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Abstract Vibronic (vibrational-electronic) transition is one of the fundamental processes

in molecular physics. Indeed, vibronic transition is essential both in radiative and non-

radiative photophysical or photochemical properties of molecules such as absorption, emis-

sion, Raman scattering, circular dichroism, electron transfer, internal conversion, etc. A de-

tailed understanding of these transitions in varying systems, especially for (large) biomolecules,

is thus of particular interest.

Describing vibronic transitions in polyatomic systems with hundreds of atoms is, how-

ever, a difficult task due to the large number of coupled degrees of freedom. Even within

the relatively crude harmonic approximation, such as for Born-Oppenheimer harmonic po-

tential energy surfaces, the brute-force evaluation of Franck-Condon intensity profiles in a

time-independent sum-over-states approach is prohibitive for complex systems owing to the

vast number of multi-dimensional Franck-Condon integrals.

The main goal of this thesis is to describe a variety of molecular vibronic transitions,

with special focus on the development of approaches that areapplicable to extended molec-

ular systems. We use various representations of Fermi’s golden rule in frequency, time

and phase spaces via coherent states to reduce the computational complexity. Although

each representation has benefits and shortcomings in its evaluation, they complement each

other. Peak assignment of a spectrum can be made directly after calculation in the fre-

quency domain but this sum-over-states route is usually slow. In contrast, computation is

considerably faster in the time domain with Fourier transformation but the peak assignment

is not directly available. The representation in phase space does not immediately provide

physically-meaningful quantities but it can link frequency and time domains. This has been

applied to, herein, for example (non-Condon) absorption spectra of benzene and electron

transfer of bacteriochlorophyll in the photosynthetic reaction center at finite temperature.

This work is a significant step in the treatment of vibronic structure, allowing for the

accurate and efficient treatment of complex systems, and provides a new analysis tool for

molecular science.
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Kurzfassung Absorption von Licht und der darauf folgende Elektronentransfer in pho-
tosynthetischen Systemen sind entscheidende Prozesse in unserem Alltag. Die Verbesserung
von Kontrolle und Effizienz dieser Prozesse ist eine Herausforderung im Hinblick auf die
weltweite Nahrungs- und Energieversorgung. Diese Art von Prozessen wird jedoch dadurch
kompliziert, dass Absorption, Emission und Lichtstreuungverschiedene strahlungslose moleku-
lareÜbergänge wie Ladungswanderung, innere Umwandlung und Interkombinationsübergänge
nach sich ziehen können. Ein genaues Verständnis dieser Prozesse auf molekularer Ebene
in verschiedenen Systemen ist daher von besonderem Interesse.

MolekulareÜbergangsprozesse werden durch Wechselwirkungen zwischen Kernen, Elek-
tronen, der Umgebung und äußeren Feldern (z. B. elektromagnetischen) bestimmt. Das
Zusammenspiel von vibratorischen und elektronischen (vibronischen) Freiheitsgraden der
Moleküle spielt typischerweise eine bedeutende Rolle in molekularen (vibronischen)̈Uber-
gängen. Ein molekularer vibronischerÜbergang wird für gewöhnlich durch Fermis goldene
Regel (FGR), die sich aus der zeitabhängigen Störungstheorie ableitet, als eine das abso-
lute Quadrat vonÜbergangsmomenten enthaltendeÜbergangsgeschwindigkeitskonstante
beschrieben. Laut dem Ausdruck für dieÜbergangsgeschwindigkeitskonstante in der Ba-
sis der Born-Oppenheimer-Wellenfunktionen ist einer der Schlüsselbeiträge zu vibronis-
chenÜbergängen der Franck-Condon-Faktor (FCF). Der FCF ist definiert als das Abso-
lutquadrat des̈Uberlappungsintegrals zwischen zu verschiedenen elektronischen Zuständen
gehörenden Schwingungswellenfunktionen.

Die theoretische Beschreibung vibronischerÜbergänge großer polyatomarer Systeme
(mehr als 100 Atome) ist jedoch wegen der hohen Dimensionalität eine schwierige Auf-
gabe. Sogar in einer relativ groben harmonischen Näherungwie den harmonischen Born-
Oppenheimerschen Potentialhyperflächen ist die theoretischebrute-force-Berechnung der
FC-Intensitätsprofile durch eine Summenbildung über diezeitunabhängigen Zustände für
komplexe Systeme wegen der gewaltig großen Zahl multi-dimensionaler FC-Integrale un-
geeignet.

Das Hauptziel dieser Arbeit ist die Beschreibung einer Vielzahl molekularer vibronischer
Übergänge, insbesondere der Entwicklung von Herangehensweisen, die auf ausgedehnte
molekulare Systeme anwendbar sind. Wir haben verschiedeneDarstellungen von FGR in
Frequenz-, in Zeit- und, zur Verringerung des Rechenaufwandes über kohärente Zustände,
in Phasenräumen verwendet. Jede Darstellung hat Vor- und Nachteile in ihrer Auswer-
tung, aber alle ergänzen einander. Die Signalzuordnung des Spektrums zu verschiede-
nen Quantenzustandsübergängen kann direkt nach der Berechnung in der Frequenzdomäne
vorgenommen werden, doch ist dieser Weg über die Summierung von Zuständen normaler-
weise zeitintensiv. Im Gegensatz dazu ist die Berechnung über Fouriertransformation in
der Zeitdomäne schneller, aber eine Zuordnung der Signalezu verschiedenen Quantenzus-
tandsübergängen ist nicht direkt möglich. Die Darstellung im Phasenraum liefert nicht so-
fort physikalisch bedeutsamen Größen, kann aber Frequenz- und Zeitdomäne verknüpfen.
Folglich können wir die molekularen̈Ubergangsspektren effizient berechnen, einschließlich
thermischer und Nicht-Condon-Effekte. Zusätzlich zur Effizienzsteigerung sind wir in der
Lage, die einzelnen Dynamiken der Schwingungsfreiheitsgrade während der elektronischen
Übergänge für relativ große Systeme zu analysieren.

Unsere Methode ist nicht nur auf molekularerÜbergänge anwendbar, sondern auf jedes
physikalische Problem, das eine Näherung über harmonische Oszillatoren enthält, beispiels-
weise Nichtgleichgewichtsdynamiken dissipativer Systeme.
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Notation

• Underline is used for vectors,i.e. v = (v1, · · · , vN )t =



v1
...
vN


 is anN -dimensional

column vector.t is transpose.

• Special vectors are defined for0 = (0, · · · , 0)t, 1 = (1, · · · , 1)t and1
2 = (12 , · · · , 12)t

• Bold font is used for matrices, for exampleA is anN -dimensional (real or complex)
square matrix.

• I is an identity matrix.

• 0 is a square zero matrix.

• ”diag” transforms anN -dimensional vector to anN -dimensional diagonal square
matrix which takes the diagonal elements from the vector,i.e. v = diag(v).

• ”bldiag” constructs a block diagonal square matrix from square matrices, i.e. A =
bldiag(a,b, c,d).

• A notation is defined for products of vector elements with powers,i.e.
∏n1,··· ,nN

x1,··· ,xN
=(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)
.

• A notation is defined for products of factorials of vector elements with powers,i.e.∏̃n1,··· ,nN

x1,··· ,xN = (
∏

k(x1,k!)
n1,k) · · · (∏k(xN,k!)

nN,k).

• A notation is defined for multi-dimensional partial derivatives, i.e. ∂̂
n1,··· ,nN
x1,··· ,xN

=(
∂
∑

k n1,k
∏

k ∂x
n1,k
1,k

)
· · ·
(

∂
∑

k nN,k
∏

k ∂x
nN,k
N,k

)
.

• An exponential functional is defined forJ [A, b;x] = exp(−1
2x

tAx+ btx).
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1. Introduction

Theoretical molecular spectroscopy [1–8] plays a pivotal role in molecular physics and
chemistry in complementing experimental techniques such as ultra-high resolution molec-
ular spectroscopy and ultra-fast pump-probe laser spectroscopy [9–11]. Femto- and atto-
second laser techniques can resolve fast processes like molecular vibration in the femtosec-
ond regime or electron dynamics in the attosecond regime. Especially zero kinetic energy
photo-electron (ZEKE-PE) spectroscopy in accompanying molecular beam techniques,e.g.
supersonic molecular beams [9,10] can provide high resolution (1 cm−1 = 1.2× 10−4 eV)
molecular spectra in electronic regime. Structural information and energy levels can be
obtained from vibronically (vibrational and electronic) or rovibronically (rotational, vi-
brational and electronic) resolved molecular spectra. Resonance frequencies are related
to the molecular energy level differences. Such propertiesfor large molecular systems
can typically only be interpreted with the help of electronic structure calculations (see
e.g. Ref. [12], for applications of density functional theory (DFT) [13–15] and its time-
dependent (TD) counter-part TDDFT [16]) and correspondingvibrational analyses. In ad-
dition, line strengths (intensities of spectral band lines) and the corresponding peak widths
provide information about the molecular transition probabilities and lifetimes of the cor-
responding molecular states, respectively. Spectra of large polyatomic systems (hundreds
of atoms) are usually quite congested such that analyses of the spectra are demanding be-
cause of huge density of states (DOS). Therefore it is necessary to simulate the molecular
spectra theoretically with proper molecular model systems(seee.g.[17–19]), especially for
complex systems.

A simple theoretical model of molecular transitions between two electronic states, ac-
companied by vibrational motions (i.e. vibronic transitions), is commonly adopted to ex-
plain various molecular processes. This vibronic transition model has been used to ex-
plain molecular transition processes (see Fig. 1.1) such as1 one-photon absorption (OPA)
(seee.g. Refs. [12, 21–54]), one-photon emission (OPE) (seee.g. Refs. [55–59]), res-
onance Raman (rR) scattering (seee.g. Refs. [17, 60–76]), electron transfer (ET) (see
e.g. Refs. [77–89]), internal conversion (IC) (seee.g. Refs. [90–95]) and inter-system
crossing (ISC) (seee.g. Ref. [96]). The vibronic transition probabilities betweentwo elec-
tronic states are proportional to the Franck-Condon factors (FCFs), the absolute square of
overlap integrals between vibrational states of differentelectronic states. For the theoretical
description of such vibronic transitions, the FCFs need to be computed. The calculation
of vibronic transition spectra is, however, not an easy taskbecause the number of Franck-
Condon (FC) integrals to be evaluated for the spectra grows rapidly with increasing sys-
tem size, temperature, energy window and coupling between vibronic states. In this thesis
possible ways are suggested to reduce computational efforts to describe various molecu-
lar vibronic transitions of large molecular systems by bridging frequency and time domain

1c.f. One-photon infrared (IR) transition (seee.g. Refs. [1, 20]) can be considered as a vibronic transition
within one electronic state.

1



1. Introduction
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OPA OPE (fluorescence)
rR
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ωad
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ET / ISC

S2

IC

T1

Figure 1.1.: Intramolecular transitions are illustrated in terms of reaction coordinate (internal
nuclear coordinate) and BO PESs. Each parabola (S0, S1, S2, T1) represents electronic PES.
The transitions are illustrated only between these parabolas for simplicity. One-photon absorp-
tion (OPA) is an optical transition from singlet ground state (S0) to singlet excited state (S1)
with transition angular frequency (ω). One-photon emission (OPE) is a radiative transition
from the singlet excited state (S1) to the singlet ground state (S0) with transition angular fre-
quency (ωS). Resonance Raman (rR) scattering is a two photon process invoking the incident
light (ω) and scattering light (ωS). ωad is the adiabatic electronic transition angular frequency
andω0 is the adiabatic transition angular frequency including the vibrational zero-point energy
difference between the two oscillators. Internal conversion (IC) and ISC are the radiationless
transitions via nonadiabatic coupling without spin state change (S1 to S2) and with spin state
change (S1 to triplet T1). Electron transfer (ET) is a radiationless transition as well to the
charge transfered state.

representations of vibronic spectra via Glauber’s coherent states (CSs) (complex Gaussian
wavepackets) [97,98].

In the following subsection we review the two-electronic-state model system of vibronic
transition between BO electronic PESs. Afterwards we indicate molecular transition prob-
lems treated in this thesis and outline possible solutions developed in the next four subsec-
tions. The achievements of this thesis are sketched in Sec. 1.1. This introduction chapter is
summarized and the outline of this thesis is given in Sec. 1.2.

Vibronic transition The theoretical description of molecular electronic transitions is
primarily based on the BO approximation [99] which involvesa product ansatz of electronic
and nuclear wavefunctions. The fast electronic degrees of freedom (DOF) (rel) and the slow
DOF of the nuclei (rnu) are assumed to be separable within the BO approximation. The
electrons are assumed to be moving so fast that nuclei appearto be stationary on that scale.
The DOF of the nuclei therefore are treated as parametric variables for the electronic wave-
functions so that the motion of nuclei changes adiabatically on an electronic energy surface

2



1. Introduction

without crossing2 to other surfaces. With this approximation the molecular adiabatic wave-
functions (〈rel, rnu|ψmol

i,n 〉) are expressed in a product form ofi-th electronic (〈rel, rnu|ψel
i 〉)

andn-th nuclear (〈rnu|ψnu
i,n〉) wavefunctions,i.e. 〈rel, rnu|ψmol

i,n 〉 = 〈rel, rnu|ψel
i 〉〈rnu|ψnu

i,n〉.
The nuclear wavefunctions are often further approximated as a product of rotational (ψro)
and vibrational (ψvib) wavefunctions. One should employ Eckart conditions [101]to min-
imize the coupling between rotational and vibrational DOF (see also Sec. 2.2) to support
this approximation. The molecular wavefunction is then expressed as products of three
wavefunctions,i.e.

〈rel, rnu|ψmol
i,n 〉 = 〈rel, Q|ψel

i 〉〈θ, ϕ, χ|ψro
i,nr

〉〈Q|ψvib
i,nv

〉, (1.1)

wherenr andnv are quantum numbers of rotational and vibrational wavefunctions respec-
tively, and(θ, ϕ, χ) are Euler angles.Q is a normal coordinate vector withN -dimension
which is three times the number of atoms minus six(five) trivial DOF, i.e. N = 3Natom −
6(5) for nonlinear molecules (for linear molecules). Coupling between distinct adiabatic
PESs is in this picture induced by the nuclear kinetic energyoperator. This is called diabatic
(nonadiabatic) coupling beyond the BO approximation. Conventional electronic structure
calculations provide the BO multi-dimensional PESs as a function of vibrational coordinates
(Q)3. The rovibrational wavefunctions are estimated from a rovibrational Hamiltonian con-
strained to a specific BO (non-crossing) adiabatic PES.

The intramolecular (optical or radiationless) processes (see Fig. 1.1) are considered as
electronic transitions between two distinct BO PESs. According to BO and FC the elec-
tronic motion is so fast compared to the nuclei, that the nuclei do not move during the
electronic transition. When a molecule undergoes an electronic transition, the molecular
structure reorganizes and relaxes to the new equilibrium structure of the new BO PES while
the molecule is vibrating to adjust to the new PES. Various molecular vibronic transitions
are illustrated in Fig. 1.1. In addition to these, also othervibronic transitions like electronic
circular dichroism (ECD) (seee.g.Ref. [102]) and two photon absorption and emission (see
e.g.Ref. [3]) are usually described via Fermi’s golden rule (FGR) [103,104] resulting from
TD perturbation theory within the BO picture. The FGR equation is originally a rate expres-
sion. The rate is proportional to the absolute square of the matrix elements for a transition
moment operator (̂M ) and the DOS (ρ), i.e. the transition rate from state|i〉 to |f〉 is

Γfi =
2π

~
|〈f |M̂ |i〉|2ρ. (1.2)

To be specific, for instance the cross sections of OPA (σOPA(ω;T )) and the rate of OPE
(ΓOPE(ω;T )) between two electronic states, initial (|i〉 = |ψel

i 〉) and final (|f〉 = |ψel
f 〉)

respectively, at a transition frequencyω and at a finite temperature (T ) is proportional to a
common4 spectral density function (SDF) (ρOP(ω;T ))5. The (isotropically averaged) SDF

2cf. Two PESs of the same irreducible representation can meet to form a conical intersection near crossing
points, the BO approximation breaks down (seee.g.Ref. [2, 100]).

3cf. In crude adiabatic approximation, the electronic wavefunction has no nuclear coordinate dependence such
that it includes only one specific nuclear structure as a parameter (seee.g.Ref. [2]).

4However, initial and final electronic states should be reversed for the emission process compared to the
absorption process because emission process is from the excited state to the lower energy state.

5The dimension ofρOP(ω;T ) is [Electric dipole moment]2

[Energy]
, i.e. [C·m]2

[J]
.
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1. Introduction

is obtained from FGR (seee.g.Refs. [51,52,54,65,70,75,95].), such that

σOPA(ω;T ) =
4π2

3

(
α0

e20

)
(~ω)ρOP(ω;T ), (1.3)

ΓOPE(ω;T ) =
4

3~3c20

(
α0

e20

)
(~ω)4ρOP(ω;T ), (1.4)

wheree0, ε0 andc0 are the charge of a proton, the electric constant and the speed of light

in vacuum, respectively, andα0 =
e20

(4πε0)~c0
is the fine-structure constant. Within the BO

adiabatic approximation the (non-Hermitian) model Hamiltonian of a two-electronic-state
system for the vibronic transitions would read [34]

Ĥmol
fi = |i〉Ĥvib

i 〈i|+ |f〉(~ωad + Ĥvib
f − i~Γ/2)〈f |, (1.5)

whereωad is the electronic adiabatic transition frequency (see Fig.1.1) between electronic
states|f〉 and |i〉. Γ/2 is related to the inverse lifetime6 of the final electronic state and
the initial state is assumed to have infinite lifetime.̂Hvib

i and Ĥvib
f are the vibrational

Hamiltonians of initial and final electronic states respectively, i.e.

Ĥvib
i = −1

2 P̂ · P̂ + V̂i(Q̂),

Ĥvib
f = −1

2 P̂
′ · P̂ ′

+ V̂f (Q̂
′
), (1.6)

whereQ̂ and Q̂
′

are the mass-weighted normal coordinates (hereafter normal coordinate

refers to the mass-weighted one) of initial and final states respectively, and̂P and P̂
′

are
the conjugate momenta.̂Vi andV̂f are the corresponding potential energies7. The specific
form of the approximate interaction Hamiltonian (Ĥ int) at timet depends on the transition
considered. For an electric dipole transition one commonlytreats, for instance, the interac-
tion between a transition dipole moment (TDM) (µ̂

elec
) and a time-dependent electric field

(E(t)) as classical,

Ĥ int = −µ̂
elec

·E(t), (1.7)

µ̂
elec

= |f〉µ̂(Q)〈i| + |i〉µ̂(Q)†〈f |, (1.8)

whereµ̂(Q) = 〈f |µ̂
elec

|i〉 is the electronic TDM which has been averaged over electronic
DOF. For freely rotating molecules (e.g. in the gas phase) the isotropic approximation can
be made to the polarization direction of light,i.e. the angular dependency of the electric
transition dipole moment (̂µ

elec
· E(t)) can be ignored after taking the isotropic rotational

average over the polarization vector of light (seee.g. [3, 17]). The averaged factor (1
3 ) is

included already in the prefactors of Eqs. (1.3) and (1.4). We can express the SDF in terms

6In principle the line widths of vibronic levels can vary, butwe assume here that the line widths depend only
on the electronic levels,i.e. the line widths of vibronic transitionsΓv,v′/2 are assumed to be constant (Γ/2)
(seee.g.Ref. [17]). The assumption is related to the homogeneous line broadening arising from the (rapidly
fluctuating) system-bath interaction (seee.g.Ref. [5]).

7The potential energy surfaces and the corresponding minimaare usually different from each other for different
electronic states. We allow for different normal coordinate systems with their origins shifted to the minimum
of each electronic PES.
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1. Introduction

of electronic, rotational and vibrational wavefunctions via TD perturbation theory,i.e.

ρOP,L(ω;T ) =
∑

nv,n′
v,nr,n′

r

pnv(T )pnr(T )|〈Ψvib
f,n′

v
|〈Ψro

f,n′
r
|〈f |µ̂

elec
|i〉|Ψro

i,nr
〉|Ψvib

i,nv
〉|2

L(ω, ωad + ωn′
v,nv + ωn′

r,nr ; Γ), (1.9)

L(ω, ω; Γ) =
1

π
· (~2Γ)

[~(ω − ω)]2 + (~2Γ)
2
, (1.10)

whereωn′
v,nv andωn′

r,nr are the vibrational and rotational transition frequencies, respec-
tively, between the two electronic states.pnv(T ) andpnr(T ) are the thermal populations
of initial vibrational and rotational levels, respectively. In Eq. (1.9) a Lorentzian line shape
functionL defined in Eq. (1.10) with full width at half maximum (FWHM) ofΓ is used as
DOS for the two-state-model Hamiltonian (Eq. (1.5)) that accounts for a finite lifetime of
the final state.L approaches to a Diracδ-distribution for decreasingΓ and SDF corresponds
in this limit to a stick representation. For spectra that arerotationally not-resolved,ωn′

r,nr

can be ignored in the distribution function of DOS with assumptions (ωn′
v,nv ≫ ωn′

r,nr)
8

and (Γ ≫ ωn′
r,nr). Then the rotational part can be factored out from the SDF. Finally the

vibronic transition problem is simplified to be a transitionbetween two sets of vibrational
wavefunctions with the transition moment operatorµ̂(Q) (Eq. (1.11)),i.e.

ρOP,L(ω;T ) ≃
∑

n′
v,nv

pnv(T )|〈Ψvib
f,n′

v
|µ̂(Q)|Ψvib

i,nv
〉|2L(ω, ωad + ωn′

v,nv ; Γ), , (1.11)

in which the sum rule
∑

nr,n′
r
pnr(T )|〈Ψro

f,n′
r
|Ψro

i,nr
〉|2 = 1 is used. Neglecting rotational

DOF would be still a reasonable approximation for large or randomly oriented condensed
phase molecules because those molecules are mostly in a rotationless state (seee.g.Refs. [6,
17]) and the polarization directional vector of the electric field is fixed in space.

The vibrationally resolved ECD (seee.g. Ref. [102]) and rR (seee.g. Ref. [6]) cross
sections can be expressed in a similar way. The major difference that appears in ECD
is that it includes a coupling term of electronic and magnetic TDMs, i.e. the rotational
strength (seee.g. Ref. [20]). And for rR the transition moment is frequency dependent
(see Ch. 2). Radiationless processes (ET, IC and ISC) involving the nonadiabatic coupling
operator (seee.g.Refs. [87,93–95,105]) are described by similar expressions to Eq. (1.11)
with slight modifications. As mentioned already, many molecular transition processes are
expressed via FGR in terms of a transition moment in the vibrational wavefunction basis.
Thus, the overlap between two vibrational wavefunctions, the FC integrals, are important in
understanding those molecular processes.

Evaluation of the sum-over-states expression (1.11) (alsocalled time-independent (TI)
frequency domain expression) is rather straightforward, if the vibrational wavefunctions as
well as the nuclear coordinate dependence of the transitionmoments are known. The TI
approach is beneficial in that it can provide information about individual peak intensities
naturally from the direct evaluation of the integrals. The peak assignment is important for
analyzing experimental spectral data and it is the main demand for the TI method. Even if

8The vibrational structure is then assumed to be embedded in the electronic structure and the rotational struc-
ture to be embedded in the vibrational structure.
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1. Introduction

the evaluation of the TI expression (1.11) is straightforward in the vibrational wavefunction
basis, the application is restricted to small molecular (typically tri- or tetra-atomic) sys-
tems considering the full molecular (anharmonic) Hamiltonian (seee.g.Refs. [53,106] and
Sec. 7.4) within the Condon approximation (µ̂(Q) ≃ µ

0
= a constant vector). Evaluating

FCFs of anharmonic oscillators in the TI fashion for extended systems is computationally
prohibitive because the anharmonic vibrational wavefunctions are typically expanded in a
large number of basis functions (e.g.harmonic oscillator basis set). The harmonic approxi-
mation to the BO PESs gives satisfactory results (seee.g. Refs. [36, 43–46]) for molecules
which have well separated initial and final BO surfaces and only small molecular structural
changes9 during the electronic transition. We may rewrite (approximate) the SDF (1.11)
within the harmonic oscillator model,

ρL(ω;T ) =
∑

v,v′

pv(T )|〈v′|µ̂(Q)|v〉|2L(ω, ω0 + ωv′,v; Γ), (1.12)

where|v〉 and|v′〉 are theN -dimensional harmonic oscillator eigenstates of initial and final
electronic states, respectively, in the occupation numbervector (ONV) representation.ω0

is the adiabatic vibronic transition frequency (see Fig. 1.1) andωv′,v corresponds to the
vibrational frequency difference of two harmonic eigenstates excluding the harmonic zero-
point frequency difference which has already been includedin ω0.

Within the validity of the FC approximation (µ̂(Q) ≃ µ
0
) and the harmonic oscillator ap-

proximation there still remains a challenging problem in evaluating Eq. (1.12) in the TI man-
ner for two multi-dimensional harmonic oscillators being not only displaced and distorted
but also rotated. When the molecule (multi-dimensional harmonic oscillators) undergoes an
electronic transition, it experiences the equilibrium structural change (displacement), po-
tential energy curvature change (distortion) and normal coordinate variation (rotation). The
two sets of normal coordinates are related (approximately)by a linear transformation, the
so called Duschinsky transformation (Ref. [107] and see also Sec. 2.2 for details),

Q′ = SQ+ d. (1.13)

This linear equation implies that the final stateN -dimensional normal coordinatesQ′ are
expressed by a rotation (withN × N matrix S) of the initial state normal coordinatesQ
with anN -dimensional displacement vectord. The Duschinsky effect is one of the main
reasons for asymmetry between absorption and emission spectra. It is responsible for the
broadening of vibronic spectra and the effect is enhanced (for specific vibrational modes)
when there are finite temperature effects (seee.g.Fig. 1.2). Small [108] pointed out that the
Duschinsky effect is as important as the vibronic coupling effects because the mode mixing
introduces a quadratic coupling between initial and final vibrational wavefunctions,i.e. the
Duschinsky effects must be considered for vibronic coupling problems. The importance of
Duschinsky mode mixing effect has been emphasized by many authors in various fields,
such as absorption processes (seee.g. Refs. [19, 44–47, 49]), resonance Raman scattering
(seee.g. Refs. [17, 56, 61, 64, 66, 67, 72, 73, 75, 109]), electron transfer processes (seee.g.
Refs. [59, 82, 86, 87, 110]), radiationless transitions (see e.g.Ref. [91, 94]), in photoexcited
state cooling processes (seee.g. Ref. [41]), vibronic coupling of electronic transitions (see

9e.g. the transitions from ground to the first excited states or first ionized states.
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1. Introduction

e.g.Refs. [80,108]) and molecular junction tunneling (seee.g.Ref. [111]).
When there is no Duschinsky rotation (S = I = an identity matrix), the FC integrals can

be separated into products of one-dimensional FC integrals, i.e.

〈v′|v〉 =
N∏

i=1

〈v′i|vi〉, (1.14)

which can be evaluated easily by one-dimensional Hermite polynomials (see Sec. 2.2).
However if the Duschinsky effect is dominant (S 6= I) then the multi-dimensional FC
integrals cannot be expressed as a simple product of one-dimensional FC integrals. Further-
more, the number of FC integrals to be evaluated grows steeply with increasing molecular
system size, temperature and vibronic transition energy (seee.g. Ref. [112]). Evaluation
of the huge number of multi-dimensional (inseparable) integrals make the TI description
of the FC transition computationally a hard problem. Moreover, when the zero-th order of
the TDM (µ

0
) is not dominant one has to consider the coordinate dependence of the elec-

tronic TDM (µ̂(Q)), i.e. the non-Condon effect. The computational problem becomes even
harder. FC-forbidden (|µ

0
| = 0) or weakly allowed FC (|µ

0
| ≃ 0) transitions are usually

described by a vibronic coupling intensity borrowing mechanism of Herzberg and Teller
(seee.g. Refs. [2, 4, 20]). Herzberg and Teller [113] expandedµ̂(Q) with respect to the
normal coordinates as follows,

µ̂(Q) = µ
0
+

N∑

i=1

µ′
i
Q̂i + . . . , (1.15)

whereµ′
i
is the first derivative with respect to thei-th normal coordinate (Qi) at the equilib-

rium structure of the initial state (Q = Q
0
)10. This expansion is called Herzberg-Teller (HT)

expansion. Usually the HT expansion contains only linear terms. In this case one refers to
the linear order expansion. When the expansion includes also higher order terms it is called
the nonlinear HT expansion.µ′

i
in Eq. (1.15) is a first derivative of a matrix element of a

perturbed Hamiltonian, with respect to thei-th vibrational coordinate, between the ground
and FC-allowed other excited electronic states (seee.g. Ref. [20] or Sec. 2.1). The SDF
that is necessary for describing the non-Condon effects canbe formulated as follows (in a
general form)

ρL(ω;T )
(f̂ ,ĝ) =

∑

v,v′

pv(T )〈v|ĝ∗|v′〉〈v′|f̂ |v〉L(ω, ω0 + ωv′,v; Γ), (1.16)

which includes general operatorŝf(P̂ , Q̂) andĝ(P̂ , Q̂), which are functions of momentum

(P̂ ) and position (̂Q) operators. When̂f = ĝ = µ
0

in Eq. (1.16) the FC SDF is recov-
ered. Momentum operators, coupling terms between momentumand position operators
and nonlinear operators could appear in the IC, ISC, anharmonic, rR and vibronic coupling
problems. Therefore the ability to access the non-Condon SDF (1.16) is essential in de-
scribing those kinds of molecular transitions beyond the Condon approximation. The term
”non-Condon” is, in this thesis, restricted to any transition problem involving polynomial

10The expansion can be made at any reference structure (seee.g.Ref. [49]).
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expression of transition operators. Here, transition operators could be momentum and posi-
tion operators. The term ”non-Condon integral” refers to the corresponding matrix elements
of non-Condon operators (f̂(P̂ , Q̂)).

Franck-Condon integrals and beyond A variety of methods to efficiently compute
multi-dimensional FC integrals within the harmonic approximation that account Duschin-
sky mode mixing effects have been previously developed (seee.g. Ref. [46] and citations
therein). Although the evaluation of FC integrals has a longhistory (seee.g. Ref. [114]),
fast evaluation of FC integrals is still demanding and it attracted recent interest (seee.g.
Refs. [115–121]). Especially for applications of large molecular systems the fast evaluation
of FC integrals is important. In order to deal with large polyatomic systems and many other
interesting quantum molecular problems like vibronic coupling effects involving these kind
of overlap integrals, it is necessary to improve the existing (recursive or iterative) FC integral
evaluation schemes. Usually the evaluation of linear HT-type integrals (〈v′|Q̂i|v〉) is based
on the FC integral evaluation schemes because the linear integrals can be decomposed into
two FC integrals exploiting the second quantized expression of position operators [36, 49].
In chapter 3, we suggest a general non-Condon integral evaluation scheme by exploiting the
CSs and the CS phase displacement operators [97,98] in the form of multi-variate Hermite
polynomials (MHPs) (see Ch. 3).

Franck-Condon factors and beyond Even with fast integral evaluation schemes at
hand, the brute-force evaluation of all inseparable integrals within a given transition en-
ergy window should be avoided due to the large vibrational DOS. It should be noticed that
usually only a tiny fraction of integrals contributes significantly to a given photophysical
quantity of interest (seee.g. Ref. [36]). There have been approaches to exploit this aspect
(seee.g. Refs. [44–46]) which classifies the integrals into vibrational excitation patterns11

(number of simultaneously excited vibrational modes12 and maximum excitation quantum
number of individual vibrational modes). They give satisfactory results with the reduced
basis set for large systems (e.g.156 atomic system in Ref. [46] for the FC transition at zero
Kelvin). Santoroet al. [44, 45] have devised a method to restrict the vibrational excitation
patterns according to the predefined total number of integrals. Therein the allowed number
of simultaneously excited vibrational modes in the FC integrals increases until the conver-
gence criteria are fulfilled (total number of FC integrals and total sum of FCFs). Similar to
other types of convergence strategies (seee.g. Refs. [43, 122–124]) it is difficult to guess
the quality of the calculationa priori before the evaluation of individual FC integrals is
performed.

Jankowiak, Stuber and Berger [46] have solved this problem by introducing a CS-based
generating function (GF) approach [24–29, 125] for FC transition processes at zero Kelvin
where the initial vibrational state stays always to the vibrational ground state. It was shown
that one can restrict the vibrational excitation patterns and estimate the error bounds of a
corresponding calculation, before individual integrals are evaluated, via applying a thresh-
old to the total FC intensity (summation of FCFs). This is called integral prescreening [46],
because unimportant batches of integrals can be excluded before an individual integral is

11subset in vibrational ONV space
12number of non-zero vibrational quantum numbers in the FC integrals
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1. Introduction

calculated. One is able to simulate a FC transition spectrumat zero Kelvin for a relatively
large system in frequency domain with this error bound control strategy within a reasonable
computing time. This FCF GF approach is the foundation of this thesis. To illustrate the
FC GF idea we consider an overlap integral of two identical ground state oscillators as an
example,

〈0|0〉 = 1. (1.17)

By expanding with the final vibrational eigenstates via a resolution of the identity, the over-
lap integral is expressed as a sum of FCFs and the integral value is conserved as long as the
resolution of identity is retained,

〈0|0〉 =
∞∑

v′=0

〈0|v′〉〈v′|0〉 =
∞∑

v′=0

|〈v′|0〉|2 = 1. (1.18)

If one knows in advance a set of quantum numbers (∈ S) which makes the summation close
to unity within a given tolerance before one computes a huge number of the individual FC
integrals,

∑

v′∈S
|〈v′|0〉|2 ≃ 1, (1.19)

one would be able to control the FC spectral calculation withthe threshold. Then, the
question is how we can find a set according to the predefined total intensity tolerance. We
can exploits the GF idea to control the FCFs by introducing GFparametersz′, i.e.

G̃(z′;T = 0) =

∞∑

v′=0

|〈v′|0〉|2
N∏

k

(z′k)
2v′k . (1.20)

Comparing to Eq. (1.12) the GF parameters in Eq. (1.20) are related to the DOS13. Ex-
ploiting the analytic expression (product of determinantsand exponential functions) from
the CS phase space integration corresponding to the series summation expression (1.20),
the prescreening strategies can be constructed (Ref. [46] and see also Ch. 4). Using the
summation (1.20) by assigning numbers toz′k, e.g.0 for freezing the mode excitation and 1
for summing over all excitation, the precise integral patterns can be extracted.

The GF approach of Jankowiaket al. [46] has to be extended, for example, for finite
temperature effects (Ch. 4) and for going beyond FC processes, e.g. for HT vibronic in-
tensity borrowing effects (Ch. 6). The sum of FCFs (|〈v′|v〉|2) and the non-Condon factors
(〈v|ĝ∗|v′〉〈v′|f̂ |v〉) over one set of states, at finite temperature and at zero Kelvin, converge
to finite numbers. Integrating the Lorentzian line shape function (L) over all frequency
range14 in the non-Condon spectral density function of Eq. (1.16), in order to sum all non-
Condon (or FCFs) factors, the summation converges to a finitenumber (Ch. 6).

One could exploit this sum rule to restrict the number of harmonic basis functions in
the evaluation of the non-Condon (or FC) SDF. Hereafter thiswill simply be called sum

13It will be shown, later in chapter 4, that the GF parameters are related to the Diracδ-distribution.
14It results 1.
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rule. We derive a closed analytical functional form for the sum of non-Condon factors at
finite temperature and use it for the sum rule in chapter 6. We apply the sum rule to the
prototypical HT transition of benzene in chapter 6. To construct the non-Condon GF in an
analytic form for the sum rule, we utilize the CS phase displacement operator. Similarly
to the non-Condon integral evaluation schemes in Ch. 3, non-Condon effects can also be
included by the MHP method (Ch. 6).

Franck-Condon time-correlation functions and beyond The direct evaluation of
non-Condon (or FC) integrals with the sum rule explained above would improve the com-
putational efficiency greatly but it still has limitations in applications to large molecules at
high temperature. At high finite temperature the resulting spectra are typically highly con-
gested, so that assignment of individual peaks from TI methods are of minor importance, if
not even unnecessary. If we are interested only in the spectral shapes and not in individual
peaks, we can compute the spectrum in the time domain [64] viaFourier transform (FT)
techniques. The non-Condon SDF in Eq. (1.16) can be written alternatively by making use
of the quantum mechanical trace formalism and the Fourier representation of the Lorentzian
distribution in time (t) domain15,

ρL(ω;T )
(f̂ ,ĝ) = ~−1

∫ ∞

−∞
dt

Tr
(
ĝ†e−iĤ′t/~f̂eiĤ(t/~+iβ)

)

Tr(e−βĤ)
ei(ω−ω0)t−Γ

2 |t|, (1.21)

with β = 1/(kBT ) (kB is Boltzmann constant) and harmonic vibrational Hamiltonians (Ĥ
andĤ ′, initial and final state ones, respectively)16. The vibrational eigenstates do not appear
explicitly in the trace density matrix expression (1.21) incontrast to Eq. (1.16). In principle
the traces can be evaluated over any complete basis set. It iswell known for instance
how to find an analytic functional form of the trace of the numerator in Eq. (1.21) (the
denominator trace is just a vibration partition function ofthe initial state) within the Condon
approximation in harmonic oscillator basis. For example itcan be evaluated by the Feynman
path integral [126] kernel of harmonic oscillators (seee.g. Refs. [34, 79, 86]) including the
Duschinsky rotation. The trace part in Eq. (1.21) is usuallycalled time-correlation function
(TCF). This eigenstate-free TD method is widely used (within the Condon approximation)
for the absorption spectrum and rR scattering (seee.g. Refs. [17, 23, 34, 64, 127]) because
the eigenstate-free formulation helps to avoid the direct evaluation of the matrix elements
by evaluating the (analytic) TCF at discrete times in contrast to the TI approach.

It is not, however, a trivial task to evaluate the non-CondonTCF including Duschin-
sky effects. There have been some approaches to compute the non-Condon TCF limiting
Duschinsky effects (seee.g. Refs. [38, 47, 70, 91, 94]). Recently Islampour and Mirali-
naghi [93] devised a TCF for IC rate involving multi-promoting modes (which mediate
the intramolecular transition) and vibrational mode mixing effects. They exploited sec-
ond order multi-variate normal moments for the momentum operator matrix elements of
the promoting modes. However their method is not generally applicable to other transition

15L(ω, ω; Γ) = ~−1
∫∞

−∞
dt ei(ω−ω)t−

Γ
2
|t|, and as the FWHMΓ→ 0 the distribution approaches to the Dirac

δ-distributionδ(ω − ω) =
∫∞

−∞
dt ei(ω−ω)t.

16Zero-point harmonic energies are shifted to be 0. The zero-point energy differences of the two multi-
dimensional harmonic oscillators are included already inω0.
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problems and the method cannot handle nonlinear coupling problems. Penget al. [94, 95]
also have a similar TCF development to that of Islampour and Miralinaghi [93]. As one
of the main results of this thesis, we overcome the shortcomings of Islampour and Mirali-
naghi’s method with the same CS-based GF approach which is exploited for the TI sum
rule method to prescreen the integral basis set. Within the Duschinsky-rotated harmonic
oscillator basis approximation we can use CSs easily for thephase space integration. It is
convenient to express the phase space representation with the CS phase variables within the
harmonic approximation because CS is a GF of harmonic oscillator eigenstates and as a
result the overlap of two CS is a GF of harmonic FC integrals. The quantum mechanical
trace is invariant in any complete basis set expansion. Whenwe use the CSs as basis set
for the numerator trace in Eq. (1.21) and introduce GF parameters related to the DOS in
FGR which can absorb time dependence implicitly (Ch. 4), thesame CS-based GF can be
used both in frequency and time domains (Chs. 4 and 6). In thismethod, one only needs to
introduce simply proper TD GF parameters to have the TCF without needing a complicated
integration in position space. And the (complex) MHPs to arbitrary order can generate the
non-Condon effects easily as well (Ch 6). The identical GF att = 0 obeys the sum rule and
at t 6= 0 provides the TCF att 6= 0.

It has long been considered that the TI and TD approaches are independent of each other
even if they are identical in principle [18]. The integral prescreening method can be com-
pared consistently with the TD method because the TCF methodcan provide the upper
bound of the TI method within the GFs developed in this thesis. The CS, together with GF
parameters, in phase space can bridge the frequency and timedomain representations of
SDFs. The resulting expression is exploited for the GF (which can merge the TI and TD ap-
proaches) augmenting the thermal (Ch. 4) and non-Condon (Ch. 6) effects in its phase space
via CSs. Similar idea is exploited for TI cumulant expansion(CE)17 (Ch. 5), rR scattering
18 (Sec. 7.2), SVL transition19 (Sec. 7.3) and anharmonic transition (Sec. 7.4).

Modifications to generating function approach The CS-based GF of a molecular
transition related to FGR is analogous to the partition function in statistical mechanics in
the aspect that the GF is the fundamental functional of the molecular transition system
(see Fig. 8.1). It contains the information about the transition, in frequency domain, in
time domain and in phase space. As with partition functions it is possible to extract useful
information via proper operation onto the GF. One is able to retrieve specific information
or to invoke other quantum mechanical and environmental effects by introducing auxiliary
parameters to the GF.

In some cases only the statistical quantities (e.g. mean and variance) are required, for
example, for the Stokes shift, which corresponds to the peakmaximum difference between
absorption and emission spectra. This kind of information can be obtained without calcu-
lation of the entire spectrum, neither via the TI nor the TD approaches mentioned above.
The cumulants20 (or moments) of the FCF distribution in frequency domain arecomputed
by the GF approach in chapter 5 with relatively low computational effort. An auxiliary GF
parameter is used to evaluate cumulants in a TI way. The method is closely related to the

17For statistical quantities like mean, variance, skewness,kurtosis and so on for the FC transition.
18The rR excitation profile involves two single vibronic levels (SVLs).
19A fluorescence from a given vibrational level in the electronically excited state is called SVL fluorescence.
20mean, variance, skewness, kurtosis and so on.
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1. Introduction

TD CE method (seee.g.Refs. [5,35,87]). The TD CE, however, involves time-integration,
which makes the algebra complicated even for second order cumulants (variance). The TI
CE method developed in this thesis, instead, can compute cumulants to arbitrary order. The
cumulants can provide useful information for other approaches, for instance about the time
propagation of TCF,i.e. time step and time propagation length (Sec. 5.1.2).

The detailed control of vibronic levels is necessary for rR,SVL and anharmonic transi-
tions. The GFs for these vibronic transitions are developedin chapter 7 with the help of
a MHP technique. The MHP technique allows the manipulation of vibronic level excita-
tions. It can provide more concrete information about the vibrational excitation patterns
whereas the previous FC development [46] can support only a coarse-grained prescreening
strategy21. The cross sections of rR and SVL take into account (non-thermally-averaged)
excited SVLs which are not summed over in FGR [34, 58]. These developments are mod-
ifications to the thermal and non-Condon GFs in the aspects that they include SVLs of the
fixed ONV states. The GF approach for anharmonic FC transition, which approximately
takes into account a few anharmonic vibrational DOF (and therests are harmonic), is also
suggested in the same chapter for the possible integral prescreening strategies of this special
case.
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Figure 1.2.: Temperature dependence of FC profiles for electron transferreaction of Bacteri-
ochlorophyll (Bchl) in the photosynthetic reaction center, Bchl− −→Bchl. The FC SDFs are
computed via TCF-FFT method at 0 K (solid), 100 K (dashed), 200 K (dot-dashed) and 300 K
(dotted). a. Duschinsky mode mixing effect is considered. b. Duschinsky mode mixing effect
is ignored. Instead of a Lorentzian line shape function, a Gaussian line shape function with
FWHM of 200cm−1 is used for the DOS in the FC profile calculation.

1.1. Achievements

The major goal of this thesis is to describe various molecular vibronic transitions theo-
retically and understand the transition mechanisms with the help of theoretical models,
especially, for large molecular systems. For instance, we investigate an ET reaction of a
Bacteriochlorophyll (Bchl) model in the photosynthetic reaction center (seee.g.Ref. [128])

21The maximum excitation quantum number of individual vibrational mode is computed with given intensity
threshold neglecting correlation between other vibrational mode excitation pattern.

12



1. Introduction

to study temperature dependence of the reaction and the corresponding effect of Duschinsky
mode mixing. We compute the FC profiles at various temperature, switching on or off the
Duschinsky mode mixing effects, via the TCF-FFT method (Fig. 1.2). Comparing the two
figures in Fig. 1.2 one can notice significant Duschinsky effects at various temperatures. But
it would be difficult to perform a detailed analysis of these highly congested spectra with
the existing theoretical TD or TI tools. We need to have a unified TD and TI picture in one
common language to analyze the individual vibrational modecontribution for the detailed
analysis,e.g. thermal energy redistribution of initial state between thevibrational modes
of final state in presence of Duschinsky mode mixing effect (see Sec. 5.3.2 for this specific
example).

In this thesis we extend and modify the CS-based GF idea [29, 46] for the various vi-
bronic transitions involving thermal excitation and non-Condon effects within the Duschin-
sky approximation. The methods of this thesis can provide TIand TD approaches with
identical functionals. The sum rules of FCFs (used in the previous work [46]22 for devis-
ing prescreening criteria) are extended to the case of thermally excited Duschinsky rotated
multi-dimensional harmonic oscillator states at finite temperature (see the illustration 1.3
for ultra-violet (UV) absorption of anthracene) as well as to the non-Condon effects. The
GF approaches for rR scattering and SVL transition are developed to include the thermal
and non-Condon effects in the Duschinsky rotated harmonic oscillator basis. The meth-
ods developed herein are general and can be applied to any kinds of transition processes
via FGR with slight modifications either in frequency or timedomains. Some develop-
ments (thermal, HT effects and TI CE) of this thesis are implemented in a development
version of the vibronic structure program hotFCHT [36, 46, 129–131]. The CS-based GF
approach, despite the achievements in this thesis, leaves still rooms for future developments,
e.g.nonadiabatic coupling, full anharmonic, dissipative systems and non-equilibrium prob-
lems which are not treated in this thesis. To this end, we summarize the developments
of this thesis as follows: The molecular transition and integral evaluation problems in the
Duschinsky rotated harmonic oscillator basis can be translated into a MHP evaluation prob-
lem. The same mathematical machinery can be used for variousother problems, either in TI
or TD approach and either in Condon or non-Condon approximation (see Figs. 8.1 and 8.2
on pages 125 and 127, respectively).

Most of the developed methods and the results presented in this thesis have also appeared
or will appear in:

Ref. [129]23: ”Vibronic transitions in large molecular systems: Prescreening conditions for
Franck-Condon factors at finite temperature and the thermaltime-correlation function”,
J. Huh, H.-C. Jankowiak, J. L. Stuber and R. Berger, (to be published).

Ref. [130]24: ”Vibronic transitions in large molecular systems: The thermal time-correlation

22J. Huh was not involved in this work.
23J. Huh has contributed to this work with the thermal time-correlation function theory development and the

implementation of the methods including the thermal prescreening to the vibronic structure program hot-
FCHT.

24J. Huh has contributed to this work with the non-Condon thermal time-correlation function theory develop-
ment, the Franck-Condon-Herzberg-Teller prescreening development and the implementation of the devel-
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1. Introduction

function and rigorous prescreening of Herzberg-Teller terms”,
J. Huh, J. L. Stuber and R. Berger, (to be published).

Ref. [131]25: ”Vibronic transitions in large molecular systems: Time-independent cumu-
lant expansion for Franck-Condon profiles at finite temperature and at zero Kelvin”,
J. Huh, J. L. Stuber and R. Berger, (to be published).

Ref. [132]26: ”Application of time-independent cumulant expansion to calculation of Franck-
Condon profiles for large molecular systems”,
J. Huh and R. Berger, Faraday Discuss., (accepted).

Ref. [52]27: ”An atomic-orbital based Lagrangian approach for calculating geometric gra-
dients of linear response properties”,
S. Coriani, T. Kjærgaard, P. Jørgensen, K. Ruud, J. Huh and R.Berger, J. Chem. Theo.
Comput. 6, 1028 (2010).

Ref. [53]28: ”Franck–Condon profiles in photodetachment-photoelectron spectra ofHS−2
andDS−2 based on vibrational configuration interaction wavefunctions”,
J. Huh, M. Neff, G. Rauhut and R. Berger, Mol. Phys. 108, 409 (2010).

1.2. Chapter summary and dissertation outline

In this chapter the FGR expression for the OPA in the vibrational wavefunction basis set
within the BO approximation is introduced as an example for avibronic transition process.
The FCFs are the fundamental quantities in describing vibronic transitions. The FCF eval-
uation is a challenging problem even in the harmonic approximation because of the large
number of FC/non-Condon integrals within the Duschinsky approximation. We suggest
CS-based GF methods to describe theoretically molecular vibronic transition processes in-
volving the finite temperature effects (Ch. 4) and the non-Condon (Ch. 6) effects. The GF
can provide efficient numerical procedures with its representations in frequency and time
domain be connected via the CS phase space. We modify the GFs for TI CE, rR scattering
processes, SVL transitions and anharmonic transitions (Ch. 7) with the help of MHPs (see
a summary diagram of this thesis in Fig. 8.1 on page 125).

The dissertation is organized as follows:

• The background knowledge related to the developments of this thesis is briefly pre-

oped methods to the vibronic structure program hotFCHT.
25J. Huh has contributed to this work with the time-independent cumulant theory development, the algorithm

for the cumulant expansion and the implementation of the developed methods to the vibronic structure
program hotFCHT.

26J. Huh has contributed to this work with an application of thetime-independent cumulant theory develop-
ment [131]. The method is applied for the UV/VIS absorption spectra of terrylene (1Ag −→1 B3u).

27J. Huh has contributed to this work by testing the analyticalelectronic TDM gradient by computing the
Herzberg-Teller profiles of benzene with the method developed in Ref. [130] and implemented in hotFCHT.

28J. Huh has contributed to this work with the integral prescreening strategy development and the implementa-
tion of the anharmonic Franck-Condon computing routines tothe vibronic structure program hotFCHT.
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1. Introduction

Figure 1.3.: Illustration of calculated Franck-Condon profiles for the1 1Ag → 1 1B2u ab-
sorption spectra of anthracene at0 K, 100 K, 300 K and500 K. The stick representations
have additionally been convoluted with Lorentzian line shapes. The figure is reproduced with
permission fromNachr. Chem.58, 331. Copyright 2010 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.”

sented in chapter 2. The OPA and rR scattering are described from the TI and TD
perspectives. The basic properties of CSs and the Duschinsky relation are explained
therein for the GF development. The zero Kelvin development[46]29 , the foundation
of the current work, is briefly explained.

• An iterative FC integral formula is suggested in chapter 3 with the help of multi-
variate normal moments based Hermite polynomial evaluation schemes [133,134]. A
non-Condon integral evaluation scheme is suggested as wellvia the CS displacement
operators.

• The following thermal FCF GF chapter 4 presents the CS-basedGF approaches for
the thermal effects both in TD and TI aspects. The integral prescreening strategy at
finite temperature and thermal TCF are developed.

• Chapter 5 follows a slightly different route to obtain the FCprofile from statistical
quantities like mean, variance and higher order cumulants via the TI CE method.

• The non-Condon GF developments augmenting the TI and TD approaches are pre-
sented in chapter 6 and the HT transition of benzene is presented as an example.

• In the last method development chapter 7 we devise the coherent-Fock (cF)30 GF via
the MHP technique for the GFs for rR, SVL and anharmonic transitions in the TI and
the TD pictures.

• Finally the conclusion of this dissertation follows in chapter 8.

29J. Huh was not involved in this work.
30the mixture of harmonic oscillator eigenstates and coherent states (Eq. (2.81)).
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2. Background

The primary goal of this thesis is describing computationally vibronic transitions (see Fig. 1.1)
such as one-photon absorption (OPA) (seee.g. Refs. [12, 21–54]), one-photon emission
(OPE) (seee.g. Refs. [55–59]), resonance Raman (rR) scattering (seee.g. Refs. [17,
60–76]), electron transfer (ET) (seee.g. Refs. [77–89]), internal conversion (IC) (seee.g.
Refs. [90–95]) and inter-system crossing (ISC) (seee.g.Ref. [96]). For the purpose, we de-
vise (in this thesis) the computational frameworks for the Franck-Condon (FC) and non-FC1

vibronic transitions within the (adiabatic) Born-Oppenheimer (BO) approximation [2, 99].
The inclusion of the Duschinsky vibrational mode mixing [107] together with the tempera-
ture and non-Condon effects make the computational complexity for the vibronic processes
(prohibitively) high. Even in the harmonic oscillator approximation, the computational de-
scription of the vibronic transitions is still challenging. Herein we approximate molecular
systems asN -dimensional harmonic oscillators. Accordingly, the (radiative) vibronic tran-
sition is considered as a transition between multi-dimensional harmonic oscillators.

The interaction between radiation and molecules is a fundamental time-dependent (TD)
phenomenon. For that reason, the quantum mechanical description of such vibronic pro-
cesses usually is based on TD perturbation theory. However,when the observables are not
explicitly TD quantities and a radiation-matter interaction is weak, for example in the OPA
process, it is sufficient to invoke Fermi’s golden rule (FGR)[103, 104] from TD perturba-
tion theory for describing the molecular transitions (seee.g. Refs. [3, 8, 66]). The various
representations of FGR in frequency, time and phase spaces are exploited in this thesis via
the coherent state (CS)-based generating function (GF) approach [46] to reduce the com-
putational complexity. Each representation has benefits and shortcomings of its own in its
evaluations, such that they are complementary to each other(seee.g.Ref. [18]). One of the
main achievements of this thesis is that the different aspects of FGR can be combined in one
GF based on CSs within the displaced-distorted-rotated harmonic oscillator (Duschinsky)
approximation. The molecular vibronic transition spectradescribed by FGR are computed
efficiently, including thermal (Ch. 4) and non-Condon (Ch. 6) effects with the CS-based
GF.

In order to present the CS-based GF in some detail, we need to bear in mind the various
representations of FGR and the relations among them (Sec. 2.1). As an example, the trans-
formation between the time-independent (TI) and time-dependent expressions of the OPA
and rR scattering cross sections are explained. We can applyslight modifications to the other
vibronic transitions (see Fig. 1.1), such as OPE, ET, electronic circular dichroism (ECD),
IC and ISC, so that they can be described similar to OPA and rR.The Duschinsky linear
approximation and the corresponding unitary transformation (Sec. 2.2) as well as basic
properties of CSs (Sec. 2.3), which are necessary for the CS-based GF method [46], are
explained in the corresponding sections. The Franck-Condon factor (FCF) GF development

1non-Condon,e.g. linear and nonlinear Herzberg-Teller (HT) expansions (1.15)
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Figure 2.1.: One-photon absorption (OPA) and resonance Raman (rR) scattering in the time-
dependent (TD) picture. OPA time-correlation function (TCF) is the overlap between the initial
state|v〉 and the time-propagating state|v(t)〉 on the final potential energy surface. One-photon
emission (OPE) is interpreted in the same way as OPA, the difference being that the initial and
final states are reversed. rR scattering is a two photon process of the incident light (ω) and the
scattered light (ωS). ωad is defined to be the adiabatic electronic transition (angular) frequency
between the electronic ground (|g〉) and excited (|e〉) states.ω0 is defined to be the adiabatic
transition (angular) frequency including the vibrationalzero-point energy difference between
the two oscillators. The time-dependent picture shows the rR scattering process. This process
implies that the initial ground vibrational state|vi〉 propagates on the excited state|vi(t)〉 and
return to the ground vibrational state|vf 〉.

at zero Kelvin [46]2 for integral prescreening in the TI picture is briefly presented in sec-
tion 2.4, which is based on the Duschinsky unitary transformation and the CSs. The zero
Kelvin development serves as the basis for the method development within this thesis3. The
mathematical machinery, notational convention and numerical schemes are employed, as
far as possible, from the previous work [46].

2.1. One-photon absorption and resonance Raman
scattering

In this section we transform the TI spectral density function (SDF) of the OPA and the
rR scattering cross section from frequency domain to time domain via the density matrix

2J. Huh was not involved in this work.
3Thermal prescreening strategies, thermal time-correlation function (TCF), non-Condon effects, TI cumulant

expansion (CE), anharmonicity, rR and single vibronic level (SVL)
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2. Background

trace formalism [135]. Herein the vibronic transition betweenN -dimensional harmonic
oscillators are assumed to be the same as the ones introducedearlier (Eq. 1.5). The SDF of
OPA (Eq. (1.12)) in frequency domain reads (again), with theLorentzian line shape function
(L(ω)) of full width at half maximum (FWHM) ofΓ,

ρL(ω;T ) =

∞∑

v,v′=0

pv(T )|〈v′|µ̂(Q)|v〉|2L(ω, ω0 + ωv′,v; Γ), (2.1)

and the stick representation4 with the Diracδ-distribution is, accordingly,

ρ(ω;T ) =

∞∑

v,v′=0

pv(T )|〈v′|µ̂(Q)|v〉|2δ(~ω − ~(ω0 + ωv′,v)) , (2.2)

where the vibrational transition (angular) frequency is defined by the corresponding har-
monic energies (ǫ and ǫ′) of oscillators, i.e. (ωv′,v = (ǫ′ · v′ − ǫ · v)/~). Prime”′” is
used, conventionally, for specifying variables belongingto the final electronic state. Raman
scattering is a two-photon process involving the incident (ω) and scattered light (ωS) (see
Fig. 2.1). From second order TD perturbation theory for the two-photon process, we can ob-
tain the matrix elements of the polarizability tensor as the(vibronic) Raman scattering [60]
amplitude in the frequency domain (seee.g.Refs. [3,6,17]).

