Untersuchungen zum Transport niederenergetischer und hochperveanter Strahlen schwerer Ionen mit einer Doppel-Gabor-Plasmalinse

Diplomarbeit

Oliver Meusel

Institut für Angewandte Physik der Johann Wolfgang Goethe – Universität Frankfurt am Main Januar 2001 Inhaltsverzeichnis

1 Einleitung

2 Theoretische Beschreibung der Strahlparameter und deren Diagnose **5**

2.1.	Perveanz	6
2.2.	Strahlenergie und Strahlstrom	6
2.3.	Emittanz	7
2.4.	Emittanzmessung	7
2.5.	Numerische Behandlung der Emittanz	9
2.6.	Strahlionendichteprofil	10
2.7.	Optische Profilmessung	10

3	Die Ionenquelle		12
	3.1.	Aufbau und Funktion	12
	3.2.	Strahlemittanz	13
	3.3.	Perveanz	14
	3.4.	Strahlstromfluktuationen	15
	3.5.	Strahlzusammensetzung	16

4 Die Strahldrift

20

1

4.1.	Strahltransport	20
4.2.	Kompensation der Raumladungskräfte	21
4.3.	Restgasionenspektroskopie	22
4.4.	Strahltransportsimulation mit LINTRA	23
4.5.	Untersuchung der Strahldrift	27

5Äußere Felder295.1.Dekompensationsblende295.2.Solenoid31

6	Die Doppel – Gabor – Plasmalinse		
	6.1.	Theoretische Grundlagen	36
	6.2.	Aufbau der Doppel – Gabor – Plasmalinse	41
	6.3.	Numerische Bestimmung der Linsenparameter	44
	6.4.	Optische Beobachtung des Restgasleuchtens	48
	6.5.	Optische Spektroskopie des Restgasleuchtens	51
	6.6.	Messungen am Helium – Strahl	52
	6.7.	Messungen am Xenon – Strahl	60
	6.8.	Analyse der Abbildungsfehler	67
	6.9	Analyse der Ergebnisse der Messungen am Xenon – Strahl	72

7 Schlußwort

1. Einleitung

Die Bedeutung der Ionenstrahlen für die Menschen besteht in der Möglichkeit, durch die hohen Impulse der Ionen, die durch die derzeitige Technik realisiert werden können, tief in das Innere der Materie zu blicken. Das erlaubt Physikern beispielsweise experimentell sehr schwer zugängliche Fragen der Kosmologie durch Erzeugung von Quark-Gluonen-Plasmen zu analysieren und theoretische Vorhersagen der QCD zu prüfen. Aber auch der Ionenstrahl als physikalisches System zum Transport von Materie und Energie ist Gegenstand der Forschung.

Daneben steckt in der Anwendbarkeit der Ionenstrahlen in der Technik ein großes inovatives Moment für die Industrie, und auch für die Medizin und Biotechnologie werden Anwendungen erschlossen.

Ein wesentlicher Schwerpunkt für den Einsatz von Ionenstrahlen liegt bei der Erschließung neuer Energieressourcen. Einer ständig wachsenden Erdbevölkerung und dem steigenden Energieverbrauch der Menschen stehen Energiequellen gegenüber, die neben einer sehr niedrigen Effizienz bei der Umwandlung in elektrische Energie ökologische Gefahren in sich bergen und dadurch politisch mehr und mehr in die Kritik geraten.

Schon sehr lange wird deshalb an der kontrollierten Verschmelzung leichter Kerne gearbeitet. Eines der Hauptprobleme dabei liegt in der Bereitstellung der Initialisierungsenergie, welche die zu fusionierenden Kerne zur Überwindung ihrer Potentialbarrieren benötigen.

Neben dem Trägheitseinschluß und der katalytischen Fusion, wird die durch schwere Ionen induzierte Kernfusion favorisiert. Die zur Reaktion benötigte Energie wird bei diesem Prinzip durch einen Ionenstrahl auf einem Target deponiert.

Dabei sind neben der kinetischen Energie des Strahles die Reaktionsrate und die Reaktionseffizienz wesentliche Größen. Die Eignung und Qualität eines zukünftigen Hochstrombeschleunigers wird sich deshalb an der Anzahl der Ionen pro Puls, dem mittleren Strahlstrom und an der Emittanz des Strahles messen lassen.

Ein für diese Parameter sehr sensibeler Bereich ist die Niederenergietransportstrecke (Low Energy Beam Transport – LEBT) in einem Hochstrominjektor. In diesem Segment soll der aus der Ionenquelle extraierte Strahl auf die Akzeptanz des nachfolgenden Beschleunigers angepaßt werden. Die in einer LEBT geringe Strahlenergie und der gleichzeitig hohe Strahlstrom sind die charakteristischen Merkmale eines perveanzdominierten Strahltransport, das bedeutet die zeitliche Entwicklung des Strahles wird durch die Raumladung als Resultat der Coulomb – Wechselwirkung der Strahlionen bestimmt.

Die Raumladung begrenzt nicht nur den maximalen Strom, der durch ein Linsensystem transportiert werden kann, sondern führt auch zu Redistributionen der Ionen im Strahl, und damit verbunden zu einem Emittanzwachstum. Bei diesem Prozeß handelt es sich um einen irreversibelen Vorgang, der nicht nur die Reaktionseffizienz am Target sondern auch den Transport des Strahles durch den gesamten Injektor negativ beeinflußt. So bedeutet die Vergrößerung der Emittanz das Anwachsen des Strahlradius, wodurch sich der Füllgrad der Linsensysteme und Beschleunigerstrukturen erhöht. Die dadurch auftretenden Abberationen führen erneut zu einem Emittanzwachstum und damit verbundenen Teilchenverlusten, die gerade in folgenden Beschleunigersektionen bei hohen Strahlenergien vermieden werden müssen.

Elektrostatische und magnetische LEBT – Konzepte sind heute im Einsatz und auf die genannten Probleme optimiert worden. Trotzdem unterscheiden sie sich im Bezug auf ihre Transporteigenschaften erheblich und stoßen beide bei der Konzeption neuer Hochstrominjektoren an ihre technischen und auch wirtschaftlichen Grenzen.

Die elektrostatische LEBT besteht aus Einzellinsen oder elektrostatischen Quadrupolen. Sie ist das einfachste und mathematisch sowie numerisch am besten zu beschreibende System, da es den Ionenstrahl mit seiner gesamten Raumladung transportiert. Wie oben beschrieben ergibt sich aber gerade daraus ihr Nachteil. Dazu kommt eine Sensibilität gegenüber Strahlstromfluktuationen [Poz00], einer geringen Überschlagssicherheit bei hohem Restgasdruck, wie er wegen der Nähe der LEBT zur Ionenquelle möglich ist, und einem erheblichen technischen Aufwand bei dem Transport von Strahlen mit hohem Strahlstrom und großer Strahlenergie.

In der magnetischen LEBT wird der Strahl durch Restgasionisation und Einbindung von Ladungsträgern anderen Vorzeichens in das Strahlpotential kompensiert transportiert [Poz94, Poz95]. Als Konsequenz daraus ergibt sich die Erhöhung der Grenze für den transportierbaren Strom oder die Reduktion der zur Strahlfokusierung nötigen Kräfte. Der Einsatz der magnetischen LEBT ist durch die Größe der maximal realisierbaren magnetischen Felder gegeben. Für die genaue Beschreibung der Abbildungseigenschaften der magnetischen Linsen fehlen des weiteren Informationen über die Dynamik der Kompensationsteilchen im äußeren Feld.

Ein weiteres Konzept zur Fokusierung von Ionenstrahlen wurde 1947 von D. Gabor vorgeschlagen. Durch den Einschluß eines nichtneutralen Plasmas durch eine Kombination aus elektrischem und magnetischem Feld kann die zylindersymetrische homogene Raumladungswolke den Strahl bei gleichzeitiger Kompensation fokusieren.

System	Anzahl	mag. Feld [T]	Blendenpotential [kV]
el. Einzellinsen	2		> 500
Solenoide	2	> 20	
el. Quadrupole	3		> 270
mag. Quadrupole	3	> 1.3	
Gaborlinsen	2	~ 0,2	~ 70

Tabelle 1-1: Vergleich verschiedener LEBT - Strecken für einen ICF - Injektor (BI⁺, 522.5 keV, 40 mA) . Die Werte für die GPL wurden aus Simulationen bestimmt und skaliert.

Nach dem das Konzept der Gabor – Plasmalinse mehrfach in der Literatur behandelt wurde und auch der Transport von Strahlen geringer Ionenmassen erfolgreich gezeigt werden konnte, fehlt bis heute eine Applikation, in der diese Technologie zur Anwendung kommt. Erst die Verschärfung der Anforderungen an die geplanten Hochstrominjektoren (Tab 1-1) in Bezug auf Strahlenergie, Strahlstrom und der hohen Masse der zu transportierenden Ionen könnte die GPL zu einer ernst zunehmenden Alternative zu den konventionellen LEBT – Systemen werden lassen.

Die Untersuchung einer Doppel – Gabor – Plasmalinse (DGPL) auf ihre Eignung zum Transport hochperveanter niederenergetischer schwerer Ionenstrahlen ist eine Fortsetzung der Forschung in der Arbeitsgruppe "Raumladungskompensierter Strahltransport" am Institut für Angewandte Physik. Nachdem die Linsenparameter einer GPL und den daraus resultierenden Abbildungseigenschaften beschrieben und numerisch simuliert werden konnten und die experimentell gewonnenen Ergebnisse vergleichbar waren [Poz97], wurde von Jürgen Pozimski ein Doppellinsensystem konstruiert.

Mit Hilfe eines Xe⁺ - Strahls und eines He⁺ - Referenzstrahles wurde das Linsensystem in der vorliegenden Arbeit untersucht. Zu diesem Zweck wurde ein Versuchsstand (Abb. 1-1) aufgebaut, bei dem der aus der Ionenquelle extraierte Ionenstrahl durch eine DGPL – LEBT transportiert wurde. Der He⁺ - Strahl konnte mit seiner 32 mal kleineren Masse im Vergleich zum Xe⁺ - Strahl allein durch das Feld des Solenoiden fokussiert werden und diente deshalb als Referenzstrahl bei der Optimierung der Linseneinstellungen. Der Aufbau der Diplomarbeit orientiert sich mit den Kapiteln an den entsprechenden Sektionen des Versuchsaufbaus.

Im zweiten Kapitel werden die wichtigen Strahlparameter aufgeführt und Verfahren ihrer Diagnose geschildert. Das dritte Kapitel widmet sich dem Aufbau, der Funktion und den Eigenschaften der verwendeten Ionenquelle. Durch die von ihr erzeugte Eingangsemittanz und deren Variation über die Versuchs- und Meßzeit sowie die Schwankungen des extraierten Strahlstromes können Aussagen über die Abbildungseigenschaften der DGPL verfälscht werden.

Abbildung 1-1: Schematische Darstellung des Versuchsaufbaus zur Untersuchung der Transporteigenschaften der DGPL (Solenoideinsatz)

Im vierten Kapitel wird der Strahltransport ohne äußere Felder in der Driftsektion beschrieben. Dabei werden die Raumladungskompensation sowie ihr Einfluß auf die Transmission und das Emittanzwachstum dargestellt. In der zweiten Hälfte diese Kapitels wird auf die numerische Simulation des Strahltransports eingegangen. Nach der Behandlung der äußeren magnetischen und elektrostatischen Felder wird im sechsten Kapitel die DGPL theoretisch beschrieben und die gewonnenen Aussagen mit numerischen Simulationen und Messungen verglichen. Zum Abschluß werden die Ergebnisse des Strahltransports durch die Linse zusammenfassend dargestellt und mit den Resultaten der Berechnungen in Zusammenhang gebracht. Das Nachwort beleuchtet die mögliche Weiterentwicklung bei der Integration des beschriebenen LEBT – Konzepts in geplanten Injektorstrukturen.

2. Theoretische Beschreibung der Strahlparameter und deren Diagnose

2.1.1. Perveanz

Die Voraussetzungen für die mathematischen Beschreibung der Ionenstrahlen ist die Reduktion auf zylindersymetrische Strahlen, deren Strahlachse auf der Achse einer ebenfalls zylindersymetrischen Apparatur liegt. Außerdem müssen die Strahlionen in einer KV – Verteilung vorliegen, d.h. sie müssen homogen im Strahl verteilt sein. Mit diesen Einschränkungen läßt sich die Wirkung der Raumladung als Coulomb – Kraft schreiben (2.1).

$$F_{el}(r) = \frac{N \cdot (\zeta e)^2 r}{2\pi\varepsilon_0 r_s^2}$$
(2.1)

Dabei ist N die Anzahl der Ionen, ζ der Ladungszustand, e die Elementarladung, r der Strahlradius und r_s der Radius des Strahlrohres. Die Envelopengleichung (2.2) beschreibt die zeitliche Entwicklung des Ionenstrahls entlang seines Weges z.

$$\frac{d^2}{dz^2}r_s = \frac{\varepsilon^2}{r_s^3} + \frac{K}{r_s} - \kappa(z)r_s$$
(2.2)

Der Einfluß der absoluten Emittanz ε auf die Entwicklung der Strahlenvelope wird durch den ersten Therm auf der rechten Seite der Gleichung repräsentiert. Der letzte Therm beschreibt den Einfluß durch Strahlführungselemente. In einer Driftsektion und unter Voraussetzung eines laminaren Strahls ist Gleichung (2) nur noch von K abhängig (2.3).

$$r_s \cdot r_s'' = K \tag{2.3}$$

Mit K der generalisierten Perveanz nach Lawson, die wegen der Relation $F_{el}(r)\beta^2 = -F_{mag}(r)$ nur für $\beta < 0,1$ in der nichtrelativistischen Form geschrieben werden kann (2.4).

$$K = \frac{1}{4\pi\varepsilon_0} \sqrt{\frac{am}{2ne}} \frac{I}{U^{\frac{3}{2}}}$$
(2.4)

Hierbei ist a das Vielfache der Ionenmasse m, n der Ladungszustand des Ions, I der Ionenstrahlstrom und U die Extraktionsspannung. Die zeitliche Änderung der Strahlenveloppe zweier Ionenstrahlen in einer Drift ist gleich, wenn bei vernachlässigbarem Einfluß der Emittanz die Perveanzen beider Strahlen gleich sind. Dieser Zusammenhang ermöglicht es Erkenntnisse aus Experimenten an der im IAP aufgebauten LEBT – Strecke auf Hochstrominjektoren anzuwenden.

