignments are not directly possible. In contrast to atloeks [17,34,35,37,64,137], one
can approach such peak assignments within the TCF methoadgiting similar tech-
nigues as those used in the prescreening. It appears, meless, to be of advantage to
combine both the time-dependent and Tl approaches, thesfarancompute the full FC
profile and the latter to assign specific vibronic contribogi. To this end one would no-
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tice that the prescreening step can be controlled by thendlespace related to the thermal
integral kernel not only by the partitioned integral spaddte differently assigned tempera-
tures to the individual vibrational modes can provide ukieformation about the transition
processes.

In the following chapter 5 we modify the FCF generating fumetat finite temperature to
compute a probability density function (PDF) of F&#by extracting statistical quantities
like mean, variance, skewness and higher order cumulamB®Bffrom the thermal FCF GF
(neither by the direct Tl integral calculation nor by TCF trad). This comparatively cheap
method provides useful information for the Tl and TD methimdaspects of restricting the
energy window in the Tl calculation and fast time-propagatf TCF.

3Because FCF distribution is a PDF of which the integratedmsation is normalized to be 1 in energy domain.
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5. Probability density functions of
Franck-Condon transitions

A good guess on the relevant time stép) and length {rrT) corresponding to the highest
frequency and resolution in the frequency domain, resgagtis required in the evalua-
tion of the time-correlation function (TCF) (seeg. Sec. 4.4) and its Fourier transform
(FT). Time scaling parametera\( and 7rrr) should be chosen carefully because of the
large number of TCF evaluation$i{r/At) that involve the calculation of matrix inverse
(Eg. (4.10)). These calculations can slow down the comjoutaif the Franck-Condon (FC)
profile.

We cannot just increasit to reduce the number of TCF evaluations because of the alias-
ing problem. This problem causes interferences betweeksednigh frequencyr/At)
and those of lower frequency<(x/At), if significantly large peaks exist in the high fre-
guency region. We need to perform long time propagationdifgin resolution. Because
7 /Trpr corresponds to the resolutiofiprr must be long enough to avoid the intensity
leakage problem (see.g. Ref. [182] for fast Fourier transform). Even though the tele
vant energy window (corresponding tef/At, w/At]) can be obtained as a result of the
prescreening scheme (see Ref. [46] and Ch. 4), the assba@ateputational cost is not
negligible if not even prohibitively high.

Also in time-independent (TI) approach with the prescnegriechnique (Ref. [46] and
Sec. 4) one would benefit if the energy window of interest werawn before the FC in-
tegrals are calculated. When there is large structuralroheftion during the vibronic tran-
sition® or the vibronic transition occurs at a high finite tempemtuhe spectra could not
be vibrationally resolved and the distribution would beseldo a normal distribution. In
these cases one would primarily be interested in quanstieh as mean energy, variance
of the distribution and peak maximum rather than a vibrailgrresolved spectrum which
has high computational cost. Thus, an approximate spesttagde, which is available at low
computational cost, would be highly desirable.

So far, all of our concerns were about computing the FC spledénsity function (SDF)
in Eq. (4.40), which is simply a probability density funati¢PDF). A PDF is characterized
by its mean, variance and higher order statistical quasti&uch as moments or cumulants.
We can generate a PDF from the statistical quantities ngtlmntomputing the distribution
at each transition frequency either by the time-independethe time-dependent (TD) ap-
proaches (Ch. 4). We can obtain the statistical quantitistead from the Franck-Condon
factor (FCF) generating function (4.10) directlyThe FCF generating function (GF) con-
tains all the information of the corresponding FC distriiat We can extract the statistical

The vibronic transition has a large reorganization energiprétional vertical transition energy),
15'diag(')d, see Eq. (2.70)

2In principle it applies to non-Condon processes as well é&sge Ref. [40] for the development without
Duschinsky effects).
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guantities from the GF by taking partial derivatives witBpect to GF parameters.

The idea can be realized by the cumulant expansion (CE) dftlweck-Condon factor
weighted density of states (seq. Refs. [29, 183]) with the coherent state (CS)-based FCF
GF [29, 46, 129]. The mean vibrationally excited quanta ab elvin was exploited by
Doktorov and his coworkers [29] for the absorption spectrdfinite temperature effects
and terms higher than 2-nd order were not taken into accow.note here in parsing
that a complementary time-dependent CE method has beeenpeds(see.g. Refs. [5,
35, 37,87]). The TD CE method approximates the TCF in an expial function with
exponents expanded in the order of time correlations. Aswltreone has to evaluate multi-
dimensional time integration to have the cumulants, thasotider of evaluation is usually
limited to second order, which also includes Duschinskeaff (see.g. Ref. [87]). The
Tl CE method developed herein computes the cumulants wittmouti-dimensional time
integration, instead.

Cumulants offer a useful information for a PDF such as meanance, skewness and
(excess) kurtosis corresponding or related to 1-st, 2-ad, éhd 4-th order cumulants, re-
spectively. Mean and variance are frequently used impbgaantities of a distribution,
skewness provides the relative position of the peak maxirfdeviation from normal dis-
tribution) to the mean value and (excess) kurtosis showsstsign and magnitude how flat
a peak is and how long progressions are, respectively.

Herein we develop an approach for computing arbitrary oo@umulants for vibronic
transition energies [183], vibrationally excited quar20] and approximating the Franck-
Condon factor weighted density of states (FCW) of Duschinskated multi-dimensional
harmonic oscillators. As a first applications of the Tl cuamil expansion for Franck-
Condon factor weighted density of states, the FC profilesiefit'! A" — 1 2A" band in
the photo-electron (PE) spectrum of formic acid and the R@rdmtion to the lowest en-
ergy ultra-violet (UV) absorption band ¢ A, — 1 'B,,) for anthracene are presented (see
also Sec. 5.3.1 for the corresponding FC profiles). In se&i8.2 we analyze the FC pro-
file of bacteriochlorophyll (Bchl) for the electron detackmt process, Bchl —Bchl (see
Fig. 1.2), with the TI CE method. Temperature dependendeeofC profiles in presence of
Duschinsky rotation is studied in this subsection, becd&usgchinsky rotation introduces
the temperature dependence of electron transfer as carehénséig. 1.2.

In addition to the cumulant GF of the vibrational transitiemergies, we present the cor-
responding moment GF of the vibrationally excited quan€§ {@ arbitrary order including
thermal effects. Additionally we propose a book keepingathm for multi-dimensional
partial derivatives (Sec. 5.2.1). The moments of vibratilynexcited quanta can provide
detailed information about the molecular system such asentdr structural changes, po-
tential energy distortions and normal coordinate rotatiwhich can be obtained from either
experiment or electronic structure calculations. Empigyihe thermal-moment integral
kernel (see Sec. 4.1 for the thermal integral kernel) to t8& IGF we can explore the
temperature effect of individual vibrational modes, whigstan important topic in electron
transfer theory (see.g.Ref. [87]).

This chapter is constructed as follows. In section 5.1 thewant GF is developed
by introducing a thermal-moment integral kernel that idelsi an auxiliary parameter for

3The corresponding cumulants are the correlation of vibnati excitation quantum numbers of various vibra-
tional modes.
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the vibronic transition energy. The algorithm calculatigmulants to arbitrary order is
developed in the section. And a possible TCF estimation otetith the Tl CE is sug-

gested. Then the complementary development for momenibiationally excited quanta
is presented in section 5.2. For the efficient calculatiothefmoments, an algorithm for
multi-dimensional partial derivatives is developed. Nuiced applications of the cumulants
are presented and discussed in section 5.3. This chaptndtuded in section 5.4.

5.1. Time-independent cumulant generating function

Using the ansatz of the thermal integral kerfiein equation (4.2) one can find the FCF GF
G in spatial representation (Eq. (4.10)). This GF has allrimfation about the distribu-
tion of the corresponding vibronic transitions. With propperations one can extract the
information analogously to the partition function for thetmodynamic quantities. Sim-
ilarly, we operate on the (cumulant) GF in order to obtain ¢benulants of the vibronic
transition energy distribution.

5.1.1. Cumultants of vibronic transition energies

The cumulants of the vibronic transition energiés ( = v'-¢ —v- €)* with respect to the
0’ — 0 transition energy (Fig. 2.1) are defined as (sgpRef. [184])
o (ePe.f)
= — 1N ——-
e=0 Oe™ ’<Q/‘Q>‘2 e=0

n
=-—In GE»(I; A, A,)

>1 A
" oz, 5.1)

e=0

with e playing the role of a cumulant generating parametet.) indicates the mean value
of z™ in the FCW distribution andz™)¢ is the corresponding-th order cumulant.

The vibronic transition energy moment generating functiohie (I; A, A.) can be ex-
pressed in terms of tracess.

Tr(exp(H'e) exp(—He) eXP(—ﬁﬁ))
[(0'|0)[*Tr(exp(—5H))

GE= (A AL) = : (5.2)

which is in a form similar to that of the TCF in Eq. (2.14), whéf and H' are the vibra-
tional Hamiltonians defined in Egs. (2.47) and (2.54) retspely.

We introduce our previous generating function parametgysalso to the cumulant GF
and take the logarithm of the moment Gls,G¥ =, at finite temperature to control the
individual vibrational mode excitation and to facilitateet possible incorporation of the
TCF as in chapter 4. Thus, we employ

(E7 )¢(Z: A) = %lnGKm(Z;A,AS) L on>1, (5.3)

/
€,€
= e=0

“This is only the vibrational transition energy but we comesithe electronic transition energy plus the zero
point energy difference between two sets of harmonic @goils (see Fig. 2.1) as the zero energy level.
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such that(E” )°(I; A) = (EZ )°. The corresponding occupation representation of the
moment GFGXm reads

!
—(v*Be+v'*B’€e) E. e
e (@'Betv —)e e,

where the additional parameteris introduced for the Boltzmann weighted FCF GFE (4.4)
as a formal order parameter.

Similarly to the ansatz of the thermal integral keri&l Eq. (4.2), we invoke a thermal-
moment integral kernek, (A, A.; €) that constructs the moment GF=(I; A, A.) in a
closed analytic form,

Km(A, A €) = Ndet(I+ A)det(I+ A)exp(—€T(A + A+ AAL)E),  (5.4)
where, (I + A.) = diag(ec,...,eNe e~4¢ .. e~~) and (I + AE)‘ = 1. After
formal integration of Eq. (4.1) with the kernél being replaced by the thermal-moment

integral kernels,,, the resulting GF is obtained, which reads

1 1
GE»(Z; Ay AL) =N det(T+ A)det(T+ A; — ZW1Z) 2 det(I + A, + ZWrZ) 2
exp(ryZ(I+ Ae + ZW1Z) Zry) (5.5)

and we may restoPe Using the identities (see also Ref. [18B]f =G X

’
£=

0det(Y) _19Y

- det(Y)Tr(Y " ), (5.6)
oT(Y) . OY
oY1 10Y 4
=Yy (5.8)

the first derivative ofn G%=(Z; A, A.) with respect ta, corresponding to the mean value,
is given by,

Oln GEm(Z; A, A.)
Oe
— $Te[(I+ A. — ZW7Z)~
— T[T+ Ac + ZWrZ) I+ AL)E]
OI+A.+ZW,Z)™ !
Oe

+ 142

ZET ) (59)

where,E = diag(eg,...,en, —€},..., —€y). The crucial part is how to evaluate theth
order partial derivatives of the inverse matrices for highreler cumulants. We can compute

L oY = (Tl ) - (Teehyt)-
5See Eq. (4.10)
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arbitrary orders of partial derivatives of the inverse rixaty defining a function’y,",

- oMY
rry) =]y 5.10
R (Y) g< o) (5.10)
where
Y=>I+A.+A), (5.11)
G = (LHA)E™, mi > 1. (5.12)

A is a matrix which does not depend enLy;" satisfies the following recursion relation,

aan(Y) . mi,....,mi+1,...mn (M1, mi—1,1,my,.mn)
Il (Y) - L V). (5.13)

From this recursion relation we present the following egpiens which will be used for
the partial derivatives of the 2-nd and the 3-rd terms (sageEq. (5.9),

"Li(Y) n+t1 k+1 ( n > .
o 2! L (Y), 5.14
8gn ;( ) {%}:}C ml,...,mk_l,mk_l k( ) ( )

and of the last partial derivative term in Eq. (5.9),

ny —1 n
T (e (o, ) B e

k=1 {m}y

here the se{m}; consists of all positive integer vectons satisfyingn = Zf m; where

k is the dimension ofn. So far, the algorithm for computing the cumulants of the vi-
bronic transition energies has been presented. The cutiBRais proposed rather than the
moment GF for algorithmic purposes, the logarithm separtite GF in summatiodsand
the cumulants provide the statistically meaningful guastidirectly unlike moments. One
can, however, compute the moments from cumulants becaunselaots and moments are
mutually convertible via the following recursion relat®(seee.g. Ref. [186]),

=3 () e 5.16)
(Exthe = (ELY) - Z( > (B PN (ELC. (5.17)

In principle the PDF can be reconstructed from the corredipgncumulants or mo-
ments, if cumulants or moments exist for the correspondistyildution, such that for the

"Otherwise, one has to carry many terms for the multiple pedtérivatives of determinants and an exponential
function in Eqg. (5.5).
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FC SDF (2.29),

00 > (ER )T
orcw (w; T) = At / dt exp (Z %(nﬁ/h) ) (w=wo)t, (5.18)
- k=1 ’

If one could reconstruct the distribution for the transitioom the cumulants then it would
provide useful information with low computational cost.€fa have been, however, many
attempts to produce the probability distribution from tleeresponding cumulants or mo-
ments but they were mostly not too suitable because existietpods such as Edgeworth
expansion and Gram-Charlier expansion produce non-pesitfinite distributiorfs In
this work, nonetheless, the Edgeworth expansion algorithatilized in an arbitrary or-
der for nearly Gaussian distributions [187]. This will pide at least rough picture®.g.
normal distribution) of the distributions. The PDFs in figar5.1 and 5.29%“,(5) are
generated by the following Edgeworth expansion to an ayitorder (see Ref. [187])

(> 3, n = 2is simply for a Gaussian function),

(7 — )’
w7 = i W” Jho)? (=22 e e
[1 +Z (\/ /(heo) ) %’str - 1_:[ ki( mT:_Jr;) )km],

(5.19)

where{k} is a set of (non-negative integer) vectors satisfying > _, mk,, andr =
> _1 km , iIn which the fractional quantity corresponding to the clamts is used,

(Eg )¢/ (heo)"
((EZ )¢/ (heo)?)n =t

The Edgeworth expansion with a finite number of cumulantsgn(B.19) is related to
the FCW by

Sy =

(5.20)

lim Q(F()JW(V T;n) = orcw (7;T) = heoorew (w; T). (5.21)

n—oo

5.1.2. Time-propagation with time-independent cumulant e Xpansion

In the evaluation of the TCF (Eq. (4.10)) for large systensinecessary to estimate the
TCF value at a given time step from the values at previous staps because the direct
evaluation of the TCF becomes too expensive due to the egbeatculation of the inverse
complex matrices. It is worth to note that Petrenko and N¢gSkedevised a method to
avoid the TCF evaluation. They found a recursion relatigrifie SDF in frequency domain
by expanding the TCF, neglecting Duschinsky effect, in agraseries and by performing
partial integration on the expansion. When we need to cenfddschinsky effect, however,
the method of Petrenko and Neese is not not directly appédadcause the analytic time

8in the tails of PDFs with high ordet( 3) cumulant expansion.
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integration of the series expansion cannot be found in thegorce of Duschinsky effect.
Instead, the TCF can be estimated by short time expansioeiliind order) by expanding
the TD cumulant GE (In G%=(Z(t); A)) in a Taylor series. The Taylor expansion of the
cumulant GF with small time stefat would look like

k

<9
K CA) = K : — K ; ‘
InGX(Z(t + At); A) = InG (z(t),A)Jrk}lj oA MGT @+ A A)| AL

(5.22)

where the TD GF parameter mati#Xt) consists of Eqs. (4.42) and (4.43). After identifying
the cumulant ordering parameter= iA¢/h we can express the expansion in terms of TD
cumulantsj.e.

InGE(Z(t + At);A) = InGX(Z Z a =InGRm (Z(t); A, Ae) O(iAt)k
E=
k=1
0o k: c ;A
=InGK(Z Z B J"(2(0) )(iAt/h)k. (5.23)

k=1

When we apply exponential to Eq. (5.23) we arrive at the Wailhgy expression,
5(Z(t); A)

GK(Z(H—At);A):GK(Z(t);A)exp<Z g (iAt/h)"“), (5.24)
k=1

such that the TCF at + At is expressed as a product of the TCR @nd a GF of TD
cumulants at in an exponential form. This expansion (5.24) at 0 andZ = I is simply
the Tl cumulant GF. Accordingly if we rewrite the express{@r24) forn + 1 time steps
aftert, we have

GE(Z(t + (n+ 1)At); A) =GB (Z(t + nAt); A)

< (EE )(Z nAt); A
exp(z< 2.d)"( (ij— 2 )(iAt/h)k). (5.25)

k=1

We can estimate this cumulant expansion expression byifgnbrgh order terms id\¢ of

the power series summation as a short time approximationexample if we negleci\t*

terms higher than 2-nd order, we obtain

GE(Z(t + (n + 1)At); A)

~ GR(Z(+nAt); A)exp (I(BL ) (Z(0); A)(AL/R) = (5 +n)(E2 ) (Z(0); A)(AL/B)?).
(5.26)

This expression is in a form that its value can be estimatsgdan the TCF value from
the previous time step. The numerical procedure for thedfeasluation of the TCF can be

9This should not be confused with the TD CE method which ingslmulti-dimensional time integration for
the time correlation of potential energy difference for ®lectronic states (seeg.Refs. [5, 35, 37, 87]).
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made with the short time expansion approximation. For exanomly in everyn time step
the exact TCF is evaluated and in between the TCF is estinbgt&d). (5.26). Namely we
need to evaluate the complex inverse matrix only evetiyne steps which can speed up the
TCF calculation.

5.1.3. Cumultants of vibrationally excited quanta

In addition to extracting statistical information about thbronic transition energy (Sec. 5.1.1)
one can perform detailed computations of the individuatational mode statistics are also
possible. Cumulants of vibrationally excited quanta in F&€ribution can be generated in

a similar way for the orden = -2 k;, i.e10

—k

o _ Ak Krn . -
(1) =95 m G (1A, Ay) iy (5.27)
with (T + A;) = diag(e™™,...,e~"2~) where we have redefined the auxiliary parameters
7' = (M, N s -5 1y) = (71, - - ., 2 to identify individual vibrational moments.

The corresponding occupation representation is given as

—2v,20

GKH‘(Z;A,Aﬁ):,/\/’ Z q(y/;y)sz’ e—(y°B§+y"B’§’)e(Q'Q-Fy’ﬂ')7 (5.28)
0 2,2

v,v'=

Replacing(I + A:) — (I + Aj) in Eg. (5.5), one obtains the GF in an analytic form,

1
GR(Z; A, Aq) =N det(I+ Az) det(I + Ay — ZWrZ) ™2

1
det(I+ Ay + ZWrZ) "2
exp(ry Z(I+ Ay + ZWrZ) ' Zry) . (5.29)

The recursive expressions (Egs. (5.14) and (5.15)) caririniple be applied for an arbitrary
order calculation as well, but require careful book keepifigyibrational mode indices.
One can find the original idea of the cumulants of vibratitynekcited quanta and explicit
expressions up to 2-nd order (mean and covariance) in Dmkgiral. [29]. In this thesis,
the numerical results obtained for the cumulants of vibratily excited quanta are not
shown, but we mention, that these can be useful for finengtaprescreening strategiés
suggested in Refs. [46,129].

5.2. Moment generating function

Even if the moments of vibrationally excited quanta can tawated with the cumulant GF
in section 5.1.3, the multi-dimensional partial derivatof inverse matrices is a complicated
task. One- or two- dimensional partial derivatives couldelasily done with the method

10401,y _ [ oXkmuk o Xk "Nk
ol ey = ™R N |-
! N [Ty 0z 3 [y 0z %

1By exploiting the vibrational mode correlations, more rietibns on the vibrational basis set can be made.
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in section 5.1.3 but for higher dimensional cases one woektran algorithm to keep
the multi-dimensional orders of partial derivatives 5.118 this section, a book keeping
algorithm is developed to compute the moments of vibratiqoanta to arbitrary order.

5.2.1. Book keeping algorithm

The vibrational quantum number moments of FCFs can be gedefieom partial deriva-
tives of G&m (Z; A, Aj) in Eq. (5.29) in the same manner as the cumulants, but witheut
logarithmic function,

|<<1_|[ >>| = i (v';v) H_ (" Betv " B'e) o= (u'nte" )
o -

_ (_1)721” kiaic:Km(I; A, Aﬁ)‘~ . (5.30)

7=0

IS} |??'

IO

=0

1

In the derivation of Eq. (5.29) we have already used a themmahent integral kernel
which is mode-selective, similarly to the non-selectiverthal-moment integral kernel in
Eq. (5.4),

K (A, Ag; &) = N det(IT+ A)det(I+ Ag) exp(—£T(A + Ay + AAZ)E) . (5.31)

The integral form of the moment GF with the thermal-mometegnal kernetzX= (Z; A, Aj)
is given in the CS integral form as in Eq. (4.7}. B

GR™(Z; A, Aj) = NN det(I+ A) det(I+ Ay)
/ Pad®y exp(—€ T+ A)(I+ Ag)€)
exp(—3E'ZWZE — LETZWZE + 1 Z (€ + £Y)), (5.32)

which will be formally integrated to obtain Eq. (5.29). Thigegral expression is partitioned
into two Gaussian integral functions (as in Eq. (2.122¢),

GRm(Z; A, Ay)
= ./\/det(I + Aﬁ) [QN[I + Aﬁ + ZWrZ, ZﬁT]IQN[I + Aﬁ — ZWTZ,Q]
= N det(I+ Ay)G1™(Z; A, Ay)G5™(Z; A, Aj). (5.33)

GEm andGI™ are defined as
1
Gi™(Z; A, Ay) =det(T+ Ay)2 Loy[I+ Ay + ZWZ, Zr g
1
=1V det(I + Ap)? /ngl(z; A, Ay), (5.34)

1
Gy™(Z; A, Ay) =det(IT+ Ay)2 L[+ Ay — ZWrZ, 0]

:7T_N det(I + Aﬁ)§ /ngQ(Z, IX7 Aﬁ)v (535)
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wheré? Ry = J2(I+Aq+ZW1Z),2Zry; z] andRy = J 2(1+ Ay —ZW1 Z), 2Zr; 2]
are the corresponding integrands of the Gaussian inte##glg2.122)). To derive a recur-
sion relation of the partial derivatives 6™ andG5™ we define a functiors,

B =nNemn g )2
wn =7 e ldet(I+ Aj)2
—2m
/ Az] ] RalZ:AAy). (a=1,2). (5.36)

wherem is a vector of orders of moments. Eq. (5.36) gives the refaiig™ = B%ﬁ and
Gﬁ(m = Bgﬁ. Eq. (5.36) satisfies the following recursion relation oftjgd derivatives,

9B,

n_ (_% + mk)B(%ﬁ + Béﬁl, ..,Tnk)-i-l,...,ﬂ’LzN)7 (a — 172) , (537)

O

where we have used

N[

8det(I + Aﬁ) 1 1
O -

We can expand the partial derivatives in Eg. (5.30) using(E&3) and Eg. (5.36) in a
combinatoric summation rule [188],

< kan ! ) .
0 —NZ Z ( >< 2N> aLﬁB%ﬁ é@ 0 3@ . (5.39)

11=0

|@1 \w

Eq. (5.36) can be written in terms of the expectation valua ebrmal distributio?. B at
7) = 0 can be evaluated with multi-variate normal moments (3.€),

—2m
m 1 m B
Buj|,_, = Vdet(2Ac VE(], ) (a=12), (5.40)

whereF) is the expectation value of the normal distributi®fo,ma (I+ZWrZ) = Zr, I+
ZWZ) andE; is of Myormal (0, I — ZWZ). The expectation valug, the multi-variate
normal moments, can be evaluated by the iterative formulegin(3.9) or by the following
recursion relation in Ref. [134],

1
Eq (2™ - 5'3?” (N ) =tk Ba (2] -t -yt
—1
+Z )iy Eg (] - x;n] e xg@N) my > 1. (5.41)

PJ[A,b;z] = exp(—iz"Az + b'z).

*3The normal distributiotVuormar (12, Ac") is defined ap(y) = 1

1 t
R S _l(y_ Aoy —
det(2mAZ 1) b 2y a,) Acly

)| with its mean vectop, and covariance matrid.; L
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5.2.2. Algorithm for evaluating partial derivatives

We can evaluate the moments of vibrationally excited quaigeEqgs. (5.39) and (5.40).
But the partial derivatives in Eq. (5.39) will give man}%ﬂ’ﬁ functions in different multi-
dimensional partial derivative orders:f according to the recursion relation in Eq. (5.37).
For this reason, we need to book keeping the ordgrdf B functions for the corresponding
coefficients to complete the calculation. The two sets ofigladerivatives ofB; and Bs

in Eq. (5.39) can be expanded by the recursion relation E§7)5 When we consider
a single mode partial derivative, thedimensional expansion coefficient vector oth
partial derivativer,, is given by the recursion relation (5.37),

¢ =D camtra[(=5 + B)e + eppal, (5.42)

whereg,, is an-dimensional unit vector that represents thth order partial derivative. The
multi-mode patrtial derivative coefficient space can be mwitiethe help of the single mode
expansion coefficient vectorise. Consequently,

l

Az gﬁ( | = det(2(I + ZWrZ)) %Z (H cl“SZH) Ei( H ), (5.43)

== s=0

and

l 2N
A(k—1) 0 -iN e
aéf 7)B27’ﬁ‘77 | = det(2(I ~ ZW7Z)) 2 (H Ch; ll,sﬂrl) E2(H ). (5.44)

- = s=0

Finally from the equations (5.40), (5.41), (5.42), (5.480a(5.44), we can evaluate the
Eq. (5.39). It is possible to exploit the space decompasitimilar to the integral parti-
tioning scheme (Sec. 2.4.2), for example moments spacé€y: non-moments space, to
reduce the dimension of the problem. The numerical resoiftthE moments, however, are
not presented in this thesis.

5.3. Results and discussion

In this section we test and discuss our TI CE method for vilortnansition energies. In

the following subsection 5.3.1 we show the CE results of formeid and anthracene for PE
and UV transitions, respectively, which have been disaiss®eady in the previous chap-
ter 4 for the integral prescreening method at finite tempegatWe analyze, in the second
subsection 5.3.2, the electron transfer reaction of biactdorophyll at finite temperature

with the TI CE method. The detailed calculation data arelabhkd in appendix B.

5.3.1. Cumulants of Franck-Condon profiles

We have calculated the FC profiles of the PE and UV absorpgieotsa reported herein with
the vibronic structure program hotFCHT [36, 46, 129-131kingd the time-independent
cumulant expansion developed in this chapter, FC intemsifiles are estimated with the
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Edgeworth expansion algorithm for cumulants of arbitramgeo (Eg. (5.19)). FC intensity
profiles from the Tl CE approach are compared with the resflthe time-correlation
function method developed in the previous chapter 4. Mdéecequilibrium structures
and harmonic force fields are taken form the previous work. [4&ith the Edgeworth
expansion algorithm, it is possible to construct a distidyuconstrained to the computed
cumulants. The scheme employs Hermite-Gaussians as is&gp basis set and it is
useful to evaluate the peak maximum. For lower order expassihe analytic solutions
are available. A Gaussian line shape function with full Wwidt half maximum (FWHM)
of 500cm ™! (the corresponding standard deviatiorF 212.33hcocm 1) is convoluted in
the TCF evaluation. To include the Gaussian line shapeifumat the statistics we simply
addedo? (= 4.51E+04(hcoem—1)?) to the second order cumulant (variance). This can be
rationalized if one consider a convolution of the TCF with auGsian line shape function
in time SpaCGE(Xp(—%O'Q(t/h)2)) for the FT (Eq. (5.18)). The cumulants can be found in
appendix B.

Fig. 5.1 compares the PE transition band of formic acid frdr@E and TCF (Ref. [129])
approaches at (a) 1000 K and (b) 0 K. The (vibrational) vatti@nsition energy (reorga-
nization energy) of this vibronic transition is about 2329cm~! and one would expect
to see the peak maximum of the spectrum at 0 K around this ¥nérg can be seen in
Fig. 5.1(b) the peak maximum of TCF curve (solid line) is nbttas vertical transition
energy. The Gaussian approximation (dotted line) from tnel I1 CE expansion is much
deviated from the TCF one. The discrepancy of vertical ttmmsenergy and mean en-
ergy (= 2420cm~') at 0 K is due to the effects of Duschinsky rotation and thertoaic
frequency differences of the initial and final vibronic stat Peak maximum energy, ver-
tical transition energygétdiag(g’)é) and mean energy are generally not identical if the
distribution deviates from a normal distribution. Evenugh the TI CE-Edgeworth cannot
produce detailed FC profiles, the higher order Tl CE caloutatesults (4-th and 8-th or-
der expansions in dashed and dot-dashed lines, respgrtnvgke fairy well with the TCF
curve especially for the peak maximum and the width of FC f[@ofivhen the distribu-
tion is closer to a normal distribution (at 1000 K, Fig. 5))(#he two different approaches
have better agreement. The mean energy (see the maximum Gfalissian curve ) is ap-
proaching the peak maximum energy as temperature is inegedlat is the distribution is
approaching a normal distribution.

Fig. 5.2 compares the UV absorption spectra of anthracetaéneil from the TI CE and
the TCF approaches at (a) 500 K and (b) 0 K. The spectra of thkeapproach (solid lines
in Fig. 5.2) with a Gaussian line shape with FWHM of 500 care near to a normal
distribution. The peak maximum energy of the two approadresclose to each other
but the convolution of the TCF spectrum with a broader hatftiv line shape function
would give better agreement. Tl CE curves of anthraceneea@ ones better than the
formic acid calculations (see figures 5.1 and 5.2) becauwseligttributions of FC profiles
of anthracene at 0 K and 500 K are closer to a normal distahutiAs one can see from
the two examples, the TI CE approach can provide good guids kiready with 4-th order
expansion for the full spectrum. If one is interested in teakpmaximum or Stokes shift
only, TI CE can provide the results quickly.