The matrix element of the polarizability tensorα in the molecular vibronic wavefunction
basis5 with polarization vectors,eL andeS of incident and scattered photons respectively,
is the vibrational Raman scattering amplitude and corresponds to the vibrational Raman
excitation profile (α

vi→vf
R , seee.g.[17]), i.e.

α
vi→vf
R (ω, ωS) = 〈vf |〈g|eS ·α · eL|g〉|vi〉 =

∞∑

v′=0

〈vf |µ̂S(Q)†|v′〉〈v′|µ̂L(Q)|vi〉
~(ω − (ωv′,vi

+ ω0) +
i
2Γvi,v

′)

+

∞∑

v′=0

〈vf |µ̂L(Q)†|v′〉〈v′|µ̂S(Q)|vi〉
~(ωS + (ωv′,vi

+ ω0) +
i
2Γvi,v

′)
,

(2.3)

where we have used

µ̂L(Q) = µ̂(Q) · eL, µ̂S(Q) = µ̂(Q) · eS. (2.4)

In Eq. (2.3)|vi〉 and |vf 〉 are the initial and the final vibrational states in the groundstate
(|g〉), |v′〉 is the virtual (or intermediate) vibrational state in the excited electronic state
(|e〉, see Fig. 2.1), andΓvi,v

′ is the line width of the initial to virtual state transition.The
vibrational transition frequency from the initial state tothe virtual vibrational state is given
asωv′,vi

= (ǫ′ · v′ − ǫ · vi)/~.
At the resonance condition (ω ≃ (ωv′,vi

+ ω0)), the non-resonance contribution of

4In practice, we evaluate the intensity profiles according tothe stick representation and convolute the profiles
in stick representation with the Lorentzian line shape function.

5We can ignore rotational wavefunctions for randomly oriented molecules (seee.g.Refs. [3,6,17] and Ch. 1).
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α
vi→vf
R , the second summation term in Eq. (2.3), can be neglected because the first sum-

mation (resonance) term in Eq. (2.3) is dominant. Thereforethe vibrational rR scattering
amplitude (α

vi→vf
rR ) is expressed in a reduced form,

α
vi→vf
rR (ω) =

∞∑

v′=0

〈vf |µ̂S(Q)†|v′〉〈v′|µ̂L(Q)|vi〉
~(ω − (ωv′,vi

+ ω0) +
i
2Γ)

, (2.5)

where we have assumed a common homogeneous line broadening factorΓvi,v
′ = Γ for

molecules in condensed phases (seee.g.[17,65,68,70,72,136]).
The (differential) rR cross section is proportional (seee.g. Ref. [65]) to the SDF of rR

from FGR similar to Eq. (2.1),i.e.

dσrR
dωS

=
8π

9~c20

(
α0

e20

)2

(~ω)(~ωS)
3ρrR,L(ω, ωS). (2.6)

The SDF of rR scattering is given with the Lorentzian line shape function6 as in Eq. (2.1),
i.e.

ρrR,L(ω, ωS) =

∞∑

vi,vf=0

pvi(T )|α
vi→vf
rR (ω)|2L(ω − ωS, ωvf ,vi ; ΓrR), (2.7)

and the stick representation is obtained with the Diracδ-distribution as in Eq. (2.2), accord-
ingly,

ρrR(ω, ωS) =

∞∑

vi,vf=0

pvi(T )|α
vi→vf
rR (ω)|2δ(~(ω − ωS)− ~ωvf ,vi), (2.8)

whereωvf ,vi = (ǫ · vf − ǫ · vi)/~ is the rR Stokes scattering frequency.
Time-independent (TI) evaluation of equations (2.1) and (2.5) is limited to small molec-

ular systems. For larger systems one would need efficient strategies, such as the integral
prescreening [46] introduced in the previous chapter 1. Thecomplementary TD approach
for theoretical molecular spectroscopy has been used for several decades, in electron transfer
theory [79,81,84,86,87], in Raman scattering theory [17,56,61,64,66,67,72,73,75,109], in
FC absorption processes [33,34,55,137,138], in non-Condon processes [38,40,93–95] and
in laser cooling theory [37,40–42,48]. The energy eigenstate-free TD approach (Eq. (1.21))
has long been appreciated for its computational efficiency and its wavepacket interpretation
of the transition process. It describes the transition process via the time-propagation of ini-
tial wavepacket on the excited potential energy surface [64]. To express the absorption cross
section (Eq. (2.1)) and the rR scattering amplitude (Eq. (2.5)) in time domain, one invokes
the Fourier transformed representation of the Lorentzian line shape function7 in Eq. (2.1)
and the half-Fourier transformed representation of the frequency dependent weight func-

6with a line broadening factorΓrR within a single electronic state.
7L(ω, ω; Γ) = ~−1

∫∞

−∞
dt ei(ω−ω)t−

Γ
2
|t|, and as the FWHMΓ→ 0 the distribution approaches to the Dirac

δ-distributionδ(ω − ω) =
∫∞

−∞
dt ei(ω−ω)t.
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tion8, the denominator in Eq. (2.5). That is for the absorption process [17,64],i.e.

ρL(ω;T ) = ~−1

∫ ∞

−∞
dt

∞∑

v,v′=0

pv(T )|〈v′|µ̂(Q)|v〉|2 exp[i(ω − (ωv′,v + ω0))t− Γ
2 |t|] ,

(2.9)

and for the scattering process [17,64],

α
vi→vf
rR (ω) = − i

~

∫ ∞

0
dτ

∞∑

v′=0

〈vf |µ̂S(Q)†|v′〉〈v′|µ̂L(Q)|vi〉

exp[i(ω − (ωv′,vi
+ ω0))τ − Γ

2 τ ]. (2.10)

Now, one can recover the vibrational Hamiltonians corresponding to the expressions (2.9)
and (2.10) from the vibrational frequencies,e.g. eiωvt|v〉 = eiĤt/~|v〉. The SDF of OPA is
rewritten as follows (seee.g.Refs. [17,64])

ρL(ω;T ) = Z−1
I ~−1

∫ ∞

−∞
dt
∑

v,v′

〈v|µ̂(Q)† exp(−iĤ ′t/~)|v′〉

〈v′|µ̂(Q) exp(iĤt/~) exp(−βĤ)|v〉 exp[i(ω − ω0)t− Γ
2 |t|] (2.11)

= Z−1
I ~−1

∑

v

∫ ∞

−∞
dt〈v|µ̂(Q)† exp(−iĤ ′t/~)µ̂(Q) exp(iĤt/~) exp(−βĤ)|v〉

exp[i(ω − ω0)t− Γ
2 |t|] (2.12)

= ~−1

∫ ∞

−∞
dt χ(t;β) exp[i(ω − ω0)t− Γ

2 |t|] , (2.13)

where the vibrational partition function isZI = Tr
(
exp(−βĤ)

)
and the Boltzmann factor

pv(T )|v〉 = Z−1
I exp(−β~ωv)|v〉 = Z−1

I exp(−βĤ)|v〉. From the expression (2.12), it
is clear that the TCF9 for the absorption spectral density can be defined within thedensity
matrix formalism. Since equation (2.12) is just the trace over the initial vibrational states,
χ(t;T ) is the thermal TCF in a trace form as in Eq. (1.21),i.e.

χ(t;T ) = Z−1
I Tr

(
µ̂(Q)† exp(−iĤ ′t/~)µ̂(Q) exp(iĤt/~) exp(−βĤ)

)
. (2.14)

8 1
ω−ω+iΓ/2

= −i
∫∞

0
dt ei(ω−ω)t−

Γ
2
t, which is a special case of the Laplace transform.

9Here the time-correlation function includes the summationover initial vibrational occupation number vector
(ONV) space.
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Similarly, the rR amplitude is expressed in TD language as

α
vi→vf
rR (ω) = − i

~

∫ ∞

0
dτ

∞∑

v′=0

〈vf |µ̂S(Q)† exp(−iĤ ′τ/~)|v′〉〈v′|µ̂L(Q) exp(iĤτ/~)|vi〉

exp[i(ω − ω0)τ − Γ
2 τ ] (2.15)

= − i

~

∫ ∞

0
dτ〈vf |µ̂S(Q)† exp(−iĤ ′τ/~)µ̂(Q)L exp(iĤτ/~)|vi〉

exp[i(ω − ω0)τ − Γ
2 τ ] (2.16)

= − i

~

∫ ∞

0
dτ χα(τ ; vi, vf ) exp[i(ω − ω0)τ − Γ

2 τ ], (2.17)

where the rR amplitude TCF (χα) is defined with the vibrational transition operator|vi〉〈vf |10,

χα(τ ; vi, vf ) = Tr
(
µ̂S(Q)† exp(−iĤ ′τ/~)µ̂L(Q) exp(iĤτ/~)|vi〉〈vf |

)
. (2.18)

where we have used the resolution of identity
∑∞

v′=0 |v′〉〈v′| = 1̂. The matrix elements

in the time integration of Eqs. (2.12) and (2.16),〈v|v(t)〉 and 〈vf |vi(τ)〉 respectively11,
are interpreted as follows [61, 64] (see Fig. 2.1). The initial wavepacket propagating on its
ground potential energy surface (PES) is scattered on to theexcited PES by the electronic
transition dipole moment (TDM), and the scattered wavepacket propagates on the excited
PES. Then the wavepacket returns to the vibronic state on theground electronic state by
the electronic TDM. The Fourier transform (FT) of the time correlations corresponds to a
spectrum in the frequency domain.

The rR SDF can be expressed from Eqs. (2.7) and (2.17) in incident and scattered photon
frequency domain with one Fourier [−∞,∞] transformation for the functionL in Eq. (2.7)
and two half-Fourier [0,∞] transformations from Eq. (2.17),i.e.

ρrR,L(ω, ωS) =Z
−1
I ~−3

∞∑

vi,vf=0

∫ ∞

−∞
dt

∫ ∞

0
dτ

∫ ∞

0
dτ ′χα(τ

′; vi, vf )
∗χα(τ ; vi, vf )

exp[i(ω − ω0)(τ − τ ′)− Γ
2 (τ + τ ′)] exp[i(ω − ωS)t− ΓrR

2 |t|] (2.19)

=~−3

∫ ∞

−∞
dt

∫ ∞

0
dτ

∫ ∞

0
dτ ′χrR(t, τ, τ

′;T )

exp[i(ω − ω0)(τ − τ ′)− Γ
2 (τ + τ ′)] exp[i(ω − ωS)t− ΓrR

2 |t|], (2.20)

10One may consider the summation in Eq. (2.15) as trace over virtual vibrational states.
11|v(t)〉 = µ̂(Q)† exp(−iĤ ′t/~)µ̂(Q) exp(iĤt/~) exp(−βĤ)|v〉 and

|vi(τ )〉 = µ̂S(Q)† exp(−iĤ ′τ/~)µ̂L(Q) exp(iĤτ/~)|vi〉
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where we define a 3-point (t, τ, τ ′) thermal TCF in a trace form for rR intensity,

χrR(t, τ, τ
′;T ) =Z−1

I Tr
(
exp(−iĤτ ′/~)µ̂L(Q)† exp(iĤ ′τ ′/~)µ̂S(Q) exp(−iĤt/~)

µ̂S(Q)† exp(−iĤ ′τ/~)µ̂L(Q) exp(iĤτ/~) exp(iĤt/~) exp(−βĤ)
)
.

(2.21)

Within the Condon approximation (µ̂(Q) = µ̂(Q = Q
0
) = µ

0
= a constant vector,Q

0
is

the equilibrium molecular structure of the electronic ground state) the Rayleigh scattering
(ω = ωS) intensity can be expressed in terms of a single Fourier transformation [66] from
Eq. (2.20) [56,66]. In Eq. (2.20), the integration overt with the Rayleigh scattering condi-
tion (δ(ω − ωS)) gives 4

ΓrR
and the two half-Fourier integrations overτ andτ ′ are merged

to be a (full) Fourier transformation with newly defined integral variablesτ+ = τ + τ ′ and
τ− = τ − τ ′. The integration overτ− results in a factorΓ−1 and the remaining integration
is the FT inτ+, i.e.

ρCondon−Rayleigh
rR,L (ω) =

4

~2ΓrRΓ

∫ ∞

−∞
dτ+χ(τ+;T )

∣∣∣
Q=Q

0

exp[i(ω − ω0)τ − Γ
2 |τ |].

(2.22)

Note that the thermal TCF for the Rayleigh scattering intensity in the Condon approximation
is expressed as the TCF of OPA in Eq. (2.14) in the Condon approximation, i.e.

χ(τ+;T )
∣∣∣
Q=Q

0

=
|µ

0
|4

ZI
Tr
(
exp(−iĤ ′τ/~) exp(iĤτ/~) exp(−βĤ)

)
. (2.23)

The Condon-Rayleigh scattering is interpreted as the totalfluorescence emission [66]. There-
fore the FCF can be viewed in two different ways: (i) For the absorption process the transi-
tion amplitude is〈v′|v〉 and the corresponding transition probability is the absolute square,
|〈v′|v〉|2. (ii) For the total fluorescence process, the initial vibrational state|v〉 is excited to
the final vibrational state|v′〉, i.e. after the transition the system stays in the vibrational state
|v′〉〈v′|v〉. When the system returns to the initial vibrational state, the corresponding ampli-
tude is〈v|v′〉〈v′|v〉 = |〈v′|v〉|2, while this amplitude is the transition probability (FCF) in
the absorption process.

For the treatment of FC-forbidden or weakly FC-allowed transitions (|µ
0
| = 0 or |µ

0
| ≃

0, respectively), one must go beyond the FC approximation (i.e. beyond the assumption of
µ̂(Q) = µ

0
) and incorporate the dependence ofµ̂ on the vibrational degrees of freedom

(DOF) (e.g. Eq. (1.15)). Conventionally this expansion is provided in terms of the initial
state coordinatesQ. In this case the electronic TDM is expanded at least to the linear order,
i.e. the HT expansion (Eq. (1.15)).

µ̂(Q) = 〈e|µ̂
elec

|g〉
= µ

0
+
∑

k

µ′
k
Q̂k + · · · , (2.24)

where the zero-th order (µ
0
) and the first order (µ′) expansion vectors are determined by the

first order perturbation of electron and nuclear Coulombic interaction (Ve−n) relative to the
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nuclear coordinate change. The electric TDM (µ̂
elec

) is given by the electronic DOF (rel),
nuclear DOF (rnu) and the charge of the protone0 and nucleusZae0, i.e.

µ̂
elec

= −e0
∑

i

r̂el;i + e0
∑

a

Zar̂nu;a, (2.25)

which is a general expression for the electric TDM. The definition in Eq. (1.8) only applies
to the two electronic state model. Evaluating the matrix element in the BO electronic wave-
function basis (|g〉, |e〉 and|l〉) the nuclear contribution of the electronic TDM vanishes due
to the orthogonality of different BO electronic wavefunctions. The expansion vectors are
given as

µ
0
= 〈e|µ̂

elec
|g〉
∣∣∣
Q=Q

0

, (2.26)

µ′
k
=

∂

∂Qk
〈e|µ̂

elec
|g〉
∣∣∣
Q=Q

0

= 〈 ∂e
∂Qk

|µ̂
elec

|g〉
∣∣∣
Q=Q

0

+ 〈e|µ̂
elec

| ∂g
∂Qk

〉
∣∣∣
Q=Q

0

. (2.27)

The first order derivative of electronic TDM with respect to thek-th normal modeQk at the
equilibrium structure (Q = Q

0
), i.e. µ′

k
can be calculated analytically either via the tradi-

tional perturbation theory formulation (seee.g.Refs. [2,21,42,139]) or the linear response
approach (seee.g. Ref. [52]). The perturbation expression of the electronic Hamiltonian
with respect to the nuclear coordinate change shows the explicit coupling between BO elec-
tronic eigenstates, for example according to Ref. [42] Eq. (2.27) is expressed as the first
order perturbation expansion,

µ′
k
=




L′∑

l 6=e

〈e|∂Ve−n

∂Qk
|l〉

E0
l − E0

e

〈l|µ̂
elec

|g〉+
L∑

l 6=g

〈l|∂Ve−n

∂Qk
|g〉

E0
l − E0

g

〈e|µ̂
elec

|l〉



Q=Q

0

, (2.28)

whereL andL′ are the number of intermediate electronic states (|l〉) which are allowed by
electronic state couplings (〈l|µ̂

elec
|g〉|Q=Q

0
6= 0 or 〈e|µ̂

elec
|l〉|Q=Q

0
6= 0) with respect to

the ground state (|g〉) and excited state (|e〉), respectively. The energy differences in the de-
nominators are defined to be electronic transition energiesin the unperturbed electronic BO
eigenstate basis. Due to the coupling between BO electroniceigenstates, the HT electronic
transition mechanism is usually called a vibronic intensity borrowing mechanism (seee.g.
Refs. [2,21,42,108,139]). The sum-over-states perturbation expression (2.28) is, however,
not practical because of its convergence problems (seee.g.Refs. [2,36]). Recently a linear
response formulation for analytic derivatives of the electronic wavefunctions (Eq. (2.27))
with respect to displacements of the nuclei was developed and exploited for calculations
within the HT framework in Ref. [52]. The HT vibronic transition GF developed in chap-
ter 6 is tested successfully in Ref. [52] (Sec. 6.3.2). Usually, the gradient of the electronic
TDM was evaluated numerically by shifting the molecular equilibrium structure along the
normal modes (seee.g.Refs. [2,36]), which leads, however, to difficulties due to the phase
of the electronic TDM.

The time-independent representation for the absorption spectrum of Eq. (2.1), the SDF,
can then be decomposed into the FC and higher order non-Condon contributions, respec-
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tively. This term-wise expansion yields12

ρFC,L(ω;T ) = |µ
0
|2

∞∑

v,v′=0

pv(T )|〈v′|v〉|2L(ω, ω0 + ωv′,v; Γ) , (2.29)

for the FC contribution and

ρFC/HT,L(ω;T ) = 2

N∑

i=1

µ
0
· µ′

i

[ ∞∑

v,v′=0

pv(T )〈v′|Q̂i|v〉〈v|v′〉L(ω, ω0 + ωv′,v; Γ)
]
, (2.30)

ρHT,L(ω;T ) =

N∑

i,j=1

µ′
i
· µ′

j

[ ∞∑

v,v′=0

pv(T )〈v′|Q̂i|v〉〈v|Q̂j|v′〉L(ω, ω0 + ωv′,v; Γ)
]
, (2.31)

for the Franck-Condon/Herzberg-Teller interference (FC/HT) and HT contributions. The
FCHT term weighted density of states (FCHTW) is then defined as,

ρL(ω;T ) ≃ ρFCHTW,L(ω;T )

= ρFC,L(ω;T ) + ρFC/HT,L(ω;T ) + ρHT,L(ω;T ) . (2.32)

Those term-wise expressions and the corresponding TCFs areexploited for the HT GF
developments of the TI and TD approaches in chapter 6. The rR scattering SDF can also be
expressed in the term-wise fashion with the HT expansion. But the explicit expansions will
not be exploited in this thesis. The HT expansion expressionfor rR can be found in many
books and articles (seee.g.Refs. [6,60]).

For the evaluation of the SDFs and TCFs in two sets of harmonicoscillator basis, we need
to consider, in which coordinate system the two sets of harmonic oscillators are defined.
The matrix elements in the TI and TD approach are typically evaluated by integration in
position space. When the vibronic wavefunctions in the initial and final electronic states
are expressed in the corresponding normal coordinate systems, the relation between the two
coordinate systems has to be defined for the integral evaluation. This will be discussed in
the following section.

2.2. Duschinsky rotation

In evaluating overlap integrals and matrix elements in the vibrational wavefunction basis of
two electronic states within the BO approximation, the choice of the coordinate system (in
which the vibrational wavefunctions of two different BO surfaces are defined) is crucial.

If the two BO surfaces can be approximated as two harmonic potential surfaces, it appears
beneficial to approximate the vibrational wavefunctions with harmonic oscillators centered
at the corresponding equilibrium molecular structures instead of using one common set.
One has to evaluate, therefore in the most general case, inseparable multi-dimensional over-
lap integrals for FCFs. When the vibrational wavefunctionsof the two electronic states
were expressed in one center basis set (e.g.harmonic oscillator basis set), it would be triv-

12The corresponding stick representations with the Diracδ-distribution are simply obtained by replacing the
Lorentzian line shape functionL with the Diracδ-distribution.
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ial to evaluate the overlap integrals. However, at this point one would need a larger basis
set to describe the vibrational wavefunction properly for both electronic states (where the
local potential minima are shifted relative to each other) which increases the computational
complexity.

Herein the two reference point approach is adopted within the harmonic and Duschin-
sky approximation. The corresponding matrix element of an operatorf̂ in the Duschinsky
rotated harmonic oscillator basis set reads

〈v′|f̂ |v〉. (2.33)

When f̂ = 1̂, the matrix element simply becomes a FC integral, and whenf̂ = Q̂i, the
matrix element becomes a linear (first order) HT integral of thei-th position operator of the
initial electronic state. The initial and final vibrationaleigenstates are described in molecule
fixed axis systems attached to each equilibrium molecular structurer0 andr′0. We choose
particular molecule fixed axis systems which minimize the coupling between rotational and
vibrational DOFs so that we can use the separation ansatz forrotational and vibrational
wavefunctions. This assumption could be supported by the Eckart conditions [1, 101, 140],
which minimizes, when fulfills the arrangements, the vibrational angular momentum and
the Coriolis coupling in the molecular Hamiltonian (seee.g.Ref. [141]), for the initial and
final molecular systems,i.e.

Natom∑

a=1

mar0,a × ra = 0,

Natom∑

a=1

mar
′
0,a × r′a = 0, (2.34)

whereNatom is the number of atoms in the polyatomic system and the vectors with the
additional indexa indicates the (3-dimensional) Cartesian coordinates of the corresponding
atoms and withma indicating the mass of atoma. The origins of these molecule fixed axis
systems are assigned to the center of mass.

The coordinate space representations of the vibrational states can be obtained by pro-
jecting on the position operator eigenstates|Q〉 and |Q′〉, whereQ andQ′ are the mass-
weighted normal coordinates,i.e. 〈Q|v〉 and 〈Q′|v′〉. The Cartesian displacements from
each equilibrium structure of the initial and final electronic states are expressed in terms of
the corresponding (mass-weighted) normal coordinates,i.e.

r − r0 = M
−1
2LQ, (2.35)

r′ − r′0 = M
−1
2L′Q′ , (2.36)

whereM is theNnu × Nnu diagonal matrix consisting of the masses of atoms, theNnu =
3Natom is the number of nuclear DOF andL andL′ areNnu × (Nnu − 6) dimensional
matrices for nonlinear molecules andNnu × (Nnu − 5) dimensional matrices for linear
molecules. The matricesL andL′ are constructed from a normal mode analysis [1] of the
corresponding harmonic force fields from electronic structure calculations.

Even if we could successfully separate the vibrational motions from the other DOF by
the Eckart transformations [1, 101, 140] (which is, however, not possible), we would need
to consider the alignment between the two coordinate systems carefully, because sudden
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axis-switching [142] can cause artifacts in the vibronic spectrum calculations. When the
equilibrium structures of the two electronic states are different, the axis systems (r andr′)
from the Eckart conditions (2.34) fixed on the equilibrium structures are typically differ-
ently oriented. We determine the alignment of the two axis system via finding the Eckart
condition again but with respect to the initial equilibriumstructurer0 as the reference struc-
ture. Then the two axis systems (r andr′) are adjusted to the initial state Eckart axes. The
Cartesian coordinates are related by a rotation matrix depending on the normal coordinate
(Q), i.e.

r′ = T(Q)r. (2.37)

The rotation matrix is called Eckart transformation matrix(axis-switching matrix) [39,143]
and it is a unitary transformation matrix,i.e.

T(Q)tT(Q) = I . (2.38)

The corresponding Eckart condition is given as

Natom∑

a=1

mar0,a × (Ta(Q)tr′a) = 0, (2.39)

whereTa is a 3-dimensional subblock matrix ofT corresponding to the atoma. Recently
Kudin and Dymarsky [144] showed that the root-mean-square deviation minimization con-
dition, another widely used conformation alignment condition in crystallography, leads to
one arrangement fulfilling the Eckart condition (2.39), provided that, mass weighting is
included

min
T(Q)

∑

a

ma|r0,a − (Ta(Q)tr′a)|2. (2.40)

We can find an Eckart transition matrixT(Q) by searching for a symmetric matrix
V(Q), which is a necessary condition for the vanishing vector product in the Eckart equa-
tion (2.39),i.e.

V(Q) = r
′t
0MrT(Q)t = r

′t
0

(
Mr0 +M

1
2LQ

)
T(Q)t = V(Q)t. (2.41)

We can relate the normal coordinatesQ andQ′ in Eqs. (2.35) and (2.36) via the transfor-
mation (2.37) using the unitary relation (2.38),

Q′ = L
′tM

1
2T(Q)

(
r0 −T(Q)tr′0

)
+ L

′tT(Q)LQ. (2.42)

The coordinate dependent rotation matrix, however, is complicated to include because its
coordinate dependence is not formally known in a closed analytic form. In order to han-
dle it, we expandT(Q) with respect to the normal coordinateQ. The zero-th order term
T0 = T(Q = Q

0
) can be found by the symmetry condition via the singular valuedecom-
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position [140,145]. From Eq. (2.41), we obtain

V0 = V(Q
0
) = r

′t
0Mr0T

t
0 = Vt

0. (2.43)

Then we have a linear transformation between the two sets of normal coordinates by in-
troducing the coordinate expansion to the Eckart transformation matrices in Eq. (2.42) and
neglecting nonlinear terms. The Duschinsky linear transformation relation is given as

Q′ = d+ SQ+O(Q2) , (2.44)

which is already a good approximation for vibronic spectra [146]. HereS is the Duschinsky
mode mixing matrix, which rotates the initial normal coordinatesQ, and the displacement
vector d is associated to the molecular structural changes shiftingthe origin of the final
harmonic oscillators to that of the initial ones,

d = L
′tM

1
2T0

(
r0 −Tt

0r
′
0

)
, (2.45)

S = L
′tT0L+ L

′tT0M
1
2 r0 (Tr(V0)I−V0)

−1
M

1
2 r

′t
0T0L. (2.46)

When the molecular structural changes (|d|2) are small, the second term in theS ma-
trix (2.46) can be ignored [39]. This will be assumed in this thesis. But the second term
of theS matrix and even the nonlinear terms have to be considered when there is a large
molecular structural deformation.

Ideally, for theN -dimensional harmonic oscillator (complete separation ofthe rotational
and translational motions from the vibrational modes), theDuschinsky rotation matrixS
is an orthogonal matrix and its determinant is unity. Then the Duschinsky relation (2.44)
becomes exactly a linear unitary transformation and the higher order nonlinear expansion
terms vanish. However, in polyatomic molecular systems this normal coordinate trans-
formation is generally nonlinear (seee.g. Refs. [39, 110, 140, 142, 147–150]) because the
Eckart axis transition matrixT(Q) depends nonlinearly on the instantaneous displacements
dynamically from the equilibrium structures.

To evaluate overlap integrals of CSs, FC integrals and non-Condon integrals exploiting
the coordinate space representations of CSs and harmonic oscillator eigenstates, we need
to transform one coordinate representation to the other according to the Duschinsky rela-
tion (2.44). The Duschinsky linear equation (2.44) is translated into a unitary transformation
operator for the coordinate systems appearing in the overlap integration.

TheN -dimensional harmonic oscillator Hamiltonian is defined asfor the initial elec-
tronic state

Ĥ =
1

2
P̂ · P̂ +

1

2
Q̂

t
Ω4Q̂− Ezp

=
~
2
â†tΩ2â, (2.47)

in terms of the annihilation ({âi}) and the creation ({â†i}) operators corresponding to the
harmonic oscillators with harmonic energies{ǫi}. The diagonal matrix of the (square root)
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harmonic angular frequencies is defined and used,

Ω = ~−
1
2diag(ǫ)

1
2 , (2.48)

where ”diag” stands for diagonal. It transforms a vector to asquare matrix with the diagonal
elements being identical to the vector and off-diagonal elements being zero. In addition,
the zero-point vibrational energy (Ezp = 1

2Tr(diag(ǫ))) is subtracted from the vibrational
Hamiltonian for convenience. The operators satisfy the following relations,

Q̂ =
√

~
2Ω

−1(â† + â), (2.49)

P̂ = i
√

~
2Ω(â† − â), (2.50)

corresponding to the (mass-weighted) position13 operator and the conjugate momentum
operator. The commutation relations of the annihilation and creation operators are

[âi, âj ] = 0, [â†i , â
†
j ] = 0, [âi, â

†
j ] = δij . (2.51)

The harmonic oscillator eigenfunctions in coordinate space are given as products of one-
dimensional Hermite polynomials14,

〈Q|v〉 =
N∏

i=1

1√
vi!

(
ǫi
π~2

)1
4
e−

ǫiQ2
i

2~2 Hvi

(√
2ǫi
~2 Qi

)
, (2.52)

where |v〉 is anN -dimensional ONV representation of theN -dimensional harmonic os-
cillator eigenstates with corresponding vibrational energy Ev = v · ǫ. The action of the
annihilation and creation operators on the ONV follows

âi|v〉 =
√
vi|v1, . . . , vi − 1, . . . , vN 〉, â†i |v〉 =

√
vi + 1|v1, . . . , vi + 1, . . . , vN 〉.

(2.53)

Similarly theN -dimensional harmonic oscillator Hamiltonian of the final electronic state
is given by

Ĥ ′ =
1

2
P̂

′ · P̂ ′
+

1

2
Q̂

′t
Ω

′4Q̂
′ − E′

zp

=
~
2
â
′†tΩ

′2â′, (2.54)

in terms of the annihilation ({â′i}) and the creation ({â′†
i }) operators corresponding to the

harmonic oscillators of harmonic energies{ǫ′i}. The diagonal matrix of (square root) har-
monic angular frequencies is

Ω′ = ~−
1
2diag(ǫ′)

1
2 . (2.55)

13in a dimension of
√
Mass × Length.

14Hv(x) = (−1)vex2/2 dv

dxv e
−x2/2.
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In addition, the zero-point vibrational energy (E′
zp = 1

2Tr(diag(ǫ
′))) is subtracted from the

vibrational Hamiltonian for convenience. The operators satisfy the corresponding relations
of Eq. (2.49)-(2.53) in which the primes ”′” shall be used to indicate operators belonging to
the final states.

Doktorovet al.[24,26] defined a unitary operator (ÛDoktorov) which performs the Duschin-
sky transformation. It is composed of a translation operator (Ûtranslation), two distortion
operators (̂Udistortion andÛ ′

distortion) and a rotation operator (̂Urotation). The Doktorov and
coworker’s [24,26] unitary operator is given as

ÛDoktorov = ÛtranslationÛ
′†
distortionÛdistortionÛrotation, (2.56)

where

Ûtranslation = e
1√
2~

dtΩ′(â†−â)
= e−

i
~d

t
Ω′Ω−1P̂ , (2.57)

Û ′
distortion = e−

1
2 (â

†+â)t lnΩ′(â†−â)+
1
2Tr(lnΩ′) = e

i
~ Q̂

t
Ω lnΩ′Ω−1P̂+

1
2Tr(lnΩ′), (2.58)

Ûdistortion = e−
1
2 (â

†+â)t lnΩ(â†−â)+
1
2Tr(lnΩ) = e

i
~ Q̂

t
lnΩP̂+

1
2Tr(lnΩ), (2.59)

Ûrotation = e
1
2 (â

†t lnSâ−ât lnSâ†) = e
i
2~ [ΩQ̂,lnSΩ−1P̂ ]. (2.60)

Instead, however, in this thesis a unitary operatorÛ which also performs the Duschinsky
transformation is defined in position space similarly to thesqueezing operator (seee.g.
Ref. [151]),i.e.

Û =

∫
dQ|Q′〉〈Q|

= |det(S)|
1
2

∫
dQ|SQ+ d〉〈Q|, (2.61)

Û † = |det(S)|
1
2

∫
dQ|Q〉〈SQ+ d|, (2.62)

or equivalently in momentum space as

Û =

(∫
dP̃ |P̃ 〉〈P̃ |

)
Û

(∫
dP |P 〉〈P |

)

= |det(S)|
1
2

∫
dP |P 〉〈StP | exp(−iP · d/~), (2.63)

Û † = |det(S)|
1
2

∫
dP |StP 〉〈P | exp(iP · d/~), (2.64)

where the prefactor|det(S)|
1
2 is introduced to restore unitaritŷU †Û = 1̂. For the idealN -

dimensional harmonic oscillators,|det(S)| = 1 but for the polyatomic systems the quantity
slightly deviates from one as discussed. The unitary operator transforms the initial state
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operators to the final ones andvice versa, i.e.

Q̂
′
= Û †Q̂Û = SQ̂+ d, (2.65)

P̂
′
= Û †P̂ Û = (S−1)tP̂ = SP̂ . (2.66)

In which SSt = I is assumed for the momentum operator transformation, whichis true
only for idealN -dimensional oscillators (|det(S)| = 1) but not quite true for polyatomic
molecules which have a quasi-unitary rotation matrix (|det(S)| ≃ 1). Accordingly we can
see the following relations for the position operator eigenstates,

Q̂|Q〉 = Q|Q〉, Q̂
′|Q′〉 = Q′|Q′〉,

Q̂
′|Q〉 = (SQ+ d)|Q〉, Q̂|Q′〉 = S−1(Q′ − d)|Q′〉, (2.67)

and for the momentum operator eigenstates,

P̂ |P 〉 = P |P 〉, P̂
′|P ′〉 = P ′|P ′〉,

P̂
′|P 〉 = (S−1)tP |P 〉, P̂ |P ′〉 = StP ′|P ′〉. (2.68)

The annihilation and creation operators in the initial and the final states are related by a
similar equation to the linear Duschinsky expression (2.44), i.e.

(
â′

â
′†

)
=

1

2

(
J+ (J−1)t J− (J−1)t

J− (J−1)t J+ (J−1)t

)(
â

â†

)
+

√
2

(
δ
δ

)
, (2.69)

where theN -dimensional square matrixJ and theN -dimensional vectorδ are defined as

J = Ω′SΩ−1, δ = ~−
1
2Ω′d. (2.70)

Accordingly the vibrational Hamiltonians are mutually convertible with the Duschinsky
unitary transformation,i.e.

Ĥ ′ = Û †ĤÛ . (2.71)

The primed and unprimed ONVs states (|v′〉 and |v〉, respectively) are the eigenstates of
primed and unprimed Hamiltonians (Ĥ ′ and Ĥ, respectively), otherwise it will be indi-
cated with its corresponding Hamiltonian, for example|v〉Ĥ′ is an eigenstate of the primed
Hamiltonian but with the unprimed ONV and|v′〉Ĥ is the opposite case. As a result of the
Duschinsky unitary operator̂U the harmonic eigenstates (ONV states) of each Hamiltonian
described in the respective coordinate systems are transformed into each other,

Ĥ
(
Û |v′〉

)
= Ĥ

(
|v′〉Ĥ

)
= Ev′

(
Û |v′〉

)
, (2.72)

Ĥ ′
(
Û †|v〉

)
= Ĥ ′ (|v〉Ĥ′

)
E′

v

(
Û †|v〉

)
, (2.73)

where the eigenvalues are given by ONVs belong to different electronic states,i.e. Ev′ =
v′ · ǫ andE′

v = v · ǫ′. Precisely the harmonic eigenstates of initial and final states in each
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phase space are transformed to the other phase space by the unitary transformation,i.e.

Û |v′〉 = Û |v′〉Ĥ′ = |v′〉Ĥ , (2.74)

Û †|v〉 = Û †|v〉Ĥ = |v〉Ĥ′ . (2.75)

Then the FC integrals in different coordinate systems can bedescribed in one coordinate
systems via the Duschinsky unitary transformation operator,

〈v′|v〉 = Ĥ′〈v′|v〉Ĥ = Ĥ〈v′|Û |v〉Ĥ = Ĥ′〈v′|Û |v〉Ĥ . (2.76)

The CS overlap integral is exploited for the FC or non-Condonintegrals because the CS
is the GF of harmonic eigenstates.

2.3. Basic properties of coherent states

Glauber’s coherent state [97] is a special type of quantum harmonic oscillator state which
fulfills the minimal uncertainty relation of position and momentum operators. The mean
values of position and momentum of a quantum mechanical Gaussian wavepacket [152],
which is evolving in time without spreading over phase space, follow the motion of a clas-
sical harmonic oscillator in a given harmonic potential. The basic mathematical proper-
ties of CSs which are exploited throughout this thesis are briefly reviewed in this section.
The Duschinsky unitary operator (2.62) is used for computing the CS overlap integral for
Duschinsky related (Eq. (2.44)) CS. Most of the following relations of CSs can be found in
Refs. [97,98], and in many other articles and books (seee.g.Ref. [3]).

Coherent states (CSs) are defined in three different ways i) as an eigenstate of the annihi-
lation operator of the quantum harmonic oscillator, ii) as aCS phase displacement operator
and iii) as a state satisfying the minimum uncertainty relation. For simple harmonic os-
cillators all three definitions are equivalent. The minimumuncertainty relation definition
of CSs is usually exploited for the CSs of general potentials, i.e. nonlinear CSs (seee.g.
Ref. [153]). Only the definitions i) and ii) shall be exploited for the method developments
in the later chapters.

TheN -dimensional CS|α〉 is defined as an eigenstate of theN -dimensional annihilation
vector operator̂a,

â|α〉 = α|α〉, (2.77)

whereα ∈ CN is a complex-valuedN -dimensional vector. The CSs can be expanded in
the basis of harmonic oscillator eigenstates,

|α〉 = exp(−1
2α

†α) exp(αtâ†)|0〉 (2.78)

= exp(−1
2α

†α)
∞∑

v=0

∏̃−1
2

v

∏v

α
|v〉 , (2.79)

where we have defined and used the product notations for factorials and powers of vectors,

i.e.
∏̃n1,··· ,nN

x1,··· ,xN = (
∏

k(x1,k!)
n1,k) · · · (∏k(xN,k!)

nN,k) and
∏n1,··· ,nN

x1,··· ,xN =
(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)
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respectively. TheN -dimensional CSs can be partitioned into subspacesX andY of dimen-
sionNX andN −NX respectively,i.e. |α〉 = |αX ;αY 〉,

|αX ;αY 〉 = exp(−1
2 |αX |2 − 1

2 |αY |2) exp(αt
Xa

†
X + αt

Y a
†
Y )|0X ; 0Y 〉. (2.80)

Then the coherent-Fock state [151]|vX ;αY 〉 can be constructed by partial derivatives with
respect to{αX;i}, i.e.

|vX ;αY 〉 =
∏̃−1

2

vX
∂̂
vX
αX

(
exp(12 |αX |2)|αX ;αY 〉

)∣∣∣
αX=0

, (2.81)

where we have defined and used the multi-dimensional partialderivative notation,i.e. ∂̂n1,··· ,nN
x1,··· ,xN

=(
∂
∑

k n1,k
∏

k ∂x
n1,k
1,k

)
· · ·
(

∂
∑

k nN,k
∏

k ∂x
nN,k
N,k

)
.

The spatial representation of CSs is given in a normalized form

〈Q|α〉 =
∏ 1

4

(π~2)−1ǫ
exp

(
−1

2
QtΩ2Q+

√
2αtΩQ− 1

2
αtα− 1

2
|α|2

)
. (2.82)

The conjugate momentum space representation reads

〈P |α〉 =
∏−1

4

πǫ
exp

[
−1

2
P tΩ−2P − i

√
2αtΩ−1P +

1

2
αtα− 1

2
|α|2

]
, (2.83)

which is in a normalized form as well.
Coherent states (CSs) can be defined with a unitary operator,the CS displacement oper-

ator, which is defined by

D̂(α) = exp(αtâ† − α†â)

= exp(−1
2

∑

k

[â†k,−âk]|αk|2) exp(αtâ†) exp(−α†â)

= exp(−1
2 |α|2) exp(αtâ†) exp(−α†â) . (2.84)

Under the action of̂D(α) CSs are created from a ground state|0〉 as

D̂(α)|0〉 = |α〉 , (2.85)

and the CS displacement operator satisfies the following phase operation rules,

D̂†(α) = D̂−1(α) = D̂(−α), (2.86)

D̂(α)D̂(γ) = D̂(α+ γ) exp[12(γ
†α− γtα∗)] , (2.87)

[D̂(α), D̂(γ)] = D̂(α+ γ)2iIm
(
exp[12 (γ

†α− γtα∗)]
)
, (2.88)
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The unitary operation on the annihilation and creation operators look like

D̂(γ)†âD̂(γ) = â+ γ,

D̂(γ)†â†D̂(γ) = â† + γ∗. (2.89)

Using the phase composition rule of Eq. (2.87), one finds

D̂(α)D̂(γ)|0〉 = D̂(α)|γ〉
= exp[12(γ

†α− γtα∗)] |α+ γ〉 , (2.90)

the phase composition state from the vacuum state.
The operation of the harmonic vibrational HamiltonianĤ (2.47) on a CS appears rela-

tively trivial. A unitary (Eq. (2.91)) and the non-unitary (Eq. (2.92)) transformations of CSs
can be shown easily by applying the transforming operators to the occupation representation
of the CSs, Eq. (2.79). Under the exponential such operatorssimply shift the CS phase,e.g.

e−iĤt/2~|α〉 = |z(t)α〉, (2.91)

wherez(t) = diag(e−iǫ1t/2~, . . . , e−iǫN t/2~). The unitary operation like above is called the
phase-shifting operation. For non-unitary transformations with a diagonal Hamiltonian in
the harmonic oscillator basis, such as for the thermal Boltzmann population of states, an
additional factor appears,i.e.

e−βĤ/2|α〉 = e−
1
2
α†(I−Γ†Γ)α|Γα〉 , (2.92)

whereΓ = diag(e−βǫ1/2, . . . , e−βǫN/2) with the reciprocal temperatureβ = 1/(kBT )
whereT is the temperature andkB is the Boltzmann constant. Comparing to the unitary
operation (2.91) the CS phase factor is rescaled as well withthe Boltzmann related factors
(Γ) and the non-unitary operation leaves a prefactor (the exponential factor in Eq. (2.92))
which is related to the vibrational partition function (seeSec. 6.1.2).

Coherent states (CSs) are over-complete basis sets satisfying the following resolution of
identity [97],

1

πN

∫
d2α|α〉〈α| = 1̂. (2.93)

Two CSs are not orthogonal [97],

〈γ|α〉 = exp(−1
2 |α|2 − 1

2 |γ|2) exp(γ†α). (2.94)

The overlap integral of CSs|α〉 and |γ′〉, described by the corresponding normal co-
ordinatesQ andQ′ respectively in the Duschinsky relation (Eq. (2.44)), can be given in
the occupation representation [27] exploiting the occupation representation of the coherent
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states (Eq. (2.79)) such that

〈γ′|α〉 = exp(−1
2α

†α− 1
2γ

′†γ
′
)

∞∑

v,v′=0

〈v′|v〉
∏̃−1

2 ,−
1
2

v,v′

∏v,v′

α,γ′∗
, (2.95)

where |v〉 and |v′〉 are the harmonic oscillator eigenstates corresponding to the CSs|α〉
and |γ′〉 respectively. The occupation representation of the overlap integral of the CSs,
Eq. (2.95) is the GF of the FC integrals15 with the generating function parameters{αk} and
{γ′k}. The CS overlap integral in the Duschinsky relation is then given by

〈γ ′|α〉 = 〈γ ′;Q′, P ′|α;Q,P 〉 = 〈γ ′;Q,P |Û |α;Q,P 〉

= |det(S)|
1
2

∫
dQ〈γ ′|SQ+ d〉〈Q|α〉

= 〈0′|0〉 exp(−1
2ξ

†ξ)J
[
W, r; ξ

]
, (2.96)

where the collective CS phase vector is used

ξ =

(
α

γ
′∗

)
, (2.97)

and the exponential functionJ is defined asJ [A, b;x] = exp(−1
2x

tAx+ btx). The over-
lap integral of CSs that is represented by the Duschinsky rotated harmonic oscillators can be
integrated in a closed form by exploiting the spatial representation of CSs, with the corre-
sponding spatial representation16 Eq. (2.82) being expressed by exponential functions. The
Duschinsky relation, Eq. (2.44), is taken into account withthe help of Doktorov matrices
and vectors [26] as parameters,

W =

(
I− 2Q −2R
−2Rt I− 2P

)
, r =

√
2

(
−Rδ

(I−P)δ

)
. (2.98)

W is a self-inverse2N × 2N matrix [117] and the2N -dimensional vectorr should not be
confused with Cartesian coordinates in section 2.2. TheN -dimensional symmetric positive-
definite square matricesQ andP, and theN -dimensional vectorδ are given as

Q = (I+ JtJ)−1 , P = JQJt , R = QJt . (2.99)

The Doktorov matrices are related to each other as [117]

RRt = Q−Q2, RtR = P−P2, (2.100)

RP−1Rt = Q, RtQ−1R = P, QR+RQ = R. (2.101)

The vibrational ground state overlap integral (〈0′|0〉) is expressed with the Doktorov matri-

15〈v′|v〉
16or with the corresponding momentum space representation Eq. (2.83)
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ces and vector as well,

〈0′|0〉 = 2
N
2



∏1

ǫ′

∏1

ǫ




1
4

det(Q)
1
2 exp

(
−1

2
δt(I−P)δ

)
|det(S)|

1
2

= 2
N
2 |det(R)|

1
2 exp

(
−1

2
δt(I−P)δ

)
. (2.102)

Equating the occupation representation (2.95) of CS overlap integral and the expanded
spatial expression (2.96) with respect to the CS phase variables, and comparing CS phase
variables to collect same orders we can find the FC integral evaluation scheme. The CS
phase variables take a role as FC integral generating function parameters. For example the
FC integral evaluation schemes are given in recursion relations (seee.g.Refs. [24,26,36]).
The recursion relations given in Ref. [46] reads

√
vi + 1〈v′|v1, . . . , vi + 1, . . . , vN 〉 =

2

N∑

k=1

Rik

√
v′k〈v′1, . . . , v′k − 1, . . . , v′N |v〉

+

N∑

j=1

(2Q − I)ij
√
vj〈v′|v1, . . . , vj − 1, . . . , vN 〉

−
√
2(Rδ)i〈v′|v〉 , (2.103)

for the initial state, and for the final state
√
v′k + 1〈v′1, . . . , v′k + 1, . . . , v′N |v〉 =

2

N∑

i=1

Rik
√
vi〈v′|v1, . . . , vi − 1, . . . , vN 〉

+

N∑

ℓ=1

(2P − I)kℓ

√
v′ℓ〈v′1, . . . , v′ℓ − 1, . . . , v′N |v〉

+
√
2[(I−P)δ]k〈v′|v〉 , (2.104)

which are exploited in this thesis for the FC integral evaluation with thermal prescreening
(Ch. 4) and linear HT prescreening (Ch. 6). The corresponding integral evaluation scheme
can be brought into an iterative form (seee.g.Refs. [44,46]). The iterative formula exploited
in Ref. [46] is presented here, to show the complexity of the existing iterative formula in
comparison of the iterative scheme developed in this thesis(see Ch. 3),e.g.
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〈v′|v〉 = 〈ũ1, . . . , ũN |ũN+1, . . . , ũ2N 〉 =

〈0′|0〉
√∏2N

i ũi!
gp,p−1∑

lp,p−1=0

A
lp,p−1
p,p−1

lp,p−1!
. . .

gp,j∑
lp,j=0

A
lp,j
p,j

lp,j !

gp,j−1∑
lp,j−1=0

A
lp,j−1
p,j−1

lp,j−1!
. . .

gp,k∑
lp,k=0

A
lp,k
p,k

lp,k!
. . .

gp,1∑
lp,1=0

A
lp,1
p,1

lp,1!

[gp/2]∑
mp=0

A
mp
p,p r

gp−2mp
p

2mpmp!(gp−2mp)!

...
...

...
...

×
gj,j−1∑

lj,j−1=0

A
lj,j−1
j,j−1

lj,j−1!
. . .

gj,k∑
lj,k=0

A
lj,k
j,k

lj,k!
. . .

gj,1∑
lj,1=0

A
lj,1
j,1

lj,1!

[gj/2]∑
mj=0

A
mj
j,j r

gj−2mj
j

2mjmj !(gj−2mj)!

...
...

×
g2,1∑

l2,1=0

A
l2,1
2,1

l2,1!

[g2/2]∑
m2=0

A
m2
2,2 r

g2−2m2
2

2m2m2!(g2−2m2)!

×
[g1/2]∑
m1=0

A
m1
1,1 r

g1−2m1
1

2m1m1!(g1−2m1)!
,

(2.105)

with the collectively indexed vector for ONVs of final and initial states

ũ =

(
v′

v

)
, (2.106)

and with the settingA = −W andp = 2N , and

gp,p−1 = min(ũp, ũp−1), gp,k = min(ũp −
p−1∑

i=k+1

lp,i, ũk), (2.107)

gj,k = min(ũj −
j−1∑

i=k+1

lj,i −
p∑

i=j+1

li,j , vk −
p∑

i=j+1

li,k), gj = ũj −
j−1∑

i=1

lj,i −
p∑

j+1

li,j,

(2.108)

and[i] is the greatest integer less or equal toi.

2.4. Franck-Condon transition at zero Kelvin

In this section we summarize the FCF GF development and the prescreening strategies at
zero Kelvin [46]17. Based on this previous work, this thesis contributes to extending the
existing techniques by taking the thermal effect, non-Condon effect and time-dependence
into account. The key idea of this development is exploitinga GF for the FCFs obtained
from the CS representations,cf. chapter 1. The resulting expressions are in the form of
a series summation of polynomials and closed integrals. Onecan partition the integral
spaces into summed-over vibrational states and frozen vibrational states with the proposed
partitioning scheme [46]. With the partitioning scheme, the intensity sum rule is exploited
for the prescreening strategies developed by Jankowiaket al. [46].

17J. Huh was not involved in this work.
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2.4.1. Coherent state-based generating function

As mentioned, we would like to have a closed analytic expression for the FCF GF, which is
given in the occupation representation by

G(z′; z) =
∞∑

v,v′=0

q(v′; v)
∏2v,2v′

z,z′
, (2.109)

where the fractional FCF (q(v′; v) = |〈v′|v〉|2/|〈0′|0〉|2) is used, which is a normalized
FCF with the FCF of vibrational ground states (|〈0′|0〉|2). The GF parameters{zk} and{z′k}
belong to the initial and final states respectively and the corresponding diagonal matrices are
z = diag(z) andz′ = diag(z′). The FCF GF (2.109) corresponds to the SDF (2.2) at zero
Kelvin (p0 = 1 andpv = 0 for v 6= 0) within the Condon approximation (µ̂(Q) = µ

0
= a

constant unit vector). Compared to the SDF expression, the GF (2.109) has GF parameters
instead of aδ-distribution. The relation between the GF parameters and the δ-distribution
in time domain is exploited in section 4.4 for the thermal FCFTCF development.

It was first shown by Malkinet al.[125] in non-symmetric form18 that the CS phase space
integral of a product of two CS overlap integrals gives the spatial representation of the series
summation of the GF. The method was exploited by Doktorovet al. [29] for the transition
statistics19 and it was modified by Jankowiaket al. [46] in a symmetric form20 which uses
mathematically convenient symmetric matrices. Malkin’s non-symmetric expression [125]
reads21

GMalkin(Z) = π−2N |〈0′|0〉|−2

∫
d2α d2γ′ 〈γ ′|α〉〈z′γ′|z∗α〉∗ , (2.110)

in which a collective block diagonal matrix is introducedZ = bldiag(z, z′) where ”bldiag”
denotes a matrix in block diagonal form22. The integration variables are defined as

d2α =

N∏

k=1

d2αk , d2γ′ =
N∏

k=1

d2γ′k , (2.111)

where

d2αk = dRe(αk)dIm(αk) =
1
2~dPkdQk, (2.112)

d2γ′k = dRe(γ′k)dIm(γ′k) =
1
2~dP

′
kdQ

′
k, (2.113)

18The orders of GF parameters in the series summation are givenin vk andv′k not in even orders2vk and2v′k
as in the Eq. (2.109).

19The moments of the distribution, mean and covariance for specific vibrational modes. The method is further
developed in this thesis (Ch. 5).

20The orders of generating function parameters in the series summation are given in even orders2vk and2v′k
as in the Eq. (2.109).

21This integral form is not surprising if one thinks about the trace formalism (2.14) which can be traced over in
any complete basis set. In this case the over-complete basisset (2.93) is used to trace the identity operator
(in Condon approximation) with the additional GF parameters. Setting the GF parameters to be 1, it is clear
to see the trace formula but the integration diverges because it implies double summation over two ONV
spaces one for initial and the other one for final vibrationalstates.

22cf. diag transforms a vector to a diagonal square matrix.
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for all k = 1, . . . , N . The FCF GF in integral form was suggested as a symmetric expression
by Jankowiaket al. [46],

G(Z) = G(z′; z)

= π−2N |〈0′|0〉|−2

∫
d2αd2γ′ 〈z′∗γ′|zα〉〈z′γ ′|z∗α〉∗ . (2.114)

Exploiting the occupancy representation of the CSs (2.79) one finds the series summa-
tion formula of the CS phase space integrals after insertingthe occupation representation
Eq. (2.79) into (2.114),

G(Z) = |〈0′|0〉|−2
∑

u,u′

∞∑

v,v′=0

〈u′|u〉〈v′|v〉∗

N∏

k=1

[
zuk+vk
k (z

′

k)
u′
k+v′k

√
uk!vk!u

′
k!v

′
k!

(
1

π

∫
d2αke

−|αk|2αuk
k (α∗

k)
vk

)

(
1

π

∫
d2γ

′

ke
−|γ′

k |2(γ
′∗
k )u

′
k(γ

′

k)
v′k

)]
, (2.115)

where the GF parameters are on the unit circle in phase space|zk| = 1, |z′k| = 1. Evaluating
the CS phase integrals in the summation via polar coordinates gives23

1

π

∫
d2αke

−|αk |2αuk
k (α∗

k)
vk = δuk,vkvk! , (2.116)

which applies similarly for theγ′k CS phase integration. Then the GF (2.115) in the series
summation of CS phase space integrals recovers the occupation representation of the FCF
GF (2.109). By replacing the GF parameters with phase parameters,i. e.

zk = exp(iθk/2) , z′k = exp(iθ′k/2) , θk, θ
′
k ∈ R , (2.117)

we can find the phase formulation of the FCF GF,

G(θ′; θ) =
∞∑

v,v′=0

q(v′; v) exp(i
[
θ · v + θ′ · v′

]
) , (2.118)

and thusG(θ′; θ) is the Fourier transformed FCF GF with the phase parameters{θk} and
{θ′k}, which is closely related to the TCF development in this thesis (Chs. 4 and 6).

Returning to the evaluation of the phase space integral of the FCF GF (2.114), the corre-
sponding spatial representation of the CS overlap integralis obtained24 as

23 1
2π

∫ 2π

0
dϕ exp(i(m− n)ϕ) = δmn and

∫∞

0
dx exp(−x)xn = n!.

24exploiting the unit modulus properties ofzk, z′k and the spatial representation of the CS overlap integral
Eq. (2.96).
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G(Z) = π−2N

∫
d2α d2γ′ exp(−ξ†ξ)

exp(−1
2ξ

tZWZξ − 1
2ξ

†ZWZξ∗ + rtZ(ξ + ξ∗)) . (2.119)

Partitioningξ into real and imaginary parts,

ξ
R
=

1

2
(ξ + ξ∗), ξ

I
=

1

2 i
(ξ − ξ∗) , (2.120)

we can separate the integration into two multi-variate Gaussian integrals. This leads after
recasting the integration over the imaginary part,γ′

I
→ −γ′

I
25 to a FCF GF of the form

G(Z) = I2N [I+ ZWZ,Zr]I2N [I− ZWZ, 0] . (2.121)

TheM -dimensional multi-variate Gaussian integral is defined,

IM [A,b] = π−M/2

∫
dx exp(−xtAx+ 2btx)

= det(A)−
1
2 exp(btA−1b) , (2.122)

which converges when the matrixA is a complex symmetric matrix with positive-definite
real part (seee.g. chapter 1 of Ref. [154]). Then the integration leads to a closed analytic
form,

G(Z) =det(I− ZWZ)−
1
2 det(I+ ZWZ)−

1
2

exp(rtZ(I+ ZWZ)−1Zr) . (2.123)

2.4.2. Partitioning integral spaces

The purpose of having the Franck-Condon factor generating function in the occupation and
the spatial representation is to control the vibrational excitation via the GF parameters and
to obtain useful information about the transition patterns. Keeping in mind the occupation
representation (Eq. (2.109)) one can control the vibrational excitation in the summation by
assigning the GF parameters ({zk} and{z′k}) to 0 or 1. When 0 is assigned to a vibrational
mode, the mode excitation contribution to the total intensity, which can be calculated from
the GF, is excluded and the only surviving term of the mode is the ground state26 contri-
bution. If 1 is assigned to a vibrational mode then the mode excitation contribution to the
summation is fully included in the total intensity. It is like on ’1’ and off ’0’ of the excitation.
For the zero Kelvin case the initial state GF parameterz is set to0 because all vibrational
modes in the initial state are frozen to the vibrational ground state. By freezing27 some
vibrational modes in the final state we can figure out the mode contributions to the total in-
tensity. In practice, however, a partitioning scheme in theGaussian integral steps is invoked

25
∫∞

−∞
dxf(x) =

∫∞

−∞
d(−x)f(−x)

2602n = δn0.
27by setting to 0
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rather than switching the GF parameters directly on or off. With the partitioning,G(Z)
(Eq. (2.123)) is decomposed into products of contributionsin the orthogonal subspacesX
andY . The subspacesX andY have dimensionsNX andNY = 2N − NX respectively.
The subspaceX corresponds to the vibrational modes with fixed quantum numbers. The
vibrational modes in subspaceY can be excited infinitely and stay in the CS phase integral
space as a result28. The corresponding orthogonal projection operatorsπ̂X andπ̂Y satisfy
the usual conditions for projection operators. Applying the projection operators to matrices
and vectors indicates the corresponding projection labels, e.g.