Projekt	Ion	I (mA)	U_{EX} (kV)	β	K
HIDIF – LEBT	BI^+	40	500	0,0025	0,0010
IAP – LEBT	He ⁺	3,82	12	0,0025	0,0037
IAP – LEBT	Xe ⁺	0,524	12	0,0004	0,0029

Tabelle 2-1: Darstellung der Strahlparameter des HIDIF - Szenario im Vergleich zu Strahlparametern der IAP – LEBT

2.1.2 Strahlenergie und Strahlstrommessung

Die bei der Extraktion des Ionenstrahls durchfallene Beschleunigungsspannung ist direkt proportional der Strahlenergie (2.5).

$$E_{kin} = eU \tag{2.5}$$

Der Strahlstrom wurde im hinteren Diagnosetank mit einer Faraday – Tasse bestimmt. Die Tasse mit pneumatischer Durchführung hatte einen Durchmesser von 60 mm. Das Potential für die Sekundärelektronen – Unterdrückung betrug $U_{SEU} = 600$ V. Durch die Messung des Strahlstromes am Ort der Emittanzmeßanlage läßt sich der Transport durch die LEBT im Hinblick auf die Transmission optimieren.

2.2.1. Emittanz

Die zeitliche Entwicklung des Ionenstrahls ist durch die Bewegungsgleichungen der einzelnen Ionen (n) sowie deren Verteilung im 6-n dimensionalen Phasenraum Γ_{6n} zu einer bestimmten Zeit eindeutig determiniert. Bei der Untersuchung des Strahltransportes in der LEBT – Sektion ist die Entwicklung des Phasenraumvolumens ein entscheidender Faktor für die Beurteilung der Qualität der Transportstrecke und der Ionenoptik. Allerdings wird in der Praxis die Entwicklung der Dichteverteilung $f_6=f(x,y,z,px,py,pz,t)$ des 6 dimensionalen Phasenraums Γ_6 untersucht. Dabei werden zur weiteren Vereinfachung die Koordinaten px, py durch die Näherung (2.6) ersetzt.

$$x' \approx \tan x' = \frac{px}{pz}$$
 $y' \approx \tan y' = \frac{py}{pz}$ (2.6)

Weiterhin wird bei konstanter Teilchengeschwindigkeit und geringer longitudinaler Energieverschmierung der Ort z durch die Zeit t ersetzt. Bei der Abbildung des daraus resultierenden 4 dimensionalen Raumes $f_4=(x,x',y,y',t)$ auf die 2 dimensionalen Unterräume wird der Betrag der abgebildeten Flächen mit dem Faktor π korrigiert. Die mit β und γ normierten Beträge der Flächen F(x,x') und F(y,y') ergeben dann die Randemittanzen des Ionenstrahls (2.7).

$$\varepsilon_{n,x} = \beta \gamma \frac{F(x,x')}{\pi} \qquad bzw. \qquad \varepsilon_{n,y} = \beta \gamma \frac{F(y,y')}{\pi}$$
(2.7)

In der experimentellen Physik wird die Emittanz durch die Momente der Dichteverteilung

$$\left\langle x_{i}^{n}\right\rangle = \int \dots \int x_{i}^{n} \cdot f_{k} dx_{1} \dots dx_{k}$$

$$(2.8)$$

des Ionenstrahls im RMS (Root Mean Square) Formalismus dargestellt

$$\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{x,rms} = \sqrt{\left\langle x^2 \right\rangle \left\langle x^{\prime 2} \right\rangle - \left\langle xx^{\prime} \right\rangle^2} \tag{2.9}$$

$$\varepsilon_{n,rms} = \beta \gamma \varepsilon \tag{2.10}$$

mit entsprechender Normierung .

2.2.2. Emittanzmessung

Die beschriebenen Phasenraumprojektionen $(x,x^{\circ} - \text{Emittanz})$ werden mit Emittanzmeßanlagen bestimmt. Bei der verwendeten Allison – Emittanzmeßanlage mit elektrostatischer Winkelselektion (Abb.2-1) wird durch einen Schlitz ein Teilstrahl aus dem Ionenstrahl ausgeblendet, der im elektrischen Feld eines Plattenkondensators transversal

Abbildung 2-1: Schematische Darstellung der Emittanzmessung. Die Strahlionen, die durch die erste Schlitzblende gelangen, werden durch das elektrische Feld des Plattenkondensators abgelenkt. Der Strom in der Faraday - Tasse hinter der zweiten Schlitzblende wird als Funktion der Ablenkspannung und damit des entsprechenden Winkels gemessen.

abgelenkt wird. Nach dem zweiten Schlitz wird der Strom in einer Faraday – Tasse als Funktion der Kondensatorspannung bestimmt. Dabei war für die im Experiment vorgegebene Geometrie in guter Näherung der Ablenkwinkel proportional der Ablenkspannung. Vorteil dieser Anlage ist eine hohe Winkelauflösung bei gleichzeitig großem Meßbereich, wobei die Winkelauflösung durch die Zeitdauer für eine Winkelmessung und die Frequenz der verwendeten Dreiecksfunktion bestimmt ist. Bei der computergesteuerten Meßwerterfassung wird die Ablenkspannung und der durch den schnellen Stromverstärker Stanford Research 570 vorverstärkte Detektorstrom durch eine A/D – Wandlerkarte gemessen. Der Meßkopf der Anlage wird mit einer Vakuumdurchführung und einer Schrittmotorsteuerung an den Meßort gefahren, wobei der maximale Hub 50 mm beträgt. Das Programm zur Erfassung der Meßdaten wurde von P. Groß entwickelt und später von A. Lakatos optimiert und erweitert. Die Ergebnisse einer Emittanzmessung sind in Abb. 2-2 dargestellt. Bei der Abbildung auf der linken Seite handelt es sich um die Phasenraumverteilung eines Xe⁺ - Strahl mit einer Strahlenergie $U_{EX} = 12$ kV und einem Strahlstrom $I_{FDT} = 0,524$ mA nach einer Drift von 278 mm. Auf der rechten Seite die Darstellung die Phasenraumverteilung des He+ -Referenzstrahles mit der gleichen Srahlenergie und einem Strahlstrom I_{FDT}= 2,52 mA. Beide Strahlen wurden kompensiert transportiert. Die Projektion des Phasenraums entspricht im wesentlichen einer Ellipse mit leichten S – förmigen Aberrationen die auf das Extraktionssystem zurückzuführen sind [Groß 97]. Die Skalierung am rechten Rand der

Abbildung 2-2: Messung der x,x' Emittanz für einen Xe⁺ - Strahl (links) und den He⁺ - Referenzstrahl (rechts) nach einer Drift von 278 mm.

2.2.3. Numerische Behandlung der Emittanz

Um die gemessenen Emittanzen auswerten zu können, werden diese in das Programm EMI2_0 von P. Groß eingelesen und dargestellt. Daneben können auch andere Dateiformate z.B. von den Programmen zur Transportsimulation IGUN und PARMTRA interpretiert werden. Eine besondere Bedeutung hat neben der Auswertung der gemessenen Emittanzen die Transformation der Meßdaten in das PARMTRA – Dateiformat durch EMI2_0 und

Abbildung 2-3: Detail der Phasenraumverteilung, links gemessene Ausgangsemittanz aus Abb. 2-2, rechts Transformation der Messung in einen PARMTRA - Datensatz und erneute Darstellung

PARMTRA. Dieses Format erlaubt die weitere Verwendung der Daten in dem Vielteilchentransportprogramm LINTRA (Kapitel 4.4) und den direkten Vergleich mit den Daten des Programms CCDEMI für die Bestimmung der Phasenraumverteilung aus der optischen Profilmessung. Die gemessene Phasenraumbelegung des Ionenstrahls wird dabei von EMI2_0 durch die Koordinaten von 10000 Teilchen wiedergegeben. Durch die begrenzte Anzahl der den Strahl repräsentierenden Koordinaten geht ein Teil der Strukturen der gemessenen Phasenraumverteilungen verloren. Und auch die Rücktransformation des so gewonnenen PARMTRA – Datensatzes durch die Verteilung der Phasenraumkoordinaten auf Phasenraumkästchen geschiet unter Verlust an Information. In Abbildung 2-3 ist die Diskretisierung der gemessenen Emittanz (links) bei der vorgenommenen Umrechnung (rechts) sehr gut zu erkennen, wobei die damit verbundene Änderung des Emittanzwertes bei ca. 10% liegt. Für die durchgeführten Transportrechnungen war dieser Fehler allerdings zu vernachlässigen.

2.3.1. Strahlionendichteprofil

Das radiale Strahlionendichteprofil $\rho(r)$ erlaubt, da aus ihm der Verlauf des elektrischen Eigenfeldes und der Potentialverlauf abgeleitet werden kann, eine realitätsnahe Simulation des Strahltransportes und somit Vorhersagen über die Strahldynamik in einer LEBT-Strecke. Durch die Abeltransformation (2.11) kann aus dem transversalen Intensitätsprofil I(x) über Normierung des Stromdichteprofils j(r) das Strahlionendichteprofil $\rho(r)$ berechnet werden.

$$\rho(r) = K \int_{r}^{\infty} \frac{\left(\frac{dI}{dx}\right) dx}{\sqrt{x^2 - r^2}}$$
(2.11)

Hierbei ist K eine Normierungskonstante, die sich aus den Strahldaten und dem Meßaufbau ableiten läßt. In der Nähe der Strahlachse kann das Strahlionendichteprofil wegen der Unstetigkeitsstelle des Integrals nur hinreichend genau berechnet werden. Weitere Probleme dieses Verfahrens ergeben sich bei einem schlechten Signal zu Rauschverhältnisses.

2.3.2. Optische Profilmessung

Abbildung 2-4: Schematisch Darstellung der Versuchsanordnung zur optischen Bestimmung des radialen Strahlionendichteprofils

Auf ihrem Weg durch die Apparatur kollidieren die Strahlionen mit den vorhandenen Restgasionen. Die bei dieser Wechselwirkung entstehenden Photonen im Wellenlängenbereich des sichtbaren Lichts werden nach der Detektion durch einen CCD-Chip zur Bestimmung des Intensitätsprofils I(x) in einem CCD-Image dargestellt und in einer Datei abgespeichert. Aus diesen Daten läßt sich dann mit dem von J. Pozimski erstellten Programm ABELINV das Integral (2.11) numerisch lösen.

Abbildung 2-5: Beispiel für die optische Bestimmung der Verteilung der Strahlionendichte, A) CCD-Image vom Strahl-Restgas-Leuchten, B) Dreidimensionale Intensitätsverteilung in x (transversal-) und z (longitudinal zur Strahlachse), C) Zweidimensionaler Ausschnitt aus B), D) berechnetes Strahlionendichte-profil aus C) mit ABELINV.

Das Verfahren zur optischen Profilmessung wird momentan daraufhin untersucht, in wieweit es sich zur Bestimmung der Strahlemittanzen aus den longitudinalen und transversalen Intensitätsverteilungen eignet [Poz00], denn gerade durch das von Entstehen Sekundärelektronen bei der Messung mit herkömmlichen Emittanzmeßanlagen ändert sich der Kompensationsgrad im Ionenstrahl und auch der Zustand der Ladungsträgerwolke (Kapitel 6.3) in dem untersuchten Linsensystem wurde dadurch beeinflußt. Von Bedeutung ist auch, daß eine Zerstörung des Strahles während der Messung umgangen wird. Um eine zerstörungsfreie Meßmethode handelt es sich bei der optischen Profilmessung im strengen Sinne nicht, da selbst der Informationsgewinn durch die Interaktion der Strahlionen mit dem Restgas mit einer Änderung des Status des Gesamtensemble einher geht.

3. Die Ionenquelle

3.1. Aufbau und Funktion

Bei der verwendeten Ionenquelle handelt es sich um eine Volumenquelle. Der Plasmagenerator besteht aus einer zylindrischen Anode und einer Glühkathode aus der durch Glühemission austretende Elektronen zur Anode hin beschleunigt werden. Ist die mittlere freie Weglänge groß genug, so daß die kinetische Energie der Elektronen größer /gleich der speziefischen Ionisierungsenergie (3.1) des Arbeitsgases ist, so wird das durch den Gaseinlaß eingefüllte Arbeitsgas ionisiert.

$$E_{ion} = \frac{Z_{eff}^2 e^4 m}{32\pi^2 n^2 \hbar^2 \varepsilon_0^2}$$
(3.1)

Mit Z_{eff} der effektiven Kernladung und n der Hauptquantenzahl und sonst üblicher Bezeichnung beträgt die Ionisierungsenergie für Xenon 12,13 eV. Das gezündete Plasma wird durch das Magnetfeld des Solenoiden der die Anode umgibt gehalten.

Abbildung 3-1: Graphische Darstellung der Ionenquelle mit erstem Diagnosetank, in dem das Extraktionssystem teilweise integriert ist.

Das Triodenextraktionsystem der verwendeten Quelle besteht aus der Extraktionsblende an der Plasmakammer, einer Screening- und einer Groundelektrode. Die mit -10% der Extraktionsspannung beaufschlagte Screeningelektrode stellt eine Barriere für im Strahl zur Quelle zurück laufende Elektronen dar und separiert somit die nachfolgende Driftsektion elektrostatisch von der Quelle. Durch Anlegen des Potentials U_{EX} an die Plasmakammer und der daraus resultierenden Potentialdifferenz zwischen Plasmagenerator und Extraktionssystem werden aus der sich am Extraktionsloch der Plasmakammer ausbildenden Plasmagrenzschicht Ionen extraiert und beschleunigt. Die kinetische Energie der extrahierten Strahlionen ist dabei proportional der angelegten Potentialdifferenz, wobei die Qualität des Ionenstrahls, wesentlich vom Layout des Plasmagenerators und des Extraktionssystems abhängt.