In principle the higher order Tl CE should produce more dietiaieatures of the distri-
bution. But the Edgeworth expansion (5.19) can become rigatigrunstable. Oscillations
of tails, furthermore, with negative values at high order B become unavoidable when
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Figure 5.1.: Calculated FC profiles for the A" — 1 2A" PE transition band of formic
acid at (a)1000 K and (b)0 K. TCF-FFT [129] curvesdrcw,c (7)) are drawn as a solid
line. The dotted, dashed and dot-dashed lines are for TI@ge®&orth calculationSQécéW(ﬂ))
corresponding to the 2-nd, 4-th and 8-th order expansi@spectively. TCF-FFT curves are
obtained with Gaussian line shapes with FWHM50f) cm—!. Here, corresponds to the
wavenumber of thé’ — 0 transition for this band.
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Figure 5.2.: Calculated FC profiles for the' A, — 1 1Bs, absorption spectra of anthracene at
(a)500 K and (b)0 K. TCF-FFT [129] curvesdrcw,c (7)) are drawn as a solid line. The dot-

ted, dashed and dot-dashed lines are for TICE-Edgeworthletions @i%w(z?)) correspond-
ing to the 2-nd, 4-th and 8-th order expansions, respegtivBCF-FFT curves are obtained
with Gaussian line shapes with FWHM 860 cm~!. #, corresponds to the wavenumber of
the(’ — 0 transition for this UV absorption band.
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the distribution significantly deviates from the normatdisition because of the oscillatory
nature of the Hermite-Gaussians as an expansion basistaet.tfle Edgeworth expansion
renders the computed curve unsuitable as a PDF due to regegjions, but it provides a
good overview of the overall spectrum (spectrum width) aadikpmaximum at virtually
no computational cost, when compared to Tl or even TCF-fastiér transform (FFT) FC
profile calculations. If a more stable expansion method dbelexploited, the higher order
cumulants could be used as well.

The Tl CE method developed herein is shown to be simple bubihses the following
possible applications:

1.

The 2-nd order (normal distribution) or higher order T1 €4 possibly provide the
confidence intervals which can serve to determine the retexaergy windows for
FC profile calculations.

. One can construct TCF of moments (cumulants and momentsatually convert-

ible) such agE, () (Z(t)) and(E? )(Z(t)) attimet (see Ref. [129] and Sec. 4), then
their FTs correspond to the ab§5rption and emission (indéerging the initial and fi-
nal states) spectrum, respectively. A similar approacthefftequency dependent
mean transition energy has been exploited in Refs. [37,4@8] for photoinduced
cooling processes.

. The TD CE described herein with the TD GF parameters care s&3 an approx-

imated time-propagator with the Taylor expansion of the Ti€kerms of the TD
cumulants (Sec. 5.1.2). This Taylor expansion allows adealuation of the TCF by
avoiding complex inverse matrix calculation at each tinggp st

. We can define a parameter which is a function of molecutacsiral change, force

field variation and temperature for individual vibratiomabdes with the mean ex-
citation energy. This feature is useful in studying largdenolar system to resolve
individual vibrational mode contributions (see the follag subsection 5.3.2).

. The covariance [29] or higher order cumulants (multiaraze) of the vibrationally

excited quanta can give the information about the couplingngth of the normal
modes. This possibly offers an algorithm for grouping thegted normal modes
with a certain threshold for a large molecule, which has moregtry, to approximate
the Duschinsky rotation matrix as a block diagonal matrixhsa one can reduce the
dimensionality of the vibronic transition problem. One wbargue that just looking
at the Duschinsky rotation matrix is enough to see the cogmirength of normal
modes [43] but this idea ignores molecular structural dispinents and temperature
effect, thus the Tl CE approach would give better groupingtstjies and results with
more generality.

. One can attempt to compute thermodynamic quantitieseofitironic transition such

as specific heat by taking a partial derivative on the mearowib transition energy
with respect to temperature, it is possible to have an aritorder partial deriva-
tives on the mean vibronic transition energy with respeaetiprocal temperature
(8) as well. This is precisely the method exploited for the raolar cooling applica-
tions [37,40,41,48].
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7. Exploiting the GF parameterZ)in Tl CE can possibly provide complementary pre-
screening methods to the existing ones [46, 129] (see alsd)Ch

5.3.2. Thermal energy redistribution via Duschinsky mode ¢ oupling

Electron transfer (ET) is one of the fundamental processekeémistry and biology. Indeed,
ET is essential both in photosynthesis as well as respiraitd thus crucial for life as
we know it. Therefore, a detailed understanding of this @sscin varying systems are
interesting on the molecular level.

In the electron transfer theory the intramolecular vilmaail relaxation process (seeg.
Ref. [85]) is the major mechanism of the charge migrationn&babatic ET theory of Mar-
cus [189] is based on the nuclear tunneling mechanism wélEthrate being proportional
to the Franck-Condon factor weighted density of states lamdlbsolute square of electronic
coupling matrix element/{’|?, within Condon approximation),e. the ET rate is defined
as

Ter(w;T) = Z|V[*orcw (w; T). (5.45)

We can exploit the methods developed in the previous chafiielTl and TD approaches
to compute the FCW. FC profiles are, however, typically higldngested at finite temper-
ature, especially for large system such as bacteriochtgtbfBchl) in the photosynthetic
reaction center (seeg.Ref. [128] and Fig. 1.2}.

It has been emphasized by many researchersggpeRef. [82]) that the Duschinsky
effect is important in electron transfer processes. In tesgnce of Duschinsky mode mix-
ing effects a vibrational state-resolved analysis of thepfdile is thus prohibitive even
in the harmonic approximation. Duschinsky rotations stfwl one to one correspondence
between vibrational modes in the initial and final electcostiates. As a result, FC profiles
typically broaden and acquire a different temperature dépece as compared to systems
without Duschinsky rotation as shown in Fig. 1.2. Thus itifficult to analyze the indi-
vidual vibrational mode contributions including the Dusky effects. It is more difficult
at finite temperatures to see which of the vibrational modesnmaportant in complex elec-
tron transferring systems. To analyze the individual ibreal mode contribution to an
ET process, one uses in the absence of Duschinsky rotatmmtarero Kelvin the reor-
ganization energy%(egdf) or the Huang-Rhys factor%@?) as an electron-phonon coupling
constant. In the presence of Duschinsky mode mixing, a airpgirameter to characterize
the mode contribution is required, which has to be a funatfanolecular structural change,
harmonic force constant change, normal coordinate vanatnd temperature. The Huang-
Rhys factor is identical to the mean vibrationally excitecgta of a particular vibrational
mode and only depends on the molecular structural displectsmvhen the displaced iden-
tical harmonic oscillator approximation is used. The priynsolution we suggest for the
Duschinsky rotated systems is to use the mean quantum nuitherindividual vibrational
modes as the effective Huang-Rhys factor, the electrom@mmaoupling constant. This fac-

¥In Fig. 1.2, we present the FC profile of Bch—Bchl. Each equilibrium structure and the correspond-
ing harmonic force field of each electronic states are coatpbl electronic structure program package
TURBOMOLE [190] at density functional theory (DFT) levellcalation with density functional B3LYP
and basis set TZVP. The equilibrium structures, harmonicewambers and relevant data are provided in
appendix B.
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tor is temperature and potential energy surface dependiaettime-independent cumulant
expansion method for FC profiles can provide a mode by modgsasidor the mean of the

vibronic transition energy. The temperature dependennraeargy from Eq. (5.9) is given
explicitly,

(Eee)(T) =Tr[E] — %Tr[(I - WT)_lE'] - %TI“[(I + WT)_lE]
— i (I+ Wp) "B+ Wp) ey (5.46)

By ignoring some modes in the statistics (setting some dialgelements oE to zero), we
are able to compute the (effective) reorganization ene8g@y]91-193] of a normal mode
including the Duschinsky mode mixing and temperature &fegth the mean energy and
individual mode distributions. The mode-wise separabfaession (5.46) can be obtained
by choosing for exampl& = diag(0,...,0, ..., —¢€,,...,0) for i-th vibrational mode in
final statej.e.

(Bo o) (T) =Y e{u)(T), (5.47)

wheree, (v;)(T') is the mode-wise effective reorganization energy a7’ is the corre-
sponding effective Huang-Rhys factor (mean vibrationabgited quanta) of-th mode in
final state. We express explicitly the mean energies foraiggl harmonic oscillators,

<Ee’,5> = %625127 (548)

and for displaced-distorted harmonic oscillators,

(ei—€))? e,
eifegfi_l(1+e 6z/kBT)
(Bo)(T) = (& —€) — e + €07, (5.49)

i

The (traditional) reorganization energgegég), which is identical to the mean energy of
displaced harmonic oscillator model, is temperature ieddpnt (see Eq. (5.48)), while
the displaced-distorted harmonic oscillator system shitsmemperature dependence in its
mean energy expression (5.49). Here we learn that the textopereffect stems from the
frequency change between two sets of harmonic oscillat@use could expect the har-
monic frequency distortion can be enhanced via Duschinsbglamixing effects because
Duschinsky rotation is able to couple low frequency modestagh frequency modes such
that it results a large effective harmonic frequency dtiiar

In the figure 5.3(a) we approximate the FC profiles in figureak Zaussian functions.
The mean values and variances are computed from the meti8&tirb.1.1 at 0 K, 100 K,
200 K and 300 K. The distortion (dotted lines) shows veryelitemperature dependence
while the Duschinsky rotation (solid lines) induces a digant blue shift as temperature
increase®. Figure 5.3(b) displays temperature dependence of meagies&orrespond-
ing to the peak maxima of Fig. 5.3(a) and it also indicategddduschinsky effect on the
temperature dependence. We have just showed that Dusghiotskion can cause signifi-

5Because the displaced-distorted model usually includesl $raquency changes.
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cant temperature dependence via total mean energy caagdEig. 5.3(b)). To quantify
the relation between the Duschinsky rotation and the teatper dependence, we need to
analyze the individual vibrational mode contributionshistprocess.

We compute the mean excitation energies of individual vibnal modes according to
Egs. (5.46) and (5.47). The cumulative sums of them at vartemperatures are plot-
ted in Fig. 5.4(a) for distortion (dotted lines) and rotati@olid lines) models. To see the
Duschinsky rotation effect, we subtract dotted lines frastidslines at each temperature
and plot the result in Fig. 5.4(b). According to Fig. 5.4(&)C-C stretching moderf, =
997cm ') and a C-H stretching modé;; = 3038cm™!) of the final (neutral) state show
significant Duschinsky effect. These modes have little ldisgments compared to other
modes and this indicates that displacements would not berant in the temperature de-
pendence. The Duschinsky rotation matrix in Fig. 5.5 shdw@g¢ason why the two modes
acquire significant amount of thermal excitation energiesnfthe initial state. The two
vibrational modes are coupled to the initial (anionic) aifiwnal modes, circled in Fig. 5.5,
which give large effective frequency changes. The coupditngngths are not strong, only
slightly abovesin(g;) ~ 0.05. To check if this small coupling can cause large thermal en-
ergy redistribution among mixed modes, we investigate arfedsional model systera,—
heo(993 ecm ™1, 65 em™1)t, € = hep(997 em 1,60 cm 1)t S = (CS)S(%_O) —sm(7§—0)>

sin(g5)  cos(gg)
and the (dimensionless) displacement vectdysale chosen a$), 0)* and(1,1)* for nonto-
tally symmetric and totally symmetric modes, respectivéiye compute the mean excitation
energy of individual vibrational modes of these 2-dimenalsystems (see Fig. 5.6). The
high wavenumber mod@93 cm ! of initial state acquires little thermal excitation energy
at increasing temperatures from 0 K to 300 K comparing to tiwe Wavenumber mode
65 cm~!. Without Duschinsky rotation§ = I) only a small amount of thermal energy
would transfer to the high wavenumber mo@l#y cm~! of final state because only the
thermal excitation energy ¢f93 cm~! in initial state can transfer to the high wavenum-
ber mode in the absence of Duschinsky rotation. But the rebolws that the Duschinsky
mode coupling can redistribute the thermal excitation gynef initial state by coupling
modes. Displacement effect seems to be little accordingdaalculations (compare left
and right plots in Fig. 5.6), the equal amount of thermal giesrare transfered regardless
of the displacements (see appendix B).

From our calculations and the 2-dimensional model systemameconclude and expect
the followings:

1. Duschinsky rotation effect can induce different tempeedependence.

2. Mean excitation vibrational energy provides effectiagmeters which can char-
acterize individual vibrational mode contribution incing displacement, distortion,
rotation and temperature effects.

3. Temperature dependence with Duschinsky effects canbhpdé® analyzed by the
effective reorganization energy or Huang-Rhys factoriokthfrom the mean excita-
tion quantum numbers.

4. Duschinsky mode mixing provides a mechanism for thernhtional energy trans-
fer from low frequency modes to high frequency modes.
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5. Displacements are not important for the temperaturerdbpee.

6. Frequency change (distortion) is most important for émeperature dependence and
the Duschinsky rotation enhances distortion effects.

7. TCF approach with mode screening could provide compléamginformation to the
current approach.

8. Temperature effect on variances of FC profiles in presefideuschinsky effect
would be interesting to study.

5.4. Chapter summary and conclusion

We have proposed numerical schemes for computing cumutdnidronic transition en-
ergies and moments of individual vibrationally excited mfiaain an arbitrary order in this
chapter. We have, also, presented the time propagatiomschéth TD cumulants for
the TCF approach. The cumulants and moments of the vibromisition distribution can
be exploited for many other application such as temperalependent electron transfer
processes. We have shown, with the electron transfer oéfiachlorophyll in a photosyn-
thetic system, that the thermal excitation energy of thiinétate can be redistributed via
the Duschinsky mode coupling mechanism. Duschinsky mod@ameffects can induce a
different temperature dependence as a result. Curremtiyntthod is restricted to FC transi-
tions but it can be extended to include also non-Condontsff@&e Tl cumulant expansion
method can provide insights into the transition process wétatively low computational
cost within the harmonic approximation. In the next chapier non-Condon effects are
considered. The development is a combination of the demetops in section 3.2 and in
chapter 4.
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6. One-photon absorption with
Herzberg-Teller effects

In order to describe weak or even Franck-Condon (FC)-foldmdtransitions one needs to
go beyond the Condon approximation (Sec. 2.1), which assumeébrational coordinate
independent electronic transition moment, and take vibroaupling effects [4, 30] into
account. Within the adiabatic picture the Herzberg-T¢HleF) approach is perhaps the most
natural extension (seeg.Ref. [36] and Eq. (2.24)), where one incorporates the coatdi
dependence of the electronic transition moment operatdinéar or even higher order.
This procedure requires calculation of additional intégybeeyond the FC treatment (Ch. 3),
involving the vibrational wavefunctions correspondinglifierent electronic states.

The focus of this chapter is on the direct calculation of H&l Rranck-Condon/Herzberg-
Teller interference (FC/HT) profiles at finite temperatutibaing the time-correlation function
(TCF) and on the development of associated prescreenirditiors within the time-independent
(Th formalism [36, 44—46, 49]. This is an anticipated exien of the previous FC pre-
screening strategy at zero-temperature [46] and inclutedinite-temperature FC transi-
tions (Ch. 4). Herein, the formalism developed in Ref. [46¢ an the previous chapter
for the Franck-Condon factor (FCF) generating function Y@Fh. 4) is extended to the
non-Condon effects via the incorporation of coherent st@®) displacement operators
(Eq. (2.84)) which were introduced in section 3.2 for the 4@ondon integral evaluation
scheme. At lowest order the resulting extended GF leadsalytisal forms for the FC,
FC/HT and HT GFs corresponding to the expressions (2.2980J2nd (2.31). These ex-
pressions are utilized within the previous prescreenimyTadF strategy, providing rigorous
error bounds for entire batches of HT integrals and the TCRhe integrated HT profile.
These complementary approaches are applied to FC-foridteonic transitions of ben-
zene (ultra-violet (UV) absorption, 1Ag — 1 'By,) as a case study. In addition to the
linear HT GF development, the extended GF detailed in thikwan also be applied to go
beyond the linear HT approximation and is connected to tmadiabatic coupling effects
beyond Born-Oppenheimer (BO) approximation and the imatusf anharmonic correc-
tions.

This chapter is organized as follows: Similar to the therf@F chapter 4, the method
is developed in section 6.1 for non-Condon GFs and the mresirg strategies for FCHT
profiles are constructed in section 6.2 on the basis of theTFGH. Then the methods
are tested (Sec. 6.3) for benzene UV absorption profiles.chibpter is concluded in sec-
tion 6.4.

6.1. Methodology

In the following subsections we develop the GFs for the FCAnd HT contributions of
Eq. (2.30) and Eq. (2.31) respectively, via the incorporatif CS displacement operators,
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in correspondence with the previous FC developments at ikehgn [46] and at finite
temperature (Ch. 4). We apply the CS displacement operat@l@pments in section 3.2
to the non-Condon GF development. Exploiting the GF, wegirethe FCHT profile sum
rules for integral prescreening strategies in sectior36.Then the working equations (in
Tl and time-dependent (TD) approaches) for the spectraityefunctions (SDFs) and the
summary of the current section developments follows inieed.1.4.

6.1.1. Augmented generating function

To determine the explicit functional forms for the conttibas corresponding to the FC,
FC/HT and HT expressions of Egs. (2.29)—(2.31), we now thtoe a Boltzmann weighted
GF G* which has been augmented with the operafgiB, Q) andg(P, @), that is

— —2v,2v/

GK(Z7 A)(fyg) — NKQ/’Q>’72 Z <2‘(g)*‘y/> <2/‘f’y>H , e*(thngQ/tB/g/) 7 (61)
v,v'=0 ==
whereﬁii:fffﬁz = (I, x?lkk) (Hk x’]‘VNk"> is used. After identification off and

g with products of CS displacement operators as introducefleim 3.2, we can obtain
an analytic expression fa# and subsequently specialize to the desired FC, FC/HT and
HT GF expressions (corresponding to Eqgs. (2.29), (2.30)2r81) repectively) via partial
derivatives with respect to CS parameters. In this sectiedavive these specific functional
forms for the possible prescreening strategy and the nod@o TCFs.

We can evaluate the non-Condon G¥, which is casted within the occupancy repre-
sentation in Eq. (6.1), analytically through an integrahialation arising from a CS repre-
sentation [46] (see also Ch. 4) with thermal integral kefiieh Eq. (4.2), so that

G (2; M) = 772N |(0']0)| / A2ad?y K (A;€) (2| flza) (@' |jlz"a)* . (6.2)
Identifying f and § with the CS displacement operators (Eq. (2.84)) within theriap
integrals, as in Eq. (3.14), then the integral form of the GfF (B.2) becomes

G*(Z;Asn,n)

— w10 [ dady KAy Drc(nlza) @y Do ()a'a)

(2" + (npr + ing) |2a + (np + in@)) (2 + (s + ingy)*|2" e+ (nfp + i)
oxp | 3612 — 4€ B0 + 46 T" — T | oxp | e +iilp' ). (63)

This construction does include additional, often unnesmysparametric flexibility, however
restrictions can then be imposed on the resulting(@Ffor the specific cases of interest.

Lef. Eq. (2.109) for FCF GF at zero Kelvin and Eq. (4.4) for FCF Gfirate temperature.
2cf. Eq. (4.1) of thermal FCF GF
3See Eq. (4.1) of thermal FCF GF, Eq. (3.14) and the correspgrigfinitions on parameters and variables.
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Exploiting the overlap integral of Eq. (3.18), then Eq. {6t8duces significantly to the
analytic form

1 1
GR(Z;Asn,n') =Ndet(I + ZW1Z) 2det(I — ZWrZ) 2R(n, 1)

exp((bN)'Z(I+ZW7Z) 1 Zb) exp((b7)'Z(1 — ZWZ) 1 Zb7).
(6.4)

This expression is achieved by a rescaling of the variaples(I + A)~'£ and then evalu-
ating the resulting expression in terms of the real and insyiparts of, as per Refs. [46]
and chapters 2 and 4. Here the quantities in Eq. (6.4) areetk&dis

R(n,n') =exp(—3u'n — 1n'"n) exp(—1n" W — L/ "W/ + 1t (n + 1))
exp(—iijpiiq + ifp ) (6.5)
1
OO (A7) =l — St + 0t + (o + YW (I + A) 72, (6.6)
. 1
@) (Asn, 1) = —S[nf ="+ (" — U_’T)W](I +A)2. (6.7)

We note that only the vectar, in b is the temperature dependent Doktorov quantity
(EqQ. (4.9)), wherea®V refers to the temperature independent Doktorov matrix.

Utilizing the relationship in Eq. (3.13) between the pdrtiarivatives of CS parameters
and the position and momentum operators we can straigtafdiyw construct the desired
FC, FC/HT and HT GF expressions with Eq. (6.4). Direct stimstin leads taG* (Z; A)
which is simply a FCF GF [46] (see Sec. 2.4 and Ch. 4),

G¥(Z;A) = GK(z; 1))

= GX(Z; Asn, 1) (6.8)

n=0,n7'=0 °
After rearranging the non-Condon GF expression (6.4) anspegifying the auxiliary pa-
rameters of position and momentum operators belongingttaliand final states, we can in-
troduce operators up to arbitrary orders with the help oftivalriate Hermite polynomials
(MHPs) (Eqg. (3.3)) as it was done already for non-Condongiratis in section 3.2. The
non-Condon GF expression (6.4) is rewritten as

G (Z; Aim,m) = GM(2; A)T |Wxcr(Z; A), inorp(Z; A)

;ﬁNCF] . (6.9)

with the 8 N-dimensional collective auxiliary parameter vector (H8s16) and (3.17)),
np

_ Q

N % (6.10)

Note that non-Condon GF separates into a FCF GF g&it(%; A)) and a non-Condon

94



6. One-photon absorption with Herzberg-Teller effects

contribution (the exponential functiod) in Eq. (6.9).
The8N-dimensional square matr®Wycr and vectorfy - are defined as

Wier(Z; A) =
I+ W) - 3T+ W)A T(I+W) LI+ W)+ I+ W)AZ(I-W) — LI+ W)ALI+W) E(I+W)A}(I W)
Ta+w)+ 5I- W)AZI+W) (I-W)+ (I W)AL(I-W) %(LW)A}(HW) -la- W)ALI-W)
—%(I-%—W)A*(I-%—W) %(I+W)A+(1 W) (1+w>-§(1+w>§;(1+w> —3<I+W)—§(I+W)A (I-w)|’
—LI-W)ALI+W) —LI-W)ALI-W) LI+ W) - II-W)ALI+W) (I-W)+iI-W)ALI-W)
(6.11)
and
1
r—(I+W)I+A) 2A%r,
1
- ir+iI-—W)I+A) 2ATr
r—(I+W)I+A)2ATr,
1
—ir —iI-W)I+A)"2A %71,
where
AT(Z;A) = AN (Z;A) + A~ (Z; A), (6.13)
AT(Z;A) =Z(1+ZWZ) 'Z, (6.14)
~ 1~ 1
AL(Z;A) = T+ A) 2AE(Z;A)(I+A) 2. (6.15)

As we have done for the non-Condon integrals in Eq. (3.21)careexpress the non-
Condon GF in terms of MHPs from Eq. (6.9),

2N -
é 1/ p2 ] &, |7 1 2 1%
G5 (2 M) = T [1 7&} [T,/E] [_1,/7k] [—7 /2%]
k=1
Azymyﬁyé K . /
if@ﬁ%ﬂ’QG (ZvAaThT/) 7 _
- INCF —
- TV ) - -
2 1 251@ 2 1 QEk
7_[l m,n O(WNCF,FNCF; WNCF) (6 16)
—m' 11 VAN ]
where the operatorsf(and §) are identified & f = Hg/:’éf,gQ andg = HQQ ;732’,27’57@, in

/

which the collective indices are useidz.; = (1Y, m* = (mf,m'"), a* = (n*,n'*) and
o' = (o, 0).
By evaluating Eq. (6.16) the FC/HT GF is explicitly exprebses,

A~ 1
GM(Z; ) @) =\ [ 2GR (Z; A)r + (T— W)(T+A) 24 1), (6.17)

46,”17"' N azk "1,k azk "N,k TTZ1: BN nik NN,k
Ly "1,k N,k ez 1 N,
1 N <Hk 3$1,k s alN A Ty, HZN k k k k
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6. One-photon absorption with Herzberg-Teller effects

and the HT GF is given explicitly by,

GK(Z;A)(Qi’Qj) — %2 LGK(Z;A)

[l (1= W)X+ A) BA nglifr + (L~ W)(L+ A) 2 A1),

+ I - WAFI- W), (6.18)

One can also determine expressions for position operatting final electronic state{,Q;},
by using the v + )-th component, instead @fth component, of vectors or matrices in
Egs. (6.17) and (6.18) with the corresponding harmonicgnéf).

6.1.2. Time-dependent density matrix formalism

The method developed in the previous section for non-Coredfetts is derived from the
TI perspective with the aid of CSs, although it can be coretetd the TCF directly via
TD GF parameters (Egs. (4.42) and (4.43) ). In this sectierctbar link between the TD
and Tl formalisms for the non-Condon development in CS hiasiemonstratetwith the
guantum mechanical trace expression which is introducseddtion 2.1.

It has been shown in section 2.1 that the Sid; T') in frequency domain at finite tem-
peraturel’ can be transformed into a time domain function, the TCF, agjiration (2.14).
The time propagation of CSs with the corresponding vibretiddamiltonians can be ex-
pressed as the diagonal phase space unitary operatior2(B))(

e*im/%]@ = |z(t)a), (6.19)
e+iﬁ’t/2ﬁ‘ll> _ ‘Z,(t)1/> 7 (620)

wherez(t) andz'(t) are defined in Egs. (4.42) and (4.43) respectively. The thkBultz-
mann population of CSs in the initial state is expressed with non-unitary operation
(Eq. (2.92)),

e_BH/Q\Q> _ e—%@*(l—f‘*r)g’rg> 7 (6.21)

1 N
whereIl = (I+ A)~ 2 and for the final state a similar relation holds whhbeing replaced

by A’ andTI replaced byl = (I + X)’%. Then we can trace the spectral density function
(Eq. (2.14)) in CS basis directly by inserting the initiadaimal state CS resolution of the
identity (Eq. (2.93)) to transform the trace to a closed fiomal form. Instead of the specific
TCF given by Eqg. (2.14), herein a more general structurahffmr the GF corresponding to
Eq. (6.3) is given as well. The extended GF is defined with tBedSplacement operators
(as in Eq. (6.3)) replacing(Q) in Eq. (2.14),

G = [(0']0)| 722 A Te(Dxc (i ) e 8/ Dy ()et 5+ | (6.22)

SContribution by J. L. Stuber to Huét al.[130].
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6. One-photon absorption with Herzberg-Teller effects

where
Zip = Tr(e_ﬁﬁ/e_ﬂﬁ) . (6.23)

In order to have a symmetric formulation of the GE as in Eq. (6.3), we split each of the
exponential operators into equal contributions for tinjeafid imaginary time (reciprocal
temperatures) parts,

GEK — |<Q/|Q>|—2ZITF1TT<Z>NC(Q/)TeH/(—B—it/h)/ZeH’(—B—it/h)/Q

[)NC(Q)eﬁ(—B+it/ﬁ)/2€ﬁ(—ﬁ+it/ﬁ)/2) _ (6.24)

We, then, insert the CS resolution of the identity (Eq. (.93 |y’) and evaluate the trace
in CS phase space @f),

_|<0 |0| QZI —QN/dQ /d2 /

<g|e +1t/h)/2D ( )f H'(—pB—it/h) /2|,y><,y/|eH/(—B—it/h)/2ﬁNC(Q)eH(—B—I—it/h)/Q|g>

:’<O/’0‘ 2ZIF7T2 /d2 /d2/

exp(—a!(T - TTT)a — (+)1(T - (T)'T)y)
(' (t)'T"y'|Dnc(n)|2 ()rg><z<> 7' |Dne (i) |2(t) Ta)*, (6.25)

where the invariance of the trace under cyclic permutatf@perators is used. After rescal-
inga — I'a andy’ — I'9/, we see the thermal terms in this equation are precisely the
thermal integral kernek( in Eq. (4.2),i.e.

Zfbl det(T) 2 det(IY) 2 exp( — o/ (I — (P H) T Ha
— ()@= ((@)HT) ) = K(A,E), (6.26)

becausd™ andT” are real valued matrices affj - = N in Eq. (4.14). Thus this GF ex-
pression (6.25) is identical to that of Eq. (6.3) éxcept thatlater depends on time variable
t implicitly.

We note here again that Islampour and Miralinaghi [93] dmVisecently a TCF for inter-
nal conversion (IC) rate involving multi-promoting modeghfch mediate the intramolec-
ular transition) and vibrational mode mixing effects. Thexploited second order multi-
variate normal moments for the momentum operator matrimelds of the promoting
modes to evaluate their trace. However their TD method isgeoierally applicable to
various transition problems and the method cannot handitrmear coupling problemsf.
Eq. (6.16)). Pengt al.[94, 95] also have a similar development to that of Islampsnot
Miralinaghi [93].

6.1.3. Franck-Condon-Herzberg-Teller sum rules

In connection with the previous work [46] and the thermal B€E&tion 4, we can decompose
the expressions fa&'X, i.e. Eq. (6.3) and Eq. (6.4), into terms which depend on variables
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belonging to the orthogonal subspacéandY as well (see Sec. 2.4.2). This decomposition
allows us to derive sum rules involving specific modes, vidigledifferentiation.
We partitionG¥ into the X andY” spaces, then

G*(Z; Asn, ) =

NR(, 1) Ion-Ny [(I+ ZWrZ)yy, Zyyby]

Ion—Ny (I = ZWrZ)yy, Zyyby]

InyIxx + ZXXW;;XXZXXa ZXXE;—(]

Iny[Ixx — ZxxWryyZxx, Zxxby], (6.27)
where

(E)i()t(ZYY; Ayyin,n) = (b%)" F (05)' Zyy (I £ ZWrZ)yy) ' ZyyWryx,
(6.28)

and the temperature dependent partitioned Doktorov vaectorW%, xx and7f
are listed in Egs. (4.21) and (4.22) respectively. 7 7

We now perform the relevant partial derivatives on the parted form in Eq. (6.27) of
GX to derive the desired sum rules. The sum rule for one excitederh in the fixed
guantum number spack at the excitation number is given by,

GE (Tyy; A2 = \JEGEIyy; A)

(ri + iy dy ) G(WE; s ks n; 0,1, 10) + 6 G(W 78 ksm; 1,1, 5,1) |, (6.29)

for the relevant FC/HT contribution (6.17) agds defined in Eq. (4.23), whereas

G{/((Iyy;A)gf’Qj) - & o L G¥(Iyy;A)

[ zkcjkg(W%’rTJ{ n; 0, 37 571) +Czkcjkg( T’rTvk n; 0, 57% 1)

+{(ri + ciydy) (rj + Ciydy) + sciy (T + WT)YY)AQ]'Y + iy (T— WT)YY)Aij}
x G(Wi; i kim0, 3, 3,0)

W
+ (n—cjk +rich + Qiydycjk + g;ydyc;)g(WT, Frikins 1,1, 1, 1)]
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for the HT expression (6.18). Here

= 20 _ —20(by)'
i10nq, In=0w=0 ong, In=0m'=0
1
=[I-W)T+A) 2}y, (6.30)
7+
2005
T iong,  In=0mr=0
1 1 -
=[@-=W)T+A) 2] — [T-W)T+A) 2]y (I+Wr)yy) ' Wryp,
(6.31)
o = —28@)_(=k)t‘
w g,  In=0m=0

— (T W)(T+ A) 2+ [ WA+ A) 2 (T - Wrlyy) Wy,
(6.32)

71ET;Y ) (6.33)
are used.