π̂Xξ = ξ
X
, π̂Y ξ = ξ

Y
,

π̂XAπ̂X = AXX , π̂XAπ̂Y = AXY , π̂Y Aπ̂X = AY X , π̂Y Aπ̂Y = AY Y .
(2.124)

AssigningY on both initial and final state modes leads the FCF GF to divergence unless
the modes are in subspaces mutually exclusive or weighted bysome normalized distribution
such as the Boltzmann distribution for thermal weight (see Ch. 4).

The partitioning scheme can be applied to the Gaussian integral (2.122) so that the inte-
gral is decomposed into anL-dimensional spaceX and an(M − L) dimensional spaceY
with the corresponding integration variablesx andy [46]

IM [A,b] = π−M/2

∫
dx exp(−xtAXXx+ 2btXx)

∫
dy exp(−ytAY Y y + 2[bY −AY Xx]

ty). (2.125)

Then the space partitioned Gaussian integral is given by

IM [A,b] = det(AY Y )
−1
2 det(AXX −AXY (AY Y )

−1AY X)−
1
2 exp(btY (AY Y )

−1bY )

exp([bX −AXY (AY Y )
−1bY ]

t(AXX −AXY (AY Y )
−1AY X)−1[bX −AXY (AY Y )

−1bY ]) .
(2.126)

The Gaussian integral decomposition (Eqs. (2.125) and (2.126)) makes the FCF GF a prod-
uct of two Gaussian integrals (Eq. (2.121)), which is decomposed into two subspaces,i.e.

G(Z) = G(ZXX ,ZY Y ) = GX|Y (ZXX ,ZY Y )GY (ZY Y ) , (2.127)

where

GY (ZY Y ) = INY
[(I+ ZWZ)Y Y ,ZY Y rY ]

= det((I + ZWZ)Y Y )
−1
2 det((I − ZWZ)Y Y )

−1
2

exp(rtY ZY Y ((I+ ZWZ)Y Y )
−1ZY Y rY ) , (2.128)

28Integration over one phase variable belonging to one vibrational mode corresponds to complete summation
of the individual vibrational mode contributions to the total intensity.
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and

GX|Y (ZXX ,ZY Y )

= INX
[IXX − ZXXW̃−

XX(ZY Y )ZXX , 0X ]

INX
[IXX + ZXXW̃+

XX(ZY Y )ZXX ,ZXX r̃
+
X(ZY Y )]

= det(IXX + ZXXW̃+
XXZXX)−

1
2 det(IXX − ZXXW̃−

XXZXX)−
1
2

exp((r̃+X)tZXX(IXX + ZXXW̃+
XXZXX)−1ZXX r̃

+
X) . (2.129)

The symbolX|Y indicates the conditional exclusion ofY space fromX space, the integral
spaceX is separated from the spaceY but the GF concerning spaceX (GX|Y (ZXX ,ZY Y ))
still depends on the GF parameter inY spaceZY Y . Here the quantities for the fixed quan-
tum number space are defined as,

W̃±
XX(ZY Y ) = WXX ∓WXY ZY Y ((I ± ZWZ)Y Y )

−1ZY YWY X , (2.130)

r̃+X(ZY Y ) = rX −WXY ZY Y ((I+ ZWZ)Y Y )
−1ZY Y rY . (2.131)

The partitioning scheme of the FCF GF is exploited, in practical calculations of FC profiles,
to find the maximum quantum numbers for the individual vibrational modes and the maxi-
mum number of simultaneously excited modes for given intensity threshold. This rigorous
prescreening scheme is crucial to reduce the number of integrals to be computed in the sub-
sequent steps. The output of the neglected integrals on the integrated SDF is here by known
in advance. The numerical schemes for the rigorous prescreening strategies are generalized
to include the thermal effect and presented in the thermal FCF GF chapter 4. In chapter 6
the thermal prescreening strategy is generalized to include non-Condon effects.

2.5. Chapter summary and conclusion

In this chapter we reviewed the basic background for the theoretical contributions of the
thesis. The FGR can be expressed in frequency and time domain. We presented the trans-
formation of the SDFs, for OPA and rR cross sections, from frequency to time domain via
Fourier integration. For the evaluation of SDFs with Duschinsky mode mixing effect, a
unitary transformation was introduced such that it transforms the coordinates according to
the Duschinsky relation. This Duschinsky unitary operation was exploited to compute CS
overlap integral and the overlap integral was used for the FCintegral prescreening method
at zero Kelvin [46].

Throughout the following chapters of this thesis the concepts introduced herein are ex-
ploited for thermal effect (Ch. 4), non-Condon effect (Chs.3 and 6) and time-independent
cumulant expansion (Ch. 5). In the next chapter 3 the FC/non-Condon integral evaluation
schemes are developed for the efficient evaluation of SDFs inTI manner. The integral eval-
uation schemes are generalized to complex numbers for the TCF evaluation of rR, SVL and
anharmonic GFs in chapter 7.
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3. Franck-Condon integrals and beyond

In this chapter we develop integral evaluation schemes for Franck-Condon (FC) and non-
Condon integrals. The efficient FC and non-Condon integral evaluation schemes are shown
to be important not only for the time-independent (TI) method but also for the time-dependent
(TD) approach (seee.g. Ref. [71]) of resonance Raman (rR) scattering and single vibronic
level (SVL) transition (Ch. 7). We review first the history ofthe integral evaluation schemes.
Afterwards, we suggest an iterative integral evaluation scheme for the FC integrals, which
is different from the traditional iterative method (seee.g. Ref. [155]) in the aspect that
it includes only a single uni-variate Hermite polynomial whereas the traditional approach
contains multiple products of one-dimensional Hermite polynomials in the iterative sum-
mation. Our iterative FC integral expression, which is represented as multi-variate Her-
mite polynomials (MHPs), is shown to be in a simpler form thanthe traditional expression.
Usually the non-Condon integrals in the Duschinsky relation (2.44),e.g. the Herzberg-
Teller (HT) integrals〈v′|Q̂i|v〉, are evaluated via linear combination of FC integrals (see
e.g. Refs. [36, 49]) resulting from the second quantized expression of position operators
(2.49). Thus the non-Condon integral evaluation is more expensive than FC integrals. Intro-
ducing the coherent state (CS) phase displacement operators to the CS overlap integral we
can translate the non-Condon integral evaluation problem into a MHP evaluation problem
even for nonlinear operators. As a result we can use the same integral evaluation scheme for
the FC and non-Condon integrals, which are expressed as MHPs. In this chapter a unified
approach for the FC/non-Condon integrals is developed.

A brief history Sharp and Rosenstock [114] developed the multi-dimensional Franck-
Condon integral evaluation scheme in the displaced-distorted-rotated harmonic oscillator
(from here on we refer to this as Duschinsky oscillator) basis. By using the Hermite poly-
nomial generating function1 (seee.g. Refs. [133, 134]), they found an equivalent series
summation formula in expansion with the generating function (GF) parameters. Many other
authors (seee.g.Refs. [149,155–160]) modified the GF approach to iterative and recursive
integral evaluation schemes. Doktorovet al. [24, 26] exploited the coherent state position
space representation (2.82) to derive the recursion relations (Eqs. (2.103) and (2.104)) for
the FC integrals with the Duschinsky oscillators. Recursion relations, identical to these ob-
tained by Doktorov and coworker’s [24, 26] CS approaches, were formulated by Kupkaet
al. [161] using the Hermite polynomial GF as well and were exploited by many others (see
e.g.Refs. [80, 162–166]). The two approaches (Sharp and Rosenstock [114] and Doktorov
et al. [24, 26]) exploit different kinds of GFs (Hermite polynomial and CS), however, end
up in a common mathematical problem, namelyhow to evaluate the multi-variate Hermite
polynomials(seee.g.Refs. [133,134] for the mathematical works), which can be performed
either iteratively or recursively.

1e.g. the one-dimensional Hermite polynomial generating function isext−t2/2 =
∑∞

v=0Hv(x)
tv

v!
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3. Franck-Condon integrals and beyond

The recursive approach is usually faster than the iterativeone. But the former has an inte-
gral storage problem which can easily cause impractical memory requirements for large
systems and FC integrals with high excitations in vibrational levels. To deal with the
memory size problem of the recursion relation, there have been various computational
strategic advances,e.g. binary tree [43, 124, 167–169] and hash tables [170–172] to store
the integrals efficiently. The iterative scheme has been modified until recently (seee.g.
Refs. [117,118,120,121]). The new versions deviate only slightly from the initial develop-
ment of Sharp and Rosenstock [114], for instance the usage ofthe summations of multiple
products of one-dimensional Hermite polynomials. For the summations of one-dimensional
Hermite polynomial products, one has to sum over many terms which can slow down the in-
tegral evaluation. An iterative method was developed for the one-dimensional non-Condon
integrals [173], however, it has to be extended for multi-dimensional non-Condon integrals
which is essential for larger system applications, anharmonic and vibronic coupling prob-
lems.

Malmquist and Forsberg [115] proposed a different approach, the so called LU method,
expanding the initial and final harmonic oscillator eigenstates with a set of harmonic oscilla-
tor eigenstates which can mediate the initial and final vibrational states so that the Duschin-
sky mode mixing problem (2.44) can be avoided in the evaluation. A similar idea was used
in Refs. [42,84] for an iterative method explicitly expressing the integrals in series summa-
tion with the Duschinsky parameters for three dimensional case. These approaches can in
principle be extended for the non-Condon integral evaluation of Duschinsky oscillators. In
the LU approach, however, non-Condon integrals in the parallel harmonic oscillator basis
have to be evaluated additionally even for the FC integrals.

Perturbation approaches [26,57,119,174] were proposed toovercome the integral storage
problem of the recursion relations and the complicated implementation of the iterative sum-
mation formulas (seee.g.Eq. (2.105)). In these perturbation approaches, the Duschinsky ro-
tations are approximately taken into account by effective parameters of the non-interacting
oscillators [175] even in the zero-th order. In zero-th order the multi-dimensional integrals
separate into products of one-dimensional integrals. Borrelli and Peluso [119] claim that
their perturbation method with second order expansion shows quantitative agreement with
the exact calculations for small systems having small Duschinsky effects. The higher order
terms, however, should be taken into account for larger systems, which is shown to be a
computationally difficult task. The perturbation approachis useful for large systems hav-
ing small Duschinsky mode mixing effects, if one can furtherapproximate the Duschinsky
rotation matrix to a block diagonal form by grouping the significantly mixed vibrational
modes [43].

Svendsenet al. [71] suggested a TD recursion relation for the one-photon absorption
(OPA) and rR time-correlation functions (TCFs) including the non-Condon effects. The
recursion relation is similar to those of Doktorovet al. [24, 26] (Eqs. (2.103) and (2.104))
but it includes a time-propagation operator (exp(−iĤ ′t/~)) and a position operator (̂Qi).
Svendsenet al. could construct TCFs (〈v|v(t)〉, see Sec. 2.1) for the OPA and rR processes
with the recursion relation including a non-Condon operator of nonlinear one-dimensional
position operator (̂Qn

i ). We develop, instead, a similar TD generating function evaluation
method for SVL transitions in this thesis using the complex MHPs which can be evaluated
iteratively or recursively with arbitrary polynomial non-Condon operators. Later on we
apply this method to SVL and rR TCF evaluation including non-Condon effects in chapter 7.
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Throughout the work in this thesis, we utilize the coherent state recursion relation re-
ported in Ref. [46] (Eqs. (2.103) and (2.104)) for the TI approach with integral prescreening
methods for the finite temperature effect (Ch. 4) and the HT effect (Ch. 6). The CS formal-
ism is physically intuitive and can easily be extended to theFranck-Condon factor (FCF)
sum rule at finite temperature (Ch. 4), the FCF thermal TCF (Ch. 4), the non-Condon in-
tegral scheme (Sec. 3.2), the non-Condon thermal TCF and thecorresponding sum rule
(Ch. 6), the TI cumulant expansion (CE) to FC transition (Ch.5), the SVL GF which is
closely related to the rR and anharmonic developments (Ch. 7).

3.1. Franck-Condon integrals

One can evaluate the multi-dimensional FC integrals including the Duschinsky effect [107]
by relating expressions (2.95) and (2.96) via the partial derivatives with respect to the
CS phase parameters. With the collective indexed vector foroccupation number vectors
(ONVs) of initial and final states2

ṽ =

(
v
v′

)
, (3.1)

the FC integral reads

〈ṽ〉FC =〈v′|v〉 = 〈ṽN+1, . . . , ṽ2N |ṽ1, . . . , ṽN 〉

= 〈0′|0〉
∏̃−1

2

ṽ
∂̂
ṽ
ξ exp

(
−1

2ξ
tWξ + rtξ

) ∣∣∣
ξ=0

, (3.2)

where3 one can notice that the FC integral is nothing but a MHP [24,26]. The MHP,Hṽ, is
defined as,

Hṽ(x;Λc) = (−1)−ṽexp(12x
tΛ−1

c x)∂̂ṽxexp(−1
2x

tΛ−1
c x), (3.3)

whereṽ =
∑

k ṽk andΛc is a complex symmetric matrix with a symmetric positive definite
real part. The overlap integrals of multi-dimensional harmonic oscillators (multi-variate
Hermite-Gaussian function (2.52)) are expressed as MHPs, that is,

〈ṽ〉FC = 〈0′|0〉
∏̃−1

2

ṽ
(−1)ṽHṽ(ξ −W−1r;W−1)

∣∣∣
ξ=0

= 〈0′|0〉
∏̃−1

2

ṽ
Hṽ(W

−1r;W−1). (3.4)

2Note that the order of vectors is reversed comparing to Eq. (2.106).
3∂̂

n1,··· ,nN
x1,··· ,xN

=

(
∂
∑

k n1,k
∏

k ∂x
n1,k
1,k

)
· · ·
(

∂
∑

k nN,k

∏
k ∂x

nN,k
N,k

)
and

∏̃n1,··· ,nN

x1,··· ,xN
=
(∏

k(x1,k!)
n1,k

)
· · ·
(∏

k(xN,k!)
nN,k

)
.
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We can evaluate the MHPs by using the following recursion relation,

Hṽ1,··· ,ṽk+1,··· ,ṽ2N (x;Λc) =
( 2N∑

j=1

(Λ−1
c )kjxj

)
Hṽ1,··· ,ṽ2N (x;Λc)

−
2N∑

j=1

(Λ−1
c )kj ṽjHṽ1,··· ,ṽj−1,··· ,ṽ2N (x;Λc), (3.5)

which was derived by Willink [134] in a similar form of Eqs. (2.103) and (2.104) (see
Refs. [24, 26, 114]) for FC integrals. Together with Eq. (3.4) we can rewrite the recursion
relation of Eqs. (2.103) and (2.104) in a single expression,
√
ṽk + 1〈ṽ1, · · · , ṽk + 1, · · · , ṽ2N 〉FC =rk〈ṽ1, · · · , ṽ2N 〉FC

−
∑

j=1

Wkj

√
ṽj〈ṽ1, · · · , ṽj − 1, · · · , ṽ2N 〉FC.

(3.6)

Willink [134] suggested the recursion relation, Eq. (3.5),for the MHPs, which is a general
form of the one by Doktorov and coworker’s [24, 27]. The author found also the recursion
relation of multi-variate normal moments from the recursion relation of the MHPs via the
relation between the multi-variate normal momentsE and the MHPsH, i.e.

E
(∏ṽ

y

)
= i−ṽHṽ(iΛcµm;Λc), (3.7)

wherey is a random variable vector in a normal distribution,Nnormal(µm,Λ
−1
c ) 4. Exploit-

ing the Magnus series expansion, which shall not be confusedwith the multi-dimensional
time integral expansion for the TD Schrödinger equation, for products of variables5 Kan [176]
developed an efficient algorithm to evaluate the multi-variate normal moments,

E
(∏ṽ

y

)
=

ṽ1∑

l1=0

· · ·
ṽ2N∑

l2N=0

[ṽ/2]∑

s=0

(−1)
∑2N

k lk

(
ṽ1
l1

)
· · ·
(
ṽ2N
l2N

) (ht
Λ

−1
c h
2

)s
(htµ

m
)ṽ−2s

s!(ṽ − 2s)!
,

(3.8)

whereh = (ṽ1/2 − l1, · · · , ṽ2N/2 − l2N )t and [ṽ/2] is the greatest integer less or equal
to ṽ/2. Herein we propose an (alternative) iterative evaluation scheme of the MHPs, which
can possibly be evaluated efficiently by identifyingµ

m
= −ir andΛc = W−1 in Eqs. (3.7)

and (3.8),i.e.

4The normal distribution is defined asp(y) = 1√
det(2πΛ

−1
c )

exp
[
− 1

2
(y− µ

m
)tΛc(y− µ

m
)
]

with its mean

vectorµ
m

and covariance matrixΛ−1
c .

5∏ṽ

y =
∏2N

k y
ṽk
k =

∑ṽ1
l1=0 · · ·

∑ṽ2N
l2N=0(−1)

∑2N
k lk

(
ṽ1
l1

)
· · ·
(
ṽ2N
l2N

)
(hty)ṽ whereh = ṽ − l.
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Hṽ(W
−1r;W−1) =

ṽ1∑

l1=0

· · ·
ṽ2N∑

l2N=0

[ṽ/2]∑

s=0

(−1)
∑2N

k lk+s

(
ṽ1
l1

)
· · ·
(
ṽ2N
l2N

) (ht
Wh
2

)s
(htr)ṽ−2s

s!(ṽ − 2s)!
.

(3.9)

Then we can evaluate the multi-dimensional FC integral in Eq. (3.4) with the relation (3.9)
involving the summation of uni-variate Hermite polynomials6. This iterative formula has
simpler summation indices than the expression (2.105) usedin Ref. [46] which is a general-
ized expression of Refs. [116,149,155,157]. The summationindices and the corresponding
summation bounds in the iterative equation (2.105) are dependent on each other, whereas
the summation indices and the bounds in Eq. (3.9) are independent. We can further sim-
plify the expression for a special case, whenr = 0 (when there is no molecular structural
changes), only one term (ṽ = 2s) in the summation overs survives.

3.2. Beyond Franck-Condon integrals

When the Condon approximation, in which one computes the FCFs as the transition prob-
abilities, is not sufficient, it is necessary to take the transition moment as a function of
vibrational normal coordinates. Beyond the Condon approximation, we need to evaluate
the HT (non-Condon) integrals which are the matrix elementsof the position operators.
Usually the HT approximation is adopted for weakly FC-allowed or FC-forbidden tran-
sition within the Born-Oppenheimer (BO) ansatz. In the HT expansion of the electronic
transition dipole moment (TDM), typically, at most the linear terms or the quadratic terms
are considered (see Sec. 2.1). Usually the (linear) HT integrals are evaluated with a linear
combination of FC integrals via the second quantized position operators (Eq. (2.49) and
seee.g. Refs. [36, 49]). We propose, in this section, a general integral evaluation scheme
for non-Condon operators so that it can be used within the MHPevaluation routes in the
previous section 3.1.

Rather than solving for the specific HT-type-integrals〈v′|Q̂i|v〉, we instead can gener-
ate such matrix elements from an arbitrary polynomial operator7 f̂ = f̂(P̂ , Q̂), cast as a

function of momentum and position operators. In the CS basisthe matrix elements of̂f are
given in a series expansion,i.e.8

〈γ′|f̂ |α〉 =exp(−1
2α

†α− 1
2γ

†γ)

∑

v,v′

〈v′|f̂ |v〉
∏̃−1

2 ,−
1
2

v,v′

∏v,v′

α,γ
′∗
. (3.10)

Like for FC integrals, the analytic expression of〈γ′|f̂ |α〉 and the series expansion will be

6The summation over thes part in Eq. (3.9) is the iterative expression of the uni-variate Hermite polynomials.
7Herein we restrict polynomials of momentum and position operators to integer powers. But we can possibly

consider non-integer powers such as
√

Q̂i via fractional calculus(seee.g.Ref. [177]).
8∏n1,··· ,nN

x1,··· ,xN
=
(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)
.
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compared to formulate the non-Condon integral evaluation scheme. A similar idea [173]
was previously exploited to compute the matrix elements of the position operator in a one-
dimensional harmonic oscillator basis. Herein we considerarbitrary polynomial operators
rather than only a linear position operator for the generalization of the development and the
possible expansions of the method to nonlinear HT terms, vibronic couplings and anhar-
monic oscillators.

It is precisely this action on the CS labels which is exploited for the HT operations, by
making an identification between the CS displacement operator and the momentum and po-
sition operators. By introducing auxiliary parametersηP andηQ, connected to the momen-
tum and the position operators respectively, we can apply the general operator expansions
by taking partial derivatives with respect to these auxiliary parameters. This relationship
utilizes the product of CS displacement operators (Eqs. (2.87) and (2.90))

D̂(ηP )D̂(iηQ)|α〉 =|α+ ηP + iηQ〉

exp
[
1
2 (α

† − αt)ηP + i
2 (α

† + αt)ηQ − iηQ
tηP

]
, (3.11)

where

ηQ = (ηQ1 , . . . , ηQN
)t, ηQi ∈ R,

ηP = (ηP1 , . . . , ηPN
)t, ηPi ∈ R . (3.12)

Differentiating the CSs, Eq. (3.11), with respect to the auxiliary parameters one can extract
the momentum and position operators from the correspondingCS displacement operators,
for example

∏l,m

P̂ ,Q̂
=

N∏

k=1

[
i
√

ǫk
2

]lk[1
i

√
~2
2ǫk

]mk

∂̂l,mηP ,ηQD̂(ηP )D̂(iηQ)
∣∣∣
ηP ,ηQ=0

, (3.13)

which has been placed into a momentum and position operator ordering. Other orderings,
such as the reverse ordered form, can be made in a similar manner by exchanging the place-
ment of the CS displacement operators in Eq. (3.11) and more complicated orderings are
possible by introducing more CS displacement operators.

Returning to the central problem of evaluating CS matrix elements for the (arbitrary)
polynomial operators9 f̂(P̂ , Q̂), we make the identification between Eq. (3.10) and the
overlap integral exploiting Eq. (3.11)

〈γ′|D̂NC(η)|α〉 = 〈γ′ + (ηP ′ + iηQ′)∗|α+ (ηP + iηQ)〉 exp
[
1
2ξ

†η − 1
2η

†ξ − iη̃P
tη̃Q

]
,

(3.14)

9Strictly speaking, this is not an arbitrary polynomial because one has to introduce many CS displacement
operators with different auxiliary parameters for more arbitrariness.
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3. Franck-Condon integrals and beyond

where

D̂NC(η) = D̂−1((iηQ′)∗)D̂−1(ηP ′)D̂(ηP )D̂(iηQ), (3.15)

η̃P =

(
ηP
ηP ′

)
, η̃Q =

(
ηQ
ηQ′

)
, (3.16)

η = η̃P + iη̃Q . (3.17)

For computational convenience we use(iηQ′)∗ instead of(iηQ′) in Eq. (3.14) when we
multiply prefactors of the position operators as in Eq. (3.13) to the corresponding partial
derivatives10. The CS overlap integral in Eq. (3.14) can be further simplified by factoring
the CS overlap integral (〈γ′|α〉) out, i.e.11

〈γ′ + (ηP ′ + iηQ′)∗|α+ (ηP + iηQ)〉

=〈γ′|α〉exp
(
− 1

2η
†η
)
J
[
W, r; η

]

exp(−1
2ξ

†η − 1
2η

†ξ − ηtWξ) . (3.18)

The occupation representation of the matrix elements (Eq. (3.10)) of the displacement op-
erators (Eq. (3.14)) reads

〈γ′|D̂NC(η)|α〉 = exp(−1
2ξ

†ξ)
∑

v,v′

〈v′|D̂NC(η)|v〉
∏̃−1

2 ,−
1
2

v,v′

∏v,v′

α,γ′∗
. (3.19)

To restore the matrix elements in the harmonic oscillator ONV basis from the CS matrix
element (3.19) we take partial derivatives as follows

〈v′|D̂NC(η)|v〉 =
∏̃−1

2

ṽ
∂̂
ṽ
ξ exp(

1
2ξ

†ξ)〈γ ′|D̂NC(η)|α〉
∣∣∣
ξ=0

. (3.20)

We can, finally, arrive at the non-Condon integral evaluation formula by taking partial
derivatives on Eq. (3.20) with respect to the auxiliary phase parameters to restore the mo-
mentum and position operators (Eq. (3.13)),

10We simply can multiply the position operator prefactor,1
i

√
~
2

2ǫk
in Eq. (3.13), without considering whether a

position operator belongs to the initial or final electronicstate regarding for the sign change of the prefactor.
Otherwise (if we use(iηQ′ ) instead of(iηQ′)∗) we need to take the complex conjugate of the prefactor for
the corresponding position operator belonging to the final electronic state.

11J [A, b;x] = exp(− 1
2
xtAx+ btx).
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〈v′|
∏m′,l′,l,m

Q̂
′
,P̂

′
,P̂ ,Q̂

|v〉

=
N∏

k=1

[
i
√

ǫk
2

]lk[
i

√
ǫ′k
2

]l′k[1
i

√
~2
2ǫk

]mk
[
1
i

√
~2

2ǫ′k

]m′
k
∂̂
l,l′,m,m′

η̃P ,η̃P ′ ,η̃Q,η̃Q′
〈v′|D̂NC(η)|v〉

∣∣∣
η=0

=
N∏

k=1

[
i
√

ǫk
2

]lk[
i

√
ǫ′k
2

]l′k[1
i

√
~2
2ǫk

]mk
[
1
i

√
~2

2ǫ′k

]m′
k

〈0′|0〉
∏̃−1

2

ṽ
Hv,v′,l,l′,m,m′(W̃−1

NCIr̃NCI;W̃
−1
NCI) , (3.21)

where the MHP dimensional order is(v, v′, l, l′,m,m′), and the collective matrix̃WNCI

and the vector̃rNCI are defined as

W̃NCI =




W I+W −i(I−W)
I+W I+W i(I +W)

−i(I−W) i(I+W) I−W


 , (3.22)

r̃NCI =



r
r
ir


 . (3.23)

Note that the ordering of operators in Eq. (3.21) is symmetric, i.e. position-momentum-
momentum-position such that the first position-momentum operators belong to the final
state and the other belongs to the initial state. Other operator orderings are possible by
placing the CS displacement operators of auxiliary parameters differently. Now we can
evaluate the non-Condon integrals for arbitrary polynomial operators with the MHP evalu-
ation schemes either in recursive (Eq. (3.5)) or iterative (Eq. (3.9)) way. Even if the para-
metric matrix (̃WNCI, Eq. (3.22)) and vector (r̃NCI, Eq. (3.22)) are composed of complex
numbers, the implementation of the integral formula can be made easily in real number
arithmetic because only the off diagonal block matrices contain purely imaginary numbers.
Normally the dimensionality of the integral can be reduced12 because usually the dimen-
sions of momentum operators (NP ≤ 2N ) and position operators (NQ ≤ 2N ) are smaller
than the dimension of Duschinsky oscillators (2N ). This non-Condon integral formula has
not been implemented in software, but in this thesis the general framework has been suc-
cessfully applied to the linear HT GF development in chapter6 in time-independent and
time-dependent approaches.

3.3. Chapter summary and conclusion

The integral evaluation schemes for the Franck-Condon and non-Condon factors in the
Duschinsky oscillator basis were developed. First, the iterative integral strategy of the col-

12W̃NCI andr̃NCI can be reduced in smaller ones.
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3. Franck-Condon integrals and beyond

lective feature in a uni-variate Hermite polynomial summation (seee.g. Eq. (3.9)) was
shown to be of much simpler form than the existing multiple products of one-dimensional
Hermite polynomial summation formulas (seee.g.Eq. (2.105)). The non-Condon integrals
were transformed into the MHPs via the CS phase displacementoperators like the FC in-
tegrals. As a result the FC and non-Condon integrals can be evaluated by MHP evaluation
schemes either recursively (Eq. (3.5)) or iteratively (Eq.(3.9)). Numerical tests have not
been made yet, but the key idea herein to transform every overlap integral in the Duschin-
sky oscillator basis to the MHP problems is valuable for opening up new integral evaluation
schemes. We apply the key idea to the later chapter developments, i.e. thermal FCF GF
(Ch. 4), thermal non-Condon GF (Ch. 6). The complex number MHPs allow the evaluation
of the TCFs for single vibronic level transition, anharmonic transition, rR scattering (Ch. 7).
The CS displacement operator technique is numerically applied in the thermal FCHT GF
chapter 6. Now we have evaluation schemes for the FC and non-Condon integrals, we will
try in the next chapter to reduce the number of FC integrals for the thermally excited FC
transition system based on the FC integral prescreening development at zero Kelvin [46]
(see Sec. 2.4).
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4. Thermal distribution of
Franck-Condon factors

In this chapter we introduce techniques to take into accountthe thermally excited initial or
final vibrational states with the Boltzmann distribution atfinite temperature by including an
integral kernel into the Franck-Condon factor (FCF) generating function (GF) (Sec. 2.4). In
the time-independent (TI) approach, the corresponding Franck-Condon (FC) integral pre-
screening schemes at finite temperature are rigorously developed with the GF. The FCF sum
rule is used in the previous work [46]1 for searching prescreening conditions at zero Kelvin2.
This method is extended to the case of thermalized Duschinsky oscillators (Ch. 2.2). By de-
vising temperature-dependent Doktorov matrices and vectors (Eq. (2.98)), we derive the
thermal FCF GF similar to the zero Kelvin development [46] (Eq. (2.123)) so that we can
use similar integral prescreening steps at zero Kelvin. Theonly differences between the
functional structure of the resulting thermal FCF GF (2.123) and that of the zero Kelvin
is manifested in the former as an additional normalizing factor (the reciprocal vibrational
partition function). The sum rules and integral prescreening strategy (Eq. (4.16) and (4.20))
at finite temperature can directly be translated from the zero Kelvin development with the
(thermal) integral kernel.

Additionally, the GF approach is directly applicable to thecomputation of the thermal
time-correlation function (TCF) (Eq. 2.14). It is shown that the prescreening parameter
matrix Z in a FCF GF can play a role as a Diracδ-distribution in the frequency domain.
After applying Fourier transform (FT) in time domain, the GFgives rise to the correspond-
ing (thermal) TCF. Our formulation of the coherent state (CS)-based TCF and its FT also
provides convenient access to the spectral contribution ofindividual modes unlike other
time-dependent (TD) approaches (seee.g. Refs. [17, 34, 35, 37, 64, 137]). The validity of
the prescreening conditions at finite temperature has been verified by comparison of the TI
and TCF approaches. As first applications of the thermal prescreening, the FC profiles of
the 1 1A

′ → 1 2A
′

band in the photo-electron (PE) spectrum of formic acid and the FC
contribution to the lowest energy ultra-violet (UV) absorption band (1 1Ag → 1 1B2u) for
anthracene at elevated temperatures are presented.

This chapter is presented as follows. In section 4.1 the thermal integral kernel is in-
troduced to the coherent state-based GF with thermal weights on FCFs. The FC integral
prescreening strategies for the TI method that also includes thermal effects are developed in
sections 4.3 and 4.2 exploiting the GF at finite temperature and the corresponding integral
space partition (Sec. 2.4.2). We derive the thermal TCF fromthe same GF for the TD ap-
proach. The results from the two different approaches (TI and TD) via the identical GF are
compared in section 4.5. The chapter is concluded in section4.6.

1J. Huh was not involved in this work.
2Seecf. Refs. [44,45] the FC intensity convergence methods.
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4. Thermal distribution of Franck-Condon factors

4.1. Thermal integral kernel

Boltzmann distributed vibrational states corresponding to a thermally averaged initial state
is required for the description of FC transition at finite temperature. For this reason, a pa-
rameterized integral kernelK(Λ; ξ) is introduced to the CS GF for the FCFs (Eq. (2.114)).
This leads to

GK(Z;Λ) = π−2N |〈0′|0〉|−2

∫
d2αd2γ′K(Λ; ξ)〈z′∗γ′|zα〉〈z′γ′|z∗α〉∗ , (4.1)

with an ansatz for the thermal integral kernel3,

K(Λ; ξ) = N det(I +Λ) exp(−ξ†Λξ) . (4.2)

Here the parameter matrixΛ is assumed to be diagonal (diag) with real-valued entries
λ = diag(λ) andλ′ = diag(λ′), so thatΛ = bldiag(λ,λ′). This matrix will be associated
with the Boltzmann factors.N is a normalization factor which turns out, later, to be a
reciprocal vibrational partition function.

We evaluate the GF (Eq. 4.1) in the occupancy representationexpression (2.79) with the
CSs4 and find

GK(Z;Λ) = N|〈0′|0〉|−2
∑

u,u′

∑

v,v′

〈u′|u〉〈v′|v〉∗

det(I+Λ)

N∏

k=1

[
zuk+vk
k (z′k)

u′
k+v′k

√
uk!vk!u

′
k!v

′
k!(

1

π

∫
d2αke

−|αk|2(1+λk)αuk
k (α∗

k)
vk

) (
1

π

∫
d2γ′ke

−|γ′
k |2(1+λ′

k)(γ
′∗
k )u

′
k(γ′k)

v′k

)]
. (4.3)

Rescaling of the integration variables reduces to the conventional GF expression (2.109)
with a scaling factor. Consequently

GK(Z;Λ) = N
∞∑

v,v′=0

q(v′; v)
N∏

k=1

[(
z2k

1 + λk

)vk ( (z′k)
2

1 + λ′k

)v′k
]

= N
∞∑

v,v′=0

q(v′; v)
N∏

k=1

[z2vkk (z′k)
2v′k ]e−(vtBǫ+v′tB′ǫ′) , (4.4)

where the parametersΛ, which are related to the Boltzmann factors, are used both for the
initial and final states for the sake of generality to cope with the absorption and emission
processes and their possible thermal integral prescreening scheme. Making this relationship
more explicit, they are connected via

(1 + λk)
−1 = exp(−βkǫk), (4.5)

(1 + λ′k)
−1 = exp(−β′kǫ′k) , (4.6)

3Contribution by J. L. Stuber to J. Huhet al. [129].
4See Eq. (2.115) for the corresponding expression at zero kelvin.
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whereβk = 1/(kBTk) (with Boltzmann constantkB and temperatureTk). These parame-
ters are combined in the matrixB = diag(β1, . . . , βk) with analogous expressions holding
for primed quantities. All energy parametersǫk andǫ′k are assumed to be positive real quan-
tities. Having aβk for each mode rather than a common value allows to select specific
modes. Choosingβk = 0, for example, keeps modek from being Boltzmann weighted
which is analogous to the integral space partitioning in section 2.4.2 for the fully integrated
space (Y ). Our choice of the integral kernel (4.2) thus leads to precisely the required ex-
pression (4.4) for the thermally weighted FCFs.

Utilizing the spatial representation of the CS (2.96) for the thermal GF expression of
Eq. (4.1) we have then

GK(Z;Λ) = Nπ−2N det(I+Λ)∫
d2αd2γ ′ exp(−ξ†(I +Λ)ξ) exp(−1

2ξ
tZWZξ − 1

2ξ
†ZWZξ∗ + rtZ(ξ + ξ∗)) ,

(4.7)

which differs from the zero-temperature formulation (2.119) only in the normalization fac-

tor and the prefactor of the first exponential. After a rescaling of variablesξ → (I+Λ)
1
2 ξ,

this again becomes the conventional GF expression (2.119),

GK(Z;Λ) = Nπ−2N

∫
d2αd2γ′ exp(−ξ†ξ)

exp(−1
2ξ

tZWTZξ − 1
2ξ

†ZWTZξ
∗ + rtTZ(ξ + ξ∗)) , (4.8)

however the quantitiesWT = W(T ) and rT = r(T ) are now temperature dependent.
Specifically,

WT = (I+Λ)−
1
2W(I +Λ)−

1
2 , rT = (I+Λ)−

1
2 r , (4.9)

and the temperature dependence enters via the association made previously in Eqs. (4.5)
and (4.6) with the Boltzmann factors. After formal integration, this leads to

GK(Z;Λ) =N det(I− ZWTZ)
−1
2 det(I+ ZWTZ)

−1
2

exp(rtTZ(I+ ZWTZ)
−1ZrT ) , (4.10)

in the same functional form of zero-temperature GF (2.123) with temperature dependent
parameters and a normalizing factor.

Evaluating the normalization constantN , the reciprocal vibrational partition function, is
necessary for subsequent interpretation of the entries forming thermal FCF sum rules and
FC transition probabilities, and for the subsequent application of the sum rules on the FC
integral prescreening. As indicated previously, we can select the states which participate
in the Boltzmann weighting scheme by choosingβk > 0 and prevent thermalization of
selected modes by fixingβk = 0, corresponding toλk = 0. Using the polynomial expres-
sion for the GF in Eq. (4.4) together with the formal integralof the spatial representation
(Eq. (4.10)),
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1 = |〈0′|0〉|2GK(I;Λ)

= N
∞∑

v,v′=0

|〈v′|v〉|2 exp(−vtBǫ) exp(−v′tB′ǫ′) (4.11)

= |〈0′|0〉|2N det(I−WT )
−1
2 det(I +WT )

−1
2

exp(rtT (I+WT )
−1rT ) . (4.12)

The choice of the normalization constant which must therefore be taken is

N = |〈0′|0〉|−2 det(I−WT )
1
2 det(I+WT )

1
2

exp(−rtT (I+WT )
−1rT ) . (4.13)

The factorN|〈0′|0〉|2 can be viewed as the effective temperature dependence of the〈0′|0〉
integral. The series summation in Eq. (4.11) can be rewritten in a density matrix form, if
we invoke the (harmonic) vibrational Hamiltonians (Eqs. (2.47) and (2.54)),

1 = NTr(exp(−β · ĥ) exp(−β′ · ĥ′)), (4.14)

where the vibrational Hamiltonians are in mode separated form Ĥ =
∑N

k ĥk andĤ ′ =∑N
k ĥ

′
k for the initial and final state respectively. This shows thatN is the reciprocal vibra-

tional partition function.
For the special caseTk = 0 one has to substitute in Eq. (4.12) the termexp(−vkβkǫk)

by δvk ,0 = limβkǫk→∞ e−vkβkǫk , which is unity forvk = 0 and vanishes otherwise. With
these changes, namely that of the normalization (N ) and coefficients (WT andrT ), the sum
rules and prescreening conditions corresponding to the previous work [46] can be translated
directly to the thermal case (Secs. 4.2 and 4.3).

4.2. Sum rules

Analogously to the integral partitioning scheme in section2.4.2, we can decompose the GF
GK(Z;Λ) into terms depending on variables belonging to the orthogonal subspacesX and
Y . The spaceX is associated with modes for which quantum numbers are kept fixed, while
Y contains modes which involve summation over all harmonic oscillator states, possibly
weighted by a Boltzmann factor at finite temperature. The partitioned expression for the
thermal FCF GF is5

GK(ZXX ,ZY Y ;Λ) = GK
X|Y (ZXX ,ZY Y ;Λ)GK

Y (ZY Y ;Λ) . (4.15)

We can apply the sum rules arising from this partitioned expression to prescreen FCFs at
finite temperatures. And we can obtain rigorous bounds on theintegrated FC profile accord-
ing to the maximum number of simultaneously excited modes (MSM) and the maximum

5See Eq. (2.127) for zero Kelvin development.
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excitation quantum number of modes (MQM), which are required to achieve a given toler-
ance level. Specifics of the prescreening strategy are givenin the following subsections.

4.2.1. No excited modes in the X space

When all vibrational modes in the the fixed quantum number spaceX (see Sec. 2.4.2 for the
integral space partitioning convention in this thesis) arefrozen in their vibrationless ground
states, the generating function component inX spaceGK

X|Y is factored out as a value of

unity so that one only needs to care about the component inY space,i.e. GK
Y . A specific

example of practical use is setting the GF parameter matrix inY space to the identity matrix
(ZY Y = IY Y ), the parameters ofX space to the zero matrix (ZXX = 0XX ), so that the
Boltzmann factor weighted partitioned GF reads

GK(0XX , IY Y ;Λ) = GK
Y (IY Y ;Λ) =N

∞∑

vY ,v′Y =0

q(v′Y ; vY )e
−vtY BY Y ǫY e−v

′t
Y B′

Y Y ǫ′Y

=N det((I +WT )Y Y )
−1
2 det((I −WT )Y Y )

−1
2

exp(rtT ;Y ((I+WT )Y Y )
−1rT ;Y ) . (4.16)

Usually only the initial states are thermally excited and the temperature dependent Doktorov
quantities (Eqs. (4.9)) are given precisely for this case,

WT =


(I + λ)−

1
2 (I− 2Q)(I + λ)−

1
2 −2(I + λ)−

1
2R

−2Rt(I+ λ)−
1
2 I− 2P


 , (4.17)

rT =
√
2

(
−(I+ λ)−

1
2Rδ

(I−P)δ

)
, (4.18)

in which the thermal factors are weighted only on the initialdegrees of freedom (DOF).

4.2.2. One excited mode in the X space

When a mode in the spaceX is excited to a certain vibrational state, say the modek is
excited ton-th vibrational excited state, the GF componentGK

X|Y in X space is no longer

factored out as unity but a portion ofGK
X|Y is weighted on the GF6. This provides a criterion

for the MQM required in each mode. The resulting expression for the GF Eq. (4.15) in this
case is given by

GK(ZXX , IY Y ;Λ) = GK
X|Y (ZXX , IY Y ;Λ)GK

Y (IY Y ;Λ) . (4.19)

The modek under consideration corresponds withv′′k the vibrational quantum number con-
strained ton, the expression for the factor of interest is obtained via a power series expan-

6This number, the partial summation ofGK
X|Y , can be considered as a contribution of ann-fold excitation on

thek-th mode to the total intensity.
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sion ofGK
X|Y with v′′k = n,

N
∑

vY ,v′Y |v′′k=n

q(v′Y ; vY )e
−vtY BY Y ǫY e−v

′t
Y B

′
Y Y ǫ′Y

= GK
Y (IY Y ;Λ)G(W̃±

T (IY Y ); r̃
+
T (IY Y ); k;n; 0,

1
2 , 0, 0), (4.20)

where

W̃±
T ;XX(ZY Y ) = WT ;XX ∓WT ;XY ZY Y ((I ± ZWTZ)Y Y )

−1ZY Y WT ;Y X , (4.21)

r̃+T ;X(ZY Y ) = rT ;X −WT ;XY ZY Y ((I + ZWTZ)Y Y )
−1ZY Y rT ;Y , (4.22)

with the GF parameter matrixZY Y = IY Y , corresponding to the zero-temperature quanti-
ties (2.130) and (2.131), respectively, and the power series expansion functional,

G(W̃±
T ; r̃

+
T ; k;n; a0, b0, c0, d0) =

π−1
n−d0∑

l=0

n−l−d0∑

m=0

(−W̃+
T ;kk)

l(2r̃+T ;k)
2m+a0(W̃−

T ;kk)
n−l−m−d0

l!(2m+ a0)!(n − l −m− d0 + c0)!

Γ(l +m+ b0)Γ(n− l −m− d0 + c0) . (4.23)

4.3. Integral prescreening

The prescreening strategies taken by the previous work [46]and the current thesis invoke
several subspaces in vibrational occupation number vector(ONV) space classified by the
MQM and the MSM. The goal of this numerical scheme is to determine restriction on the
vibrational quantum excitations such that the partial sum over fractional FCFs reaches a
desired threshold, before we calculate individual FC integrals, i.e. finding MQM and MSM
according to the intensity threshold. For a given error toleranceǫtolmax in the FC total inten-
sity7 (the integrated FC profile), the vibrational ONV subspaceS (in which FC integrals are
evaluated later) is systematically expanded until the calculated total FC intensity error8 ǫtot
drops below the desired intensity errorǫtolmax such that

ǫtot = 1− F tot
FC ≤ ǫtolmax , (4.24)

where the total intensity in the ONV subspace is

F tot
FC = N

∑

v,v′∈S

∣∣〈v′|v〉
∣∣2 e−vtBǫe−v

′tB′ǫ′ . (4.25)

A coarse-grained FC integral prescreening strategy determines for instance a maximum
harmonic oscillator quantum number in each normal mode as well as a MSM, such that all
FCFs in line with these restrictions yield an integrated FC profile that deviates at most by

7The FC spectral density function (Eq. (2.29)) is normalizedwith the absolute square of electronic transition
dipole moment (TDM) in Condon approximation (|µ

0
|2) to make the total intensity unity when all FCFs

are summed.
8Error is defined as the remaining intensity summation of the rest of vibrational ONV space (* S).
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the user defined thresholdǫtolmax from the complete integrated FC profile. Instead of utilizing
ǫtolmax directly, it is convenient to employ auxiliary parameters [46] tm andtc satisfying

ǫtolmax = 1−
∏

γ

[1− (tc +Nγtm)] , 0 ≤ tc +Nγtm ≤ 1 , (4.26)

wheretm andtc are associated to the mode and coupling tolerances, respectively, andγ is
a index over all irreducible representations in the molecular system.Nγ is the number of
vibrational modes belonging to the irreducible representation γ.

4.3.1. Vibrational mode coupling error

We can obtain the minimum number of simultaneously excited modes that are required
to reach the thresholdtc by repeated application of Eq. (4.16). All integrals involving a
large number of simultaneously excited modes are then neglected. For the different modes
belonging to theX andY spaces, the MSMM is increased fromM = 0 until the desired
vibrational mode coupling error9 is achieved for the coupling tolerancetc, i.e. according to
Ref. [46]

ǫc = 1−
M∑

m=0

F
(m)
FC;c = 1− F̃

(M)
FC;c < tc , (4.27)

whereF (m)
FC;c is an increment for the contribution ofm simultaneously excited modes to

the total intensity and̃F (M)
FC;c =

∑M
m=0 F

(m)
FC;c. Each increment can be determined from the

intermediate quantity,

B
(m)
FC =

∑

Y ∈C2N
m

|〈0′|0〉|2GK
Y (IY Y ;Λ) , (4.28)

whereC2N
m is the set from the spaceY given by choosingm modes for summation out of

possible2N , via the relation

F
(m)
FC;c = B

(m)
FC −

m∑

i=1

(
2N −m+ i

i

)
F

(m−i)
FC;c . (4.29)

Here we have usedF (0)
FC;c = N|〈0′|0〉|2.

9This quantity is directly related to the Duschinsky mode mixing effects. When there is no Duschinsky mode
mixing the error is already zero atM = 1. When the Duschinsky mode mixing is significant,M is increased
to make the error drop below the requested tolerance.
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4.3.2. Vibrational mode excitation error

We define a mode contributionF (k)
FC;m(n) associated with a fixed vibrational quantum num-

berv′′k = n for modek while other modes are summed over,i.e.

F
(k)
FC;m(n) = N

∑

v,v′|v′′k=n

|〈v′|v〉|2e−vtBǫe−v
′tB′ǫ′ . (4.30)

The total mode contribution of modek to the total intensity can be given by Eq. (4.16) sum-
ming over the quantum numbers of all other modes while leaving the modek at v′′k = 0,

i.e. the partial contributionF (k)
FC;m(0) is the contribution excluding excitations of modek.

We determine the contributionF (k)
FC;m(n) with the finite series summation for a fixed quan-

tum number Eq. (4.20). To obtain the maximum quantum number for a specific vibrational
mode, we determine a minimum quantum numberv

′′max
k satisfying

ǫ(k)m =
(
1− F

FC;v
′′max
k

)
< tm , (4.31)

whereǫ(k)m is the corresponding vibrational mode excitation error and

FFC;v
′′max
k

=

v
′′max
k∑

n=0

F
(k)
FC;m(n). (4.32)

4.3.3. Error bound condition

The error bound can be deduced from the intensity errors of the irreducible representations
(γ) of the corresponding molecular symmetry group. The Duschinsky rotational matrixS
is in a block diagonal form for a symmetric molecule. The blocks are separated by the
irreducible representation of the molecular point group symmetry. This separation feature
can reduce the effort to evaluate the multi-dimensional FC integrals and the FC integral
prescreening conditions can be made accordingly with the separated from of the GF,

GK(Z;Λ) =
∏

γ

GK
(γ)(Z(γ)(γ);Λ), (4.33)

whereγ indicates the irreducible representations andZ(γ)(γ) is the corresponding parameter

matrix. The quantities ofǫ(k)m andǫc are written asǫ(k,γ)m andǫ(γ)c respectively corresponding
to the irreducible representations. With the following quantities defined as follow,

ǫ
(γ)
min = max(ǫ(γ)m , ǫ(γ)c ) , (4.34)

and

ǫ(γ)max = ǫ(γ)c +
∑

k∈γ
ǫ
(m,γ)
k , (4.35)
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where

ǫ(γ)m = max
k

ǫ(k,γ)m , (4.36)

it is found [46] that the following bound condition is satisfied,

ǫmin ≤ ǫtot ≤ ǫmax ≤ ǫtolmax . (4.37)

Here the lower and upper bounds are given in terms of irreducible representation contribu-
tions,

ǫmin = 1−
∏

γ

(
1− ǫ

(γ)
min

)
, (4.38)

ǫmax = 1−
∏

γ

(
1− ǫ(γ)max

)
. (4.39)

4.4. Thermal time-correlation function

The Franck-Condon factor weighted density of states (FCW) in a stick representation̺FCW(ω;T ) =
limΓ→0 |µ0|−2ρFC,L(ω;T ) at a given transition frequencyω is given by

̺FCW(ω;T ) = N
∞∑

v,v′=0

|〈v′|v〉|2δ((v′ · ǫ′ − v · ǫ)− ~(ω − ω0))e
−(vtBǫ+v′tB′ǫ′), (4.40)

with ω0 corresponding to the frequency of the0′−0 transition. Bearing in mind the Fourier
representation of the Diracδ-distribution,δ(ω − ω) =

∫∞
−∞ dt ei(ω−ω)t andδ(~(ω − ω)) =

~−1δ(ω − ω), we can express̺FCW(ω) according to Eq. (4.4) with the help of the GF via

̺FCW(ω;T ) = N|〈0′|0〉|2~−1

∫ ∞

−∞
dt GK(Z(t);Λ)ei(ω−ω0)t , (4.41)

where we chooseZ(t) = bldiag(z(t), z′(t)) as with

z(t) = diag(eiǫ1t/(2~), . . . , eiǫN t/(2~)), (4.42)

z′(t) = diag(e−iǫ′1t/(2~), . . . , e−iǫ′N t/(2~)) , (4.43)

introduced in Eqs. (4.42) and (4.43) respectively. The expression|µ0|2N|〈0′|0〉|2GK(Z(t);Λ)
corresponds to the TCF in Eq. (2.14) within the Condon approximation. A convolution of
̺FCW(ω;T ) with a Lorentzian line shape function of full width at half maximum (FWHM)
Γ can be achieved by introducingL(t) = exp(−Γ|t|/2) in the expression for the TCF (4.41)
via

̺FCW,L(ω;T ) = N|〈0′|0〉|2~−1

∫ ∞

−∞
dt GK(Z(t);Λ)L(t)ei(ω−ω0)t . (4.44)

59



4. Thermal distribution of Franck-Condon factors

If only the initial states are thermally excited in the mode excitation active spaceY , as
required in many practical applications, the explicit working equation is given by

̺FCW,L(ω) = N|〈0′|0〉|2~−1

∫ ∞

−∞
dtdet(I− Z(t)WTZ(t))

−1
2

det(I+ Z(t)WTZ(t))
−1
2

exp(rtTZ(t)(I+ Z(t)WTZ(t))
−1Z(t)rT )L(t)e

i(ω−ω0)t ,
(4.45)

with the Doktorov quantities in Eqs. (4.17) and (4.18). Other types of line shape functions
such as the Gaussian line shape function can also be used or can be used together with
the Lorentzian line shape function. Therefore, the FC profile can be obtained with the
help of the fast Fourier transform (FFT) technique as in Eq. (4.45). In contrast to the TI
approach, this does not facilitate the direct assignment ofindividual vibronic transitions
which contribute to the FC profile. With different sets ofZ(t), however, it is possible to
extract further useful information by exploiting the FFT ofthe resulting TCF. Contributions
of individual normal modes may be filtered, for instance, by preventing time-propagation
of some vibrational modes assigning some of the diagonal elements inz(t) andz′(t) to 1
(t = 0), similar to the TI prescreening approaches in the previouswork [46] and this work.
Furthermore, if one sets allǫi to 1 and allǫ′i to 1 in Eq. (4.42), one can obtain the FC
contributions of sums of quantum number difference (

∑
i v

′
i − vi) and one may also obtain

further useful prescreening criteria for the TI approach onthis basis. In the present work,
however, such additional prescreening conditions are not exploited. The TCF can also be
expressed in a product form of irreducible representation group TCFs as in Eq. (4.33),i.e.

GK(Z(t);Λ) =
∏

γ

GK
(γ)(Z(γ)(γ)(t);Λ), (4.46)

which is useful in fast TCF evaluation.
The important aspect of our time-dependent development is that our TCF is constructed

from the generating function in the time-independent approach (Eq. (4.4)). The identical
generating function can be used for the FC intensity sum ruleand TCF calculation. The
extension to the non-Condon application is shown in chapter6. The link between the TD
and TI approaches are made via the GF parameters (Eqs. (4.42)and (4.43)), which are
related to the Diracδ-distribution. The GF derivation from the time-dependent perspective
in the trace formalism is presented in section 6.1.2 for the non-Condon effects.

4.5. Results and discussion

The Franck-Condon profiles of the photo-electron and ultra-violet absorption spectra re-
ported herein have been calculated with the vibronic structure program hotFCHT [36, 46,
129–131]10 using the FC integral prescreening conditions developed inthe previous section
for FCFs, and the finite temperature TCF method. The FC integrals are evaluated with the
recurrence relations of Eqs. (2.103) and (2.104). For prescreening steps before FC integral

10The thermal prescreening routine and thermal TCF method areimplemented by J. Huh.
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calculations, one first selects thresholdstm andtc for the mode and coupling tolerances to
determine a first error estimateǫtolmax via Eq. (4.26) for the integrated FC profile. Tighter er-
ror boundsǫmin andǫmax at a given finite temperature are then calculated in the prescreening
stage (Sec. 4.3). The FC profile is then obtained for the batchof FC integrals selected at the
prescreening stage and the resulting total errorǫtot is compared to the rigorous prescreening
error bounds, satisfying the inequality Eq. (4.37).

One difference between the integral prescreening at finite temperatures and the integral
prescreening at zero Kelvin is that theY space in the latter case includes only modes from
the final electronic state, whereas in the former case the modes of the initial electronic state
also belong to this space. Consequently, the number of vibrational DOFNγ in Eq. (4.26) is
twice as large for finite temperatures as compared to0 K, so thatǫtolmax values differ even for
the same tolerance sets. For formic acid and anthracene, twoof the application examples
for the previous 0 K development [46], the influence of different threshold choices on the
accuracy of the calculation at different finite temperatures are investigated (see Table 4.1
and Table 4.2).

In the evaluation of Eq. (4.45), corresponding to the FT of the Lorentzian weighted TCF,
the FFTW [178] library (version 3.1.2) for the FFT is used with a grid size of216 and a
time increment of∆t = 0.51 fs, and the time interval [-16.7 ps, 16.7 ps]. The time reversal
symmetry relation of the TCF,GK(Z(−t);Λ) = GK(Z(t);Λ)∗ is also exploited. The real
part of the FT is taken for the FC profile. For these plots (Figs. 4.1 and 4.3) the relation
between the frequency and the wavenumber representations̺FCW,L(ν̃) = hc0̺FCW,L(ω)
have been exploited.

Equilibrium structures and harmonic force fields of formic acid and anthracene have been
taken from the previous work [46] and molecular symmetry (point groups of the equilibrium
structures areCs for formic acid andD2h for anthracene) is exploited at the prescreening
stage. Symmetry leads to a block diagonal Duschinsky matrixS and allows us to treat
modes according to different irreducible representationsindependently.

TheMmax in Tables 4.1 and 4.2 represents a maximum of the MSMs among all symmetry
blocks that is necessary to achieve the tolerancetc. Additionally, in the tables the individual
M

(γ)
max of each symmetry block is given, such thatMmax = maxγM

(γ)
max. The behaviour

of the resulting coupling errorǫc = 1 − F̃
(M)
c with increasing number of simultaneously

excited modesM in formic acid and anthracene is displayed in Figs. 4.2 and 4.4. To obtain
plots in accordance with the results given in Table III of Ref. [46] and Table I of Ref. [44]
ǫ
(γ)
c (M (γ)) are combined for different values ofM (γ) such that a value ofǫc(M) for each

distinctM =
∑

γM
(γ) is obtained. The coupling error obtained in this way corresponds

to prescreening without exploiting the point group symmetry. A direct comparison between
Table 4.1 and Figure 4.2 as well as between Table 4.2 and Figure 4.4 for the mode coupling
errors cannot be made due to the symmetry argument and the different tolerance settings. In
the TCF method calculation, the molecular symmetry is not exploited, even if it is straight-
forward in Eq. (4.46), due to the relatively low computational cost of this method for the
small size of molecules (formic acid and anthracene).