3.2. Bestimmung der Quellencharakteristik

3.2.1. Emittanz

Um die Transporteigenschaften einer LEBT-Strecke zu untersuchen, sind die Eigenschaften des durch die Quelle injizierten Ionenstrahls als definierte Anfangsbedingung von besonderer Bedeutung. Diese Daten dienen auch als Grundlage für die zahlreichen numerischen Simulationen des Strahltransports durch die Segmente der LEBT-Strecke. Daneben steht auch der optimale Quellenbetrieb für die nachfolgenden Messungen im Vordergrund.

Abbildung 3-2 zeigt die für die verwendete Quelle ermittelten Phasenraumverteilungen der extraierten Strahlionen am Extraktionsloch für einen Xe⁺-Strahl. Diese wurden unter Verwendung der Quellengeometrie und entsprechender Quellenparameter durch das Programm IGUN numerisch simuliert (B). Des weiteren wurde die Emittanz der Strahlionen nach einer Drift von 278 mm hinter dem Extraktionssystem gemessen und danach mit Hilfe des Transportprogramms LINTRA zur Startverteilung am Extraktionsloch zurückgerechnet (A).

Abbildung 3-2: Mit LINTRA berechnete Phasenraumverteilungen (x,x') am Extraktionsloch durch Rückrechnung einer gemessenen Emittanz eines Xe⁺ - Strahls nach 278mm Strahldrift A) sowie eine mit IGUN generierte Emittanz als Ergebnis der numerischen Simulation der Ionenquelle B) für beide Darstellungen waren die Strahlparameter gleich, $U_{EX} = 12kV$ Extraktionsspannung, I = 0,524mA extraierter Strom.

Die Ergebnisse der Simulationen mit IGUN als auch mit LINTRA ergeben unter Berücksichtigung der numerischen Fehler in guter Näherung gleiche Orte und Winkel für die Startverteilungen, mit welcher der Ionenstrahl von der Quelle in die LEBT injiziert wurde. Bei der gemessenen und durch LINTRA zurück gerechneten Emittanz sind die Aberrationen des Extraktionssystems an der leichten S – Form gut zu erkennen. Die Temperatur des Quellenplasmas ist proportional zum Betrag der kleinen Halbachse der Phasenraumellipse. Obwohl beide genannten Faktoren bei der numerischen Berechnung der Quellenemittanz durch IGUN fehlen, ist eine Bestimmung der optimalen Quellenkonfiguration und der Strahlentwicklung im Extraktionssystem möglich.

3.2.2. Perveanz

Bei den Experimenten an der IAP – LEBT kann die Perveanz der aus der Ionenquelle extraierten Strahlen genutzt werden, um in Erfahrung zu bringen, ob die Quelle mit optimalen Einstellungen der Quellenparameter betrieben wurde. In einem ersten Versuch wurde die Quelle mit verschiedenen Arbeitsgasen auf den extraierbaren Strom bei verschiedenen Quelleneinstellungen hin untersucht. Bild 3-3 zeigt die graphische Darstellung der Perveanz als Funktion der Extraktionsspannung für Verschiedene Ionenstrahlen.

Abbildung 3-3: Darstellung der Perveanz als Funktion der Extraktionsspannung für Strahlen verschiedener Ionenmassen.

An der Graphik erkennt man, daß die Einstellungen der Quelle nur für Neon und Argon optimal gewählt wurden, denn hier ist der extraierte Strahlstrom nach der Relation von Child – Langmuir (3.2) proportional zu U^{3/2}.

$$J_{EX} = \chi \frac{U^{\frac{3}{2}}}{d^2}$$
(3.2)

Mit dem Faktor $\chi = (4\epsilon_0/9)(2q/m)^{1/2}$, wobei q und m die Ladung und Masse der extraierten Ionen sind und d der Abstand der Blenden, ergibt sich nach Division der Stromdichte J_{EX} durch die Fläche der Plasmagrenzschicht der extraierbare Strom (3.3).

$$I_{EX} = \pi \chi \left(\frac{r}{d}\right)^2 U^{\frac{3}{2}}$$
(3.3)

Bei Helium ist die Dichte des Quellenplasmas zu gering um noch bei höheren Extraktionsspannungen einen wesentlichen Anstieg des extraierten Strahlstromes zu bewirken. Dagegen ist bei Xenon die Dichte des Quellenplasmas sehr hoch und läßt dadurch den extraierten Strom bei steigender Extraktionsspannung überproportional ansteigen. Die eigentlichen Messungen zum Transport von Xe⁺-Strahlen durch die LEBT-Strecke erfolgten später mit einer Extraktionsspannung von U_{EX} = 12 kV. Der dabei extraierte Strom lag bei I_{FDT}= 0,6 mA, die Perveanz betrug K= 0,0039.

3.2.3. Strahlstromfluktuationen

Der Betrag des aus einer Ionenquelle extraierten Strahlstromes unterliegt auch bei günstigen Quelleneinstellungen Schwankungen. Bei perveanzdominierten Ionenstrahlen und bei sehr kleinen Strahldurchmessern, wie im Fokus, führt dieses Quellenrauschen (source noise) zu

Abbildung 3-4: Frequenzspektrum des Quellenrauschens links mit Arbeitsgas Xenon, rechts mit Helium, im Vergleich mit dem Grundrauschen ohne Quellenbetrieb (blau)

einer relevanten Änderung der Raumladungskräfte und damit zu einer Änderung der Emittanz. In Abbildung 3-3 ist das Frequenzspektrum des Quellenauschens für den Quellenbetrieb mit Xenon und Helium dargestellt, deutlich ist eine Erhöhung der Rauschanteile bei Frequenzen zwischen 0 – 1MHz zu erkennen. Die Messungen erfolgten wie in 2.1.2. beschrieben mit einer Faradaytasse und mit einem 5MHz Oszillosgraphen zur Meßwerterfassung und Auswertung. Wegen der sehr viel kleineren Zeitauflösung der Emittanzmeßanlage im Gegensatz zur Frequenz der Strahlstromfluktuationen, wird eine Überlagerung der Emittanzänderungen gemessen, die ein scheinbares Anwachsen der Emittanz beim Transport durch die LEBT ergeben. Bei der Untersuchung der Abbildungseigenschaften des Gabor – Plasmalinsensystems wurde dieser Fehler durch Messungen der Strahlstromschwankungen ausgeschlossen. Abbildung 3-5 zeigt die Fluktuationen um den Mittelwert des gemessenen Strahlstromes links für einen Xenon- und rechts für einen Heliumstrahl. Die maximale Abweichung vom Strahlstrommittel beträgt beim Xenon - Strahl 0,28 % und beim Referenzstrahl 0,17 %. Diese Ergebnisse schließen einen Einfluß der Strahlstromschwankungen auf die Meßergebnisse als mögliche Fehlerquelle aus.

Abbildung 3-5: Strom in der Faradaytasse als Funktion der Zeit für einen Xe⁺ - Strahl (links) und einen He⁺ - Referenzstrahl (rechts), die Strahlenergie betrug für beide Strahlen U_{EX}=12 kV.

3.2.4. Strahlzusammensetzung

Aus der Ionenquelle wird ein Ionenstrahl extraiert, der sich aus den Ionen verschiedener Elemente und deren Isotope zusammensetzt. Die Quellenparameter sind dabei so abgestimmt, daß der quantitative Anteil der Ionen des Arbeitsgases überwiegt, vernachlässigbar sollte dann der Anteil des in der Quelle ionisierten Restgases sein. Der Versuchsaufbau zur Untersuchung der Strahlzusammensetzung ist in Abbildung 3-6 dargestellt. Das verwendete ("Name-")spektrometer erlaubt neben der Impulsseparation auch eine Bestimmung der Ionenenergie.

Abbildung 3-6: Schematisch Darstellung des Versuchsaufbaus zur Bestimmung der Strahlzusammensetzung sowie der Energie der Strahlionen.

Bei bekannter Strahlenergie ist die Masse der Ionen durch das Feld des Sektormagneten eindeutig bestimmt (3.4)

$$B = \frac{p}{ner_{soll}}$$
(3.4)

Dabei ist B das magnetische Feld, p der Ionenimpuls, n der Ladungszustand und r_{soll} der Sollbahnradius. Aus Gleichung (3.4) läßt sich außerdem eine Unterscheidung verschiedener Ladungszustände ableiten, die im 6. Kapitel von Bedeutung sein werden. Abbildung 3-7 zeigt die aufgenommenen Massenspektren des Xenon – (oben) und des Referenzstrahles (unten). Hierbei ist der Strom in der Faradaytasse als Funktion des Magnetfeldes, das durch die Auswertungssoftware auf Masseneinheiten normiert wurde, dargestellt. Bei diesem Prozeß wurde der Ladungszustand der Ionen allerdings nicht berücksichtigt, so daß durch spätere Rechnungen identifizierte Peaks beschriftet wurden.

Abbildung 3-7: Massenspektrum eines 6 kV Heliumstrahles (oben) und eines 6 kV Xenonstrahles (unten), die Skalierung der Masse erfolgte durch die Auswertugssoftware, die keine höheren Ladungszustände berücksichtigt, diese wurden durch spätere Rechnungen Identifiziert.

Das Massenspektrum des Xenonstrahles zeigt einen 10 % -igen Anteil zweifach und noch einen knapp 1 % -igen Anteil dreifach geladener Xenonionen. Das Verhältnis der drei Ladungszustände ist nach einer ca. 350 mm Strahldrift allerdings zu Gunsten des geringeren Ladungszustand verschoben. Die Ursache dafür sind elektrische Rekombinationen durch Reaktionen mit Restgasionen und Sekundärelektronen. Im Massenspektrum wird dieser

Effekt durch die Verbreiterung des Hauptpeaks sichtbar, denn bei der Umladung von Xe³⁺ zu Xe²⁺ hat das zweifachgeladene Xenonion nach der Reaktion die kinetische Energie (Gl. 2.5) E_{kin} =3eU, und das ergibt bei einer dem in Abbildung 3-7 dargestellten Massenspektrum entsprechenden Skalierung ein B – Feld, das einer Masse von 98,27 a.u. entspricht. Die Energieverschmierung in der Umgebung dieses Peaks insbesondere im Intervall 95 – 125 a.u. ist auf die Umladung der Ionen innerhalb des Dipolfeldes zurück zuführen.

Die Bestimmung der kinetischen Energie der Strahlionen spielt nicht nur bei der Analyse der Massenspektren eine große Rolle, sondern auch bei der Berechnung der Parameter für die zu untersuchende Doppel – Gabor – Plasmalinse, sowie bei der numerischen Simulation des Strahltransportes durch die gesamte LEBT – Sektion.

Abbildung 3-8: Struktur des He⁺ - Peaks als Funktion der Gegenspannung (links) und Strom in der Faradaytasse des Spektrometers als Funktion der Gegenspannung (rechts).

Eine zusätzliche Blende an der Faradaytasse des Massenspektrometers, die durch das Anlegen eines Potentials ein elektrisches Feld erzeugt, das der kinetischen Energie der Strahlionen entgegenwirkt dient als Energiespektrometer. Abbildung 3-8 (rechts) zeigt den Strom in der Faradaytasse als Funktion der Gegenspannung. Bei einem Potential von 5,1 kV sinkt der Betrag des Stromes auf ein tausendstel seines ursprünglichen Wertes und mit der Relation neU_{EX} - neU_{GEGEN} = 0 beträgt die kinetische Energie der He⁺ - Ionen 5100 eV. Das jedoch steht im Widerspruch zur Extraktionsspannung von 6 kV. Eine Erklärung für diese Differenz. liegt in dem zum Schutz vor Überschlägen eingebaute Widerstand mit R = 1M Ω .

Durch Änderung der Struktur des Massenspektrums zum Beispiel am He^+ - Peak in Abbildung 3-8 (links) lassen sich auch Aussagen über Energieverschmierungen durch Umladungen gewinnen. Insbesondere läßt darauf eine Abhängigkeit der Peak – Schärfe von der Stärke des Gegenfeldes schließen.

4. Die Strahldrift

4.1. Strahltransport

Die Strahldrift entspricht dem Strahltransport ohne den Einfluß äußerer Felder. Die Envelopengleichung (2.2) ist dabei nur noch durch die Strahlemittanz ε und die generalisierte Perveanz bestimmt (4.1).

$$\frac{d^2}{dz^2}r_s - \frac{\varepsilon^2}{r_s^3} - \frac{K}{r_s} = 0$$
(4.1)

In einer LEBT - Strecke sind die Raumladungskräfte wegen der geringen Strahlenergie bestimmend und führen zu einer Änderung der Dichteverteilung der Strahlionen durch Redistributionen. Nach dem Satz von Liouville sind die Volumenelemente eines Phasenraumes zeitlich konstant, wenn die Teilchenbewegungen durch kanonische Das Gleichungen beschrieben werden können. bedeutet. daß die Fläche der Phasenraumellipse von der Bewegung der Teilchen unabhängig immer den gleichen Betrag hat und lediglich im Phasenraum rotiert. Enthalten die Bewegungsgleichungen der Strahlionen nicht lineare Anteile, so führt dies zu einer Vergrößerung des Betrages der Emittanz, der Satz von Liouville gilt dann nicht mehr. Das Emittanzwachstum ist letztlich auf nichtlineare Anteile des vom Ionenstrahl erzeugten Eigenfeldes zurück zuführen. Diese

Abbildung 4-1: Emittanzwachstum durch Redistributionen bei der Simulation einer Strahhldrift eines unkompensierten H⁺-Strahls, im oberen Bild ist die Strahlenveloppe dargestellt, im unteren Bild ist der Betrag der Emittanz als Funktion des longitudinalen Ortes z aufgetragen

Anteile verschwinden aber genau dann, wenn die Ionen homogen im Strahl verteilt sind, und somit die Entropie des Ensembles maximal ist. Die Verknüpfung der Emittanz mit der Entropie läßt Parallelen zwischen den Eigenschaften beider Größen erkennen. So kann sich der Betrag des Phasenraumvolumens ohne äußere Maßnahmen, wie zum Beispiel Elektronenkühler, nicht verringern, und ebenso wie bei der Entropie strebt die Emittanz in einem System einen Zustand maximaler Wahrscheinlichkeit an.