Usually only the initial states are thermally excited angl titbmperature dependent Dok-
torov quantities (Eqgs. (4.9)) are given precisely for thise;

|—=

QI+ X)"

(I-W)I+A)2 =2 (
RYI+A)"

R) , (6.34)
P

oj— N

in which the thermal factors are weighted only on the initiejrees of freedom (DOF), and
‘W of this case can be found in Eq. (4.17).
6.1.4. Spectral density functions

By using Egs. (6.17) and (6.18) we can construct the eleicttoansition dipole moment
induced absorption intensity GF with FC, FC/HT and HT cdnitions (Eq. (2.32))i.e.

prcutw (Z; A) =

o |12 2K (7. 1K (. Q;.1 1o K e AN (Q4,Q;
{010} (uo GR(ZiA) +2) py - iGN (Zi M) OD + - i GR(Z; A) ﬂ),
(2 2¥)

(6.35)

associated with the FCHT spectral profile of Eq. (2.32). Idiaiely we can exploit these
relations within the thermal TCF formalism as describedeiction 6.1.2, where we obtain
a simple analytic form for the exact thermal FC TCF. The Ltzriam line shaped/[.(t),
absorption spectrum is then given as a one-dimensionaligeauansform (FT) withwg
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corresponding to the frequency at tbie- 0 transition,

o0

PFCHTW,L (w) =pt / dt pFCHTw(Z(t); A)L(t)ei(wfwo)t . (636)

—00

It should be noted here that the current development of mmmd@n TCF is not restricted
to linear HT expansion. The nonlinear non-Condon TCF carvbkiated by the complex
MHPs in Eq. (6.16). We can patrtition the non-Condon TCF, a o irreducible rep-
resentation contributions as in Eq. (4.46) for the possipleed-up of the calculation. Sum
rules can similarly be determined for the spectral prafitepTw as to FC developments
(Ref. [46] and Sec. 4.3) via the expressions derived in theipus section. The sum rule for
the absorption spectrum for some mode¥’ispace and all other modes in the vibrational
ground state is given By

preirway (Iyyi A) =|010) (11, 2G4 (Ly: A)
+23 7 gy G (Tyy; A) QD
+ Z:ZE; G (Tyy; A)(Qi’QJ)> . (6.37)
i,
For a single excited modke with excitation number: in the fixed quantum number space

X, the corresponding sum rule for the absorption spectruimeis t

prenrw:y (Iyys Ak =[(0']0)]? <|ﬁ0|2G{§(IY; A

+23 G (Tryi MG

)

3 G Ty A);%’Qf')) . (6.38)
,J

The total sum of intensity at finite temperature has beeniguely determined (see.g.
Ref. [49]), where

h2

12
2 1
o P20+ 1)

0 N
PNT) = |+ p(T) D
v=0 k

N

h2

= |y, |* + Z E\&,\Q coth(3Bex)
k

= preatw (L A(T)) - (6.39)

1
Here(I+ A)™ 2 is explicitly given at finite temperaturg for only the initial state is ther-

Scf. Eq. (2.128) for FCFs at zero Kelvin and Eq. (4.16) for FCFsritditemperature.
“cf. Eq. (4.20) for FCFs at finite temperature.
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mally excited,
1
(I+A)"2(T) = diag(e ADa/2 o= ADen/2 1 7). (6.40)
At 0 Kelvin,
N h2
total _ 2 A 12
pO(0) = |y |* + Zk: 2, |
= preatw (L AT = 0)), (6.41)
1
where(I + A)™2(T = 0) is given as,
1
(I+A) 2(T=0)=diag(0,...,0,1,...,1). (6.42)

One can transformrcarw (I, A(7)) at zero Kelvin and at finite temperature into finite
series sums in Eqgs. (6.41) and (6.39), respectively, watht#ip of Doktorov matrix identi-
ties [117] in Egs. (2.100) and (2.101). The total sum of istgrfor nonlinear HT terms at
finite temperature and at zero Kelvin can be evaluated eaglythe MHP expression (6.16)
which can be computed recursively (Eq. (3.5)) or iteragi@lqg. (3.9)). The total sum of
intensity including 2-nd order HT expansion at zero Kelvimde found in the literature
(seee.g. Ref. [51]) in a series of summation expression. To this end itmportant to
mention that the non-Condon TCFs in arbitrary ordeg( nonlinear HT terms) and the
corresponding total intensities can be evaluated simplheyMHP expression (6.16). The
corresponding prescreening strategy can be developeddbgitaxg the sum rules for the
total intensities from the single vibronic level (SVL) GFrided in the next chapter 7. And
the methods (TD and TI) developed for linear HT expansiontdgber orders can also be
applied for example for electronic circular dichroism (Expectra with only slight mod-
ification of the prefactors. The ECD cross section has anfarence term between the
electronic transition dipole moment (TDM) and the magn&ixM (seee.g.Refs. [54,102]
for Tl approach for linear HT terms.) which are supposed teXmanded by normal coor-
dinates like HT expansion,e. the same non-Condon GF ((6.16)) can be applied directly
within the current formalism.

6.2. Integral prescreening

In this section, the integral prescreening strategies efntlally weighted FCFs of sec-
tion 4.3 is extended to the non-Condon terms. The basiegies, however, are the same
as in the FC development. The integrated normalized FCHil@ie normalized to be 1

101



6. One-photon absorption with Herzberg-Teller effects

for the total intensit§,

Ftot N

2 /
— Vv
FOHT ™ ppcnrw (I A(T)) s [\,uo\ (/o)

+22u0 1 (0| Qilw) (wlv”)

+ Zgi @il (@) ) | e Bee B (6.43)
,J

wheresS is the vibrational occupation number vector (ONV) subspaben we evaluate
FCHT integrals with the ONV basis set belongingdpthen the normalized total intensity
satisfies the tolerance relation for the desired tolerafike,

€tor = 1 — Fiyp < etol (6.44)

max ’

holds for the errok;; in the normalized FCHT intensity.
As for the coarse grained FCF prescreening scheme, the rmaecaipling tolerance
auxiliary parameters,, andt. are employed as well.

6.2.1. Vibrational mode coupling error

The minimum number of simultaneously excited modes areimdudafor the threshold.
neglecting all integrals that involve a larger number of idiameously excited modes via
Eqg. (6.37). The maximum number of simultaneously excitedesdMSM)M is increased
from M = 0 until it converges to the desired error for the coupling tateet,, i.e.

M
€e=1-Y Fithre =1 — Fiopre < te, (6.45)
m=0

whereFIffgI){T,C is the contribution involving precisely, simultaneously excited modes for

total intensity andEéinT;C =M FIS’(’}I){T Each increment can be determined from the
intermediate quantity,

B%)HT: Z py (Iyy; A(T)), (6.46)
Yecqy

whereC2 is the set from the spacé obtained by choosing: modes for summation out
of possible2 NV, via the relation

m m "IN —m A0\ i
A = Bt = > () Rt 647

- 1
=1

8¢f. Eq. (4.25) for thermal FCFs.
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Note that here we use

N 2
FCHT;c pFCHTW(I' A( )) |:|H0| |<_ |_>‘

+2Zu0 1£(0']Q510)(0]0")

+ Zﬁi 1 (01Qi10)(01Q;101)] (6.48)
1,J

6.2.2. Vibrational mode excitation error

Here we define a mode contributid?lﬁ]gHT,m(n) associated to a fixed vibrational quantum
numbervg = n for modek while other modes are summed over,

N :
FE(‘lé)HT m( ) = PFCHTW(I;A(T)) Z [’HO‘Q |<Q ‘Q>|2

v,v' v =n

+2Zu0 11 Qil) ()
+ Zﬁi Q) (el (Q) ) | e B2 B (6.49)
,J

The total mode contribution of modecan be given by Eqg. (6.37) summing over the quan-
tum numbers of all other modes while leaving the médat v; = 0, i.e. the partial con-
tribution Fé’gHT,m(O) is the contribution excluding excitations of mokleThe finite series

summation for fixed quantum number Eq. (6.38) is exploitedeermine the contribution
FF(@HT,m(n). To obtain the maximum quantum number for a specific vibrationode, we
determine a minimum quantum numbélmaLX satisfying

e = (1 Focurs, max) <lm, (6.50)

where

Nrnax

(k)
Fropmy/mex = Z Frcnrm( (6.51)

According to the tolerance sét, t.) and irreducible representations of underlying sym-
metry group, then the error bounds,(, ande,,.,) are estimated [46], satisfying the error
bound condition Eq. (4.37).

6.3. Results and discussion

In this section the numerical tests of the HT developmerdpegsented. As in chapter 4 on
the thermal FCF the Tl method with prescreening and the HT agfoach are compared
herein. The test example is the absorption spectrum of benge' A, — 1 !B,,) at zero
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Table 6.1.: Prescreening and error bound performance for benzerelatand at finite
temperatures300 K and500 K). For a given tolerance set, the associated error tolerance
(e*ol ), prescreening stage rigorous error boundg.{ and e,;,), maximum value for

the maximum number of simultaneously excited modes of adiduicible representations
and maximum number of simultaneously excited moMéL)X of each symmetry block
(Moo (MiTas MA2Es MIGEE 5 MG M 20 MR MR MGERDs MEGR; MiSEY))

max ?
and the error of the integrated Herzberg-Teller profilg;] are provided; only the symmetry
blockes, has non-zero first derivatives of the electronic transitipole moment with respect

to the normal modes.
| T | TOl SEt(tmv t(t) EtOI €max €tot €min A[max(]\'[r((;ya)x) ‘

0K | 1(1076,107%) 13.0x 107° 1.62x 107> 1.62x 107° 1.13x 107> 3(2;1;2;23;1,1;2;2;3)
M(107°,10~%) 13.0x 1077 147 x 1077 147 x 10°T 0.98 x 10~7  3(2;0;2;23,1;1;2;2;2)
300K | 1(107%,107°)  16.0 x 107> 2.67 x 107> 2.64 x 107> 1.23 x 107> 6(3;2;4;46:2;2;3,4:6)
1(1075,10~1)  16.0 x 10=% 3.26 x 10=1 3.22x 10~1 2.17 x 1071 6(2;2;4;45;2;2;2;3;6)
°)
B

500K | 1(10°°,10~ 160x10° 298 x10° 286x10° 120x10° 8(3;2;4,48.2,24:6)
I1(10~5,10~ 160x 1077 371 x 107 353x 107 2.16 x 107 8(3;2;4,47,2;2;3;4:8)

Kelvin and at finite temperatures. In section 6.3.1 the GFelbgpments are verified by
comparing the results of the Tl and TD methods. The varioestenic structure results for
the same system are presented in section 6.3.2 such thaidhgi@gradient calculations
of the electronic TDM [52] are tested with the HT profile cdition of benzene.

6.3.1. (FC)HT generating function for benzene

Because thé 1Ag — 1 'B,, absorption spectrum of benzene has been exhaustivelgdtudi
experimentally and theoretically (seey. Ref. [36]), the benzene absorption spectrum is
suitable to test and verify methodological the developmdat non-Condon effects. A
detailed discussion of the spectrum including its peakgasséents, which can be found
elsewhere (see.g. Refs. [36, 52]), is omitted in this discussion because tleerttical
development and the validation of it is the major purposehefdurrent work. Instead we
overlaid the experimental UV absorption spectrum of FisgBgto compare it with the
computed FC profile @00 K in Fig. 6.1(c). The overlay is made according to the energy
scale. The experimental spectrum height is rescaled to th@veames} peak height of
the computed one. The ingredients (optimized moleculacsires, harmonic force fields,
electronic TDMs and its first derivatives) for the FCHT vibio structure calculation of
the absorption spectrum of benzene are taken from Ref. BBBSCF/DZV). As shown

in Fig. 6.1(c) the main feature of the spectrum is the bandbelonging toey, the so-
called false origin) and a progression in the breathing medbelonging toa;,), i.e. 6510
The experimental wavenumbers [194] @#g= 521 cm~! and; = 923 ecm™! , and the
theoretical harmonic wavenumbers of Bergeral. [36] areiis = 575 cm~! and i, =
963 cm ! which are bigger than experimental ones due to the harmgpimaimation.

We exploit the molecular symmetry of benzerg;() for the ground statel(lAg) and
the first excited statel (' B, ) of benzene in the Tl prescreening calculations and theeorr
sponding vibronic structure calculations. For the TCF apph, the molecular point group
symmetry is not exploited even though it is straightforwswduse molecular symmetry
(Eq. (4.46)).

In the evaluation of Eqg. (6.36), corresponding to the FT efltbrentzian weighted TCF,
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Figure 6.1.: Calculated HT profiles for the A, — 1 !B, absorption spectrum of benzene
at (a) 1000 K , (b) 500 K with tolerance set I, (c300 K with tolerance set | and (d) K

with tolerance set |. Tolerance set descriptions are pealid Table 6.1. Each line in the stick
spectra [right axis{prcurw (7))] represents the averaged FCHT weighted density of states in
awavenumberintervaly = 1 cm~t. The(prcuTw (7)) of all intervals sums to1 —e.o1 ) /A

for a given temperature. The stick representations havéiawmially been convoluted with
Lorentzian line shapes with full width at half maximum (Relfdth) of 50 cm~" [solid, left

axis, prcurw,1(7)] and compared to the results obtained from the TCF approdashied,

left axis, prcuTw,L(7)]. Differences are, however, barely visible on the curreales Here

Uy corresponds to the wavenumber of tiie- 0 transition for this UV absorption band. The

experimental UV absorption spectrum of Fischer [2] is ddddlly compared with the FC
profile at300 K in (c).
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the FFTW [178] library (version 3.1.2) for the fast Fouriemrtsform (FFT) is used with a
grid size of2'6, a time increment of\t = 0.51 fs, and a time interval [-16.7 ps, 16.7 ps].
The time reversal symmetry relation of the TGEeuTw (Z(—t);T) = prearw (Z(t); T)*

is also exploited. The real part of the FT is taken for the FQtdfile. In Fig. 6.1 the
frequency and the wavenumber representation relaiiofrw 1.(7) = hcopreaTw, (W)

is exploited.

All calculations have been performed by the developmergiorrof hotFCHT [36, 46,
129-131] in which the method developed in current HT work waglemented. It takes
about 40 hours for the Tl calculation at 500 K with prescregriblerance set | (Table 6.1)
and 12 minutes for the corresponding TCF calculation on at&lrgle processor machine.
For the TI calculation all possible vibrational quantum Higmcombinations (about 544
million FCHT integrals) are generated within the presciegrbound conditions and the
FC and HT integrafsare evaluated with recurrence relations of Egs. (2.103)(2riD4).
Those codes are not optimized and further efficient impr@mmare certainly possible.

In Table 6.1 the prescreening bound condition with vari@lsrance setstf,, t.) at 0 K
and at finite temperatures (300 K and 500 K) are summarizedorling to the prescreen-
ing conditions the HT profiles are computed and the error ®fitkegrated normalized HT
profiles €.¢) are reported in the table. The prescreening calculatibdl tolerance sets
satisfy the error bound condition (Eq. (4.37)). In eachrnee set calculations at different
temperatures show the trend thats are closer to their upper bounds..s in this benzene
example. Only the symmetry bloek, of benzene contains the non-zero first derivative
of the electronic TDM, so that the prescreening conditionaximum excitation quantum
number of modes (MQM) and MSM) of other symmetry blocks aentital to those of
the FC case [46,129]. For this absorption the electronic Tadkhe equilibrium molecular
structure of the ground statgo( = () vanishes, so that onlyyr (Eq. (2.31)) contributes

to thel 1Ag — 1 By, absorption profile of benzene. The MSMI(I{QX of each symmetry
block is presented in the table. The bold font is assignedhinumbers of the symmetry
block ey, to distinguish them from the numbers belonging to the oternsetry blocks.

As the tolerance condition gets tighter and temperatuneases, thMQJXs of each sym-
metry block become bigger and the corresponding absorptigfile computations become
more expensive. In Fig. 6.1 one can find the stick spegtranTw (7)), representing the
averaged FCHT weighted density of states in a wavenumbemvaltA> = 1 cm™!, with
the tolerance set | in Table 6.1 at raising temperature tiondi from 0 K to 500 K. The
stick representations have additionally been convolutél laorentzian line shapes with
full width at half maximum (FWHM) of50 cm ™!, prcuTw,L(7) in solid line, and com-
pared to the results obtained from the TCF approaghitw,1,(7) in dashed line. Differ-
ences (about 0.001 %) are, however, barely visible on theuscale. The agreement of
the Tl and TD approaches (the two independent approachdgharerror bound condition
(Eq. (4.37)) show the validity of our developments and thaltsum rules in closed forms
(Egs. (6.39) and (6.41)). The UV absorption band at 1000 lkiobt with the TCF method
is presented additionally. It would take too much time tosfinthe Tl calculation for the
featureless blurred curve (Fig. 6.1a).

As shown in Fig. 6.2, only up to 5 simultaneously excited nso@®it of the final state
alone) are sulfficient d@t K to reach a coupling error below 0.1%. At higher temperatures

SWith the second quantized expression of position operator.
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6. One-photon absorption with Herzberg-Teller effects
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Figure 6.2.: Dependence of the coupling ertQr= 1 — ﬁlg]CL%T;c on the largest number of si-

multaneously excited mod@ésg for the HT contribution to the 1Ag — 1By, UV absorption
spectrum of benzene. The coupling error is shown on a |dgaritscale for temperatures of
0 K, 300 K, 500 K and1000 K. Lines are drawn only to guide the eye.

however, up to 9, 15 and 26 simultaneously excited modes faatatal 60 modes, com-
posed of 30 initial and 30 final state modes, are necessamgatira similar threshold for
€. at 300 K, 500 K and 1000 K, respectively. In Fig. 6.2V is different from Mpax in
Table 6.1, these are identical only wh&pn symmetry is used ang, = 10~'? is employed
the calculation. In contrast to the FC coupling error diaggaFigs. 4.2 and 4.4) of the
previous thermal prescreening section, the data pointsaremoothly linked to each other
(the curves drawn to guide the eye are not smooth) at low teahyres (0 K and 300 K).
When we look close at the HT inducing symmetry blegk, Fig. 6.3, it becomes more clear
that the data points are not smoothly linked to each othelt taraperatures. The detailed
prescreening data are available in appendix C.

6.3.2. (FC)HT profile of benzene for various electronic stru  cture
methods

The FCHT GF method is used with various electronic structiaieulations to test the
recently developed analytic gradient method for electr@iM exploiting geometric gra-
dients of a generic linear response function by Cor&tral. [52]. Hartree-Fock (HF) and
density functional theory (DFT) methods are used to comihegradients of the electronic
TDM for the FC-forbidden one-photon absorption processeavfzene at zero Kelvin. The
quality of the computed first derivatives of the electronl@M with respect to normal co-
ordinates of the initial state was tested with the TCF dgumlent in this chapter and the
results were presented in Ref. [52]. The computed one-phabsorption cross sections
(in pm?) with various electronic structure methods are displayeslig. 6.4 for HF/TZVP,
camB3LYP/TZVP and B3LYP/TZVP. The plotted spectra are gateel with the TD ap-
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Figure 6.3.: Dependence of the coupling erfQr= 1 — ﬁlg]CL%T;c on the largest number of si-

multaneously excited mod@ésg for the HT contribution to the 1Ag — 11By, UV absorption
spectrum of benzene symmetric blagk. The coupling error is shown on a logarithmic scale
for temperatures df K, 300 K, 500 K and1000 K. Lines are drawn only to guide the eye.

proach implemented in hotFCHT. In the evaluation of the FThef Lorentzian weighted
TCF (see Eq. (6.36)) the FFTW library (version 3.1.2) is uséith a grid size of2'?, a
time increment ofAt = 1.0 fs, and a time interval [-16.384 ps, 16.384 ps]. For the detaile
discussion of the quality of the electronic structure mdthand peak assignments one is
referred to the work of Coriarét al. [52]'°. Herein it is just mentioned that the HT de-
velopment of this thesis has been tested successfully. fdgta gradient method for HT
terms is implemented in the linear-scaling developmengigarof the electronic structure
program DALTON [195-197] and nonlinear HT terms can be olgdiby finite differences
of the analytic first derivatives. The joint development ibrenic and electronic structure
impacts on theoretical vibronic spectroscopy by pursuingar and nonlinear HT terms
(see Eq. (2.24)).

6.4. Chapter summary and conclusion

The current work is a complementary development to the pusvi-C prescreening [46,129]
and TCF [129] methods including the linear HT and nonlinedrtekms. It has potential
to be extended to vibronic couplings and anharmonic osoia The present development
underlines that the FC/HT contribution and vibrational madixing HT contributions are
not negligible even though the contributions do not appeére total sum rules (Egs. (6.39)
and (6.41)). One may argue that thé A, — 1 'B,, absorption spectrum of benzene is
not a good example to verify our FC/HT contribution formalisas the electronic transition

103, Huh has contributed to this work only by computing the HiEmsity profile of benzene with the FCHT
TCF developed by himself.
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6. One-photon absorption with Herzberg-Teller effects
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Figure 6.4.: Calculated absorption cross-sectiong) = % %9 vpreaTw.L(P) In pm?
-0

at zero Kelvin. The spectra with HF/TZVP, camB3LYP/TZVP &BR8LYP/TZVP electronic
structure calculations are plotted from bottom to top respely. The spectra are generated
by the time-dependent picture of the HT generating functidre cross section of the B3LYP
and camB3LYP hybrid density functionals are shiftedibg0 pm? and500 pm? respectively
for graphical purpose. A Lorentzian lineshape function AWKf 50 cm~! is convoluted.
Po—o = 38086cm ! was used to weight the HT spectral density function for theamamber-
dependent absorption cross section. The figure is reprdduite permission fromJ. Chem.
Theory Comput6, 1028. Copyright 2010 American Chemical Society.”

109



6. One-photon absorption with Herzberg-Teller effects

dipole moment at the equilibrium molecular structure of dheund statego) is zero. But

it should be noticed that our HT GF (Eq. (6.18)) is derivedritne FC/HT GF (Eq. (6.17))
and the TCF method and Tl approach with prescreening siyraigge well. Together with
the successful error bound conditions the validity of themfalism has been tested suc-
cessfully. The vibrational mode interferences in the HTtbation, which do not appear
explicitly in the total sum rules that are separable in therational modes (Egs. (6.39)
and (6.41)), play an important role in the prescreening sulesr(Egs. (6.37) and (6.38))
and the TCF (Eqg. (6.36)). Especially in the evaluation of TIeF, if the interplay of the
vibrational mode contributions are ignored, the propeicspen cannot be obtained. We
have also tested an artificial case in benzgge;é 0 for the total intensity sum rule (see
Sec. 6.1.4) to verify our HT GF development. For a detailedutision of the FC/HT inter-
ference term to the absorption band in Tl approach, we refére recent work of Santoro
et al. [49] and earlier studies [108, 198, 199]. The method dewsldjpr the non-Condon
effects will in future be applied to the nonlinear HT and wé#k transition with various
electronic structure calculations. For example the erpenial fluorescence spectra of jet-
cooled benzene [200] shows lines which cannot be explairighdie linear HT theory, thus
one should go beyond the linear HT expansion of the electrbbiM for this example. The
HT GF, herein, is derived explicitly but the non-Condon GF also be expressed as MHPs
with additional dimension for position and momentum opamat Then the HT GF can be
exploited for finer-grained integral prescreening and imealr (non-Condon) TCFs.

In this chapter, the methods for inclusion of non-Condomraff were explained, dis-
cussed and tested for real systems. We extended the FC thefra the non-Condon
effects via the CS phase displacement operators, whiclvalio use a similar mathemati-
cal frameworks as the FC prescreening strategy and FC th@@#ain chapter 4. The link
between Tl and TD approach has been shown via the TD traceafigmmin section 6.1.2.
The GF methods developed so far in this thesis (Chs.3-6)lasely related and the non-
Condon GF is the most general GF including the FC thermal GR&s method is further
developed for other purposes, anharmonicity, resonano@R#&R) and SVL transition, in
the following chapter.
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7. Single vibronic levels

In previous chapters, we have developed generating furect{GFs) for the one-photon
absorption (OPA) process. This technique takes the thef@ta. 4 and 5) and the non-
Condon (Ch. 6) effects into account. By using the GFs, we llxésed the Franck-
Condon (FC) and non-Condon integral prescreening stesgtdgi the time-independent (TI)
approach. Similarly the time-correlation functions (TCRse developed for the time-
dependent (TD) approach.

So far we have assumed the initial states to be in a Boltzndastributed ensemble of
vibrational states at finite temperature or a vibrationlstsse at zero Kelvin for the OPA
process. Those kind of initial vibrational states for GFs be introduced by simple GF
parameter assignmehtsThe Boltzmann weighted coherent states (CSs) (Eq. (282))
used in the case of a thermally averaged ensemble of vihedtitates. However, for optical
processes such as the single vibronic level (SVL) fluoresedseee.g. Refs. [9, 11, 34])
and the resonance Raman (rR) scattering we have to congielefis vibronic levels.

In SVL fluorescence, a vibronic level which is not necesgdtie vibrational ground
staté in the excited electronic state is populated by tuning theesponding laser wave-
length [9, 11] (see Fig. 2.1). The vibronic state on the extitlectronic potential energy
surface (PES) is called the SVL. The spectral density fonotEDF) of SVL fluorescence
is identical to the OPA one in Eq. (2.1) but with the reverseitlal and final electronic
states and a given fixed initial vibronic state (SVL), whismot included in the summation
over vibronic levels. The fluorescence from a vibrationakcited vibronic state shows
often vibrationally well-resolved spectra, unlike the mat absorption or emission spectra
at finite temperature [9,11]. The initial and the final vibimlevels belonging to the ground
electronic states for the rR amplitude (2.5) appear in rRReéag process (see Sec. 2.1).

We have already used a mathematical set up in the coarsedraitegral prescreen-
ing steps [46] (Chs. 4 and 6) that has a fixed quantum numbesrfervibrational mode.
This was, however, not tailored for generating arbitraryLSV Therein we only consid-
ered a one-dimensional fixed quantum number spag¢see the integral space partitioning
section 2.4.2) which corresponds to the SVLs in terms of figagdntum number of the
vibrational modej.e. the single vibrational mode excitatior.§. |v,0,---,0)). In other
words, we can generate the one-dimensional fixed quanturbeuspaceX (Eg. (4.20) and
Sec. 6.1.3) in the prescreening steps (see Sec. 4.2.2) taweenot used the spadé for
the SVL TCF in the TD approach, although by virtue of the depgaients in reported the
previous chapters. For the coarse-grained integral presirg of the SVL transition, how-
ever, we have to consider at least two-dimensiotiapaces. Even for the usual absorption
and emission processes, if we want to have the fine-grainedral prescreening strategy,

e.g.z = 0 for the vibrationl ground state.
These vibronic levels are not summed-over in the Fermi'dgolrule (FGR) expression (seq. Eq. (2.1)
for OPA),i.e. those are expressed in the fixed quantum levels during theabptocesses.
3
e.g.|v,0,---,0)
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7. Single vibronic levels

we need to consider multi-dimensional spaces. When non-Condon effects should be
considered, the problem becomes even more difficult. Thpqgser of this chapter is thus
to modify the GFs developed in the previous chapters. Thsilpesmodifications could be
applicable to the rR, SVL, fine-grained integral prescnegr@ind anharmonic FC transitions
with the SVLs either in the Tl integral prescreening or TD T&#proaches.

There were efforts (semg.Refs. [34,65,72,73]) to generate SVLs particularly sufted
the rR excitation profile computation. But most of the apgtiiens are restricted to the sin-
gle vibrational mode excited stafe€ondon approximation and limited Duschinsky effects.
We develop herein an arbitrary SVL transition GFs with thipteé multi-variate Hermite
polynomials (MHPSs) including the thermal and non-Conddea$. This development is
similar to the previous chapter developments in terms ohtireCondon effects (see Chs. 3
and 6). The TCF for the thermally averaged rR intensity iditlg arbitrary order of non-
Condon effects is developed in the form of the overlap irtegf two rR amplitude GFs in
different time domains. The novelty of our GF approach is thean provide both Tl and
TD methods, including arbitrary order of non-Condon effeahd arbitrary SVLs. We can
evaluate TCFs or sum rules for arbitrary SVLs and non-Corajmrators with the help of
MHPs.

This chapter is organized as follows: In the methodologyieed.1, we develop a GF
having fixed quantum number occupation number vector (ONbefes (see Sec. 2.4.2 for
the integral space partitioning). The analytic form of thE iS derived via the coherent-
Fock (cF) state (2.81) which is a mixture of harmonic eigatestand CSs. The development
is formulated for the rR profile GFs in section 7.2, SVL trdiosis in section 7.3 and anhar-
monic FC/non-Condon transitions in section 7.4. Those@extontain only methods, but
numerical tests have not been made yet. The chapter is cattlo section 7.5.

7.1. Methodology

In the previous chapters 4 and 6 we had at most a one-dimehdiged quantum number
spaceX for the coarse-grained integral prescreening stratedigls(fee Sec. 2.4.2). One
can in principle extend the method in sections 4.2.2 an@puvthich separates the fixed
guantum number spack from the Gaussian integral of the GFs, to be applicable aso t
more than one-dimensional spaces. But this method is not computationally feasible for
multi-dimensionalX spaces and non-Condon operators, because the Taylor expafis
multi-dimensional Gaussian function and the subsequedigation of terms in the same
orders are not easy. Instead, in this section, we introdueetbitrary dimensions iX
space by exploiting the MHP technique (Ch. 3) to generatarbitrary SVLs. The GF that
we want to have for an arbitrary number of fixed quantum nusbeth in the initial and
the final vibronic states would be in the following occupatiepresentatichwith thermally

weightedY” space f{yy = K(Ayy;¢&,.), see Eq. (4.2)), namely

‘e.g.|v,0---,0).
Scf. Eq. (6.1) for emptyX space GF.
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whereup ,, andug ,, are Nx-dimensional ONVs andg’, andvk', are N-dimensional

ONVs®. Nyy = 1/Tr(—§Y . ﬁy) is a normalizing factor corresponding to the thermal
integral kernelKyy (see Sec. 4.1). The collective ONVs are additionally defined

UKB = <Z_E’X> , Uk = <Z_E7X> ; (7.2)
UB y UK x

and the block-diagonal GF parameter matrix is also defined as

) (7.1)

!
Zy 2y 2Ky 2B x 2By 2Ky

ZCF - bldlag(ZK7 Z;Bv ZB, Z%{)v (73)

with the block matriceszix = diag(zk), z = diag(zs’), z = diag(zs) andzy =
diag(zk') corresponding to the ONVs ., vs'y, vB , anduk’y, respectively. In the OPA
SDF (2.1) we haves, = vk, andwg’, = vk'y, but for the generality of the develop-
ment and for the rR GFs we make these vibrational ONVs indigrenof each other. In
section 7.3 the constraints are recovered for the SVL tiiangio the GF (7.1).