The supplementary data (harmonic wavenumbers, integral prescreening data, etc.) for
this chapter are given in appendix A.
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4.5.1. Formic acid

Leachet al.[179] measured PE spectra of various formic acid isotopologues for the1 1A
′ →

1 2A
′
transition from the electronic ground state of the neutral to the electronic ground state

of the formic acid cation. The authors assigned most of theirvibrationally resolved spectral
peaks, with the help of vibrational frequencies obtained with harmonic force fields fromab
initio quantum chemical calculations, leaving a few peaks unassigned. Rudberget al. [180]
simulated the vibronic spectra of the formic acid isotopologues with zero Kelvin assump-
tion by computing FCFs with molecular structures and harmonic force fields from density
functional theory (DFT) calculations, and completed the peak assignments. Jankowiaket
al. [46] computed the vibronic spectrum of formic acid (HCOOH) at zero Kelvin with FCF
calculation to test their FC integral prescreening technique. The equilibrium molecular
structures and harmonic force fields in Ref. [46] were obtained from CCSD(T) quantum
chemical calculations.

The results obtained for zero Kelvin for formic acid (HCOOH)are also presented herein
(see Table 4.1 and Fig. 4.1) to see the finite temperature effects. The time-independent FC
calculations at zero Kelvin are identical to those of Ref. [46] with the integral prescreening
technique. The experimental PE spectrum of Leachet al. [179] is compared with our FC
profile at zero Kelvin in Fig. 4.1(c). The overlay of the experimental curve to the theoret-
ical one is based on the peak assignments in Ref. [179] and thecurve height is rescaled to
fit its 0′ − 0 peak to our computed one. The most prominent feature of the spectrum is a
progression on the C=O stretching mode, because the C=O bond length increases when an
electron is removed from the correspondingπ-orbital. The experimental spectrum and the
theoretical one from harmonic approximation agrees well even if the theoretical calculation
of C=O stretching mode (̃ν3 = 1566 cm−1) shows a longer progression in the computed
spectrum. This is due to a slightly overestimated C=O bond length in the ionized ground
state. The corresponding experimental fundamental wavenumber is1495 cm−1. The unas-
signed peak in Ref. [179], the 7-th peak (at2890 cm−1) in Fig. 4.1(c), is assigned as11 3104

1
0

with the corresponding theoretical wavenumberν̃3+ ν̃4 = 2966 cm−1. In spite of the over-
estimation of the C=O bond length the theoretical study [46] could confirm the previous
peak assignments of Refs. [179,180] for the 16 peaks of Leachet al. [179] in Fig. 4.1(c).

We compute, herein, the FC profiles of the PE spectra formic acid (HCOOH) at given
finite temperatures for different choices of tolerance settings (Table 4.1). For all tolerance
sets and temperatures the error bound condition Eq. (4.37) is numerically satisfied. Looser
tolerance settings naturally give rise to a larger number ofprescreened FCFs as indicated in
the Table 4.1 with larger total intensity errorǫtot. The FC profile is, even with the coarse-
grained prescreening employed herein, available for temperatures as high as1000 K, with
a value ofǫtot on the order of 0.7%. Fig. 4.1 displays the temperature dependence of the
FC profile. The temperature effect on the profile at300 K is barely visible on the scale
given here, whereas a much more congested FC structure within the same energy range is
obtained for1000 K.

If it were not for the finite accuracy of the numerical FT, the spectra from the TCF
approach should always be an upper bound to the spectra from the prescreening FCF cal-
culation, as the FC profile from the TCF should integrate to 1,whereas it approaches the

11The peaks are denoted withac
b which indicates a vibronic transition froma-th vibrational mode inb-th

vibrationally excited initial state toa-th vibrational mode inc-th vibrationally excited final state.
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Figure 4.1.: Calculated FC profiles for the1 1A
′ → 1 2A

′

PE transition band of formic
acid at (a)1000 K with tolerance set III, (b)300 K with tolerance set I and (c)0 K with
tolerance set I. Tolerance set descriptions are provided inTable 4.1. Each line in the stick
spectra [right axis,〈̺FCW(ν̃)〉] represents the averaged FC weighted density of states in a
wavenumber interval∆ν̃ = 10 cm−1. The〈̺FCW(ν̃)〉 of all intervals sums to(1 − ǫtot)/∆ν̃
for a given temperature. The stick representations have additionally been convoluted with
Lorentzian line shapes with full width at half maximum (half-width) of 100 cm−1 [solid, left
axis,̺FCW,L(ν̃)] and compared to the results obtained from the TCF approach [dashed, left
axis, ̺FCW,L(ν̃)]. Differences are, however, barely visible on the current scale. Hereν̃0
corresponds to the wavenumber of the0′ − 0 transition for this band. The experimental PE
spectrum of Leachet al. [179] is additionally compared with the FC profile at0 K in (c).
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Table 4.1.: Prescreening and error bound performance for formic acid at0 K and at finite
temperatures (300 K and1000 K). For a given tolerance set (Tol. Set), the associated er-
ror tolerance (ǫtolmax), prescreening stage rigorous error bounds (ǫmax and ǫmin), maximum
value for the maximum number of simultaneously excited modes of all irreducible representa-
tions and maximum number of simultaneously excited modesM

(γ)
max of each symmetry block

(Mmax(M
(a′)
max;M

(a′′)
max )) as well as the error of the integrated FC profile (ǫtot) are provided.

T Tol. Set(tm, tc) ǫtolmax ǫmax ǫtot ǫmin Mmax(M
(γ)
max)

I(10−5, 10−5) 1.1 × 10−4 0.29 × 10−4 0.29 × 10−4 0.10× 10−4 6(6;2)
0 K II(10−4, 10−4) 1.1 × 10−3 0.17 × 10−3 0.17 × 10−3 0.09× 10−3 5(5;2)

III (10−3, 10−3) 1.1 × 10−2 0.38 × 10−2 0.30 × 10−2 0.13× 10−2 4(4;1)
I(10−5, 10−5) 2.0 × 10−4 0.42 × 10−4 0.39 × 10−4 0.15× 10−4 7(7;4)

300 K II(10−4, 10−4) 2.0 × 10−3 0.41 × 10−3 0.35 × 10−3 0.15× 10−3 6(6;4)
III (10−3, 10−3) 2.0 × 10−2 0.28 × 10−2 0.26 × 10−2 0.08× 10−2 5(5;2)

1000 K III (10−3, 10−3) 2.0 × 10−2 0.80 × 10−2 0.66 × 10−2 0.14× 10−2 8(8;4)

0 1 2 3 4 5 6 7 8 9 10 11 12
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1
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100
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300 K
0 K

(1
−

F̃
(M

)
c

)/
%

M

Figure 4.2.: Dependence of the coupling errorǫc = 1 − F̃
(M)
FC;c on the largest number of

simultaneously excited modesM for the FC profile of the1 1A
′ → 1 2A

′

PE transition band
of formic acid. The coupling error is shown on a logarithmic scale for temperatures of0 K,
300 K and1000 K. Lines are drawn only to guide the eye.M is different fromMmax in
Table 4.1, these are identical only when we useC1 symmetry in the caculation.
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integral value of 1 from below in the latter case. In Fig. 4.1 the spectra of the two methods
are almost identical. It is difficult to see the 0.7% difference in Fig.4.1(a) at this scale and
theǫtot is even smaller in Figs. 4.1(b) and (c).

As shown in Fig. 4.2, we require up to 4 simultaneously excited modes (of the final
electronic state only) in the coarse-grained prescreeningstep to achieve a value ofǫc smaller
than 0.1% at0 K. At 300 K and1000 K we need up to 5 and 11 simultaneously excited
modes respectively (out of the total 18 modes composed of 9 initial and 9 final state modes)
to achieve a similar target value of the coupling error. In Fig. 4.2M is different fromMmax

in Table 4.1, these are identical only when theC1 symmetry is used for the calculation.

4.5.2. Anthracene

Fergusonet al.[181] measured a spectrum for the1 1Ag → 1 1B2u UV transition (S0 → S1)
of anthracene. The spectrum is not vibrationally well-resolved but, at least, it shows major
vibrational progressions. The reason of the low resolutioncould be the finite temperature ef-
fect because the measurement was made at 298-313 K. The main feature of the spectrum is a
progression on the C–C stretching modes, because the lengths of C–C bonds having double
bond nature increase and the lengths of C–C bonds having single bond nature decrease when
an electron is excited from the ground to the first excited state [12]. In previous theoretical
works of others [12,44,46] the experimental spectrum of Fergusonet al. was compared with
the FC profile calculation at zero Kelvin. The FC profile calculations at zero Kelvin shows
already good agreement with the experimental spectrum because the calculated spectrum at
300 K does not deviate much from the one at zero Kelvin (see Fig. 4.3(b)(d)).

We compute the FC profile of the1 1Ag → 1 1B2u UV transition (S0 → S1) of anthracene
at given finite temperatures for different choices of tolerance settings in the prescreening
step (see Table 4.2). Again, the error bound conditions of Eq. (4.37) are numerically satis-
fied. The resulting FC profiles are displayed in Fig. 4.3, which show a pronounced temper-
ature dependence due to the number of normal modes with low harmonic frequency (low
vibrational temperature). The experimental spectrum of Fergusonet al. [181] is compared
with the FC profile calculation at 300 K in Fig. 4.3(b). The overlay is made according to the
experimental energy scale12 and the experimental spectrum height is rescaled to have the
same0′ − 0 peak height of the computed one. The calculated spectrum at 300 K fits to the
experimental one better than the zero Kelvin one does. Especially, the thermal excitation
part below0 cm−1 fits well with the experimental one, which cannot be explained by the
zero Kelvin calculation. The shoulder around2000 cm−1 next to the second highest peak
also agrees to the experiment better than the zero Kelvin calculation. The peak assignment
at300 K is difficult because the spectrum is highly congested. The spectrum, however, does
not deviate sharply from the zero Kelvin one. According to the zero Kelvin calculation the
major vibration progression is from the in-planar middle ring deformation totally symmetric
vibrational mode (̃ν6 = 1356 cm−1) belonging to irreducible representationag.

The FC profile computed for500 K with an ǫtot of 4.0% is extremely congested and
calculating it without integral selection requires a substantial effort. The coarse-grained
prescreening employed here is not ideal for this case. As shown in Fig. 4.4, only up to 6
simultaneously excited modes (out of the final state alone) are sufficient at0 K to reach a

12The second highest peaks are at1327 cm−1 and1423 cm−1 in the theoretical and the experimental spectrum,
respectively
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Table 4.2.: Prescreening and error bound performance for anthracene at0 K and finite tem-
peratures (100 K, 300 K and 500 K). For a given tolerance set, the associated error tol-
erance (ǫtolmax), prescreening stage rigorous error bounds (ǫmax and ǫmin), maximum value
for the maximum number of simultaneously excited modes of all irreducible representa-
tions and maximum number of simultaneously excited modesM

(γ)
max of each symmetry block

(Mmax(M
(ag)
max ;M

(b1g)
max ;M

(b2g)
max ;M

(b3g)
max ;M

(au)
max ;M

(b1u)
max ;M

(b2u)
max ;M

(b3u)
max )), and the error of

the integrated FC profile (ǫtot) are provided.

T Tol. Set(tm, tc) ǫtolmax ǫmax ǫtot ǫmin Mmax(M
(γ)
max)

I(10−5, 10−5) 7.4× 10−4 1.6× 10−4 1.6 × 10−4 0.6× 10−4 6(6;2;3;4;3;3;2;3)
0 K II(10−4, 10−4) 7.4× 10−3 1.8× 10−3 1.7 × 10−3 0.6× 10−3 5(5;2;2;4;2;2;2;2)

III (10−3, 10−3) 7.2× 10−2 2.2× 10−2 2.0 × 10−2 0.7× 10−2 4(4;2;2;3;2;2;2;2)
I(10−5, 10−5) 1.4× 10−3 0.23 × 10−3 0.22 × 10−3 0.05 × 10−3 6(6;4;4;4;5;5;4;3)

100 K II(10−4, 10−4) 1.4× 10−2 0.25 × 10−2 0.23 × 10−2 0.06 × 10−2 5(5;2;4;4;4;4;3;2)
III (10−3, 10−3) 1.3× 10−1 0.26 × 10−1 0.22 × 10−1 0.06 × 10−1 4(4;2;2;3;4;4;2;2)

300 K II(10−4, 10−4) 1.4× 10−2 0.35 × 10−2 0.29 × 10−2 0.06 × 10−2 8(8;6;6;7;7;8;6;4)
III (10−3, 10−3) 1.3× 10−1 0.37 × 10−1 0.30 × 10−1 0.06 × 10−1 7(6;4;6;6;6;7;4;4)

500 K III (10−3, 10−3) 1.3× 10−1 0.54 × 10−1 0.39 × 10−1 0.07 × 10−1 10(9;8;7;8;8;10;8;6)

coupling error below 0.1%. At higher temperatures, however, up to 9, 20 and 32 simulta-
neously excited modes out of a total 132 modes composed of 66 initial and 66 final state
modes are necessary to reach a similar threshold forǫc at100 K, 300 K and500 K, respec-
tively. In Fig. 4.4M is different fromMmax in Table 4.2. These are identical only when one
usesC1 symmetry in the calculation.

The resulting number of prescreened FCFs could be significantly increased in the finite
temperature case by employing a finer-grained strategy instead of the coarse-grained pre-
screening approach reported herein. This is possible with the help of the equations reported
herein in a straightforward manner. An alternative route would be to perform for each sig-
nificantly populated pure initial state (or for collectionsthereof) the corresponding mode
couplings and mode excitations in the final vibronic state. Such rigorous prescreening con-
ditions for FC integrals are developed in the single vibronic level (SVL) transition chapter 7.
Related ideas were reported in Ref. [44,45], where, however, a somewhat heuristic selection
scheme rather than rigorous prescreening based on sum ruleshave been exploited.

In Fig. 4.3(a), one can see the difference (ǫtot=4.0%) between the results obtained from
the prescreening method and the TCF method due to the relatively loose tolerance settings
for the prescreening. As indicated for formic acid, the TCF based FC profiles should be an
upper bound to those obtained from the prescreening FCF calculation. Looking closely at
the two Lorentzian weighted spectra in Fig. 4.3(a), however, one is able to observe crossing
points of these two spectra. This is attributed to the fact that the averaged Franck-Condon
factor weighted density of states has been evaluated in finite wavenumber intervals. If
finer wavenumber grids (< 10 cm−1) were employed, such crossings should, in principle,
vanish. In the present work, the finer wavenumber grids are not adopted due to the somewhat
higher computational cost in the time-independent method.Utilizing the FCF prescreening
and TCF methods together, analysis of the difference between these two spectra, can thus
indicate the quality of the prescreening conditions and whether any significant peaks are
still missing in the prescreening FCF calculation in the same framework of the generating
function approach.
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Figure 4.3.: Calculated FC profiles for the1 1Ag → 1 1B2u absorption spectrum of anthracene
at (a)500 K with tolerance set III, (b)300 K with tolerance set II, (c)100 K with tolerance set
I and (d)0 K with tolerance set I. Tolerance set descriptions are provided in Table 4.2. Each
line in the stick spectra [right axis,〈̺FCW(ν̃)〉] represents the averaged FC weighted density
of states in a wavenumber interval∆ν̃ = 10 cm−1. The〈̺FCW(ν̃)〉 of all intervals sums to
(1−ǫtot)/∆ν̃ for a given temperature. The stick representations have additionally been convo-
luted with Lorentzian line shapes with FWHM of180 cm−1 [solid, left axis,̺FCW,L(ν̃)] and
compared to the results obtained from the TCF approach [dashed, left axis,̺ FCW,L(ν̃)]. Dif-
ferences are, however, barely visible on the current scale.Hereν̃0 corresponds to the wavenum-
ber of the0′ − 0 transition for this UV absorption band. The experimental UVspectrum of
Fergusonet al. [181] is additionally compared with the FC profile at300 K in (b).
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multaneously excited modesM for the FC contribution to the1 1Ag → 1 1B2u UV absorption
spectrum of anthracene. The coupling error is shown on a logarithmic scale for temperatures
of 0 K, 100 K, 300 K and500 K. Lines are drawns only to guide the eye.M is different from
Mmax in Table 4.2, these are identical only when we useC1 symmetry in the calculation.

4.6. Chapter summary and conclusion

Herein we extended the rigorous prescreening criteria for the FCFs in the finite temperature
case with Boltzmann weighted harmonic oscillator states. For this purpose, we have derived
sum rules which provide upper and lower bounds for the integrated FC profile on the basis
of selected FCF batches. We present only the results of the most coarse-grained version for
prescreening, which already led to a significant reduction in the number of calculated FCFs,
as explicitly demonstrated for the vibronic spectra of formic acid up to temperatures of
1000 K and that of anthracene with temperatures up to500 K. Finer-grained prescreening
can easily be facilitated (seee.g.Sec. 7.3 for multi-dimensionalX space development), for
instance by determining restrictions for the final state modes depending on a specific choice
in the initial state. This demonstrates the particular strength of sum rule based prescreening
in large-scale vibronic structure theory.

This GF approach is also directly applicable to the computation of the thermal TCF,
which is of particularly advantageous at elevated temperatures. The two approaches, time-
independent and time-dependent, show excellent agreementin the testing applications. The
TCF method is computationally much cheaper than the TI method; 5 min.vstwo weeks for
anthracene on a 32 bit single processor machine, however at the expense that individual peak
assignments are not directly possible. In contrast to otherworks [17,34,35,37,64,137], one
can approach such peak assignments within the TCF method by exploiting similar tech-
niques as those used in the prescreening. It appears, nevertheless, to be of advantage to
combine both the time-dependent and TI approaches, the former to compute the full FC
profile and the latter to assign specific vibronic contributions. To this end one would no-
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4. Thermal distribution of Franck-Condon factors

tice that the prescreening step can be controlled by the thermal space related to the thermal
integral kernel not only by the partitioned integral spaces. The differently assigned tempera-
tures to the individual vibrational modes can provide useful information about the transition
processes.

In the following chapter 5 we modify the FCF generating function at finite temperature to
compute a probability density function (PDF) of FCFs13 by extracting statistical quantities
like mean, variance, skewness and higher order cumulants ofPDF from the thermal FCF GF
(neither by the direct TI integral calculation nor by TCF method). This comparatively cheap
method provides useful information for the TI and TD methodsin aspects of restricting the
energy window in the TI calculation and fast time-propagation of TCF.

13Because FCF distribution is a PDF of which the integrated summation is normalized to be 1 in energy domain.
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Franck-Condon transitions

A good guess on the relevant time step (∆t) and length (TFFT) corresponding to the highest
frequency and resolution in the frequency domain, respectively is required in the evalua-
tion of the time-correlation function (TCF) (seee.g. Sec. 4.4) and its Fourier transform
(FT). Time scaling parameters (∆t andTFFT) should be chosen carefully because of the
large number of TCF evaluations (TFFT/∆t) that involve the calculation of matrix inverse
(Eq. (4.10)). These calculations can slow down the computation of the Franck-Condon (FC)
profile.

We cannot just increase∆t to reduce the number of TCF evaluations because of the alias-
ing problem. This problem causes interferences between peaks of high frequency (>π/∆t)
and those of lower frequency (≤ π/∆t), if significantly large peaks exist in the high fre-
quency region. We need to perform long time propagations forhigh resolution. Because
π/TFFT corresponds to the resolution,TFFT must be long enough to avoid the intensity
leakage problem (seee.g. Ref. [182] for fast Fourier transform). Even though the rele-
vant energy window (corresponding to [−π/∆t, π/∆t]) can be obtained as a result of the
prescreening scheme (see Ref. [46] and Ch. 4), the associated computational cost is not
negligible if not even prohibitively high.

Also in time-independent (TI) approach with the prescreening technique (Ref. [46] and
Sec. 4) one would benefit if the energy window of interest wereknown before the FC in-
tegrals are calculated. When there is large structural deformation during the vibronic tran-
sition1 or the vibronic transition occurs at a high finite temperature, the spectra could not
be vibrationally resolved and the distribution would be close to a normal distribution. In
these cases one would primarily be interested in quantitiessuch as mean energy, variance
of the distribution and peak maximum rather than a vibrationally resolved spectrum which
has high computational cost. Thus, an approximate spectralshape, which is available at low
computational cost, would be highly desirable.

So far, all of our concerns were about computing the FC spectral density function (SDF)
in Eq. (4.40), which is simply a probability density function (PDF). A PDF is characterized
by its mean, variance and higher order statistical quantities such as moments or cumulants.
We can generate a PDF from the statistical quantities not only by computing the distribution
at each transition frequency either by the time-independent or the time-dependent (TD) ap-
proaches (Ch. 4). We can obtain the statistical quantities instead from the Franck-Condon
factor (FCF) generating function (4.10) directly.2 The FCF generating function (GF) con-
tains all the information of the corresponding FC distribution. We can extract the statistical

1The vibronic transition has a large reorganization energy (vibrational vertical transition energy),
1
2
δtdiag(ǫ′)δ, see Eq. (2.70)

2In principle it applies to non-Condon processes as well (seee.g. Ref. [40] for the development without
Duschinsky effects).
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5. Probability density functions of Franck-Condon transitions

quantities from the GF by taking partial derivatives with respect to GF parameters.
The idea can be realized by the cumulant expansion (CE) of theFranck-Condon factor

weighted density of states (seee.g.Refs. [29,183]) with the coherent state (CS)-based FCF
GF [29, 46, 129]. The mean vibrationally excited quanta at zero Kelvin was exploited by
Doktorov and his coworkers [29] for the absorption spectrum. Finite temperature effects
and terms higher than 2-nd order were not taken into account.We note here in parsing
that a complementary time-dependent CE method has been presented (seee.g. Refs. [5,
35, 37, 87]). The TD CE method approximates the TCF in an exponential function with
exponents expanded in the order of time correlations. As a result, one has to evaluate multi-
dimensional time integration to have the cumulants, thus the order of evaluation is usually
limited to second order, which also includes Duschinsky effects (seee.g. Ref. [87]). The
TI CE method developed herein computes the cumulants without multi-dimensional time
integration, instead.

Cumulants offer a useful information for a PDF such as mean, variance, skewness and
(excess) kurtosis corresponding or related to 1-st, 2-nd, 3-rd and 4-th order cumulants, re-
spectively. Mean and variance are frequently used important quantities of a distribution,
skewness provides the relative position of the peak maximum(deviation from normal dis-
tribution) to the mean value and (excess) kurtosis shows by its sign and magnitude how flat
a peak is and how long progressions are, respectively.

Herein we develop an approach for computing arbitrary orderof cumulants for vibronic
transition energies [183], vibrationally excited quanta3 [29] and approximating the Franck-
Condon factor weighted density of states (FCW) of Duschinsky rotated multi-dimensional
harmonic oscillators. As a first applications of the TI cumulant expansion for Franck-
Condon factor weighted density of states, the FC profiles of the 1 1A

′ → 1 2A
′

band in
the photo-electron (PE) spectrum of formic acid and the FC contribution to the lowest en-
ergy ultra-violet (UV) absorption band (1 1Ag → 1 1B2u) for anthracene are presented (see
also Sec. 5.3.1 for the corresponding FC profiles). In section 5.3.2 we analyze the FC pro-
file of bacteriochlorophyll (Bchl) for the electron detachment process, Bchl− −→Bchl (see
Fig. 1.2), with the TI CE method. Temperature dependence of the FC profiles in presence of
Duschinsky rotation is studied in this subsection, becauseDuschinsky rotation introduces
the temperature dependence of electron transfer as can be seen in Fig. 1.2.

In addition to the cumulant GF of the vibrational transitionenergies, we present the cor-
responding moment GF of the vibrationally excited quanta [29] to arbitrary order including
thermal effects. Additionally we propose a book keeping algorithm for multi-dimensional
partial derivatives (Sec. 5.2.1). The moments of vibrationally excited quanta can provide
detailed information about the molecular system such as molecular structural changes, po-
tential energy distortions and normal coordinate rotations which can be obtained from either
experiment or electronic structure calculations. Employing the thermal-moment integral
kernel (see Sec. 4.1 for the thermal integral kernel) to the FCF GF we can explore the
temperature effect of individual vibrational modes, whichis an important topic in electron
transfer theory (seee.g.Ref. [87]).

This chapter is constructed as follows. In section 5.1 the cumulant GF is developed
by introducing a thermal-moment integral kernel that includes an auxiliary parameter for

3The corresponding cumulants are the correlation of vibrational excitation quantum numbers of various vibra-
tional modes.
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the vibronic transition energy. The algorithm calculatingcumulants to arbitrary order is
developed in the section. And a possible TCF estimation method with the TI CE is sug-
gested. Then the complementary development for moments of vibrationally excited quanta
is presented in section 5.2. For the efficient calculation ofthe moments, an algorithm for
multi-dimensional partial derivatives is developed. Numerical applications of the cumulants
are presented and discussed in section 5.3. This chapter is concluded in section 5.4.

5.1. Time-independent cumulant generating function

Using the ansatz of the thermal integral kernelK in equation (4.2) one can find the FCF GF
G(K) in spatial representation (Eq. (4.10)). This GF has all information about the distribu-
tion of the corresponding vibronic transitions. With proper operations one can extract the
information analogously to the partition function for the thermodynamic quantities. Sim-
ilarly, we operate on the (cumulant) GF in order to obtain thecumulants of the vibronic
transition energy distribution.

5.1.1. Cumultants of vibronic transition energies

The cumulants of the vibronic transition energies (Eǫ′,ǫ = v′ · ǫ′ − v · ǫ)4 with respect to the
0′ − 0 transition energy (Fig. 2.1) are defined as (seee.g.Ref. [184])

〈En
ǫ′,ǫ〉c =

∂n

∂εn
ln〈eEǫ′,ǫε〉

∣∣∣
ε=0

=
∂n

∂εn
ln

〈eEǫ′,ǫε〉
|〈0′|0〉|2

∣∣∣
ε=0

=
∂n

∂εn
lnGKm(I;Λ,Λε)

∣∣∣
ε=0

, n ≥ 1, (5.1)

with ε playing the role of a cumulant generating parameter.〈xn〉 indicates the mean value
of xn in the FCW distribution and〈xn〉c is the correspondingn-th order cumulant.

The vibronic transition energy moment generating functionGKm(I;Λ,Λε) can be ex-
pressed in terms of traces,i.e.

GKm(I;Λ,Λε) =
Tr(exp(Ĥ ′ε) exp(−Ĥε) exp(−βĤ))

|〈0′|0〉|2Tr(exp(−βĤ))
, (5.2)

which is in a form similar to that of the TCF in Eq. (2.14), where Ĥ andĤ ′ are the vibra-
tional Hamiltonians defined in Eqs. (2.47) and (2.54) respectively.

We introduce our previous generating function parameters (Z) also to the cumulant GF
and take the logarithm of the moment GF,lnGKm , at finite temperature to control the
individual vibrational mode excitation and to facilitate the possible incorporation of the
TCF as in chapter 4. Thus, we employ

〈En
ǫ′,ǫ〉c(Z;Λ) =

∂n

∂εn
lnGKm(Z;Λ,Λε)

∣∣∣
ε=0

, n ≥ 1, (5.3)

4This is only the vibrational transition energy but we consider the electronic transition energy plus the zero
point energy difference between two sets of harmonic oscillators (see Fig. 2.1) as the zero energy level.
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such that〈En
ǫ′,ǫ〉c(I;Λ) = 〈En

ǫ′,ǫ〉c. The corresponding occupation representation of the

moment GFGKm reads

GKm(Z;Λ,Λε) = N
∞∑

v,v′=0

q(v′; v)
∏2v,2v′

z,z′
e−(vtBǫ+v′tB′ǫ′)eEǫ′,ǫε,

where5 the additional parameterε is introduced for the Boltzmann weighted FCF GFGK (4.4)
as a formal order parameter.

Similarly to the ansatz of the thermal integral kernelK, Eq. (4.2), we invoke a thermal-
moment integral kernelKm(Λ,Λε; ξ) that constructs the moment GFGKm(I;Λ,Λε) in a
closed analytic form,

Km(Λ,Λε; ξ) = N det(I+Λ) det(I +Λε) exp(−ξ†(Λ+Λε +ΛΛε)ξ) , (5.4)

where,(I + Λε) = diag(eǫ1ε, . . . , eǫN ε, e−ǫ′1ε, . . . , e−ǫ′N ε) and(I + Λε)
∣∣∣
ε=0

= I. After

formal integration of Eq. (4.1) with the kernelK being replaced by the thermal-moment
integral kernelKm the resulting GF is obtained, which reads

GKm(Z;Λ,Λε) =N det(I +Λε) det(I+Λε − ZWTZ)
−1
2 det(I +Λε + ZWTZ)

−1
2

exp(rtTZ(I+Λε + ZWTZ)
−1ZrT ) , (5.5)

and we may restore6. Using the identities (see also Ref. [185])GK=GKm

∣∣∣
ε=0

,

∂ det(Y)

∂x
= det(Y)Tr(Y−1 ∂Y

∂x
), (5.6)

∂Tr(Y)

∂x
= Tr(

∂Y

∂x
), (5.7)

∂Y−1

∂x
= −Y−1∂Y

∂x
Y−1, (5.8)

the first derivative oflnGKm(Z;Λ,Λε) with respect toε, corresponding to the mean value,
is given by,

∂ lnGKm(Z;Λ,Λε)

∂ε
= Tr[Ξ]

− 1
2Tr[(I+Λε − ZWTZ)

−1(I+Λε)Ξ]

− 1
2Tr[(I+Λε + ZWTZ)

−1(I+Λε)Ξ]

+ rtTZ
∂(I+Λε + ZWTZ)

−1

∂ε
ZrT , (5.9)

where,Ξ = diag(ǫ1, . . . , ǫN ,−ǫ′1, . . . ,−ǫ′N ). The crucial part is how to evaluate then-th
order partial derivatives of the inverse matrices for higher order cumulants. We can compute

5∏n1,··· ,nN

x1,··· ,xN
=
(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)
.

6See Eq. (4.10)
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arbitrary orders of partial derivatives of the inverse matrix by defining a functionLm
n ,

Lm
n (Y) =

n∏

i=1

(Y−1∂
miY

∂εmi
), (5.10)

where

Y = (I +Λε +A), (5.11)

∂miY

∂εmi
= (I+Λε)Ξ

mi , mi ≥ 1. (5.12)

A is a matrix which does not depend onε. Lm
n satisfies the following recursion relation,

∂L
m
n (Y)

∂ε
=

n∑

i=1

[
L(m1,...,mi+1,...,mn)
n (Y)− L

(m1,...,mi−1,1,mi,...,mn)
n+1 (Y)

]
. (5.13)

From this recursion relation we present the following expressions which will be used for
the partial derivatives of the 2-nd and the 3-rd terms (traces) in Eq. (5.9),

∂nL1
1(Y)

∂εn
=

n+1∑

k=1

(−1)k+1
∑

{m}k

(
n

m1, . . . ,mk−1,mk − 1

)
L
m
k (Y), (5.14)

and of the last partial derivative term in Eq. (5.9),

∂nY−1

∂εn
=
[ n∑

k=1

(−1)k
∑

{m}k

(
n

m1, . . . ,mk

)
L
m
k

]
Y−1, (5.15)

here the set{m}k consists of all positive integer vectorsm satisfyingn =
∑k

i mi where
k is the dimension ofm. So far, the algorithm for computing the cumulants of the vi-
bronic transition energies has been presented. The cumulant GF is proposed rather than the
moment GF for algorithmic purposes, the logarithm separates the GF in summations7 and
the cumulants provide the statistically meaningful quantities directly unlike moments. One
can, however, compute the moments from cumulants because cumulants and moments are
mutually convertible via the following recursion relations (seee.g.Ref. [186]),

〈En+1
ǫ′,ǫ 〉 =

n∑

k=0

(
n
k

)
〈En−k

ǫ′,ǫ 〉〈Ek+1
ǫ′,ǫ 〉c, (5.16)

〈En+1
ǫ′,ǫ 〉c = 〈En+1

ǫ′,ǫ 〉 −
n−1∑

k=0

(
n
k

)
〈En−k

ǫ′,ǫ 〉〈Ek+1
ǫ′,ǫ 〉c. (5.17)

In principle the PDF can be reconstructed from the corresponding cumulants or mo-
ments, if cumulants or moments exist for the corresponding distribution, such that for the

7Otherwise, one has to carry many terms for the multiple partial derivatives of determinants and an exponential
function in Eq. (5.5).
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FC SDF (2.29),

̺FCW(ω;T ) = ~−1

∫ ∞

−∞
dt exp

( ∞∑

k=1

〈Ek
ǫ′,ǫ〉c(T )
k!

(it/~)k
)
ei(ω−ω0)t. (5.18)

If one could reconstruct the distribution for the transition from the cumulants then it would
provide useful information with low computational cost. There have been, however, many
attempts to produce the probability distribution from the corresponding cumulants or mo-
ments but they were mostly not too suitable because existingmethods such as Edgeworth
expansion and Gram-Charlier expansion produce non-positive-definite distributions8. In
this work, nonetheless, the Edgeworth expansion algorithmis utilized in an arbitrary or-
der for nearly Gaussian distributions [187]. This will provide at least rough pictures (e.g.

normal distribution) of the distributions. The PDFs in figures 5.1 and 5.2,̺ (c)FCW(ν̃) are
generated by the following Edgeworth expansion to an arbitrary order (see Ref. [187])n
(≥ 3, n = 2 is simply for a Gaussian function),

̺
(c)
FCW(ν̃ − ν̃0;n) =

1√
2π〈E2

ǫ′,ǫ〉c/(hc0)2
exp

(
− (ν̃ − ν̃0)

2

2〈E2
ǫ′,ǫ〉c/(hc0)2

)

[
1 +

n∑

s=1

(√
〈E2

ǫ′,ǫ〉c/(hc0)2
)s∑

{k}
Hs+2r(ν̃ − ν̃0)

s∏

m=1

1

km!

( Sm+2

(m+ 2)!

)km]
,

(5.19)

where{k} is a set of (non-negative integer) vectors satisfyings =
∑s

m=1mkm andr =∑s
m=1 km , in which the fractional quantity corresponding to the cumulants is used,

Sn =
〈En

ǫ′,ǫ〉c/(hc0)n
(〈E2

ǫ′,ǫ〉c/(hc0)2)n−1
. (5.20)

The Edgeworth expansion with a finite number of cumulants in Eq. (5.19) is related to
the FCW by

lim
n→∞

̺
(c)
FCW(ν̃;T ;n) = ̺FCW(ν̃;T ) = hc0̺FCW(ω;T ). (5.21)

5.1.2. Time-propagation with time-independent cumulant e xpansion

In the evaluation of the TCF (Eq. (4.10)) for large system it is necessary to estimate the
TCF value at a given time step from the values at previous timesteps because the direct
evaluation of the TCF becomes too expensive due to the repeated calculation of the inverse
complex matrices. It is worth to note that Petrenko and Neese[75] devised a method to
avoid the TCF evaluation. They found a recursion relation for the SDF in frequency domain
by expanding the TCF, neglecting Duschinsky effect, in a power series and by performing
partial integration on the expansion. When we need to consider Duschinsky effect, however,
the method of Petrenko and Neese is not not directly applicable because the analytic time

8in the tails of PDFs with high order (≥ 3) cumulant expansion.
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integration of the series expansion cannot be found in the presence of Duschinsky effect.
Instead, the TCF can be estimated by short time expansion (herein 2-nd order) by expanding
the TD cumulant GF9 (lnGKm(Z(t);Λ)) in a Taylor series. The Taylor expansion of the
cumulant GF with small time step∆t would look like

lnGK(Z(t+∆t);Λ) = lnGK(Z(t);Λ) +
∞∑

k=1

∂k

k!∂∆tk
lnGK(Z(t+∆t);Λ)

∣∣∣
∆t=0

∆tk,

(5.22)

where the TD GF parameter matrixZ(t) consists of Eqs. (4.42) and (4.43). After identifying
the cumulant ordering parameterε = i∆t/~ we can express the expansion in terms of TD
cumulants,i.e.

lnGK(Z(t+∆t);Λ) = lnGK(Z(t);Λ) +
∞∑

k=1

∂k

k!∂εk
lnGKm(Z(t);Λ,Λε)

∣∣∣
ε=0

(i∆t)k

= lnGK(Z(t);Λ) +
∞∑

k=1

〈Ek
ǫ′,ǫ〉c(Z(t);Λ)

k!
(i∆t/~)k. (5.23)

When we apply exponential to Eq. (5.23) we arrive at the following expression,

GK(Z(t+∆t);Λ) = GK(Z(t);Λ) exp
( ∞∑

k=1

〈Ek
ǫ′,ǫ〉c(Z(t);Λ)

k!
(i∆t/~)k

)
, (5.24)

such that the TCF att + ∆t is expressed as a product of the TCF att and a GF of TD
cumulants att in an exponential form. This expansion (5.24) att = 0 andZ = I is simply
the TI cumulant GF. Accordingly if we rewrite the expression(5.24) forn + 1 time steps
aftert, we have

GK(Z(t+ (n+ 1)∆t);Λ) =GK(Z(t+ n∆t);Λ)

exp
( ∞∑

k=1

〈Ek
ǫ′,ǫ〉c(Z(t+ n∆t);Λ)

k!
(i∆t/~)k

)
. (5.25)

We can estimate this cumulant expansion expression by ignoring high order terms in∆t of
the power series summation as a short time approximation. For example if we neglect∆tk

terms higher than 2-nd order, we obtain

GK(Z(t+ (n + 1)∆t);Λ)

≃ GK(Z(t+ n∆t);Λ) exp
(
i〈E1

ǫ′,ǫ〉c(Z(t);Λ)(∆t/~) − (12 + n)〈E2
ǫ′,ǫ〉c(Z(t);Λ)(∆t/~)2

)
.

(5.26)

This expression is in a form that its value can be estimated based on the TCF value from
the previous time step. The numerical procedure for the fastevaluation of the TCF can be

9This should not be confused with the TD CE method which involves multi-dimensional time integration for
the time correlation of potential energy difference for twoelectronic states (seee.g.Refs. [5, 35,37,87]).
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made with the short time expansion approximation. For example, only in everyn time step
the exact TCF is evaluated and in between the TCF is estimatedby Eq. (5.26). Namely we
need to evaluate the complex inverse matrix only everyn time steps which can speed up the
TCF calculation.

5.1.3. Cumultants of vibrationally excited quanta

In addition to extracting statistical information about the vibronic transition energy (Sec. 5.1.1)
one can perform detailed computations of the individual vibrational mode statistics are also
possible. Cumulants of vibrationally excited quanta in FC distribution can be generated in
a similar way for the ordern =

∑2N
i=1 ki, i.e.10

〈
∏k

ṽ
〉c = ∂̂

k
η̃ lnG

Km(I;Λ,Λη̃)
∣∣∣
η̃=0

, (5.27)

with (I+Λη̃) = diag(e−η̃1 , . . . , e−η̃2N ) where we have redefined the auxiliary parameters
η̃t = (η1, . . . , ηN , η

′
1, . . . , η

′
N ) = (η̃1, . . . , η̃2N ) to identify individual vibrational moments.

The corresponding occupation representation is given as

GKm(Z;Λ,Λη̃) = N
∞∑

v,v′=0

q(v′; v)
∏2v,2v′

z,z′
e−(vtBǫ+v′tB′ǫ′)e(v·η+v′·η′), (5.28)

Replacing(I +Λε) → (I +Λη̃) in Eq. (5.5), one obtains the GF in an analytic form,

GKm(Z;Λ,Λη̃) =N det(I +Λη̃) det(I +Λη̃ − ZWTZ)
−1
2

det(I +Λη̃ + ZWTZ)
−1
2

exp(rtTZ(I+Λη̃ + ZWTZ)
−1ZrT ) . (5.29)

The recursive expressions (Eqs. (5.14) and (5.15)) can in principle be applied for an arbitrary
order calculation as well, but require careful book keepingof vibrational mode indices.
One can find the original idea of the cumulants of vibrationally excited quanta and explicit
expressions up to 2-nd order (mean and covariance) in Doktorov et al. [29]. In this thesis,
the numerical results obtained for the cumulants of vibrationally excited quanta are not
shown, but we mention, that these can be useful for finer-grained prescreening strategies11

suggested in Refs. [46,129].

5.2. Moment generating function

Even if the moments of vibrationally excited quanta can be evaluated with the cumulant GF
in section 5.1.3, the multi-dimensional partial derivative of inverse matrices is a complicated
task. One- or two- dimensional partial derivatives could beeasily done with the method

10∂̂
n1,··· ,nN
x1,··· ,xN

=

(
∂
∑

k n1,k
∏

k ∂x
n1,k
1,k

)
· · ·
(

∂
∑

k nN,k

∏
k ∂x

nN,k
N,k

)
.

11By exploiting the vibrational mode correlations, more restrictions on the vibrational basis set can be made.
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in section 5.1.3 but for higher dimensional cases one would need an algorithm to keep
the multi-dimensional orders of partial derivatives 5.1.3. In this section, a book keeping
algorithm is developed to compute the moments of vibrational quanta to arbitrary order.

5.2.1. Book keeping algorithm

The vibrational quantum number moments of FCFs can be generated from partial deriva-
tives ofGKm(Z;Λ,Λη̃) in Eq. (5.29) in the same manner as the cumulants, but withoutthe
logarithmic function,

〈∏k

ṽ〉
|〈0′|0〉|2 =

∞∑

v,v′=0

q(v′; v)
∏k

ṽ
e−(vtBǫ+v′tB′ǫ′)e−(vtη+v′tη′)

∣∣∣
η̃=0

= (−1)−
∑2N

i ki ∂̂
k
η̃G

Km(I;Λ,Λη̃)
∣∣∣
η̃=0

. (5.30)

In the derivation of Eq. (5.29) we have already used a thermal-moment integral kernel
which is mode-selective, similarly to the non-selective thermal-moment integral kernel in
Eq. (5.4),

Km(Λ,Λη̃ ; ξ) = N det(I+Λ) det(I +Λη̃) exp(−ξ†(Λ+Λη̃ +ΛΛη̃)ξ) . (5.31)

The integral form of the moment GF with the thermal-moment integral kernelGKm(Z;Λ,Λη̃)
is given in the CS integral form as in Eq. (4.7),i.e.

GKm(Z;Λ,Λη̃) = Nπ−2N det(I+Λ) det(I+Λη̃)∫
d2αd2γ′ exp(−ξ†(I+Λ)(I +Λη̃)ξ)

exp(−1
2ξ

tZWZξ − 1
2ξ

†ZWZξ∗ + rtZ(ξ + ξ∗)) , (5.32)

which will be formally integrated to obtain Eq. (5.29). Thisintegral expression is partitioned
into two Gaussian integral functions (as in Eq. (2.122)),i.e.

GKm(Z;Λ,Λη̃)

= N det(I+Λη̃) I2N [I+Λη̃ + ZWTZ,ZrT ]I2N [I+Λη̃ − ZWTZ, 0]

= N det(I+Λη̃)G
Km
1 (Z;Λ,Λη̃)G

Km
2 (Z;Λ,Λη̃). (5.33)

GKm
1 andGKm

2 are defined as

GKm
1 (Z;Λ,Λη̃) =det(I+Λη̃)

1
2 I2N [I+Λη̃ + ZWTZ,ZrT ]

=π−N det(I+Λη̃)
1
2

∫
dxR1(Z;Λ,Λη̃), (5.34)

GKm
2 (Z;Λ,Λη̃) =det(I+Λη̃)

1
2 I2N [I+Λη̃ − ZWTZ, 0]

=π−N det(I+Λη̃)
1
2

∫
dxR2(Z;Λ,Λη̃), (5.35)
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where12R1 = J [2(I+Λη̃+ZWTZ), 2ZrT ;x] andR2 = J [2(I+Λη̃−ZWTZ), 2ZrT ;x]
are the corresponding integrands of the Gaussian integrals(Eq. (2.122)). To derive a recur-
sion relation of the partial derivatives ofGKm

1 andGKm
2 we define a functionB,

B
m
a,η̃ =π−Nem

tη det(I+Λη̃)
1
2

∫
dx
∏2m

x
Ra(Z;Λ,Λη̃), (a = 1, 2) , (5.36)

wherem is a vector of orders of moments. Eq. (5.36) gives the relationsGKm
1 = B

0
1,η̃ and

GKm
2 = B

0
2,η̃. Eq. (5.36) satisfies the following recursion relation of partial derivatives,

∂B
m
a,η̃

∂η̃k
= (−1

2 +mk)B
m
a,η̃ +B

(m1,...,mk+1,...,m2N )
a,η̃ , (a = 1, 2) , (5.37)

where we have used

∂ det(I+Λη̃)
1
2

∂η̃k
= −1

2 det(I+Λη̃)
1
2 . (5.38)

We can expand the partial derivatives in Eq. (5.30) using Eq.(5.33) and Eq. (5.36) in a
combinatoric summation rule [188],

〈∏k

ṽ〉
|〈0′|0〉|2 = N

k1∑

l1=0

· · ·
k2N∑

l2N=0

(
k1
l1

)
· · ·
(
k2N
l2N

)
∂̂
l
η̃B

0
1,η̃∂̂

(k−l)
η̃ B

0
2,η̃

∣∣∣
η̃=0

. (5.39)

Eq. (5.36) can be written in terms of the expectation value ofa normal distribution13. B at
η̃ = 0 can be evaluated with multi-variate normal moments (3.7),i.e.

B
m
a,η̃

∣∣∣
η̃=0

=

√
det(2Λ−1

c )Ea(
∏2m

x
), (a = 1, 2) , (5.40)

whereE1 is the expectation value of the normal distributionNnormal((I+ZWTZ)
−1ZrT , I+

ZWTZ) andE2 is of Nnormal(0, I − ZWTZ). The expectation valueE, the multi-variate
normal moments, can be evaluated by the iterative formula inEq. (3.9) or by the following
recursion relation in Ref. [134],

Ea(x
m1
1 · · · xmk+1

k · · · xm2N
2N ) = µm,kEa(x

m1
1 · · · xmk

k · · · xm2N
2N )

+

2N∑

j=1

(Λc)kjmjEa(x
m1
1 · · · xmj−1

j · · · xm2N
2N ), mj ≥ 1. (5.41)

12J [A, b;x] = exp(− 1
2
xtAx+ btx).

13The normal distributionNnormal(µ
m
,Λ−1

c ) is defined asp(y) = 1√
det(2πΛ

−1
c )

exp
[
− 1

2
(y−µ

m
)tΛc(y−

µ
m
)
]

with its mean vectorµ
m

and covariance matrixΛ−1
c .
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5.2.2. Algorithm for evaluating partial derivatives

We can evaluate the moments of vibrationally excited quantavia Eqs. (5.39) and (5.40).
But the partial derivatives in Eq. (5.39) will give manyBm

a,η̃ functions in different multi-
dimensional partial derivative orders (m) according to the recursion relation in Eq. (5.37).
For this reason, we need to book keeping the order (m) ofB functions for the corresponding
coefficients to complete the calculation. The two sets of partial derivatives ofB1 andB2

in Eq. (5.39) can be expanded by the recursion relation Eq. (5.37). When we consider
a single mode partial derivative, then-dimensional expansion coefficient vector ofn-th
partial derivativecn is given by the recursion relation (5.37),

cn =

n−1∑

k=0

cn−1;k+1[(−1
2 + k)ek + ek+1], (5.42)

whereek is an-dimensional unit vector that represents thek-th order partial derivative. The
multi-mode partial derivative coefficient space can be madewith the help of the single mode
expansion coefficient vectors,i.e. Consequently,

∂̂
l
η̃B

0
1,η̃

∣∣∣
η̃=0

= det(2(I + ZWTZ))
−1
2

l∑

s=0

(
2N∏

i=1

cli;si+1

)
E1(
∏2s

x
), (5.43)

and

∂̂
(k−l)
η̃ B

0
2,η̃

∣∣∣
η̃=0

= det(2(I − ZWTZ))
−1
2

l∑

s=0

(
2N∏

i=1

cki−li;si+1

)
E2(
∏2s

x
). (5.44)

Finally from the equations (5.40), (5.41), (5.42), (5.43) and (5.44), we can evaluate the
Eq. (5.39). It is possible to exploit the space decomposition, similar to the integral parti-
tioning scheme (Sec. 2.4.2), for exampleX: moments space,Y : non-moments space, to
reduce the dimension of the problem. The numerical results for the moments, however, are
not presented in this thesis.

5.3. Results and discussion

In this section we test and discuss our TI CE method for vibronic transition energies. In
the following subsection 5.3.1 we show the CE results of formic acid and anthracene for PE
and UV transitions, respectively, which have been discussed already in the previous chap-
ter 4 for the integral prescreening method at finite temperature. We analyze, in the second
subsection 5.3.2, the electron transfer reaction of bacteriochlorophyll at finite temperature
with the TI CE method. The detailed calculation data are available in appendix B.

5.3.1. Cumulants of Franck-Condon profiles

We have calculated the FC profiles of the PE and UV absorption spectra reported herein with
the vibronic structure program hotFCHT [36, 46, 129–131]. Using the time-independent
cumulant expansion developed in this chapter, FC intensityprofiles are estimated with the
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Edgeworth expansion algorithm for cumulants of arbitrary order (Eq. (5.19)). FC intensity
profiles from the TI CE approach are compared with the resultsof the time-correlation
function method developed in the previous chapter 4. Molecular equilibrium structures
and harmonic force fields are taken form the previous work [46]. With the Edgeworth
expansion algorithm, it is possible to construct a distribution constrained to the computed
cumulants. The scheme employs Hermite-Gaussians as its expansion basis set and it is
useful to evaluate the peak maximum. For lower order expansions the analytic solutions
are available. A Gaussian line shape function with full width at half maximum (FWHM)
of 500cm−1 (the corresponding standard deviationσ = 212.33hc0cm−1) is convoluted in
the TCF evaluation. To include the Gaussian line shape function in the statistics we simply
addedσ2 (= 4.51E+04(hc0cm−1)2) to the second order cumulant (variance). This can be
rationalized if one consider a convolution of the TCF with a Gaussian line shape function
in time space (exp(−1

2σ
2(t/~)2)) for the FT (Eq. (5.18)). The cumulants can be found in

appendix B.
Fig. 5.1 compares the PE transition band of formic acid from TI CE and TCF (Ref. [129])

approaches at (a) 1000 K and (b) 0 K. The (vibrational) vertical transition energy (reorga-
nization energy) of this vibronic transition is about 2329hc0cm−1 and one would expect
to see the peak maximum of the spectrum at 0 K around this energy. As can be seen in
Fig. 5.1(b) the peak maximum of TCF curve (solid line) is not at this vertical transition
energy. The Gaussian approximation (dotted line) from the 2-nd TI CE expansion is much
deviated from the TCF one. The discrepancy of vertical transition energy and mean en-
ergy (= 2420cm−1) at 0 K is due to the effects of Duschinsky rotation and the harmonic
frequency differences of the initial and final vibronic states. Peak maximum energy, ver-
tical transition energy (12δ

tdiag(ǫ′)δ) and mean energy are generally not identical if the
distribution deviates from a normal distribution. Even though the TI CE-Edgeworth cannot
produce detailed FC profiles, the higher order TI CE calculation results (4-th and 8-th or-
der expansions in dashed and dot-dashed lines, respectively) agree fairy well with the TCF
curve especially for the peak maximum and the width of FC profile. When the distribu-
tion is closer to a normal distribution (at 1000 K, Fig. 5.1(a)), the two different approaches
have better agreement. The mean energy (see the maximum of the Gaussian curve ) is ap-
proaching the peak maximum energy as temperature is increasing, that is the distribution is
approaching a normal distribution.

Fig. 5.2 compares the UV absorption spectra of anthracene obtained from the TI CE and
the TCF approaches at (a) 500 K and (b) 0 K. The spectra of the TCF approach (solid lines
in Fig. 5.2) with a Gaussian line shape with FWHM of 500 cm−1 are near to a normal
distribution. The peak maximum energy of the two approachesare close to each other
but the convolution of the TCF spectrum with a broader half-width line shape function
would give better agreement. TI CE curves of anthracene agree TCF ones better than the
formic acid calculations (see figures 5.1 and 5.2) because the distributions of FC profiles
of anthracene at 0 K and 500 K are closer to a normal distribution. As one can see from
the two examples, the TI CE approach can provide good guide lines already with 4-th order
expansion for the full spectrum. If one is interested in the peak maximum or Stokes shift
only, TI CE can provide the results quickly.

In principle the higher order TI CE should produce more detailed features of the distri-
bution. But the Edgeworth expansion (5.19) can become numerically unstable. Oscillations
of tails, furthermore, with negative values at high order CEcan become unavoidable when
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Figure 5.1.: Calculated FC profiles for the1 1A
′ → 1 2A

′

PE transition band of formic
acid at (a)1000 K and (b)0 K. TCF-FFT [129] curves (̺FCW,G(ν̃)) are drawn as a solid

line. The dotted, dashed and dot-dashed lines are for TICE-Edgeworth calculations (̺(c)FCW(ν̃))
corresponding to the 2-nd, 4-th and 8-th order expansions, respectively. TCF-FFT curves are
obtained with Gaussian line shapes with FWHM of500 cm−1. Here ν̃0 corresponds to the
wavenumber of the0′ − 0 transition for this band.
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Figure 5.2.: Calculated FC profiles for the1 1Ag → 1 1B2u absorption spectra of anthracene at
(a)500 K and (b)0 K. TCF-FFT [129] curves (̺FCW,G(ν̃)) are drawn as a solid line. The dot-

ted, dashed and dot-dashed lines are for TICE-Edgeworth calculations (̺ (c)
FCW(ν̃)) correspond-

ing to the 2-nd, 4-th and 8-th order expansions, respectively. TCF-FFT curves are obtained
with Gaussian line shapes with FWHM of500 cm−1. ν̃0 corresponds to the wavenumber of
the0′ − 0 transition for this UV absorption band.
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the distribution significantly deviates from the normal distribution because of the oscillatory
nature of the Hermite-Gaussians as an expansion basis set. Thus the Edgeworth expansion
renders the computed curve unsuitable as a PDF due to negative regions, but it provides a
good overview of the overall spectrum (spectrum width) and peak maximum at virtually
no computational cost, when compared to TI or even TCF-fast Fourier transform (FFT) FC
profile calculations. If a more stable expansion method would be exploited, the higher order
cumulants could be used as well.

The TI CE method developed herein is shown to be simple but it promises the following
possible applications:

1. The 2-nd order (normal distribution) or higher order TI CEcan possibly provide the
confidence intervals which can serve to determine the relevant energy windows for
FC profile calculations.

2. One can construct TCF of moments (cumulants and moments are mutually convert-
ible) such as〈Eǫ′,ǫ〉(Z(t)) and〈E4

ǫ′,ǫ〉(Z(t)) at timet (see Ref. [129] and Sec. 4), then
their FTs correspond to the absorption and emission (interchanging the initial and fi-
nal states) spectrum, respectively. A similar approach of the frequency dependent
mean transition energy has been exploited in Refs. [37, 40, 41, 48] for photoinduced
cooling processes.

3. The TD CE described herein with the TD GF parameters can serve as an approx-
imated time-propagator with the Taylor expansion of the TCFin terms of the TD
cumulants (Sec. 5.1.2). This Taylor expansion allows a fastevaluation of the TCF by
avoiding complex inverse matrix calculation at each time step.

4. We can define a parameter which is a function of molecular structural change, force
field variation and temperature for individual vibrationalmodes with the mean ex-
citation energy. This feature is useful in studying large molecular system to resolve
individual vibrational mode contributions (see the following subsection 5.3.2).

5. The covariance [29] or higher order cumulants (multi-variance) of the vibrationally
excited quanta can give the information about the coupling strength of the normal
modes. This possibly offers an algorithm for grouping the coupled normal modes
with a certain threshold for a large molecule, which has no symmetry, to approximate
the Duschinsky rotation matrix as a block diagonal matrix sothat one can reduce the
dimensionality of the vibronic transition problem. One would argue that just looking
at the Duschinsky rotation matrix is enough to see the coupling strength of normal
modes [43] but this idea ignores molecular structural displacements and temperature
effect, thus the TI CE approach would give better grouping strategies and results with
more generality.

6. One can attempt to compute thermodynamic quantities of the vibronic transition such
as specific heat by taking a partial derivative on the mean vibronic transition energy
with respect to temperature, it is possible to have an arbitrary order partial deriva-
tives on the mean vibronic transition energy with respect toreciprocal temperature
(β) as well. This is precisely the method exploited for the molecular cooling applica-
tions [37,40,41,48].
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7. Exploiting the GF parameters (Z) in TI CE can possibly provide complementary pre-
screening methods to the existing ones [46,129] (see also Ch. 4).

5.3.2. Thermal energy redistribution via Duschinsky mode c oupling

Electron transfer (ET) is one of the fundamental processes in chemistry and biology. Indeed,
ET is essential both in photosynthesis as well as respiration and thus crucial for life as
we know it. Therefore, a detailed understanding of this process in varying systems are
interesting on the molecular level.

In the electron transfer theory the intramolecular vibrational relaxation process (seee.g.
Ref. [85]) is the major mechanism of the charge migration. Nonadiabatic ET theory of Mar-
cus [189] is based on the nuclear tunneling mechanism with the ET rate being proportional
to the Franck-Condon factor weighted density of states and the absolute square of electronic
coupling matrix element (|V |2, within Condon approximation),i.e. the ET rate is defined
as

ΓET(ω;T ) =
2π
~ |V |2̺FCW(ω;T ). (5.45)

We can exploit the methods developed in the previous chapters for TI and TD approaches
to compute the FCW. FC profiles are, however, typically highly congested at finite temper-
ature, especially for large system such as bacteriochlorophyll (Bchl) in the photosynthetic
reaction center (seee.g.Ref. [128] and Fig. 1.2)14.