Eine Abschätzung des tatsächlichen Emittanzwachstums durch Redistributionen erhält man durch Gleichung (4.2)

$$\Delta \varepsilon = \sqrt{\frac{\left\langle x^2 \right\rangle \cdot K \cdot \Delta W_{nl}}{8}} \tag{4.2}$$

Dabei ist $\langle x^2 \rangle$ der rms-Strahlradius, K die generalisierte Perveanz und ΔW_{nl} ein Formfaktor der die Übergänge zwischen den verschiedenen Verteilungsfunktionen charakterisiert. In Abbildung 4-1 ist die Änderung der Emittanz als Funktion des longitudinalen Ortes bei der Simulation einer Strahldrift eines unkompensierten H⁺-Strahles dargestellt. Deutlich erkennt man wie sich der Betrag der Emittanz asymptotisch einer Grenze nähert. In der Nähe dieser oberen Grenze sind die Anteile an nicht linearer Feldenergie minimal, und das bedeutet die Ionen sind homogen im Strahl verteilt.

4.2. Kompensation der Raumladungskräfte

Das Emittanzwachstum durch Redistributionen läßt sich durch die Kompensation der Raumladungsfelder minimieren. Bei einer totalen Kompensation des Eigenfeldes des Strahls, ist die Verteilungsfunktion und somit die Emittanz gerade in der LEBT-Sektion bei hohen Perveanzen zeitlich konstant. Die Reduktion des Strahlpotentials und somit der Stärke des Eigenfeldes des Strahls wird durch das Einbringen von Ladungsträgern anderen Vorzeichens in das Strahlvolumen erreicht. Die Erzeugung der Kompensationsteilchen, im Fall positiver Ionenstrahlen sind das Elektronen, erfolgt durch Restgasionisation und ist vom Restgasdruck, der in der LEBT-Sektion im allgemeinen wegen der Nähe zur Ionenquelle recht hoch ist, und vom Wirkungsquerschnitt, der wegen der geringen Strahlenergie auch als hoch angenommen werden kann, abhängig. Die produzierten Kompensationselektronen führen zu einer Reduzierung der Nettoladungsdichte (4.3).

$$\rho_{netto}(r) = \rho_{SI}(r) + \rho_{KE}(r) + \rho_{RGI}(r)$$
(4.3)

Die Ladungsdichteverteilung $\rho_{SI}(r)$ ist dabei durch die vom Strahl bestimmte Emittanz gegeben. Die genauen Erzeugungsmechanismen und der Verlauf der Ladsungsträgerdichte der Restgasionen findet man ausführlich bei R. Dölling [Dölling 94]. Mit den in Kapitel 2.1.1 gemachten mathematischen Voraussetzungen läßt sich aus Gleichung (4.3) der radiale Potential- und Feldverlauf des Ionenstrahls bestimmen.

$$\Phi(r) = -\frac{1}{\varepsilon_0} \int_0^r \frac{1}{r'} \int_0^r \rho_{netto}(r'') r'' dr'' dr'$$
(4.4)

Die Verteilung der Elektronen im Strahlpotential ist von deren Temperatur, die sich auf Grund von Heizprozessen [Dölling 94] fluktuiert, abhängig. Die Elektronendichteverteilung kann deshalb durch die Bolzmannverteilung (4.5) berechnet werden.

$$\rho_{KE}(r,z) = \rho_{KE}(\Phi_{\max}) \cdot e^{\left[-\frac{e(\Phi_{\max}-\Phi(r))}{kT_{KE}}\right]}$$
(4.5)

Hier ist k die Bolzmannkonstante und T_{KE} die Temperatur der Kompensationselektronen. Die Möglichkeit die Qualität des Strahltransports durch die Reduktion der defokussierenden Raumladungskräfte zu optimieren, aber auch die Stromtransportgrenze zu erhöhen, bleibt ein Previleg der LEBT-Konzepte, die bei der Strahlführung auf dekompensierende äußere Felder verzichtet, wie dies bei elektrostatischen LEBT – Systemen der Fall ist.

4.3. Restgasionenspektroskopie

Die potentielle Energie E_{pot} der durch Stoßionisation erzeugten **R**est**g**asionen ist direkt proportional zum Betrag des Strahlpotentials an ihrem Entstehungsort im Strahl. Auf Grund gleichen Vorzeichens der RGI wird die potentielle in kinetische Energie verwandelt, in dem sie im Raumladungsfeld des Strahles radial nach außen beschleunigt werden.

Abbildung 4-2: Schematischer Versuchsaufbau der RGI - Energiespektroskopie. Die erzeugten Restgasionen werden im Strahl radial beschleunigt und treten durch eine Blende in das Segment des Zylinderkondensators ein. Die Energieseparation erfolgt durch Korrelation mit dem an dem Kondensator angelegtem Feld.

Mit einem Restgasionenspektrometer, wie es in Abbildung 4-2 dargestellt ist, läßt sich die Energie der RGI, die den Strahl innerhalb des Akzeptanzwinkels verlassen, bestimmen und so auf die radiale Potentialverteilung im Strahl schließen. Die Abbildungseigenschaften von $E_{kin,RGI}$ nach $\Phi_{Strahl}(r)$ des Spektrometers und der zugehörigen Auswertesoftware ASPEKTRA wurden unter der Einschränkung der theoretischen Annahmen wie Zylindersymmetrie, vernachlässigbare Startenergie der RGI und äußere Felder, in der Arbeitsgruppe durch erfolgreiche Anwendung des Meßverfahrens bestätigt [Dölling 94, Reidelbach 96, Poz 97]. In Abbildung 4-3 sind die Ergebnisse der RGI – Spektroskopie an einem kompensierten (links) und an einem dekompensierten (rechts) Xe⁺ - Strahl graphisch dargestellt.

Abbildung 4-3: RGI - Energiespektrum eines kompensierten (links) und eines dekompensierten (rechts) Xe⁺ - Strahles, die Extraktionspannung betrug in beiden Fällen 12 kV, der extraierte Strahlstrom lag bei 0,406 mA bzw. 0,546 mA.

Der Kompensationsgrad der Raumladungskräfte errechnet sich dabei nach Gleichung (5) aus den Potentialdifferenzen $\Delta \Phi_{ST,k}$ und $\Delta \Phi_{ST,uk}$ des kompensierten bzw. unkompensierten Strahls.

$$\kappa = \frac{1 - \Delta \Phi_{ST,k}}{\Delta \Phi_{ST,uk}} \tag{5}$$

Der Betrag für die Potentialdifferenz des unkompensierten Ionenstrahls kann aus dem Strahlstrom I und der Ionengeschwindigkeit v_{Ion} berechnet werden (6).

$$\Delta \Phi_{ST,uk} = \frac{I}{4\pi\varepsilon_0 v_{lon}} \tag{6}$$

Für die in Abbildung 4-3 vorgestellten Beispiele beträgt der Kompensationsgrad des kompensierten Strahls 90,23 % und der des dekompensierten Strahls beträgt 50,54 %. Die Bestimmung des Kompensationsgrades ermöglicht es, in numerischen Simulationen die Raumladungskräfte in die Berechnungen mit einzubeziehen und mit experimentellen Daten zu vergleichen.

4.4. Strahltransportsimulation mit LINTRA

In diesem Kapitel rechtfertigt sich die Beschreibung der Transportsimulation durch LINTRA, weil dieser die Physik der Ionenstrahldynamik in einer LEBT-Strecke zu Grunde liegt und außerdem die Raumladungskompensation berücksichtigt wird, wie sie in Kapitel 4.2. dargestellt ist. Allgemein werden numerische Modelle sehr erfolgreich bei der Beschreibung des Transportes von Teilchenstrahlen, wie z.B. zwischen Quelle und dem Übergabepunkt in den ersten Beschleunigerabschnitt verwendet. Bislang eignen sie sich jedoch nur bedingt für die Beschreibung des raumladungskompensierten Ionenstrahltransports. Aus diesem Grund Computerprogramm LINTRA durch J. Pozimski erstellt. wurde das Bei der Weiterentwicklung der erstellten Programmarchitektur lag der Schwerpunkt in der verbesserten Einbeziehung äußerer Felder in die Transportrechnung, einer thermischen Behandlung des Kompensationsprozesses sowie die Konstruktion von Subroutinen, die eine bessere Datenerfassung und Darstellung der Ergebnisse ermöglicht. LINTRA ist ein

Vielteilchentransportprogramm, das den Strahl im Gegensatz zu Trajektorien- oder Envelopenprogrammen durch eine große Anzahl (typisch 10000-30000) von Testteilchen repräsentiert. Dabei liegen aus Kompatibilitätsgründen der Eingangsdatensatz sowie der berechnete Ausgabedatensatz im PARMTRA – Format vor. Die Parameter der zu simulierenden Meßstrecke, deren Strahlführungselemente wie beim Baukastenprizip beliebig aneinander gereiht und wiederholt werden können, werden zusammen mit den Strahlparametern in einer Steuerungsdatei abgespeichert. Dadurch ist eine Rekonstruktion der Rechnungen zu einem späteren Zeitpunkt möglich.

Ein wesentlicher Vorteil von LINTRA gegenüber anderen Programmen ist die Einführung eines Kompensationsgrades χ , der eine Variation der Raumladungskräfte erlaubt. Hierbei kann der Kompensationsgrad entweder als gleichmäßig, also durch entsprechende Reduktion der Strahlionenladungsdichte entsprechend (4.8) angenommen werden, oder

$$\rho_{Komp}(r) = (1 - \chi) \cdot \rho_{SI}(r) \quad mit[0 < \chi < 1]$$

$$\rho_{netto}(r) = \rho_{SI}(r) - \rho_{Komp}(r) \tag{4.8}$$

eine thermische Verteilung der Kompensationsteilchen im Strahlpotential (4.9) vorgegeben werden.

$$\rho_{Komp}(r,z) = \rho_{Komp}(\Phi_{\max}) \cdot e^{\left[-\frac{e(\Phi_{\max}-\Phi(r))}{kT_{Komp}}\right]}$$
(4.9)

Die Raumladungskräfte werden durch Lösung der Poisson – Gleichung in r nach Bestimmung des radialen Nettoladungsdichteprofils berechnet aus denen dann die Strahl- und Strahlrandpotentiale (4.10) abgeleitet werden.

$$\Phi(r) = \frac{1}{\varepsilon_0} \int_0^r \frac{1}{r} \int_0^r \rho_{netto}(r') r' dr' dr$$
(4.10)

Eine für geringen Restgasdruck vernachlässigbare Einschränkung ist, daß in der Simulation die Wechselwirkung zwischen Strahlionen und Restgas nicht mit in die Simulation einbezogen wird. Daraus ergibt sich im Bezug auf die Raumladungskompensation, daß die Anzahl der Kompensationsteilchen bzw. der Kompensationsgrad nur über den Linienladungsbelag (4.11) Eingang in die Rechnung

$$Q = 2\pi r \varepsilon_0 E \tag{4.11}$$

findet. Darüber hinaus wird durch das Fehlen der Strahlionen-Restgas-Wechselwirkung die Transmission nur unvollständig beschrieben. Der Kompensationsgrad wird im Programm durch die Relation der Potentialdifferenz $\Delta \Phi$ zwischen Strahlachse und Strahlrand für den kompensierten und unkompensierten Ionenstrahl berechnet. Dadurch kann er direkt mit denen aus Messungen mit einem Restgasionenspektrometer (Kapitel 4.3.) gewonnenen Ergebnissen verglichen werden. Außerdem ist der Kompensationsgrad dadurch unabhängig von der Geometrie der realen und simulierten LEBT-Strecke und läßt eine Berechnung der reduzierten Raumladungskräfte zu. In Abbildung 4-4 ist der Verlauf der Strahlenvelopen für einen berechneten Strahltransport unter Verwendung eines homogenen Kompensationgrades (rot) Raumladungskompensation Verteilung und einer durch eine thermische der Kompensationsteilchen (grün) dargestellt. Im unteren Teil des Bildes ist der berechnete Kompensationsgrad als Funktion des Ortes z dargestellt. Die Variation der

Raumladungskompensation im Fall der thermischen Verteilung der Kompensationsteilchen ist auf eine Änderung des Strahlradius bei konstanter Temperatur des Kompensationsteilchenensembles zurück zuführen [Jakob 00]. Die Verteilungsfunktion der Kompensationsteilchen wird durch die Temperatur bestimmt, so daß zum Beispiel im Fokus der Ionenstrahlradius kleiner sein kann, als der Radius der Verteilung der Kompensationsteilchen, deren effektive Anzahl im Strahlpotential dadurch sinkt.

Abbildung 4-4: Ergebnisse der Transportrechnung über 600 mm Drift eines 6keV H³⁺-Strahls mit 0,5 mA Strahlstrom. Oben: Strahlenvelopenverlauf für unkompensierten (blau) homogen kompensierten (rot) thermisch kompensierten (grün) Transport. Darunter der Verlauf des Kompensationsgrades der entsprechenden Rechnung entlang z.

Für die Simulation einer LEBT-Strecke mit LINTRA stehen momentan vier verschiedene Strahlführungselemente zur Auswahl: Driftstrecken, elektrostatische Einzellinsen, Solenoide und Gabor – Plasma - Linsen. Sie werden durch je eine Potential-, E-Feld- und B-Feld- Datei charakterisiert, in deren zweidimensionalen Datenfeldern die Beträge der radialen und longitudinalen Feldverläufe enthalten sind. Liegen bei der Simulation Teilchenkoordinaten nicht auf diesen von den äußeren Feldern definierten Gitterpunkten, wird zwischen zwei benachbarten Punkten interpoliert.