We express the functional form of the GF (7.1) by exploitihg tF state (2.81) , which
can be generated by taking partial derivatives of the C&s,

Kyy (7 . .5 ~ g
CGEYY (Zew, Zyy; Ayy; O, Tpk) V9
2 i n 7 5
_Hig_kklﬁ_zk_i;kk_lﬁk
= 2 iV 2¢, 2 iV 2¢,
k=1
11
Hliiio 22 gy UKy
P 1QT'p T, H aB% QK H
777777& U—BX ’UiKX 2 X2 X

Gg’yy (zCF7 ZYY; AYY;§8K7§KB;Q7 ﬂ,) ~ ~ ) (7'4)

SxntpiIner=Y

where

= (55) 0 E= (520) &

®B and K stand for "Bra” and "Ket” respectively, arﬁillifvv = (Hk xffk"“) . (Hk xf\,Nk’“)

7An, . n H2k "1,k §2k "N,k STy TN
oy = (o ) (S5t ) and T2 = ([atons™s) -+ (Tu(owa™).

113



7. Single vibronic levels
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and the operatorsf(and g) are identified asf = ﬁg P poandd = [ly p po In

Eq. (7.4) we have inserted the CS displacement operafoxs: ( Eq. (3.15)) to produce
non-Condon operators with the corresponding partial ddvies. The collective vectors

are used additionally’ = (I,1%), ' = (m*,m*), ii* = (n',n"*) anda" = (', 0"). The

integral form of the CS-based GG?F” (Zxx,Zyy; Ayy; §ps € 1) 1S, then, given
8
as

GRYY (Zer, Zxx, Zyy; Ayy; §KB, §BK; n.1')
=~ YN 0'10)| 2 exp(31€ 5 * + 311D
/ dayd*y, K(Ayy;E,)

(ZB By 2yy 2y | Do () 2K 0k 3 Zvy ay ) (7 s 2y 2y | Dno () |25.08 s 23y ay )
(7.6)

Then the resulting expression after integration is in asgpd form with the FC contribu-
tion, the non-Condon p&rtand the SVL and non-Condon contribution, of the vibrational
modes belonging to the spake Y and X, respectively,

GRYY (Zer, Zyy; Avyi&p Epimn) =
G (Zyy; Ayy) T [Wieryy (Zyy: Ayy), ixcry (Zyys Ayy); ncry)

T ZexWer (Zyy; Ayy)Zer, Zerber (Zyy; Ayy; n,1); ch]a (7.7)

with the collective vectors and matrices,

: €
Ep= <—£§B : (7.8)
=¥ $pi
cF\4YY,AYY ) — 2 (W+ . {7\7_ ) (W+ + W_ ) 5 .
T: XX T:XX T;XX T:XX
ber (Zyy; Ayy;n, 1) = é; N lé;( (7.10)
ZcF ’ s 1 bj{ + lb;( )

where the components @NVCF andéCF are defined in Egs. (4.21) and (6.28) respectively.

We can evaluate the cF GF with Eq. (7.4). When we can rearr&ngé€7.7) to be ex-
pressed in terms of MHPs, it will be easy to automatize theutafion. The arrangement
is straightforward but lengthy. Herein we present thus @xplicitly the FC cF GF, in a
simple form, as a special case ignoring the non-Condon tigsrae.

8¢f. Eq. (6.3)
*T[A, bz] = exp(—3z' Az + b'z).
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K 7 n e K 7 & e
GCFYY (ZCF, Zyy; Ayy; éKB’ §BK; 7, ﬁ/) ‘n,n’:g = GCFYY (ZCF, ZYY; AYY; §KB’ éBK)

= G5 (Zyy; Ayy) T2 Wer (Zyy: Ayy) Lok, Zoriep (Zyys Ayy )i € ). (7.11)

where

s .
fop(Zyy; Ayy) = <;£X> , (7.12)
~T;X

and the vector component is defined in Eq. (4.22). Eq. (7.Ad)be rearranged to give the
FC cF GF in MHPsi.e.

Kyy (rz . .5 5
GCF (ZCF7 ZYY7 AYY7 yKBv QBK)

11 1.1
(11 22 Bl II 270 sunody
= * / /

UB UK CEX KX OBy UKy IR IBY
GEYY (Zer, Zyy; Ayyi Egr i)
cF ckF YY, YY, SBK’3>KB g g -0
SKB2BK —

SN | SN |
GKYY(Zyy;AYY)HQKB,QBK((ZCFWCFZCF> Teps (ZCFWCFZCF> ), (7.13)

which can be evaluated recursively (Eqg. (3.5)) or iter&fi&g. (3.9)). We can introduce
an arbitrary number of fixed quantum numbers in the GFs as in(Ef)) exploiting the
equations (7.7) and (7.11) for non-Condon and Condon psesagspectively in combina-
tion with the partial derivatives Eq. (7.4). With the cF GEA)7we try to make GFs for the
rR (Sec. 7.2), the SVL transition (Sec. 7.3) and the anhaitrORA transition (Sec. 7.4) in
the following sections.

7.2. Application to resonance Raman scattering

We can express the rR amplitude TCE,} of Eq. (2.18) in harmonic approximation with
the cF GF Eq. (7.7). In the TCF for the rR excitation profile vavéd no fixed quantum
numbers in the excited electronic state and all vibratiguelntum numbers in the ground
electronic state are fixede. (Nx = N, Ny = 0) and (N5 = 0, Ny, = N)1° We can
express the TCF the scalar products of transition dipole emrTDM) and polarization
vectors (5(Q) andu™(Q) in Eq. (2.4)) as like the Herzberg-Teller (HT) linear apgpnoa-
tion (Eq. (2.24))j.e.

such thatX represents ground electronic states &hokpresents excited electronic states in this section.
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Xa(Tivsvg) = (102 () i G (Ler 7 (7): Avys B B

+Z M;S f %Ggsyy(icF7Z,(T)§AYY%QKB7QBK)(Qi’1)
+Z 0) 1 GEYY (Tep, 2 (7); Ay g Bpx) 9

+Z p) G (Ter, 2 (7 )?Ayy;@KB7@BK)(Qi’Qj)>7
(7.14)

with proper set up for GF parametefsy (1) = z'(7) as in Eq. (4.43) for the TCF of the
vibronic absorption profiles in Eq. (4.41) aig- = bldiag(Ixx,Ixx). There were other
GF approaches (seeg. Refs. [72] and [73]) including the Duschinsky effects pregd
that are similar to the current developments, but the agbesa have limitations for the
dimension ofX and for including thermal effects in a closed formula witktie Condon
approximation. The current approach can handle an anpi®%t.s and non-Condon (linear
and nonlinear HT terms in rR scattering cross section) tffé/e can obtain a closed form,
with the help of the CS formalism, for the rR intensity TCREX2)., namely the 3-point-TCF,
ie.

K Zer (1), Zyy (1), Zyy (7'); Ayy, Acrs i, s 2, 12')
_QN/anKd oK (Acr; € ) exp(—[€ ,I%)

GRYY (Zep (t), Zyy (7); Ay Epimm’)
GR (Zp (), Zyy (7); Avyi € S 20 12)" (7.15)

which is in the form of an overlap between two rR amplitude GRglifferent time domains

(r and7’), where the thermal parameter matﬁ>gp = bldiag(AXX,AXX)% is used. It
is worth to note here that we suggest a closed integral forthefR cross section in har-
monic approximation including Duschinsky and thermal @fdn a functional analogy to
the Forster-type energy transfer processesésgpdef. [8]) which is in a form of convolu-
tion between the absorption and the emission spectra. Wearasform the integration into
a2N-dimensional Gaussian integrdl(y, EQ. (2.122)) which is not like equation (2.121)
a product of two separated Gaussian integrals, becausattgrdl variables can not be
separated into the real and imaginary parts, and we obtaiG#ussian integral
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GE(Zer (1), Zyy (7), Zyy ('); Ay, Acrs i, s 2, 12')

= G (Zyy (7); Ayy)GRYY (Zyy (7'); Ayy )

TWicryy (Zyy (7); Ayy), Excry (Zyy (7); Ayy); M nery]
TIWxeryy (Zyy (T); Avy), Excry (Zyy (T'); Ayy); Tenopy)

N Ton[1 — Zen (YW r(Zyy (7), Zyy (7'); Ayy, Acr) Zr (1)

AZR(Obg (Zyy (7), Zyy (7); Ayy, Acr)], (7.16)

where thet N -dimensional square matrix and vector are defined as

WrR(ZYY(T), Zyy (7'); Ayy, Acp) =

<(WLF T (Zyy (7); AYY)+WLF 7(Zyy (7)) Ayy)* ) '(WLF T(Zyy (7)i Ayy) = Wepr(Zyy (7/); Ayy)* ))
(WLF 7(Zyy (T)iAyy) — Wepr (Zyy (7)) Ayy)* ) —(WLF,T(ZYY(T) Ayy) + Wep,r(Zyy (7); Ayy)* ) ’
(7.17)

br(Zyy (1), Zyy (1'); Ayy, KCF;m7 ' 2.2
B bepr(Zyy (7); Ayvyin,m') + bepr(Zyy (7); Avys i, m2')* (7.18)
B i(bCF;T(ZYY(T)§ Avyin,m') = bepr(Zyy (7'); Ayy;me, @/)*> ’ .
and
_ 1
ZrR = bldiag(ch, ZCF)§ . (7.19)

The thermally weighted quantities used are

1 — 1
WCF;T = (I + ACF)iiwcp(I + Acp)ii, (720)
- 1.
bep,r = (I+ Acr) ™ 2bep. (7.21)
Ner = 1/Tr(exp(—f - h)) is a normalizing factor for the thermal integral kernel, wihe
N-dimensional vibrational Hamiltoniarf{ = S h;).
In Condon approximation, the expression (Eq. (7.1)) is $fied as
G (Zer (1), Zyy (7), Zyy (7); Ayy, Acr)
=GRy ( ZYY( )i Ayy)GRYY (Zyy (7'); Ayy)*
NexTon[I = Zig (YW ir (Zyy (7), Zyy (7'); Ayy, Acr ) Zor (1)
AZr (7R (Zyy (1), Zyy (T'); Ayy, Acp)], (7.22)
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where

br(Zyy (1), Zyy(T'); Ayy, Acrsni,m’ s m2,m2')

= Fr(Zyy (1), Zyy (7'); Ayy, Acr)
Tep.r(Zyy (T); Ayy) + Tepr(Zyy (T'); Ayy (7.23)
i(ch;T(ZYY(T)§ Ayy) = Tepr(Zyy (7'); AYY)) ' '

~—

GE (t,7,7")* is a 3-point-TCF in an analytic closed form for rR intensitcluding
Duschinsky, thermal and non-Condon effects (Albrecht B @ntérms [60]). The evalua-
tion is straightforward with the help of MHP technique (S&cfor non-Condon operators.
GfR provides not only the TCFs but also the sum rule for the Ramgamsity [69] by
settingZ,r(t) to the identity matrix which can lead to possible prescregsitrategies for
the rR intensity profile. In the rR calculation the peaks alentified by computing the
individual scattering amplitude from the amplitude TCF i E7.14). If we know the indi-
vidual contributions from the sum rule, we can avoid thengfto compute many scattering
amplitudes that have negligible impact on the profile.

The explicit expressions for the rR amplitude and intenisit§ondon approximation are
given in appendix D where only the vibrational modes in alistate are allowed to be
thermally excited at finite temperature.

7.3. Application to single vibronic level transition

It is straightforward to derive the GF of the SVL transitiaiorh the cF GF in Eq. (7.4).
Herein we introduce constraintss,, = vk, andug’, = vk’ which will reduce the
dimension of the corresponding MHPs to hal,

GER (Zxx, Zyy: Avyi & imn) = G (Zyy; Ayy)
TWreryy (Zyy; Avy), Pncry'; fincr:y)
~ —t
j[szXW;;XX(ZY)G Ayy)Zxx,2Zxx (bx) (Zyy; Ayy;n,1); € ], (7.24)

where we have assumed that the generating variables ar@uedders without loosing
generality,i.e.

aky =apy = ay €R, (7.25)

By = 'y_K'X = 1’X € R. (7.26)

In the SVL transition the ONV of the initial vibronic stateiisthe fixed quantum number
spaceX, but also some of the final vibrational modes have fixed quanmumbers for
possible prescreening application®. Nx = N, Ny = 0,0 < Ny < N andN{, =
N — N%. In Condon approximation the expression is further sirmealifas

11Egs. (7.16) and (7.22) for non-Condon and Condon approidmstespectively.
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G (Zxx, Zyy; Ayy;€,) =GR (Zyy; Ayy)
j[QZXXWit;XX(ZYY§ Ayy)Zxx,2Zxx (T x) (Zyy; Ayy); € ]. (7.27)
We can also have a similar MHP expression in Eq. (7.13) foFD&SVL GF
GEvy

i Zxx,Zyy; Ayy;0x)
1

= 1_[~ = GEYY (Zyy; Ayy)

Ux
) W it . Wt -1
HQX ((QZXXWT;XXZXX) Tp.xs (QZXXWT;szxx) > . (7.28)

We can obtain the SVL transition TCF from the GF (7.28) witle fhD GF parameter
Zyy = 7/(t) in EqQ. (4.43). The resulting expression is not given in aatborm, but we
can evaluate the TCF with the MHPs caring complex numbenrs fhee TD GF parameters.
Additionally we can also apply the SVL transition GF to fineiged integral prescreening
strategies directly with the integral space partitionepregsions (7.24) and (7.27) for multi-
dimensionalX spaces.

The explicit expression for the SVL transition in Condon egximation is given in ap-
pendix D, where only the vibrational modes in initial state allowed to be thermally
excited at finite temperature.

7.4. Application to anharmonic transition

FC or non-FC transition moments computed on the approxiladéemonic PESs are not
sufficient to describe transitions involving for examplestonal motions and large ampli-
tude motions (see.g. Ref. [150]). In this case we need to start from the full rosiimnal
Hamiltonian such as the Watson [201] or Meyer-Giunthard®]28olecular Hamiltonian,
which include momentum and position operator coupling team well as the anharmonic
potential energy terms.

There are many approaches for propagating wavepacketsienajjpotential energy sur-
faces in time domain to compute vibronic spectra, for instahe Gaussian wavepacket ap-
proach [137,203], the multi-configurational time dependartree (MCTDH) method [204,
205] and the coupled CS method [206]. In these approachesitlal wavepacket evolves
on the final PES which provides the time correlation functiofihe corresponding Fourier
transform (FT) is the vibrational spectrum in frequency dom{see Chs. 4 and 6 for our har-
monic developments). However, one of the major demandsdimpatational approaches
is the peak assignment and (exact) excitation energy lewbish can not be given directly
by the TD approaches.

In Tl approaches one has to obtain the vibrational anhamneigenfunctions from the
molecular Hamiltonian by perturbation methods (sag Refs. [36, 123, 207-211]) or by
diagonalizing it in a given finite basis set for instance hamim oscillators and (complex)
Gaussians. The anharmonic transition amplitudes can teesaloulated by perturbation
methods and basis set expansion approaches, respectively.
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7. Single vibronic levels

In all approaches the Tl method for FC transitions betwedtaamonic vibrational states
is computationally expensive because of the multitude eflap integrals to be evaluated.
The situation is even worse, if we need to consider the Duaskkiimode mixing effects
(Sec. 2.2). There were some approaches proposec(geRefs.(see.g. Refs. [22, 106,
183, 212-214])) to avoid the mode mixing problem by expagdive wavefunctions with
a one-center basis set. However, the one-center basis patsian of the anharmonic
vibrational wavefunctions usually requires a larger nunmdddoasis functions than the two-
reference point expansion approach inducing the Duschimd&tion between the two basis
sets.

The vibrational self-consistent field (VSCF) and vibradboonfiguration interaction (VCI),
which are analogous to the Hartree-Fock and configuratitarantion (Cl) methods, re-
spectively, in the electronic structure theory, are wideded to describe the anharmonic
vibrational wavefunctions with harmonic oscillator eifamctions [215-218]. VSCF and
VCI wavefunctions, expanded via the harmonic oscillatgreefunctions, were used to
compute the anharmonic Franck-Condon factors (FCFs) obat three atomic systems [53,
106, 218] . In the work of Hulet al. [53] we computed the potodetachment-photoelectron
spectra oftIS;, andDS; to their neutral ground and first excited states by comptitieg
FC profiles based on VCI wavefunctions from the Watson mdéeddamiltonian [201]
expanded in terms of displaced Gaussians [219]. In this odetie only need to compute
many Gaussian overlap integrals (of the typg0), Eq. (2.102)) including the Duschin-
sky rotations. One trick exploited was to prescreen thelapéntegrals according to the
displacements of the two displaced Gaussians, and theroi® ali important Gaussian
overlap integrals at least for the three atomic systemsdedpp the calculations. Luis and
coworkers [220-223] have set up linear equations, for anbaic FC integrals and matrix
elements of the potential energy difference operator, wliwer the computational cost by
introducing the Duschinsky relation in the potential eyeppgerator not in the wavefunc-
tions but they considered only a simple diagonal kinetiagneperator.

Lucas [148] proposed a method for evaluation of FCFs in neali Duschinsky rela-
tion (Sec. 2.2). Nonlinear Duschinsky effects were tregedurbatively by Lucas for the
(momentum-position coupled) non-Condon operators. Weeeaily handle this perturba-
tion approach with the non-Condon integral evaluation sehdeveloped in section 3.2.

Luckhaus [150] developed an approach which treats reaptidm problems with large
curvature. Therein the author solved the vibrational digaetion problem for a two-
dimensional model system by diagonalizing the Hamiltoriranon-orthogonal harmonic
oscillator basis sets along the grid points on the reactaih.pln this approach one has to
compute the non-Condon integrals for matrix elements oHdmiltonian as well as the FC
integrals for the overlap integrals for the non-orthogdmaimonic basis set in the Duschin-
sky relation (Ch. 3). If the reaction path and non-orthodidr@sis set approach should be
extended to larger systems, the developments of this théklse highly beneficial for this
method.

The simplest approach would be to introduce the anharmgriitithe potential energy
surfaces only for a few vibrational modes neglecting theetimenergy rovibrational part.
Even for the simplest model Hamiltonians it is a computatityndifficult task to compute
the FCFs including the mode mixing effects due to the extheda@ge number of inte-
grals to be evaluated. We present herein the simple anha&fharmonic block approach
to treat systems that have many harmonic degrees of freeB@#)(but a small number
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7. Single vibronic levels

of anharmonic DOF which are still much more computationatkpensive than the har-
monic transitions. We further assume that the anharmormdhammonic DOF are separable
but the normal coordinates of two electronic states aree@lby the Duschinsky equation
(Sec. 2.2). The anharmonic partition of the vibrational @fanctions are expanded by a fi-
nite number of the harmonic oscillator eigenstates as & lsasiand the harmonic basis sets
of two electronic states are related in the DuschinskyimiatThe important contribution
of our development in this section is that it can provide thsgible prescreening strategies
and TCFs with the the non-Condon effects for anharmonicsitians. The GF developed
in this section is in the form of linear combination of the cF<&n section 7.1.

The anharmonic DOF is denoted_&sand the harmonic ones &Slike in the partitioning
scheme in chapter 2 for the fixed and the active vibrationatep, respectively. The-
th vibrationally excited anharmonic wavefunction of théia electronic state, with the
associated harmonic eigenstate ), |V,,.,..) is defined as,

an Z CUK ’UKX ’Qy>
{UKX
= D CugmlUk o), (7.29)
{ok i}

where the finite number g ¢ anharmonic expansion coefficients for finite basis &t (. })
satisfy the normalization condition,

> e ml® =1, (7.30)

{vk  }

and the final state is expressed in the same manner,

Wy, ) = D ooV 2y ), (7.31)
{UK’X}

Y ey ml* = 1. (7.32)

{UKX

The FCFs of the vibronic transition from theth vibrationally excited wavefunction is
summed to unity in any complete basis set expansion but illdHme close to unity in a
proper finite basis set expansiore.

1= <\I/n;yy’\1'n;yy>
(Ng)—1
~ / /% %
= Z Z Cog smCup’y smCop | nCuk in
{ok  h v  FAvk s FAve b m=0

o)

XY (UB iy oK'y 0y ) (VB Uy [0k 5 oy ), (7.33)
U_/y:Q

where(N{)' is the finite number of final vibronic levels, which equals thember of har-
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7. Single vibronic levels

monic basis functions.
From Eq. (7.33) and (7.1) we have the anharmonic transitiBriz which contains the
anharmonic transition information associated with the GFRameters,

GaZer, Zyy e, cm's ey S 1017

2 : / "% * Kyy . & oo /
- CUK’X;vaB’X;mchX;nCUlX;nGCF (ZCF7 ZYY70YY7§KB7§BK7Q7Q )7

{vk  h{ve x vk’ H{ve' }

(7.34)

where the cF GF in Eq. (7.7) is used for the possible non-Coridmsition. The anhar-
monic transition GF is evaluated to have specific SVLs and@ondon operators with
Eq. (7.4),.e.

GA(Zer, Zyy; Cns em's g, D)9

— / * *
- § : Cogc!ysmCop’y smCup | nCuk in
{vx  {vB 5 b {vk’ FAve }

~_1_1 L1
72772 ~ 72772 N ! !
| R i DRI
ap®*, ,ak ’ 4 /%
pish ghaisl ¢ v YUK 'y IK 1 IB x

UB x UK x UB'y UK
2N > - . ~
: \/7 bery [pz]mer . \/7 I [ (plnas
Wal |V —Va “iVaa P TQ:TTp Tty
k=1 — Y
. o
G (Zer, Zyy; Oyy; Eppes S 15 Q,)‘~ . (7.35)

ExntpicTner=Y

We can devise prescreening strategies for an anharmonaittosm fromn-th vibrationally
excited initial state to then-th vibrationally excited final state with the GF includingm
Condon effects. The TCF can also be evaluated by the GF watith GF parameters
Zyy(t) in Egs. (4.42) and (4.43). In this development we assumerémsition from a
single vibronic initial state to manifold final vibronic & but it can easily be generalized
for the thermally averaged initial vibronic states.

The explicit expression for the anharmonic transition im@an approximation is given
in appendix D where only the vibrational modes in initialtstare allowed to be thermally
excited at finite temperature.

7.5. Chapter summary and conclusion

In this chapter we have developed GFs for the rR scatteridgraensity profile (Sec. 7.2),
the SVL transition (Sec. 7.3) and the anharmonic FC/nondBortransition (Sec. 7.4).
Those GFs are built upon the cF GF, see section 7.1. Thesatradlce arbitrary SVLs
via the corresponding partial derivatives.

The rR developments in section 7.2 differ from other works, B6, 61, 64, 66, 67, 72,
73,75,109]. The difference appears in the TCFs from the GMe.can introduce non-
Condon and thermal effects to our CS GF approach within thecBinsky linear transform
approximation. We emphasize herein that we can relativatjlyeinclude the non-Condon
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7. Single vibronic levels

effects and the arbitrary SVLs at the same time by the MHPigcie. We have derived the
analytic expression for the 3-point TCF for the rR intengitgfile within the Duschinsky
approximation including the non-Condon and thermal effect

The SVL transition GF is shown to be only a special case of th6&E in section 7.1.
It has constraints on identical vibrational ONVs in the katl &ra vibronic states. As
a result, the SVL transition GF is simplified to a reduced digienal form. From this
development, we can obtain the SVL transition TCF, the matiegrescreening strategy for
the SVL transition, and the fine-grained FC/non-Condongreesing strategies of multi-
dimensional fixed quantum number space

As a last development, section 7.4 of this chapter, we hapéeabthe cF GF of sec-
tion 7.1 to one anharmonic transition problem that can becqipated with a few anhar-
monic DOF, whereas the remaining DOF are treated harmdnidalth the developments
we can construct the FC/non-Condon TCFs and integral @estrg conditions from the
anharmonic GF. We have made the GF with a separation ansatzthafmonic and har-
monic DOF, and the benefit of the GF decreases as the numbehafraonic DOF grows.

We have exploited the MHP technique in chapter 3 to modifyRG& GF (Ch. 4) and
the non-Condon GF (Ch. 6) for SVLs. From the development isf¢hapter, we can now
have GFs including thermal effects, arbitrary non-Condffeces and arbitrary SVLs in
the Duschinsky oscillator basis. As special applicatianthe cF GF, SVL transition, rR
scattering and anharmonic transitions are introduced. tlBIGF approach can possibly
contribute to the vibronic coupling, multi-photon traiwit, general anharmonic problems
which could have intrinsic harmonic structures. The apgpian is shown to be not only
restricted to molecular transitions but it could be any quammechanical process involving
harmonic oscillators.

123



8. Conclusion and outlook

One of the fundamental goals of molecular science is to nlataierfect control of molecular
processes with optical techniques and molecular desiditiedi For this purpose a detailed
understanding on the dynamics of vibrational and eleatrévibronic) degrees of freedom
(DOF) is necessary, because the interplay of vibronic DGlyphl major role in many
molecular processes, which could be either radiativg. (one-photon absorption (OPA),
one-photon emission (OPE) and resonance Raman (rR) $tgjter non-radiative €.g.
electron transfer (ET), internal conversion (IC), intgstem crossing (ISC) and conduction
of molecular junction), see figure 1.1.

Usually, polyatomic systems of interest are relativelgéafmore than 100 atoms, espe-
cially biomolecules) such that the corresponding desoripand analysis of the dynamics
are challenging. Molecular spectra, which contain infdioraabout the molecular pro-
cesses, are typically highly congested, such that the digsamh the individual vibrational
DOF can not directly be disentangled. We need theoreticalysis tools for the complex
molecular system to study the individual mode contribudioa the molecular processes
. Computational difficulties arise for complex systems ialesting a tremendously large
number of multi-dimensional Franck-Condon (FC) integrdlle density of states (DOS)
or the number of FC integrals at a transition energy growapdyewith increasing number
of vibrational DOF, vibrational excitation energy and tergture [112].

Even in a harmonic approximation for the Born-OppenheinB®)( potential energy
surface (PES) the computation of FC integrals is still alehging problem especially for
large molecular systems, due to the inseparable multifuioeal integrals originated by
the Duschinsky mode mixing effects (Ref. [107] and Sec..ZI2jere have been attempts
(seee.g.Refs. [115-121] for the most recent works) to improve the patational efficiency
of the FC integral evaluation schemes including the Dusityimode mixing effects. Fast
evaluation of the FC integrals is essential for tacklingdasystems. We have suggested an
iterative FC integral evaluation scheme exploiting the Magexpansion for multi-variate
Hermite polynomials (MHPs) [176] in chapter 3. The integredluation scheme in terms of
the MHPs with the Magnus expansion can be expressed as siongat one-dimensional
Hermite polynomials, which appears in a simpler form (serallumber of summations)
than the existing summation scheme for the multiple pradatbne-dimensional Hermite
polynomials (see.g.Refs. [120,121]).

It was pointed out, however, that only a small portion of thrarfEk-Condon factors
(FCFs) contributes to the total FC profiles significantlye(eqy. Refs. [44—46]). The idea
can be used in and hocway by limiting for instance the vibrational excitation iaah
mode by some predefined numbers. For example, one couldagitpitrestrict the num-
ber of FC integrals to be evaluated by allowing only up to Mfrationally excited quanta
for every vibrational DOF. In this example we need to complit€" FC integrals for
the N-dimensional harmonic oscillator system. Unfortunateiythis brute-force way the
computational complexity still increases drastically dmtomes infeasible. Instead, if we
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Figure 8.1.: Summary of the CS-based GF developments for various maleeildronic tran-
sitions. The round boxes refer to the fundamental quastitiehe dotted box represents the
work not in a part of this thesis. The solid square boxes atdithe developments within the
thesis. The arrows indicate the functional transformatidrne properties of the GF are shown
in a box that are inherited from the previous (lower) boxeékeowise details are mentioned
on the arrows. The single solid lines without arrows implyyoone of many usages for the
corresponding functions to mention their importance. Toveasponding chapters for the de-
velopments are indicated on the left side of the diagramit {g)straightforward to obtain the
mean value including the non-Condon effects but for the énigirder statistical quantities a
numerical algorithm has to be developed.
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can construct the most important FC intensity profiles, say®of the total FC intensity,
with a small fraction of FCFs of the total FCF, the computataf FC intensity profiles
becomes feasible even for complex systems. For this punpesmust address the issue
of knowing which sets of FCFs contribute to the total FC istgnfor about 99 % without
having all FCFs at hand. Jankowiakal. [46] exploited this simple idea by modifying the
Doktorov and coworkers’ initial idea of CS-based GF [29]. piiting the modified GF
Jankowiaket al. developed a coarse-grained integral prescreening sgriaethe FC inten-
sity profiles at zero Kelvin. The starting point of this trsesias precisely this zero Kelvin
time-independent (TI) FC development. Throughout theishege have extended and mod-
ified the method to include temperature and non-Condon teff@bich are important in
molecular transition processes (see diagram 8.1). Inaad@.1 we summarize the devel-
opments in this thesis and show the relations between thelafewnents described herein.
Based on the fundamental developments (the round boxes bottom of the diagram) the
GF approaches have been extended (following the arrowseiditgram) to account for
thermal effects, non-Condon effects and single vibronielléSVL) transitions.

The theoretical description of most of the molecular vilitdnansition$ involving the
Duschinsky rotated harmonic oscillators boils down to a iwmm mathematical problem,
i.e. the MHPs evaluation (see diagram 8.2 and Ch. 3). The caionlaf the MHPs appears
as a computationally hard problem (Ch. 3). Nevertheleasstation of the molecular transi-
tion problem in harmonic approximation to an equivalent Mé@luation problem enables
us to analyze various transition processes by the same matical tool. An analogous
transformation for the Ermakov invariant for dissipatiystems (see.g.Refs. [224-229])
can be given as an example for a similar reduction to a sing@erputational problem.
The various equations of motior,g. the Langevin and the Fokker-Planck equations, for
dissipative systems which are in different forms convem@éhe invariant quantity at the
end.

In the following paragraph we summarize the developmerttsisrthesis according to the
diagram 8.1 sequencing from bottom to top. The GF approaateedescribed briefly in the
guantum mechanical trace formalism. Then the conclusiaghnoatiook of this dissertation
follows.

Summary of developments An invariant quantity for a quantum mechanical problem
is a powerful tool to understand the system (e Refs. [24-29, 224]). The invariance
constraints the system dynamics. We can extract usefubdbatat the quantum mechanical
processes from the invariant functionia¢. herein the GF which is characterized by its GF
parameters (see Ref. [46] and Sec. 2.4), with proper motiditaor mathematical manip-
ulations to the functional (see the bottom of Fig. 8.1). THedppears to be an analogous
tool like the partition functionTr(exp(—BH))), which is invariant and from which we can
obtain thermodynamic quantities. Analogously the GF cawide the quantity of interest
by (proper) operations on itselé,g. partial derivatives with respect to the GF parameters
for intensity sum rules (see Chs. 4 and 6).