It has been emphasized by many researchers (seee.g. Ref. [82]) that the Duschinsky
effect is important in electron transfer processes. In the presence of Duschinsky mode mix-
ing effects a vibrational state-resolved analysis of the FCprofile is thus prohibitive even
in the harmonic approximation. Duschinsky rotations spoilthe one to one correspondence
between vibrational modes in the initial and final electronic states. As a result, FC profiles
typically broaden and acquire a different temperature dependence as compared to systems
without Duschinsky rotation as shown in Fig. 1.2. Thus it is difficult to analyze the indi-
vidual vibrational mode contributions including the Duschinsky effects. It is more difficult
at finite temperatures to see which of the vibrational modes are important in complex elec-
tron transferring systems. To analyze the individual vibrational mode contribution to an
ET process, one uses in the absence of Duschinsky rotation and at zero Kelvin the reor-
ganization energy (12ǫ

′
iδ

2
i ) or the Huang-Rhys factor (12δ

2
i ) as an electron-phonon coupling

constant. In the presence of Duschinsky mode mixing, a similar parameter to characterize
the mode contribution is required, which has to be a functionof molecular structural change,
harmonic force constant change, normal coordinate variation and temperature. The Huang-
Rhys factor is identical to the mean vibrationally excited quanta of a particular vibrational
mode and only depends on the molecular structural displacements when the displaced iden-
tical harmonic oscillator approximation is used. The primary solution we suggest for the
Duschinsky rotated systems is to use the mean quantum numberof the individual vibrational
modes as the effective Huang-Rhys factor, the electron-phonon coupling constant. This fac-

14In Fig. 1.2, we present the FC profile of Bchl− −→Bchl. Each equilibrium structure and the correspond-
ing harmonic force field of each electronic states are computed by electronic structure program package
TURBOMOLE [190] at density functional theory (DFT) level calculation with density functional B3LYP
and basis set TZVP. The equilibrium structures, harmonic wavenumbers and relevant data are provided in
appendix B.
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tor is temperature and potential energy surface dependent.The time-independent cumulant
expansion method for FC profiles can provide a mode by mode analysis for the mean of the
vibronic transition energy. The temperature dependent mean energy from Eq. (5.9) is given
explicitly,

〈Eǫ′,ǫ〉(T ) =Tr[Ξ]− 1
2Tr[(I −WT )

−1Ξ]− 1
2Tr[(I +WT )

−1Ξ]

− rtT (I+WT )
−1Ξ(I+WT )

−1rT . (5.46)

By ignoring some modes in the statistics (setting some diagonal elements ofΞ to zero), we
are able to compute the (effective) reorganization energy [82, 191–193] of a normal mode
including the Duschinsky mode mixing and temperature effects with the mean energy and
individual mode distributions. The mode-wise separable expression (5.46) can be obtained
by choosing for exampleΞ = diag(0, . . . , 0, . . . ,−ǫ′i, . . . , 0) for i-th vibrational mode in
final state,i.e.

〈Eǫ′,ǫ〉(T ) =
∑

i

ǫ′i〈v′i〉(T ), (5.47)

whereǫ′i〈v′i〉(T ) is the mode-wise effective reorganization energy and〈v′i〉(T ) is the corre-
sponding effective Huang-Rhys factor (mean vibrationallyexcited quanta) ofi-th mode in
final state. We express explicitly the mean energies for displaced harmonic oscillators,

〈Eǫ′,ǫ〉 =
∑

i

1
2ǫ

′
iδ

2
i , (5.48)

and for displaced-distorted harmonic oscillators,

〈Eǫ′,ǫ〉(T ) =
∑

i

(ǫi − ǫ′i)−
ǫi−ǫ′i−

(ǫi−ǫ′i)
2

4ǫi
(1+e−ǫi/kBT )

1−e−ǫi/kBT + 1
2ǫiδ

2
i . (5.49)

The (traditional) reorganization energy (1
2ǫ

′
iδ

2
i ), which is identical to the mean energy of

displaced harmonic oscillator model, is temperature independent (see Eq. (5.48)), while
the displaced-distorted harmonic oscillator system showsits temperature dependence in its
mean energy expression (5.49). Here we learn that the temperature effect stems from the
frequency change between two sets of harmonic oscillators.One could expect the har-
monic frequency distortion can be enhanced via Duschinsky mode mixing effects because
Duschinsky rotation is able to couple low frequency modes and high frequency modes such
that it results a large effective harmonic frequency distortion.

In the figure 5.3(a) we approximate the FC profiles in figure 1.2as Gaussian functions.
The mean values and variances are computed from the method inSec. 5.1.1 at 0 K, 100 K,
200 K and 300 K. The distortion (dotted lines) shows very little temperature dependence
while the Duschinsky rotation (solid lines) induces a significant blue shift as temperature
increases15. Figure 5.3(b) displays temperature dependence of mean energies correspond-
ing to the peak maxima of Fig. 5.3(a) and it also indicates large Duschinsky effect on the
temperature dependence. We have just showed that Duschinsky rotation can cause signifi-

15Because the displaced-distorted model usually includes small frequency changes.
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method. The solid curves are obtained for a model with Duschinsky rotation and the dotted
curves are obtained without Duschinsky rotation. In each set of curves the lines are calculated
at 0 K, 100 K, 200 K and 300 K, and the intensities at the peak maxima decrease as temperature
increases. b. The mean energies are plotted against temperature.
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5. Probability density functions of Franck-Condon transitions

cant temperature dependence via total mean energy calculations (Fig. 5.3(b)). To quantify
the relation between the Duschinsky rotation and the temperature dependence, we need to
analyze the individual vibrational mode contributions to this process.

We compute the mean excitation energies of individual vibrational modes according to
Eqs. (5.46) and (5.47). The cumulative sums of them at various temperatures are plot-
ted in Fig. 5.4(a) for distortion (dotted lines) and rotation (solid lines) models. To see the
Duschinsky rotation effect, we subtract dotted lines from solid lines at each temperature
and plot the result in Fig. 5.4(b). According to Fig. 5.4(b),a C-C stretching mode (ν̃ ′79 =
997cm−1) and a C-H stretching mode (ν̃ ′17 = 3038cm−1) of the final (neutral) state show
significant Duschinsky effect. These modes have little displacements compared to other
modes and this indicates that displacements would not be important in the temperature de-
pendence. The Duschinsky rotation matrix in Fig. 5.5 shows the reason why the two modes
acquire significant amount of thermal excitation energies from the initial state. The two
vibrational modes are coupled to the initial (anionic) vibrational modes, circled in Fig. 5.5,
which give large effective frequency changes. The couplingstrengths are not strong, only
slightly abovesin( π

60) ∼ 0.05. To check if this small coupling can cause large thermal en-
ergy redistribution among mixed modes, we investigate a 2-dimensional model system,ǫ =

hc0(993 cm−1, 65 cm−1)t, ǫ′ = hc0(997 cm−1, 60 cm−1)t, S =

(
cos( π

60) −sin( π
60 )

sin( π
60 ) cos( π

60 )

)

and the (dimensionless) displacement vectors (δ) are chosen as(0, 0)t and(1, 1)t for nonto-
tally symmetric and totally symmetric modes, respectively. We compute the mean excitation
energy of individual vibrational modes of these 2-dimensional systems (see Fig. 5.6). The
high wavenumber mode993 cm−1 of initial state acquires little thermal excitation energy
at increasing temperatures from 0 K to 300 K comparing to the low wavenumber mode
65 cm−1. Without Duschinsky rotation (S = I) only a small amount of thermal energy
would transfer to the high wavenumber mode997 cm−1 of final state because only the
thermal excitation energy of993 cm−1 in initial state can transfer to the high wavenum-
ber mode in the absence of Duschinsky rotation. But the result shows that the Duschinsky
mode coupling can redistribute the thermal excitation energy of initial state by coupling
modes. Displacement effect seems to be little according to the calculations (compare left
and right plots in Fig. 5.6), the equal amount of thermal energies are transfered regardless
of the displacements (see appendix B).

From our calculations and the 2-dimensional model system wecan conclude and expect
the followings:

1. Duschinsky rotation effect can induce different temperature dependence.

2. Mean excitation vibrational energy provides effective parameters which can char-
acterize individual vibrational mode contribution including displacement, distortion,
rotation and temperature effects.

3. Temperature dependence with Duschinsky effects can possibly be analyzed by the
effective reorganization energy or Huang-Rhys factor obtained from the mean excita-
tion quantum numbers.

4. Duschinsky mode mixing provides a mechanism for thermal vibrational energy trans-
fer from low frequency modes to high frequency modes.
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5. Displacements are not important for the temperature dependence.

6. Frequency change (distortion) is most important for the temperature dependence and
the Duschinsky rotation enhances distortion effects.

7. TCF approach with mode screening could provide complementary information to the
current approach.

8. Temperature effect on variances of FC profiles in presenceof Duschinsky effect
would be interesting to study.

5.4. Chapter summary and conclusion

We have proposed numerical schemes for computing cumulantsof vibronic transition en-
ergies and moments of individual vibrationally excited quanta in an arbitrary order in this
chapter. We have, also, presented the time propagation scheme with TD cumulants for
the TCF approach. The cumulants and moments of the vibronic transition distribution can
be exploited for many other application such as temperaturedependent electron transfer
processes. We have shown, with the electron transfer of bacteriochlorophyll in a photosyn-
thetic system, that the thermal excitation energy of the initial state can be redistributed via
the Duschinsky mode coupling mechanism. Duschinsky mode mixing effects can induce a
different temperature dependence as a result. Currently the method is restricted to FC transi-
tions but it can be extended to include also non-Condon effects. The TI cumulant expansion
method can provide insights into the transition process with relatively low computational
cost within the harmonic approximation. In the next chapterthe non-Condon effects are
considered. The development is a combination of the developments in section 3.2 and in
chapter 4.
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6. One-photon absorption with
Herzberg-Teller effects

In order to describe weak or even Franck-Condon (FC)-forbidden transitions one needs to
go beyond the Condon approximation (Sec. 2.1), which assumes a vibrational coordinate
independent electronic transition moment, and take vibronic coupling effects [4, 30] into
account. Within the adiabatic picture the Herzberg-Teller(HT) approach is perhaps the most
natural extension (seee.g.Ref. [36] and Eq. (2.24)), where one incorporates the coordinate
dependence of the electronic transition moment operator tolinear or even higher order.
This procedure requires calculation of additional integrals beyond the FC treatment (Ch. 3),
involving the vibrational wavefunctions corresponding todifferent electronic states.

The focus of this chapter is on the direct calculation of HT and Franck-Condon/Herzberg-
Teller interference (FC/HT) profiles at finite temperature utilizing the time-correlation function
(TCF) and on the development of associated prescreening conditions within the time-independent
(TI) formalism [36, 44–46, 49]. This is an anticipated extension of the previous FC pre-
screening strategy at zero-temperature [46] and includes the finite-temperature FC transi-
tions (Ch. 4). Herein, the formalism developed in Ref. [46] and in the previous chapter
for the Franck-Condon factor (FCF) generating function (GF) (Ch. 4) is extended to the
non-Condon effects via the incorporation of coherent state(CS) displacement operators
(Eq. (2.84)) which were introduced in section 3.2 for the non-Condon integral evaluation
scheme. At lowest order the resulting extended GF leads to analytical forms for the FC,
FC/HT and HT GFs corresponding to the expressions (2.29), (2.30) and (2.31). These ex-
pressions are utilized within the previous prescreening and TCF strategy, providing rigorous
error bounds for entire batches of HT integrals and the TCF for the integrated HT profile.
These complementary approaches are applied to FC-forbidden vibronic transitions of ben-
zene (ultra-violet (UV) absorption,1 1Ag → 1 1B2u) as a case study. In addition to the
linear HT GF development, the extended GF detailed in this work can also be applied to go
beyond the linear HT approximation and is connected to the nonadiabatic coupling effects
beyond Born-Oppenheimer (BO) approximation and the inclusion of anharmonic correc-
tions.

This chapter is organized as follows: Similar to the thermalFCF chapter 4, the method
is developed in section 6.1 for non-Condon GFs and the prescreening strategies for FCHT
profiles are constructed in section 6.2 on the basis of the FCHT GF. Then the methods
are tested (Sec. 6.3) for benzene UV absorption profiles. Thechapter is concluded in sec-
tion 6.4.

6.1. Methodology

In the following subsections we develop the GFs for the FC/HTand HT contributions of
Eq. (2.30) and Eq. (2.31) respectively, via the incorporation of CS displacement operators,
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6. One-photon absorption with Herzberg-Teller effects

in correspondence with the previous FC developments at zeroKelvin [46] and at finite
temperature (Ch. 4). We apply the CS displacement operator developments in section 3.2
to the non-Condon GF development. Exploiting the GF, we present the FCHT profile sum
rules for integral prescreening strategies in section 6.1.3. Then the working equations (in
TI and time-dependent (TD) approaches) for the spectral density functions (SDFs) and the
summary of the current section developments follows in section 6.1.4.

6.1.1. Augmented generating function

To determine the explicit functional forms for the contributions corresponding to the FC,
FC/HT and HT expressions of Eqs. (2.29)–(2.31), we now introduce a Boltzmann weighted
GFGK which has been augmented with the operatorsf̂(P̂ , Q̂) andĝ(P̂ , Q̂), that is1

GK(Z;Λ)(f̂ ,ĝ) = N|〈0′|0〉|−2
∞∑

v,v′=0

〈v|(ĝ)∗|v′〉〈v′|f̂ |v〉
∏2v,2v′

z,z′
e−(vtBǫ+v′tB′ǫ′) , (6.1)

where
∏n1,··· ,nN

x1,··· ,xN =
(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)
is used. After identification of̂f and

ĝ with products of CS displacement operators as introduced inSec. 3.2, we can obtain
an analytic expression forGK and subsequently specialize to the desired FC, FC/HT and
HT GF expressions (corresponding to Eqs. (2.29), (2.30) and(2.31) repectively) via partial
derivatives with respect to CS parameters. In this section we derive these specific functional
forms for the possible prescreening strategy and the non-Condon TCFs.

We can evaluate the non-Condon GFGK , which is casted within the occupancy repre-
sentation in Eq. (6.1), analytically through an integral formulation arising from a CS repre-
sentation [46] (see also Ch. 4) with thermal integral kernelK in Eq. (4.2), so that2

GK(Z;Λ)(f̂ ,ĝ) = π−2N |〈0′|0〉|−2

∫
d2αd2γ′K(Λ; ξ)〈z′∗γ′|f̂ |zα〉〈z′γ′|ĝ|z∗α〉∗ . (6.2)

Identifying f̂ and ĝ with the CS displacement operators (Eq. (2.84)) within the overlap
integrals, as in Eq. (3.14), then the integral form of the GF Eq. (6.2) becomes3

GK(Z;Λ; η, η′)

= π−2N |〈0′|0〉|−2

∫
d2αd2γ′K(Λ; ξ)〈z′∗γ′|D̂NC(η)|zα〉〈z′γ′|D̂NC(η

′)|z∗α〉∗

= π−2N |〈0′|0〉|−2

∫
d2αd2γ′K(Λ; ξ)

〈z′∗γ′ + (ηP ′ + iηQ′)∗|zα+ (ηP + iηQ)〉〈z′γ′ + (η′P ′ + iη′Q′)∗|z∗α+ (η′P + iη′Q)〉∗

exp
[
1
2ξ

†Zη − 1
2ξ

tZη∗ + 1
2ξ

tZη′∗ − 1
2ξ

†Zη′
]
exp

[
− iη̃P

tη̃Q + iη̃′P
t
η̃′Q
]
. (6.3)

This construction does include additional, often unnecessary, parametric flexibility, however
restrictions can then be imposed on the resulting GFGK for the specific cases of interest.

1cf. Eq. (2.109) for FCF GF at zero Kelvin and Eq. (4.4) for FCF GF atfinite temperature.
2cf. Eq. (4.1) of thermal FCF GF
3See Eq. (4.1) of thermal FCF GF, Eq. (3.14) and the corresponding definitions on parameters and variables.
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Exploiting the overlap integral of Eq. (3.18), then Eq. (6.3) reduces significantly to the
analytic form

GK(Z;Λ; η, η′) =Ndet(I+ ZWTZ)
−1
2det(I − ZWTZ)

−1
2R(η, η′)

exp((b+)tZ(I+ ZWTZ)
−1Zb+) exp((b−)tZ(I− ZWTZ)

−1Zb−) .
(6.4)

This expression is achieved by a rescaling of the variablesξ → (I+Λ)−1ξ and then evalu-
ating the resulting expression in terms of the real and imaginary parts ofξ, as per Refs. [46]
and chapters 2 and 4. Here the quantities in Eq. (6.4) are defined as

R(η, η′) =exp(−1
2η

†η − 1
2η

′†η′) exp(−1
2η

tWη − 1
2η

′†Wη′∗ + rt(η + η′∗))

exp(−iη̃P
tη̃Q + iη̃′P

t
η̃′Q) , (6.5)

(b+)t(Λ; η, η′) = rtT − 1
2 [η

† + η′t + (ηt + η′†)W](I +Λ)−
1
2 , (6.6)

(b−)t(Λ; η, η′) = − i
2 [η

† − η′t + (ηt − η′†)W](I +Λ)−
1
2 . (6.7)

We note that only the vectorrT in b+ is the temperature dependent Doktorov quantity
(Eq. (4.9)), whereasW refers to the temperature independent Doktorov matrix.

Utilizing the relationship in Eq. (3.13) between the partial derivatives of CS parameters
and the position and momentum operators we can straightforwardly construct the desired
FC, FC/HT and HT GF expressions with Eq. (6.4). Direct substitution leads toGK(Z;Λ)
which is simply a FCF GF [46] (see Sec. 2.4 and Ch. 4),

GK(Z;Λ) = GK(Z;Λ)(1̂,1̂)

= GK(Z;Λ; η, η′)
∣∣
η=0,η′=0

. (6.8)

After rearranging the non-Condon GF expression (6.4) and byspecifying the auxiliary pa-
rameters of position and momentum operators belonging to initial and final states, we can in-
troduce operators up to arbitrary orders with the help of multi-variate Hermite polynomials
(MHPs) (Eq. (3.3)) as it was done already for non-Condon integrals in section 3.2. The
non-Condon GF expression (6.4) is rewritten as

GK(Z;Λ; η, η′) = GK(Z;Λ)J
[
WNCF(Z;Λ), r̃NCF(Z;Λ); η̃

NCF

]
, (6.9)

with the8N -dimensional collective auxiliary parameter vector (Eqs.(3.16) and (3.17)),

η̃
NCF

=




η̃P
η̃Q
η̃′P
η̃′Q


 . (6.10)

Note that non-Condon GF separates into a FCF GF part (GK(Z;Λ)) and a non-Condon
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contribution (the exponential function,J ) in Eq. (6.9).
The8N -dimensional square matrix̃WNCF and vector̃rNCF are defined as

W̃NCF(Z;Λ) =



(I+W)− 1
2(I+W)Ã−

T (I +W) i
2(I+W) + i

2 (I+W)Ã−
T (I−W) −1

2(I+W)Ã+
T (I+W) − i

2(I+W)Ã+
T (I−W)

i
2 (I+W) + i

2(I−W)Ã−
T (I+W) (I−W) + 1

2(I−W)Ã−
T (I−W) i

2(I−W)Ã+
T (I+W) −1

2(I−W)Ã+
T (I−W)

−1
2(I+W)Ã+

T (I+W) i
2(I+W)Ã+

T (I−W) (I+W)− 1
2(I+W)Ã−

T (I+W) − i
2(I+W)− i

2(I+W)Ã−
T (I−W)

− i
2(I−W)Ã+

T (I+W) −1
2(I−W)Ã+

T (I−W) − i
2(I+W)− i

2(I−W)Ã−
T (I+W) (I−W) + 1

2(I−W)Ã−
T (I−W)


 ,

(6.11)

and

r̃NCF(Z;Λ) =




r − (I+W)(I+Λ)−
1
2A+rT

ir + i(I−W)(I+Λ)−
1
2A+rT

r − (I+W)(I+Λ)−
1
2A+rT

−ir − i(I −W)(I +Λ)−
1
2A+rT



, (6.12)

where

Ã±(Z;Λ) = A+(Z;Λ)±A−(Z;Λ), (6.13)

A±(Z;Λ) = Z(I± ZWTZ)
−1Z, (6.14)

Ã±
T (Z;Λ) = (I+Λ)−

1
2 Ã±(Z;Λ)(I +Λ)−

1
2 . (6.15)

As we have done for the non-Condon integrals in Eq. (3.21), wecan express the non-
Condon GF in terms of MHPs from Eq. (6.9),

GK(Z;Λ)(f̂ ,ĝ) =

2N∏

k=1

[
i
√

ǫ̃k
2

]l̃k[1
i

√
~2
2ǫ̃k

]m̃k
[
− i
√

ǫ̃k
2

]ñk
[
− 1

i

√
~2
2ǫ̃k

]õk

∂̂
l̃,m̃,ñ,õ
η̃P ,η̃Q,η̃′P ,η̃′Q

GK(Z;Λ; η, η′)
∣∣∣
η̃
NCF

=0

=
2N∏

k=1

[
i
√

ǫ̃k
2

]l̃k[1
i

√
~2
2ǫ̃k

]m̃k
[
− i
√

ǫ̃k
2

]ñk
[
− 1

i

√
~2
2ǫ̃k

]õk

Hl̃,m̃,ñ,õ(W̃
−1
NCFr̃NCF;W̃

−1
NCF) , (6.16)

where the operators (̂f and ĝ) are identified as4 f̂ =
∏m′,l′,l,m

Q̂
′
,P̂

′
,P̂ ,Q̂

and ĝ =
∏o′,n′,n,o

Q̂
′
,P̂

′
,P̂ ,Q̂

, in

which the collective indices are used,i.e. l̃
t
= (lt, l

′t), m̃t = (mt,m
′t), ñt = (nt, n

′t) and
õt = (ot, o

′t).
By evaluating Eq. (6.16) the FC/HT GF is explicitly expressed as,

GK(Z;Λ)(Q̂i,1̂) =
√

~2
2ǫi
GK(Z;Λ)[r + (I−W)(I +Λ)−

1
2A+rT ]i , (6.17)

4∂̂
n1,··· ,nN
x1,··· ,xN

=

(
∂
∑

k n1,k
∏

k ∂x
n1,k
1,k

)
· · ·
(

∂
∑

k nN,k

∏
k ∂x

nN,k
N,k

)
and

∏n1,··· ,nN

x1,··· ,xN
=
(∏

k x
n1,k

1,k

)
· · ·
(∏

k x
nN,k

N,k

)
.
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and the HT GF is given explicitly by,

GK(Z;Λ)(Q̂i,Q̂j) = ~2
2

√
1

ǫiǫj
GK(Z;Λ)

[
[r + (I−W)(I +Λ)−

1
2A+rT ]i[r + (I−W)(I +Λ)−

1
2A+rT ]j

+ 1
2 [(I −W)Ã+

T (I−W)]ij

]
. (6.18)

One can also determine expressions for position operators of the final electronic state,{Q̂′
i},

by using the (N + i)-th component, instead ofi-th component, of vectors or matrices in
Eqs. (6.17) and (6.18) with the corresponding harmonic energy (ǫ′i).

6.1.2. Time-dependent density matrix formalism

The method developed in the previous section for non-Condoneffects is derived from the
TI perspective with the aid of CSs, although it can be connected to the TCF directly via
TD GF parameters (Eqs. (4.42) and (4.43) ). In this section the clear link between the TD
and TI formalisms for the non-Condon development in CS basisis demonstrated5 with the
quantum mechanical trace expression which is introduced insection 2.1.

It has been shown in section 2.1 that the SDFρ(ω;T ) in frequency domain at finite tem-
peratureT can be transformed into a time domain function, the TCF, as inequation (2.14).
The time propagation of CSs with the corresponding vibrational Hamiltonians can be ex-
pressed as the diagonal phase space unitary operation (Eq. (2.91)),

e−iĤt/2~|α〉 = |z(t)α〉, (6.19)

e+iĤ′t/2~|γ ′〉 = |z′(t)γ′〉 , (6.20)

wherez(t) andz′(t) are defined in Eqs. (4.42) and (4.43) respectively. The thermal Boltz-
mann population of CSs in the initial state is expressed withthe non-unitary operation
(Eq. (2.92)),

e−βĤ/2|α〉 = e−
1
2
α†(I−Γ†Γ)α|Γα〉 , (6.21)

whereΓ = (I+ λ)−
1
2 and for the final state a similar relation holds witĥH being replaced

by Ĥ ′ andΓ replaced byΓ′ = (I+λ
′)−

1
2 . Then we can trace the spectral density function

(Eq. (2.14)) in CS basis directly by inserting the initial and final state CS resolution of the
identity (Eq. (2.93)) to transform the trace to a closed functional form. Instead of the specific
TCF given by Eq. (2.14), herein a more general structural form for the GF corresponding to
Eq. (6.3) is given as well. The extended GF is defined with the CS displacement operators
(as in Eq. (6.3)) replacinĝµ(Q) in Eq. (2.14),

GK = |〈0′|0〉|−2Z−1
I,FTr(D̂NC(η

′)†eĤ
′(−β−it/~)D̂NC(η)e

Ĥ(−β+it/~)) , (6.22)

5Contribution by J. L. Stuber to Huhet al. [130].
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where

ZI,F = Tr(e−βĤ′
e−βĤ) . (6.23)

In order to have a symmetric formulation of the GFGK as in Eq. (6.3), we split each of the
exponential operators into equal contributions for time (t) and imaginary time (reciprocal
temperatureβ) parts,

GK = |〈0′|0〉|−2Z−1
I,FTr

(
D̂NC(η

′)†eĤ
′(−β−it/~)/2eĤ

′(−β−it/~)/2

D̂NC(η)e
Ĥ(−β+it/~)/2eĤ(−β+it/~)/2

)
. (6.24)

We, then, insert the CS resolution of the identity (Eq. (2.93)) for |γ ′〉 and evaluate the trace
in CS phase space of|α〉,

GK = |〈0′|0〉|−2Z−1
I,F π

−2N

∫
d2α

∫
d2γ ′

〈α|eĤ(−β+it/~)/2D̂NC(η
′)†eĤ

′(−β−it/~)/2|γ′〉〈γ ′|eĤ′(−β−it/~)/2D̂NC(η)e
Ĥ(−β+it/~)/2|α〉

= |〈0′|0〉|−2Z−1
I,F π

−2N

∫
d2α

∫
d2γ′

exp(−α†(I− Γ†Γ)α− (γ′)†(I− (Γ′)†Γ′)γ′)

〈z′(t)∗Γ′γ′|D̂NC(η)|z(t)Γα〉〈z′(t)Γ′γ′|D̂NC(η
′)|z(t)∗Γα〉∗ , (6.25)

where the invariance of the trace under cyclic permutation of operators is used. After rescal-
ing α → Γα andγ′ → Γ′γ′, we see the thermal terms in this equation are precisely the
thermal integral kernelK in Eq. (4.2),i.e.

Z−1
I,F det(Γ)−2 det(Γ′)−2 exp(− α†(I − (Γ−1)†Γ−1)α

− (γ ′)†(I− ((Γ′)−1)†(Γ′)−1)γ′) = K(Λ, ξ) , (6.26)

becauseΓ andΓ′ are real valued matrices andZ−1
I,F = N in Eq. (4.14). Thus this GF ex-

pression (6.25) is identical to that of Eq. (6.3) except thatthe later depends on time variable
t implicitly.

We note here again that Islampour and Miralinaghi [93] devised recently a TCF for inter-
nal conversion (IC) rate involving multi-promoting modes (which mediate the intramolec-
ular transition) and vibrational mode mixing effects. Theyexploited second order multi-
variate normal moments for the momentum operator matrix elements of the promoting
modes to evaluate their trace. However their TD method is notgenerally applicable to
various transition problems and the method cannot handle nonlinear coupling problems (cf.
Eq. (6.16)). Penget al. [94, 95] also have a similar development to that of Islampourand
Miralinaghi [93].

6.1.3. Franck-Condon-Herzberg-Teller sum rules

In connection with the previous work [46] and the thermal FCFsection 4, we can decompose
the expressions forGK , i.e. Eq. (6.3) and Eq. (6.4), into terms which depend on variables
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belonging to the orthogonal subspacesX andY as well (see Sec. 2.4.2). This decomposition
allows us to derive sum rules involving specific modes, via partial differentiation.

We partitionGK into theX andY spaces, then

GK(Z;Λ; η, η′) =

NR(η, η′)I2N−NX
[(I+ ZWTZ)Y Y ,ZY Y b

+
Y ]

I2N−NX
[(I− ZWTZ)Y Y ,ZY Y b

−
Y ]

INX
[IXX + ZXXW̃+

T ;XXZXX ,ZXX b̃
+
X ]

INX
[IXX − ZXXW̃−

T ;XXZXX ,ZXX b̃
−
X ] , (6.27)

where

(b̃
±
X)t(ZY Y ;ΛY Y ; η, η

′) = (b±X)t ∓ (b±Y )
tZY Y ((I± ZWTZ)Y Y )

−1ZY YWT ;Y X ,

(6.28)

and the temperature dependent partitioned Doktorov matrixand vectorW̃±
T ;XX and r̃+T ;X

are listed in Eqs. (4.21) and (4.22) respectively.
We now perform the relevant partial derivatives on the partitioned form in Eq. (6.27) of

GK to derive the desired sum rules. The sum rule for one excited modek in the fixed
quantum number spaceX at the excitation numbern is given by,

GK
Y (IY Y ;Λ)

(Q̂i,1̂)
k;n =

√
~2
2ǫi
GK

Y (IY Y ;Λ)
[
(ri + ctiY dY )G(W̃±

T ; r̃
+
T ; k;n; 0,

1
2 ,

1
2 , 0) + c+ikG(W̃±

T ; r̃
+
T ; k;n; 1, 1,

1
2 , 1)

]
, (6.29)

for the relevant FC/HT contribution (6.17) andG is defined in Eq. (4.23), whereas

GK
Y (IY Y ;Λ)

(Q̂i,Q̂j)
k;n = ~2

2

√
1

ǫiǫj
GK

Y (IY Y ;Λ)
[
c+ikc

+
jkG(W̃±

T ; r̃
+
T ; k;n; 0,

3
2 ,

1
2 , 1) + c−ikc

−
jkG(W̃±

T ; r̃
+
T ; k;n; 0,

1
2 ,

3
2 , 1)

+ {(ri + ctiY dY )(rj + ctjY dY ) +
1
2c

t
iY ((I +WT )Y Y )

−1cjY + 1
2c

t
iY ((I−WT )Y Y )

−1cjY }
× G(W̃±

T ; r̃
+
T ; k;n; 0,

1
2 ,

1
2 , 0)

+ (ric
+
jk + rjc

+
ik + ctiY dY c

+
jk + ctjY dY c

+
ik)G(W̃±

T ; r̃
+
T ; k;n; 1, 1,

1
2 , 1)

]
,
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for the HT expression (6.18). Here

ctiY =
2∂(b+Y )

t

i∂ηQi

∣∣∣
η=0,η′=0

=
−2∂(b−Y )

t

∂ηQi

∣∣∣
η=0,η′=0

= [(I−W)(I +Λ)−
1
2 ]iY , (6.30)

c+ik =
2∂(b̃

+
X=k)

t

i∂ηQi

∣∣∣
η=0,η′=0

= [(I−W)(I +Λ)−
1
2 ]ik − [(I−W)(I +Λ)−

1
2 ]iY ((I +WT )Y Y )

−1WT ;Y k,
(6.31)

c−ik =
−2∂(b̃

−
X=k)

t

∂ηQi

∣∣∣
η=0,η′=0

= [(I−W)(I +Λ)−
1
2 ]ik + [(I−W)(I +Λ)−

1
2 ]iY ((I −WT )Y Y )

−1WT ;Y k,
(6.32)

dY = ((I+WT )Y Y )
−1rT ;Y , (6.33)

are used.
Usually only the initial states are thermally excited and the temperature dependent Dok-

torov quantities (Eqs. (4.9)) are given precisely for this case,

(I −W)(I +Λ)−
1
2 = 2


Q(I+ λ)−

1
2 R

Rt(I+ λ)−
1
2 P


 , (6.34)

in which the thermal factors are weighted only on the initialdegrees of freedom (DOF), and
WT of this case can be found in Eq. (4.17).

6.1.4. Spectral density functions

By using Eqs. (6.17) and (6.18) we can construct the electronic transition dipole moment
induced absorption intensity GF with FC, FC/HT and HT contributions (Eq. (2.32)),i.e.

ρFCHTW(Z;Λ) =

|〈0′|0〉|2

|µ

0
|2GK(Z;Λ) + 2

∑

i

µ
0
· µ′

i
GK(Z;Λ)(Q̂i,1̂) +

∑

i,j

µ′
i
· µ′

j
GK(Z;Λ)(Q̂i,Q̂j)


 ,

(6.35)

associated with the FCHT spectral profile of Eq. (2.32). Immediately we can exploit these
relations within the thermal TCF formalism as described in section 6.1.2, where we obtain
a simple analytic form for the exact thermal FC TCF. The Lorentzian line shaped,L(t),
absorption spectrum is then given as a one-dimensional Fourier transform (FT) withω0
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corresponding to the frequency at the0′ − 0 transition,

ρFCHTW,L(ω) = ~−1

∫ ∞

−∞
dt ρFCHTW(Z(t);Λ)L(t)ei(ω−ω0)t . (6.36)

It should be noted here that the current development of non-Condon TCF is not restricted
to linear HT expansion. The nonlinear non-Condon TCF can be evaluated by the complex
MHPs in Eq. (6.16). We can partition the non-Condon TCF, as well, into irreducible rep-
resentation contributions as in Eq. (4.46) for the possiblespeed-up of the calculation. Sum
rules can similarly be determined for the spectral profileρFCHTW as to FC developments
(Ref. [46] and Sec. 4.3) via the expressions derived in the previous section. The sum rule for
the absorption spectrum for some modes inY space and all other modes in the vibrational
ground state is given by6

ρFCHTW;Y (IY Y ;Λ) =|〈0′|0〉|2
(
|µ

0
|2GK

Y (IY ;Λ)

+ 2
∑

i

µ
0
· µ′

i
GK

Y (IY Y ;Λ)(Q̂i,1̂)

+
∑

i,j

µ′
i
· µ′

j
GK

Y (IY Y ;Λ)(Q̂i,Q̂j)
)
. (6.37)

For a single excited modek with excitation numbern in the fixed quantum number space
X, the corresponding sum rule for the absorption spectrum is then7

ρFCHTW;Y (IY Y ;Λ)k;n =|〈0′|0〉|2
(
|µ

0
|2GK

Y (IY ;Λ)k;n

+ 2
∑

i

µ
0
· µ′

i
GK

Y (IY Y ;Λ)
(Q̂i,1̂)
k;n

+
∑

i,j

µ′
i
· µ′

j
GK

Y (IY Y ;Λ)
(Q̂i,Q̂j)
k;n

)
. (6.38)

The total sum of intensity at finite temperature has been previously determined (seee.g.
Ref. [49]), where

ρtotal(T ) = |µ
0
|2 +

∞∑

v=0

pv(T )

N∑

k

~2

2ǫk
|µk ′|2(2vk + 1)

= |µ
0
|2 +

N∑

k

~2

2ǫk
|µk ′|2 coth(12βǫk)

= ρFCHTW(I,Λ(T )) . (6.39)

Here(I+Λ)−
1
2 is explicitly given at finite temperatureT for only the initial state is ther-

6cf. Eq. (2.128) for FCFs at zero Kelvin and Eq. (4.16) for FCFs at finite temperature.
7cf. Eq. (4.20) for FCFs at finite temperature.
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mally excited,

(I+Λ)−
1
2 (T ) = diag(e−β(T )ǫ1/2, . . . , e−β(T )ǫN /2, 1, . . . , 1) . (6.40)

At 0 Kelvin,

ρtotal(0) = |µ
0
|2 +

N∑

k

~2

2ǫk
|µk′|2

= ρFCHTW(I,Λ(T = 0)) , (6.41)

where(I+Λ)−
1
2 (T = 0) is given as,

(I+Λ)−
1
2 (T = 0) = diag(0, . . . , 0, 1, . . . , 1). (6.42)

One can transformρFCHTW(I,Λ(T )) at zero Kelvin and at finite temperature into finite
series sums in Eqs. (6.41) and (6.39), respectively, with the help of Doktorov matrix identi-
ties [117] in Eqs. (2.100) and (2.101). The total sum of intensity for nonlinear HT terms at
finite temperature and at zero Kelvin can be evaluated easilywith the MHP expression (6.16)
which can be computed recursively (Eq. (3.5)) or iteratively (Eq. (3.9)). The total sum of
intensity including 2-nd order HT expansion at zero Kelvin can be found in the literature
(seee.g. Ref. [51]) in a series of summation expression. To this end itis important to
mention that the non-Condon TCFs in arbitrary order (e.g. nonlinear HT terms) and the
corresponding total intensities can be evaluated simply bythe MHP expression (6.16). The
corresponding prescreening strategy can be developed by exploiting the sum rules for the
total intensities from the single vibronic level (SVL) GF derived in the next chapter 7. And
the methods (TD and TI) developed for linear HT expansion andhigher orders can also be
applied for example for electronic circular dichroism (ECD) spectra with only slight mod-
ification of the prefactors. The ECD cross section has an interference term between the
electronic transition dipole moment (TDM) and the magneticTDM (seee.g.Refs. [54,102]
for TI approach for linear HT terms.) which are supposed to beexpanded by normal coor-
dinates like HT expansion,i.e. the same non-Condon GF ((6.16)) can be applied directly
within the current formalism.

6.2. Integral prescreening

In this section, the integral prescreening strategies of thermally weighted FCFs of sec-
tion 4.3 is extended to the non-Condon terms. The basic strategies, however, are the same
as in the FC development. The integrated normalized FCHT profile is normalized to be 1
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for the total intensity8,

F tot
FCHT =

N
ρFCHTW(I;Λ(T ))

∑

v,v′∈S

[
|µ

0
|2
∣∣〈v′|v〉

∣∣2

+ 2
∑

i

µ
0
· µ′

i
〈v′|Q̂i|v〉〈v|v′〉

+
∑

i,j

µ′
i
· µ′

j
〈v′|Q̂i|v〉〈v|(Q̂j)|v′〉

]
e−vtBǫe−v

′t
B

′ǫ′ , (6.43)

whereS is the vibrational occupation number vector (ONV) subspace. When we evaluate
FCHT integrals with the ONV basis set belonging toS, then the normalized total intensity
satisfies the tolerance relation for the desired toleranceǫtolmax,

ǫtot = 1− F tot
FCHT ≤ ǫtolmax , (6.44)

holds for the errorǫtot in the normalized FCHT intensity.
As for the coarse grained FCF prescreening scheme, the mode and coupling tolerance

auxiliary parameterstm andtc are employed as well.

6.2.1. Vibrational mode coupling error

The minimum number of simultaneously excited modes are obtained for the thresholdtc
neglecting all integrals that involve a larger number of simultaneously excited modes via
Eq. (6.37). The maximum number of simultaneously excited modes (MSM)M is increased
fromM = 0 until it converges to the desired error for the coupling tolerancetc, i.e.

ǫc = 1−
M∑

m=0

F
(m)
FCHT;c = 1− F̃

(M)
FCHT;c < tc , (6.45)

whereF (m)
FCHT;c is the contribution involving preciselym simultaneously excited modes for

total intensity and̃F (M)
FCHT;c =

∑M
m=0 F

(m)
FCHT;c. Each increment can be determined from the

intermediate quantity,

B
(m)
FCHT =

∑

Y ∈C2N
m

ρY (IY Y ;Λ(T )) , (6.46)

whereC2N
m is the set from the spaceY obtained by choosingm modes for summation out

of possible2N , via the relation

F
(m)
FCHT;c = B

(m)
FCHT −

m∑

i=1

(
2N −m+ i

i

)
F

(m−i)
FCHT;c . (6.47)

8cf. Eq. (4.25) for thermal FCFs.
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Note that here we use

F
(0)
FCHT;c =

N
ρFCHTW(I;Λ(T ))

[
|µ

0
|2
∣∣〈0′|0〉

∣∣2

+ 2
∑

i

µ
0
· µ′

i
〈0′|Q̂i|0〉〈0|0′〉

+
∑

i,j

µ′
i
· µ′

j
〈0′|Q̂i|0〉〈0|Q̂j |0′〉

]
. (6.48)

6.2.2. Vibrational mode excitation error

Here we define a mode contributionF (k)
FCHT;m(n) associated to a fixed vibrational quantum

numberv′′k = n for modek while other modes are summed over,

F
(k)
FCHT;m(n) =

N
ρFCHTW(I;Λ(T ))

∑

v,v′|v′′k=n

[
|µ

0
|2
∣∣〈v′|v〉

∣∣2

+ 2
∑

i

µ
0
· µ′

i
〈v′|Q̂i|v〉〈v|v′〉

+
∑

i,j

µ′
i
· µ′

j
〈v′|Q̂i|v〉〈v|(Q̂j)|v′〉

]
e−vtBǫe−v

′t
B

′ǫ′ . (6.49)

The total mode contribution of modek can be given by Eq. (6.37) summing over the quan-
tum numbers of all other modes while leaving the modek at v′′k = 0, i.e. the partial con-

tributionF (k)
FCHT;m(0) is the contribution excluding excitations of modek. The finite series

summation for fixed quantum number Eq. (6.38) is exploited todetermine the contribution
F

(k)
FCHT;m(n). To obtain the maximum quantum number for a specific vibrational mode, we

determine a minimum quantum numberv
′′max
k satisfying

ǫ(k)m =
(
1− F

FCHT;v
′′max
k

)
< tm , (6.50)

where

F
FCHT;v

′′max
k

=

v
′′max
k∑

n=0

F
(k)
FCHT;m(n). (6.51)

According to the tolerance set (tm, tc) and irreducible representations of underlying sym-
metry group, then the error bounds (ǫmin andǫmax) are estimated [46], satisfying the error
bound condition Eq. (4.37).

6.3. Results and discussion

In this section the numerical tests of the HT developments are presented. As in chapter 4 on
the thermal FCF the TI method with prescreening and the HT TCFapproach are compared
herein. The test example is the absorption spectrum of benzene (1 1Ag → 1 1B2u) at zero
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Table 6.1.: Prescreening and error bound performance for benzene at0 K and at finite
temperatures (300 K and500 K). For a given tolerance set, the associated error tolerance
(ǫtolmax), prescreening stage rigorous error bounds (ǫmax and ǫmin), maximum value for
the maximum number of simultaneously excited modes of all irreducible representations
and maximum number of simultaneously excited modesM

(γ)
max of each symmetry block

(Mmax(M
(a1g)
max ;M

(a2g)
max ;M

(b2g)
max ;M

(e1g)
max ;M(e2g)

max ;M
(a2u)
max ;M

(b1u)
max ;M

(b2u)
max ;M

(e1u)
max ;M

(e2u)
max )),

and the error of the integrated Herzberg-Teller profile (ǫtot) are provided; only the symmetry
blocke2g has non-zero first derivatives of the electronic transitiondipole moment with respect
to the normal modes.

T Tol. Set(tm, tc) ǫtolmax ǫmax ǫtot ǫmin Mmax(M
(γ)
max)

0 K I(10−6, 10−5) 13.0 × 10−5 1.62 × 10−5 1.62 × 10−5 1.13× 10−5 3(2;1;2;2;3;1;1;2;2;3)
II(10−5, 10−4) 13.0 × 10−4 1.47 × 10−4 1.47 × 10−4 0.98× 10−4 3(2;0;2;2;3;1;1;2;2;2)

300 K I(10−6, 10−5) 16.0 × 10−5 2.67 × 10−5 2.64 × 10−5 1.23× 10−5 6(3;2;4;4;6;2;2;3;4;6)
II(10−5, 10−4) 16.0 × 10−4 3.26 × 10−4 3.22 × 10−4 2.17× 10−4 6(2;2;4;4;5;2;2;2;3;6)

500 K I(10−6, 10−5) 16.0 × 10−5 2.98 × 10−5 2.86 × 10−5 1.29× 10−5 8(3;2;4;4;8;2;2;4;6;8)
II(10−5, 10−4) 16.0 × 10−4 3.71 × 10−4 3.53 × 10−4 2.16× 10−4 8(3;2;4;4;7;2;2;3;4;8)

Kelvin and at finite temperatures. In section 6.3.1 the GF developments are verified by
comparing the results of the TI and TD methods. The various electronic structure results for
the same system are presented in section 6.3.2 such that the analytic gradient calculations
of the electronic TDM [52] are tested with the HT profile calculation of benzene.

6.3.1. (FC)HT generating function for benzene

Because the1 1Ag → 1 1B2u absorption spectrum of benzene has been exhaustively studied
experimentally and theoretically (seee.g. Ref. [36]), the benzene absorption spectrum is
suitable to test and verify methodological the developments for non-Condon effects. A
detailed discussion of the spectrum including its peak assignments, which can be found
elsewhere (seee.g. Refs. [36, 52]), is omitted in this discussion because the theoretical
development and the validation of it is the major purpose of the current work. Instead we
overlaid the experimental UV absorption spectrum of Fischer [2] to compare it with the
computed FC profile at300 K in Fig. 6.1(c). The overlay is made according to the energy
scale. The experimental spectrum height is rescaled to havethe same610 peak height of
the computed one. The ingredients (optimized molecular structures, harmonic force fields,
electronic TDMs and its first derivatives) for the FCHT vibronic structure calculation of
the absorption spectrum of benzene are taken from Ref. [36] (CASSCF/DZV). As shown
in Fig. 6.1(c) the main feature of the spectrum is the bandν6 (belonging toe2g the so-
called false origin) and a progression in the breathing modeν1 (belonging toa1g), i.e. 6101

n
0 .

The experimental wavenumbers [194] areν̃6 = 521 cm−1 and ν̃1 = 923 cm−1 , and the
theoretical harmonic wavenumbers of Bergeret al. [36] are ν̃6 = 575 cm−1 and ν̃1 =
963 cm−1 which are bigger than experimental ones due to the harmonic approximation.

We exploit the molecular symmetry of benzene (D6h) for the ground state (1 1Ag) and
the first excited state (1 1B2u) of benzene in the TI prescreening calculations and the corre-
sponding vibronic structure calculations. For the TCF approach, the molecular point group
symmetry is not exploited even though it is straightforwardto use molecular symmetry
(Eq. (4.46)).

In the evaluation of Eq. (6.36), corresponding to the FT of the Lorentzian weighted TCF,
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Figure 6.1.: Calculated HT profiles for the1 1Ag → 1 1B2u absorption spectrum of benzene
at (a)1000 K , (b) 500 K with tolerance set I, (c)300 K with tolerance set I and (d)0 K
with tolerance set I. Tolerance set descriptions are provided in Table 6.1. Each line in the stick
spectra [right axis,〈ρFCHTW(ν̃)〉] represents the averaged FCHT weighted density of states in
a wavenumber interval∆ν̃ = 1 cm−1. The〈ρFCHTW(ν̃)〉 of all intervals sums to(1−ǫtot)/∆ν̃
for a given temperature. The stick representations have additionally been convoluted with
Lorentzian line shapes with full width at half maximum (half-width) of 50 cm−1 [solid, left
axis, ρFCHTW,L(ν̃)] and compared to the results obtained from the TCF approach [dashed,
left axis,ρFCHTW,L(ν̃)]. Differences are, however, barely visible on the current scale. Here
ν̃0 corresponds to the wavenumber of the0′ − 0 transition for this UV absorption band. The
experimental UV absorption spectrum of Fischer [2] is additionally compared with the FC
profile at300 K in (c).
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6. One-photon absorption with Herzberg-Teller effects

the FFTW [178] library (version 3.1.2) for the fast Fourier transform (FFT) is used with a
grid size of216, a time increment of∆t = 0.51 fs, and a time interval [-16.7 ps, 16.7 ps].
The time reversal symmetry relation of the TCF,ρFCHTW(Z(−t); Γ̃) = ρFCHTW(Z(t); Γ̃)∗

is also exploited. The real part of the FT is taken for the FCHTprofile. In Fig. 6.1 the
frequency and the wavenumber representation relationρFCHTW,L(ν̃) = hc0ρFCHTW,L(ω)
is exploited.

All calculations have been performed by the development version of hotFCHT [36, 46,
129–131] in which the method developed in current HT work wasimplemented. It takes
about 40 hours for the TI calculation at 500 K with prescreening tolerance set I (Table 6.1)
and 12 minutes for the corresponding TCF calculation on a 64 bit single processor machine.
For the TI calculation all possible vibrational quantum number combinations (about 544
million FCHT integrals) are generated within the prescreening bound conditions and the
FC and HT integrals9 are evaluated with recurrence relations of Eqs. (2.103) and(2.104).
Those codes are not optimized and further efficient improvements are certainly possible.

In Table 6.1 the prescreening bound condition with various tolerance sets (tm, tc) at 0 K
and at finite temperatures (300 K and 500 K) are summarized. According to the prescreen-
ing conditions the HT profiles are computed and the error of the integrated normalized HT
profiles (ǫtot) are reported in the table. The prescreening calculations of all tolerance sets
satisfy the error bound condition (Eq. (4.37)). In each tolerance set calculations at different
temperatures show the trend thatǫtots are closer to their upper boundsǫmaxs in this benzene
example. Only the symmetry blocke2g of benzene contains the non-zero first derivative
of the electronic TDM, so that the prescreening conditions (maximum excitation quantum
number of modes (MQM) and MSM) of other symmetry blocks are identical to those of
the FC case [46,129]. For this absorption the electronic TDMat the equilibrium molecular
structure of the ground state (µ

0
= 0) vanishes, so that onlyρHT (Eq. (2.31)) contributes

to the1 1Ag → 1 1B2u absorption profile of benzene. The MSMM (γ)
max of each symmetry

block is presented in the table. The bold font is assigned forthe numbers of the symmetry
block e2g to distinguish them from the numbers belonging to the other symmetry blocks.

As the tolerance condition gets tighter and temperature increases, theM (γ)
maxs of each sym-

metry block become bigger and the corresponding absorptionprofile computations become
more expensive. In Fig. 6.1 one can find the stick spectra〈ρFCHTW(ν̃)〉, representing the
averaged FCHT weighted density of states in a wavenumber interval∆ν̃ = 1 cm−1, with
the tolerance set I in Table 6.1 at raising temperature conditions from 0 K to 500 K. The
stick representations have additionally been convoluted with Lorentzian line shapes with
full width at half maximum (FWHM) of50 cm−1, ρFCHTW,L(ν̃) in solid line, and com-
pared to the results obtained from the TCF approachρFCHTW,L(ν̃) in dashed line. Differ-
ences (about 0.001 %) are, however, barely visible on the current scale. The agreement of
the TI and TD approaches (the two independent approaches) and the error bound condition
(Eq. (4.37)) show the validity of our developments and the total sum rules in closed forms
(Eqs. (6.39) and (6.41)). The UV absorption band at 1000 K obtained with the TCF method
is presented additionally. It would take too much time to finish the TI calculation for the
featureless blurred curve (Fig. 6.1a).

As shown in Fig. 6.2, only up to 5 simultaneously excited modes (out of the final state
alone) are sufficient at0 K to reach a coupling error below 0.1%. At higher temperatures,

9With the second quantized expression of position operator.
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Figure 6.2.: Dependence of the coupling errorǫc = 1− F̃
(M)
FCHT;c on the largest number of si-

multaneously excited modesM for the HT contribution to the1 1Ag → 1 1B2u UV absorption
spectrum of benzene. The coupling error is shown on a logarithmic scale for temperatures of
0 K, 300 K, 500 K and1000 K. Lines are drawn only to guide the eye.

however, up to 9, 15 and 26 simultaneously excited modes out of a total 60 modes, com-
posed of 30 initial and 30 final state modes, are necessary to reach a similar threshold for
ǫc at 300 K, 500 K and1000 K, respectively. In Fig. 6.2M is different fromMmax in
Table 6.1, these are identical only whenC1 symmetry is used andtm = 10−12 is employed
the calculation. In contrast to the FC coupling error diagrams (Figs. 4.2 and 4.4) of the
previous thermal prescreening section, the data points arenot smoothly linked to each other
(the curves drawn to guide the eye are not smooth) at low temperatures (0 K and 300 K).
When we look close at the HT inducing symmetry blocke2g, Fig. 6.3, it becomes more clear
that the data points are not smoothly linked to each other at all temperatures. The detailed
prescreening data are available in appendix C.

6.3.2. (FC)HT profile of benzene for various electronic stru cture
methods

The FCHT GF method is used with various electronic structurecalculations to test the
recently developed analytic gradient method for electronic TDM exploiting geometric gra-
dients of a generic linear response function by Corianiet al. [52]. Hartree-Fock (HF) and
density functional theory (DFT) methods are used to computethe gradients of the electronic
TDM for the FC-forbidden one-photon absorption process of benzene at zero Kelvin. The
quality of the computed first derivatives of the electronic TDM with respect to normal co-
ordinates of the initial state was tested with the TCF development in this chapter and the
results were presented in Ref. [52]. The computed one-photon absorption cross sections
(in pm2) with various electronic structure methods are displayed in Fig. 6.4 for HF/TZVP,
camB3LYP/TZVP and B3LYP/TZVP. The plotted spectra are generated with the TD ap-
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Figure 6.3.: Dependence of the coupling errorǫc = 1− F̃
(M)
FCHT;c on the largest number of si-

multaneously excited modesM for the HT contribution to the1 1Ag → 1 1B2u UV absorption
spectrum of benzene symmetric blocke2g. The coupling error is shown on a logarithmic scale
for temperatures of0 K, 300 K, 500 K and1000 K. Lines are drawn only to guide the eye.

proach implemented in hotFCHT. In the evaluation of the FT ofthe Lorentzian weighted
TCF (see Eq. (6.36)) the FFTW library (version 3.1.2) is usedwith a grid size of215, a
time increment of∆t = 1.0 fs, and a time interval [-16.384 ps, 16.384 ps]. For the detailed
discussion of the quality of the electronic structure methods and peak assignments one is
referred to the work of Corianiet al. [52]10. Herein it is just mentioned that the HT de-
velopment of this thesis has been tested successfully. The analytic gradient method for HT
terms is implemented in the linear-scaling development version of the electronic structure
program DALTON [195–197] and nonlinear HT terms can be obtained by finite differences
of the analytic first derivatives. The joint development in vibronic and electronic structure
impacts on theoretical vibronic spectroscopy by pursuing linear and nonlinear HT terms
(see Eq. (2.24)).

6.4. Chapter summary and conclusion

The current work is a complementary development to the previous FC prescreening [46,129]
and TCF [129] methods including the linear HT and nonlinear HT terms. It has potential
to be extended to vibronic couplings and anharmonic oscillators. The present development
underlines that the FC/HT contribution and vibrational mode mixing HT contributions are
not negligible even though the contributions do not appear in the total sum rules (Eqs. (6.39)
and (6.41)). One may argue that the1 1Ag → 1 1B2u absorption spectrum of benzene is
not a good example to verify our FC/HT contribution formalism, as the electronic transition

10J. Huh has contributed to this work only by computing the HT intensity profile of benzene with the FCHT
TCF developed by himself.
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6. One-photon absorption with Herzberg-Teller effects

Figure 6.4.: Calculated absorption cross-sectionsσ(ν̃) = 4π2

3

(
α0

e20

)
ν̃ρFCHTW,L(ν̃) in pm2

at zero Kelvin. The spectra with HF/TZVP, camB3LYP/TZVP andB3LYP/TZVP electronic
structure calculations are plotted from bottom to top respectively. The spectra are generated
by the time-dependent picture of the HT generating function. The cross section of the B3LYP
and camB3LYP hybrid density functionals are shifted by1000 pm2 and500 pm2 respectively
for graphical purpose. A Lorentzian lineshape function FWHM of 50 cm−1 is convoluted.
ν̃0−0 = 38086cm−1 was used to weight the HT spectral density function for the wavenumber-
dependent absorption cross section. The figure is reproduced with permission fromJ. Chem.
Theory Comput.6, 1028. Copyright 2010 American Chemical Society.”
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6. One-photon absorption with Herzberg-Teller effects

dipole moment at the equilibrium molecular structure of theground state (µ
0
) is zero. But

it should be noticed that our HT GF (Eq. (6.18)) is derived from the FC/HT GF (Eq. (6.17))
and the TCF method and TI approach with prescreening strategy agree well. Together with
the successful error bound conditions the validity of the formalism has been tested suc-
cessfully. The vibrational mode interferences in the HT contribution, which do not appear
explicitly in the total sum rules that are separable in the vibrational modes (Eqs. (6.39)
and (6.41)), play an important role in the prescreening sum rules (Eqs. (6.37) and (6.38))
and the TCF (Eq. (6.36)). Especially in the evaluation of theTCF, if the interplay of the
vibrational mode contributions are ignored, the proper spectrum cannot be obtained. We
have also tested an artificial case in benzeneµ

0
6= 0 for the total intensity sum rule (see

Sec. 6.1.4) to verify our HT GF development. For a detailed discussion of the FC/HT inter-
ference term to the absorption band in TI approach, we refer to the recent work of Santoro
et al. [49] and earlier studies [108, 198, 199]. The method developed for the non-Condon
effects will in future be applied to the nonlinear HT and weakFC transition with various
electronic structure calculations. For example the experimental fluorescence spectra of jet-
cooled benzene [200] shows lines which cannot be explained with the linear HT theory, thus
one should go beyond the linear HT expansion of the electronic TDM for this example. The
HT GF, herein, is derived explicitly but the non-Condon GF can also be expressed as MHPs
with additional dimension for position and momentum operators. Then the HT GF can be
exploited for finer-grained integral prescreening and nonlinear (non-Condon) TCFs.