Zu Beginn einer jeden Transportrechnung kann man durch das Festlegen von Strahloptionen den Eingangsdatensatz modifizieren, um die Simulation zu optimieren und im Rahmen der Rechengenauigkeit zu präzisieren. So läßt sich Beispielsweise das radiale Strahlionendichteprofil glätten, die Anzahl der Testteilchen vergrößern und der Strahl in der virtuellen Apparatur zentrieren.

Während der Rechnung speichert LINTRA die aktuellen Strahldaten in zwei verschiedenen Dateien. Im Envelopendatensatz werden in Bezug auf z der aktuelle Ort, der Winkel und der Index des Envelopenteilchens, sowie das Strahl- und Strahlrandpotential angegeben. Im Radialdatensatz dagegen werden das radiale Strahlionendichteprofil, das Dichteprofil der

Abbildung 4-5: Links: radialer Verlauf der Nettoladungsdichte für die Rechnungen aus Abb. 4-2 bei z=600 mm, Rechts: die daraus resultierenden E-Felder.

Kompensationsteilchen, die Nettoladungsdichte sowie der radiale E – Feld - und Potentialverlauf in Bezug auf den normierten Strahlradius abgespeichert. Abbildung 4-5 zeigt für die in Abbildung 4-4 vorgestellten Rechnungen den radialen Verlauf der Strahlionendichte (links) sowie die Entwicklung des E-Feldes als Funktion des Radius r. An zu Beginn der Rechnung festgelegten Meßpunkten kann der aktuelle Ausgabedatensatz abgespeichert werden, so daß die Möglichkeit besteht, die Entwicklung der Emittanz und der radialen Strahlionendichte im Verlauf des Strahltransports auszuwerten.

Abbildung 4-6: Darstellung der Emittanzen am Ende der simulierten Transportstrecke für die oben genannten Rechnungen a) dekompensierter Transport b) Kompensationsgrad entspricht 60 % c) Transport mit thermischer Verteilung der Kompensationsteilchen.

In Abbildung 4-6 sind die Emittanzen für die oben genannten Beispielrechnungen dargestellt. Mit ihnen kann der simulierte Strahltransport direkt mit den aus Messungen gewonnenen Ergebnissen verglichen werden und somit die Vorgänge der Raumladungskompensation und die Strahlentwicklung in der LEBT – Sektion erklärt werden.

4.5. Untersuchung der Strahldrift

Die Ergebnisse der Untersuchung der Strahldrift durch die gesamte LEBT – Sektion (s. Abb. 1-1) dienen als Ausgangsbasis für die Beurteilung der Abbildungseigenschaften der einzelnen Baugruppen und den von ihnen erzeugten Feldern. Dadurch kann bestimmt werden, welche äußeren Faktoren entsprechende Strahlparameter entscheidend beeinflussen. In Abbildung 4-7 sind die Ergebnisse einer solchen Strahldrift vergleichend zwischen den aus dem Experiment gewonnenen und den numerisch berechneten Daten graphisch dargestellt. Der Xe⁺ - Strahl startet mit einer Phasenraumverteilung (Abb. 4-7 a), die der aus Kapitel 3.2.1. beschriebenen

Abbildung 4-7: Vergleich von Messungen und numerischer Simulation eines driftenden Xe⁺ - Strahles mit einer Strahlenergie von U_{EX} = 12 keV und einem Strahlstrom von 0,406 mA, a) Eingangsemittanz (s. Kapitel 3.2.1.), b) gemessene Emittanz und c) durch LINTRA berechnete Emittanz nach Strahldrift durch die gesamte LEBT – Sektion, d) Darstellung des Envelopenverlaufs für die berechnete Drift, e) Vergleich der Intensitätsverteilungen im x – Raum für gerechneten (schwarz) und experimentellen (rot) Strahltransport.

Quellenemittanz entspricht. Der Verlauf der Strahlenvelope (Abb. 4-7 d) ist im Bereich der Doppel – Gabor – Plasmalinse (violett) unterbrochen, da an dieser Stelle der Strahlradius größer als die Apertur ist. Die daraus resultierende Transmission liegt bei 77,5 %, der Strahlstrom fällt von 0,524 mA auf 0,406 mA. Die im Experiment gemessene Phasenraumverteilung (Abb. 4-7 b) kann durch die Modelrechnung mit LINTRA (Abb. 4-7 c) im Rahmen der bereits beschriebenen Abweichungen gut verifiziert werden, allerdings wird der im Experiment bestimmte Strahlradius durch den maximalen Hub der Emittanzmeßanlage limitiert. Innerhalb dieses Radius stimmen die Intensitätsverteilungen von berechnetem und experimentellem Strahlverlauf (Abb. 4-7 e, schwarz bzw. rot) im Ortsraum hinreichend überein. Der bei der numerischen Simulation festgelegte Kompensationsgrad von 90,2 % wurde experimentell bestimmt. In Abbildung 4-8 sind die Ergebnisse der Drift des He^+ - Referenzstrahles dargestellt. Die Strahlenergie entsprach der des Xenon - Ionenstrahles und der Strahlstrom lag am Ende der Transportstrecke bei 1,6 mA. Im oberen Teil des Bildes sind die Quellenemittanz (Abb. 4-8 a), die im Experiment ermittelte (Abb. 4-8 b) sowie die berechnete (Abb. 4-8 c) Phasenraumverteilungen zu sehen. An der hinteren Blende der Linse traten auch beim Transport des He^+ - Strahles Verluste auf (Abb. 4-8 d), die berechnete Transmission betrug 89,4 %. Innerhalb des durch die Emittanzmessung vorgegebenen Radius stimmten sowohl die Phasenraumverteilungen sowie die Intensitätsverteilungen im Ortsraum gut überein.

Abbildung 4-8: Vergleich von Messungen und numerischer Simulation eines driftenden He⁺ - Strahles mit einer Strahlenergie von U_{EX} = 12 keV und einem Strahlstrom von 1,6 mA, a) Eingangsemittanz (s. Kapitel 3.2.1.), b) gemessene Emittanz und c) durch LINTRA berechnete Emittanz nach Strahldrift durch die gesamte LEBT – Sektion, d) Darstellung des Envelopenverlaufs für die berechnete Drift, e) Vergleich der Intensitätsverteilungen im x – Raum für gerechneten (schwarz) und experimentellen (rot) Strahltransport.

5. Äußere Felder

In diesem Kapitel wird der Einfluß der Felder untersucht, die unabhängig von der DGPL in der LEBT – Sektion dazu benutzt wurden, den Strahltransport zu optimieren. Dabei handelt es sich um ein im Verhältnis zur Strahlenergie schwaches elektrostatisches Feld, das zur Seperation der Driftsektion in Bezug auf den Kompensationsgrad eingesetzt wurde. Außerdem wird der Transport des He⁺ - Referenzstrahles im Magnetfeld des Solenoiden dargestellt, da diese Messungen zum Vergleich der Fokusiereigenschaften der Doppel – Gabor – Plasmalinse diente.

5.1. Dekompensationsblende

Da das Anodenpotential der DGPL unter bestimmten Bedingungen (s. Kapitel XX) den Strahl durch Reduktion der Kompensationsteilchen dekompensiert, wurde zur elektrostatischen Separation der Driftstrecke zwischen Ionenquelle und DGPL (s. Abb. 1-1) eine Ringblende eingebaut.

Abbildung 5-1: Darstellung des Leuchtdichteprofils (links) und des Strahlradius (rechts) als Funktion des Potentials U_{Bl} der Dekompensationsblende.

Der dafür konstruierte Flansch dient gleichzeitig zur Kontaktierung der Linsen, so daß der Ionenstrahl gegen eventuelle Störfelder durch die Blende abgeschirmt ist und die Länge der LEBT - Sektion optimiert werden konnte. Das durch das Anlegen eines negativen Potentials an der Blende erzeugte E - Feld stellt eine Barriere für die longitudinale Bewegung der Kompensationsteilchen dar, außerdem werden Kompensationsteilchen mit geringer Temperatur verdrängt, so daß es zu einer lokalen dekompensation des Ionenstrahles kommt. dagegen positives Potential angelegt, die Wird ein stellt Blende fiir die Kompensationselektronen eine Senke dar, so daß der Strahl global dekompensiert wird. In Abbildung 5-1 ist auf der linken Seite die Entwicklung des Leuchtdichteprofils im Fokus eines He⁺ - Strahls dargestellt und rechts der Strahldurchmesser als Funktion des Blendenpotentials UBI. Die bei positiver Blendenspannung deutliche Vergrößerung des Strahlradius ist das Resultat der Verschiebung des Fokus entlang z. Die Ursache hierfür liegt in einem Anstieg der Raumladungskräfte durch die Dekompensation des Strahles bei gleichbleibender Stärke der fokusierenden Felder. Bei den Experimenten zur Untersuchung des Transports der Ionenstrahlen durch die DGPL lag die Blendenspannung bei $U_{BI} = -600$ V. Abbildung 5-2 zeigt den Betrag des angelegten Potential als Funktion vom Radius r und z (rechts) und den dazugehörigen Verlauf der Äquipotentiallinien (links).

Abbildung 5-2: Verlauf der Äquipotentiallinien (links) und das Potential als Funktion von r und z für eine Blendenspannung von 600V.

Mit dem angelegten Blendenpotential wurde die Driftsektion zwischen der Ionenquelle und dem Linsensystem ausreichend elektrostatisch separiert, so daß die Raumladungskräfte in diesem Abschnitt unabhängig vom Betriebszustand der DGPL waren und somit eine

Abbildung 5-3: Restgasenergiespektum für den Strahltransport mit U_{Bl} = - 600 V (grün) und ohne Blendenpotential (rot) und die Emittanz am Ende der LEBT – Sektion für einen Xe⁺ - Strahl (oben) und den He⁺ - Referenzstrahl (unten)

Aufweitung des Strahlradius vermieden werden konnte. Der globale Kompensationsgrad sank bei dieser Maßnahme, wie Abbildung 5-3 (obere Bildhälfte) zeigt, für den Xe⁺ - Strahl bei einem Strom von 0,234 mA und 12 keV Strahlenergie von 90,2 % auf 61,5 %. Wegen der in Kapitel 4.5. erläuterten Begrenzung des Strahlradius durch die Apertur des Linsensystems bleibt die RMS – Emittanz im Vergleich zum Transport ohne Blendenpotential im Rahmen der Messgenauigkeit konstant. Die durch das Abschneiden des Strahlradius bedingte Transmission von 77,5 % bei einem Kompensationsgrad von 90,2 % verringerte sich bei den in Abbildung 5-3 (oben) vorgestellten Messungen auf 45,3 %. Für die Referenzmessung mit dem He⁺ - Strahl waren die Meßergebnisse ebenfalls durch den geschilderten Sachverhalt bestimmt. Der globale Kompensationsgrad sank bei dieser Messung von 91,2 % auf 36,2 % und die Transmission verringerte sich analog von 89,4 % auf 65,3 %.

5.2. Solenoid

Der im Experiment benutzte Solenoid besteht aus Wicklungen mit integriertem Kühlkanal, einer Eisenkapselung, und ein Strahlrohr aus Edelstahl mit einem Durchmesser von d = 100 mm bildet die Vakuumwandung. In Abbildung 5-4 ist der schematische Aufbau des Solenoiden dargestellt, wobei der Verlauf des B – Feldes auf der Achse als Funktion des longitudinalen Ortes z bei einem Strom von I_{Soli}= 360 A in die Zeichnung integriert wurde.

Abbildung 5-4: schematischer Aufbau des Solenoiden mit dem Verlauf des B - Feldes auf dessen Achse, daneben die Erregungskurve

Daneben ist die Erregungskurve abgebildet, die eine lineare Abbildung des Erregerstromes auf das magnetische Feld des Solenoiden darstellt. Der Anstieg liegt dabei etwa bei 0,002 T pro 1A, so daß bei einem maximal möglichen Strom von $I_{Soli} = 360$ A ein Feld von 0,72 T erzeugt wird. Für den Betrieb des Solenoiden ist zu beachten, daß die Feldstärke trotz der Eisenkapselung an dessen Rand noch eine erhebliche Feldstärke aufweist, die den Transport des Ionenstrahles und die Verteilung der Kompensationsteilchen im Strahl beeinflussen kann. Zur Bestimmung der Abbildungseigenschaften des Solenoiden und auch für die numerische Transportsimulation ist der genaue Feldverlauf von großer Bedeutung. Dabei genügt die Kenntnis über den Verlauf des Achsfeldes, da sich daraus mit Gleichung (5.1) das B – Feld als Funktion des Radius r und des longitudinalen Ortes z berechnen lassen.

$$B_{z}(r,z) = B_{z}(0,z) - \frac{r^{2}}{4}B''(0,z) + \frac{r^{4}}{64}B'''(0,z) - \dots$$
(5.1)

Hier bedeutet B' die partielle Ableitung $dB_z(r=0,z)/dz$ und entsprechendes für die Ableitungen höherer Ordnung. Die Funktion $B_z(r=0,z)$ entspricht der Näherungsfunktion des Achsfeldverlaufes aus Abbildung 5-4, und aus ihr wird mit dem Coputerprogramm SOLENOID das gesamte Magnetfeld, wie es in Abbildung 5-5 dargestellt ist, durch analytische Lösung von Gleichung (5.1) generiert.

Abbildung 5-5: Durch das Computerprogramm SOLENOID errechnete Feldkonfiguration des im Experiment verwendeten Solenoiden für einen Strom von $I_{Soli} = 360$ A.