To illustrate the invariant GF idea, we consider the FC itams probabilities from an

'FC and non-Condon integral evaluation, integral presingestrategy, rR excitation profile, SVL transition
and non-Condon transition, time-correlation function Fj@valuation
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Figure 8.2.: Most of the working equations in this thesis are translatéalthe MHP evaluation
problem. The functions in dashed-ellipse are cast into M&tRkthe corresponding output can
be obtained after the MHP evaluation.

initial state to a manifold of other states that have to beraedhto unity,i.e.
Tr(p) =1, (8.1)

where the density operatgrcan be defined for instance via thermally averaged initial vi
bronic states{ = >, p.(T)|v)(v|), where thep,(T) is a thermal distribution of initial
vibronic state [p)) at a finite temperaturel(). This simple sum rule (8.1) can be traced by
an arbitrary complete basis set resulting in an infinite sation of FCFs, which converges
to unity (e.g. for the final vibronic stateg’), >, p,(T)|(¢'|v)|* = 1). The FCF sum rule
equation itself, however, is not powerful enough, becausals us only, if the total inten-
sity is conserved with respect to any complete basis setnsiqgra We invoke, instead, the
Dirac ¢-distribution operators to resolve the FCFs by vibroniasifon energies,

/ h AwTe(3(wn — B [W)3(er — L /W)p) = 1. (8.2)

—00

wherew = w; — ws, is the vibronic transition frequency, at#l and H’ are the vibrational
Hamiltonians of the initial and final states respectivelgg¢2.2). The integrand in Eq. (8.2),
the quantum mechanical trace, is simply the FC spectralitgdnsction (SDF) with Dirac
s-distribution at finite temperaturee. grcw (w) = Tr(6(wy —H' /h)d(wa— H /1)), which

is transition frequency)-resolved (Sec. 2.1). By introducing CSs both for initiatidinal
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vibrational states and replacing thalistribution operator with the GF parameferge can
make the CS-based FCF GF (Sec. 6.1.2). Exploiting the negutFs Jankowialt al.[46]
developed the FC integral prescreening strategy at zengrKahd herein we have devel-
oped the thermal FC integral prescreening method (Ch. 4)If6C profile calculations.

We have introduced the thermal effects to the CS-based Gireithermal integral ker-
nel (Sec. 4.1). The important feature of this thermal dguslent is that the individual
vibrational DOF can have different finite temperatures s the can control the vibra-
tional excitation pattern with the individual temperasjreot only via the GF parameters
(Eq. (4.4)). At finite temperature the initial vibrationahte can be considered as the ther-
mally averaged effective single vibrational initial stitethe GF. As a result the thermal
prescreening strategies (Sec. 4.3) can inherit the persiag strategies at zero Kelvin [46].
This CS-based thermal FCF GF generalizes the correspordiogkelvin development to
the development at finite temperature.

Recalling where the GF parameters are coming fdtris clear that we can transform
the same FCF GF into a TCF and the FCF sum rule according to Fhga@meter values
(Ch. 4). In chapter 4, we develop the time-dependent (TDyaamh (TCF) from the TI
perspective. The TCF method is adopted typically for itspdicity and fast evaluation
besides the disadvantage of no immediate peak assignmiétyt @ee e.g. Refs. [17, 33,
34,37,38,40,40-42,48,55,56, 61, 64, 66,67,72, 73, 781,84, 86, 87,93-95, 109, 137,
138]). Up to now (before this thesis) the TD and Tl approadbegbsorption or emission
profile calculations were (practically) considered as padalent approaches [18], even if
the formalisms are mutually transformable (Sec. 2.1). Thepproach exploits the Fourier
transformed representation of thelistribution §(w — ) = [*_dt e!@~¥)) in Eq. (8.2),
ie.

orcw (w) = hl/ dtTr(exp(—iﬁI't/h) exp(iﬁt/h),ﬁ)ei(‘”*wo)t. (8.3)
By assigning the TD phase parameter values (Egs. (4.42)4a48)] to the GF parameters
we can obtain the TCF (corresponding Te(exp(—iH't/h) exp(iHt/h)p) in Eq. (8.3))
simply from the CS-based FCF GF. Then the correspondingiéramansform (FT) is the
FC profile (Sec. 4.4). We emphasize herein that we can usathe 6F for the (TI) integral
prescreening and (TD) TCF approaches. The validity of tharil the TD approaches has
been confirmed by their mutual agreement (Sec. 4.5). We adgejthe quality of the
prescreening level from the comparison between the twooagpes (Secs. 4.5 and 6.3). It
is interesting to note that the TCF valuetat 0 is simply the sum rule functional value.
When the time evolvest (# 0) the complex TCF values carry the vibrational transition
information of the system. One last thing to be mentionedttercurrent TCF approach
is that we can try to assign the peaks indirectly (even in theriethod) by freezing some
vibrational DOF in the TCF evaluation via controlling the @&rameters. This feature
is possible because we have made a link between the Tl andCitepproaches with the
identical GF (Sec. 4.4) via the GF parameters.

In the evaluation of TCFs (semg. Sec. 4.4) for fast Fourier transform (FFT), a good

2hecause we know all eigenfunctions and eigenvalues of thredric systems, thé-distribution can simply
be represented by GF parameters.
3Dirac é-distribution.
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8. Conclusion and outlook

guess on the relevant time step and length is required, velmehorresponding to the high-
est frequency and the resolution in frequency domain, mtisedy. For the efficient compu-
tation of the TCF we have to choose the time scaling parasetefully because a large
number of TCF evaluation involving inverse complex matm@calations (Eqg. (4.10)) can
slow down the computation of the FC intensity profile sigmifitty. If we know the impor-
tant energy window before the FC integral calculation, efegrthe Tl approach with the
prescreening technique, we can devise additional efficemputational ways for the FC
intensity profile. Therefore it is desirable to know an apor@te spectral shape which is
available with cheap computational cost. In chapter 5 we lenstructed the FC transi-
tion SDF as a probability density function (PDF) charaeiedi by the statistical quantities
(cumulants) such as mean, variance, skewness and kursegisEQ. (5.18)). As empha-
sized above and through out this thesis the FCF GF contdiind@imation about the FC
process. We have realized the cumulant expansion (CE) gé@atroducing the thermal-
moment integral kernel (Eq. (5.4)) augmented in the theimegral kernel (Eq. (4.2)) into
the logarithm of FCF GF (Eq. (4.2)). The FCF cumulant GF hasuailiary parameter
to generate the cumulants of the vibronic transition enefigycompute the cumulants of
higher orders, we develop an efficient numerical algoritomtlie partial derivatives of an
inverse matrix up to arbitrary orders (Sec. 5.1.1).

A mean value of an individual vibrational mode can be intetgd as an effective Huang-
Rhys factor (HRF) in electron transfer theory, which inédadthe molecular structural
changes, the potential energy distortion, the Duschinskgermixing and the tempera-
ture effects, resulting the separable individual mode rdmution to the Franck-Condon
processes (Sec. 5.3.2). This effective (temperaturerdipe) electron-phonon coupling
constant (HRF) is useful to study the temperature effectherlectron transfer theory for
large systems to verify the individual vibrational mode trifrutions. In section 5.3.2 we
were able to show that the Duschinsky mode coupling can mduermal energy transfer
from low to high frequency vibrational modes with this medhdVe could also interface
the cumulant GF with the TCF via the TD GF parameters (Sec2b.Moreover we were
able to use the CE for the fast estimation of the TCF by expanttie TD function with
the corresponding Taylor series in terms of the cumulargs.(5.1.2). It reduces the effort
to evaluate the inverse complex matrix by estimating it i Taylor expansion to certain
orderé to avoid the inverse matrix calculation at each time step. eWoit the thermal-
moment integral kernel to obtain the moments of vibratilynexcited quanta of individual
vibrational modes (Sec. 5.2). The moment GF approach igsdatred for the reason that it
is necessary to keep the vibrational mode indices for thditimhensional partial deriva-
tives during the moment calculation. We have developed & Beeping algorithm for the
moments of the vibrational quanta in the FC process, but #thad can possibly extended
also to the non-Condon processes with the non-Condon Glesoged in chapter 6.

The important contributions of this thesis are introdudimg TCF approach and the non-
Condon effects to the GF approach [46]. The former can sitb@lgdopted to the CS-based
GFs hy assigning the TD GF parameters. We have taken the ande@ effects into ac-
count with the CS displacement operator (Sec. 3.2). Witthéhe of the phase displacement
operator we have used the same mathematical machinerye€R&F for the non-Condon
GF. The phase displacement operator introduces auxillzgeparameters for momentum

42-nd order in this thesis.
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8. Conclusion and outlook

and position operators to be used for non-Condon operattnaceed by partial derivatives

with respect to the auxiliary parameters. In section 3.2 axetdeveloped the non-Condon
integral evaluation scheme such that we have transformedidh-Condon integrals into

MHPs not like the existing linear combination of FC integrpproaches [36, 49].

In chapter 6 we have considered the non-Condon effects dnter Herzberg-Teller
(HT) approximation (Eqg. (2.24)) and we invoke the HT expando the CS-based FCHT
GF. The extension to the nonlinear problems (including muoma-position operator cou-
pling terms) and the fine-grained prescreening strategegassible by constructing col-
lective matrices and vectors for the MHPs which require tgiteonal dimensionality for
the operators (see.g. Eg. (6.16)). We can also deduce the TCF and the prescreening
strategies from the CS-based GF. With the complex MHP etialuave can evaluate the
TCFs including arbitrary polynomial hon-Condon operatf(g. (6.4)). The non-Condon
GF can be applied to the electronic circular dichroism (E@id) the electric and magnetic
transition dipole moment (TDM) coupling terms [102].

We have suggested the GF approach for SVLs in chapter 7. The &¥ involved in the
rR scattering excitation profile and the SVL fluorescencetspm. The rR scattering and
the SVL transition (Secs. 7.2 and 7.3) GFs are relatéfttaw — H' /h+il'/2) ;) (v;)

and Tr(6(w — H'/Rh)|v)(v|) , respectively. The major difference between the two traces
is the later has the identical SVLR{(v|) in the ket- and bra- states while the former has
different SVLs (v;)(v;[). We can evaluate the rR excitation profile with the halfRhd

the SVL trace with the full FT in the TCF approach (Sec. 2.1he TR TCF is similar to
that of SVL transition but rR scattering usually involvesotdifferent SVLs in the initial
electronic state.

The GFs are made via the coherent-Fock (cF) state which isxaumiof occupation
number vector (ONV) and coherent phase vector states (SgcThe cF states are obtained
by taking partial derivatives with respect to the CS phasamaters belonging to the non-
integral space (Sec. 2.3). With the help of MHP techniqudodbgal in the previous chapters
the automatized generation of SVLs is possible and thesiaiuof the non-Condon effects
is possible as well by using the CS displacement operatatti@ublly. With the SVL
transition GF we are able to develop a fine-grained prestrgesirategy for the multi-
dimensional fixed quantum number spaceeither for the FC or the non-Condon process.
We can also exploit the SVL transition GF as the TCF via the THEp@rameters (Eqgs. (4.42)
and (4.43)). With the SVL GF, non-Boltzmann distributedrthal distributions such as
thermo-coherent distributions (seay. Refs. [84, 230]) could be made.

We can obtain the rR scattering intensity GF at finite tentpesgaand at zero Kelvin
including non-Condon effects in an integral form by tracmger the two SVL space for
the overlap of two rR amplitude GF with the thermal integrairiel (Sec. 7.2). As for the
absorption process, the GF can be used as the TCF and the lmsnfioruthe prescreening
strategies. It is worth to note that we have suggested tleedlotegral form of rR cross
section in harmonic approximation including the Duschynakd thermal effects in a func-
tional analogy to the Forster-type energy transfer preeegsee.g. Ref. [8]) which is in a
form of convolution between the absorption and the emisspattra.

Additionally we have applied the cF GF to an anharmonic (lB8/@ondon) transition
problem which has a few anharmonic DOF and the rest of hagrid@F so that we can

L

5 =—i f0°° dt /=)= 3t which is a special case of the Laplace transform.

1
w—w+il'/2
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8. Conclusion and outlook

benefit from the harmonic GF machinery (Sec. 7.4). The anbiierGF is expanded by
the CS-based cF GFs with the corresponding anharmonic siquacoefficients. With the

integral space partitioning we can develop sum rules foatitearmonic transition as in the
harmonic cases and we can construct the TCF as well.

Conclusion and outlook The developments in this thesis are generally applicable to
transition problems in the harmonic approximation (see &ig). With slight modifications
the same approach can be exploited for other problems sutlassspectroscopy (sedy.
Ref. [231]), non-equilibrium FC processes in molecularcfion (seee.g. Ref. [232]) and
the Forster-type energy transfer processes ésgeRef. [8]). The IC process requires the
matrix elements of momentum operators which can easily belbd by the non-Condon
developments (Ch. 6). The non-Condon developments candie@gpo the vibronic cou-
pling effects (seee.g. Refs. [50, 80, 88, 96].) for instance spin-orbit couplingge.g.
Ref. [96]), Jahn-Teller effects (saeg. Ref [2]), nonadiabatic electron transfer (se@.
Ref. [233]) and dissipation with environmental effectse(eay. Ref. [8]). The rR develop-
ments in this thesis could be extended for the surface eehaatt effectsi.e. the surface
enhanced Raman scattering (SERS) @ee Refs. [234-237].) and the surface enhanced
Raman optical activity (SEROA) (seeg. Ref. [238].) with the non-Condon effects and the
finite temperature effects if we can make a proper descriptio the metal surfaces with
for example jellium model (see.g. Ref. [239]). The extension to the general anharmonic
problem, however, has to be made because the harmonic apptmn is very crude in
many cases. As mentioned in the anharmonic section (Sé¢tffednon-Condon develop-
ment and the matrix element evaluation procedure are $aitalthe anharmonic problems
possibly with the reaction path approach [150] of Luckhabar CS-based TCF could be
used for propagating wavepackets in time domain on the geagharmonic surfaces (see
e.g.Refs. [137,203-206]) via the complex MHP evaluation.

To this end, we remark that a unified description of vibromansitions in frequency
and time domains, presented in this thesis, facilitatemwartheoretical applications and
experimental analyses for large molecular systems.
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9. Zusammenfassung

Eines der grundlegenden Ziele molekularer Wissenschaiteie perfekte Kontrolle moleku-
larer Prozesse. Molekulare Maschinen und kiinstlichets@mhmelsysteme sind wichtige
Beispiele, die diesem Ziel entsprechen. Zu diesem Zwecking genaue Kenntnis der
Dynamik von vibratorischen und elektronischen (vibrohest) Freiheitsgraden notig, da
das Zusammenspiel vibronischer Freiheitsgrade eine beul#l Rolle in vielen moleku-
laren Prozessen spielt, die entweder strahlender (z. Borfbsn, Emission und Raman-
Resonanzstreuung) oder strahlungsloser Art (z. B. Elekirvansfer, interne Konversion,
Ubergange zwischen Systemen und Leitung molekulareriéuingen) sein kbnnen (siehe
Abb. 1.1).

Normalerweise sind die betrachteten polyatomischen Byestelativ grof3 (mehr als 100
Atome, insbesondere bei Biomolekillen), was die entsgredén Analysen der Systeme
zu einer Herausforderung. Die Analysen grof3er molekul@ysteme sind typischerweise
nicht einfach, weil die Spektren der dazugehorigen Mdexkibergange tberfullt sind, wir
aber die Dynamik der einzelnen Vibrationsfreiheitsgratle die Feinkontrolle oder die
kunstliche Gestaltung eines erweiterten Molekilsyst&enotigen.

Um die Beitrage der einzelnen Schwingungen zu den molekuRrozessen zu studieren,
missen Ansatze fir die theoretische Analyse komplexalekalarer Systeme bereitste-
hen. Daruiberhinaus konnen in der Berechnung komplexstie8\ye Schwierigkeiten in der
Auswertung einer gewaltig groRen Zahl mehrdimensionatanék-Condon(FC)-Integrale
auftreten. Es ist notig, die Franck-Condon-Faktoren (F&ls Wahrscheinlichkeiten vi-
bronischetUbergange in der Condon-Naherung zu ermitteln, um F@evilsche Prozesse
theoretisch zu beschreiben.

Die Zustandsdichte oder die Zahl von FC-Integralen beirelitgergangsenergie steigt
mit zunehmender Zahl von Schwingungsfreiheitsgradenhse&uder Anregungsenergie und
steigender Temperatur steil an [112].

Sogar in der harmonischen Naherung der Born-Oppenhdd@®@sthen Potentialhyper-
flache ist die Berechnung der FC-Integrale besondersréil¥egMolekilsysteme wegen der
untrennbaren mehrdimensionalen Integrale als Folge dectiskymischung verschiedener
Schwingungsfreiheitsgrade (Ref. [107] und Abschn. 2.2nannoch eine schwierige Auf-
gabe. Es gab Versuche (s. z. B. Refs. [115-121] fir die H&tee Arbeiten), die Effizienz
der Berechnungsvorschriften von FC-Integralen einsBhdib der Duschinsky-Effekte zu
verbessern. Die schnelle Berechnung von FC-IntegraleruisBehandlung grofRer Sys-
teme Uberaus wichtig. Wir haben eine iterative Berechaumgchrift fur FC-Integrale
vorgeschlagen, um die Magnus-Entwicklung fur multi-aggiHermite-Polynome auszunutzen
(MHPs) [176] (siehe Kapitel 3). Die Berechnungsvorschiilier MHP mit der Magnus-
Entwicklung kann als Summation eindimensionaler HerrRisddynome ausgedriickt wer-
den, wodurch eine einfachere Form als durch die bisherigthdde (mehrere Produkte
eindinmensionaler Hermite-Polynome) erreicht wird (sBzRefs. [120, 121]).

Es wurde jedoch darauf hingewiesen, dass nur ein kleined@eFCF signifikant zu den
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Gesamt-FC-Profilen beitragt (s. z. B. Refs. [44—-46]). Died kann ad hoc verwendet wer-
den, indem man beispielsweise die Anregung in jeder Nohalsigung auf festgelegte
Zahlen begrenzt.

Zum Beispiel konnte man die Zahl der zu berechnenden Fé&jlate eingrenzen, in-
dem man hochstens 10 Schwingungsanregungsquantemdir chwingungsfreiheitsgrad
zulasst. In diesem Fall mussen wir fur erdimensionales harmonisches Oszillatorsys-
tem 112V FC-Integrale berechnen. Ungliicklicherweise steigt dienidlexitat der Rech-
nung immer noch drastisch an und eine Berechnung wird utikadel. Wir konnten
stattdessen versuchen, den grof3ten Teil des FC-lragspsivfils anzunahern, zum Beispiel
99 % der gesamten FC-Intensitat, mit Hilfe von ausgesuck@&Fs. Dadurch wird die
Berechnung der FC-Intensitatsprofile selbst fir komplBxsteme moglich. In diesem Fall
mussen wir uns dem Problem widmen, einen Teil der FCFs zudtendie etwa 99 %
der Gesamt-FC-Intensitat ausmachen, ohne alle FCFagleaf zu haben. Jankowiak
al. [46] nutzten diese einfache Idee aus, indem sie die urglicine Idee Doktorovs und
seiner Koautoren von erzeugenden Funktionen [29] modifezie Mithilfe dieser erzeu-
genden Funktion entwickelten Jankowiaekal. eine Strategie zu einer grobkornigen Inte-
gralvorauswahl fir die FC-Intensitatsprofile am Temperaullpunkt. Der Ausgangspunkt
dieser Dissertation war gerade diese zeitunabhangig&m@icklung fur 0 K. Im Laufe
der Dissertation haben wir diese Methode erweitert und fizoelit, um Temperatur- und
Nicht-Condon-Effekte einzubeziehen, welche in Molekidigangsprozessen wichtig sind.
In Diagramm 8.1 fassen wir die methodischen Entwicklungediéser Arbeit zusammen
und zeigen die Beziehungen der darin beschriebenen Ertwiggn auf.

Die theoretische Beschreibung der meisten vibronischetekataren Ubergange mit
Duschinsky-rotierten harmonischen Oszillatoren lawft @n bekanntes mathematisches
Problem hinaus, die Auswertung von MHP (s. Diagramm 8.2 ua@d.K3). Die Berech-
nung der MHP scheint hinsichtlich des Rechenaufwandescéivisriges Problem zu sein
(Kap. 3). Dennoch erlaubt uns ditbersetzung des Problems der molekulddéergange in
harmonischer Naherung in ein aquivalentes MHP-Auswgdproblem, die verschiedenen
Ubergangsprozesse mit derselben mathematischen Methoatealysieren. Eine analoge
Transformation fur die Ermakov Invariante in dissipativystemen (s. z. B. Refs. [224—
229]) kann als Beispiel fur eine ahnliche Reduzierung inera einfacher berechenbaren
Problem angegeben werden. Die unterschiedlichen Bewsgigighungen fur dissipative
Systeme, z. B. die Langevin- und die Fokker-Planck-Gleigan, die sich in verschiede-
nen Formen befinden, konvergieren letztendlich auf diessaiante GrolRe.

Im folgenden Absatz fassen wir die Entwicklungen in diesebeit zusammen. Die
Ansatze mit erzeugenden Funktionen werden kurz im quargehanischen Spurformalis-
mus beschrieben. Danach folgen die Schlusfolgerungen ustliske dieser Dissertation.

Zusammenfassung der Entwicklungen Eine invariante GrofRe in einem quanten-
mechanischen Problem ist ein machtiges Werkzeug zumavetsis des Systems [224].
Die Invarianz schrankt die Dynamik des Systems ein. Mit dehtigen Modifikationen
oder mathematischen Manipulationen am Funktional (s.renteeil der Abb. 8.1) kbnnen
wir nitzliche Daten Uber die quantenmechanischen Psezass dem invarianten Funk-
tional gewinnen, in diesem Fall aus der erzeugenden Funktie durch ihre Parameter
charakterisiert wird (s. Ref. [46] und Abschn. 2.4). Dieeergende Funktion scheint eine
der Zustandssumme analoge Funktion zu s@irfekp(—3H))), welche invariant ist und
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uns erlaubt, thermodynamische Grof3en zu berechnen. logemaNeise erlaubt die erzeu-
gende Funktion die Berechnung relevanter Grof3en durdsesthende) Operationen, z.
B. partielle Ableitungen nach den Parametern der erzewgeRrdnktion fir die Summen-
regeln der Intensitat (s. Kap. 4 und 6).

Um den Gedanken der invarianten erzeugenden Funktion zdewttichen, betrachten
wir die FC-Ubergangswahrscheinlichkeiten von einem anfanglichestahd zu einer Vielzahl
anderer Zustande, die zu eins summiert werden mussen, dIr{®) = 1, wobei der
Dichteoperatorp beispielsweise iber thermisch gemittelte vibronischéaAgszustande
(0 = >, pu(T)|v)(uv]) definiert sein kann, mit einer thermischen Verteilungkfiom p, (7°)
des vibronischen Anfangszustangis)) bei einer endlichen Temperatdr), Diese einfache
Summenregel kann durch Spurbildung mit einer beliebigdistamdigen Basismenge be-
folgt werden, was in einer unendlichen Summe von FCFs ieguyltlie gegen die Einheit
konvergiert (z. B. fur die vibronischen Endzustande, >~ p,(T)|(v'|v)|* = 1). Die Gle-
ichung der FCF-Summenregel ist jedoch nicht stark genugi@ans nur mitteilt, dass
die Gesamtintensitat hinsichtlich Entwicklung in eineslibbigen Basis erhalten bleibt.
Wir greifen daher stattdessen auf die Diracschdbistributionsoperatoren zuriick, um
die FCF mittels vibronischebergangsenergien aufzuldsen, sodﬁ?o% dwTrM (5(w; —

H'/h)§(ws — H/B)p) = 1, wobeiw = w; — wo die vibronischeUbergangsfrequenz ist
und H und H’ die vibronischen Hamilton-Operatoren des Anfangs- bzwdzEstandes
sind (Abschn. 2.2). Der Integrand, die quantenmechaniSghe, ist einfach die spektrale
FC-Dichtefunktion mit der DiracscheftDistribution bei endlichen Temperaturen, d. h.
orcw (W) = Tr(0(wy — H'/h)d(ws — H/K)p), welches nach ddbbergangsfrequenz.j
aufgelost ist (Abschn. 2.1). Durch Einfuhren kohare@estande sowohl fur Anfangs- und
Endzustande und Ersetzen deBistributionsoperators mit den Parametern der erzeugen-
den Funktion kdnnen wir die erzeugende Funktion der FC&ltnh (Abschn. 6.1.2). Unter
Ausnutzung der resultierenden erzeugenden Funktion ekeiltéen Jankowiakt al.[46] die
Strategie der FC-Integralvorauswahl bei Null Kelvin, wovausgehend wir die Methode
zur thermischen FC-Integralvorauswahl (Kap. 4 fir zeibhangige FC-Profile entwickelt
haben.

Wir haben die thermischen Effekte durch den thermischeeghahden in die koha-
renzzustandsbasierte erzeugende Funktion eingefibdcf. 4.1). Die wichtige Eigen-
schaft dieser thermischen Entwicklung ist, dass die iddieilen Schwingungsfreiheits-
grade verschiedene endliche Temperaturen haben korodasswir das Schwingungsan-
regungsmuster mit den individuellen Temperaturen koligren konnen, nicht nur Uber
die Parameter der erzeugenden Funktion (GI. (4.4)). Beliadmat Temperatur kann der
anfangliche Schwingungszustand als thermisch geneittelffektiver Schwingungsgrundzu-
stand betrachtet werden, und nicht als Menge thermischregige Vibrationszustande
in der erzeugenden Funktion. Aus diesem Grund konnen da&egten zur thermischen
Vorauswahl (Abschn. 4.3) die der Vorauswahl beim Tempenatlpunkt beerben [46].
Diese thermische erzeugenden Funktion der FCFs veraligerealie korrespondierende
Entwicklung fur 0 K zu einer Entwicklung bei endlicher Teemgtur.

Bedenkt man die Herkunft der Parameter der erzeugendertibuiiRiracsche’-Distri-
bution), so ist klar, dass wir dieselbe erzeugenden Fumkiay FCFs in eine Zeitkorrela-
tionsfunktion und in die FCF-Summenregel gemaf der WeztdPdrameter der erzeugen-
den Funktion (Kap. 4) transformieren konnen. In Kapiteht#ingckeln wir die zeitabhangige
Herangehensweise aus der zeitunabhangigen PerspekiieeMethode der Zeitkorrela-
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tionsfunktion wird typischerweise wegen ihrer Einfactthgid schnellen Berechenbarkeit
verwendet, sieht man vom Nachteil der fehlenden Moglithder Signalzuordnung ab (s. z.
B. Refs. [17,33,34,37,38,40,40-42,48,55,56,61,64,68473,75,79,81,84,86,87,93-95,
109,137,138]). Bis zu diesem Zeitpunkt (vor dieser Arbeityden die zeitabhangigen und
zeitunabhangigen Herangehensweisen fir die Berechden@rofile fur Absorption und
Emission (praktisch) als unabhangige Verfahren beteadtB], obwohl die Formalismen
sogar ineinander transformiert werden konnen (Absch). Die zeitabhangige Herange-
hensweise nutzt die fouriertransformierte DarstellungdeBistribution, d. h.opcw (w) =
Rt [0 dtTr(exp(—iH't/h) exp(iHt/h)p)el@~=0)t, Indem wir die zeitabhangigen Phasen-
parameterwerte (Gl. (4.42) und (4.43)) den Parametern rdeugenden Funktion zuord-
nen, erhalten wir die zuTg(exp(—iH't/h) exp(iHt/h)p)) korrespondierende Zeitkorre-
lationsfunktion einfach aus der erzeugenden Funktion @fs- Die korrespondierende
FT ergibt dann das FC-Profil (Abschn. 4.4). Wir betonen datbe$s wir dieselbe erzeu-
gende Funktion fur die Integralvorauswahl und die Ansdtr die Zeitkorrelationsfunk-
tion verwenden konnen. Die Giltigkeit der zeitabhaegignd zeitunabhangigen Herange-
hensweisen wurde durch ihren Vergleich Uberprift (Abseh5). Wir konnen die Qualitat
der Vorauswahl aus dem Vergleich zwischen den beiden Methbdurteilen (Abschn. 4.5
und 6.3). Es ist interessant festzuhalten, dass der WerZei#torrelationsfunktion bei

t = 0 einfach der Wert der Summenregel ist. Wenn sich die Ze@ndeit { # 0), beinhal-
tet die komplexe Zeitkorrelationsfunktion Informationi@per Vibrationsiibergange des Sys-
tems. Ferner ist zur derzeitigen Methode der Zeitkormatetiunktion anzumerken, dass wir
versuchen konnen, die Signale indirekt zuzuweisen (dogjan zeitabhangigen Verfahren),
indem wir mittels Kontrolle der Parameter der erzeugendarkfion einige Schwingungs-
freiheitsgrade bei der Auswertung der Zeitkorrelationgfion einfrieren. Dies ist moglich,
da wir Uiber ihre Parameter mit der identischen erzeugeRdgehtion eine Verbindung zwis-
chen den zeitunabhangigen und zeitabhangigen Methaesringffen haben.

In der Auswertung von Zeitkorrelationsfunktionen (s. zABschn. 4.4) fur die schnelle
Fourier Transformations (FFT) wird eine gute Annahme idierAnzahl und Lange der
Zeitschritte benotigt, welche jeweils zur hochsten BB bzw. zur Auflosung in der
Frequenzdomane korrespondieren. Um die Zeitkorrelghioktion effizient zu berech-
nen, mussen wir die Zeitskalierungsparameter sorgf@thlen, da eine grof3e Zahl von
Auswertungen von Zeitkorrelationsfunktionen mit inverkemplexer Matrixberechnung
(Gl. (4.10)) die Berechnung der FC-Intensitatsprofilensigant verlangsamen kann. Ist
uns beim zeitunabhangigen Verfahren mit Vorauswahl dasagte Energiefenster vor der
Berechnung der FC-Integrale bekannt, konnen wir zushgleffiziente Rechenverfahren
fur die FC-Intensitatsprofile finden. Daher ist es erstnswert, eine ungefahre spektrale
Form zu kennen, die mit geringem Rechenaufwand verflugktar in Kapitel 5 haben
wir die spektrale FQJbergangsdichtefunktion als durch statistische GroRemlanten)
wie Mittelwert, Varianz, Schiefe und Kurtosis (s. Gl. (5))L8harakterisierte Wahrschein-
lichkeitsdichtefunktion beschrieben. Wie oben und im areih Verlauf dieser Arbeit betont
wird, enthalten die FCFs alle Informationen zum FC-Prozés&® haben den Gedanken
der Kumulantenerweiterung umgesetzt durch Einfuhreesintegralkerns zum thermis-
chen Moment (Gl. (5.4)), der im thermischen Integralkerh (&2)) zum Logarithmus der
erzeugenden Funktion der FCFs (Gl. (4.2)) erweitert wirde &zeugende Funktion fur
FCF-Kumulanten hat einen Hilfsparameter zur ErzeugungKdenulanten der vibronis-
chenUbergangsenergie. Um die Kumulanten hoherer Ordnung mcheen, entwickeln
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wir einen effizienten numerischen Algorithmus flir die fien Ableitungen einer inversen
Matrix bis zu einer beliebigen Ordnung (Abschn. 5.1.1).