In this chapter, the methods for inclusion of non-Condon effects were explained, dis-
cussed and tested for real systems. We extended the FC thermal GF to the non-Condon
effects via the CS phase displacement operators, which allows to use a similar mathemati-
cal frameworks as the FC prescreening strategy and FC thermal TCF in chapter 4. The link
between TI and TD approach has been shown via the TD trace formalism in section 6.1.2.
The GF methods developed so far in this thesis (Chs.3-6) are closely related and the non-
Condon GF is the most general GF including the FC thermal GFs.This method is further
developed for other purposes, anharmonicity, resonance Raman (rR) and SVL transition, in
the following chapter.
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7. Single vibronic levels

In previous chapters, we have developed generating functions (GFs) for the one-photon
absorption (OPA) process. This technique takes the thermal(Chs. 4 and 5) and the non-
Condon (Ch. 6) effects into account. By using the GFs, we havedevised the Franck-
Condon (FC) and non-Condon integral prescreening strategies for the time-independent (TI)
approach. Similarly the time-correlation functions (TCFs) are developed for the time-
dependent (TD) approach.

So far we have assumed the initial states to be in a Boltzmann-distributed ensemble of
vibrational states at finite temperature or a vibrationlessstate at zero Kelvin for the OPA
process. Those kind of initial vibrational states for GFs can be introduced by simple GF
parameter assignments1. The Boltzmann weighted coherent states (CSs) (Eq. (2.92))are
used in the case of a thermally averaged ensemble of vibrational states. However, for optical
processes such as the single vibronic level (SVL) fluorescence (seee.g. Refs. [9, 11, 34])
and the resonance Raman (rR) scattering we have to consider specific vibronic levels2.

In SVL fluorescence, a vibronic level which is not necessarily the vibrational ground
state3 in the excited electronic state is populated by tuning the corresponding laser wave-
length [9, 11] (see Fig. 2.1). The vibronic state on the excited electronic potential energy
surface (PES) is called the SVL. The spectral density function (SDF) of SVL fluorescence
is identical to the OPA one in Eq. (2.1) but with the reversed initial and final electronic
states and a given fixed initial vibronic state (SVL), which is not included in the summation
over vibronic levels. The fluorescence from a vibrationallyexcited vibronic state shows
often vibrationally well-resolved spectra, unlike the normal absorption or emission spectra
at finite temperature [9,11]. The initial and the final vibronic levels belonging to the ground
electronic states for the rR amplitude (2.5) appear in rR scattering process (see Sec. 2.1).

We have already used a mathematical set up in the coarse-grained integral prescreen-
ing steps [46] (Chs. 4 and 6) that has a fixed quantum number forone vibrational mode.
This was, however, not tailored for generating arbitrary SVLs. Therein we only consid-
ered a one-dimensional fixed quantum number spaceX (see the integral space partitioning
section 2.4.2) which corresponds to the SVLs in terms of fixedquantum number of the
vibrational mode,i.e. the single vibrational mode excitation (e.g. |v, 0, · · · , 0〉). In other
words, we can generate the one-dimensional fixed quantum number spaceX (Eq. (4.20) and
Sec. 6.1.3) in the prescreening steps (see Sec. 4.2.2) but wehave not used the spaceX for
the SVL TCF in the TD approach, although by virtue of the developments in reported the
previous chapters. For the coarse-grained integral prescreening of the SVL transition, how-
ever, we have to consider at least two-dimensionalX spaces. Even for the usual absorption
and emission processes, if we want to have the fine-grained integral prescreening strategy,

1e.g.z = 0 for the vibrationl ground state.
2These vibronic levels are not summed-over in the Fermi’s golden rule (FGR) expression (seee.g. Eq. (2.1)

for OPA), i.e. those are expressed in the fixed quantum levels during the optical processes.
3e.g. |v, 0, · · · , 0〉
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7. Single vibronic levels

we need to consider multi-dimensionalX spaces. When non-Condon effects should be
considered, the problem becomes even more difficult. The purpose of this chapter is thus
to modify the GFs developed in the previous chapters. The possible modifications could be
applicable to the rR, SVL, fine-grained integral prescreening and anharmonic FC transitions
with the SVLs either in the TI integral prescreening or TD TCFapproaches.

There were efforts (seee.g.Refs. [34,65,72,73]) to generate SVLs particularly suitedfor
the rR excitation profile computation. But most of the applications are restricted to the sin-
gle vibrational mode excited states4, Condon approximation and limited Duschinsky effects.
We develop herein an arbitrary SVL transition GFs with the help of multi-variate Hermite
polynomials (MHPs) including the thermal and non-Condon effects. This development is
similar to the previous chapter developments in terms of thenon-Condon effects (see Chs. 3
and 6). The TCF for the thermally averaged rR intensity including arbitrary order of non-
Condon effects is developed in the form of the overlap integral of two rR amplitude GFs in
different time domains. The novelty of our GF approach is that it can provide both TI and
TD methods, including arbitrary order of non-Condon effects and arbitrary SVLs. We can
evaluate TCFs or sum rules for arbitrary SVLs and non-Condonoperators with the help of
MHPs.

This chapter is organized as follows: In the methodology section 7.1, we develop a GF
having fixed quantum number occupation number vector (ONV) spaces (see Sec. 2.4.2 for
the integral space partitioning). The analytic form of the GF is derived via the coherent-
Fock (cF) state (2.81) which is a mixture of harmonic eigenstates and CSs. The development
is formulated for the rR profile GFs in section 7.2, SVL transitions in section 7.3 and anhar-
monic FC/non-Condon transitions in section 7.4. Those sections contain only methods, but
numerical tests have not been made yet. The chapter is concluded in section 7.5.

7.1. Methodology

In the previous chapters 4 and 6 we had at most a one-dimensional fixed quantum number
spaceX for the coarse-grained integral prescreening strategies [46] (see Sec. 2.4.2). One
can in principle extend the method in sections 4.2.2 and 6.1.3, which separates the fixed
quantum number spaceX from the Gaussian integral of the GFs, to be applicable also to
more than one-dimensionalX spaces. But this method is not computationally feasible for
multi-dimensionalX spaces and non-Condon operators, because the Taylor expansion of
multi-dimensional Gaussian function and the subsequent collection of terms in the same
orders are not easy. Instead, in this section, we introduce the arbitrary dimensions inX
space by exploiting the MHP technique (Ch. 3) to generate thearbitrary SVLs. The GF that
we want to have for an arbitrary number of fixed quantum numbers both in the initial and
the final vibronic states would be in the following occupation representation5 with thermally
weightedY space (KY Y = K(ΛY Y ; ξY ), see Eq. (4.2)), namely

4e.g. |v, 0 · · · , 0〉.
5cf. Eq. (6.1) for emptyX space GF.

112



7. Single vibronic levels

GKY Y
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wherevBX
andvKX

areNX-dimensional ONVs andvB′
X

andvK′
X

areN ′
X-dimensional

ONVs 6. NY Y = 1/Tr(−β
Y
· ĥY ) is a normalizing factor corresponding to the thermal

integral kernelKY Y (see Sec. 4.1). The collective ONVs are additionally defined,

ṽKB =

(
vKX
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′

X

)
, ṽBK =

(
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′
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)
, (7.2)

and the block-diagonal GF parameter matrix is also defined as

Z̃cF = bldiag(zK, z
′
B, zB, z

′
K), (7.3)

with the block matriceszK = diag(zK), z′B = diag(zB
′), zB = diag(zB) and z′K =

diag(zK
′) corresponding to the ONVsvKX

, vB′
X

, vBX
andvK′

X
, respectively. In the OPA

SDF (2.1) we havevBX
= vKX

andvB′
X

= vK
′
X

, but for the generality of the develop-
ment and for the rR GFs we make these vibrational ONVs independent of each other. In
section 7.3 the constraints are recovered for the SVL transition to the GF (7.1).

We express the functional form of the GF (7.1) by exploiting the cF state (2.81) , which
can be generated by taking partial derivatives of the CSs,i.e.
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]õk

(
∂̂
l̃,m̃,ñ,õ
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and the operators (̂f and ĝ) are identified aŝf =
∏m′,l′,l,m
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and ĝ =
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. In

Eq. (7.4) we have inserted the CS displacement operators (D̂NC, Eq. (3.15)) to produce
non-Condon operators with the corresponding partial derivatives. The collective vectors

are used additionallỹl
t
= (lt, l

′t), m̃t = (mt,m
′t), ñt = (nt, n

′t) andõt = (ot, o
′t). The

integral form of the CS-based GF,GKY Y
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; η, η′) is, then, given
as8
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(7.6)

Then the resulting expression after integration is in a separated form with the FC contribu-
tion, the non-Condon part9 and the SVL and non-Condon contribution, of the vibrational
modes belonging to the spaceY , Y andX, respectively,

GKY Y
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with the collective vectors and matrices,
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b̃cF(ZY Y ;ΛY Y ; η, η
′) =

(
b̃
+
X − ib̃

−
X

b̃
+
X + ib̃

−
X

)
, (7.10)

where the components of̃WcF andb̃cF are defined in Eqs. (4.21) and (6.28) respectively.
We can evaluate the cF GF with Eq. (7.4). When we can rearrangeEq. (7.7) to be ex-

pressed in terms of MHPs, it will be easy to automatize the calculation. The arrangement
is straightforward but lengthy. Herein we present thus onlyexplicitly the FC cF GF, in a
simple form, as a special case ignoring the non-Condon operators, i.e.

8cf. Eq. (6.3)
9J [A, b;x] = exp(− 1

2
xtAx+ btx).
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and the vector component is defined in Eq. (4.22). Eq. (7.11) can be rearranged to give the
FC cF GF in MHPs,i.e.
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∂̂
vBX

,vKX
αB

∗
X
,αKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X

∂̂
vB

′
X
,vK

′
X

γK
′

X
,γB

′∗
X




GKY Y
cF (Z̃cF,ZY Y ;ΛY Y ; ξ̃BK

, ξ̃
KB

)
∣∣∣
ξ̃
KB

,ξ̃
BK

=0

=


∏̃

−1
2 ,−

1
2

vBX
,vKX




∏̃

−1
2 ,−

1
2

vB′
X
,vK′

X




GKY Y (ZY Y ;ΛY Y )HṽKB,ṽBK
(
(
Z̃cFW̃cFZ̃cF

)−1
r̃cF;

(
Z̃cFW̃cFZ̃cF

)−1
), (7.13)

which can be evaluated recursively (Eq. (3.5)) or iteratively (Eq. (3.9)). We can introduce
an arbitrary number of fixed quantum numbers in the GFs as in Eq. (7.1) exploiting the
equations (7.7) and (7.11) for non-Condon and Condon processes respectively in combina-
tion with the partial derivatives Eq. (7.4). With the cF GF (7.7) we try to make GFs for the
rR (Sec. 7.2), the SVL transition (Sec. 7.3) and the anharmonic OPA transition (Sec. 7.4) in
the following sections.

7.2. Application to resonance Raman scattering

We can express the rR amplitude TCF (χα) of Eq. (2.18) in harmonic approximation with
the cF GF Eq. (7.7). In the TCF for the rR excitation profile we have no fixed quantum
numbers in the excited electronic state and all vibrationalquantum numbers in the ground
electronic state are fixed,i.e. (NX = N,NY = 0) and(N ′

X = 0, N ′
Y = N)10. We can

express the TCF the scalar products of transition dipole moment (TDM) and polarization
vectors (µS(Q) andµL(Q) in Eq. (2.4)) as like the Herzberg-Teller (HT) linear approxima-
tion (Eq. (2.24)),i.e.

10such thatX represents ground electronic states andY represents excited electronic states in this section.
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χα(τ ; vi, vf ) ≃ |〈0′|0〉|2
(
(µS0)

†µL0G
KY Y
cF (ĨcF, z

′(τ);ΛY Y ; ṽKB, ṽBK)

+
∑

i

(µ
′S
i )†µL0G

KY Y
cF (ĨcF, z

′(τ);ΛY Y ; ṽKB, ṽBK)
(Q̂i,1̂)

+
∑

i

(µS0)
†µ

′L
i G

KY Y
cF (ĨcF, z

′(τ);ΛY Y ; ṽKB, ṽBK)
(1̂,Q̂i)

+
∑

i,j

(µ
′S
i )†µ

′L
j G

KY Y
cF (ĨcF, z

′(τ);ΛY Y ; ṽKB, ṽBK)
(Q̂i,Q̂j)

)
,

(7.14)

with proper set up for GF parametersZY Y (τ) = z′(τ) as in Eq. (4.43) for the TCF of the
vibronic absorption profiles in Eq. (4.41) andĨcF = bldiag(IXX , IXX). There were other
GF approaches (seee.g. Refs. [72] and [73]) including the Duschinsky effects proposed
that are similar to the current developments, but the approaches have limitations for the
dimension ofX and for including thermal effects in a closed formula withinthe Condon
approximation. The current approach can handle an arbitrary SVLs and non-Condon (linear
and nonlinear HT terms in rR scattering cross section) effects. We can obtain a closed form,
with the help of the CS formalism, for the rR intensity TCF (2.23) , namely the 3-point-TCF,
i.e.

GK
rR(Z̃cF(t),ZY Y (τ),ZY Y (τ

′);ΛY Y , Λ̃cF; η1, η1
′, η2, η2

′)

= π−2N

∫
d2αKd

2αBK(Λ̃cF; ξ̃cF) exp(−|ξ̃
cF
|2)

GKY Y
cF (Z̃cF(t),ZY Y (τ);ΛY Y ; ξ̃KB

, ξ̃
BK

; η1, η1
′)

GKY Y
cF (Z̃∗

cF(t),ZY Y (τ
′);ΛY Y ; ξ̃KB

, ξ̃
BK

; η2, η2
′)∗, (7.15)

which is in the form of an overlap between two rR amplitude GFs, in different time domains

(τ andτ ′), where the thermal parameter matrixΛ̃cF = bldiag(ΛXX ,ΛXX)
1
2 is used. It

is worth to note here that we suggest a closed integral form ofthe rR cross section in har-
monic approximation including Duschinsky and thermal effects in a functional analogy to
the Förster-type energy transfer processes (seee.g.Ref. [8]) which is in a form of convolu-
tion between the absorption and the emission spectra. We cantransform the integration into
a 2N -dimensional Gaussian integral (I2N , Eq. (2.122)) which is not like equation (2.121)
a product of two separated Gaussian integrals, because the integral variables can not be
separated into the real and imaginary parts, and we obtain the Gaussian integral
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GK
rR(Z̃cF(t),ZY Y (τ),ZY Y (τ

′);ΛY Y , Λ̃cF; η1, η1
′, η2, η2

′)

= GKY Y (ZY Y (τ);ΛY Y )G
KY Y (ZY Y (τ

′);ΛY Y )
∗

J [W̃NCF;Y Y (ZY Y (τ);ΛY Y ), r̃NCF;Y (ZY Y (τ);ΛY Y ); η̃1NCF;Y
]

J [W̃NCF;Y Y (ZY Y (τ
′);ΛY Y ), r̃NCF;Y (ZY Y (τ

′);ΛY Y ); η̃2NCF;Y
]∗

NcFI2N [I− Z̃rR(t)W̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF)Z̃rR(t)

, 12 Z̃rR(t)b̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y ,ΛcF)], (7.16)

where the4N -dimensional square matrix and vector are defined as

W̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF) =

1

2

((
W̃cF;T (ZY Y (τ);ΛY Y ) + W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)
i
(
W̃cF;T (ZY Y (τ);ΛY Y ) − W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)

i
(
W̃cF;T (ZY Y (τ);ΛY Y ) − W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)
−
(
W̃cF;T (ZY Y (τ);ΛY Y ) + W̃cF;T (ZY Y (τ ′);ΛY Y )∗

)
)
,

(7.17)

b̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF; η1, η1

′, η2, η2
′)

=

(
b̃cF;T (ZY Y (τ);ΛY Y ; η1, η1

′) + b̃cF;T (ZY Y (τ
′);ΛY Y ; η2, η2

′)∗

i
(
b̃cF;T (ZY Y (τ);ΛY Y ; η1, η1

′)− b̃cF;T (ZY Y (τ
′);ΛY Y ; η2, η2

′)∗
)
)
, (7.18)

and

Z̃rR = bldiag(Z̃cF, Z̃cF)
1
2 . (7.19)

The thermally weighted quantities used are

W̃cF;T = (I +ΛcF)
−1
2W̃cF(I +ΛcF)

−1
2 , (7.20)

b̃cF;T = (I+ΛcF)
−1
2 b̃cF. (7.21)

NcF = 1/Tr(exp(−β · ĥ)) is a normalizing factor for the thermal integral kernel, with the

N -dimensional vibrational Hamiltonian (̂H =
∑N

i ĥi).
In Condon approximation, the expression (Eq. (7.1)) is simplified as

GK
rR(Z̃cF(t),ZY Y (τ),ZY Y (τ

′);ΛY Y , Λ̃cF)

= GKY Y (ZY Y (τ);ΛY Y )G
KY Y (ZY Y (τ

′);ΛY Y )
∗

NcFI2N [I− Z̃rR(t)W̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF)Z̃rR(t)

, 12 Z̃rR(t)r̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y ,ΛcF)], (7.22)
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where

b̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF; η1, η1

′, η2, η2
′)
∣∣∣
η1,η1′,η2,η2′=0

= r̃rR(ZY Y (τ),ZY Y (τ
′);ΛY Y , Λ̃cF)

=

(
r̃cF;T (ZY Y (τ);ΛY Y ) + r̃cF;T (ZY Y (τ

′);ΛY Y )

i
(
r̃cF;T (ZY Y (τ);ΛY Y )− r̃cF;T (ZY Y (τ

′);ΛY Y )
)
)
. (7.23)

GK
rR(t, τ, τ

′)11 is a 3-point-TCF in an analytic closed form for rR intensity including
Duschinsky, thermal and non-Condon effects (Albrecht B andC terms [60]). The evalua-
tion is straightforward with the help of MHP technique (Sec.3) for non-Condon operators.
GK

rR provides not only the TCFs but also the sum rule for the Raman intensity [69] by
settingZrR(t) to the identity matrix which can lead to possible prescreening strategies for
the rR intensity profile. In the rR calculation the peaks are identified by computing the
individual scattering amplitude from the amplitude TCF in Eq. (7.14). If we know the indi-
vidual contributions from the sum rule, we can avoid the efforts to compute many scattering
amplitudes that have negligible impact on the profile.

The explicit expressions for the rR amplitude and intensityin Condon approximation are
given in appendix D where only the vibrational modes in initial state are allowed to be
thermally excited at finite temperature.

7.3. Application to single vibronic level transition

It is straightforward to derive the GF of the SVL transition from the cF GF in Eq. (7.4).
Herein we introduce constraintsvBX

= vKX
and vB′

X
= vK

′
X

which will reduce the
dimension of the corresponding MHPs to half,i.e.

GKY Y
SVL (ZXX ,ZY Y ;ΛY Y ; ξX ; η, η′) = GKY Y (ZY Y ;ΛY Y )

J [W̃NCF;Y Y (ZY Y ;ΛY Y ), r̃NCF;Y ; η̃NCF;Y
]

J [2ZXXW̃+
T ;XX(ZY Y ;ΛY Y )ZXX , 2ZXX (b̃

+
X)t(ZY Y ;ΛY Y ; η, η

′); ξ
X
], (7.24)

where we have assumed that the generating variables are realnumbers without loosing
generality,i.e.

αKX
= αB

∗
X

= αX ∈ R, (7.25)

γB
′∗
X

= γK
′
X

= γ′
X

∈ R. (7.26)

In the SVL transition the ONV of the initial vibronic state isin the fixed quantum number
spaceX, but also some of the final vibrational modes have fixed quantum numbers for
possible prescreening applications,i.e. NX = N , NY = 0, 0 ≤ N ′

X ≤ N andN ′
Y =

N −N ′
X . In Condon approximation the expression is further simplified as

11Eqs. (7.16) and (7.22) for non-Condon and Condon approximations respectively.
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GKY Y
SVL (ZXX ,ZY Y ;ΛY Y ; ξX) = GKY Y (ZY Y ;ΛY Y )

J [2ZXXW̃+
T ;XX(ZY Y ;ΛY Y )ZXX , 2ZXX (r̃+T ;X)t(ZY Y ;ΛY Y ); ξX ]. (7.27)

We can also have a similar MHP expression in Eq. (7.13) for theFC SVL GF

GKY Y
SVL (ZXX ,ZY Y ;ΛY Y ; ṽX)

=


∏̃

−1
2

ṽX


GKY Y (ZY Y ;ΛY Y )

HṽX

(
(2ZXXW̃+

T ;XXZXX)−1r̃+T ;X ; (2ZXXW̃+
T ;XXZXX)−1

)
. (7.28)

We can obtain the SVL transition TCF from the GF (7.28) with the TD GF parameter
ZY Y = z′(t) in Eq. (4.43). The resulting expression is not given in a closed form, but we
can evaluate the TCF with the MHPs caring complex numbers from the TD GF parameters.
Additionally we can also apply the SVL transition GF to fine-grained integral prescreening
strategies directly with the integral space partitioned expressions (7.24) and (7.27) for multi-
dimensionalX spaces.

The explicit expression for the SVL transition in Condon approximation is given in ap-
pendix D, where only the vibrational modes in initial state are allowed to be thermally
excited at finite temperature.

7.4. Application to anharmonic transition

FC or non-FC transition moments computed on the approximated harmonic PESs are not
sufficient to describe transitions involving for example torsional motions and large ampli-
tude motions (seee.g. Ref. [150]). In this case we need to start from the full rovibrational
Hamiltonian such as the Watson [201] or Meyer-Günthard [202] molecular Hamiltonian,
which include momentum and position operator coupling terms as well as the anharmonic
potential energy terms.

There are many approaches for propagating wavepackets on general potential energy sur-
faces in time domain to compute vibronic spectra, for instance the Gaussian wavepacket ap-
proach [137,203], the multi-configurational time dependent Hartree (MCTDH) method [204,
205] and the coupled CS method [206]. In these approaches, the initial wavepacket evolves
on the final PES which provides the time correlation functions. The corresponding Fourier
transform (FT) is the vibrational spectrum in frequency domain (see Chs. 4 and 6 for our har-
monic developments). However, one of the major demands for computational approaches
is the peak assignment and (exact) excitation energy levels, which can not be given directly
by the TD approaches.

In TI approaches one has to obtain the vibrational anharmonic eigenfunctions from the
molecular Hamiltonian by perturbation methods (seee.g. Refs. [36, 123, 207–211]) or by
diagonalizing it in a given finite basis set for instance harmonic oscillators and (complex)
Gaussians. The anharmonic transition amplitudes can then be calculated by perturbation
methods and basis set expansion approaches, respectively.
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In all approaches the TI method for FC transitions between anharmonic vibrational states
is computationally expensive because of the multitude of overlap integrals to be evaluated.
The situation is even worse, if we need to consider the Duschinsky mode mixing effects
(Sec. 2.2). There were some approaches proposed (seee.g. Refs.(seee.g. Refs. [22, 106,
183, 212–214])) to avoid the mode mixing problem by expanding the wavefunctions with
a one-center basis set. However, the one-center basis set expansion of the anharmonic
vibrational wavefunctions usually requires a larger number of basis functions than the two-
reference point expansion approach inducing the Duschinsky rotation between the two basis
sets.

The vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI),
which are analogous to the Hartree-Fock and configuration interaction (CI) methods, re-
spectively, in the electronic structure theory, are widelyused to describe the anharmonic
vibrational wavefunctions with harmonic oscillator eigenfunctions [215–218]. VSCF and
VCI wavefunctions, expanded via the harmonic oscillator eigenfunctions, were used to
compute the anharmonic Franck-Condon factors (FCFs) of at most three atomic systems [53,
106, 218] . In the work of Huhet al. [53] we computed the potodetachment-photoelectron
spectra ofHS−2 andDS−2 to their neutral ground and first excited states by computingthe
FC profiles based on VCI wavefunctions from the Watson molecular Hamiltonian [201]
expanded in terms of displaced Gaussians [219]. In this method we only need to compute
many Gaussian overlap integrals (of the type〈0′|0〉, Eq. (2.102)) including the Duschin-
sky rotations. One trick exploited was to prescreen the overlap integrals according to the
displacements of the two displaced Gaussians, and then to store all important Gaussian
overlap integrals at least for the three atomic systems to speed up the calculations. Luis and
coworkers [220–223] have set up linear equations, for anharmonic FC integrals and matrix
elements of the potential energy difference operator, which lower the computational cost by
introducing the Duschinsky relation in the potential energy operator not in the wavefunc-
tions but they considered only a simple diagonal kinetic energy operator.

Lucas [148] proposed a method for evaluation of FCFs in nonlinear Duschinsky rela-
tion (Sec. 2.2). Nonlinear Duschinsky effects were treatedperturbatively by Lucas for the
(momentum-position coupled) non-Condon operators. We caneasily handle this perturba-
tion approach with the non-Condon integral evaluation scheme developed in section 3.2.

Luckhaus [150] developed an approach which treats reactionpath problems with large
curvature. Therein the author solved the vibrational eigenfunction problem for a two-
dimensional model system by diagonalizing the Hamiltonianin non-orthogonal harmonic
oscillator basis sets along the grid points on the reaction path. In this approach one has to
compute the non-Condon integrals for matrix elements of theHamiltonian as well as the FC
integrals for the overlap integrals for the non-orthogonalharmonic basis set in the Duschin-
sky relation (Ch. 3). If the reaction path and non-orthogonal basis set approach should be
extended to larger systems, the developments of this thesiswill be highly beneficial for this
method.

The simplest approach would be to introduce the anharmonicity in the potential energy
surfaces only for a few vibrational modes neglecting the kinetic energy rovibrational part.
Even for the simplest model Hamiltonians it is a computationally difficult task to compute
the FCFs including the mode mixing effects due to the extremely large number of inte-
grals to be evaluated. We present herein the simple anharmonic-harmonic block approach
to treat systems that have many harmonic degrees of freedom (DOF) but a small number
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of anharmonic DOF which are still much more computationallyexpensive than the har-
monic transitions. We further assume that the anharmonic and harmonic DOF are separable
but the normal coordinates of two electronic states are related by the Duschinsky equation
(Sec. 2.2). The anharmonic partition of the vibrational wavefunctions are expanded by a fi-
nite number of the harmonic oscillator eigenstates as a basis set and the harmonic basis sets
of two electronic states are related in the Duschinsky relation. The important contribution
of our development in this section is that it can provide the possible prescreening strategies
and TCFs with the the non-Condon effects for anharmonic transitions. The GF developed
in this section is in the form of linear combination of the cF GFs in section 7.1.

The anharmonic DOF is denoted asX and the harmonic ones asY like in the partitioning
scheme in chapter 2 for the fixed and the active vibrational spaces, respectively. Then-
th vibrationally excited anharmonic wavefunction of the initial electronic state, with the
associated harmonic eigenstate|vY 〉, |Ψn;vY 〉 is defined as,

|Ψn;vY 〉 =
∑

{vKX
}
cvKX

;n|vKX
〉 ⊗ |vY 〉

=
∑

{vKX
}
cvKX

;n|vKX
; vY 〉, (7.29)

where the finite number ofNA
X anharmonic expansion coefficients for finite basis set ({vKX

})
satisfy the normalization condition,

∑

{vKX
}
|cvKX

;n|2 = 1, (7.30)

and the final state is expressed in the same manner,

|Ψ′
m;v′Y

〉 =
∑

{vK′
X
}
c′vK′

X
;m|vK′

X
; v′Y 〉, (7.31)

∑

{vK′
X
}
|c′vK ′

X
;m|2 = 1. (7.32)

The FCFs of the vibronic transition from then-th vibrationally excited wavefunction is
summed to unity in any complete basis set expansion but it should be close to unity in a
proper finite basis set expansion,i.e.

1 = 〈Ψn;vY |Ψn;vY 〉

≃
∑

{vKX
},{vBX

},{vK′
X
},{vB′

X
}

(NA
X )′−1∑

m=0

c′vK′
X
;mc

′∗
vB′

X
;mc

∗
vBX

;ncvKX
;n

×
∞∑

v′Y =0

〈vBX
; vY |vK′

X
; v′Y 〉〈vB′

X
; v′Y |vKX

; vY 〉, (7.33)

where(NA
X)′ is the finite number of final vibronic levels, which equals thenumber of har-
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monic basis functions.
From Eq. (7.33) and (7.1) we have the anharmonic transition GFGA which contains the

anharmonic transition information associated with the GF parameters,

GA(Z̃cF,ZY Y ; cn, cm
′; ξ̃

KB
, ξ̃

BK
; η, η′)

=
∑

{vKX
},{vBX

},{vK′
X
},{vB′

X
}
c′vK ′

X
;mc

′∗
vB′

X
;mc

∗
vBX

;ncvKX
;nG

KY Y
cF (Z̃cF,ZY Y ;0Y Y ; ξ̃KB

, ξ̃
BK

; η, η′),

(7.34)

where the cF GF in Eq. (7.7) is used for the possible non-Condon transition. The anhar-
monic transition GF is evaluated to have specific SVLs and non-Condon operators with
Eq. (7.4),i.e.

GA(Z̃cF,ZY Y ; cn, cm
′; ṽKB, ṽBK)

(f̂ ,ĝ)
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∑
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. (7.35)

We can devise prescreening strategies for an anharmonic transition fromn-th vibrationally
excited initial state to them-th vibrationally excited final state with the GF including non-
Condon effects. The TCF can also be evaluated by the GF with the TD GF parameters
ZY Y (t) in Eqs. (4.42) and (4.43). In this development we assume the transition from a
single vibronic initial state to manifold final vibronic states but it can easily be generalized
for the thermally averaged initial vibronic states.

The explicit expression for the anharmonic transition in Condon approximation is given
in appendix D where only the vibrational modes in initial state are allowed to be thermally
excited at finite temperature.

7.5. Chapter summary and conclusion

In this chapter we have developed GFs for the rR scattering and intensity profile (Sec. 7.2),
the SVL transition (Sec. 7.3) and the anharmonic FC/non-Condon transition (Sec. 7.4).
Those GFs are built upon the cF GF, see section 7.1. These can introduce arbitrary SVLs
via the corresponding partial derivatives.

The rR developments in section 7.2 differ from other works [17, 56, 61, 64, 66, 67, 72,
73, 75, 109]. The difference appears in the TCFs from the GFs.We can introduce non-
Condon and thermal effects to our CS GF approach within the Duschinsky linear transform
approximation. We emphasize herein that we can relatively easily include the non-Condon
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effects and the arbitrary SVLs at the same time by the MHP technique. We have derived the
analytic expression for the 3-point TCF for the rR intensityprofile within the Duschinsky
approximation including the non-Condon and thermal effects.

The SVL transition GF is shown to be only a special case of the cF GF in section 7.1.
It has constraints on identical vibrational ONVs in the ket and bra vibronic states. As
a result, the SVL transition GF is simplified to a reduced dimensional form. From this
development, we can obtain the SVL transition TCF, the integral prescreening strategy for
the SVL transition, and the fine-grained FC/non-Condon prescreening strategies of multi-
dimensional fixed quantum number spaceX.

As a last development, section 7.4 of this chapter, we have applied the cF GF of sec-
tion 7.1 to one anharmonic transition problem that can be approximated with a few anhar-
monic DOF, whereas the remaining DOF are treated harmonically. With the developments
we can construct the FC/non-Condon TCFs and integral prescreening conditions from the
anharmonic GF. We have made the GF with a separation ansatz ofanharmonic and har-
monic DOF, and the benefit of the GF decreases as the number of anharmonic DOF grows.

We have exploited the MHP technique in chapter 3 to modify theFCF GF (Ch. 4) and
the non-Condon GF (Ch. 6) for SVLs. From the development of this chapter, we can now
have GFs including thermal effects, arbitrary non-Condon effects and arbitrary SVLs in
the Duschinsky oscillator basis. As special applications to the cF GF, SVL transition, rR
scattering and anharmonic transitions are introduced. Butthe GF approach can possibly
contribute to the vibronic coupling, multi-photon transition, general anharmonic problems
which could have intrinsic harmonic structures. The application is shown to be not only
restricted to molecular transitions but it could be any quantum mechanical process involving
harmonic oscillators.
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8. Conclusion and outlook

One of the fundamental goals of molecular science is to obtain a perfect control of molecular
processes with optical techniques and molecular design abilities. For this purpose a detailed
understanding on the dynamics of vibrational and electronic (vibronic) degrees of freedom
(DOF) is necessary, because the interplay of vibronic DOF plays a major role in many
molecular processes, which could be either radiative (e.g. one-photon absorption (OPA),
one-photon emission (OPE) and resonance Raman (rR) scattering) or non-radiative (e.g.
electron transfer (ET), internal conversion (IC), inter-system crossing (ISC) and conduction
of molecular junction), see figure 1.1.

Usually, polyatomic systems of interest are relatively large (more than 100 atoms, espe-
cially biomolecules) such that the corresponding description and analysis of the dynamics
are challenging. Molecular spectra, which contain information about the molecular pro-
cesses, are typically highly congested, such that the dynamics of the individual vibrational
DOF can not directly be disentangled. We need theoretical analysis tools for the complex
molecular system to study the individual mode contributions to the molecular processes
. Computational difficulties arise for complex systems in evaluating a tremendously large
number of multi-dimensional Franck-Condon (FC) integrals. The density of states (DOS)
or the number of FC integrals at a transition energy grows steeply with increasing number
of vibrational DOF, vibrational excitation energy and temperature [112].

Even in a harmonic approximation for the Born-Oppenheimer (BO) potential energy
surface (PES) the computation of FC integrals is still a challenging problem especially for
large molecular systems, due to the inseparable multi-dimensional integrals originated by
the Duschinsky mode mixing effects (Ref. [107] and Sec. 2.2). There have been attempts
(seee.g.Refs. [115–121] for the most recent works) to improve the computational efficiency
of the FC integral evaluation schemes including the Duschinsky mode mixing effects. Fast
evaluation of the FC integrals is essential for tackling large systems. We have suggested an
iterative FC integral evaluation scheme exploiting the Magnus expansion for multi-variate
Hermite polynomials (MHPs) [176] in chapter 3. The integralevaluation scheme in terms of
the MHPs with the Magnus expansion can be expressed as summations of one-dimensional
Hermite polynomials, which appears in a simpler form (smaller number of summations)
than the existing summation scheme for the multiple products of one-dimensional Hermite
polynomials (seee.g.Refs. [120,121]).

It was pointed out, however, that only a small portion of the Franck-Condon factors
(FCFs) contributes to the total FC profiles significantly (see e.g. Refs. [44–46]). The idea
can be used in anad hocway by limiting for instance the vibrational excitation in each
mode by some predefined numbers. For example, one could arbitrarily restrict the num-
ber of FC integrals to be evaluated by allowing only up to 10 vibrationally excited quanta
for every vibrational DOF. In this example we need to compute112N FC integrals for
theN -dimensional harmonic oscillator system. Unfortunately,in this brute-force way the
computational complexity still increases drastically andbecomes infeasible. Instead, if we
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Figure 8.1.: Summary of the CS-based GF developments for various molecular vibronic tran-
sitions. The round boxes refer to the fundamental quantities. The dotted box represents the
work not in a part of this thesis. The solid square boxes indicate the developments within the
thesis. The arrows indicate the functional transformations. The properties of the GF are shown
in a box that are inherited from the previous (lower) boxes, otherwise details are mentioned
on the arrows. The single solid lines without arrows imply only one of many usages for the
corresponding functions to mention their importance. The corresponding chapters for the de-
velopments are indicated on the left side of the diagram. (a)It is straightforward to obtain the
mean value including the non-Condon effects but for the higher order statistical quantities a
numerical algorithm has to be developed.
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8. Conclusion and outlook

can construct the most important FC intensity profiles, say 99 % of the total FC intensity,
with a small fraction of FCFs of the total FCF, the computation of FC intensity profiles
becomes feasible even for complex systems. For this purposewe must address the issue
of knowing which sets of FCFs contribute to the total FC intensity for about 99 % without
having all FCFs at hand. Jankowiaket al. [46] exploited this simple idea by modifying the
Doktorov and coworkers’ initial idea of CS-based GF [29]. Exploiting the modified GF
Jankowiaket al. developed a coarse-grained integral prescreening strategy for the FC inten-
sity profiles at zero Kelvin. The starting point of this thesis was precisely this zero Kelvin
time-independent (TI) FC development. Throughout the thesis, we have extended and mod-
ified the method to include temperature and non-Condon effects which are important in
molecular transition processes (see diagram 8.1). In diagram 8.1 we summarize the devel-
opments in this thesis and show the relations between the developments described herein.
Based on the fundamental developments (the round boxes at the bottom of the diagram) the
GF approaches have been extended (following the arrows in the diagram) to account for
thermal effects, non-Condon effects and single vibronic level (SVL) transitions.

The theoretical description of most of the molecular vibronic transitions1 involving the
Duschinsky rotated harmonic oscillators boils down to a common mathematical problem,
i.e. the MHPs evaluation (see diagram 8.2 and Ch. 3). The calculation of the MHPs appears
as a computationally hard problem (Ch. 3). Nevertheless, translation of the molecular transi-
tion problem in harmonic approximation to an equivalent MHPevaluation problem enables
us to analyze various transition processes by the same mathematical tool. An analogous
transformation for the Ermakov invariant for dissipative systems (seee.g.Refs. [224–229])
can be given as an example for a similar reduction to a simplercomputational problem.
The various equations of motion,e.g. the Langevin and the Fokker-Planck equations, for
dissipative systems which are in different forms converge to the invariant quantity at the
end.

In the following paragraph we summarize the developments inthis thesis according to the
diagram 8.1 sequencing from bottom to top. The GF approachesare described briefly in the
quantum mechanical trace formalism. Then the conclusion and outlook of this dissertation
follows.

Summary of developments An invariant quantity for a quantum mechanical problem
is a powerful tool to understand the system (seee.g. Refs. [24–29, 224]). The invariance
constraints the system dynamics. We can extract useful dataabout the quantum mechanical
processes from the invariant functional,i.e. herein the GF which is characterized by its GF
parameters (see Ref. [46] and Sec. 2.4), with proper modifications or mathematical manip-
ulations to the functional (see the bottom of Fig. 8.1). The GF appears to be an analogous
tool like the partition function (Tr(exp(−βĤ))), which is invariant and from which we can
obtain thermodynamic quantities. Analogously the GF can provide the quantity of interest
by (proper) operations on itself,e.g. partial derivatives with respect to the GF parameters
for intensity sum rules (see Chs. 4 and 6).

To illustrate the invariant GF idea, we consider the FC transition probabilities from an

1FC and non-Condon integral evaluation, integral prescreening strategy, rR excitation profile,SVL transition
and non-Condon transition, time-correlation function (TCF) evaluation
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Figure 8.2.: Most of the working equations in this thesis are translated into the MHP evaluation
problem. The functions in dashed-ellipse are cast into MHPsand the corresponding output can
be obtained after the MHP evaluation.

initial state to a manifold of other states that have to be summed to unity,i.e.

Tr(ρ̂) = 1, (8.1)

where the density operator̂ρ can be defined for instance via thermally averaged initial vi-
bronic states (̂ρ =

∑
v pv(T )|v〉〈v|), where thepv(T ) is a thermal distribution of initial

vibronic state (|v〉) at a finite temperature (T ). This simple sum rule (8.1) can be traced by
an arbitrary complete basis set resulting in an infinite summation of FCFs, which converges
to unity (e.g. for the final vibronic states|v′〉,∑v pv(T )|〈v′|v〉|2 = 1). The FCF sum rule
equation itself, however, is not powerful enough, because it tells us only, if the total inten-
sity is conserved with respect to any complete basis set expansion. We invoke, instead, the
Dirac δ-distribution operators to resolve the FCFs by vibronic transition energies,

∫ ∞

−∞
dωTr

(
δ(ω1 − Ĥ ′/~)δ(ω2 − Ĥ/~)ρ̂

)
= 1, (8.2)

whereω = ω1 − ω2 is the vibronic transition frequency, and̂H andĤ ′ are the vibrational
Hamiltonians of the initial and final states respectively (Sec. 2.2). The integrand in Eq. (8.2),
the quantum mechanical trace, is simply the FC spectral density function (SDF) with Dirac
δ-distribution at finite temperature,i.e. ̺FCW(ω) = Tr(δ(ω1−Ĥ ′/~)δ(ω2−Ĥ/~)ρ̂), which
is transition frequency (ω)-resolved (Sec. 2.1). By introducing CSs both for initial and final

127
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vibrational states and replacing theδ-distribution operator with the GF parameters2, we can
make the CS-based FCF GF (Sec. 6.1.2). Exploiting the resulting GFs Jankowiaket al. [46]
developed the FC integral prescreening strategy at zero Kelvin and herein we have devel-
oped the thermal FC integral prescreening method (Ch. 4) forTI FC profile calculations.

We have introduced the thermal effects to the CS-based GF viathe thermal integral ker-
nel (Sec. 4.1). The important feature of this thermal development is that the individual
vibrational DOF can have different finite temperatures so that we can control the vibra-
tional excitation pattern with the individual temperatures, not only via the GF parameters
(Eq. (4.4)). At finite temperature the initial vibrational state can be considered as the ther-
mally averaged effective single vibrational initial statein the GF. As a result the thermal
prescreening strategies (Sec. 4.3) can inherit the prescreening strategies at zero Kelvin [46].
This CS-based thermal FCF GF generalizes the correspondingzero Kelvin development to
the development at finite temperature.

Recalling where the GF parameters are coming from3, it is clear that we can transform
the same FCF GF into a TCF and the FCF sum rule according to the GF parameter values
(Ch. 4). In chapter 4, we develop the time-dependent (TD) approach (TCF) from the TI
perspective. The TCF method is adopted typically for its simplicity and fast evaluation
besides the disadvantage of no immediate peak assignment ability (see e.g. Refs. [17, 33,
34, 37, 38, 40, 40–42, 48, 55, 56, 61, 64, 66, 67, 72, 73, 75, 79,81, 84, 86, 87, 93–95, 109, 137,
138]). Up to now (before this thesis) the TD and TI approachesfor absorption or emission
profile calculations were (practically) considered as independent approaches [18], even if
the formalisms are mutually transformable (Sec. 2.1). The TD approach exploits the Fourier
transformed representation of theδ-distribution (δ(ω − ω) =

∫∞
−∞ dt ei(ω−ω)t) in Eq. (8.2),

i.e.

̺FCW(ω) = ~−1

∫ ∞

−∞
dtTr

(
exp(−iĤ ′t/~) exp(iĤt/~)ρ̂

)
ei(ω−ω0)t. (8.3)

By assigning the TD phase parameter values (Eqs. (4.42) and (4.43)) to the GF parameters
we can obtain the TCF (corresponding toTr(exp(−iĤ ′t/~) exp(iĤt/~)ρ̂) in Eq. (8.3))
simply from the CS-based FCF GF. Then the corresponding Fourier transform (FT) is the
FC profile (Sec. 4.4). We emphasize herein that we can use the same GF for the (TI) integral
prescreening and (TD) TCF approaches. The validity of the TIand the TD approaches has
been confirmed by their mutual agreement (Sec. 4.5). We can judge the quality of the
prescreening level from the comparison between the two approaches (Secs. 4.5 and 6.3). It
is interesting to note that the TCF value att = 0 is simply the sum rule functional value.
When the time evolves (t 6= 0) the complex TCF values carry the vibrational transition
information of the system. One last thing to be mentioned forthe current TCF approach
is that we can try to assign the peaks indirectly (even in the TD method) by freezing some
vibrational DOF in the TCF evaluation via controlling the GFparameters. This feature
is possible because we have made a link between the TI and the TD approaches with the
identical GF (Sec. 4.4) via the GF parameters.

In the evaluation of TCFs (seee.g. Sec. 4.4) for fast Fourier transform (FFT), a good

2because we know all eigenfunctions and eigenvalues of the harmonic systems, theδ-distribution can simply
be represented by GF parameters.

3Diracδ-distribution.
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guess on the relevant time step and length is required, whichare corresponding to the high-
est frequency and the resolution in frequency domain, respectively. For the efficient compu-
tation of the TCF we have to choose the time scaling parameters carefully because a large
number of TCF evaluation involving inverse complex matrix calculations (Eq. (4.10)) can
slow down the computation of the FC intensity profile significantly. If we know the impor-
tant energy window before the FC integral calculation, evenfor the TI approach with the
prescreening technique, we can devise additional efficientcomputational ways for the FC
intensity profile. Therefore it is desirable to know an approximate spectral shape which is
available with cheap computational cost. In chapter 5 we have constructed the FC transi-
tion SDF as a probability density function (PDF) characterized by the statistical quantities
(cumulants) such as mean, variance, skewness and kurtosis (see Eq. (5.18)). As empha-
sized above and through out this thesis the FCF GF contains all information about the FC
process. We have realized the cumulant expansion (CE) idea by introducing the thermal-
moment integral kernel (Eq. (5.4)) augmented in the thermalintegral kernel (Eq. (4.2)) into
the logarithm of FCF GF (Eq. (4.2)). The FCF cumulant GF has anauxiliary parameter
to generate the cumulants of the vibronic transition energy. To compute the cumulants of
higher orders, we develop an efficient numerical algorithm for the partial derivatives of an
inverse matrix up to arbitrary orders (Sec. 5.1.1).

A mean value of an individual vibrational mode can be interpreted as an effective Huang-
Rhys factor (HRF) in electron transfer theory, which includes the molecular structural
changes, the potential energy distortion, the Duschinsky mode mixing and the tempera-
ture effects, resulting the separable individual mode contribution to the Franck-Condon
processes (Sec. 5.3.2). This effective (temperature-dependent) electron-phonon coupling
constant (HRF) is useful to study the temperature effects onthe electron transfer theory for
large systems to verify the individual vibrational mode contributions. In section 5.3.2 we
were able to show that the Duschinsky mode coupling can induce thermal energy transfer
from low to high frequency vibrational modes with this method. We could also interface
the cumulant GF with the TCF via the TD GF parameters (Sec. 5.1.2). Moreover we were
able to use the CE for the fast estimation of the TCF by expanding the TD function with
the corresponding Taylor series in terms of the cumulants (Sec. 5.1.2). It reduces the effort
to evaluate the inverse complex matrix by estimating it withthe Taylor expansion to certain
orders4 to avoid the inverse matrix calculation at each time step. Weexploit the thermal-
moment integral kernel to obtain the moments of vibrationally excited quanta of individual
vibrational modes (Sec. 5.2). The moment GF approach is introduced for the reason that it
is necessary to keep the vibrational mode indices for the multi-dimensional partial deriva-
tives during the moment calculation. We have developed a book keeping algorithm for the
moments of the vibrational quanta in the FC process, but the method can possibly extended
also to the non-Condon processes with the non-Condon GFs developed in chapter 6.

The important contributions of this thesis are introducingthe TCF approach and the non-
Condon effects to the GF approach [46]. The former can simplybe adopted to the CS-based
GFs by assigning the TD GF parameters. We have taken the non-Condon effects into ac-
count with the CS displacement operator (Sec. 3.2). With thehelp of the phase displacement
operator we have used the same mathematical machinery of theFCF GF for the non-Condon
GF. The phase displacement operator introduces auxiliary phase parameters for momentum

42-nd order in this thesis.

129



8. Conclusion and outlook

and position operators to be used for non-Condon operators extracted by partial derivatives
with respect to the auxiliary parameters. In section 3.2 we have developed the non-Condon
integral evaluation scheme such that we have transformed the non-Condon integrals into
MHPs not like the existing linear combination of FC integralapproaches [36,49].

In chapter 6 we have considered the non-Condon effects as thelinear Herzberg-Teller
(HT) approximation (Eq. (2.24)) and we invoke the HT expansion to the CS-based FCHT
GF. The extension to the nonlinear problems (including momentum-position operator cou-
pling terms) and the fine-grained prescreening strategies are possible by constructing col-
lective matrices and vectors for the MHPs which require the additional dimensionality for
the operators (seee.g. Eq. (6.16)). We can also deduce the TCF and the prescreening
strategies from the CS-based GF. With the complex MHP evaluation we can evaluate the
TCFs including arbitrary polynomial non-Condon operators(Eq. (6.4)). The non-Condon
GF can be applied to the electronic circular dichroism (ECD)with the electric and magnetic
transition dipole moment (TDM) coupling terms [102].

We have suggested the GF approach for SVLs in chapter 7. The SVLs are involved in the
rR scattering excitation profile and the SVL fluorescence spectrum. The rR scattering and
the SVL transition (Secs. 7.2 and 7.3) GFs are related toTr((ω− Ĥ ′/~+ iΓ/2)−1|vi〉〈vj |)
andTr(δ(ω − Ĥ ′/~)|v〉〈v|) , respectively. The major difference between the two traces
is the later has the identical SVLs (|v〉〈v|) in the ket- and bra- states while the former has
different SVLs (|vi〉〈vj |). We can evaluate the rR excitation profile with the half-FT5 and
the SVL trace with the full FT in the TCF approach (Sec. 2.1). The rR TCF is similar to
that of SVL transition but rR scattering usually involves two different SVLs in the initial
electronic state.

The GFs are made via the coherent-Fock (cF) state which is a mixture of occupation
number vector (ONV) and coherent phase vector states (Sec. 7.1). The cF states are obtained
by taking partial derivatives with respect to the CS phase parameters belonging to the non-
integral space (Sec. 2.3). With the help of MHP technique exploited in the previous chapters
the automatized generation of SVLs is possible and the inclusion of the non-Condon effects
is possible as well by using the CS displacement operators additionally. With the SVL
transition GF we are able to develop a fine-grained prescreening strategy for the multi-
dimensional fixed quantum number spaceX either for the FC or the non-Condon process.
We can also exploit the SVL transition GF as the TCF via the TD GF parameters (Eqs. (4.42)
and (4.43)). With the SVL GF, non-Boltzmann distributed thermal distributions such as
thermo-coherent distributions (seee.g.Refs. [84,230]) could be made.

We can obtain the rR scattering intensity GF at finite temperature and at zero Kelvin
including non-Condon effects in an integral form by tracingover the two SVL space for
the overlap of two rR amplitude GF with the thermal integral kernel (Sec. 7.2). As for the
absorption process, the GF can be used as the TCF and the sum rules for the prescreening
strategies. It is worth to note that we have suggested the closed integral form of rR cross
section in harmonic approximation including the Duschinsky and thermal effects in a func-
tional analogy to the Förster-type energy transfer processes (seee.g.Ref. [8]) which is in a
form of convolution between the absorption and the emissionspectra.

Additionally we have applied the cF GF to an anharmonic (FC/non-Condon) transition
problem which has a few anharmonic DOF and the rest of harmonic DOF so that we can

5 1
ω−ω+iΓ/2

= −i
∫∞

0
dt ei(ω−ω)t−

Γ
2
t, which is a special case of the Laplace transform.
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benefit from the harmonic GF machinery (Sec. 7.4). The anharmonic GF is expanded by
the CS-based cF GFs with the corresponding anharmonic expansion coefficients. With the
integral space partitioning we can develop sum rules for theanharmonic transition as in the
harmonic cases and we can construct the TCF as well.

Conclusion and outlook The developments in this thesis are generally applicable to
transition problems in the harmonic approximation (see Fig. 8.2). With slight modifications
the same approach can be exploited for other problems such asmass spectroscopy (seee.g.
Ref. [231]), non-equilibrium FC processes in molecular junction (seee.g. Ref. [232]) and
the Förster-type energy transfer processes (seee.g. Ref. [8]). The IC process requires the
matrix elements of momentum operators which can easily be handled by the non-Condon
developments (Ch. 6). The non-Condon developments can be applied to the vibronic cou-
pling effects (seee.g. Refs. [50, 80, 88, 96].) for instance spin-orbit coupling (see e.g.
Ref. [96]), Jahn-Teller effects (seee.g. Ref [2]), nonadiabatic electron transfer (seee.g.
Ref. [233]) and dissipation with environmental effects (see e.g. Ref. [8]). The rR develop-
ments in this thesis could be extended for the surface enhancement effects,i.e. the surface
enhanced Raman scattering (SERS) (seee.g. Refs. [234–237].) and the surface enhanced
Raman optical activity (SEROA) (seee.g.Ref. [238].) with the non-Condon effects and the
finite temperature effects if we can make a proper description on the metal surfaces with
for example jellium model (seee.g. Ref. [239]). The extension to the general anharmonic
problem, however, has to be made because the harmonic approximation is very crude in
many cases. As mentioned in the anharmonic section (Sec. 7.4), the non-Condon develop-
ment and the matrix element evaluation procedure are suitable to the anharmonic problems
possibly with the reaction path approach [150] of Luckhaus.Our CS-based TCF could be
used for propagating wavepackets in time domain on the general anharmonic surfaces (see
e.g.Refs. [137,203–206]) via the complex MHP evaluation.

To this end, we remark that a unified description of vibronic transitions in frequency
and time domains, presented in this thesis, facilitates various theoretical applications and
experimental analyses for large molecular systems.
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9. Zusammenfassung

Eines der grundlegenden Ziele molekularer Wissenschaftenist die perfekte Kontrolle moleku-
larer Prozesse. Molekulare Maschinen und künstliche Lichtsammelsysteme sind wichtige
Beispiele, die diesem Ziel entsprechen. Zu diesem Zweck isteine genaue Kenntnis der
Dynamik von vibratorischen und elektronischen (vibronischen) Freiheitsgraden nötig, da
das Zusammenspiel vibronischer Freiheitsgrade eine bedeutende Rolle in vielen moleku-
laren Prozessen spielt, die entweder strahlender (z. B. Absorption, Emission und Raman-
Resonanzstreuung) oder strahlungsloser Art (z. B. Elektronentransfer, interne Konversion,
Übergänge zwischen Systemen und Leitung molekularer Verbindungen) sein können (siehe
Abb. 1.1).

Normalerweise sind die betrachteten polyatomischen Systeme relativ groß (mehr als 100
Atome, insbesondere bei Biomolekülen), was die entsprechenden Analysen der Systeme
zu einer Herausforderung. Die Analysen großer molekularerSysteme sind typischerweise
nicht einfach, weil die Spektren der dazugehörigen Molekularübergänge überfüllt sind, wir
aber die Dynamik der einzelnen Vibrationsfreiheitsgrade für die Feinkontrolle oder die
künstliche Gestaltung eines erweiterten Molekülsystems benötigen.

Um die Beiträge der einzelnen Schwingungen zu den molekularen Prozessen zu studieren,
müssen Ansätze für die theoretische Analyse komplexer molekularer Systeme bereitste-
hen. Darüberhinaus können in der Berechnung komplexer Systeme Schwierigkeiten in der
Auswertung einer gewaltig großen Zahl mehrdimensionaler Franck-Condon(FC)-Integrale
auftreten. Es ist nötig, die Franck-Condon-Faktoren (FCF) als Wahrscheinlichkeiten vi-
bronischerÜbergänge in der Condon-Näherung zu ermitteln, um FC-vibronische Prozesse
theoretisch zu beschreiben.

Die Zustandsdichte oder die Zahl von FC-Integralen bei einer Übergangsenergie steigt
mit zunehmender Zahl von Schwingungsfreiheitsgraden, wachsender Anregungsenergie und
steigender Temperatur steil an [112].

Sogar in der harmonischen Näherung der Born-Oppenheimer(BO)schen Potentialhyper-
fläche ist die Berechnung der FC-Integrale besonders für große Molekülsysteme wegen der
untrennbaren mehrdimensionalen Integrale als Folge der Duschinskymischung verschiedener
Schwingungsfreiheitsgrade (Ref. [107] und Abschn. 2.2) immer noch eine schwierige Auf-
gabe. Es gab Versuche (s. z. B. Refs. [115–121] für die aktuellsten Arbeiten), die Effizienz
der Berechnungsvorschriften von FC-Integralen einschließlich der Duschinsky-Effekte zu
verbessern. Die schnelle Berechnung von FC-Integralen istzur Behandlung großer Sys-
teme überaus wichtig. Wir haben eine iterative Berechnungsvorschrift für FC-Integrale
vorgeschlagen, um die Magnus-Entwicklung für multi-variate Hermite-Polynome auszunutzen
(MHPs) [176] (siehe Kapitel 3). Die Berechnungsvorschriftüber MHP mit der Magnus-
Entwicklung kann als Summation eindimensionaler Hermite-Polynome ausgedrückt wer-
den, wodurch eine einfachere Form als durch die bisherige Methode (mehrere Produkte
eindinmensionaler Hermite-Polynome) erreicht wird (s. z.B. Refs. [120,121]).

Es wurde jedoch darauf hingewiesen, dass nur ein kleiner Teil der FCF signifikant zu den
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Gesamt-FC-Profilen beiträgt (s. z. B. Refs. [44–46]). Die Idee kann ad hoc verwendet wer-
den, indem man beispielsweise die Anregung in jeder Normalschwingung auf festgelegte
Zahlen begrenzt.

Zum Beispiel könnte man die Zahl der zu berechnenden FC-Integrale eingrenzen, in-
dem man höchstens 10 Schwingungsanregungsquanten für jeden Schwingungsfreiheitsgrad
zulässt. In diesem Fall müssen wir für einN -dimensionales harmonisches Oszillatorsys-
tem 112N FC-Integrale berechnen. Unglücklicherweise steigt die Komplexität der Rech-
nung immer noch drastisch an und eine Berechnung wird unpraktikabel. Wir könnten
stattdessen versuchen, den größten Teil des FC-Intensit¨atsprofils anzunähern, zum Beispiel
99 % der gesamten FC-Intensität, mit Hilfe von ausgesuchten FCFs. Dadurch wird die
Berechnung der FC-Intensitätsprofile selbst für komplexe Systeme möglich. In diesem Fall
müssen wir uns dem Problem widmen, einen Teil der FCFs zu kennen, die etwa 99 %
der Gesamt-FC-Intensität ausmachen, ohne alle FCFs verf¨ugbar zu haben. Jankowiaket
al. [46] nutzten diese einfache Idee aus, indem sie die ursprüngliche Idee Doktorovs und
seiner Koautoren von erzeugenden Funktionen [29] modifizierten. Mithilfe dieser erzeu-
genden Funktion entwickelten Jankowiaket al. eine Strategie zu einer grobkörnigen Inte-
gralvorauswahl für die FC-Intensitätsprofile am Temperaturnullpunkt. Der Ausgangspunkt
dieser Dissertation war gerade diese zeitunabhängige FC-Entwicklung für 0 K. Im Laufe
der Dissertation haben wir diese Methode erweitert und modifiziert, um Temperatur- und
Nicht-Condon-Effekte einzubeziehen, welche in Molekül¨ubergangsprozessen wichtig sind.
In Diagramm 8.1 fassen wir die methodischen Entwicklungen in dieser Arbeit zusammen
und zeigen die Beziehungen der darin beschriebenen Entwicklungen auf.