Mit Hilfe der so gewonnenen Feldverteilung läßt sich der Ionenstrahltransport in einer magnetischen LEBT – Sektion simulieren und unter Berücksichtigung der numerischen Fehler direkt mit Messungen vergleichen. Von entscheidender Bedeutung bei dem Betrieb einer LEBT ist der Füllgrad der Linsen, denn schon Abbildung 5-5 zeigt ab einem Radius von r = 20 mm einen überlinearen Anstieg des Feldes $B_z(r,z)$. Die dadurch verursachten S – förmigen Aberrationen sind in Abbildung 5-6 sowohl bei der gemessenen a) wie auch bei der berechneten b) Phasenraumverteilung zu erkennen. Die RMS – Emittanz des Helium – Strahles stieg dabei von $\varepsilon_{rms,100\%} = 0,0358$ πmmmrad in der Drift auf $\varepsilon_{rms,100\%} = 0,0403$ πmmmrad beim Transport durch das Feld des Solenoiden. Das Emittanzwachtum von 12,3 %

stimmt gut mit dem in der numerischen Simulation ermittelten Wert von 9,8 % überein. Ein weiterer Schwerpunkt beim Vergleich zwischen der experimentell bestimmten und der errechneten Phasenraumverteilung

Abbildung 5-6: a) Darstellung der gemessenen Phasenraumverteilung für den Transport eines He⁺ - Strahles mit 12 keV Strahlenergie und einem Strahlstrom von 4,46 mA, b) numerisch berechnete Phasenraumverteilung für gleiche Strahlparameter wie in a), c) berechneter Verlauf der Strahlenvelope durch die LEBT

liegt in der Ausbildung einer Struktur in der Nähe der Strahlachse. Diese ist auf eine Veränderung in der Dichteverteilung der Kompensationsteilchen innerhalb des Solenoiden zurück zuführen. Im magnetische Feld und durch das elektrische Potential des Ionenstrahles sammeln sich vermutlich die Kompensationselektronen in der Nähe der Strahlachse an und kompensieren hier die Raumladung des Ionenstrahl partiell. Eine genaue theoretische und mathematische Beschreibung dieser Prozesse fehlen allerdings bis Heute, so daß hierin die größte Fehlerquelle bei der Transportsimulation durch eine magnetische LEBT – Sektion liegt. Mit dem Computerprogrammen POISSONO und FELDERO ist es möglich, den Potential – und Feldverlauf einer vorgegebenen homogenen Dichteverteilung mit Radius r der Kompensationselektronen zu errechnen. Abbildung 5-7 stellt den Verlauf des Potentials (links) und des elektrischen Feldes (rechts) für eine angenommene Elektronendichte von $\rho_{KE} = 2*10^{-5}$ C/m³ bei einem Radius von r = 0,7mm dar. Durch diese Parameter konnten die im

Experiment gemessene Phasenraumverteilung durch die numerische Simulation verifiziert werden. Die Bestimmung der Strahlparameter des He⁺ - Referenzstrahles nach dem Transport

Abbildung 5-7: Berechneter Potentialverlauf (links) und der Verlauf des elektrischen Feldes (rechts) einer homogenen Elektronendichteverteilung mit Radius r = 0,7 mm und einer vorgegebenen Dichte von $\rho_{KE} = 2*10^{-5}$ C/m³

durch die magnetische LEBT mit einem Solenoiden soll im Hinblick auf Fokusierstärke und Emittanzwachstum durch Aberrationen an späterer Stelle zum Vergleich herangezogen werden. Neben der Bestimmung der Phasenraumverteilung und dem Verlauf der Strahlenvelope in der LEBT ist die Entwicklung des radialen Strahlionendichteprofils ein guter Indikator für die optimale Einstellungen der Linsenparameter, denn dessen Bestimmung erfolgt mit der optischen Profilmessung (Kapitel 2.3.2). Die Produktion von Sekundärelektronen, die den Kompensationsgrad des Ionenstrahles und den Status des zu untersuchenden Linsensystems beeinflussen wird dadurch ausgeschlossen.

Abbildung 5-8: Entwicklung des Restgasleuchtens entlang des Ortes z für ein Solenoidfeld von $B_z = 0,46$ T (links), Darstellung der radialen Strahlionendichteprofile für ein Solenoidfeld von $B_z = 0,44$ T (rot), $B_z = 0,46$ T (grün) und $B_z = 0,48$ T (blau).

Wegen der direkten Proportionalität zwischen magnetischem Feld und der Wurzel aus der Teilchenmasse (5.1) und des technisch maximal möglichen Feldes im Experiment, ist eine Fokusierung des Xe⁺ - Strahles nicht möglich. In Abbildung 5-9 ist der Verlauf der

$$B = \sqrt{\frac{2mU_{EX}}{e}} \cdot \frac{1}{r}$$
(5.1)

Strahlenvelope für den numerisch simulierten Strahltransport bei maximal möglichem Magnetfeld dargestellt. Die dazu gehörige Phasenraumverteilung am Ende der LEBT – Sektion (A) unterscheidet sich kaum von der Verteilung, die nach der Strahldrift mit gleichen

Abbildung 5-9: A) Phasenraumverteilung nach dem berechneten Transport eines Xe⁺ - Strahles mit U_{EX} = 12 kV und einem Strahlstrom von 0,524 mA mit einem Solenoidfeld von B_z = 0,72 T und die dazugehörige Strahlenvelope C), die Transmission lag bei 76%, Darstellung der berechneten Phasenraumverteilung für den Strahlfokus B) bei einem Solenoidfeld von B_z = 2,8 T.

Strahlparametern berechnet wurde. Die simulierte Focusierung des Xe⁺ - Strahles (B) erforderte zum Vergleich mit dem Transport des He+ - Strahles (Abbildung 5-6) ein um den Faktor 5,71 höheres magnetisches Feld von $B_z = 2,8$ T und würde auch bei der Verwendung einer LEBT – Strecke mit zwei Solenoiden ein erhebliches technisches Problem darstellen.

6. Die Doppel - Gabor - Plasmalinse

In den dreißiger Jahren veröffentlichten B. Borries und E. Ruska Arbeiten [BORRIES32] am Raumladungsfeld einer Hilfsentladung, das sie als Sammellinse für einen Kathodenstrahl benutzten. Später schlug D. Gabor einen Aufbau vor, der aus zwei Spulen, deren Magnetfelder entgegengesetzte Richtungen aufweisen, einer zentralen Anode und zwei Begrenzungskathoden bestand. Er konnte zeigen, daß sich die Linse soweit mit Elektronen füllt, bis die durch sie erzeugte Raumladungskraft zusammen mit der aus der E x B Drift resultierenden Zentrifugalkraft im Gleichgewicht mit der vom magnetischen Feld vermittelten Lorenzkraft steht. Die durch den Einschluß des nichtneutralen Plasmas entstehende Raumladungswolke wirkt dabei fokussierend auf Teilchenstrahlen umgekehrten Vorzeichens [MOBLEY73, NOBEL88, PALKOVIC89, POZ92]. Die starke zylindersymmetrische Fokussierung und die Kompensation der Raumladungskräfte im Ionenstrahl durch die sich ausbildende hohe Ladungsträgerdichte sind die wesentlichen Vorteile dieses Systems. In diesem Kapitel wird das Konzept der DGPL theoretisch beschrieben und deren Parameter durch numerische Simulationen bestimmt. Danach werden die Resultate dieser Berechnungen mit den experimentellen Ergebnissen verglichen. Der Ionenstrahltransport durch das Linsensystem wird im Anschluß daran mit Messungen und den entsprechenden Berechnungen beschrieben. Zum Abschluß erfolgt eine Beurteilung der Transporteigenschaften der DGPL und die Abschätzung der Abbildungsfehler und die Beschreibung deren Ursache.

6.1. Theoretische Grundlagen

Die Bewegung der Elektronen im magnetischen Feld der Linse wird durch Gleichung (6.1) beschrieben.

$$m_e \frac{dv}{dt} = -e \cdot (E_{raum} + v \times B) \tag{6.1}$$

Der Term auf der rechten Seite beschreibt die Kraft des äußeren magnetischen Feldes B und das Feld der Raumladung E_{raum} auf die eingeschlossenen Elektronen. Befinden sich beide Kräfte im Gleichgewicht so ergibt sich für den radialen Einschluß (6.2):

$$0 = -e \cdot (E_{raum} + v \times B) \tag{6.2}$$

Für die Annahme $\beta = v/c < 0,1$ ergibt sich für das Problem in Zylinderkoordinaten (6.3):

$$\frac{d(m_e r')}{dt} - m_e r \Theta'^2 = e \cdot (E_r + r \Theta' B_z - z' B_\Theta)$$

$$\frac{1}{r} \cdot \frac{d(m_e r^2 \Theta')}{dt} = e \cdot (E_\Theta + z' B_r - r' B_z)$$

$$\frac{d(m_e z'')}{dt} = e \cdot (E_z + r' B_\Theta - r \Theta' B_r)$$
(6.3)

Dabei gilt für das durch die Raumladung gebildete elektrische Feld in der Linse $E_{raum} = E_r(r)$ und entsprechend für das äußere magnetische Feld der Ansatz für Solenoide $B = B_r(r)$. Damit ergeben sich die Gleichungen aus (6.3) zu (6.4):
$$m_{e}r'' - m_{e}r\Theta'^{2} = e \cdot (E_{r} + r\Theta'B_{z})$$

$$\frac{d(m_{e}r^{2})}{r \cdot dt} = -e \cdot r'B_{z}$$

$$m_{e}z'' = 0$$
(6.4)

Nach Umformung der zweiten Gleichung aus (6.4) ergibt sich (6.5):

$$\frac{d(m_e r^2 \Theta')}{dt} = -err' B_z$$

$$\frac{d(m_e r^2 \Theta')}{dt} = -\frac{eB_z}{2} \cdot \frac{dr^2}{dt}$$
(6.5)

Durch Integration erfolgt daraus (6.6):

$$\Theta' = -\frac{eB_z}{2m_e} + \frac{c}{r^2}$$
(6.7)

und mit der Larmorfrequenz (6.7):

$$\omega_l = -\frac{eB_z}{2m_e} \tag{6.7}$$

und dem Anfangswertproblem (6.8):

$$c_0 = \frac{c}{r^2} = \eta' \tag{6.8}$$

ergibt sich daraus (6.9):

$$\Theta' = \omega_l + c_0 \tag{6.9}$$

Dadurch entspricht die Winkelgeschwindigkeit der Elektronen in der Linse der Summe aus Larmorfrequenz und Integrationskonstante. Unter der Voraussetzung eines zeitlich konstanten Magnetfeldes laufen die Teilchen in der Linse mit konstanten Geschwindigkeiten um. Aus der ersten Gleichung aus (6.4) folgt nach Umformung (6.10):

$$\frac{r''}{r} = \Theta'^2 + \frac{e}{m_e r} E_r - 2\omega_i \Theta'$$
(6.10)

und weiter (6.11):

$$\frac{r''}{r} = \frac{e}{m_e r} E_r - \omega_l^2 + {\eta'}^2$$
(6.11)

Wenn sich das gesamte System im Gleichgewicht befindet, ist der Betrag der Beschleunigung der Ladungsträger im Mittel gleich null, so daß sich mit r'' = 0 Gleichung (6.12) ergibt.

$$0 = \frac{e}{m_e r} E_r - \omega_l^2 + \eta'^2$$
(6.12)

durch Umformung nach η ' folgt daraus (6.13):

$$\eta' = \pm \sqrt{\omega_l^2 - \frac{eE(r)}{m_e r}}$$
(6.13)

Da nur Elemente des Körpers der reellen Zahlen als Lösungen dieser Gleichung zugelassen sind, muß der Term unter der Wurzel größer gleich null sein. Durch Umformung dieses Terms nach E(r)/r und Einsetzen der Larmorfrequenz (6.7) ergibt sich das maximal mögliche Raumladungsfeld zu (6.14):

$$\frac{E(r)}{r} = \frac{eB_z^2}{4m_e} \tag{6.14}$$

Mit (6.15):

$$E(r) = \frac{1}{\varepsilon_0 r} \int_0^r \rho_{\max} g(r') r' dr$$
(6.15)

errechnet sich die maximale Ladungsträgerdichte durch (6.16):

$$\rho_{\max,rad} = \frac{e\varepsilon_0 B_z^2}{2m_e} \tag{6.16}$$

Im Falle einer inhomogenen Ladungsträgerverteilung können weitere Teilchen, die im Ensemble aufgenommen werden, in Bereiche transportiert werden, in denen die maximale Elektronendichte noch nicht erreicht ist. Dies führt zu einer Homogenisierung der Ladungsträgerverteilung, so daß die Gleichung (6.16) für alle Radien erfüllt ist. In Messungen konnte jedoch gezeigt werden, daß die theoretisch berechnete maximale Dichte nicht erreicht wird [BOOTH78, REISER89]. Die Abschätzung der Brennweite für die einzelnen Gabor – Plasmalinsen des Systems erfolgt durch [POZ90] (6.17):

$$f = \frac{1}{d \cdot k \cdot \sin k} \tag{6.17}$$

mit der Linsenlänge d und (6.18):

$$k = \sqrt{\kappa \frac{eB_z^2}{8U_{si}m_e}}$$
(6.18)

wobei κ ein empirischer Füllfaktor mit κ (0< κ <1) und κ = N_{e,real} / N_{e,theo} ist. Er stellt das Verhältnis zwischen der Anzahl der tatsächlich, zum Beispiel im Experiment, eingeschlossenen Teilchen und der durch die Theorie bestimmte Teilchenanzahl in der Gabor – Plasmalinse dar. Die bisherige Vernachlässigung des Einflusses der durch die

Abbildung 6-1: Schematische Darstellung der Füllung des Potentialtopfes in der Gabor - Plasmalinse a) die Elektronen die in den leeren Potentialtopf gelangen werden an dessen Wänden reflektiert b) mit zunehmendem Füllgrad können immer mehr Elektronen wegen der Abnahme der Potentialbarriere entkommen c) bei vollständiger Linsenfüllung geht jedes weitere Elektron verloren.