Ein Mittelwert einer einzelnen Normalschwingung kann #isl¢iver Huang-Rhys-Faktor
(HRF) in der Theorie des Elektronentransfers interpretiesrden, der molekulare Struk-
turanderungen, die Verzerrung der potentiellen Enewgjie,Duschinsky-Rotationen und
Temperatureffekte beinhaltet, was zum Beitrag der sefmr&hnzelmoden zu FC-Prozessen
(Abschn. 5.3.2) fuhrt. Diese effektive (temperaturaiifige) Elektron-Phonon-Kopplungs-
konstante (HRF) ist nitzlich, um die Temperatureffekté @die@ Elektronentransfertheo-
rie fir grolRe Systeme zur Bestatigung der Beitrage &iezeNormalschwingungen zu
studieren. In Abschnitt 5.3.2 waren wir durch diese Methiodder Lage zu zeigen, dass
die Kopplung der Duschinsky-Rotationen den thermischektEnentransfer von nieder-
zu hochfrequenten Normalschwingungen induzieren kann: Kdfinten ebenso die Ku-
mulantenerzeugende Uber die Parameter der zeitablengigeugenden Funktion an die
Zeitkorrelationsfunktion koppeln (Abschn. 5.1.2).

Die wichtigen Beitrage dieser Arbeit sind die Einfuhruteyr Methode der Zeitkorrela-
tionsfunktion und der Nicht-Condon-Effekte zum Verfahdem erzeugenden Funktion [46].
Ersteres kann einfach durch Setzen der Parameter derlgaiigigen erzeugenden Funk-
tion in die auf koharenten Zustanden basierende erzelegEanktion eingefuhrt werden.
Die Nicht-Condon-Effekte wurden mittels des Verschielsopgrators beriicksichtigt (Ab-
schn. 3.2). Mithilfe des Phasenverschiebungsoperatdyserhwir denselben mathematis-
chen Apparat der erzeugenden Funktion der FCFs fur dieigerele Funktion im Nicht-
Condon-Fall verwendet. Der PhasenverschiebungsopdidtdarHilfsphasenparameter fur
Impuls- und Ortsoperatoren ein, die fur die durch pasdiélbleitungen nach den Hilfspa-
rametern erhaltenen Nicht-Condon-Operatoren verwendetiem sollen: In Abschn. 3.2
haben wir das Auswertungsverfahren fir Nicht-Condoegrale in der Weise entwickelt,
dass wir diese Integrale in MHP transformiert haben, diesdistierenden Linearkombina-
tion der FC-Integral-Verfahren nicht gleichen [36, 49].

In Kapitel 6 haben wir Nicht-Condon-Effekte in der lineatderzberg-Teller(HT)-Naherung
(Gl. (2.24)) betrachtet und greifen fur die HT-Erweiteguauf die auf koharenten Zustanden
basierende erzeugende Funktion zuriick. Die Erweiteruhgiahtlineare Probleme (ein-
schlieRlich Orts-Impulsoperator-Kopplungstermen) uiedeinkdrnigen Vorauswabhl-Strategien
werden durch Aufstellen gemeinsamer Matrizen und Vektéiledie MHP ermdglicht (s.
z. B. Gl. (6.16)). Wir kdnnen auch die Zeitkorrelationgdftion und die Vorauswabhl-
Strategien aus der erzeugenden Funktion, die auf kolgirefustanden basiert, ableiten.
Mit der Berechnung der komplexen MHP konnen wir die Zeitgtationsfunktion ein-
schlieBlich beliebiger Nicht-Condon-Polynome ausweit@h (6.4)). Die erzeugende
Funktion fir den Nicht-Condon-Fall kann auf den elektroh&st Circulardichroismus mit
seinen Kopplungstermen fiir das elektrische und maghetisbergangsdipolmoment angewen-
det werden [102].

Wir haben die Methode der erzeugenden Funktionen fir lieagbronische Level in
Kapitel 7 vorgeschlagen. Die einzelnen vibronischen Leimil am Anregungsprofil der
Resonanz-Raman-Streuung und dem Fluoreszenzspektrunbaesschen Einzelzustands
beteiligt. Die erzeugenden Funktionen der Resonanz-R&traaung und der vibronis-
chenUbergange ausgehend aus einem einzelnen vibronischeandugtbschn. 7.2 und 7.3)
sind verknuipft mitTr((w — H'/h 4 il'/2)~1 ;) (v;]) bzw. Tr(d(w — H'/h)|v)(v|). Der
grolRte Unterschied zwischen den beiden Spuren ist dieadizds dass die vibronischen
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Einzelzustande in den Ket- und Bra-Zustanden in der erSgeur identisch|{)(v]), in

der zweiten aber verschieden singd,{(v;[). Wir kdnnen zwar die Resonanz-Raman-An-
regungsprofile mit der half-FT (einem Spezialfall der Laptaansformation) und die Spur

des vibronischen Einzelzustands mit der vollen FT mit dethdde der Zeitkorrelations-
funktion berechnen, doch lassen sie sich bei der zeitarabhén Herangehensweise di-
rekt auswerten (Abschn. 2.1). Die Zeitkorrelationsfuoktfir Resonanz-Raman-Prozesse
ahnelt der des vibronischen Einzelzustandsiibergabgs Resonanz-Raman-streuung beinhalt
normalerweise zwei verschiedene vibronische Einzednatg 'im elektronischen Ausgangszu-
stand.

Die erzeugenden Funktionen werden mittels des koharémekzustandes, der eine Mis-
chung von Besetzungszahlvektor- und koharenten Phadenxestanden (Abschn. 7.1) ist,
beschrieben. Die koharenten Fockzustande werden enhaidem man partielle Ableitun-
gen nach den nicht zum Integralraum gehorenden Phasempi@ra des koharenten Zus-
tandes bildet (Abschn. 2.3). Mithilfe der in den vorausgegmen Kapiteln ausgenutzten
MHP-Technik ist die automatische Berechnung zur Erzeugangvibronischen Einzelzu-
standen moglich, danach lassen sich die Nicht-Condéekief ebenso wie die Verschiebung-
soperatoren des koharenten Zustandes einfihren. Mieeugenden Funktion des vi-
bronischen Einzelzustands sind wir in der Lage, feinkggniorauswahl-Strategien des
mehrdimensionalen, festen Quantenzahlenraukhestweder fiir den FC- oder den Nicht-
Condon-Prozess zu erstellen. Wir kbnnen auf3erdem diaggnde Funktion des vibronis-
chen Einzelzustandsiibergangs tiber die Parameter tastzangigen Erzeugendenfunktion
als Zeitkorrelationsfunktion ausnutzen (Gl. (4.42) uncdt8). Mit der Erzeugendenfunk-
tion des vibronischen Einzelzustands konnten auch tiseimiVerteilungen, die nicht der
Boltzmannverteilung genugen, wie die thermo-koharafeeeilung erzeugt werden (s. z.
B. Refs. [84, 230]).

Wir konnen die erzeugende Funktion der Intensitat deloR&sz-Raman-Streuung bei
endlicher Temperatur und bei Null Kelvin einschlielichr Ngcht-Condon-Effekte in einer
Integralform erhalten, indem wir die Spur Uber die zwertwitischen Einzelzustandsraume
fir die Uberlappung der erzeugenden Funktionen der ResonanzsRamaglitude mit dem
thermischen Integralkern (Abschn. 7.2) bilden. Wie beimsédptionsprozess kann die
erzeugende Funktion als Zeitkorrelationsfunktion urrdifé§ Summenregel bei den Vorauswabhl-
Strategien verwendet werden. Es soll hier hervorgehobedemedass wir die geschlossene
Integralform des Wirkungsquerschnitts der Resonanz-R&&teeuung in harmonischer Na-
herung einschlie3lich der Duschinsky- und thermischeekEf in funktioneller Analogie
zu den Forsterartigen Energietransferprozessen vdrigesn haben (s. z. B. Ref. [8]),
welche die Form einer Faltung zwischen den Absorptions-Emissionsspektren hat.

Zusatzlich haben wir die mittels des koharenten Foclentds beschriebene erzeugende
Funktion auf ein anharmonischékbergangsproblem angewendet, das einige anharmonis-
che und ansonsten mehrere harmonische Freiheitsgradet besilass wir auf die Vorteile
des Apparats der harmonischen erzeugenden Funktioneckgueifen konnen (Abschn. 7.4).
Die anharmonische erzeugende Funktion wird durch die abfikemten Fockzustanden
basierenden Erzeugungsfunktionen mit den entsprechemdemmonischen Entwicklungsko-
effizienten erweitert. Mit der Aufteilung des Integraticgismes kdnnen wir die Summen-
regel fiir den anharmonischdibergang gerade wie fir den harmonischen aufstellen und
aulRerdem die Zeitkorrelationsfunktion konstruieren.
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SchluZfolgerungen und Ausblicke Die Entwicklungen in dieser Arbeit sind im All-
gemeinen aufJbergangsprobleme in harmonischer Naherung anwendbaAlgs. 8.2).
Mit leichten Madifikationen kann dasselbe Verfahren fudeme Probleme wie Massen-
spektroskopie (s. z. B. Ref. [231]), FC-Prozesse in mokaleunl Verbindungen im Nicht-
Gleichgewicht (s. z. B. Ref. [232]) und die Forsterartigemergietransferprozesse (s. z.
B. Ref. [8]) eingesetzt werden. Der innere Umwandlungsgsezdenotigt die Matrixele-
mente von Impulsoperatoren, die einfach per Nicht-Corfentwicklung behandelt werden
konnen (Kap. 6). Die Nicht-Condon-Entwicklungen konraerd vibronische Kopplungsef-
fekte angewendet werden (s. z. B. Refs. [50, 80, 88, 96]spisweise die Spin-Bahn-
Kopplung (s. z. B. Ref. [96]), Jahn-Teller-Effekte (s. z. Bef. [2]), der nichtadiabatis-
che Elektronentransfer (s. z. B. Ref. [233]) und die Disggmamit Umgebungseffek-
ten (s. z. B. Ref. [8]). Die Resonanz-Raman-Entwicklungerdieser Arbeit konnten
fur Oberflachenverstarkungseffekte, d. h. surface ecdéh Raman scattering (SERS) (s.
Z. B. Refs. [234-237]) und surface enhanced Raman optiti&itadSEROA) (s. z. B.
Ref. [238]) mit Nicht-Condon-Effekten und Effekten entiées Temperatur erweitert wer-
den, sofern wir eine korrekte Beschreibung auf metalliscbberflachen mit beispielsweise
dem Jellium-Modell (s. z. B. Ref. [239]) erreichen. Die Eit@aung auf allgemeine
anharmonische Probleme muss erfolgen, da die harmoniséhertihg in vielen Fallen
sehr grob ist. Wie im anharmonischen Abschnitt (Abschn) dvahnt wurde, sind die
Nicht-Condon-Entwicklung und die Prozedur zur Berechnumg Matrixelementen fur an-
harmonische Probleme geeignet, moglicherweise mit dakfRmspfadmethode [150] von
Luckhaus kombiniert zu werden. Unsere Zeitkorrelationkfion kdnnte uiber die Auswer-
tung komplexer MHP fur die Propagation von Wellenpaketedér Zeitdomane auf allge-
meinen anharmonischen Potentialhyperflachen (s. z. B.RE87,203-206]) verwendet
werden.

Eine vereinigte Beschreibung vibroniscli#isergange in Frequenz- und Zeitdomane, wie
sie in dieser Arbeit vorgestellt wurde, vereinfacht versdbne theoretische Anwendungen
und experimentelle Analysen fiir gro3e molekulare Systeme
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A. Supplementary data for chapter 4

A.1. General remarks

In this appendix we report maximum quantum numb@'g‘&a" (final state) andv;*®* (initial state) in each
harmonic modé: determined via Eq. (4.20) in this thesis, together with theous wavemunber windows for
each irreducible representation the number of the evaluated integrals and the mode coupliray ¢. (see
Figures 4.2 and 4.4). For each molecule the irreducibleesgtation and the numbering of the vibrational
modes are reported as in the previous work cited in thisgtjdankowiak, Stuber and Bergdr,Chem. Phys.
127, 234101 (2007)].
Maximum mode excitation numbers in each normal mode arengivéollowing form:

(v ' lv () )

—max —ln ax

09" andv(?). are vectors containing the maximum quantum numbers of tHeusanormal modes of each
irreducible representationfor the final and initial electronic states respectivelyeMectors are sorted accord-
ing to the number of vibrational mode (in ascending ordehjchv are given in subsection of each molecule, for
each irreducible representation.

The wavenumber windows for each irreducible represemtatiare given asi[fr:’l)n,ﬁﬁ?ax] in cm™". The win-
dows are determined by the maximum mode coupling numbersrendmum mode excitation numbers for
each irreducible representatigras the following relations,

Sar(v)

() (€]
“Vmin = Inlav)((v) Z Umax kyk
ecjy[(’Y) k=s1
and
]\/]('Y) ,
5 " =
Vmax = ma)((‘y) ( Z Umax,kyk)
SGCN(’Y) k=s

WhereCMw is the index set choosing/ (" modes out ofV(™ for initial or final state of irreducible repre-
sentationy. WhenM ) exceedsV", we have set to v(?)_orv(?). accordingly. In our program hotFCHT,

=max

we have set the wavenumbers to the nearest graining pe[n{i(n:’i)n/AD] * A or [B /AD] * AD) with
grainingA = 10 cm*.

The number of integrals that is to be evaluated accordinpgqtescreening conditions are reported for the
various irreducible representations and wavenumber wisdo

For the calculation of mode coupling errar, we set the mode coupling threshaldas 1072, and set the
mode excitation threshold, = 0.0. We report the results only up t@ ~ 0.005% for the mode coupling error
due to the numerical precision and the sensitivity to thecigln of CODATA sets for the conversion of units.

The incrementfé’é‘r)) (see Eqg. (4.29) in this thesis) are computed for each iribucepresentatiory and

subsequently folded (convoluted) to form the total incramé«“é’g;)c, from which we obtairﬁéé{i and finally
(via Eq. (4.27) in this thesis).
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A.2.

Formic acid
Harmonic vibrational wavenumbers of the initial electosiate incm~™*:
1. a’(from o, to ;)
3765.2386 3088.1826 1825.1799 1416.9512 1326.4684
1137.0490 629.7144

2. a’’(from g to 7g)

1062.7001 677.5835

Harmonic vibrational wavenumbers of the final electronatesincm
1. a/(from 7] to %)

3629.9472 3064.9143 1566.4602 1399.6554 1215.3420
1190.9077 496.2845

2. a’’(from g to 7§
1033.6951 717.3864

A.2.1. Maximum mode excitation numbers

a/

0K

Tol. set Max. quantum numbers () )

[ < 2283434|/0000000 > [0.00, 38554.46]

Il < 2273324|0000000 > [0.00, 32199.94]
[ <1162222[0000000 > [0.00, 18892.93]
300 K

Tol. set Max. quantum numbers % frir?‘ﬁ?a,{

I < 2284435|0011123 > [—8731.84,42435.54]
Il < 2273324|0011113 > [-7594.79, 34581.75]
11 < 1162223(0001112 > [-5139.90,21323.62]
1000 K

Tol. set Max. quantum numbers 7 frir?*ﬁ?a,{

[ < 2174448]1123347 > [—27690.24, 40483.93]

"

0K

Tol. set  Max. quantum numbers [ufrin),ﬁfr?a,f]

[ <2200 > [0.00, 3502.16]
I <12]00 > [0.00, 2468.47]

i <01]00 > [0.00,717.39]
300 K

Tol. set  Max. quantum numbers [ufrin),”é?a,ﬁ]

[ <23]23 > [—4158.15, 4219.55]
Il <22[12 > [—2417.87, 3502.16]
i <12|12 > [—2417.87, 2468.47)
1000 K

Tol. set  Max. quantum numbers  [¥ fjm),ﬁﬁ?a,?]

# of integrals
27792
10104

1084

# of integrals
1339196
200785
14931

# of integrals
60445788

# of integrals

9
6
2

# of integrals

144
54
20

# of integrals
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< 47|47

A.2.2. Mode coupling error

> [—8993.88, 9156.49]

v /% = (1— KD /%
T=0K(%) | T =300 K(%) | T = 1000 K(%)
0 78.50 80.61 96.60
1 20.25 28.02 86.80
2 3.61 10.87 75.93
3 0.41 2.51 54,73
4 0.03 0.55 40.23
5 0.00 0.09 22.48
6 0.01 12.82
7 0.00 5.53
8 2.26
9 0.73
10 0.20
11 0.04
12 0.01
13 0.00

1600
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A.3. Anthracene

e Harmonic vibrational wavenumbers of the initial electmsiate incm™":

1. ag(from oy to 012)

3067.9748 3044.8144 3036.9660 1530.2636 1459.5709
1369.1946 1239.8467 1149.6155 991.7868 735.3180
619.9167 383.7560

2. blg(from 13 to 1723)

3056.1237 3039.4771 1600.7036 1561.1451 1364.6309
1249.2842 1168.0443 1085.0601 897.1103 517.3005
382.4764

3. bgg(from Uog tO 1727)
921.8861 737.2308 461.2524 224.7566

4, b3g(from 9g tO 1733)
946.1364 852.0268 807.8076 696.2309 549.1235
253.1248

5. au(from 34 tO 1738)
946.9771 821.6030 692.7847 474.9120 114.9426

6. blu(from U39 tO 1344)
923.4842 853.3592 709.1380 453.8243 367.9794
87.0330

7. bgu(from 45 tO 555)

3056.3758 3040.2103 3035.1222 1604.1604 1431.3884
1290.0584 1245.0921 1132.2622 886.8443 637.6725
227.6664

8. b3u(from Usg tO 7;66)
3067.6168 3043.4896 1517.3260 1428.9232 1357.9155
1322.2589 1145.5196 1117.1321 987.1214 790.0827
596.0896
1

e Harmonic vibrational wavenumbers of the final electronatesincm ™"

1. ag(from 71 to 71,)

3074.6924 3049.5882 3036.8257 1526.6846 1469.0538
1355.6525 1218.4629 1144.4341 1008.5096 723.7630
585.8853 379.0983

2. big(from 15 to ©h3)

3060.3080 3045.2855 1496.6960 1463.9727 1365.1563
1243.3561 1166.6021 1046.6257 885.4103 508.3649
373.7143

3. bog(from 3, to 75;)
837.0218 689.9723 406.7704 220.9519

4. bag(from D to 753)
866.4218 809.0660 716.3337 474.9560 296.4920
188.6317

142



A. Supplementary data for chapter 4

5. au(from o4, to D4g)
864.6336 773.0836 495.8657 462.7943 105.6943

6. byu(from 44 to ©744)
832.9560 793.0119 685.7976 387.7267 301.2646
80.7003

7. bau(from 4 to k)

3060.6666 3045.9702 3035.5527 1537.2677 1407.3867
1257.2842 1238.7458 1083.1173 877.0652 641.9751
225.1369

8. bau(from o744 to 7gg)

3074.1325 3048.4088 1509.2821 1421.5496 1381.1242
1305.0277 1170.0600 1133.1663 1006.4406 791.1413
579.4029

A.3.1. Maximum mode excitation numbers

® ag
0K
Tol. set Max. quantum numbers [Dﬁiﬁf,ﬁfﬁ;ﬂ
| <111446232235/000000000000 > [0.00, 29674.45]
Il <100335232224|000000000000 > [0.00, 22273.47]
1l <000324121113|]000000000000 > [0.00, 15229.64]
100 K
Tol. set Max. quantum numbers 1 frii),”ffif]
| <111446232235|000000000112 > [-2122.75,29674.45]
Il <100335232224|000000000011 > [-1003.67,22273.47]
1 <000324121113]000000000001 > [—383.76, 15229.64]
300 K
Tol. set Max. quantum numbers 1 f;?:ﬁjgﬁ]
Il <100335232237|000111111235 > [—11997.66,29381.11]
1 <000324121225/000001111123 > [—7141.55, 18572.66]
500 K
Tol. set Max. quantum numbers 1 frf‘i']),”r(féﬁ]
1l <000334222338|000111122336 > [—16249.92,28114.37]

e by,

0K

Tol. set Max. quantum numbers [{01e) ore)y

| <11221112222[00000000000 > [0.00, 6105.59]

1l <00221112111/00000000000 > [0.00, 5921.34]

1| < 00010001000/00000000000 > [0.00, 2510.60]
100 K

Tol. set Max. quantum numbers () plre)y

<11221112222[{00000000012 >
<00221112111|00000000011 >
<00010001001{00000000001 >

[—1282.25, 12026.93]
[—899.78, 5921.34]
[—382.48, 2510.60]

# of integrals
447452
42604

2389

# of integrals
1177589
70326

3151

# of integrals
77641163
508664

# of integrals
341185395

# of integrals

148
76
4

# of integrals

5013
103
11
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300 K
Tol. set Max. quantum numbers [0 o] # of integrals
1l <00221112235(/00111111235 > [—9784.98, 13179.08] 931984
1 <00111111123|]00001111123 > [—4929.39, 5569.18] 7523
500 K
Tol. set Max. quantum numbers [{01e) bre)y # of integrals
1 <00111122246]00111122246 > [—15190.97,14798.85] 17892000
e by,
0K
Tol. set  Max. quantum numbers  [i°2) {22 # of integrals
| < 2232|0000 > [0.00, 4274.30] 84
I <2221]0000 > [0.00, 3053.99] 26
I <2120]/0000 > [0.00, 2487.58] 14
100 K
Tol. set  Max. quantum numbers [V,rf’,ff)fﬁ?;f)] # of integrals
| < 22330113 >  [—1872.75,4937.16] 1053
[ <2222[0012 >  [-910.77, 4309.43] 342
I <2122[0012 >  [-910.77, 2487.58] 52
300 K
Tol. set  Max. quantum numbers [ {022 # of integrals
1] < 2248|2248 > [—6961.30, 6448.68] 102585
I < 2236[1136 >  [—4391.41,5600.01] 21744
500 K
Tol. set  Max. quantum numbers [Vfrﬁf,g)fgﬁf)] # of integrals
I < 23510[23510 > [—8609.29, 7987.33] 537264
e ba,
0K
Tol. set Max. quantum numbers 1% I(flig')frfi'f)] # of integrals
[ < 223489(000000 > [0.00, 8153.60] 6456
Il <212267/000000 > [0.00, 6264.88] 1744
1| <112245/000000 > [0.00, 3568.55] 352
100 K
Tol. set Max. quantum numbers [yfriif),:(f;f)] # of integrals
| < 2234810/000113 > [—2004.73, 8307.08] 20090
1l < 212267000012 > [—1055.37, 6264.88] 4248
1 < 112245000001 > [—253.12, 3568.55] 455
300 K
Tol. set Max. quantum numbers [53e) poae)) # of integrals
Il < 22348111222237 > [-10023.65,11846.69] 7834000
1 <112358[111225 > [—6362.30, 7524.54] 224945
500 K
Tol. set Max. quantum numbers [yfflif)fff;f)] # of integrals

1l < 23347111222349 > [-11775.25,12359.26] 36790704
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e a,
0K
Tol. set Max. quantum numbers D) o] # of integrals
| <22422|00000 > [0.00, 5258.90] 197
I <22422[00000 > [0.00, 3712.73] 69
I <11211[00000 > [0.00, 1856.37] 21
100 K
Tol. set Max. quantum numbers () ol # of integrals
| < 22427|00116 > [—1857.35, 6924.35] 14288
I < 22425[00015 > [—1049.62, 6184.49] 3188
1] <11214[00014 > [—934.68, 3092.24] 678
300 K
Tol. set Max. quantum numbers 1% f;;)rf:;ﬂ # of integrals
Il <224416)222416 > [—8661.46, 8801.18] 3877511
1l < 123312[112312 > [75958.20, 6555.11] 284832
500 K
Tol. set Max. quantum numbers 12 ,ﬁf‘,“,,)fff;)z # of integrals
1 < 234521223520 > [—10288.93,10565.53] 24088320
e by
0K
Tol. set Max. quantum numbers AR # of integrals
I < 222442|000000 > [0.00, 4802.84] 473
Il < 222222|000000 > [0.00, 3251.94] 73
I < 201221000000 > [0.00, 2441.37] 34
100 K
Tol. set Max. quantum numbers ZASARIANE) # of integrals
[ < 222449001129 > [—2682.22, 7379.50] 103320
I < 222237000117 > [—1431.03, 5527.32] 8973
1] <201225|000115 > [—1256.97, 3729.69] 2307
300 K
Tol. set Max. quantum numbers [uﬁf’l}‘“),ﬂéﬁ,ﬁ‘)] # of integrals
I <2224622(2224522 > [-10541.88,9757.43] 119774634
[ <2123416(1123316 > [—7053.06, 7489.96] 5195308
500 K
Tol. set Max. quantum numbers [uﬁf’l}‘“),}(f;“)] # of integrals

I < 2235727(2235627 > [-12507.99,11535.72] 1557855504
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o b2u

0K
Tol. set
I

1

1l

100 K
Tol. set
I

1

[}

300 K

Tol. set
I
[}

500 K

Tol. set
1l

o b3u

0K
Tol. set
|

1l

11

100 K
Tol. set
|

Il

1]

300 K

Tol. set
Il
11

500 K

Tol. set
1]

<

<

<

<

<

<

<

Max. quantum numbers
11022122212|00000000000
00011122111/00000000000
00010001000/00000000000

Max. quantum numbers
11022122213|00000000013
00011122112|00000000012
00010001002|00000000002

Max. quantum numbers
00011122238|00011111238
00011111126|00001111126

Max. quantum numbers

Max. quantum numbers
11212221212|00000000000
00112211112|00000000000
00001110100/00000000000

Max. quantum numbers
11212221212|00000000011
00112211112|00000000001
00001110100|/00000000000

Max. quantum numbers
00112221223|00111111123
00111111112|00011111112

Max. quantum numbers
00112122234|00111122234

<000111122310/000111122310 >

>

>

>

[—1320.67,11995.95]
[—1093.01, 6180.99]
[—455.33, 2620.39]

[—13798.59, 13538.34]

Iz

5(220) (bzu)]

[len W

0.00, 6135.20]
0.00, 4643.73]
0.00, 2620.39]

& (b2u) ~(b2u)]

mln W

(b2u) ~(b2u)

[Il’lll’l W max]

[—9833.64, 11662.14]
(~5362.79, 5579.43]

7 (b2u) ~(b2u)]

Vhin 1Ymax

V(bdu) =~ (b:}u)]

min Yma

0.00,9141.11]
0.00, 5372.30]
0.00, 2686.15]

(b3u) ~(b3u)]

Vhin Ymax

[~1386.17,9141.11]
[—596.09, 5372.30]
[0.00, 2686.15]

2

(b3u) ~r(r?§.;)]

[—6314.68, 9725.31]
[—5301.287 5616.98]

i

(b3u) ~(bszu)
mmu Wmax ]

[—12771.48, 14072.62]

# of integrals
131

54

4

# of integrals
5571

418

20

# of integrals
888980
12618

# of integrals
8411337

# of integrals
738

76

11

# of integrals
1052

89

11

# of integrals
20098
4729

# of integrals
1058422
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A.3.2. Mode coupling error

N ec/% = (1= F{&)) /%
T=0K(%) | T=100K(%) | T =300 K(%) | T = 500 K(%)
0 81.82 90.72 99.84 100.00
1 45.93 72.40 99.50 100.00
2 18.11 51.10 98.20 99.99
3 5.51 30.67 95.95 99.97
4 1.31 15.99 91.41 99.90
5 0.24 7.23 84.91 99.76
6 0.04 2.81 75.77 99.42
7 0.00 0.96 64.92 98.85
8 0.28 52.98 97.73
9 0.07 41.10 96.07
10 0.02 30.27 93.38
11 0.00 21.09 89.79
12 13.96 84.82
13 8.72 78.81
14 5.19 71.55
15 2.91 63.55
16 1.56 54,94
17 0.79 46.28
18 0.38 37.85
19 0.18 30.08
20 0.08 23.19
21 0.03 17.34
22 0.01 12.57
23 0.00 8.84
24 6.02
25 3.98
26 2.55
27 1.58
28 0.95
29 0.56
30 0.32
31 0.17
32 0.09
33 0.05
34 0.03
35 0.01
36 0.01
37 0.00
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B.1. General remarks

In this appendix we report vertical transition, peak maximweumulants of vibronic transition energies, cor-
responding to figures 5.1 and 5.2. Cumulans are computechdizh® method described in Sec. 5.1.1 of this
thesis. We added a variance of a Gaussian line shape fur(@tiBhE+04(hcocm™!)?) to the second order
cumulants to include the line shape to the statistics. Anghmeide equilibrium structures of (modified) bac-
teriochlorophyll and harmonic wavenumbers which are usethie calculations in section 5.3.2 and figure 1.2.

The relevant data for figures 5.3, 5.4 and 5.6 are also prdvidthis appendix.