Die theoretische Beschreibung der meisten vibronischen molekularenÜbergänge mit
Duschinsky-rotierten harmonischen Oszillatoren läuft auf ein bekanntes mathematisches
Problem hinaus, die Auswertung von MHP (s. Diagramm 8.2 und Kap. 3). Die Berech-
nung der MHP scheint hinsichtlich des Rechenaufwandes ein schwieriges Problem zu sein
(Kap. 3). Dennoch erlaubt uns dieÜbersetzung des Problems der molekularenÜbergänge in
harmonischer Näherung in ein äquivalentes MHP-Auswertungsproblem, die verschiedenen
Übergangsprozesse mit derselben mathematischen Methode zu analysieren. Eine analoge
Transformation für die Ermakov Invariante in dissipativen Systemen (s. z. B. Refs. [224–
229]) kann als Beispiel für eine ähnliche Reduzierung zu einem einfacher berechenbaren
Problem angegeben werden. Die unterschiedlichen Bewegungsgleichungen für dissipative
Systeme, z. B. die Langevin- und die Fokker-Planck-Gleichungen, die sich in verschiede-
nen Formen befinden, konvergieren letztendlich auf diese invariante Größe.

Im folgenden Absatz fassen wir die Entwicklungen in dieser Arbeit zusammen. Die
Ansätze mit erzeugenden Funktionen werden kurz im quantenmechanischen Spurformalis-
mus beschrieben. Danach folgen die Schlusfolgerungen und Ausblicke dieser Dissertation.

Zusammenfassung der Entwicklungen Eine invariante Größe in einem quanten-
mechanischen Problem ist ein mächtiges Werkzeug zum Verständnis des Systems [224].
Die Invarianz schränkt die Dynamik des Systems ein. Mit denrichtigen Modifikationen
oder mathematischen Manipulationen am Funktional (s. unterer Teil der Abb. 8.1) können
wir nützliche Daten über die quantenmechanischen Prozesse aus dem invarianten Funk-
tional gewinnen, in diesem Fall aus der erzeugenden Funktion, die durch ihre Parameter
charakterisiert wird (s. Ref. [46] und Abschn. 2.4). Die erzeugende Funktion scheint eine
der Zustandssumme analoge Funktion zu sein (Tr(exp(−βĤ))), welche invariant ist und
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uns erlaubt, thermodynamische Größen zu berechnen. In analoger Weise erlaubt die erzeu-
gende Funktion die Berechnung relevanter Größen durch (entsprechende) Operationen, z.
B. partielle Ableitungen nach den Parametern der erzeugenden Funktion für die Summen-
regeln der Intensität (s. Kap. 4 und 6).

Um den Gedanken der invarianten erzeugenden Funktion zu verdeutlichen, betrachten
wir die FC-Übergangswahrscheinlichkeiten von einem anfänglichen Zustand zu einer Vielzahl
anderer Zustände, die zu eins summiert werden müssen, d. h. Tr(ρ̂) = 1, wobei der
Dichteoperatorρ̂ beispielsweise über thermisch gemittelte vibronische Anfangszustände
(ρ̂ =

∑
v pv(T )|v〉〈v|) definiert sein kann, mit einer thermischen Verteilungsfunktion pv(T )

des vibronischen Anfangszustands (|v〉) bei einer endlichen Temperatur (T ). Diese einfache
Summenregel kann durch Spurbildung mit einer beliebigen vollständigen Basismenge be-
folgt werden, was in einer unendlichen Summe von FCFs resultiert, die gegen die Einheit
konvergiert (z. B. für die vibronischen Endzustände|v′〉,∑v pv(T )|〈v′|v〉|2 = 1). Die Gle-
ichung der FCF-Summenregel ist jedoch nicht stark genug, dasie uns nur mitteilt, dass
die Gesamtintensität hinsichtlich Entwicklung in einer beliebigen Basis erhalten bleibt.
Wir greifen daher stattdessen auf die Diracschenδ-Distributionsoperatoren zurück, um
die FCF mittels vibronischer̈Ubergangsenergien aufzulösen, sodass

∫∞
−∞ dωTrM (δ(ω1 −

Ĥ ′/~)δ(ω2 − Ĥ/~)ρ̂) = 1, wobeiω = ω1 − ω2 die vibronischeÜbergangsfrequenz ist
und Ĥ und Ĥ ′ die vibronischen Hamilton-Operatoren des Anfangs- bzw. Endzustandes
sind (Abschn. 2.2). Der Integrand, die quantenmechanischeSpur, ist einfach die spektrale
FC-Dichtefunktion mit der Diracschenδ-Distribution bei endlichen Temperaturen, d. h.
̺FCW(ω) = Tr(δ(ω1 − Ĥ ′/~)δ(ω2 − Ĥ/~)ρ̂), welches nach der̈Ubergangsfrequenz (ω)
aufgelöst ist (Abschn. 2.1). Durch Einführen kohärenter Zustände sowohl für Anfangs- und
Endzustände und Ersetzen desδ-Distributionsoperators mit den Parametern der erzeugen-
den Funktion können wir die erzeugende Funktion der FCF erhalten (Abschn. 6.1.2). Unter
Ausnutzung der resultierenden erzeugenden Funktion entwickelten Jankowiaket al.[46] die
Strategie der FC-Integralvorauswahl bei Null Kelvin, wovon ausgehend wir die Methode
zur thermischen FC-Integralvorauswahl (Kap. 4 für zeitunabhängige FC-Profile entwickelt
haben.

Wir haben die thermischen Effekte durch den thermischen Integranden in die kohä-
renzzustandsbasierte erzeugende Funktion eingeführt (Abschn. 4.1). Die wichtige Eigen-
schaft dieser thermischen Entwicklung ist, dass die individuellen Schwingungsfreiheits-
grade verschiedene endliche Temperaturen haben können, sodass wir das Schwingungsan-
regungsmuster mit den individuellen Temperaturen kontrollieren können, nicht nur über
die Parameter der erzeugenden Funktion (Gl. (4.4)). Bei endlicher Temperatur kann der
anfängliche Schwingungszustand als thermisch gemittelter, effektiver Schwingungsgrundzu-
stand betrachtet werden, und nicht als Menge thermisch angeregter Vibrationszustände
in der erzeugenden Funktion. Aus diesem Grund können die Strategien zur thermischen
Vorauswahl (Abschn. 4.3) die der Vorauswahl beim Temperaturnullpunkt beerben [46].
Diese thermische erzeugenden Funktion der FCFs verallgemeinert die korrespondierende
Entwicklung für 0 K zu einer Entwicklung bei endlicher Temperatur.

Bedenkt man die Herkunft der Parameter der erzeugenden Funktion (Diracscheδ-Distri-
bution), so ist klar, dass wir dieselbe erzeugenden Funktion der FCFs in eine Zeitkorrela-
tionsfunktion und in die FCF-Summenregel gemäß der Werte der Parameter der erzeugen-
den Funktion (Kap. 4) transformieren können. In Kapitel 4 entwickeln wir die zeitabhängige
Herangehensweise aus der zeitunabhängigen Perspektive.Die Methode der Zeitkorrela-
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tionsfunktion wird typischerweise wegen ihrer Einfachheit und schnellen Berechenbarkeit
verwendet, sieht man vom Nachteil der fehlenden Möglichkeit der Signalzuordnung ab (s. z.
B. Refs. [17,33,34,37,38,40,40–42,48,55,56,61,64,66,67,72,73,75,79,81,84,86,87,93–95,
109,137,138]). Bis zu diesem Zeitpunkt (vor dieser Arbeit)wurden die zeitabhängigen und
zeitunabhängigen Herangehensweisen für die Berechnungder Profile für Absorption und
Emission (praktisch) als unabhängige Verfahren betrachtet [18], obwohl die Formalismen
sogar ineinander transformiert werden können (Abschn. 2.1). Die zeitabhängige Herange-
hensweise nutzt die fouriertransformierte Darstellung der δ-Distribution, d. h.̺ FCW(ω) =
~−1

∫∞
−∞ dtTr(exp(−iĤ ′t/~) exp(iĤt/~)ρ̂)ei(ω−ω0)t. Indem wir die zeitabhängigen Phasen-

parameterwerte (Gl. (4.42) und (4.43)) den Parametern der erzeugenden Funktion zuord-
nen, erhalten wir die zu (Tr(exp(−iĤ ′t/~) exp(iĤt/~)ρ̂)) korrespondierende Zeitkorre-
lationsfunktion einfach aus der erzeugenden Funktion der FCFs. Die korrespondierende
FT ergibt dann das FC-Profil (Abschn. 4.4). Wir betonen dabei, dass wir dieselbe erzeu-
gende Funktion für die Integralvorauswahl und die Ansätze für die Zeitkorrelationsfunk-
tion verwenden können. Die Gültigkeit der zeitabhängigen und zeitunabhängigen Herange-
hensweisen wurde durch ihren Vergleich überprüft (Abschn. 4.5). Wir können die Qualität
der Vorauswahl aus dem Vergleich zwischen den beiden Methoden beurteilen (Abschn. 4.5
und 6.3). Es ist interessant festzuhalten, dass der Wert derZeitkorrelationsfunktion bei
t = 0 einfach der Wert der Summenregel ist. Wenn sich die Zeit ver¨andert (t 6= 0), beinhal-
tet die komplexe Zeitkorrelationsfunktion Informationenüber Vibrationsübergänge des Sys-
tems. Ferner ist zur derzeitigen Methode der Zeitkorrelationsfunktion anzumerken, dass wir
versuchen können, die Signale indirekt zuzuweisen (sogarbeim zeitabhängigen Verfahren),
indem wir mittels Kontrolle der Parameter der erzeugenden Funktion einige Schwingungs-
freiheitsgrade bei der Auswertung der Zeitkorrelationsfunktion einfrieren. Dies ist möglich,
da wir über ihre Parameter mit der identischen erzeugendenFunktion eine Verbindung zwis-
chen den zeitunabhängigen und zeitabhängigen Methoden geschaffen haben.

In der Auswertung von Zeitkorrelationsfunktionen (s. z. B.Abschn. 4.4) für die schnelle
Fourier Transformations (FFT) wird eine gute Annahme überdie Anzahl und Länge der
Zeitschritte benötigt, welche jeweils zur höchsten Frequenz bzw. zur Auflösung in der
Frequenzdomäne korrespondieren. Um die Zeitkorrelationsfunktion effizient zu berech-
nen, müssen wir die Zeitskalierungsparameter sorgfältig wählen, da eine große Zahl von
Auswertungen von Zeitkorrelationsfunktionen mit inverser komplexer Matrixberechnung
(Gl. (4.10)) die Berechnung der FC-Intensitätsprofile signifikant verlangsamen kann. Ist
uns beim zeitunabhängigen Verfahren mit Vorauswahl das relevante Energiefenster vor der
Berechnung der FC-Integrale bekannt, können wir zusätzliche effiziente Rechenverfahren
für die FC-Intensitätsprofile finden. Daher ist es erstrebenswert, eine ungefähre spektrale
Form zu kennen, die mit geringem Rechenaufwand verfügbar ist. In Kapitel 5 haben
wir die spektrale FC-̈Ubergangsdichtefunktion als durch statistische Größen (Kumulanten)
wie Mittelwert, Varianz, Schiefe und Kurtosis (s. Gl. (5.18)) charakterisierte Wahrschein-
lichkeitsdichtefunktion beschrieben. Wie oben und im weiteren Verlauf dieser Arbeit betont
wird, enthalten die FCFs alle Informationen zum FC-Prozess. Wir haben den Gedanken
der Kumulantenerweiterung umgesetzt durch Einführen eines Integralkerns zum thermis-
chen Moment (Gl. (5.4)), der im thermischen Integralkern (Gl. (4.2)) zum Logarithmus der
erzeugenden Funktion der FCFs (Gl. (4.2)) erweitert wird. Die erzeugende Funktion für
FCF-Kumulanten hat einen Hilfsparameter zur Erzeugung derKumulanten der vibronis-
chenÜbergangsenergie. Um die Kumulanten höherer Ordnung zu berechnen, entwickeln
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wir einen effizienten numerischen Algorithmus für die partiellen Ableitungen einer inversen
Matrix bis zu einer beliebigen Ordnung (Abschn. 5.1.1).

Ein Mittelwert einer einzelnen Normalschwingung kann als effektiver Huang-Rhys-Faktor
(HRF) in der Theorie des Elektronentransfers interpretiert werden, der molekulare Struk-
turänderungen, die Verzerrung der potentiellen Energie,die Duschinsky-Rotationen und
Temperatureffekte beinhaltet, was zum Beitrag der separablen Einzelmoden zu FC-Prozessen
(Abschn. 5.3.2) führt. Diese effektive (temperaturabhängige) Elektron-Phonon-Kopplungs-
konstante (HRF) ist nützlich, um die Temperatureffekte auf die Elektronentransfertheo-
rie für große Systeme zur Bestätigung der Beiträge einzelner Normalschwingungen zu
studieren. In Abschnitt 5.3.2 waren wir durch diese Methodein der Lage zu zeigen, dass
die Kopplung der Duschinsky-Rotationen den thermischen Elektronentransfer von nieder-
zu hochfrequenten Normalschwingungen induzieren kann. Wir könnten ebenso die Ku-
mulantenerzeugende über die Parameter der zeitabhängigen erzeugenden Funktion an die
Zeitkorrelationsfunktion koppeln (Abschn. 5.1.2).

Die wichtigen Beiträge dieser Arbeit sind die Einführungder Methode der Zeitkorrela-
tionsfunktion und der Nicht-Condon-Effekte zum Verfahrender erzeugenden Funktion [46].
Ersteres kann einfach durch Setzen der Parameter der zeitabhängigen erzeugenden Funk-
tion in die auf kohärenten Zuständen basierende erzeugende Funktion eingeführt werden.
Die Nicht-Condon-Effekte wurden mittels des Verschiebungsoperators berücksichtigt (Ab-
schn. 3.2). Mithilfe des Phasenverschiebungsoperators haben wir denselben mathematis-
chen Apparat der erzeugenden Funktion der FCFs für die erzeugende Funktion im Nicht-
Condon-Fall verwendet. Der Phasenverschiebungsoperatorführt Hilfsphasenparameter für
Impuls- und Ortsoperatoren ein, die für die durch partielle Ableitungen nach den Hilfspa-
rametern erhaltenen Nicht-Condon-Operatoren verwendet werden sollen: In Abschn. 3.2
haben wir das Auswertungsverfahren für Nicht-Condon-Integrale in der Weise entwickelt,
dass wir diese Integrale in MHP transformiert haben, die derexistierenden Linearkombina-
tion der FC-Integral-Verfahren nicht gleichen [36,49].

In Kapitel 6 haben wir Nicht-Condon-Effekte in der linearenHerzberg-Teller(HT)-Näherung
(Gl. (2.24)) betrachtet und greifen für die HT-Erweiterung auf die auf kohärenten Zuständen
basierende erzeugende Funktion zurück. Die Erweiterung auf nichtlineare Probleme (ein-
schließlich Orts-Impulsoperator-Kopplungstermen) und die feinkörnigen Vorauswahl-Strategien
werden durch Aufstellen gemeinsamer Matrizen und Vektorenfür die MHP ermöglicht (s.
z. B. Gl. (6.16)). Wir können auch die Zeitkorrelationsfunktion und die Vorauswahl-
Strategien aus der erzeugenden Funktion, die auf kohärenten Zuständen basiert, ableiten.
Mit der Berechnung der komplexen MHP können wir die Zeitkorrelationsfunktion ein-
schließlich beliebiger Nicht-Condon-Polynome auswerten(Gl. (6.4)). Die erzeugende
Funktion fir den Nicht-Condon-Fall kann auf den elektronischen Circulardichroismus mit
seinen Kopplungstermen für das elektrische und magnetischeÜbergangsdipolmoment angewen-
det werden [102].

Wir haben die Methode der erzeugenden Funktionen für einzelne vibronische Level in
Kapitel 7 vorgeschlagen. Die einzelnen vibronischen Levelsind am Anregungsprofil der
Resonanz-Raman-Streuung und dem Fluoreszenzspektrum desvibronischen Einzelzustands
beteiligt. Die erzeugenden Funktionen der Resonanz-Raman-Streuung und der vibronis-
chenÜbergange ausgehend aus einem einzelnen vibronischen Zustand (Abschn. 7.2 und 7.3)
sind verknüpft mitTr((ω − Ĥ ′/~ + iΓ/2)−1 |vi〉〈vj |) bzw. Tr(δ(ω − Ĥ ′/~)|v〉〈v|). Der
größte Unterschied zwischen den beiden Spuren ist die Tatsache, dass die vibronischen
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Einzelzustände in den Ket- und Bra-Zuständen in der ersten Spur identisch (|v〉〈v|), in
der zweiten aber verschieden sind (|vi〉〈vj|). Wir können zwar die Resonanz-Raman-An-
regungsprofile mit der half-FT (einem Spezialfall der Laplacetransformation) und die Spur
des vibronischen Einzelzustands mit der vollen FT mit der Methode der Zeitkorrelations-
funktion berechnen, doch lassen sie sich bei der zeitunabh¨angigen Herangehensweise di-
rekt auswerten (Abschn. 2.1). Die Zeitkorrelationsfunktion für Resonanz-Raman-Prozesse
ähnelt der des vibronischen Einzelzustandsübergangs, aber Resonanz-Raman-streuung beinhält
normalerweise zwei verschiedene vibronische Einzelzust¨ande im elektronischen Ausgangszu-
stand.

Die erzeugenden Funktionen werden mittels des kohärentenFockzustandes, der eine Mis-
chung von Besetzungszahlvektor- und kohärenten Phasenvektorzuständen (Abschn. 7.1) ist,
beschrieben. Die kohärenten Fockzustände werden erhalten, indem man partielle Ableitun-
gen nach den nicht zum Integralraum gehörenden Phasenparametern des kohärenten Zus-
tandes bildet (Abschn. 2.3). Mithilfe der in den vorausgegangenen Kapiteln ausgenutzten
MHP-Technik ist die automatische Berechnung zur Erzeugungvon vibronischen Einzelzu-
ständen möglich, danach lassen sich die Nicht-Condon-Effekte ebenso wie die Verschiebung-
soperatoren des kohärenten Zustandes einführen. Mit dererzeugenden Funktion des vi-
bronischen Einzelzustands sind wir in der Lage, feinkörnige Vorauswahl-Strategien des
mehrdimensionalen, festen QuantenzahlenraumesX entweder für den FC- oder den Nicht-
Condon-Prozess zu erstellen. Wir können außerdem die erzeugende Funktion des vibronis-
chen Einzelzustandsübergangs über die Parameter der zeitabhängigen Erzeugendenfunktion
als Zeitkorrelationsfunktion ausnutzen (Gl. (4.42) und (4.43)). Mit der Erzeugendenfunk-
tion des vibronischen Einzelzustands könnten auch thermische Verteilungen, die nicht der
Boltzmannverteilung genügen, wie die thermo-kohärenteVerteilung erzeugt werden (s. z.
B. Refs. [84,230]).

Wir können die erzeugende Funktion der Intensität der Resonanz-Raman-Streuung bei
endlicher Temperatur und bei Null Kelvin einschließlich der Nicht-Condon-Effekte in einer
Integralform erhalten, indem wir die Spur über die zwei vibronischen Einzelzustandsräume
für dieÜberlappung der erzeugenden Funktionen der Resonanz-Raman-Amplitude mit dem
thermischen Integralkern (Abschn. 7.2) bilden. Wie beim Absorptionsprozess kann die
erzeugende Funktion als Zeitkorrelationsfunktion und für die Summenregel bei den Vorauswahl-
Strategien verwendet werden. Es soll hier hervorgehoben werden, dass wir die geschlossene
Integralform des Wirkungsquerschnitts der Resonanz-Raman-Streuung in harmonischer Nä-
herung einschließlich der Duschinsky- und thermischen Effekte in funktioneller Analogie
zu den Försterartigen Energietransferprozessen vorgeschlagen haben (s. z. B. Ref. [8]),
welche die Form einer Faltung zwischen den Absorptions- undEmissionsspektren hat.

Zusätzlich haben wir die mittels des kohärenten Fockzustandes beschriebene erzeugende
Funktion auf ein anharmonischesÜbergangsproblem angewendet, das einige anharmonis-
che und ansonsten mehrere harmonische Freiheitsgrade besitzt, sodass wir auf die Vorteile
des Apparats der harmonischen erzeugenden Funktionen zur¨uckgreifen können (Abschn. 7.4).
Die anharmonische erzeugende Funktion wird durch die auf kohärenten Fockzuständen
basierenden Erzeugungsfunktionen mit den entsprechendenanharmonischen Entwicklungsko-
effizienten erweitert. Mit der Aufteilung des Integrationsraumes können wir die Summen-
regel für den anharmonischen̈Ubergang gerade wie für den harmonischen aufstellen und
außerdem die Zeitkorrelationsfunktion konstruieren.
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Schlußfolgerungen und Ausblicke Die Entwicklungen in dieser Arbeit sind im All-
gemeinen aufÜbergangsprobleme in harmonischer Näherung anwendbar (s. Abb. 8.2).
Mit leichten Modifikationen kann dasselbe Verfahren für andere Probleme wie Massen-
spektroskopie (s. z. B. Ref. [231]), FC-Prozesse in molekularen Verbindungen im Nicht-
Gleichgewicht (s. z. B. Ref. [232]) und die FörsterartigenEnergietransferprozesse (s. z.
B. Ref. [8]) eingesetzt werden. Der innere Umwandlungsprozess benötigt die Matrixele-
mente von Impulsoperatoren, die einfach per Nicht-Condon-Entwicklung behandelt werden
können (Kap. 6). Die Nicht-Condon-Entwicklungen könnenauf vibronische Kopplungsef-
fekte angewendet werden (s. z. B. Refs. [50, 80, 88, 96]), beispielsweise die Spin-Bahn-
Kopplung (s. z. B. Ref. [96]), Jahn-Teller-Effekte (s. z. B.Ref. [2]), der nichtadiabatis-
che Elektronentransfer (s. z. B. Ref. [233]) und die Dissipation mit Umgebungseffek-
ten (s. z. B. Ref. [8]). Die Resonanz-Raman-Entwicklungen in dieser Arbeit könnten
für Oberflächenverstärkungseffekte, d. h. surface enhanced Raman scattering (SERS) (s.
z. B. Refs. [234–237]) und surface enhanced Raman optical activity (SEROA) (s. z. B.
Ref. [238]) mit Nicht-Condon-Effekten und Effekten endlicher Temperatur erweitert wer-
den, sofern wir eine korrekte Beschreibung auf metallischen Oberflächen mit beispielsweise
dem Jellium-Modell (s. z. B. Ref. [239]) erreichen. Die Erweiterung auf allgemeine
anharmonische Probleme muss erfolgen, da die harmonische Näherung in vielen Fällen
sehr grob ist. Wie im anharmonischen Abschnitt (Abschn. 7.4) erwähnt wurde, sind die
Nicht-Condon-Entwicklung und die Prozedur zur Berechnungvon Matrixelementen für an-
harmonische Probleme geeignet, möglicherweise mit der Reaktionspfadmethode [150] von
Luckhaus kombiniert zu werden. Unsere Zeitkorrelationsfunktion könnte über die Auswer-
tung komplexer MHP für die Propagation von Wellenpaketen in der Zeitdomäne auf allge-
meinen anharmonischen Potentialhyperflächen (s. z. B. Refs. [137, 203–206]) verwendet
werden.

Eine vereinigte Beschreibung vibronischerÜbergänge in Frequenz- und Zeitdomäne, wie
sie in dieser Arbeit vorgestellt wurde, vereinfacht verschiedene theoretische Anwendungen
und experimentelle Analysen für große molekulare Systeme.
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A. Supplementary data for chapter 4

A.1. General remarks
In this appendix we report maximum quantum numbersv

′max
k (final state) andvmax

k (initial state) in each
harmonic modek determined via Eq. (4.20) in this thesis, together with the various wavemunber windows for
each irreducible representationγ, the number of the evaluated integrals and the mode couplingerror ǫc (see
Figures 4.2 and 4.4). For each molecule the irreducible representation and the numbering of the vibrational
modes are reported as in the previous work cited in this thesis [Jankowiak, Stuber and Berger,J. Chem. Phys.,
127, 234101 (2007)].
Maximum mode excitation numbers in each normal mode are given in following form:

〈v(γ)′max|v(γ)max〉

v(γ)
′

max andv(γ)max are vectors containing the maximum quantum numbers of the various normal modes of each
irreducible representationγ for the final and initial electronic states respectively. The vectors are sorted accord-
ing to the number of vibrational mode (in ascending order), which are given in subsection of each molecule, for
each irreducible representation.
The wavenumber windows for each irreducible representation γ are given as [̃ν(γ)

min,ν̃(γ)
max] in cm−1. The win-

dows are determined by the maximum mode coupling numbers andmaximum mode excitation numbers for
each irreducible representationγ as the following relations,

−ν̃(γ)
min = max

s∈CN(γ)

M(γ)

(

s
M(γ)∑

k=s1

v
(γ)
max,kν̃k)

and

ν̃(γ)
max = max

s∈CN(γ)

M(γ)

(

s
M(γ)∑

k=s1

v
(γ)′

max,kν̃
′
k)

whereCN(γ)

M(γ) is the index set choosingM (γ) modes out ofN (γ) for initial or final state of irreducible repre-

sentationγ. WhenM (γ) exceedsN (γ), we have sets to v(γ)max or v(γ)
′

max accordingly. In our program hotFCHT,
we have set the wavenumbers to the nearest graining point (−[−ν̃(γ)

min/∆ν̃] ∗ ∆ν̃ or [ν̃(γ)
max/∆ν̃] ∗ ∆ν̃) with

graining∆ν̃ = 10 cm−1.
The number of integrals that is to be evaluated according to the prescreening conditions are reported for the
various irreducible representations and wavenumber windows.
For the calculation of mode coupling errorǫc, we set the mode coupling thresholdtc as10−12, and set the
mode excitation thresholdtm = 0.0. We report the results only up toǫc ≃ 0.005% for the mode coupling error
due to the numerical precision and the sensitivity to the selection of CODATA sets for the conversion of units.

The incrementsF (m(γ))
FC;c (see Eq. (4.29) in this thesis) are computed for each irreducible representationγ and

subsequently folded (convoluted) to form the total incrementsF (m)
FC;c, from which we obtainF̃ (M)

FC;c and finally
(via Eq. (4.27) in this thesis)ǫc.
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A.2. Formic acid
• Harmonic vibrational wavenumbers of the initial electronic state incm−1:

1. a′(from ν̃1 to ν̃7)
3765.2386 3088.1826 1825.1799 1416.9512 1326.4684
1137.0490 629.7144

2. a′′(from ν̃8 to ν̃9)
1062.7001 677.5835

• Harmonic vibrational wavenumbers of the final electronic state incm−1:

1. a′(from ν̃′
1 to ν̃′

7)
3629.9472 3064.9143 1566.4602 1399.6554 1215.3420
1190.9077 496.2845

2. a′′(from ν̃′
8 to ν̃′

9)
1033.6951 717.3864

A.2.1. Maximum mode excitation numbers
• a′

0 K

Tol. set Max. quantum numbers [ν̃
(a′)
min ,ν̃(a′)

max] # of integrals
I < 2 2 8 3 4 3 4 | 0 0 0 0 0 0 0 > [0.00, 38554.46] 27792
II < 2 2 7 3 3 2 4 | 0 0 0 0 0 0 0 > [0.00, 32199.94] 10104
III < 1 1 6 2 2 2 2 | 0 0 0 0 0 0 0 > [0.00, 18892.93] 1084

300 K

Tol. set Max. quantum numbers [ν̃
(a′)
min ,ν̃(a′)

max] # of integrals
I < 2 2 8 4 4 3 5 | 0 0 1 1 1 2 3 > [−8731.84, 42435.54] 1339196
II < 2 2 7 3 3 2 4 | 0 0 1 1 1 1 3 > [−7594.79, 34581.75] 200785
III < 1 1 6 2 2 2 3 | 0 0 0 1 1 1 2 > [−5139.90, 21323.62] 14931

1000 K

Tol. set Max. quantum numbers [ν̃
(a′)
min ,ν̃(a′)

max] # of integrals
III < 2 1 7 4 4 4 8 | 1 1 2 3 3 4 7 > [−27690.24, 40483.93] 60445788

• a′′

0 K

Tol. set Max. quantum numbers [ν̃
(a′′)
min ,ν̃(a′′)

max ] # of integrals
I < 2 2 | 0 0 > [0.00, 3502.16] 9
II < 1 2 | 0 0 > [0.00, 2468.47] 6
III < 0 1 | 0 0 > [0.00, 717.39] 2

300 K

Tol. set Max. quantum numbers [ν̃
(a′′)
min ,ν̃(a′′)

max ] # of integrals
I < 2 3 | 2 3 > [−4158.15, 4219.55] 144
II < 2 2 | 1 2 > [−2417.87, 3502.16] 54
III < 1 2 | 1 2 > [−2417.87, 2468.47] 20

1000 K

Tol. set Max. quantum numbers [ν̃
(a′′)
min ,ν̃(a′′)

max ] # of integrals
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III < 4 7 | 4 7 > [−8993.88, 9156.49] 1600

A.2.2. Mode coupling error

M
ǫc/% = (1− F̃

(M)
FC;c)/%

T = 0 K(%) T = 300 K(%) T = 1000 K(%)
0 78.50 80.61 96.60
1 20.25 28.02 86.80
2 3.61 10.87 75.93
3 0.41 2.51 54.73
4 0.03 0.55 40.23
5 0.00 0.09 22.48
6 0.01 12.82
7 0.00 5.53
8 2.26
9 0.73

10 0.20
11 0.04
12 0.01
13 0.00
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A.3. Anthracene
• Harmonic vibrational wavenumbers of the initial electronic state incm−1:

1. ag(from ν̃1 to ν̃12)
3067.9748 3044.8144 3036.9660 1530.2636 1459.5709
1369.1946 1239.8467 1149.6155 991.7868 735.3180
619.9167 383.7560

2. b1g(from ν̃13 to ν̃23)
3056.1237 3039.4771 1600.7036 1561.1451 1364.6309
1249.2842 1168.0443 1085.0601 897.1103 517.3005
382.4764

3. b2g(from ν̃24 to ν̃27)
921.8861 737.2308 461.2524 224.7566

4. b3g(from ν̃28 to ν̃33)
946.1364 852.0268 807.8076 696.2309 549.1235
253.1248

5. au(from ν̃34 to ν̃38)
946.9771 821.6030 692.7847 474.9120 114.9426

6. b1u(from ν̃39 to ν̃44)
923.4842 853.3592 709.1380 453.8243 367.9794
87.0330

7. b2u(from ν̃45 to ν̃55)
3056.3758 3040.2103 3035.1222 1604.1604 1431.3884
1290.0584 1245.0921 1132.2622 886.8443 637.6725
227.6664

8. b3u(from ν̃56 to ν̃66)
3067.6168 3043.4896 1517.3260 1428.9232 1357.9155
1322.2589 1145.5196 1117.1321 987.1214 790.0827
596.0896

• Harmonic vibrational wavenumbers of the final electronic state incm−1:

1. ag(from ν̃′
1 to ν̃′

12)
3074.6924 3049.5882 3036.8257 1526.6846 1469.0538
1355.6525 1218.4629 1144.4341 1008.5096 723.7630
585.8853 379.0983

2. b1g(from ν̃′
13 to ν̃′

23)
3060.3080 3045.2855 1496.6960 1463.9727 1365.1563
1243.3561 1166.6021 1046.6257 885.4103 508.3649
373.7143

3. b2g(from ν̃′
24 to ν̃′

27)
837.0218 689.9723 406.7704 220.9519

4. b3g(from ν̃′
28 to ν̃′

33)
866.4218 809.0660 716.3337 474.9560 296.4920
188.6317
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5. au(from ν̃′
34 to ν̃′

38)
864.6336 773.0836 495.8657 462.7943 105.6943

6. b1u(from ν̃′
39 to ν̃′

44)
832.9560 793.0119 685.7976 387.7267 301.2646
80.7003

7. b2u(from ν̃′
45 to ν̃′

55)
3060.6666 3045.9702 3035.5527 1537.2677 1407.3867
1257.2842 1238.7458 1083.1173 877.0652 641.9751
225.1369

8. b3u(from ν̃′
56 to ν̃′

66)
3074.1325 3048.4088 1509.2821 1421.5496 1381.1242
1305.0277 1170.0600 1133.1663 1006.4406 791.1413
579.4029

A.3.1. Maximum mode excitation numbers
• ag

0 K

Tol. set Max. quantum numbers [ν̃
(ag)

min ,ν̃
(ag)
max ] # of integrals

I < 1 1 1 4 4 6 2 3 2 2 3 5 | 0 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 29674.45] 447452
II < 1 0 0 3 3 5 2 3 2 2 2 4 | 0 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 22273.47] 42604
III < 0 0 0 3 2 4 1 2 1 1 1 3 | 0 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 15229.64] 2389

100 K

Tol. set Max. quantum numbers [ν̃
(ag)
min ,ν̃

(ag)
max ] # of integrals

I < 1 1 1 4 4 6 2 3 2 2 3 5 | 0 0 0 0 0 0 0 0 0 1 1 2 > [−2122.75, 29674.45] 1177589
II < 1 0 0 3 3 5 2 3 2 2 2 4 | 0 0 0 0 0 0 0 0 0 0 1 1 > [−1003.67, 22273.47] 70326
III < 0 0 0 3 2 4 1 2 1 1 1 3 | 0 0 0 0 0 0 0 0 0 0 0 1 > [−383.76, 15229.64] 3151

300 K

Tol. set Max. quantum numbers [ν̃
(ag)

min ,ν̃
(ag)
max ] # of integrals

II < 1 0 0 3 3 5 2 3 2 2 3 7 | 0 0 0 1 1 1 1 1 1 2 3 5 > [−11997.66, 29381.11] 77641163
III < 0 0 0 3 2 4 1 2 1 2 2 5 | 0 0 0 0 0 1 1 1 1 1 2 3 > [−7141.55, 18572.66] 508664

500 K

Tol. set Max. quantum numbers [ν̃
(ag)

min ,ν̃
(ag)
max ] # of integrals

III < 0 0 0 3 3 4 2 2 2 3 3 8 | 0 0 0 1 1 1 1 2 2 3 3 6 > [−16249.92, 28114.37] 341185395

• b1g

0 K

Tol. set Max. quantum numbers [ν̃
(b1g)

min ,ν̃
(b1g)
max ] # of integrals

I < 1 1 2 2 1 1 1 2 2 2 2 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 6105.59] 148
II < 0 0 2 2 1 1 1 2 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 5921.34] 76
III < 0 0 0 1 0 0 0 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 2510.60] 4

100 K

Tol. set Max. quantum numbers [ν̃
(b1g)

min ,ν̃
(b1g)
max ] # of integrals

I < 1 1 2 2 1 1 1 2 2 2 2 | 0 0 0 0 0 0 0 0 0 1 2 > [−1282.25, 12026.93] 5013
II < 0 0 2 2 1 1 1 2 1 1 1 | 0 0 0 0 0 0 0 0 0 1 1 > [−899.78, 5921.34] 103
III < 0 0 0 1 0 0 0 1 0 0 1 | 0 0 0 0 0 0 0 0 0 0 1 > [−382.48, 2510.60] 11
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300 K

Tol. set Max. quantum numbers [ν̃
(b1g)

min ,ν̃
(b1g)
max ] # of integrals

II < 0 0 2 2 1 1 1 2 2 3 5 | 0 0 1 1 1 1 1 1 2 3 5 > [−9784.98, 13179.08] 931984
III < 0 0 1 1 1 1 1 1 1 2 3 | 0 0 0 0 1 1 1 1 1 2 3 > [−4929.39, 5569.18] 7523

500 K

Tol. set Max. quantum numbers [ν̃
(b1g)

min ,ν̃
(b1g)
max ] # of integrals

III < 0 0 1 1 1 1 2 2 2 4 6 | 0 0 1 1 1 1 2 2 2 4 6 > [−15190.97, 14798.85] 17892000

• b2g

0 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

I < 2 2 3 2 | 0 0 0 0 > [0.00, 4274.30] 84
II < 2 2 2 1 | 0 0 0 0 > [0.00, 3053.99] 26
III < 2 1 2 0 | 0 0 0 0 > [0.00, 2487.58] 14

100 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

I < 2 2 3 3 | 0 1 1 3 > [−1872.75, 4937.16] 1053
II < 2 2 2 2 | 0 0 1 2 > [−910.77, 4309.43] 342
III < 2 1 2 2 | 0 0 1 2 > [−910.77, 2487.58] 52

300 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

II < 2 2 4 8 | 2 2 4 8 > [−6961.30, 6448.68] 102585
III < 2 2 3 6 | 1 1 3 6 > [−4391.41, 5600.01] 21744

500 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

III < 2 3 5 10 | 2 3 5 10 > [−8609.29, 7987.33] 537264

• b3g

0 K

Tol. set Max. quantum numbers [ν̃
(b3g)

min ,ν̃
(b3g)
max ] # of integrals

I < 2 2 3 4 8 9 | 0 0 0 0 0 0 > [0.00, 8153.60] 6456
II < 2 1 2 2 6 7 | 0 0 0 0 0 0 > [0.00, 6264.88] 1744
III < 1 1 2 2 4 5 | 0 0 0 0 0 0 > [0.00, 3568.55] 352

100 K

Tol. set Max. quantum numbers [ν̃
(b3g)

min ,ν̃
(b3g)
max ] # of integrals

I < 2 2 3 4 8 10 | 0 0 0 1 1 3 > [−2004.73, 8307.08] 20090
II < 2 1 2 2 6 7 | 0 0 0 0 1 2 > [−1055.37, 6264.88] 4248
III < 1 1 2 2 4 5 | 0 0 0 0 0 1 > [−253.12, 3568.55] 455

300 K

Tol. set Max. quantum numbers [ν̃
(b3g)

min ,ν̃
(b3g)
max ] # of integrals

II < 2 2 3 4 8 11 | 2 2 2 2 3 7 > [−10023.65, 11846.69] 7834000
III < 1 1 2 3 5 8 | 1 1 1 2 2 5 > [−6362.30, 7524.54] 224945

500 K

Tol. set Max. quantum numbers [ν̃
(b3g)

min ,ν̃
(b3g)
max ] # of integrals

III < 2 3 3 4 7 11 | 2 2 2 3 4 9 > [−11775.25, 12359.26] 36790704
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• au

0 K

Tol. set Max. quantum numbers [ν̃
(au)
min ,ν̃(au)

max ] # of integrals
I < 2 2 4 2 2 | 0 0 0 0 0 > [0.00, 5258.90] 197
II < 2 2 4 2 2 | 0 0 0 0 0 > [0.00, 3712.73] 69
III < 1 1 2 1 1 | 0 0 0 0 0 > [0.00, 1856.37] 21

100 K

Tol. set Max. quantum numbers [ν̃
(au)
min ,ν̃(au)

max ] # of integrals
I < 2 2 4 2 7 | 0 0 1 1 6 > [−1857.35, 6924.35] 14288
II < 2 2 4 2 5 | 0 0 0 1 5 > [−1049.62, 6184.49] 3188
III < 1 1 2 1 4 | 0 0 0 1 4 > [−934.68, 3092.24] 678

300 K

Tol. set Max. quantum numbers [ν̃
(au)
min ,ν̃(au)

max ] # of integrals
II < 2 2 4 4 16 | 2 2 2 4 16 > [−8661.46, 8801.18] 3877511
III < 1 2 3 3 12 | 1 1 2 3 12 > [−5958.20, 6555.11] 284832

500 K

Tol. set Max. quantum numbers [ν̃
(au)
min ,ν̃(au)

max ] # of integrals
III < 2 3 4 5 21 | 2 2 3 5 20 > [−10288.93, 10565.53] 24088320

• b1u

0 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
I < 2 2 2 4 4 2 | 0 0 0 0 0 0 > [0.00, 4802.84] 473
II < 2 2 2 2 2 2 | 0 0 0 0 0 0 > [0.00, 3251.94] 73
III < 2 0 1 2 2 1 | 0 0 0 0 0 0 > [0.00, 2441.37] 34

100 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
I < 2 2 2 4 4 9 | 0 0 1 1 2 9 > [−2682.22, 7379.50] 103320
II < 2 2 2 2 3 7 | 0 0 0 1 1 7 > [−1431.03, 5527.32] 8973
III < 2 0 1 2 2 5 | 0 0 0 1 1 5 > [−1256.97, 3729.69] 2307

300 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
II < 2 2 2 4 6 22 | 2 2 2 4 5 22 > [−10541.88, 9757.43] 119774634
III < 2 1 2 3 4 16 | 1 1 2 3 3 16 > [−7053.06, 7489.96] 5195308

500 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
III < 2 2 3 5 7 27 | 2 2 3 5 6 27 > [−12507.99, 11535.72] 1557855504
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• b2u

0 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
I < 1 1 0 2 2 1 2 2 2 1 2 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 6135.20] 131
II < 0 0 0 1 1 1 2 2 1 1 1 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 4643.73] 54
III < 0 0 0 1 0 0 0 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 2620.39] 4

100 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
I < 1 1 0 2 2 1 2 2 2 1 3 | 0 0 0 0 0 0 0 0 0 1 3 > [−1320.67, 11995.95] 5571
II < 0 0 0 1 1 1 2 2 1 1 2 | 0 0 0 0 0 0 0 0 0 1 2 > [−1093.01, 6180.99] 418
III < 0 0 0 1 0 0 0 1 0 0 2 | 0 0 0 0 0 0 0 0 0 0 2 > [−455.33, 2620.39] 20

300 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
II < 0 0 0 1 1 1 2 2 2 3 8 | 0 0 0 1 1 1 1 1 2 3 8 > [−9833.64, 11662.14] 888980
III < 0 0 0 1 1 1 1 1 1 2 6 | 0 0 0 0 1 1 1 1 1 2 6 > [−5362.79, 5579.43] 12618

500 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
III < 0 0 0 1 1 1 1 2 2 3 10 | 0 0 0 1 1 1 1 2 2 3 10 > [−13798.59, 13538.34] 8411337

• b3u

0 K

Tol. set Max. quantum numbers [ν̃
(b3u)
min ,ν̃(b3u)

max ] # of integrals
I < 1 1 2 1 2 2 2 1 2 1 2 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 9141.11] 738
II < 0 0 1 1 2 2 1 1 1 1 2 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 5372.30] 76
III < 0 0 0 0 1 1 1 0 1 0 0 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 2686.15] 11

100 K

Tol. set Max. quantum numbers [ν̃
(b3u)
min ,ν̃(b3u)

max ] # of integrals
I < 1 1 2 1 2 2 2 1 2 1 2 | 0 0 0 0 0 0 0 0 0 1 1 > [−1386.17, 9141.11] 1052
II < 0 0 1 1 2 2 1 1 1 1 2 | 0 0 0 0 0 0 0 0 0 0 1 > [−596.09, 5372.30] 89
III < 0 0 0 0 1 1 1 0 1 0 0 | 0 0 0 0 0 0 0 0 0 0 0 > [0.00, 2686.15] 11

300 K

Tol. set Max. quantum numbers [ν̃
(b3u)
min ,ν̃(b3u)

max ] # of integrals
II < 0 0 1 1 2 2 2 1 2 2 3 | 0 0 1 1 1 1 1 1 1 2 3 > [−6314.68, 9725.31] 20098
III < 0 0 1 1 1 1 1 1 1 1 2 | 0 0 0 1 1 1 1 1 1 1 2 > [−5301.28, 5616.98] 4729

500 K

Tol. set Max. quantum numbers [ν̃
(b3u)
min ,ν̃(b3u)

max ] # of integrals
III < 0 0 1 1 2 1 2 2 2 3 4 | 0 0 1 1 1 1 2 2 2 3 4 > [−12771.48, 14072.62] 1058422
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A.3.2. Mode coupling error

M
ǫc/% = (1− F̃

(M)
FC;c)/%

T = 0 K(%) T = 100 K(%) T = 300 K(%) T = 500 K(%)
0 81.82 90.72 99.84 100.00
1 45.93 72.40 99.50 100.00
2 18.11 51.10 98.20 99.99
3 5.51 30.67 95.95 99.97
4 1.31 15.99 91.41 99.90
5 0.24 7.23 84.91 99.76
6 0.04 2.81 75.77 99.42
7 0.00 0.96 64.92 98.85
8 0.28 52.98 97.73
9 0.07 41.10 96.07

10 0.02 30.27 93.38
11 0.00 21.09 89.79
12 13.96 84.82
13 8.72 78.81
14 5.19 71.55
15 2.91 63.55
16 1.56 54.94
17 0.79 46.28
18 0.38 37.85
19 0.18 30.08
20 0.08 23.19
21 0.03 17.34
22 0.01 12.57
23 0.00 8.84
24 6.02
25 3.98
26 2.55
27 1.58
28 0.95
29 0.56
30 0.32
31 0.17
32 0.09
33 0.05
34 0.03
35 0.01
36 0.01
37 0.00

147



B. Supplementary data for chapter 5

B.1. General remarks
In this appendix we report vertical transition, peak maximum, cumulants of vibronic transition energies, cor-
responding to figures 5.1 and 5.2. Cumulans are computed via and the method described in Sec. 5.1.1 of this
thesis. We added a variance of a Gaussian line shape function(4.51E+04(hc0cm−1)2) to the second order
cumulants to include the line shape to the statistics. And weprovide equilibrium structures of (modified) bac-
teriochlorophyll and harmonic wavenumbers which are used for the calculations in section 5.3.2 and figure 1.2.
The relevant data for figures 5.3, 5.4 and 5.6 are also provided in this appendix.

B.2. Formic acid

n
〈En

ǫ′,ǫ〉c/(hc0cm−1)n

T = 0 K T = 1000 K

1 2.4197E+03 2.4130E+03
2 4.1926E+06 5.3965E+06
3 8.6790E+09 1.0320E+10
4 2.5221E+13 3.5786E+13
5 1.0062E+17 1.4515E+17
6 4.8832E+20 7.6078E+20
7 2.6660E+24 4.4214E+24
8 1.6154E+28 2.9387E+28

Vertical transition energy/(hc0cm−1) 2.3286E+03 2.3286E+03

B.3. Anthracene

n
〈En

ǫ′,ǫ〉c/(hc0cm−1)n

T = 0 K T = 500 K

1 1.7657E+03 1.4946E+03
2 2.2815E+06 2.5229E+06
3 3.1553E+09 3.1617E+09
4 4.9080E+12 5.2116E+12
5 8.8569E+15 9.2295E+15
6 2.0027E+19 2.1892E+19
7 5.8643E+22 6.4247E+22
8 2.1280E+26 2.3674E+26

Vertical transition energy/(hc0cm−1) 1.5957E+03 1.5957E+03

B.4. Bacteriochlorophyll
• Harmonic vibrational wavenumbers of the initial electronic state incm−1:

a(from ν̃162 to ν̃1)
21.4557 25.2760 28.9246 35.9083 36.9274 55.0378 64.8232 78.6292 101.4081 110.1421 117.8279 129.2884 132.0941 141.7461 167.2401 171.5542
175.7069 186.0948 190.6627 216.3728 221.1104 232.5598 242.3415 251.1938 272.4438 285.1315 293.2799 319.4423 333.5508 343.0773 350.1340
375.3155 378.7104 408.4328 422.9386 433.6818 439.7590 444.4470 484.1491 524.9598 527.2614 543.5474 559.2862 572.1327 581.9131 612.2568
620.5894 634.8125 642.1622 655.1760 656.9652 675.5145 678.9407 688.1909 717.9663 720.0682 732.7538 735.4780 739.9762 742.7562 746.3043
762.0798 771.6862 777.8221 785.0985 808.5506 818.1191 820.2261 837.1350 840.6778 849.3824 859.0087 876.4723 884.1983 886.3528 911.6225
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935.0293 937.2806 945.3227 948.6115 954.2098 956.4429 986.5676 990.0052 993.8284 1012.8991 1026.2299 1033.8934 1044.3209 1072.2985 1096.0683
1103.9634 1132.8693 1134.7095 1142.5179 1147.8039 1150.2906 1150.8844 1160.4601 1168.1541 1174.6808 1184.8494 1193.6330 1212.2979 1220.2899
1227.5304 1246.6922 1254.1699 1262.7627 1274.4224 1287.2967 1298.5147 1318.5625 1324.4651 1339.2505 1361.9833 1366.7085 1380.9141 1403.8590
1423.5844 1437.9237 1441.5442 1446.0721 1452.4917 1456.0822 1460.4679 1466.6235 1477.9717 1477.9926 1492.3057 1498.9438 1509.2878 1520.1494
1538.3528 1550.2263 1562.6400 1571.4999 1610.0767 1648.0236 1674.9175 1684.6337 1702.1374 2861.5879 3010.7520 3013.5222 3015.0308 3026.5882
3036.0644 3052.4533 3062.5547 3074.0909 3132.9584 3151.1517 3168.9883 3170.4017 3208.6810 3224.2968 3234.1183 3262.0423 3263.7019 3283.8211
3658.0584

• Harmonic vibrational wavenumbers of the final electronic state incm−1:

a(from ν̃′
162 to ν̃′

1)
24.1874 26.9493 28.1876 34.1241 42.3549 45.4448 59.7211 74.7635 86.5382 107.2859 118.0977 127.6239 131.6449 140.7447 165.8894 169.8607
172.0188 182.4159 187.5042 214.9788 220.1778 240.7945 247.6741 251.1979 272.3135 285.8508 300.4375 311.5338 336.6297 341.5927 355.7712
373.7130 382.8051 407.6117 431.4515 436.2209 441.4128 450.5279 485.5725 535.1172 552.5416 554.9939 565.6402 574.7885 597.1107 618.8413
626.0233 635.1243 647.7105 657.0271 662.0390 681.5670 683.4574 691.4158 723.1445 732.5825 739.4243 743.7289 743.9494 749.6568 762.9512
791.3647 813.0276 818.7360 820.4121 828.8282 840.7354 845.5062 861.3969 862.3159 877.4312 882.0767 886.4929 891.8679 892.1326 911.6777
936.8690 938.4925 948.4734 953.0589 958.2847 964.3568 988.5890 996.9944 1003.1644 1009.5575 1020.0180 1024.6730 1048.3166 1078.1472 1090.9059
1113.2551 1140.7534 1148.7002 1152.0833 1156.3096 1161.4099 1164.5131 1166.3020 1170.3287 1180.0757 1188.7186 1197.6781 1216.9217 1227.1321
1247.8446 1256.8131 1266.8484 1272.8347 1278.0447 1288.9878 1306.7606 1333.3498 1336.6701 1345.5470 1361.0684 1371.3230 1398.2680 1413.3843
1429.7560 1444.4840 1445.4825 1450.2790 1454.7084 1456.3188 1461.1588 1469.0316 1478.2566 1495.3556 1502.3581 1505.2608 1517.8413 1551.0598
1560.2710 1564.3924 1570.3108 1574.7650 1603.7168 1640.9509 1697.1686 1732.1366 1762.3276 2898.5810 3028.8494 3035.8380 3038.0599 3044.9258
3057.8497 3063.4126 3066.0358 3084.8592 3144.9878 3168.8037 3181.6048 3184.4366 3222.8470 3237.2230 3242.5729 3267.1586 3268.8032 3289.5138
3648.6472

• Equilibrium structure of initial state:

Atom x/Å y/Å z/̊A
C -0.434498854852 -2.992831300387 -0.994103540802
N -0.009467710721 -2.064288379190 -0.070579215362
C 0.493763232230 -2.738656770068 0.939796945149
N 0.410885417668 -4.072402934786 0.707580306356
C -0.181986811386 -4.250741242313 -0.528476940408

Mg -0.053998117393 0.151635987704 -0.144093317610
N 1.938804465600 0.481968071483 -0.872801132227
C 2.232792598342 0.547939302586 -2.191180214269
C 3.737277895993 0.632837853258 -2.398711043726
C 4.278669510770 0.582690323602 -0.986386706220
C 3.089526772676 0.522591424747 -0.103578992636
C 1.337503464580 0.552072411320 -3.242093558435
C -0.083309191632 0.530412606218 -3.194664398762
C -0.985250798797 0.587172481089 -4.321758675582
C -2.281621820826 0.552451611674 -3.782913326106
C -2.151544103423 0.480990370251 -2.386146312018
N -0.809508270416 0.458073320356 -2.044427433816
C -3.222880741458 0.445450956127 -1.446446254848
C -3.170279501131 0.436844813936 -0.072010491604
C -4.420118691099 0.386539895897 0.803334127554
C -3.873640028443 0.669231631642 2.213824961248
C -2.371101799635 0.526980506490 2.030331055067
N -2.048774261585 0.443327298832 0.698554656402
C -1.436563928910 0.532778833308 3.031056884035
C -0.031210084025 0.509101560464 2.827255660360
C 0.732547923376 0.589676727449 4.013906098101
C -0.173399147446 0.657925211219 5.140322048425
C -1.621412583032 0.638753343921 4.537693498982
N 0.736470518920 0.452782775242 1.731529098898
C 2.049659771243 0.514627571610 2.181820377892
C 2.080025654341 0.589816052326 3.598213702439
C 3.144719755327 0.522514047456 1.272362019769
O 0.048911772579 0.718503534201 6.344608644967
C -0.631934175286 0.663433419304 -5.710999424125
O -1.414393884188 0.693148093357 -6.660576222774
H -4.114004101626 1.686844725087 2.540565424908
H -4.871492191282 -0.609651550302 0.745650565830
H -3.203066400592 0.588923409834 -4.343386758380
H 0.458110771733 0.696307940568 -5.921066786207
H 4.106190711491 -0.193952311085 -3.012612427492
C 5.572258586092 0.587755001004 -0.648123205426
H 2.969354794469 0.658713664737 4.206509727466
H -2.173665906520 -0.200230766272 4.975678624539
H -0.360832890192 -5.225902567758 -0.945923157378
H 0.729496353472 -4.797322476842 1.328530714143
H 0.918077482330 -2.302789197488 1.829933464530
H -0.887080928512 -2.686236301828 -1.922185559456
H -4.215170180060 0.445175264573 -1.885667853648
H 1.777706499418 0.609703242031 -4.230224889374
H 4.130561281940 0.569921251407 1.720015408259
H -5.178258262203 1.102883516671 0.481342299161
H 4.015813950010 1.561254312523 -2.906647014966
H -2.138516248005 1.552965518617 4.850292599873
H -4.264788809356 -0.009316133017 2.974812058519
H 5.896780688009 0.549508416469 0.384591503685
H 6.351078098613 0.633358557154 -1.400866597535
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B. Supplementary data for chapter 5

• Equilibrium structure of final state:

Atom x/Å y/Å z/̊A
C -0.464765173796 -3.017840623633 -1.045255432584
N -0.012106100103 -2.132948476621 -0.088725406280
C 0.484538265696 -2.862082357245 0.890707433228
N 0.369579638324 -4.179567646169 0.604402016111
C -0.235484039177 -4.296602303081 -0.630360702484

Mg -0.040440457336 0.055275000151 -0.128994320982
N 1.961164707501 0.452231443488 -0.866521218987
C 2.253465813231 0.525126867411 -2.177585234408
C 3.751072436489 0.638683982532 -2.393977439861
C 4.290265247161 0.623437454132 -0.979431038307
C 3.099913374371 0.534427992150 -0.102966846205
C 1.336457642831 0.526625948073 -3.222976250263
C -0.066174337164 0.505688215924 -3.158175524127
C -0.977223156103 0.590898930700 -4.287866413884
C -2.251446545482 0.567912133179 -3.763594596221
C -2.124955860590 0.471782206105 -2.345532859347
N -0.793615165390 0.423247443197 -2.007925438376
C -3.199359825707 0.456637257431 -1.439388466409
C -3.168879120420 0.445531309613 -0.052214928242
C -4.428382208744 0.497757088284 0.802776119190
C -3.877187393652 0.604008021202 2.238654841419
C -2.377046815970 0.492461972457 2.037276418478
N -2.058894136006 0.403999313162 0.713785291589
C -1.422416878793 0.523227459100 3.032164604518
C -0.032200650075 0.510632096202 2.817283190114
C 0.739104996322 0.655703042191 4.000526514973
C -0.181434150927 0.744056163406 5.138128512796
C -1.622791412784 0.663639746872 4.534504307157
N 0.736751763547 0.431259409942 1.722704270743
C 2.040223860681 0.546015523211 2.164676286954
C 2.065140184113 0.678121198347 3.596788669762
C 3.136061721567 0.563434275650 1.282892596219
O 0.053689982995 0.853445290833 6.323088862598
C -0.631002124807 0.691444168043 -5.700068555497
O -1.439469582918 0.735339306486 -6.609029787095
H -4.132529082090 1.556942551865 2.709747361233
H -5.025444980548 -0.406041875619 0.656398738219
H -3.172842896684 0.627315547877 -4.322237227969
H 0.452005502531 0.727393580742 -5.931635194842
H 4.132375746649 -0.192732190585 -2.993457595021
C 5.575126668246 0.675339978083 -0.623279675542
H 2.951982852412 0.793854591637 4.200888680691
H -2.150668536554 -0.181117976132 4.988186306810
H -0.439218128423 -5.250107709802 -1.084436574640
H 0.676182459962 -4.938300735898 1.191864265170
H 0.925535880757 -2.479119351820 1.796288649718
H -0.918845080323 -2.672356035480 -1.958288928005
H -4.184130608916 0.498586315029 -1.891020389269
H 1.766512905864 0.593850048851 -4.214521375648
H 4.113678723698 0.652999275775 1.740046766164
H -5.059600467848 1.344884435600 0.528571181440
H 4.008024847843 1.561545362192 -2.921591463272
H -2.172448470662 1.567408686737 4.815939489059
H -4.252351199772 -0.182917089396 2.896467909392
H 5.886933247237 0.660156016189 0.413469067298
H 6.363314304585 0.737272903551 -1.363668012035