Blendengeometrie erzeugten Potentialwanne führt zu einer Überschätzung der Elektronendichte und damit der Brennweite der Linse. Bei einem vollständig gefüllten Potentialtopf in der Linse, wie in Abbildung 6-1 c) dargestellt, gilt die Annahme F(r=0)=0. Mit der Annahme einer homogenen Verteilung der Elektronen ergibt sich die maximale Ladungsdichte zu (6.19):

$$\rho_{\max,long} = \frac{4\varepsilon_0 U_A}{r_A^2} \tag{6.19}$$

mit U_A der Anodenspannung und r_A dem Radius der Anode. Für k aus Gleichung (6.17) folgt aus dieser Relation (6.20):

$$k = \sqrt{\frac{4U_A}{r_A^2 U_{Si}}} \tag{6.20}$$

Die in den Gleichungen (6.16) und (6.19) analytisch bestimmten maximalen Elektronendichten konnten bisher im Experiment nicht verifiziert werden. Eine Reduktion der theoretischen Vorhersagen um einen Faktor vier bis fünf wurde schon in der Literatur für verschiedene Plasmen beschrieben [CONNOLLY85, XI89], und hat seine Ursache in der unzureichenden Beurteilung der Verlustmechanismen, die gerade bei vollständiger Linsenfüllung das Verhalten der Plasmadichte dominieren. Nach der vollständigen Füllung des Potentialtopfes der Linse (Abb. 6-1 c) entsteht ein Gleichgewichtszustand bei dem die Gesamtladung Q des nichtneutralen Plasmas konstant ist. Unter der Voraussetzung, daß nur Reaktionen zwischen den eingeschlossenen Elektronen und den Restgasatomen berücksichtigt werden,folgt daraus (6.21):

$$\rho'_{I,erz} = \rho'_{e,erz} = F(\rho_e(r,z), n_{RGA}, \sigma_{RGA}, T_e, \Phi(r,z))$$
(6.21)

Dabei ist die Dichteänderung der Elektronen identisch mit der Dichteänderung der Restgasionen. Die Erzeugung der Ladungen ist eine Funktion F der Dichte der bereits eingeschlossenen Elektronen $r_e(r,z)$ und deren Temperatur T_e , der Anzahl der Restgasatome n_{RGA} , des Wirkungsquerschnittes σ_{RGA} für die Restgasionisation und des Anodenpotentials. Daraus ergibt sich für die Verluste an Elektronen (6.22):

$$\rho'_{e,verl} = \rho'_{1.erz} = \rho'_{e,erz}$$
(6.22)

Die Verluste können dabei radial und longitudinal aus der Linse erfolgen. Eine ausführliche Behandlung der Verlustmechanismen sind in der Dissertation von J. Pozimsky [POZ97] beschrieben. Eine direkt meßbare Größe, die sich aus der Gleichung (6.22) ergibt, ist der Anodenstrom der DGPL, als Summe der Anodenströme der separaten Linsen (6.23):

$$I_{A,GPL} = I_{Verlust} + I_{RGI}$$
(6.23)

Hierbei bedeuten $I_{Verlust}$ die Verluststrom der Elektronen aus der Linse und I_{RGI} der Strom der aus der Linse austretenden Restgasionen. Abbildung 6-2 zeigt die verschiedenen in der Linse

Abbildung 6-2: Schematisch Darstellung der analytisch bestimmbaren lokalen Grenzbedingungen in der DGPL sowie der daraus resultierenden möglichen Zustände (s. Text).

analytisch berechenbaren lokalen Zustände. Dabei haben die Graphen folgende Bedeutung: 1) stellt die klassische Grenzbedingung von Gabor dar, 2) repräsentiert das durch das Anodenpotential in der Linse verursachte elektrische Feld, 3) kennzeichnet das Feld unter Einbeziehung der eingeschlossenen Ladungen nach der semi – klassischen Theorie $\Phi(r=0)=0$ und 4) – 6) stellen Bereiche konstanter radialer Elektronendriftgeschwindigkeiten dar. Die

zum Beispiel unter den Bedingungen 1), 2), 3) und 5) in der DGPL möglichen lokalen Zustände sind durch die grüne Fläche gekennzeichnet. Für diese Zustände kennzeichnet der Punkt A) das für den Betrieb der DGPL notwendige Mindestmagnetfeld umnter dem keine Elektronen eingeschlossen werden. Im Kurvenabschnitt B) dominiert die klassische Bedingung und in C) dominieren die radialen Verluste durch Diffusion. Im Bereich von D) ist der Potentialtopf der Linse vollständig gefüllt. Die Schnittmenge aller so darstellbaren lokalen Zustände ergibt den von der DGPL global eingenommenen Betriebszustand. In der globalen Darstellung können auch Aussagen über longitudinale Verluste gewonnen werden die in der lokalen Beschreibung außen vor bleiben.

6.2. Aufbau der Doppel - Gabor - Plasmalinse

Der mechanische Aufbau der zu untersuchenden DGPL ist in Abbildung 6-3 schematisch dargestellt. Das für den radialen Einschluß benötigte magnetische Feld wird dabei durch den

Solenoid

Abbildung 6-3: Schematische Darstellung des Aufbaus der DGPL bestehend aus einem Einsatz der aus den entsprechenden Blenden besteht und in dem Solenoiden (Abb. 5-4) montiert wurde.

in Abbildung 5-4 (Kapitel 5.2.) dargestellten Solenoiden mit den entsprechenden Feldkonfigurationen realisiert. Die elektrostatischen Blenden zur Erzeugung des Potentialtopfes für den Einschluß der Elektronen wurden mit der Isolatorummantelung zu einem Einsatz zusammengesetzt, der als komplettes System im Strahlrohr des Solenoiden montiert werden kann. Die beiden Anoden haben einen Durchmesser von d = 60 mm und eine Länge von l = 80 mm. Um sie gruppieren sich die beiden äußeren Ringelektroden mit einem Durchmesser von d = 54 mm und einer Länge l = 25 mm. Die in der Mitte befindliche Erdblende hat den gleichen Durchmesser, ihre Länge beträgt aber l = 30 mm. Die Kontaktierung der Blenden erfolgte über in Keramikkanälen verlegte Leiter und den in Kapitel 5.1. beschriebenen Flansch der auch die Dekompensationsblende enthält. Der Verlauf

der Potentiale als Funktion des Radius r und des longitudinalen Ort z der gesamten Geometrie wird in Abbildung 6-4 oben dargestellt. Im unteren Teil des Bildes ist der Verlauf der Äuipotentiallinien abgeboildet.

Abbildung 6-4:Graphische Darstellung des Potentials als Funktion des Radius r und des longitudinalen Ortes z für ein Anodenpotential von $\Phi_{A1/2} = 5000$ V darunter Darstellung des Verlaufes der dazugehörigen Äquipotentiallinien.

Der Einfluß der äußeren für den Eischluß der Ladungsträger in der DGPL verwendeten Felder ist bei der Beschreibung des Strahltransports durch das Linsensystems zu berücksichtigen. In Kapitel 5.2. wurde bereits das für den radialen Einschluß benötigte magnetische Feld und dessen Auswirkungen auf den Transport des Xe⁺ - Strahles und des He⁺ - Referenzstrahles untersucht. Die geringe Wirkung des elektrostatischen Feldes im Bezug auf die Strahlfokusierung ist wegen seiner geringen Stärke im Vergleich zur Strahlenergie zu vernachlässigen. Allerdings stellt die durch die angelegten Potentiale erzeugte Potentialwanne in der Linse eine Sänke für die im Ionenstrahl befindlichen Kompensationselektronen dar. In Abbildung 6-5 wird die gemessene Phasenraumverteilung des Xe⁺ - Strahles nach dem Transport durch die DGPL – LEBT dargestellt a). Das Blendenpotential für beide Anoden des Linsensystems betrug dabei $\Phi_{A1/2} = 5000$ V. Aus dem in b) dargestelltem Energiespektrum der Restgasionen ergab sich ein Kompensationrad von 38,2 %. Für den mit LINTRA berechneten Strahltransport ist der Verlauf der Strahlenvelope in d) dargestellt und die Phasneraumverteilung am Ende der LEBT – Sektion in c). Der Unterschied zwischen

Abbildung 6-5: Darstellung der gemessenen Phasenraumverteilung am Ende der DGPL - LEBT für einen Xe⁺ - Strahl mit einer Strahlenergie von 12 keV und einem Strahlstrom von 0,163 mA bei einem Anodenpotential von $\Phi_{A1/2} = 5000V$ in beiden Linsen a), Energiespektrum der Restgasionen zur Bestimmung des Kompensationsgrades b) berechnete Phasenraumverteilung und Strahlenvelope c) und d) die Transmission lag bei 31,1 %.

gemessener und berechneter Phasenraumverteilung ist, wie früher schon erwähnt, auf die Limitierung des Hubes der Emittanzmeßanlage auf h = 50 mm zurückzuführen. Die berechnete RMS - Emittanz für das Szenario beträgt $\varepsilon_{n,rms,100\%}$ = 0,049 π mmmrad und stieg damit um einen Faktor elf im Vergleich zur Strahldrift (s. Abb. 4-7). Die Transmission lag bei

Abbildung 6-6: Darstellung der gemessenen Phasenraumverteilung am Ende der DGPL - LEBT für den He⁺ - Referenzstrahl mit einer Strahlenergie von 12 keV und einem Strahlstrom von 0,96 mA bei sonst gleichen Parametern wie in Abb. 6-5 a), Energiespektrum der Restgasionen zur Bestimmung des Kompensationsgrades b) berechnete Phasenraumverteilung und Strahlenvelope c) und d) die Transmission lag bei 42,1 %.

31,1 %, so daß der Strahlstrom in der Faradaytasse I_{FDT} = 0,163 mA betrug. In Abbildung 6-6 sind analog zu Abbildung 6-5 die Ergebnisse des He⁺ - Referenzstrahles dargestellt. Der Kompensationsgrad bei dessen Transport betrug 39,4 %. Der Betrag der RMS – Emittanz ist für die berechnete Phasenraumverteilung nach der DGPL – LEBT mit $\varepsilon_{n,rms,100\%}$ = 0,1052 π mmmrad fast dreimal so groß, wie nach der Strahldrift (s. Abb. 4-8). Mit einem Faradaytassenstrom von I_{FDT} = 0,96 mA lag die Transmission bei 42,1 %. Die Unterschiede im Emittanzwachstum und in der Transmission zwischen Xe⁺ - und Referenzstrahl sind auf die unterschiedlichen Perveanzen und deren Einfluß auf den Strahltransport, wie in Kapitel 2.1.1. beschrieben, zurück zuführen.

Abbildung 6-6: Darstellung der gemessenen Phasenraumverteilung am Ende der DGPL - LEBT für den He⁺ - Referenzstrahl mit einer Strahlenergie von 12 keV und einem Strahlstrom von 0,96 mA bei sonst gleichen Parametern wie in Abb. 6-5 a), Energiespektrum der Restgasionen zur Bestimmung des Kompensationsgrades b) berechnete Phasenraumverteilung und Strahlenvelope c) und d) die Transmission lag bei 42,1 %.

31,1 %, so daß der Strahlstrom in der Faradaytasse I_{FDT} = 0,163 mA betrug. In Abbildung 6-6 sind analog zu Abbildung 6-5 die Ergebnisse des He⁺ - Referenzstrahles dargestellt. Der Kompensationsgrad bei dessen Transport betrug 39,4 %. Der Betrag der RMS – Emittanz ist für die berechnete Phasenraumverteilung nach der DGPL – LEBT mit $\varepsilon_{n,rms,100\%}$ = 0,1052 π mmmrad fast dreimal so groß, wie nach der Strahldrift (s. Abb. 4-8). Mit einem Faradaytassenstrom von I_{FDT} = 0,96 mA lag die Transmission bei 42,1 %. Die Unterschiede im Emittanzwachstum und in der Transmission zwischen Xe⁺ - und Referenzstrahl sind auf die unterschiedlichen Perveanzen und deren Einfluß auf den Strahltransport, wie in Kapitel 2.1.1. beschrieben, zurück zuführen.

6.3. Numerische Bestimmung der Linsenparameter

Für die numerische Beschreibung der DGPL wurde das von J. Pozimski entwickelte Computerprogramm GABOR benutzt [POZ97]. Unter Verwendung der vorgegebenen Geometrien, Potentialverteilungen und Magnetfeldkonfigurationen, die mit den Programmen GABORM und SOLENOID generiert werden können, berechnet GABOR unter Verkopplung von Ladungsträgerdichte und Potential durch die Boltzmann – Verteilung und die Poisson – Gleichung die thermische Dichteverteilung der eingeschlossenen Ladungsträger und der daraus resultierenden Depression des Anodenpotentials. Von entscheidender Bedeutung ist dabei, daß für die durch die frei wählbaren Verluste aus der DGPL bestimmte Temperatur des Teilchenensembles gleichzeitig die Poisson – Gleichung und die Boltzmann – Verteilung erfüllt sein müssen. Durch dieses Kriterium wird die Lösungsmenge innerhalb des Gültigkeitsbereichs der Theorie, wie sie in Kapitel 6.1. dargestellt ist, festgelegt. Eine ausführliche Beschreibung der numerischen Behandlung der Gabor – Plasmalinsen findet sich in der Dissertation von J. Pozimski. Bei der numerischen Beschreibung der im Experiment benutzten DGPL wurden die Verluste der Ladungsträger in einem ersten Schritt durch Erfahrungswerte festgelegt, die später beim direkten Vergleich zwischen experimentellen und numerischen Ergebnissen des Strahltransportes bestätigt wurden. Die Beurteilung des Einflusses der äußeren für den Einschluß der Ladungsträger verwendeten Felder auf die Dichteverteilung der Elektronen innerhalb der DGPL war bei der Festlegung der Geometrie

Abbildung 6-7:Entwicklung des Elektronendichte (links) und der Potentialdepression (rechts) als Funktion des Anodenpotentials a) $\Phi_{A1/2} = 3000 \text{ V}$ b) $\Phi_{A1/2} = 4000 \text{ V}$ und c) $\Phi_{A1/2} = 5000 \text{ V}$ berechnet mit dem Programm GABOR

der gesamten LEBT – Sektion gerade im Hinblick auf die Ausleuchtung der Linse (Strahlradius soll kleiner sein als der Radius der Elektronenwolke) entscheidend. In Abbildung 6-7 sind die Dichteverteilung der eingeschlossenen Ladungsträger und die Potentialverteilung in der DGPL als Funktion der Anodenspannung dargestellt. Bei den dafür durchgeführten Rechnungen mit GABOR wurde der Verluststrom mit einem Betrag von