B.2. Formic acid

(Eg’é)c/(hcocm_l)"

T=0K

T = 1000 K

O~NO O~ WNER 3

2.4197E+03
4.1926E+06
8.6790E+09
2.5221E+13
1.0062E+17
4.8832E+20
2.6660E+24
1.6154E+28

2.4130E+03
5.3965E+06
1.0320E+10
3.5786E+13
1.4515E+17
7.6078E+20
4.4214E+24
2.9387E+28

Vertical transition energyhcocm ™)

2.3286E+03

2.3286E+03

B.3. Anthracene

(Egyg)c/(hcocmfl)“

T=0K

T =500 K

o~NO O~ WNERE 3

1.7657E+03
2.2815E+06
3.1553E+09
4.9080E+12
8.8569E+15
2.0027E+19
5.8643E+22
2.1280E+26

1.4946E+03
2.5229E+06
3.1617E+09
5.2116E+12
9.2295E+15
2.1892E+19
6.4247E+22
2.3674E+26

Vertical transition energyhcocm ™)

1.5957E+03

1.5957E+03

B.4. Bacteriochlorophyll

e Harmonic vibrational wavenumbers of the initial electmsiate incm™":

a(from Dq62 t0 1)

1

21.4557 25.2760 28.9246 35.9083 36.9274 55.0378 64.82%2938 101.4081 110.1421 117.8279 129.2884 132.0941 18i1.787.2401 171.5542
175.7069 186.0948 190.6627 216.3728 221.1104 232.55984£U2 251.1938 272.4438 285.1315 293.2799 319.4423 3¥3.383.0773 350.1340
375.3155 378.7104 408.4328 422.9386 433.6818 439.759014/221 484.1491 524.9598 527.2614 543.5474 559.2862 572.981.9131 612.2568
620.5894 634.8125 642.1622 655.1760 656.9652 675.5149408 688.1909 717.9663 720.0682 732.7538 735.4780 7&».942.7562 746.3043
762.0798 771.6862 777.8221 785.0985 808.5506 818.119P32D 837.1350 840.6778 849.3824 859.0087 876.4723 8%3.896.3528 911.6225

148



B. Supplementary data for chapter 5

935.0293 937.2806 945.3227 948.6115 954.2098 956.4428@85990.0052 993.8284 1012.8991 1026.2299 1033.893432a0 1072.2985 1096.0683
1103.9634 1132.8693 1134.7095 1142.5179 1147.8039 19BH1150.8844 1160.4601 1168.1541 1174.6808 1184.84B1G330 1212.2979 1220.2899
1227.5304 1246.6922 1254.1699 1262.7627 1274.4224 1987 1298.5147 1318.5625 1324.4651 1339.2505 1361.98IB7MED 1380.9141 1403.8590
1423.5844 1437.9237 1441.5442 1446.0721 1452.4917 1805510160.4679 1466.6235 1477.9717 1477.9926 1492.305/9483B 1509.2878 1520.1494
1538.3528 1550.2263 1562.6400 1571.4999 1610.0767 123B1674.9175 1684.6337 1702.1374 2861.5879 3010.752052P2 3015.0308 3026.5882
3036.0644 3052.4533 3062.5547 3074.0909 3132.9584 BN 31168.9883 3170.4017 3208.6810 3224.2968 3234.1183BA3 3263.7019 3283.8211
3658.0584

Harmonic vibrational wavenumbers of the final electronitesincm ~*:

a(from 74, to 7})

24.1874 26.9493 28.1876 34.1241 42.3549 45.4448 59.72T7639 86.5382 107.2859 118.0977 127.6239 131.6449 14D.788.8894 169.8607
172.0188 182.4159 187.5042 214.9788 220.1778 240.794% 247 251.1979 272.3135 285.8508 300.4375 311.5338 336.821.5927 355.7712
373.7130 382.8051 407.6117 431.4515 436.2209 441.4125280 485.5725 535.1172 552.5416 554.9939 565.6402 539.387.1107 618.8413
626.0233 635.1243 647.7105 657.0271 662.0390 681.567@%BB 691.4158 723.1445 732.5825 739.4243 743.7289 738.949.6568 762.9512
791.3647 813.0276 818.7360 820.4121 828.8282 840.7356@35 861.3969 862.3159 877.4312 882.0767 886.4929 884.862.1326 911.6777
936.8690 938.4925 948.4734 953.0589 958.2847 964.3568888996.9944 1003.1644 1009.5575 1020.0180 1024.6 783066 1078.1472 1090.9059
1113.2551 1140.7534 1148.7002 1152.0833 1156.3096 1091 14164.5131 1166.3020 1170.3287 1180.0757 1188.71866481 1216.9217 1227.1321
1247.8446 1256.8131 1266.8484 1272.8347 1278.0447 1ZBB1B06.7606 1333.3498 1336.6701 1345.5470 1361.06843330 1398.2680 1413.3843
1429.7560 1444.4840 1445.4825 1450.2790 1454.7084 14856 13161.1588 1469.0316 1478.2566 1495.3556 1502.35&1 2608 1517.8413 1551.0598
1560.2710 1564.3924 1570.3108 1574.7650 1603.7168 152®19%697.1686 1732.1366 1762.3276 2898.5810 3028.84F&EH) 3038.0599 3044.9258
3057.8497 3063.4126 3066.0358 3084.8592 3144.9878 AABBBLE1.6048 3184.4366 3222.8470 3237.2230 3242.57Z0 B85 3268.8032 3289.5138

3648.6472

e Equilibrium structure of initial state:

IIIIIIIIIIIIIIIOIIIIIOOOOOOZOOOOOZOOOOOZOOOOOOOOOZEOZOZO

-0.053998117393
1.938804465600
2.232792598342
3.737277895993
4.278669510770
3.089526772676
1.337503464580

-0.083309191632

-0.985250798797

-2.281621820826

-2.151544103423

-0.809508270416

-3.222880741458

-3.170279501131

-4.420118691099

-3.873640028443

-2.371101799635

-2.048774261585

-1.436563928910

-0.031210084025
0.732547923376

-0.173399147446

-1.621412583032
0.736470518920
2.049659771243
2.080025654341
3.144719755327
0.048911772579

-0.631934175286

-1.414393884188

-4.114004101626

-4.871492191282

-3.203066400592
0.458110771733
4.106190711491
5.572258586092
2.969354794469

-2.173665906520

-0.360832890192
0.729496353472
0.918077482330

-0.887080928512

-4.215170180060
1.777706499418
4.130561281940

-5.178258262203
4.015813950010

-2.138516248005

-4.264788809356
5.896780688009
6.351078098613

0.151635987704
0.481968071483
0.547939302586
0.632837853258
0.582690323602
0.522591424747
0.552072411320
0.530412606218
0.587172481089
0.552451611674
0.480990370251
0.458073320356
0.445450956127
0.436844813936
0.386539895897
0.669231631642
0.526980506490
0.443327298832
0.532778833308
0.509101560464
0.589676727449
0.657925211219
0.638753343921
0.452782775242
0.514627571610
0.589816052326
0.522514047456
0.718503534201
0.663433419304
0.693148093357
1.686844725087
-0.609651550302
0.588923409834
0.696307940568
-0.193952311085
0.587755001004
0.658713664737
-0.200230766272
-5.225902567758
-4.797322476842
-2.302789197488
-2.686236301828
0.445175264573
0.609703242031
0.569921251407
1.102883516671
1.561254312523
1.552965518617
-0.009316133017
0.549508416469
0.633358557154

Atom XIA yIA zIA
-0.434498854852| -2.992831300387| -0.994103540802
-0.009467710721| -2.064288379190| -0.070579215362

0.493763232230| -2.738656770068| 0.939796945149
0.410885417668| -4.072402934786| 0.707580306356
-0.181986811386| -4.250741242313| -0.528476940408

-0.144093317610
-0.872801132227
-2.191180214269
-2.398711043726
-0.986386706220
-0.103578992636
-3.242093558435
-3.194664398762
-4.321758675582
-3.782913326106
-2.386146312018
-2.044427433816
-1.446446254848
-0.072010491604
0.803334127554
2.213824961248
2.030331055067
0.698554656402
3.031056884035
2.827255660360
4.013906098101
5.140322048425
4.537693498982
1.731529098898
2.181820377892
3.598213702439
1.272362019769
6.344608644967
-5.710999424125
-6.660576222774
2.540565424908
0.745650565830
-4.343386758380
-5.921066786207
-3.012612427492
-0.648123205426
4.206509727466
4.975678624539
-0.945923157378
1.328530714143
1.829933464530
-1.922185559456
-1.885667853648
-4.230224889374
1.720015408259
0.481342299161
-2.906647014966
4.850292599873
2.974812058519
0.384591503685
-1.400866597535
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e Equilibrium structure of final state:

e Fig.5.3

0.369579638324
-0.235484039177
-0.040440457336

1.961164707501

2.253465813231

3.751072436489

4.290265247161

3.099913374371

1.336457642831
-0.066174337164
-0.977223156103
-2.251446545482
-2.124955860590
-0.793615165390
-3.199359825707
-3.168879120420
-4.428382208744
-3.877187393652
-2.377046815970
-2.058894136006
-1.422416878793
-0.032200650075

0.739104996322
-0.181434150927
-1.622791412784

0.736751763547

2.040223860681

2.065140184113

3.136061721567

0.053689982995
-0.631002124807
-1.439469582918
-4.132529082090
-5.025444980548
-3.172842896684

0.452005502531

4.132375746649

5.575126668246

2.951982852412
-2.150668536554
-0.439218128423

0.676182459962

0.925535880757
-0.918845080323
-4.184130608916

1.766512905864

4.113678723698
-5.059600467848

4.008024847843
-2.172448470662
-4.252351199772

5.886933247237

6.363314304585

IIIIIIIIIIIIIIIOIIIIIOOOOOOZOOOOOZOOOOOZOOOOOOOOOZEOZOZO

-4.179567646169
-4.296602303081
0.055275000151
0.452231443488
0.525126867411
0.638683982532
0.623437454132
0.534427992150
0.526625948073
0.505688215924
0.590898930700
0.567912133179
0.471782206105
0.423247443197
0.456637257431
0.445531309613
0.497757088284
0.604008021202
0.492461972457
0.403999313162
0.523227459100
0.510632096202
0.655703042191
0.744056163406
0.663639746872
0.431259409942
0.546015523211
0.678121198347
0.563434275650
0.853445290833
0.691444168043
0.735339306486
1.556942551865
-0.406041875619
0.627315547877
0.727393580742
-0.192732190585
0.675339978083
0.793854591637
-0.181117976132
-5.250107709802
-4.938300735898
-2.479119351820
-2.672356035480
0.498586315029
0.593850048851
0.652999275775
1.344884435600
1.561545362192
1.567408686737
-0.182917089396
0.660156016189
0.737272903551

Atom X/ A ylA z/A
-0.464765173796| -3.017840623633| -1.045255432584
-0.012106100103| -2.132948476621| -0.088725406280

0.484538265696| -2.862082357245( 0.890707433228

0.604402016111
-0.630360702484
-0.128994320982
-0.866521218987
-2.177585234408
-2.393977439861
-0.979431038307
-0.102966846205
-3.222976250263
-3.158175524127
-4.287866413884
-3.763594596221
-2.345532859347
-2.007925438376
-1.439388466409
-0.052214928242

0.802776119190

2.238654841419

2.037276418478

0.713785291589

3.032164604518

2.817283190114

4.000526514973

5.138128512796

4.534504307157

1.722704270743

2.164676286954

3.596788669762

1.282892596219

6.323088862598
-5.700068555497
-6.609029787095

2.709747361233

0.656398738219
-4.322237227969
-5.931635194842
-2.993457595021
-0.623279675542

4.200888680691

4.988186306810
-1.084436574640

1.191864265170

1.796288649718
-1.958288928005
-1.891020389269
-4.214521375648

1.740046766164

0.528571181440
-2.921591463272

4.815939489059

2.896467909392

0.413469067298
-1.363668012035

Reorganization energy §°diag(e')§)=1.0794E+03cocm ™"

Temperature Cumulants With Duschinsky rotation| Without Duschinsky rotation

0K Meantm ! 1.5376E+03 1.0925E+03
Variance(cm™')? 2.9747E+06 1.4364E+06

100 K Meantm ! 1.8719E+03 1.0945E+03
Variance(cm™')? 4.1002E+06 1.4475E+06

200 K Meantm ! 2.4059E+03 1.0922E+03
Variance(cm™')? 6.4085E+06 1.4730E+06

300K Meantm * 2.9790E+03 1.1021E+03
Variance(cm™')? 9.4091E+06 1.5125E+06
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e Mean excitation energies of individual vibrational modes
n : i e (vp)/(hegem™1) ] _
Displaced-Distorted-Rotated Displaced-Distorted Displaced
T=0K T=100 K T=200 K T=300 K T=0K T=100K T=200 K T=300 K Len o2
162 1.5286E+00 | 6.6919E+01 | 1.4359E+02 | 2.2049E+02 | 1.1303E+00 | 6.8491E+01 [ 1.4709E+02 | 2.2591E+02 | 1.0433E+00
161 6.6743E+00 | 6.7477E+01 | 1.4059E+02 | 2.1400E+02 | 6.2762E+00 | 6.7848E+01 | 1.4170E+02 | 2.1582E+02 | 6.2485E+00
160 1.9896E+00 | 5.6616E+01 | 1.2409E+02 | 1.9195E+02 5.1148E-01 | 5.5143E+01 | 1.2241E+02 | 1.9000E+02 5.0679E-01
159 8.8038E-01 | 5.1424E+01 | 1.1687E+02 | 1.8281E+02 8.2872E-01 | 5.1345E+01 | 1.1675E+02 | 1.8264E+02 8.0656E-01
158 3.5437E+01 | 8.9743E+01 | 1.6249E+02 | 2.3606E+02 | 3.2954E+01 | 9.3931E+01 | 1.7346E+02 | 2.5362E+02 | 3.2755E+01
157 1.2459E+01 | 5.4406E+01 | 1.1550E+02 | 1.7780E+02 | 8.6561E+00 | 4.0021E+01 | 9.0021E+01 | 1.4123E+02 | 7.2078E+00
156 9.1676E+00 [ 5.6654E+01 | 1.2807E+02 | 2.0093E+02 | 7.3831E+00 [ 5.7006E+01 | 1.3073E+02 | 2.0575E+02 | 7.2835E+00
155 4.7360E+00 | 4.2196E+01 | 1.0699E+02 | 1.7406E+02 | 3.7860E+00 | 3.9438E+01 | 1.0221E+02 | 1.6722E+02 | 3.7385E+00
154 4.9826E+00 | 3.9446E+01 | 1.0387E+02 | 1.7132E+02 | 3.5450E+00 [ 3.0085E+01 | 8.5130E+01 | 1.4345E+02 | 2.9999E+00
153 1.7002E+01 | 4.4860E+01 | 1.0611E+02 | 1.7170E+02 | 1.6564E+01 | 4.4240E+01 | 1.0537E+02 | 1.7078E+02 | 1.6546E+01
152 2.8010E+00 [ 3.0047E+01 | 9.2756E+01 | 1.6047E+02 | 2.2914E+00 | 2.8841E+01 | 9.0812E+01 | 1.5776E+02 | 2.2912E+00
151 3.0413E+00 | 2.6311E+01 | 8.5473E+01 | 1.5047E+02 | 2.6706E+00 [ 2.6198E+01 | 8.5835E+01 | 1.5125E+02 | 2.6653E+00
150 5.0483E+00 | 2.8412E+01 | 8.8482E+01 | 1.5463E+02 | 4.8366E+00 | 2.7975E+01 | 8.7820E+01 | 1.5372E+02 | 4.8362E+00
149 1.4369E+00 | 2.2731E+01 | 8.1333E+01 | 1.4674E+02 | 8.8933E-01 | 2.1940E+01 | 8.0302E+01 | 1.4547E+02 | 8.8756E-01
148 9.4070E-01 | 1.7046E+01 | 7.0862E+01 | 1.3371E+02 3.3676E-01 | 1.6775E+01 | 7.1523E+01 | 1.3519E+02 3.3403E-01
147 3.2511E+00 | 1.9262E+01 | 7.3474E+01 | 1.3700E+02 | 2.7767E+00 | 1.8502E+01 | 7.2526E+01 | 1.3582E+02 | 2.7726E+00
146 4.3164E+00 | 1.9848E+01 | 7.3385E+01 | 1.3645E+02 | 3.9881E+00 | 1.8912E+01 | 7.1738E+01 | 1.3408E+02 | 3.9688E+00
145 8.0960E+00 | 2.2385E+01 | 7.4934E+01 | 1.3785E+02 | 7.5051E+00 [ 2.0066E+01 | 6.9577E+01 | 1.2962E+02 | 7.4159E+00
144 1.3695E+01 | 2.8096E+01 | 8.1642E+01 | 1.4586E+02 | 1.3355E+01 | 2.7195E+01 | 7.9984E+01 | 1.4346E+02 | 1.3352E+01
143 2.5560E+00 | 1.3222E+01 | 6.1686E+01 | 1.2316E+02 | 1.6805E+00 | 1.1684E+01 | 5.9125E+01 | 1.1963E+02 | 1.6783E+00
142 3.4015E-01 | 1.0122E+01 | 5.7251E+01 | 1.1785E+02 2.2527E-01 | 9.7661E+00 | 5.6582E+01 | 1.1687E+02 2.2428E-01
141 7.0873E-01 | 9.3840E+00 | 5.5539E+01 | 1.1667E+02 | 3.8039E-01 | 9.1773E+00 | 5.6048E+01 | 1.1788E+02 | 3.0749E-01
140 1.0311E+00 | 9.5083E+00 | 5.4938E+01 | 1.1586E+02 45797E-02 | 7.8658E+00 | 5.2569E+01 | 1.1280E+02 1.6462E-02
139 4.5947E+00 | 1.2267E+01 | 5.5914E+01 | 1.1538E+02 | 4.2838E+00 | 1.1239E+01 | 5.3611E+01 | 1.1183E+02 | 4.2838E+00
138 7.2195E-01 | 6.8235E+00 | 4.6979E+01 | 1.0439E+02 2.8447E-05 | 5.5132E+00 | 4.4650E+01 | 1.0109E+02 1.2865E-05
137 1.7627E+01 | 2.3073E+01 | 6.1258E+01 | 1.1759E+02 | 1.7314E+01 | 2.2119E+01 | 5.9492E+01 | 1.1503E+02 | 1.7314E+01
136 1.2109E+01 | 1.7103E+01 | 5.5112E+01 | 1.1217E+02 | 1.1753E+01 | 1.6238E+01 | 5.3223E+01 | 1.0927E+02 | 1.1709E+01
135 9.6168E-01 | 4.4559E+00 | 3.6647E+01 | 8.8308E+01 | 6.9384E-01 | 3.8708E+00 | 3.5495E+01 | 8.6602E+01 | 6.4490E-01
134 2.6137E+00 [ 5.9865E+00 | 3.7390E+01 | 8.9532E+01 | 2.2722E+00 | 5.0683E+00 | 3.5876E+01 | 8.7467E+01 | 2.2651E+00
133 1.3231E+00 | 4.6956E+00 | 3.5602E+01 | 8.7399E+01 | 6.8694E-01 | 3.1582E+00 | 3.2318E+01 | 8.2351E+01 | 6.8533E-01
132 3.0348E+00 | 5.9757E+00 | 3.6047E+01 | 8.7686E+01 | 2.4656E+00 | 4.7896E+00 | 3.3639E+01 | 8.4050E+01 | 2.4429E+00
131 5.5202E-01 | 2.9396E+00 | 2.9308E+01 | 7.7533E+01 | 7.6106E-02 | 1.7718E+00 | 2.7002E+01 [ 7.4086E+01 | 7.4395E-02
130 1.0636E+00 | 3.1925E+00 | 2.9332E+01 | 7.7651E+01 1.2422E-02 | 1.6663E+00 | 2.6883E+01 | 7.4365E+01 | 1.3532E-03
129 4.8131E-01 | 1.8556E+00 | 2.3948E+01 | 6.8530E+01 2.4544E-01 | 1.3919E+00 | 2.3040E+01 | 6.7167E+01 2.4503E-01
128 1.2807E+00 | 2.7648E+00 | 2.4616E+01 | 6.9623E+01 | 4.5611E-01 | 1.4407E+00 | 2.2077E+01 | 6.5823E+01 | 4.1327E-01
127 4.8515E+00 | 6.2127E+00 | 2.6169E+01 | 6.8914E+01 | 4.5295E+00 | 5.3820E+00 | 2.4685E+01 | 6.6815E+01 | 4.5258E+00
126 4.3395E+00 | 5.3019E+00 | 2.4391E+01 | 6.6293E+01 | 4.1003E+00 | 4.8906E+00 | 2.3585E+01 | 6.5066E+01 | 4.0988E+00
125 1.0547E+00 | 2.1423E+00 | 2.1574E+01 | 6.4130E+01 3.7894E-01 | 1.1329E+00 | 1.9580E+01 | 6.1039E+01 3.5814E-01
124 4.0745E+00 | 4.7401E+00 | 1.9950E+01 | 5.7629E+01 | 3.8800E+00 | 4.3386E+00 | 1.9269E+01 | 5.6686E+01 | 3.8789E+00
123 6.8511E-01 | 1.1992E+00 | 1.3722E+01 | 4.8193E+01 2.6304E-01 4.3455E-01 | 1.0021E+01 | 3.9595E+01 1.9269E-03
122 5.9958E+00 [ 6.6215E+00 | 1.8143E+01 | 5.1084E+01 | 5.5433E+00 | 5.8336E+00 | 1.8512E+01 | 5.4077E+01 | 5.1810E+00
121 8.7235E+00 | 9.7494E+00 | 2.1150E+01 | 5.3523E+01 | 8.4982E+00 | 8.7803E+00 | 2.1305E+01 | 5.6666E+01 | 8.1335E+00
120 8.8986E-01 | 1.2956E+00 | 1.4311E+01 | 5.0662E+01 2.3406E-01 4.6141E-01 | 1.1808E+01 | 4.5320E+01 9.5701E-03
119 7.4580E-01 | 1.0342E+00 | 1.0658E+01 | 4.0808E+01 1.9823E-02 1.7281E-01 | 9.5514E+00 | 3.9531E+01 1.6741E-02
118 3.6459E+00 [ 3.9909E+00 | 1.3380E+01 | 4.3303E+01 | 3.9156E-01 | 5.2966E-01 | 9.6131E+00 | 3.9446E+01 | 2.9233E-01
117 9.8473E-01 | 3.4355E+00 | 1.3705E+01 | 4.2909E+01 1.0715E-01 1.8916E-01 | 7.3137E+00 | 3.3351E+01 1.0592E-01
116 3.9710E-01 6.0631E-01 | 8.4400E+00 | 3.5918E+01 9.5475E-02 1.8903E-01 | 7.8435E+00 | 3.5182E+01 1.8090E-02
115 4.1902E+00 | 5.7965E+00 | 1.4648E+01 | 4.2054E+01 | 3.3680E+00 | 3.4366E+00 | 1.0037E+01 | 3.5125E+01 | 3.3679E+00
114 1.1308E-01 2.3026E-01 | 6.7678E+00 | 3.1772E+01 1.3704E-02 7.6637E-02 | 6.4616E+00 | 3.1225E+01 1.7198E-03
113 1.7688E+00 | 5.5234E+00 | 1.6287E+01 | 4.4892E+01 4.5973E-01 5.1266E-01 | 6.4103E+00 | 3.0117E+01 4.5842E-01
112 2.2764E+01 | 2.3490E+01 | 3.0357E+01 | 5.5086E+01 | 2.2357E+01 | 2.2409E+01 | 2.8275E+01 | 5.1974E+01 | 2.2347E+01
111 4.5441E-01 6.1844E-01 | 6.1486E+00 | 2.8829E+01 4.8835E-02 8.9816E-02 | 5.3751E+00 | 2.7839E+01 3.5278E-02
110 1.3163E-01 1.9016E-01 | 5.4318E+00 | 2.7724E+01 3.1639E-02 7.0757E-02 | 5.2416E+00 | 2.7426E+01 2.4128E-02
109 4.5266E-01 5.7464E-01 | 5.6151E+00 | 2.7241E+01 2.6282E-02 6.0923E-02 | 4.9551E+00 | 2.6491E+01 2.2504E-02
108 5.5630E+00 | 6.6338E+00 | 1.2539E+01 | 3.3951E+01 | 4.3322E+00 | 4.3558E+00 | 8.4876E+00 | 2.8207E+01 | 4.3229E+00
107 1.2947E+00 | 1.6273E+00 | 5.8716E+00 | 2.5035E+01 | 9.9869E-01 | 1.0161E+00 | 4.5889E+00 | 2.2691E+01 | 9.8022E-01
106 1.5269E+01 | 1.6031E+01 | 2.0888E+01 | 4.0651E+01 | 1.4728E+01 | 1.4752E+01 | 1.8915E+01 | 3.8895E+01 | 1.4598E+01
105 6.1307E-01 7.4426E-01 | 4.6971E+00 | 2.3641E+01 2.5583E-01 2.7546E-01 | 4.0963E+00 | 2.3079E+01 2.1473E-01
104 4.3203E-01 5.0418E-01 | 4.6674E+00 | 2.4518E+01 1.4058E-01 1.5945E-01 | 3.9071E+00 | 2.2664E+01 1.1618E-01
103 3.8585E+01 | 3.9688E+01 | 4.5260E+01 | 6.5654E+01 | 3.7405E+01 | 3.7422E+01 | 4.1006E+01 | 5.9300E+01 | 3.7389E+01
102 8.5422E-01 | 1.3378E+00 | 5.5644E+00 | 2.4594E+01 4.3764E-01 4.5421E-01 | 4.0102E+00 | 2.2338E+01 3.4481E-01
101 1.0070E+01 | 1.2117E+01 | 1.8016E+01 | 3.7289E+01 | 8.6331E+00 | 8.6440E+00 | 1.1584E+01 | 2.8082E+01 | 8.5742E+00
100 2.2959E+01 | 2.3353E+01 | 2.6483E+01 | 4.2009E+01 | 2.2339E+01 | 2.2346E+01 | 2.4767E+01 | 3.9523E+01 | 2.2333E+01
99 2.3357E+00 | 2.4378E+00 | 5.9810E+00 | 2.4290E+01 4.2173E-01 4.3191E-01 | 3.3205E+00 | 1.9852E+01 6.1425E-02
98 7.3802E+00 | 7.7887E+00 | 1.1283E+01 | 2.8082E+01 | 4.2556E+00 | 4.2698E+00 | 7.6918E+00 | 2.6098E+01 | 3.1393E+00
97 1.9740E+00 | 2.1609E+00 | 5.7104E+00 | 2.3673E+01 | 1.1794E+00 | 1.1920E+00 | 4.4177E+00 | 2.2224E+01 1.2163E-01
96 3.9439E+00 | 3.9735E+00 | 6.6220E+00 | 2.2133E+01 1.1819E-01 | 1.2289E-01 | 2.1097E+00 | 1.5304E+01 | 1.1819E-01
95 9.7265E-02 1.5705E-01 | 2.1215E+00 | 1.4988E+01 2.1655E-02 2.5821E-02 | 1.9027E+00 | 1.4658E+01 1.7233E-02
94 9.4830E-01 | 2.3035E+00 | 5.8941E+00 | 2.0180E+01 | 8.7369E-01 | 8.8035E-01 | 3.2779E+00 [ 1.8269E+01 | 3.0135E-01
93 1.5277E+00 | 1.6212E+00 | 4.2618E+00 | 1.9636E+01 | 2.2157E-01 | 2.2406E-01 | 1.6918E+00 | 1.2693E+01 | 5.8603E-02
92 1.6704E+00 | 1.7893E+00 | 4.4679E+00 | 1.9865E+01 | 1.0233E+00 | 1.0298E+00 | 3.4375E+00 | 1.8578E+01 | 2.5838E-02
91 1.3736E+01 | 1.4837E+01| 1.8089E+01 | 3.1572E+01 | 1.3547E+01 | 1.3553E+01 | 1.5694E+01 | 2.9780E+01 | 1.2944E+01
90 1.5767E-01 1.7154E-01 | 1.7570E+00 | 1.3326E+01 2.4689E-01 2.5070E-01 | 2.0878E+00 | 1.4897E+01 2.7050E-02
89 2.4683E+00 | 5.3563E+00 | 1.1718E+01 | 2.8194E+01 8.1402E-02 8.4379E-02 | 1.7138E+00 | 1.3613E+01 1.3794E-02
88 1.0940E+00 | 1.1343E+00 | 3.3048E+00 | 1.7354E+01 1.8589E-02 | 2.1253E-02 | 1.5629E+00 | 1.3053E+01 | 7.9007E-04
87 6.5489E+00 [ 6.9978E+00 | 9.0672E+00 | 2.0197E+01 | 5.8346E+00 | 5.8365E+00 | 7.1297E+00 | 1.7492E+01 | 5.8346E+00
86 1.3648E+00 | 3.6475E+00 | 7.8971E+00 | 2.0563E+01 | 3.0590E-01 | 3.0720E-01 | 1.4122E+00 | 1.0883E+01 | 3.0585E-01
85 1.0929E+00 | 1.3793E+00 | 2.8590E+00 | 1.2760E+01 | 8.7151E-01 | 8.7286E-01 | 1.9979E+00 | 1.1583E+01 | 8.6830E-01
84 6.5603E+00 [ 1.2002E+01 | 2.1872E+01 | 4.0237E+01 | 2.3178E+00 | 2.3189E+00 | 3.3501E+00 | 1.2453E+01 | 2.3178E+00
83 4.4519E-01 5.9511E-01 | 1.9330E+00 | 1.1519E+01 1.1007E-01 1.1125E-01 | 1.1722E+00 | 1.0458E+01 9.4244E-02
82 6.3307E-01 8.3430E-01 | 2.1051E+00 | 1.1362E+01 3.7177E-01 3.7281E-01 | 1.3735E+00 | 1.0338E+01 3.6742E-01
81 2.0547E-01 2.2469E-01 | 1.2748E+00 | 1.0345E+01 4.5561E-02 4.6580E-02 | 1.0376E+00 | 9.9671E+00 2.9191E-02
80 1.0319E+01 | 1.1152E+01 | 1.3201E+01 | 2.2290E+01 | 9.6172E+00 | 9.6178E+00 | 1.0394E+01 | 1.8104E+01 | 9.6103E+00
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B. Supplementary data for chapter 5
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3.6292E+01
2.9797E-01
3.4891E+00
4.5033E+00
3.7368E+00
1.2551E+01
5.0346E+00
2.3014E+00
1.0455E+00
2.9131E+01
2.5414E+00
1.4772E+01
4.7900E-01
7.0035E-01
1.1646E+01
2.6436E-01
7.5926E+00
5.0251E+00
2.0721E+00
1.6637E+00
5.7012E+00
2.4627E+00
2.3756E+00
3.0309E+00
6.6730E+00
1.3643E+00
9.7062E-01
2.7677E+00
2.1575E+00
9.1423E-01
5.2052E+00
1.8502E+01
4.2557E+00
3.1892E+01
2.8862E+00
1.4802E+00
6.9179E+00
1.6719E+01
3.0812E+00
3.0058E+00
2.8313E+00
3.3376E+00
2.9691E-01
6.6493E+00
5.2463E+00
2.0317E+01
2.7698E+00
1.0175E+02
6.9376E-01
5.4998E+01
9.4946E+00
3.9669E+00
3.2115E+01
6.5837E-01
1.1790E+00
1.4657E+02
7.2130E+00
3.1537E+01
4.0635E+01
1.3083E+00
2.2769E+00
9.5198E-01
5.2130E+01
2.2820E+02
1.2953E+00
4.1620E-01
5.2598E+01
1.7863E+01
1.0895E+00
3.3116E+00
2.7830E-01
3.2798E+00
1.1833E+00
4.5364E+00
1.0631E+00
1.8577E+00
2.3662E+00
2.7259E+00
4.1941E+00