• Fig. 5.3
Reorganization energy (1

2
δtdiag(ǫ′)δ)=1.0794E+03hc0cm−1

Temperature Cumulants With Duschinsky rotation Without Duschinsky rotation
0 K Mean/cm−1 1.5376E+03 1.0925E+03

Variance/(cm−1)2 2.9747E+06 1.4364E+06
100 K Mean/cm−1 1.8719E+03 1.0945E+03

Variance/(cm−1)2 4.1002E+06 1.4475E+06
200 K Mean/cm−1 2.4059E+03 1.0922E+03

Variance/(cm−1)2 6.4085E+06 1.4730E+06
300 K Mean/cm−1 2.9790E+03 1.1021E+03

Variance/(cm−1)2 9.4091E+06 1.5125E+06
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B. Supplementary data for chapter 5

• Mean excitation energies of individual vibrational modes

n
ǫ′n〈v′

n〉/(hc0cm
−1)

Displaced-Distorted-Rotated Displaced-Distorted Displaced
T=0 K T=100 K T=200 K T=300 K T=0 K T=100 K T=200 K T=300 K 1

2
ǫ′nδ2n

162 1.5286E+00 6.6919E+01 1.4359E+02 2.2049E+02 1.1303E+00 6.8491E+01 1.4709E+02 2.2591E+02 1.0433E+00
161 6.6743E+00 6.7477E+01 1.4059E+02 2.1400E+02 6.2762E+00 6.7848E+01 1.4170E+02 2.1582E+02 6.2485E+00
160 1.9896E+00 5.6616E+01 1.2409E+02 1.9195E+02 5.1148E-01 5.5143E+01 1.2241E+02 1.9000E+02 5.0679E-01
159 8.8038E-01 5.1424E+01 1.1687E+02 1.8281E+02 8.2872E-01 5.1345E+01 1.1675E+02 1.8264E+02 8.0656E-01
158 3.5437E+01 8.9743E+01 1.6249E+02 2.3606E+02 3.2954E+01 9.3931E+01 1.7346E+02 2.5362E+02 3.2755E+01
157 1.2459E+01 5.4406E+01 1.1550E+02 1.7780E+02 8.6561E+00 4.0021E+01 9.0021E+01 1.4123E+02 7.2078E+00
156 9.1676E+00 5.6654E+01 1.2807E+02 2.0093E+02 7.3831E+00 5.7006E+01 1.3073E+02 2.0575E+02 7.2835E+00
155 4.7360E+00 4.2196E+01 1.0699E+02 1.7406E+02 3.7860E+00 3.9438E+01 1.0221E+02 1.6722E+02 3.7385E+00
154 4.9826E+00 3.9446E+01 1.0387E+02 1.7132E+02 3.5450E+00 3.0085E+01 8.5130E+01 1.4345E+02 2.9999E+00
153 1.7002E+01 4.4860E+01 1.0611E+02 1.7170E+02 1.6564E+01 4.4240E+01 1.0537E+02 1.7078E+02 1.6546E+01
152 2.8010E+00 3.0047E+01 9.2756E+01 1.6047E+02 2.2914E+00 2.8841E+01 9.0812E+01 1.5776E+02 2.2912E+00
151 3.0413E+00 2.6311E+01 8.5473E+01 1.5047E+02 2.6706E+00 2.6198E+01 8.5835E+01 1.5125E+02 2.6653E+00
150 5.0483E+00 2.8412E+01 8.8482E+01 1.5463E+02 4.8366E+00 2.7975E+01 8.7820E+01 1.5372E+02 4.8362E+00
149 1.4369E+00 2.2731E+01 8.1333E+01 1.4674E+02 8.8933E-01 2.1940E+01 8.0302E+01 1.4547E+02 8.8756E-01
148 9.4070E-01 1.7046E+01 7.0862E+01 1.3371E+02 3.3676E-01 1.6775E+01 7.1523E+01 1.3519E+02 3.3403E-01
147 3.2511E+00 1.9262E+01 7.3474E+01 1.3700E+02 2.7767E+00 1.8502E+01 7.2526E+01 1.3582E+02 2.7726E+00
146 4.3164E+00 1.9848E+01 7.3385E+01 1.3645E+02 3.9881E+00 1.8912E+01 7.1738E+01 1.3408E+02 3.9688E+00
145 8.0960E+00 2.2385E+01 7.4934E+01 1.3785E+02 7.5051E+00 2.0066E+01 6.9577E+01 1.2962E+02 7.4159E+00
144 1.3695E+01 2.8096E+01 8.1642E+01 1.4586E+02 1.3355E+01 2.7195E+01 7.9984E+01 1.4346E+02 1.3352E+01
143 2.5560E+00 1.3222E+01 6.1686E+01 1.2316E+02 1.6805E+00 1.1684E+01 5.9125E+01 1.1963E+02 1.6783E+00
142 3.4015E-01 1.0122E+01 5.7251E+01 1.1785E+02 2.2527E-01 9.7661E+00 5.6582E+01 1.1687E+02 2.2428E-01
141 7.0873E-01 9.3840E+00 5.5539E+01 1.1667E+02 3.8039E-01 9.1773E+00 5.6048E+01 1.1788E+02 3.0749E-01
140 1.0311E+00 9.5083E+00 5.4938E+01 1.1586E+02 4.5797E-02 7.8658E+00 5.2569E+01 1.1280E+02 1.6462E-02
139 4.5947E+00 1.2267E+01 5.5914E+01 1.1538E+02 4.2838E+00 1.1239E+01 5.3611E+01 1.1183E+02 4.2838E+00
138 7.2195E-01 6.8235E+00 4.6979E+01 1.0439E+02 2.8447E-05 5.5132E+00 4.4650E+01 1.0109E+02 1.2865E-05
137 1.7627E+01 2.3073E+01 6.1258E+01 1.1759E+02 1.7314E+01 2.2119E+01 5.9492E+01 1.1503E+02 1.7314E+01
136 1.2109E+01 1.7103E+01 5.5112E+01 1.1217E+02 1.1753E+01 1.6238E+01 5.3223E+01 1.0927E+02 1.1709E+01
135 9.6168E-01 4.4559E+00 3.6647E+01 8.8308E+01 6.9384E-01 3.8708E+00 3.5495E+01 8.6602E+01 6.4490E-01
134 2.6137E+00 5.9865E+00 3.7390E+01 8.9532E+01 2.2722E+00 5.0683E+00 3.5876E+01 8.7467E+01 2.2651E+00
133 1.3231E+00 4.6956E+00 3.5602E+01 8.7399E+01 6.8694E-01 3.1582E+00 3.2318E+01 8.2351E+01 6.8533E-01
132 3.0348E+00 5.9757E+00 3.6047E+01 8.7686E+01 2.4656E+00 4.7896E+00 3.3639E+01 8.4050E+01 2.4429E+00
131 5.5202E-01 2.9396E+00 2.9308E+01 7.7533E+01 7.6106E-02 1.7718E+00 2.7002E+01 7.4086E+01 7.4395E-02
130 1.0636E+00 3.1925E+00 2.9332E+01 7.7651E+01 1.2422E-02 1.6663E+00 2.6883E+01 7.4365E+01 1.3532E-03
129 4.8131E-01 1.8556E+00 2.3948E+01 6.8530E+01 2.4544E-01 1.3919E+00 2.3040E+01 6.7167E+01 2.4503E-01
128 1.2807E+00 2.7648E+00 2.4616E+01 6.9623E+01 4.5611E-01 1.4407E+00 2.2077E+01 6.5823E+01 4.1327E-01
127 4.8515E+00 6.2127E+00 2.6169E+01 6.8914E+01 4.5295E+00 5.3820E+00 2.4685E+01 6.6815E+01 4.5258E+00
126 4.3395E+00 5.3019E+00 2.4391E+01 6.6293E+01 4.1003E+00 4.8906E+00 2.3585E+01 6.5066E+01 4.0988E+00
125 1.0547E+00 2.1423E+00 2.1574E+01 6.4130E+01 3.7894E-01 1.1329E+00 1.9580E+01 6.1039E+01 3.5814E-01
124 4.0745E+00 4.7401E+00 1.9950E+01 5.7629E+01 3.8800E+00 4.3386E+00 1.9269E+01 5.6686E+01 3.8789E+00
123 6.8511E-01 1.1992E+00 1.3722E+01 4.8193E+01 2.6304E-01 4.3455E-01 1.0021E+01 3.9595E+01 1.9269E-03
122 5.9958E+00 6.6215E+00 1.8143E+01 5.1084E+01 5.5433E+00 5.8336E+00 1.8512E+01 5.4077E+01 5.1810E+00
121 8.7235E+00 9.7494E+00 2.1150E+01 5.3523E+01 8.4982E+00 8.7803E+00 2.1305E+01 5.6666E+01 8.1335E+00
120 8.8986E-01 1.2956E+00 1.4311E+01 5.0662E+01 2.3406E-01 4.6141E-01 1.1808E+01 4.5320E+01 9.5701E-03
119 7.4580E-01 1.0342E+00 1.0658E+01 4.0808E+01 1.9823E-02 1.7281E-01 9.5514E+00 3.9531E+01 1.6741E-02
118 3.6459E+00 3.9909E+00 1.3380E+01 4.3303E+01 3.9156E-01 5.2966E-01 9.6131E+00 3.9446E+01 2.9233E-01
117 9.8473E-01 3.4355E+00 1.3705E+01 4.2909E+01 1.0715E-01 1.8916E-01 7.3137E+00 3.3351E+01 1.0592E-01
116 3.9710E-01 6.0631E-01 8.4400E+00 3.5918E+01 9.5475E-02 1.8903E-01 7.8435E+00 3.5182E+01 1.8090E-02
115 4.1902E+00 5.7965E+00 1.4648E+01 4.2054E+01 3.3680E+00 3.4366E+00 1.0037E+01 3.5125E+01 3.3679E+00
114 1.1308E-01 2.3026E-01 6.7678E+00 3.1772E+01 1.3704E-02 7.6637E-02 6.4616E+00 3.1225E+01 1.7198E-03
113 1.7688E+00 5.5234E+00 1.6287E+01 4.4892E+01 4.5973E-01 5.1266E-01 6.4103E+00 3.0117E+01 4.5842E-01
112 2.2764E+01 2.3490E+01 3.0357E+01 5.5086E+01 2.2357E+01 2.2409E+01 2.8275E+01 5.1974E+01 2.2347E+01
111 4.5441E-01 6.1844E-01 6.1486E+00 2.8829E+01 4.8835E-02 8.9816E-02 5.3751E+00 2.7839E+01 3.5278E-02
110 1.3163E-01 1.9016E-01 5.4318E+00 2.7724E+01 3.1639E-02 7.0757E-02 5.2416E+00 2.7426E+01 2.4128E-02
109 4.5266E-01 5.7464E-01 5.6151E+00 2.7241E+01 2.6282E-02 6.0923E-02 4.9551E+00 2.6491E+01 2.2504E-02
108 5.5630E+00 6.6338E+00 1.2539E+01 3.3951E+01 4.3322E+00 4.3558E+00 8.4876E+00 2.8207E+01 4.3229E+00
107 1.2947E+00 1.6273E+00 5.8716E+00 2.5035E+01 9.9869E-01 1.0161E+00 4.5889E+00 2.2691E+01 9.8022E-01
106 1.5269E+01 1.6031E+01 2.0888E+01 4.0651E+01 1.4728E+01 1.4752E+01 1.8915E+01 3.8895E+01 1.4598E+01
105 6.1307E-01 7.4426E-01 4.6971E+00 2.3641E+01 2.5583E-01 2.7546E-01 4.0963E+00 2.3079E+01 2.1473E-01
104 4.3203E-01 5.0418E-01 4.6674E+00 2.4518E+01 1.4058E-01 1.5945E-01 3.9071E+00 2.2664E+01 1.1618E-01
103 3.8585E+01 3.9688E+01 4.5260E+01 6.5654E+01 3.7405E+01 3.7422E+01 4.1006E+01 5.9300E+01 3.7389E+01
102 8.5422E-01 1.3378E+00 5.5644E+00 2.4594E+01 4.3764E-01 4.5421E-01 4.0102E+00 2.2338E+01 3.4481E-01
101 1.0070E+01 1.2117E+01 1.8016E+01 3.7289E+01 8.6331E+00 8.6440E+00 1.1584E+01 2.8082E+01 8.5742E+00
100 2.2959E+01 2.3353E+01 2.6483E+01 4.2009E+01 2.2339E+01 2.2346E+01 2.4767E+01 3.9523E+01 2.2333E+01
99 2.3357E+00 2.4378E+00 5.9810E+00 2.4290E+01 4.2173E-01 4.3191E-01 3.3205E+00 1.9852E+01 6.1425E-02
98 7.3802E+00 7.7887E+00 1.1283E+01 2.8082E+01 4.2556E+00 4.2698E+00 7.6918E+00 2.6098E+01 3.1393E+00
97 1.9740E+00 2.1609E+00 5.7104E+00 2.3673E+01 1.1794E+00 1.1920E+00 4.4177E+00 2.2224E+01 1.2163E-01
96 3.9439E+00 3.9735E+00 6.6220E+00 2.2133E+01 1.1819E-01 1.2289E-01 2.1097E+00 1.5304E+01 1.1819E-01
95 9.7265E-02 1.5705E-01 2.1215E+00 1.4988E+01 2.1655E-02 2.5821E-02 1.9027E+00 1.4658E+01 1.7233E-02
94 9.4830E-01 2.3035E+00 5.8941E+00 2.0180E+01 8.7369E-01 8.8035E-01 3.2779E+00 1.8269E+01 3.0135E-01
93 1.5277E+00 1.6212E+00 4.2618E+00 1.9636E+01 2.2157E-01 2.2406E-01 1.6918E+00 1.2693E+01 5.8603E-02
92 1.6704E+00 1.7893E+00 4.4679E+00 1.9865E+01 1.0233E+00 1.0298E+00 3.4375E+00 1.8578E+01 2.5838E-02
91 1.3736E+01 1.4837E+01 1.8089E+01 3.1572E+01 1.3547E+01 1.3553E+01 1.5694E+01 2.9780E+01 1.2944E+01
90 1.5767E-01 1.7154E-01 1.7570E+00 1.3326E+01 2.4689E-01 2.5070E-01 2.0878E+00 1.4897E+01 2.7050E-02
89 2.4683E+00 5.3563E+00 1.1718E+01 2.8194E+01 8.1402E-02 8.4379E-02 1.7138E+00 1.3613E+01 1.3794E-02
88 1.0940E+00 1.1343E+00 3.3048E+00 1.7354E+01 1.8589E-02 2.1253E-02 1.5629E+00 1.3053E+01 7.9007E-04
87 6.5489E+00 6.9978E+00 9.0672E+00 2.0197E+01 5.8346E+00 5.8365E+00 7.1297E+00 1.7492E+01 5.8346E+00
86 1.3648E+00 3.6475E+00 7.8971E+00 2.0563E+01 3.0590E-01 3.0720E-01 1.4122E+00 1.0883E+01 3.0585E-01
85 1.0929E+00 1.3793E+00 2.8590E+00 1.2760E+01 8.7151E-01 8.7286E-01 1.9979E+00 1.1583E+01 8.6830E-01
84 6.5603E+00 1.2002E+01 2.1872E+01 4.0237E+01 2.3178E+00 2.3189E+00 3.3501E+00 1.2453E+01 2.3178E+00
83 4.4519E-01 5.9511E-01 1.9330E+00 1.1519E+01 1.1007E-01 1.1125E-01 1.1722E+00 1.0458E+01 9.4244E-02
82 6.3307E-01 8.3430E-01 2.1051E+00 1.1362E+01 3.7177E-01 3.7281E-01 1.3735E+00 1.0338E+01 3.6742E-01
81 2.0547E-01 2.2469E-01 1.2748E+00 1.0345E+01 4.5561E-02 4.6580E-02 1.0376E+00 9.9671E+00 2.9191E-02
80 1.0319E+01 1.1152E+01 1.3201E+01 2.2290E+01 9.6172E+00 9.6178E+00 1.0394E+01 1.8104E+01 9.6103E+00
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79 3.6292E+01 7.0593E+01 1.2765E+02 1.9354E+02 1.0406E+01 1.0407E+01 1.1232E+01 1.9272E+01 1.0379E+01
78 2.9797E-01 3.4771E-01 1.2878E+00 9.5608E+00 7.8495E-02 7.9149E-02 8.8895E-01 8.8519E+00 3.4767E-02
77 3.4891E+00 3.8738E+00 5.2133E+00 1.2606E+01 2.0091E+00 2.0095E+00 2.6375E+00 9.4204E+00 1.9414E+00
76 4.5033E+00 7.9687E+00 1.3866E+01 2.6373E+01 1.8784E+00 1.8787E+00 2.4792E+00 9.0940E+00 1.8318E+00
75 3.7368E+00 4.0620E+00 5.2297E+00 1.2641E+01 7.4670E-02 7.5151E-02 7.7669E-01 8.0969E+00 4.0456E-02
74 1.2551E+01 1.5732E+01 2.1470E+01 3.3294E+01 9.8684E+00 9.8687E+00 1.0441E+01 1.6919E+01 9.8646E+00
73 5.0346E+00 5.9899E+00 7.7058E+00 1.4806E+01 4.4178E+00 4.4180E+00 4.8994E+00 1.0754E+01 4.4098E+00
72 2.3014E+00 2.7285E+00 3.8876E+00 1.0124E+01 1.3529E+00 1.3531E+00 1.7636E+00 7.0694E+00 1.3468E+00
71 1.0455E+00 1.1334E+00 1.6428E+00 6.9629E+00 6.2230E-01 6.2244E-01 1.0183E+00 6.2382E+00 6.0275E-01
70 2.9131E+01 2.9442E+01 3.0309E+01 3.5552E+01 2.8326E+01 2.8326E+01 2.8656E+01 3.3332E+01 2.8312E+01
69 2.5414E+00 6.3335E+00 1.1576E+01 2.0947E+01 9.8375E-01 9.8383E-01 1.2933E+00 5.7960E+00 9.7538E-01
68 1.4772E+01 1.5009E+01 1.5729E+01 2.0785E+01 1.4310E+01 1.4310E+01 1.4609E+01 1.9015E+01 1.4306E+01
67 4.7900E-01 5.1503E-01 9.3252E-01 5.6073E+00 3.0144E-02 3.0219E-02 3.2485E-01 4.6963E+00 2.2270E-02
66 7.0035E-01 7.8589E-01 1.3211E+00 6.0964E+00 1.0300E-01 1.0306E-01 3.7811E-01 4.5657E+00 1.0280E-01
65 1.1646E+01 1.1701E+01 1.2135E+01 1.6568E+01 1.1495E+01 1.1495E+01 1.1827E+01 1.6562E+01 1.1300E+01
64 2.6436E-01 2.8966E-01 6.2719E-01 5.0882E+00 8.8927E-02 8.9002E-02 3.8493E-01 4.7823E+00 3.7293E-02
63 7.5926E+00 7.6452E+00 8.0183E+00 1.2228E+01 7.2731E+00 7.2731E+00 7.5354E+00 1.1607E+01 7.2721E+00
62 5.0251E+00 1.7222E+01 3.3347E+01 5.3488E+01 4.7081E-01 4.7086E-01 7.2316E-01 4.7053E+00 4.6462E-01
61 2.0721E+00 2.3710E+00 3.1332E+00 7.4926E+00 1.1574E+00 1.1574E+00 1.3936E+00 5.2191E+00 1.1542E+00
60 1.6637E+00 1.8786E+00 2.4961E+00 6.6368E+00 9.2781E-01 9.2785E-01 1.1513E+00 4.8508E+00 9.2438E-01
59 5.7012E+00 5.8627E+00 6.3930E+00 1.0357E+01 5.2026E+00 5.2026E+00 5.4011E+00 8.8463E+00 5.1982E+00
58 2.4627E+00 2.6274E+00 3.0881E+00 6.7671E+00 2.0443E+00 2.0443E+00 2.2237E+00 5.4590E+00 2.0443E+00
57 2.3756E+00 2.4681E+00 2.8209E+00 6.3595E+00 1.2552E+00 1.2552E+00 1.4474E+00 4.8515E+00 1.0997E+00
56 3.0309E+00 3.1072E+00 3.3878E+00 6.5262E+00 2.6250E+00 2.6250E+00 2.7851E+00 5.8145E+00 2.6044E+00
55 6.6730E+00 6.7556E+00 7.0301E+00 9.9835E+00 6.0063E+00 6.0064E+00 6.1385E+00 8.8200E+00 5.9951E+00
54 1.3643E+00 1.4957E+00 1.8620E+00 4.9976E+00 9.3083E-01 9.3085E-01 1.0753E+00 3.9208E+00 9.1075E-01
53 9.7062E-01 1.0596E+00 1.3661E+00 4.4597E+00 6.6348E-01 6.6350E-01 8.1777E-01 3.7928E+00 5.4986E-01
52 2.7677E+00 6.0981E+00 1.0552E+01 1.7522E+01 1.1032E+00 1.1032E+00 1.2257E+00 3.7942E+00 1.1026E+00
51 2.1575E+00 2.2129E+00 2.4498E+00 5.1306E+00 1.5414E+00 1.5414E+00 1.6560E+00 4.1264E+00 1.5283E+00
50 9.1423E-01 9.6789E-01 1.1929E+00 3.6708E+00 4.1401E-01 4.1401E-01 5.1527E-01 2.8095E+00 3.7255E-01
49 5.2052E+00 5.2731E+00 5.5102E+00 7.9227E+00 4.7914E+00 4.7914E+00 4.8887E+00 7.1257E+00 4.7633E+00
48 1.8502E+01 1.8606E+01 1.8887E+01 2.1268E+01 1.7887E+01 1.7887E+01 1.7975E+01 2.0076E+01 1.7880E+01
47 4.2557E+00 6.4378E+00 9.3436E+00 1.4138E+01 3.2185E+00 3.2185E+00 3.2941E+00 5.2033E+00 3.2183E+00
46 3.1892E+01 3.2021E+01 3.2327E+01 3.4478E+01 3.1412E+01 3.1412E+01 3.1486E+01 3.3367E+01 3.1408E+01
45 2.8862E+00 2.9475E+00 3.1756E+00 5.1696E+00 2.3407E+00 2.3407E+00 2.4086E+00 4.2027E+00 2.2862E+00
44 1.4802E+00 1.6196E+00 1.9340E+00 3.7825E+00 7.1474E-01 7.1474E-01 7.6516E-01 2.2481E+00 6.9647E-01
43 6.9179E+00 6.9642E+00 7.1401E+00 9.0123E+00 6.2812E+00 6.2812E+00 6.3400E+00 7.9867E+00 6.1618E+00
42 1.6719E+01 1.6918E+01 1.7290E+01 1.9057E+01 1.6112E+01 1.6112E+01 1.6156E+01 1.7519E+01 1.6112E+01
41 3.0812E+00 4.2051E+00 5.7000E+00 8.5766E+00 2.2743E+00 2.2743E+00 2.3196E+00 3.7129E+00 2.2716E+00
40 3.0058E+00 3.6129E+00 4.5256E+00 6.8426E+00 2.4180E+00 2.4180E+00 2.4600E+00 3.7874E+00 2.4171E+00
39 2.8313E+00 3.5491E+00 4.6366E+00 7.1006E+00 2.1932E+00 2.1932E+00 2.2400E+00 3.6665E+00 2.1442E+00
38 3.3376E+00 3.4422E+00 3.6314E+00 5.1227E+00 3.1565E+00 3.1565E+00 3.1976E+00 4.5082E+00 3.1565E+00
37 2.9691E-01 5.1639E-01 8.7555E-01 2.5146E+00 5.9398E-02 5.9399E-02 9.9377E-02 1.3873E+00 5.9317E-02
36 6.6493E+00 6.6745E+00 6.7757E+00 8.1938E+00 5.9423E+00 5.9423E+00 5.9808E+00 7.2385E+00 5.9414E+00
35 5.2463E+00 5.3776E+00 5.6285E+00 7.0416E+00 3.4646E-01 3.4646E-01 3.8212E-01 1.5817E+00 3.4645E-01
34 2.0317E+01 2.0340E+01 2.0443E+01 2.1742E+01 1.8153E+01 1.8153E+01 1.8189E+01 1.9403E+01 1.8102E+01
33 2.7698E+00 2.8220E+00 2.9796E+00 4.2639E+00 7.0742E-03 7.0748E-03 3.8241E-02 1.1422E+00 5.1300E-03
32 1.0175E+02 1.0186E+02 1.0212E+02 1.0363E+02 1.0056E+02 1.0056E+02 1.0059E+02 1.0174E+02 1.0053E+02
31 6.9376E-01 1.2992E+00 2.1045E+00 3.9649E+00 1.7543E-01 1.7543E-01 2.0466E-01 1.2667E+00 1.6332E-01
30 5.4998E+01 5.5020E+01 5.5110E+01 5.6300E+01 5.4360E+01 5.4360E+01 5.4387E+01 5.5418E+01 5.4203E+01
29 9.4946E+00 9.5543E+00 9.7134E+00 1.0872E+01 8.6748E+00 8.6748E+00 8.6972E+00 9.5965E+00 8.6585E+00
28 3.9669E+00 4.0044E+00 4.1142E+00 5.2005E+00 3.3167E+00 3.3167E+00 3.3372E+00 4.1873E+00 3.3162E+00
27 3.2115E+01 3.2146E+01 3.2242E+01 3.3265E+01 3.1923E+01 3.1923E+01 3.1948E+01 3.2905E+01 3.1757E+01
26 6.5837E-01 7.2453E-01 8.3396E-01 1.7562E+00 3.5437E-01 3.5437E-01 3.7375E-01 1.1943E+00 3.5267E-01
25 1.1790E+00 1.2280E+00 1.3358E+00 2.1687E+00 8.0774E-01 8.0774E-01 8.2270E-01 1.5186E+00 8.0146E-01
24 1.4657E+02 1.4665E+02 1.4682E+02 1.4766E+02 1.4604E+02 1.4604E+02 1.4606E+02 1.4665E+02 1.4604E+02
23 7.2130E+00 1.1388E+01 1.6914E+01 2.3111E+01 5.1844E+00 5.1844E+00 5.1937E+00 5.7105E+00 5.1611E+00
22 3.1537E+01 3.2076E+01 3.3317E+01 3.5320E+01 2.9682E+01 2.9682E+01 2.9692E+01 3.0245E+01 2.9194E+01
21 4.0635E+01 4.3919E+01 4.8785E+01 5.4433E+01 3.7624E+01 3.7624E+01 3.7633E+01 3.8127E+01 3.7092E+01
20 1.3083E+00 1.3584E+00 1.4918E+00 1.6497E+00 9.7663E-01 9.7663E-01 9.7663E-01 9.7981E-01 8.5707E-01
19 2.2769E+00 3.1647E+00 4.5386E+00 6.0560E+00 2.0358E-01 2.0358E-01 2.0358E-01 2.0520E-01 1.7638E-01
18 9.5198E-01 1.9952E+00 3.3756E+00 4.8059E+00 2.9509E-02 2.9509E-02 2.9510E-02 3.1016E-02 2.2441E-02
17 5.2130E+01 6.4303E+01 8.6177E+01 1.1227E+02 2.0805E-01 2.0805E-01 2.0806E-01 2.0965E-01 1.6408E-01
16 2.2820E+02 3.7170E+02 6.1486E+02 8.6868E+02 7.2262E+01 7.2262E+01 7.2262E+01 7.2264E+01 7.2180E+01
15 1.2953E+00 1.5826E+00 2.0367E+00 2.5385E+00 5.9021E-02 5.9021E-02 5.9022E-02 6.0473E-02 1.9941E-02
14 4.1620E-01 4.5802E-01 5.1790E-01 5.9141E-01 1.4146E-02 1.4146E-02 1.4147E-02 1.5490E-02 4.3093E-03
13 5.2598E+01 8.0329E+01 1.2759E+02 1.7706E+02 1.3979E+01 1.3979E+01 1.3979E+01 1.3980E+01 1.3978E+01
12 1.7863E+01 2.1251E+01 2.6972E+01 3.3159E+01 1.6722E+00 1.6722E+00 1.6722E+00 1.6734E+00 1.6628E+00
11 1.0895E+00 1.4949E+00 2.0595E+00 2.6909E+00 3.2533E-02 3.2533E-02 3.2534E-02 3.3471E-02 2.0986E-02
10 3.3116E+00 3.8834E+00 4.8297E+00 5.9911E+00 6.0156E-02 6.0156E-02 6.0156E-02 6.1022E-02 3.5435E-02
9 2.7830E-01 2.9782E-01 3.3423E-01 3.8642E-01 2.4949E-02 2.4949E-02 2.4949E-02 2.5742E-02 1.5052E-02
8 3.2798E+00 3.5837E+00 4.1482E+00 4.9433E+00 3.0141E-02 3.0141E-02 3.0141E-02 3.0940E-02 1.1314E-02
7 1.1833E+00 1.6569E+00 2.3442E+00 3.1163E+00 3.8065E-02 3.8065E-02 3.8065E-02 3.8733E-02 2.2429E-02
6 4.5364E+00 5.2792E+00 6.4668E+00 7.9676E+00 1.1272E-01 1.1272E-01 1.1272E-01 1.1334E-01 9.9760E-02
5 1.0631E+00 1.2009E+00 1.4227E+00 1.7125E+00 4.8622E-02 4.8622E-02 4.8622E-02 4.9218E-02 4.3097E-02
4 1.8577E+00 2.0520E+00 2.3122E+00 2.6139E+00 4.5335E-02 4.5335E-02 4.5335E-02 4.5859E-02 4.3329E-02
3 2.3662E+00 3.7314E+00 5.5148E+00 7.3632E+00 1.2645E-02 1.2645E-02 1.2645E-02 1.3166E-02 1.0652E-02
2 2.7259E+00 5.1069E+00 8.2086E+00 1.1394E+01 1.3210E-01 1.3210E-01 1.3210E-01 1.3258E-01 1.2963E-01
1 4.1941E+00 6.1100E+00 8.5934E+00 1.1157E+01 9.4186E-01 9.4186E-01 9.4186E-01 9.4195E-01 9.3581E-01
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• Fig. 5.6

Displacements State Modes T=0 K (cm−1) T=100 K (cm−1) T=200 K (cm−1) T=300 K (cm−1)
δ = (0, 0)t initial 993cm−1 0 6.1968E-04 7.8506E-01 8.5589E+00

65 cm−1 0 4.1997E+01 1.0903E+02 1.7770E+02
final 997cm−1 9.1548E+00 2.2745E+01 4.5221E+01 7.5223E+01

60 cm−1 7.9080E-01 3.8405E+01 9.8445E+01 1.5996E+02
δ = (1, 1)t initial 993cm−1 0 6.1968E-04 7.8506E-01 8.5589E+00

65 cm−1 0 4.1997E+01 1.0903E+02 1.7770E+02
final 997cm−1 1.9535E+01 3.3125E+01 5.5601E+01 8.5603E+01

60 cm−1 7.8621E+00 4.5477E+01 1.0552E+02 1.6703E+02
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C.1. General remarks
In this appendix we report maximum quantum numbersv

′max
k (final state) andvmax

k (initial state) in each
harmonic modek determined via Eq. (6.49) in this thesis, together with the various wavemunber windows for
each irreducible representationγ, the number of the evaluated integrals and the mode couplingerror ǫc (see
Figures 6.2 and 6.3). For benzene the irreducible representation and the numbering of the vibrational modes
are reported as in the work cited in this thesis [Berger, Fischer and Klessinger,J. Phys. Chem. A, 102, 7157
(1998)].
Maximum mode excitation numbers in each normal mode are given in following form:

〈v(γ)′max|v(γ)max〉

v(γ)
′

max andv(γ)max are vectors containing the maximum quantum numbers of the various normal modes of each
irreducible representationγ for the final and initial electronic states respectively. The vectors are sorted accord-
ing to the number of vibrational mode (in ascending order), which are given in subsection of each molecule, for
each irreducible representation.
The wavenumber windows for each irreducible representation γ are given as [̃ν(γ)

min,ν̃(γ)
max] in cm−1. The win-

dows are determined by the maximum mode coupling numbers andmaximum mode excitation numbers for
each irreducible representationγ as the following relations,

−ν̃(γ)
min = max

s∈CN(γ)

M(γ)

(

s
M(γ)∑

k=s1

v
(γ)
max,kν̃k)

and

ν̃(γ)
max = max

s∈CN(γ)

M(γ)

(

s
M(γ)∑

k=s1

v
(γ)′

max,kν̃
′
k)

whereCN(γ)

M(γ) is the index set choosingM (γ) modes out ofN (γ) for initial or final state of irreducible repre-

sentationγ. WhenM (γ) exceedsN (γ), we have sets to v(γ)max or v(γ)
′

max accordingly. In our program hotFCHT,
we have set the wavenumbers to the nearest graining point (−[−ν̃(γ)

min/∆ν̃] ∗ ∆ν̃ or [ν̃(γ)
max/∆ν̃] ∗ ∆ν̃) with

graining∆ν̃ = 1 cm−1.
The number of integrals that is to be evaluated according to the prescreening conditions are reported for the
various irreducible representations and wavenumber windows.
For the calculation of mode coupling errorǫc, we set the mode coupling thresholdtc as10−12, and set the
mode excitation thresholdtm = 0.0. We report the results only up toǫc ≃ 0.005% for the mode coupling
error due to the numerical precision and the sensitivity to the selection of CODATA sets for the conversion of

units. The incrementsF (m(γ))
FCHT;c (see Eq. (6.45) in this thesis) are computed for each irreducible representation

γ and subsequently folded (convoluted) to form the total incrementsF (m)
FCHT;c, from which we obtainF̃ (M)

FCHT;c

and finally (see Eq. (6.45) in this thesis)ǫc. We report, additionally,̃F (M)
FCHT;c for the symmetry blocke2g of

benzene which contains the non-zero first derivative of the electronic transition dipole moment.
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C.2. Benzene
• Harmonic vibrational wavenumbers of the initial electronic state incm−1:

1. a1g(from ν̃1 to ν̃2)
3398.9256 1033.0985

2. a2g(ν̃3)
1481.7300

3. b2g(from ν̃4 to ν̃5)
1022.0643 712.6271

4. e1g(from ν̃6 to ν̃7)
869.5370 869.5370

5. e2g(from ν̃8 to ν̃15)
3369.2220 3369.222 1730.1965 1730.1964 1263.3599
1263.3599 646.1398 646.1398

6. a2u(ν̃16)
705.3327

7. b1u(from ν̃17 to ν̃18)
3358.8251 1086.1432

8. b2u(from ν̃19 to ν̃24)
1611.6583 1611.6583 1104.9068 1104.9068 1332.6123
1168.7674

9. e1u(from ν̃25 to ν̃26)
3387.7258 3387.7258

10. e2u(from ν̃27 to ν̃30)
990.7565 990.7565 426.6068 426.6068

• Harmonic vibrational wavenumbers of the final electronic state incm−1:

1. a1g(from ν̃′
1 to ν̃′

2)
3417.7683 963.1593

2. a2g(ν̃′
3)

1457.6221

3. b2g(from ν̃′
4 to ν̃′

5)
693.6713 482.2731

4. e1g(from ν̃′
6 to ν̃′

7)
593.2363 593.2363

5. e2g(from ν̃′
8 to ν̃′

15)
3389.0368 3389.0368 1665.3003 1665.3003 1236.7103
1236.7103 575.1367 575.1367

6. a2u(ν̃′
16)

522.9955
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7. b1u(from ν̃′
17 to ν̃′

18)
3381.1447 1056.0267

8. b2u(from ν̃′
19 to ν̃′

24)
1532.9517 1532.9517 960.6835 960.6835 1854.6937
1253.8107

9. e1u(from ν̃′
25 to ν̃′

26)
3404.0649 3404.0649

10. e2u(from ν̃′
27 to ν̃′

30)
674.4727 674.4727 291.7207 291.7207

C.2.1. Electronic transition dipole moment
• Electronic transition dipole moment (inD):

µ
0
= (0.0, 0.0, 0.0)t

• First derivatives of electronic transition dipole moment of symmetry groupe2g (in D/(Å ∗ √u):
µ′

ν8
= (0.00000, 0.30540, 0.00000)t

µ′

ν9
= (0.30540, 0.00000, 0.00000)t

µ′

ν10
= (0.00000,−0.17945, 0.00000)t

µ′

ν11
= (0.17945, 0.00000, 0.00000)t

µ′

ν12
= (0.00000,−0.11900, 0.00000)t

µ′

ν13
= (0.11900, 0.00000, 0.00000)t

µ′

ν14
= (0.57095, 0.00000, 0.00000)t

µ′

ν15
= (0.00000,−0.57095, 0.00000)t

C.2.2. Maximum mode excitation numbers
• a1g

0 K

Tol. set Max. quantum numbers [ν̃
(a1g)

min ,ν̃
(a1g)
max ] # of integrals

I < 2 10 | 0 0 > [0.00, 16467.13] 33
II < 2 9 | 0 0 > [0.00, 15503.97] 30

300 K

Tol. set Max. quantum numbers [ν̃
(a1g)

min ,ν̃
(a1g)
max ] # of integrals

I < 2 10 | 0 2 > [−2066.20, 16467.13] 99
II < 2 9 | 0 2 > [−2066.20, 15503.97] 54

500 K

Tol. set Max. quantum numbers [ν̃
(a1g)

min ,ν̃
(a1g)
max ] # of integrals

I < 2 11 | 1 4 > [−7531.32, 17430.29] 272
II < 2 10 | 1 3 > [−7531.32, 17430.29] 204
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• a2g

0 K

Tol. set Max. quantum numbers [ν̃
(a2g)

min ,ν̃
(a2g)
max ] # of integrals

I < 2 | 0 > [0.00, 2915.24] 3
II < 0 | 0 > [0.00, 0.00] 1

300 K

Tol. set Max. quantum numbers [ν̃
(a2g)

min ,ν̃
(a2g)
max ] # of integrals

I < 2 | 1 > [−1481.73, 2915.24] 6
II < 2 | 1 > [−1481.73, 2915.24] 6

500 K

Tol. set Max. quantum numbers [ν̃
(a2g)

min ,ν̃
(a2g)
max ] # of integrals

I < 3 | 3 > [−4445.19, 4372.87] 16
II < 2 | 2 > [−4445.19, 4372.87] 9

• b2g

0 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

I < 6 6 | 0 0 > [0.00, 7055.67] 49
II < 6 6 | 0 0 > [0.00, 7055.67] 49

300 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

I < 7 8 | 2 4 > [−4894.64, 8713.88] 1080
II < 6 6 | 2 3 > [−4182.01, 7055.67] 588

500 K

Tol. set Max. quantum numbers [ν̃
(b2g)

min ,ν̃
(b2g)
max ] # of integrals

I < 8 10 | 4 6 > [−8364.02, 10372.10] 3465
II < 6 8 | 3 5 > [−8364.02, 10372.10] 1512

• e1g

0 K

Tol. set Max. quantum numbers [ν̃
(e1g)

min ,ν̃
(e1g)
max ] # of integrals

I < 6 6 | 0 0 > [0.00, 7118.84] 49
II < 6 6 | 0 0 > [0.00, 7118.84] 49

300 K

Tol. set Max. quantum numbers [ν̃
(e1g)

min ,ν̃
(e1g)
max ] # of integrals

I < 7 7 | 3 3 > [−5217.22, 8305.31] 1024
II < 6 6 | 2 2 > [−3478.15, 7118.84] 441

500 K

Tol. set Max. quantum numbers [ν̃
(e1g)

min ,ν̃
(e1g)
max ] # of integrals

I < 9 9 | 5 5 > [−8695.37, 10678.25] 3600
II < 7 7 | 4 4 > [−8695.37, 10678.25] 16

• e2g
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0 K

Tol. set Max. quantum numbers [ν̃
(e2g)

min ,ν̃
(e2g)
max ] # of integrals

I < 2 2 3 3 3 3 5 5 | 0 0 0 0 0 0 0 0 > [0.00, 18552.05] 2150
II < 1 1 2 2 2 2 4 4 | 0 0 0 0 0 0 0 0 > [0.00, 10108.67] 732

300 K

Tol. set Max. quantum numbers [ν̃
(e2g)

min ,ν̃
(e2g)
max ] # of integrals

I < 2 2 3 3 3 3 6 6 | 0 0 1 1 2 2 4 4 > [−13682.95, 30968.21] 2111504
II < 1 1 2 2 2 2 5 5 | 0 0 1 1 1 1 4 4 > [−9892.87, 16314.96] 116539

500 K

Tol. set Max. quantum numbers [ν̃
(e2g)

min ,ν̃
(e2g)
max ] # of integrals

I < 2 2 3 3 4 4 9 9 | 1 1 2 2 3 3 8 8 > [−31577.63, 43794.09] 468744712
II < 1 1 3 3 3 3 8 8 | 1 1 2 2 3 3 7 7 > [−31577.63, 43794.09] 47153622

• a2u

0 K

Tol. set Max. quantum numbers [ν̃
(a2u)
min ,ν̃(a2u)

max ] # of integrals
I < 6 | 0 > [0.00, 3137.97] 7
II < 4 | 0 > [0.00, 2091.98] 5

300 K

Tol. set Max. quantum numbers [ν̃
(a2u)
min ,ν̃(a2u)

max ] # of integrals
I < 7 | 4 > [−2821.33, 3660.97] 40
II < 5 | 3 > [−2116.00, 2614.98] 24

500 K

Tol. set Max. quantum numbers [ν̃
(a2u)
min ,ν̃(a2u)

max ] # of integrals
I < 9 | 6 > [−4232.00, 4706.96] 70
II < 7 | 5 > [−4232.00, 4706.96] 48

• b1u

0 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
I < 2 2 | 0 0 > [0.00, 6762.29] 5
II < 0 2 | 0 0 > [0.00, 2112.05] 3

300 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
I < 2 3 | 0 2 > [−2172.29, 9930.37] 24
II < 0 2 | 0 2 > [−2172.29, 2112.05] 9

500 K

Tol. set Max. quantum numbers [ν̃
(b1u)
min ,ν̃(b1u)

max ] # of integrals
I < 2 4 | 1 4 > [−7703.40, 10986.40] 54
II < 1 3 | 1 3 > [−7703.40, 10986.40] 31
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• b2u

0 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
I < 6 2 | 0 0 > [0.00, 13635.78] 21
II < 6 1 | 0 0 > [0.00, 12381.97] 14

300 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
I < 7 2 | 2 2 > [−5002.76, 15490.48] 160
II < 6 2 | 1 2 > [−3670.15, 13635.78] 50

500 K

Tol. set Max. quantum numbers [ν̃
(b2u)
min ,ν̃(b2u)

max ] # of integrals
I < 8 3 | 3 4 > [−8672.91, 18598.98] 720
II < 6 3 | 3 3 > [−8672.91, 18598.98] 286

• e1u

0 K

Tol. set Max. quantum numbers [ν̃
(e1u)
min ,ν̃(e1u)

max ] # of integrals
I < 2 2 2 2 4 4 | 0 0 0 0 0 0 > [0.00, 13616.26] 121
II < 1 1 2 2 4 4 | 0 0 0 0 0 0 > [0.00, 7685.47] 92

300 K

Tol. set Max. quantum numbers [ν̃
(e1u)
min ,ν̃(e1u)

max ] # of integrals
I < 2 2 2 2 4 4 | 0 0 1 1 2 2 > [−7642.94, 21301.73] 5748
II < 1 1 2 2 4 4 | 0 0 1 1 2 2 > [−6031.29, 11089.53] 1063

500 K

Tol. set Max. quantum numbers [ν̃
(e1u)
min ,ν̃(e1u)

max ] # of integrals
I < 2 2 3 3 5 5 | 1 1 2 2 4 4 > [−22061.34, 32420.80] 495896
II < 1 1 2 2 4 4 | 1 1 2 2 3 3 > [−22061.34, 32420.80] 11949

• e2u

0 K

Tol. set Max. quantum numbers [ν̃
(e2u)
min ,ν̃(e2u)

max ] # of integrals
I < 6 6 6 6 | 0 0 0 0 > [0.00, 9844.00] 1105
II < 6 6 6 6 | 0 0 0 0 > [0.00, 8093.67] 241

300 K

Tol. set Max. quantum numbers [ν̃
(e2u)
min ,ν̃(e2u)

max ] # of integrals
I < 7 7 10 10 | 2 2 6 6 > [−9082.31, 15277.03] 1425984
II < 6 6 8 8 | 2 2 5 5 > [−8229.09, 12761.20] 598596

500 K

Tol. set Max. quantum numbers [ν̃
(e2u)
min ,ν̃(e2u)

max ] # of integrals
I < 8 8 15 15 | 4 4 11 11 > [−17311.40, 19543.18] 74649600
II < 7 7 12 12 | 4 4 9 9 > [−17311.40, 19543.18] 27040000
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C.2.3. Mode coupling error
• Total (Fig. 6.2)

M
ǫc/% = (1− F̃

(M)
FCHT;c)/%

T = 0 K(%) T = 300 K(%) T = 500 K(%) T = 1000 K(%)
0 100.00 100.00 100.00 100.00
1 84.38 91.12 98.16 99.99
2 14.85 50.76 89.14 99.94
3 1.53 35.14 80.54 99.80
4 0.11 13.17 61.63 99.37
5 0.01 6.79 48.72 98.53
6 0.00 1.94 31.18 96.80
7 0.75 21.12 93.99
8 0.17 11.50 89.69
9 0.05 6.65 83.59

10 0.01 3.14 76.21
11 1.56 66.84
12 0.65 57.44
13 0.28 46.71
14 0.10 37.49
15 0.04 28.01
16 0.01 20.89
17 0.00 14.27
18 9.85
19 6.14
20 3.91
21 2.22
22 1.30
23 0.68
24 0.36
25 0.17
26 0.09
27 0.04
28 0.02
29 0.01
30 0.00

• For e2g (Fig. 6.3)

M
ǫc/% = (1− F̃

(M)
FCHT;c)/%

T = 0 K(%) T = 300 K(%) T = 500 K(%) T = 1000 K(%)
0 100.00 100.00 100.00 100.00
1 0.25 12.82 42.30 86.37
2 0.01 5.43 22.05 65.54
3 0.00 0.43 6.49 48.02
4 0.05 1.37 22.16
5 0.00 0.32 14.51
6 0.03 3.86
7 0.01 2.32
8 0.00 0.34
9 0.19

10 0.01
11 0.01
12 0.00
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D.1. General remarks
In this appendix we present explicit expressions for the developments of chapter 7, as for a special case of
thermally averaged initial state because the expressions in Ch. 7 are general expressions allowing for individual
temperatures for each mode. Herein, only the initial state is thermally excited and all vibrational modes are at
a finite temperatureT and non-Condon effects are ignored. TheN -dimensional spaceX belongs to the initial
state and theN -dimensional spaceY does to the final state in this appendix.

D.2. Resonance Raman scattering
• Amplitude

The first (Condon) term of resonance Raman (rR) amplitude in Eq. (7.14) is given as follows,

GKY Y
cF (̃IcF, z

′(τ );ΛY Y ; ṽKB, ṽBK) = GKY Y
cF (I, z′(τ );0; ṽKB, ṽBK), (D.1)

where we do not have thermal excitation (ΛY Y = 0, anN -dimensional square zero matrix) for single
vibronic levels (̃vKB, ṽBK). z′(τ ) is given in Eq. (4.43). The explicit expression is then givenby

GKY Y
cF (I, z′(τ );0; ṽKB, ṽBK)

=


∏̃

−
1
2
,−

1
2

vBX
,vKX




∏̃

−
1
2
,−

1
2

vB
′

X
,vK

′

X


GY (z′(τ ))HṽKB,ṽBK

(W̃−1
cF r̃cF;W̃

−1
cF ). (D.2)

Precisely the first part is expressed with determinant and exponential functions

GY (z′(τ )) = det(I+ z
′(τ )WY Y z

′(τ ))−1/2 det(I− z
′(τ )WY Y z

′(τ ))−1/2

exp(rtY z
′(τ )(I+ z

′(τ )WY Y z
′(τ ))−1

z
′(τ )rY ) , (D.3)

with the Doktorov matrices and vectors in Eq. (2.98),

WY Y = I− 2P, rY =
√
2(I−P)δ . (D.4)

For the multi-variate Hermite polynomial (MHP) part, the parameters are given as follows,

W̃cF(z
′(τ );0) =

1

2

(
(W̃+

XX + W̃−
XX)(z′(τ )) (W̃+

XX − W̃−
XX)(z′(τ ))

(W̃+
XX − W̃−

XX)(z′(τ )) (W̃+
XX + W̃−

XX)(z′(τ ))

)
, (D.5)

r̃cF(z
′(τ );0Y Y ) =

(
r̃+X(z′(τ ))
r̃+X(z′(τ ))

)
, (D.6)

with the quantities in Eqs. (2.130) and (2.131) in which

WXX = I− 2Q, WXY = −2R, WY X = −2Rt, (D.7)

rX = −
√
2Rδ, (D.8)

are used.

• Intensity
The explicit rR intensity time-correlation function (TCF)expression of Eq. (7.22) in Condon approxi-
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mation is given for the thermally averaged initial state,i.e.

GK
rR(bldiag(z(t), z(t)), z

′(τ ),z′(τ ′);0,bldiag(λ,λ)
1
2 )

=
1

Tr(exp(−βĤ))
GY (z′(τ ))GY (z

′(τ ))∗

I2N
[
I− bldiag

(
z(t), z(t), z(t),z(t)

)
W̃rR

(
z
′(τ ), z′(τ ′);0,bldiag(λ,λ)

1
2

)
bldiag

(
z(t), z(t),z(t), z(t)

)

, 1
2
bldiag

(
z(t),z(t), z(t), z(t)

)
r̃rR

(
z
′(τ ),z′(τ ′);0, bldiag(λ,λ)

1
2

)]
, (D.9)

whereI2N is the Gaussian integral defined in Eq. (2.122), andW̃rR(z
′(τ ),z′(τ ′);0,bldiag(λ,λ)

1
2 )

andr̃rR(z
′(τ ), z′(τ ′);0,bldiag(λ,λ)

1
2 ) can be found in Eq. (7.17) and Eq. (7.23), respectively.

D.3. Single vibronic level transition
In this section we present the explicit expression for Eq. (7.28) of non-thermally excited final state,i.e.

GKY Y
SVL (z, z′; 0; ṽX)

=


∏̃

−
1
2

ṽX


GY (z′)HṽX

(
(2zW̃+

XXz)−1r̃+X ; (2zW̃+
XXz)−1

)
, (D.10)

where the quantities (̃W+
XX , r̃+X ) defined in Eqs. (2.130) and (2.131) are used with Eqs. (D.7) and (D.8).

D.4. Anharmonic transition
Eq. (7.35) can be evaluated with Eq. (D.2) in Condon approximation, i.e.

GA(I, z
′; cn, cm

′; ṽKB, ṽBK)

=
∑

{vKX
},{vBX

},{vK
′

X
},{vB

′

X
}

c′vK′

X
;mc

′∗
vB

′

X
;mc∗vBX

;ncvKX
;n


∏̃

−
1
2
,−

1
2

vBX
,vKX




∏̃

−
1
2
,−

1
2

vB
′

X
,vK

′

X


GY (z′)HṽKB,ṽBK

(W̃−1
cF r̃cF; W̃

−1
cF ). (D.11)
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[115] P.-Å. Malmqvist and N. Forsberg. Franck-Condon factors for multidimensional harmonic oscillators.
Chem. Phys., 228:227–240, 1998.

[116] R. Islampour, M. Dehestani, and S. H. Lin. A new expression for multidimensional Franck-Condon
integrals.J. Mol. Spectrosc., 194:179–184, 1999.

[117] J. Liang and H. Li. Calculation of the multimode Franck-Condon factors based on the coherent state
method.Mol. Phys., 103(24):3337–3342, 2005.

[118] J. Liang, H. Zheng, X. Zhang, R. Li, and Z. Cui. Exact evaluation of the multidimensional Franck-
Condon integrals based on the contour integral method.Mol. Phys., 105:1903, 2007.

[119] R. Borrelli and A. Peluso. Perturbative calculation of Franck-Condon integrals: New hints for a rational
implementation.J. Chem. Phys., 129, 2008.

167



E. Bibliography

[120] J.-L Chang. A new method to calculate Franck-Condon factors of multidimensional harmonic oscillators
including Duschinsky effect.J. Chem. Phys., 128:174111, 2008.

[121] J. Liang, C. Liu, C. Wang, and Z. Cui. An algebraic formula to calculate the three-dimensional Franck-
Condon factors including the Duschinsky effect.Mol. Phys., 107:2601, 2009.

[122] D. S. Yang, M. Z. Zgierski, A. Bérces, P. A. Hackett, P.N. Roy, A. Martinez, T. Carrington, D. R.
Salahub, R. Fournier, T. Pang, and C. Chen. Vibrational and geometric structures of Nb3C2 and Nb3C+

2

from pulsed field ionization-zero electron kinetic energy photoelectron spectra and density functional
calculations.J. Chem. Phys., 105:10663–10671, 1996.

[123] K. M. Ervin, T. M. Ramond, G. E. Davico, R. L. Schwartz, S. M. Casey, and W. C. Lineberger. Naphthyl
radical: Negative ion photoelectron spectroscopy, Franck-Condon simulation and thermochemistry.J.
Phys. Chem. A, 105:10822–10831, 2001.

[124] A. Hazra and M. Nooijen. Derivation and efficent implementation of a recursion formula to calculate
harmonic Franck-Condon factors for polyatomic molecules.Inter. J. Quantum Chem., 95:643–657,
2003.

[125] I. A. Malkin, V. I. Man’ko, and D. A. Trifonov. Linear adiabatic invariants and coherent states.J. Math.
Phys., 14:576–582, 1973.

[126] R. P. Feynman and A. R. Hibbs.Quantum mechanics and path integrals. McGraw-Hill, New York,
1965.

[127] E. J. Heller. Photofragmentation of symmetric triatomic molecules: Time dependent picture.J. Chem.
Phys., 68:3891, 1978.

[128] W. W. Parson, Z. T. Chu, and A. Warshel. Reorganizationenergy of the initial electron-transfer step in
photosynthetic bacterial reaction centers.Biophys. J., 74:182, 1998.

[129] J. Huh, H.-C. Jankowiak, J. L. Stuber, and R. Berger. Vibronic transitions in large molecular systems:
Prescreening conditions for Franck-Condon factors at finite temperature and the thermal time-correlation
function. to be published.

[130] J. Huh, J. L. Stuber, and R. Berger. Vibronic transitions in large molecular systems: The thermal time-
correlation function and rigorous prescreening of Herzberg-Teller terms. to be published.

[131] J. Huh, J. L. Stuber, and R. Berger. Vibronic transitions in large molecular systems: Time-independent
cumulant expansion for Franck-Condon profiles at finite temperature and at zero kelvin. to be published.

[132] J. Huh and R. Berger. Application of time-independentcumulant expansion to calculation of Franck-
Condon profiles for large molecular systems.Faraday Discuss., accepted.

[133] C. S. Withers. A simple expression for the multivariate Hermite polynomials. Stat. Probab. Lett.,
47:165–169, 2000.

[134] R. Willink. Normal moments and Hermite polynomials.Stat. Probab. Lett., 271:271, 2005.

[135] R. P. Feynman.Statistical mechanics: a set of lectures. Addison-Wesley, Redwood City, 1972.

[136] H. M. Lu and B. Page. General theory of simultaneous mode mixing and non-Condon effects in reso-
nance Raman scattering.Chem. Phys. Lett., 131:87, 1986.

[137] E. J. Heller. Photofragmentation of symmetric triatomic molecules: Time dependent picture.J. Chem.
Phys., 68:3891, 1978.

[138] A. Warshel, P. S. Stern, and S. Mukamel. Semiclassicalcalculation of electronic spectra of supercooled
anharmonic molecules.J. Chem. Phys., 78:7498–7500, 1983.

[139] G. Orlandi and W. Siebrand. Mechanisms of vibronic intensity borrowing.Chem. Phys. Lett., 15:465–
468, 1972.

[140] H. M. Pickett and H. L. Strauss. Conformational structure, energy, and inversion rates of cyclohexane
and som related oxanes.J. Am. Chem. Soc., 92:7281–7290, 1970.

[141] P. R. Bunker.Molecular Symmetry and Spectroscopy. NRC Research Press, Ottawa, 2nd edition, 1998.

[142] J. T. Hougen and J. K. G. Watson. Anomalous rotational line intensities in electronic transitions of
polyatomic molecules: Axis-switching.Can. J. Phys., 43:298–320, 1965.

[143] J. K. G. Watson. Thea′′ vibrations of singlet propynal.Can. J. Chem., 71:1556, 1993.

168



E. Bibliography

[144] K. N. Kudin and A. Y. Dymarsky. Eckart axis conditions and the minimization of the root-mean-square
deviation: Two closely related problems.J. Chem. Phys., 122:224105, 2005.

[145] A. Y. Dymarsky and K. N. Kudin. Computation of the pseudorotation matrix to satisfy the Eckart axis
conditions.J. Chem. Phys., 122:124103, 2005.
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