7.0593E+01
3.4771E-01
3.8738E+00
7.9687E+00
4.0620E+00
1.5732E+01
5.9899E+00
2.7285E+00
1.1334E+00
2.9442E+01
6.3335E+00
1.5009E+01
5.1503E-01
7.8589E-01
1.1701E+01
2.8966E-01
7.6452E+00
1.7222E+01
2.3710E+00
1.8786E+00
5.8627E+00
2.6274E+00
2.4681E+00
3.1072E+00
6.7556E+00
1.4957E+00
1.0596E+00
6.0981E+00
2.2129E+00
9.6789E-01
5.2731E+00
1.8606E+01
6.4378E+00
3.2021E+01
2.9475E+00
1.6196E+00
6.9642E+00
1.6918E+01
4.2051E+00
3.6129E+00
3.5491E+00
3.4422E+00
5.1639E-01
6.6745E+00
5.3776E+00
2.0340E+01
2.8220E+00
1.0186E+02
1.2992E+00
5.5020E+01
9.5543E+00
4.0044E+00
3.2146E+01
7.2453E-01
1.2280E+00
1.4665E+02
1.1388E+01
3.2076E+01
4.3919E+01
1.3584E+00
3.1647E+00
1.9952E+00
6.4303E+01
3.7170E+02
1.5826E+00
4.5802E-01
8.0329E+01
2.1251E+01
1.4949E+00
3.8834E+00
2.9782E-01
3.5837E+00
1.6569E+00
5.2792E+00
1.2009E+00
2.0520E+00
3.7314E+00
5.1069E+00
6.1100E+00

1.2765E+02
1.2878E+00
5.2133E+00
1.3866E+01
5.2297E+00
2.1470E+01
7.7058E+00
3.8876E+00
1.6428E+00
3.0309E+01
1.1576E+01
1.5729E+01
9.3252E-01
1.3211E+00
1.2135E+01
6.2719E-01
8.0183E+00
3.3347E+01
3.1332E+00
2.4961E+00
6.3930E+00
3.0881E+00
2.8209E+00
3.3878E+00
7.0301E+00
1.8620E+00
1.3661E+00
1.0552E+01
2.4498E+00
1.1929E+00
5.5102E+00
1.8887E+01
9.3436E+00
3.2327E+01
3.1756E+00
1.9340E+00
7.1401E+00
1.7290E+01
5.7000E+00
4.5256E+00
4.6366E+00
3.6314E+00
8.7555E-01
6.7757E+00
5.6285E+00
2.0443E+01
2.9796E+00
1.0212E+02
2.1045E+00
5.5110E+01
9.7134E+00
4.1142E+00
3.2242E+01
8.3396E-01
1.3358E+00
1.4682E+02
1.6914E+01
3.3317E+01
4.8785E+01
1.4918E+00
4.5386E+00
3.3756E+00
8.6177E+01
6.1486E+02
2.0367E+00
5.1790E-01
1.2759E+02
2.6972E+01
2.0595E+00
4.8297E+00
3.3423E-01
4.1482E+00
2.3442E+00
6.4668E+00
1.4227E+00
2.3122E+00
5.5148E+00
8.2086E+00
8.5934E+00

1.9354E+02
9.5608E+00
1.2606E+01
2.6373E+01
1.2641E+01
3.3294E+01
1.4806E+01
1.0124E+01
6.9629E+00
3.5552E+01
2.0947E+01
2.0785E+01
5.6073E+00
6.0964E+00
1.6568E+01
5.0882E+00
1.2228E+01
5.3488E+01
7.4926E+00
6.6368E+00
1.0357E+01
6.7671E+00
6.3595E+00
6.5262E+00
9.9835E+00
4.9976E+00
4.4597E+00
1.7522E+01
5.1306E+00
3.6708E+00
7.9227E+00
2.1268E+01
1.4138E+01
3.4478E+01
5.1696E+00
3.7825E+00
9.0123E+00
1.9057E+01
8.5766E+00
6.8426E+00
7.1006E+00
5.1227E+00
2.5146E+00
8.1938E+00
7.0416E+00
2.1742E+01
4.2639E+00
1.0363E+02
3.9649E+00
5.6300E+01
1.0872E+01
5.2005E+00
3.3265E+01
1.7562E+00
2.1687E+00
1.4766E+02
2.3111E+01
3.5320E+01
5.4433E+01
1.6497E+00
6.0560E+00
4.8059E+00
1.1227E+02
8.6868E+02
2.5385E+00
5.9141E-01
1.7706E+02
3.3159E+01
2.6909E+00
5.9911E+00
3.8642E-01
4.9433E+00
3.1163E+00
7.9676E+00
1.7125E+00
2.6139E+00
7.3632E+00
1.1394E+01
1.1157E+01

1.0406E+01
7.8495E-02
2.0091E+00
1.8784E+00
7.4670E-02
9.8684E+00
4.4178E+00
1.3529E+00
6.2230E-01
2.8326E+01
9.8375E-01
1.4310E+01
3.0144E-02
1.0300E-01
1.1495E+01
8.8927E-02
7.2731E+00
4.7081E-01
1.1574E+00
9.2781E-01
5.2026E+00
2.0443E+00
1.2552E+00
2.6250E+00
6.0063E+00
9.3083E-01
6.6348E-01
1.1032E+00
1.5414E+00
4.1401E-01
4.7914E+00
1.7887E+01
3.2185E+00
3.1412E+01
2.3407E+00
7.1474E-01
6.2812E+00
1.6112E+01
2.2743E+00
2.4180E+00
2.1932E+00
3.1565E+00
5.9398E-02
5.9423E+00
3.4646E-01
1.8153E+01
7.0742E-03
1.0056E+02
1.7543E-01
5.4360E+01
8.6748E+00
3.3167E+00
3.1923E+01
3.5437E-01
8.0774E-01
1.4604E+02
5.1844E+00
2.9682E+01
3.7624E+01
9.7663E-01
2.0358E-01
2.9509E-02
2.0805E-01
7.2262E+01
5.9021E-02
1.4146E-02
1.3979E+01
1.6722E+00
3.2533E-02
6.0156E-02
2.4949E-02
3.0141E-02
3.8065E-02
1.1272E-01
4.8622E-02
4.5335E-02
1.2645E-02
1.3210E-01
9.4186E-01

1.0407E+01
7.9149E-02
2.0095E+00
1.8787E+00
7.5151E-02
9.8687E+00
4.4180E+00
1.3531E+00
6.2244E-01
2.8326E+01
9.8383E-01
1.4310E+01
3.0219E-02
1.0306E-01
1.1495E+01
8.9002E-02
7.2731E+00
4.7086E-01
1.1574E+00
9.2785E-01
5.2026E+00
2.0443E+00
1.2552E+00
2.6250E+00
6.0064E+00
9.3085E-01
6.6350E-01
1.1032E+00
1.5414E+00
4.1401E-01
4.7914E+00
1.7887E+01
3.2185E+00
3.1412E+01
2.3407E+00
7.1474E-01
6.2812E+00
1.6112E+01
2.2743E+00
2.4180E+00
2.1932E+00
3.1565E+00
5.9399E-02
5.9423E+00
3.4646E-01
1.8153E+01
7.0748E-03
1.0056E+02
1.7543E-01
5.4360E+01
8.6748E+00
3.3167E+00
3.1923E+01
3.5437E-01
8.0774E-01
1.4604E+02
5.1844E+00
2.9682E+01
3.7624E+01
9.7663E-01
2.0358E-01
2.9509E-02
2.0805E-01
7.2262E+01
5.9021E-02
1.4146E-02
1.3979E+01
1.6722E+00
3.2533E-02
6.0156E-02
2.4949E-02
3.0141E-02
3.8065E-02
1.1272E-01
4.8622E-02
4.5335E-02
1.2645E-02
1.3210E-01
9.4186E-01

1.1232E+01
8.8895E-01
2.6375E+00
2.4792E+00
7.7669E-01
1.0441E+01
4.8994E+00
1.7636E+00
1.0183E+00
2.8656E+01
1.2933E+00
1.4609E+01
3.2485E-01
3.7811E-01
1.1827E+01
3.8493E-01
7.5354E+00
7.2316E-01
1.3936E+00
1.1513E+00
5.4011E+00
2.2237E+00
1.4474E+00
2.7851E+00
6.1385E+00
1.0753E+00
8.1777E-01
1.2257E+00
1.6560E+00
5.1527E-01
4.8887E+00
1.7975E+01
3.2941E+00
3.1486E+01
2.4086E+00
7.6516E-01
6.3400E+00
1.6156E+01
2.3196E+00
2.4600E+00
2.2400E+00
3.1976E+00
9.9377E-02
5.9808E+00
3.8212E-01
1.8189E+01
3.8241E-02
1.0059E+02
2.0466E-01
5.4387E+01
8.6972E+00
3.3372E+00
3.1948E+01
3.7375E-01
8.2270E-01
1.4606E+02
5.1937E+00
2.9692E+01
3.7633E+01
9.7663E-01
2.0358E-01
2.9510E-02
2.0806E-01
7.2262E+01
5.9022E-02
1.4147E-02
1.3979E+01
1.6722E+00
3.2534E-02
6.0156E-02
2.4949E-02
3.0141E-02
3.8065E-02
1.1272E-01
4.8622E-02
4.5335E-02
1.2645E-02
1.3210E-01
9.4186E-01

1.9272E+01
8.8519E+00
9.4204E+00
9.0940E+00
8.0969E+00
1.6919E+01
1.0754E+01
7.0694E+00
6.2382E+00
3.3332E+01
5.7960E+00
1.9015E+01
4.6963E+00
4.5657E+00
1.6562E+01
4.7823E+00
1.1607E+01
4.7053E+00
5.2191E+00
4.8508E+00
8.8463E+00
5.4590E+00
4.8515E+00
5.8145E+00
8.8200E+00
3.9208E+00
3.7928E+00
3.7942E+00
4.1264E+00
2.8095E+00
7.1257E+00
2.0076E+01
5.2033E+00
3.3367E+01
4.2027E+00
2.2481E+00
7.9867E+00
1.7519E+01
3.7129E+00
3.7874E+00
3.6665E+00
4.5082E+00
1.3873E+00
7.2385E+00
1.5817E+00
1.9403E+01
1.1422E+00
1.0174E+02
1.2667E+00
5.5418E+01
9.5965E+00
4.1873E+00
3.2905E+01
1.1943E+00
1.5186E+00
1.4665E+02
5.7105E+00
3.0245E+01
3.8127E+01
9.7981E-01
2.0520E-01
3.1016E-02
2.0965E-01
7.2264E+01
6.0473E-02
1.5490E-02
1.3980E+01
1.6734E+00
3.3471E-02
6.1022E-02
2.5742E-02
3.0940E-02
3.8733E-02
1.1334E-01
4.9218E-02
4.5859E-02
1.3166E-02
1.3258E-01
9.4195E-01

1.0379E+01
3.4767E-02
1.9414E+00
1.8318E+00
4.0456E-02
9.8646E+00
4.4098E+00
1.3468E+00
6.0275E-01
2.8312E+01
9.7538E-01
1.4306E+01
2.2270E-02
1.0280E-01
1.1300E+01
3.7293E-02
7.2721E+00
4.6462E-01
1.1542E+00
9.2438E-01
5.1982E+00
2.0443E+00
1.0997E+00
2.6044E+00
5.9951E+00
9.1075E-01
5.4986E-01
1.1026E+00
1.5283E+00
3.7255E-01
4.7633E+00
1.7880E+01
3.2183E+00
3.1408E+01
2.2862E+00
6.9647E-01
6.1618E+00
1.6112E+01
2.2716E+00
2.4171E+00
2.1442E+00
3.1565E+00
5.9317E-02
5.9414E+00
3.4645E-01
1.8102E+01
5.1300E-03
1.0053E+02
1.6332E-01
5.4203E+01
8.6585E+00
3.3162E+00
3.1757E+01
3.5267E-01
8.0146E-01
1.4604E+02
5.1611E+00
2.9194E+01
3.7092E+01
8.5707E-01
1.7638E-01
2.2441E-02
1.6408E-01
7.2180E+01
1.9941E-02
4.3093E-03
1.3978E+01
1.6628E+00
2.0986E-02
3.5435E-02
1.5052E-02
1.1314E-02
2.2429E-02
9.9760E-02
4.3097E-02
4.3329E-02
1.0652E-02
1.2963E-01
9.3581E-01
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B. Supplementary data for chapter 5

e Fig.5.6

Displacements| State | Modes | T=0K (cm ') | T=100K cm™ ') | T=200 K cm ') | T=300 K cm ')

6= (0,0)° initial | 993cm ™' 0 6.1968E-04 7.8506E-01 8.5589E+00

65cm™" 0 4.1997E+01 1.0903E+02 1.7770E+02

final | 997cm ™' 9.1548E+00 2.2745E+01 4.5221E+01 7.5223E+01

60cm~? 7.9080E-01 3.8405E+01 9.8445E+01 1.5996E+02

6=(1,1)° initial | 993cm ™' 0 6.1968E-04 7.8506E-01 8.5589E+00

65cm~? 0 4.1997E+01 1.0903E+02 1.7770E+02

final | 997cm ™' 1.9535E+01 3.3125E+01 5.5601E+01 8.5603E+01

60cm~? 7.8621E+00 4.5477E+01 1.0552E+02 1.6703E+02
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C. Supplementary data for chapter 6

C.1. General remarks

In this appendix we report maximum quantum numbzealr"sax (final state) andv;'®* (initial state) in each
harmonic modé: determined via Eq. (6.49) in this thesis, together with theous wavemunber windows for
each irreducible representation the number of the evaluated integrals and the mode coupliray ¢. (see
Figures 6.2 and 6.3). For benzene the irreducible repratientand the numbering of the vibrational modes
are reported as in the work cited in this thesis [Berger,Hés@and Klessinger]. Phys. Chem. AL02 7157
(1998)].

Maximum mode excitation numbers in each normal mode arengivéollowing form:

0’

<Qmax

() )

|Qmax

gﬁg;; andv(?)_are vectors containing the maximum quantum numbers of tHieusnormal modes of each
irreducible representationfor the final and initial electronic states respectivelyeMectors are sorted accord-
ing to the number of vibrational mode (in ascending ordehjchv are given in subsection of each molecule, for
each irreducible representation.

The wavenumber windows for each irreducible represenmtatiare given as#?) (7] in cm™'. The win-
dows are determined by the maximum mode coupling numbersrendmum mode excitation numbers for
each irreducible representatigras the following relations,

Sz\/j(’Y)
() 5
“Vmin = ma}(( ) ( Z Umax,kyk)
QECN 7 k=s
M) 1
and
Spr () ,
~ ~/
(D = max ( Z Ufr?;x wVk)
SECN(’Y) ’
SEM () k=s1
™ . . . - , , ,
whereC' " is the index set choosing/ ") modes out ofV"™ for initial or final state of irreducible repre-

sentationy. WhenM ) exceedsV", we have set to v©) or )" accordingly. In our program hotFCHT,
we have set the wavenumbers to the nearest graining pe[ntz{ﬂ?i)n/Aﬁ] * AD or [D,EYQX/AD] *x AD) with
grainingAz = 1 cm~!.

The number of integrals that is to be evaluated accordinfp@qotescreening conditions are reported for the
various irreducible representations and wavenumber wedo

For the calculation of mode coupling erray, we set the mode coupling threshaldas10~'2, and set the
mode excitation thresholtl, = 0.0. We report the results only up @ ~ 0.005% for the mode coupling
error due to the numerical precision and the sensitivitthtodelection of CODATA sets for the conversion of

. . ™ I . - .
units. The mcrementFF(gLHwT?C (see Eq. (6.45) in this thesis) are computed for each iribliusepresentation
~ and subsequently folded (convoluted) to form the totalénmntsFégll){T;C, from which we obtairﬁégﬁm

and finally (see Eqg. (6.45) in this thesig) We report, additionally}%fliT;C for the symmetry block,, of

benzene which contains the non-zero first derivative of lbeti®nic transition dipole moment.

154



C. Supplementary data for chapter 6

C.2. Benzene

e Harmonic vibrational wavenumbers of the initial electiosiate incm™!:

1. aig(from oy to 02)
3398.9256 1033.0985

2. an(ﬁg)
1481.7300

3. bog(from 4 to vs)
1022.0643 712.6271

4. e1g(from g to o7)
869.5370 869.5370

5. egg(from 778 to 7715)
3369.2220 3369.222 1730.1965 1730.1964 1263.3599
1263.3599 646.1398 646.1398

6. azu(ﬁm)
705.3327

7. blu(from v17 to 1313)
3358.8251 1086.1432

8. bgu(from V19 tO 1324)
1611.6583 1611.6583 1104.9068 1104.9068 1332.6123
1168.7674

9. elu(from a5 tO 1726)
3387.7258 3387.7258

10. egu(from o7 to 173())
990.7565 990.7565 426.6068 426.6068
1.

e Harmonic vibrational wavenumbers of the final electronatesfncm ™ ":

1. aix(from 71 to )
3417.7683 963.1593

2. azg(ﬁé)
1457.6221

3. bag(from 7} to o)
693.6713 482.2731

4. e14(from g to 77)
593.2363 593.2363

5. egg(from 7§ to 715
3389.0368 3389.0368 1665.3003 1665.3003 1236.7103
1236.7103 575.1367 575.1367

6. asu(1s)
522.9955
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C. Supplementary data for chapter 6

7. biu(from o4 to 1)
3381.1447 1056.0267

8. bau(from 714 to i74,)
1532.9517 1532.9517 960.6835 960.6835 1854.6937
1253.8107

9. e1u(from 5 to Dhg)
3404.0649 3404.0649

10. eay(from o4, to %)
674.4727 674.4727 291.7207 291.7207

C.2.1. Electronic transition dipole moment

e Electronic transition dipole moment (iD):
B, = (0.0,0.0,0.0)"

o First derivatives of electronic transition dipole momehspmmetry grougeszg (in D/(/f\ * \/u):
HLS = (0.00000, 0.30540, 0.00000)°

ﬁ/yg = (0.30540, 0.00000, 0.00000)*

w!, = (0.00000, —0.17945, 0.00000)"
i : = (0.17945, 0.00000, 0.00000)"
1= (0.00000, —0.11900, 0.00000)"
“ ¥ (0.11900, 0.00000, 0.00000)"
) 13 = (0.57095, 0.00000, 0.00000)"
i/ = (0.00000, —0.57095, 0.00000)"

C.2.2. Maximum mode excitation numbers

® Alg

0K

Tol. set Max. quantum numbers  [7%s) p{f1e)] # of integrals
| <210/00 > [0.00, 16467.13] 33
[ <2900 > [0.00, 15503.97] 30
300 K

Tol. set Max. quantum numbers  [%s) p{1e)] # of integrals
| <210/02 > [—2066.20, 16467.13] 99
[ <29[02 > [—2066.20, 15503.97] 54
500 K

Tol. set  Max. quantum numbers [Df;f),ﬁf:;)%)] # of integrals
| < 211[14 > [—7531.32, 17430.29] 272
[ <210]13 > [—7531.32, 17430.29)] 204
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C. Supplementary data for chapter 6

® A2o

e bog

® Cig

® E2g

0K

Tol. set
|
1l

300 K

Tol. set
|
1l

500 K

Tol. set
|
Il

0K

Tol. set
|
1]

300 K

Tol. set
|
1]

500 K

Tol. set
I
I

0K
Tol. set

300 K
Tol. set

500 K
Tol. set

Max. quantum numbers

< 2|0 >
< 0|0 >

Max. quantum numbers

<21 >
<21 >

[—1481.73, 2915.24]
[—1481.73, 2915.24]

Max. quantum numbers

< 3|3 >
< 2[2 >

[—4445.19, 4372.87]
[—4445.19, 4372.87]

Max. quantum numbers

<6600 >
< 66/00 >

Max. quantum numbers

< 78|24 >
< 66|23 >

[—4894.64, 8713.88]
[~ 4182.01, 7055.67]

Max. quantum numbers

< 810[46 >
< 68]35 >

[—8364.02, 10372.10)
[—8364.02, 10372.10]

Max. quantum numbers

<6600 >
<6600 >

Max. quantum numbers

<7733 >
< 66|22 >

[—5217.22, 8305.31]
(—3478.15, 7118.84]

Max. quantum numbers

< 99155 >
< 77|44 >

[—8695.37, 10678.25]
[—8695.37, 10678.25]

(azg) ~(a2g)]

[l/mm 1Vmax

[0.00, 2915.24]
10.00, 0.00]

oz ace]

[~(32g) ~(32g)]

min ! Vmax

[V(ng,) ~(b2g)]

‘min  Ymax

[0.00, 7055.67]
[0.00, 7055.67]

[V(ng,) ~(b2g)]

min 'Ymax

[ 52y

[l/(elg) ~(‘31g)]

[0.00, 7118.84]
[0.00, 7118.84]

(e1g) ~(81g,)]

[l/mm 1"Vmax

(e1g) ~(81g,)]

[ymm "Wmax

# of integrals
3
1

# of integrals
6
6

# of integrals
16
9

# of integrals
49
49

# of integrals
1080
588

# of integrals
3465
1512

# of integrals
49
49

# of integrals
1024
441

# of integrals
3600
16
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C. Supplementary data for chapter 6

Max. quantum numbers

< 22333355[/00000000 >
<11222244|00000000 >

Max. quantum numbers

< 22333366/00112244 >
< 11222255/00111144 >

Max. quantum numbers

<22334499|11223388 >
< 11333388|11223377 >

0K

Tol. set

|

1

300 K

Tol. set

|

1]

500 K

Tol. set

I

1]

® a2y
0K
Tol. set
|
1l
300 K
Tol. set
|
1l
500 K
Tol. set
|
Il
° blu

0K
Tol. set
|
1
300 K
Tol. set
I
1
500 K
Tol. set

< 6]0 >
< 4|0 >

<714 >
< 5|3 >

<96 >
<715 >

< 22|00 >
< 02|00 >

< 23|02 >
<02]/02 >

< 24|14 >
<1313 >

Max. quantum numbers

Max. quantum numbers
[—2821.33, 3660.97]
[—2116.00, 2614.98]

Max. quantum numbers
[—4232.00, 4706.96]
[—4232.00, 4706.96]

Max. quantum numbers

Max. quantum numbers
[—2172.29, 9930.37]
[—2172.29, 2112.05]

Max. quantum numbers
[—7703.40, 10986.40]
[—7703.40, 10986.40)]

(e2g) ~(e2g)
[l/mm Wmax

] # of integrals

[0.00, 18552.05]
[0.007 10108.67]

[l/(ezg) ~ (e2g)

[—13682.95, 30968.21]
[—9892.87, 16314.96]

[y(ezg,) ~(e2g)
min Ymax

[—31577.63, 43794.09]
[—31577.63, 43794.09]

[V(azu) '~r(:a2;)]

[0.00, 3137.97]
[0.00, 2091.98]

[l/(azu) ~(a§§)]

[l/(a2u) ~ a;;)]

[ (blu) ~(ba1;)]
0. OO 6762.29]
[0.007 2112.05]

7 (b1u) blu)]

Vhin  Ymax

7 (b1u) blu)]

Vhin  Ymax

] # of integrals
2111504
116539

] # of integrals
468744712
47153622

# of integrals
7
5

# of integrals
40
24

# of integrals
70
48

# of integrals
5
3

# of integrals
24
9

# of integrals
54
31
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o b2u

® Cily

® Coy

0K
Tol. set
I

1

300 K

Tol. set
I
1]

500 K

Tol. set
|
1]

0K

Tol. set

| <
1] <

300 K

Tol. set

| <
1] <

500 K

Tol. set

| <
1] <

0K
Tol. set
|

I}

300 K

Tol. set
|
I}

500 K
Tol. set

Max. quantum numbers
<62/00 >
<6100 >

Max. quantum numbers
<7222 >
<6212 >

Max. quantum numbers
< 83|34 >
<6333 >

Max. quantum numbers
222244|000000 >
112244000000 >

Max. quantum numbers
222244001122 >
112244|001122 >

Max. quantum numbers
223355(112244 >
112244112233 >

Max. quantum numbers
< 6666|0000 >
< 6666|0000 >

Max. quantum numbers

< 7710102266 >

< 6688|2255 >

Max. quantum numbers

| < 881515(441111 >

< 771212|4499 >

[p{b2w) pibau)y # of integrals
[0.00, 13635.78] 21
[0.00, 12381.97] 14

[p{b2w) pibau)y # of integrals

[—5002.76, 15490.48] 160
[—3670.15, 13635.78] 50
[p(P2u) plbau)] # of integrals
[—8672.91, 18598.98] 720
[—8672.91, 18598.98] 286
[plem) plen) # of integrals
[0.00, 13616.26] 121
[0.00, 7685.47] 92
[Dfr‘fil;) ANEY # of integrals
[~7642.94, 21301.73] 5748
[—6031.29, 11089.53] 1063
[ij};‘) S # of integrals
[—22061.34, 32420.80] 495896
[—22061.34, 32420.80] 11949
[ijfn“) AN # of integrals
[0.00, 9844.00] 1105
[0.00, 8093.67] 241
[Dr(jfn“) AN # of integrals
[—9082.31, 15277.03] 1425984
[—8229.09, 12761.20] 598596
[plean) plean)] # of integrals
[—17311.40, 19543.18] 74649600
[—17311.40, 19543.18] 27040000
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C.2.3. Mode coupling error
e Total (Fig. 6.2)

N ee/% = (1 — Floiir.) /%
T=0K(%) | T=300K(%) [ T =500K(%) [ T = 1000 K(%)
0 100.00 100.00 100.00 100.00
1 84.38 91.12 98.16 99.99
2 14.85 50.76 89.14 99.94
3 1.53 35.14 80.54 99.80
4 0.11 13.17 61.63 99.37
5 0.01 6.79 48.72 98.53
6 0.00 1.94 31.18 96.80
7 0.75 21.12 93.99
8 0.17 11.50 89.69
9 0.05 6.65 83.59
10 0.01 3.14 76.21
11 1.56 66.84
12 0.65 57.44
13 0.28 46.71
14 0.10 37.49
15 0.04 28.01
16 0.01 20.89
17 0.00 14.27
18 9.85
19 6.14
20 3.91
21 2.22
22 1.30
23 0.68
24 0.36
25 0.17
26 0.09
27 0.04
28 0.02
29 0.01
30 0.00

e Forez, (Fig. 6.3)

v ee/% = (1 — Floiir.) /%
T=0K(%) | T=300K(®) [ T =500K(%) [ T = 1000 K(%)
0 100.00 100.00 100.00 100.00
1 0.25 12.82 42.30 86.37
2 0.01 5.43 22.05 65.54
3 0.00 0.43 6.49 48.02
4 0.05 1.37 22.16
5 0.00 0.32 14.51
6 0.03 3.86
7 0.01 2.32
8 0.00 0.34
9 0.19
10 0.01
11 0.01
12 0.00
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D. Explicit expressions for chapter 7

D.1. General remarks

In this appendix we present explicit expressions for theetigments of chapter 7, as for a special case of
thermally averaged initial state because the expressio@h.i 7 are general expressions allowing for individual
temperatures for each mode. Herein, only the initial setbérmally excited and all vibrational modes are at
a finite temperatur& and non-Condon effects are ignored. TKedimensional spac&” belongs to the initial
state and théV-dimensional spack does to the final state in this appendix.

D.2. Resonance Raman scattering

e Amplitude
The first (Condon) term of resonance Raman (rR) amplitudegi(E14) is given as follows,
G?FYY (TcFv 2/ (7); Avy; kg, Opk) = Gnyy (1,2 (7); 0; T Ui ) (D.1)

where we do not have thermal excitatiohyy = 0, an N-dimensional square zero matrix) for single
vibronic levels {5, Uk)- 2’ () is given in Eq. (4.43). The explicit expression is then gitgn

G(I:;YY (17 Z/(T)§ 0; QKBv QBK)

Nfé’ié Nfé’ié ’ sxr—1~ xr—1
= H H / / GY (Z (T))HQKB \UBK (WCF ch’ WcF ) (D2)
U_Bx’U_KX U_BX ’U_K

X
Precisely the first part is expressed with determinant apdreential functions
Gy (2 (7)) = det(I + 2/ (1) Wyyz (7)) /2 det(I — 2’ (1) Wyyz (7)) '/2
exp(ﬂ,z/(T)(I + Z/(T)WyyZ/(T))ilzl(T)fY) , (D.3)

with the Doktorov matrices and vectors in Eq. (2.98),

Wyy =1-2P, r, =V2(I-P)J. (D.4)
For the multi-variate Hermite polynomial (MHP) part, the@aeters are given as follows,
S L (Wix+ Wix)Z(1) (Why - Wyy)(#(7))
WCF(Z (7)70) =35 XX N)—(X / XX "“i(X / 5 (D5)
2 (W;r(x - Wix)(Z'(7)) (W;L(X + Wi x)(2' (7))
oy
. 1N, _(rx (z'(7))
t«:F(Z (T)7OYY) = <f}(z’(7’)) ) (D6)
with the quantities in Egs. (2.130) and (2.131) in which
Wxx =1-2Q, Wxy =—2R, Wyx =—2R", (D.7)
are used.
e Intensity

The explicit rR intensity time-correlation function (TCE&Xpression of Eq. (7.22) in Condon approxi-
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D. Explicit expressions for chapter 7

mation is given for the thermally averaged initial state,

Gf%(bldiag(z(t), z(t)),2 (7),2' (7'); 0, bldiag(X, A) % )
1

— Gy (2 (7)Gy(Z (7))*
Tr(exp( ) (z'(m)Gy (2 (7))

1
2

Ton [1  bldiag (z(t), 2(t), z(t), z(t))va,R <z’(7), 2/ (7'); 0, bldiag (X, A)

) bldiag (z(t), 2(t), z(t), z(t))
, %bldiag(z(t),z(t), z(t),z(t))er (z/(T),z/(T/); 0, bldiag(, A)%) } ,

(D.9)

o~ 1

whereZ,y is the Gaussian integral defined in Eq. (2.122), 8¢k (z'(7), z'(7'); 0, bldiag(\, X)2)
1

andr  (z'(7),2z'(7'); 0, bldiag(A, A) 2 ) can be found in Eq. (7.17) and Eq. (7.23), respectively.

D.3. Single vibronic level transition

In this section we present the explicit expression for EQ&Yof non-thermally excited final states.

K ~
Govy (2,2/;0;0)

1

= (ﬁ;i> Gy(z/)”r'-lgx ((QZW}XZ)_IE}; (QZWj(XZ)_l) 7

(D.10)
where the quantities\xf}x, 7y ) defined in Egs. (2.130) and (2.131) are used with Egs. (Ihd)B.8).

D.4. Anharmonic transition

Eq. (7.35) can be evaluated with Eq. (D.2) in Condon apprafion,i.e.

! !~ ~
Ga(L,z';cn, Cm s Vg Upk)

/ ,* *
CoryimCup/y imCup inCok in
{vk o {ve ¢ H vk v }

1 1 1 1
T 2 2 T 2 2 / wW-ls .w-!
H H , , GY(Z )HQKBaﬁBK (WCF ECF;WCF )
’Uin”UiKX Bx’vKX

(D.11)
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