Abbildung 6-8: Entwicklung des Elektronendichte (links) und der Potentialdepression (rechts) als Funktion des magnetischen Feldes a) $B_z = 0.02 \text{ T}$ b) $B_z = 0.03 \text{ T}$ und c) $B_z = 0.04 \text{ T}$ berechnet mit dem Programm GABOR

 $I_v = 10 \ \mu A$ konstant gehalten, und auch das Magnetfeld war für die drei Beispielrechnungen konstant mit einem Betrag von $B_z = 0,22$ T. Die maximale Elektronendichte steigt dabei fast linear mit dem angelegten Anodenpotential und die Inhomogenitäten in der Nähe der Linsenachse werden mit steigendem Potential kleiner. Abbildung 6-8 zeigt für einen konstanten Verluststrom von $I_v = 10 \ \mu A$ und ein konstantes Anodenpotential von

Abbildung 6-9:Höhenlinienplot der maximal erreichbaren Elektronendichte als Funktion des Radius r und des magnetischen Feldes B_z für verschiedene Potentiale a) $\Phi_{A1/2} = 2000 \text{ V}$ b) $\Phi_{A1/2} = 3000 \text{ V}$, c) $\Phi_{A1/2} = 4000 \text{ V}$ und d) $\Phi_{A1/2} = 5000 \text{ V}$ (links) und Verlauf der Elektronendichte als Funktion des Radius r für ein magnetisches Feld von B_z = 0,022 T für die entsprechenden Potentiale (rechts)

 $\Phi_{A1/2} = 5000$ V die Entwicklung der Elektronendichte und des Potentialverlaufes in der DGPL als Funktion der Magnetfeldstärke. Durch die Erhöhung des Magnetfeldes wurde auch die Einschlußbedingung erhöht. Der Radius der Elektronenwolke wächst dabei mit steigendem Magnetfeld an. Die Fluktuation in der maximal erreichbaren Elektronendichte in Abhängigkeit vom angelegtem magnetischen Feld ist für vier verschiedene Potentiale in Abbildung 6-8 als Höhenlinienbild dargestellt. Für ein Anodenpotential von $\Phi_{A1/2} = 2000$ V ist die Verteilung der Elektronen als Funktion des Magnetfeldes homogen und erreicht eine maximale Ladungsträgerdichte von $\rho_{max,rad} = 9 \cdot 10^{-5}$ C/m³. Mit zunehmendem Potential sinkt die radiale Ausdehnung der Elektronenwolke und die Homogenität der Elektronendichte als Funktion des Magnetfeldes geht verloren. Für die durchgeführten Versuche ließ sich aus der Darstellung in Abbildung 6-8 der Zustand der DGPL im Bezug auf den Radius gut ableiten. Die Dichten der Ladungsträgerwolken und damit die Fokusierstärke des Linsensystems dagegen waren in der numerischen Simulation um einen Faktor fünf bis sechs zu hoch errechnet wurden.

6.4. Optische Beobachtung des Restgasleuchtens

Eine erste Abschätzung der theoretisch und numerisch bestimmten Ladungsträgerdichten in der DGPL kann durch die optische Beobachtung des Restgasleuchtens erfolgen. Dabei werden die als homogen verteilt angenommenen Restgasatome durch inelastische Stöße mit den in der Linse eingeschlossenen Elektronen angeregt. Nach dem Paschen - Kriterium

Abbildung 6-10: Schematisch Darstellung des Versuchsaufbaus zur Untersuchung des Restgasleuchtens in der DGPL

haben die von den Restgasatomen emittierten Photonen die kinetische Energie, welche die Elektronen auf ihrer freien Weglänge I aufnehmen und durch den Stoß an das Atom abgeben. Dadurch ist die Leuchtdichte in der DGPL neben der Elektronendichte eine Funktion des Restgasdruckes. Liegt die kinetische Energie der Elektronen über der Ionisierungsenergie des Restgases in der Apparatur, so wird die Leuchtdichte auch durch Stöße der entstandenen Restgasionen, die auf Grund der Anordnung der elektrostatischen Felder in der Nähe der Achse aus der Linse beschleunigt werden, bestimmt. Alle Prozesse die zu einer Leuchtdichteverteilung in der Linse führen, sind jedoch von den Einschlußbedingungen für die Elektronen abhängig, so daß eine Bestimmung

Abbildung 6-11: Aufnahmen des Resgasleuchtens mit einer CCD - Kamera (links) und Integration der Leuchtintensität über den Ort y als Funktion des Radius normiert auf die Bildmitte (rechts) für a) Restgasdruck $p_{RGA} = 2 \cdot 10^{-5}$ mbar, Anodenpotential $\Phi_{A1/2} = 5$ kV ,Magnetfeld $B_z = 0,032$ T b) $p_{RGA} = 5 \cdot 10^{-5}$ mbar, $\Phi_{A1/2} = 5$ kV, $B_z = 0,032$ T und c) $p_{RGA} = 5 \cdot 10^{-5}$ mbar, $\Phi_{A1/2} = 5$ kV, $B_z = 0,032$ T und c) $p_{RGA} = 5 \cdot 10^{-5}$ mbar, $\Phi_{A1/2} = 5$ kV, $B_z = 0,04$ T

des Betrages der Elektronendichte aus der Leuchtdichte nicht möglich ist, wohl aber die Charakteristik des Einschlusses der Ladungsträger in Abhängigkeit von den äußeren Feldern abgelesen werden kann. In Abbildung 6-10 sind die Aufnahmen des Restgasleuchtens (links) und die über den Ort y der Aufnahme integrierten Intensitäten des Restgasleuchtens als Funktion des auf die Bildmitte normierten Radius (rechts) exemplarisch für verschiedene Parameter dargestellt. Für die Darstellung b) wurde im Gegensatz zu a) der korrigierte Restgasdruck von $p_{RGA} = 6,25 \cdot 10^{-6}$ mbar auf $p_{RGA} = 1,63 \cdot 10^{-5}$ mbar erhöht. Gemäß dem Verlauf der Paschenkurve [POZ90] erhöht sich dadurch bei sonst gleichen Parametern die

Abbildung 1-12: Graphische Darstellung der maximal auftretenden Leuchtintensität als Funktion der beiden Linsenparameter für einen Restgasdruck von $p_{RGA} = 1,63$ '10⁻⁵ mbar mit Arbeitsgas Xenon.

maximale Leuchtintensität. In der Darstellung c) wurde bei sonst gleichen Parametern das magnetische Feld im Gegensatz zu b) von $B_z = 0,032$ T auf $B_z = 0,04$ T erhöht. Die dabei zu beobachtende Abnahme der Leuchtintensität entspricht dabei nicht der durch Gleichung 6.16 zu erwartenden Zunahme der Elektronendichte. In Abbildung 6-12 ist die maximal auftretende Leuchtintensität als Funktion der beiden Linsenparameter bei konstantem

Abbildung 2-13:Darstellung der Leuchtintensität als Funktion des magnetischen Feldes für ein konstantes Anodenpotential von $\Phi_{A1/2} = 6500$ V (links) und als Funktion des Anodenpotentials für ein konstantes Magnetfeld von $B_z = 0,032$ T.

Restgasdruck dargestellt. Deutlich ist der lineare Verlauf der Leuchtintensität bei konstantem magnetischem Feld zusehen, wie er auch in Abbildung 6-13 (links) für ein Magnetfeld von Bz = 0,032 T exemplarisch dargestellt ist. Damit bestätigt sich unter Berücksichtigung aller Fehler die direkte Proportionalität zwischen Anodenpotential und maximaler Elektronendichte, wie sie in Gleichung 6.19 beschrieben ist. Für den Verlauf der Leuchtintensität bei konstantem Anodenpotential, wie er in Abbildung 6-13 (rechts) für ein Anodenpotential von $\Phi_{A1/2}$ = 6500 V exemplarisch dargestellt ist, stimmt der Verlauf der Leuchtintensität nur für kleine Feldstärken mit der theoretischen Bestimmung der Elektronendichte überein. Für größere magnetische Felder, bei denen sich der Füllgrad der Linse seinem Maximum nähert, entspricht der Verlauf der Leuchtintensität, bei genauer Analyse des Datenmaterials, einem Profilschnitt durch die in Abbildung 6-9 dargestellten numerisch berechneten Höhenlinienbilder der maximal.erreichbaren Elektronendichten als Funktion des magnetischen Feldes für ein konstantes Anodenpotential. Wie bereits erwähnt, ist in Anbetracht der unterschiedlichen Parameter, die in die Verteilung der Leuchtintensität eingehen, eine Bestimmung der absoluten Elektronendichte nicht möglich. Allerdings ist durch den Vergleich der verschiedenen Charakteristika der Verteilungsfunktionen der numerisch bestimmten Elektronendichte und der experimentell bestimmten Leuchtintensität eine Verknüpfung zwischen beiden Größen möglich, so daß die aus Experimenten gewonnenen Ergebnisse numerisch verifiziert werden können.

6.5. Optische Spektroskopie des Restgasleuchtens

Abbildung 3-14: Schematische Darstellung des Aufbaus zur optischen Spektroskopie des Restgasleuchtens in der DGPL.

In einem ersten Versuch, dessen schematischer Aufbau in Abbildung 6-14 zu sehen ist, wurde das Restgasleuchten in der DGPL spektroskopiert. Die Auswertung der erhaltenen Spektren

ermöglicht es die kinetische Energie und damit die Temperatur der in dem Linsensystem eingeschlossenen Elektronen zu bestimmen. Daraus lassen sich Aussagen über die insbesondere temperaturabhängigen radialen Verluste treffen. Mit den entsprechenden Wirkungsquerschnitten können auch Interaktionen zwischen Ionenstrahl und nichtneutralem Plasma im Linsensystem konkretisiert werden. Durch einen Brand in den Laborräumen des Institutes war es jedoch nicht möglich die Untersuchungen in diesem Bereich zu vertiefen. Abbildung 6-15 zeigt ein Beispiel für die aufgenommenen Spektren deren Analyse und Ergänzung zu diesem Zeitpunkt noch aussteht.

Abbildung 6-15: Darstellung eines aufgenommenen Spektrums des Restgasleuchtens für das Arbeitsgas Xenon als CCD - Image (links) und graphisch mit entsprechender Normierung auf die Wellenlänge (rechts), der korrigierte Restgasdruck betrug $p_{RGA} = 1,63 \cdot 10^{-5}$ mbar, das Anodenpotential war $\Phi_{A1/2} = 6500$ V und das Magnetfeld lag bei $B_z = 0,04$ T.

ermöglicht es die kinetische Energie und damit die Temperatur der in dem Linsensystem eingeschlossenen Elektronen zu bestimmen. Daraus lassen sich Aussagen über die insbesondere temperaturabhängigen radialen Verluste treffen. Mit den Entsprechenden Wirkungsquerschnitten können auch Interaktionen zwischen Ionenstrahl und nichtneutralem Plasma im Linsensystem konkretisiert werden. Durch einen Brand in den Laborräumen des Institutes war es jedoch nicht möglich die Untersuchungen in diesem Bereich zu vertiefen. Abbildung 6-15 zeigt ein Beispiel für die aufgenommenen Spektren deren Analyse und Ergänzung zu diesem Zeitpunkt noch aussteht.

Abbildung 6-15: Darstellung eines aufgenommenen Spektrums des Restgasleuchtens für das Arbeitsgas Xenon als CCD - Image (links) und graphisch mit entsprechender Normierung auf die Wellenlänge (rechts), der korrigierte Restgasdruck betrug $p_{RGA} = 1,63 \cdot 10^{-5}$ mbar, das Anodenpotential war $\Phi_{A1/2} = 6500$ V und das Magnetfeld lag bei $B_z = 0,04$ T.

6.1. Messungen am Helium – Strahl

Zuerst wurde mit der Untersuchung des Transportes eines He⁺ - Referenzstrahles mit einer Strahlenergie von 12 keV und einem Strahlstrom von 4,3 mA durch die DGPL - LEBT begonnen. Die Motivation dazu lag in der bereits erwähnten Vergleichbarkeit der Ergebnisse mit dem Transport durch das Feld eines Solenoiden und der Vergleich mit Messungen an einer separaten Gabor – Plasmalinse [POZ97]. Die Erfassung der verschiedenen Meßreihen an verschiedenen Experimentiertagen ergab keine wesentlichen Variationen der Ergebnisse, die hauptsächlich auf das empfindliche Verhalten der Ionenquelle nach Standzeiten zurückzuführen waren. Die Vergleichbarkeit der Daten untereinander ist deshalb gewährleistet, wobei ein signifikanter Unterschied beim Strahltransport durch die DGPL in Abhängigkeit von der Variation der Felder zu beobachten war. Deshalb wurden in zwei verschiedenen Meßreihen erst der Einfluß der DGPL auf den Strahltransport bei konstantem Magnetfeld und Variation des Anodenpotentials und dann bei konstanten Potentialen und Veränderung des magnetischen Feldes untersucht. Da bei der Messung der Emittanz Sekundärelektronen durch beim auf zusätzlich den Ionenstrahl Auftreffen die Emittanzmeßanlage produziert wurden, deren Einfluß auf den Status des nichtneutralen Plasmas in der DGPL bei den Messungen ausgeschlossen werden sollte, wurden neben der Bestimmung der Phasenraumverteilungen die longitudinalen Leuchtdichteprofile für den entsprechenden Transport aufgenommen. Daraus ergab sich die Möglichkeit mit der in Kapitel 2.3.1. beschriebenen Abeltransformation die Strahlionendichteprofile zu bestimmen

Abbildung 1-16: Emittanz eines 12 keV He⁺ - Strahles nach Transport durch die DGPL bei einem Anodenpotential $\Phi_{A1/2} = 2000V$ und einem magnetischen Feld B_z = 0,021 T (rechts) und Entwicklung des Restgasleuchtens als Funktion des longitudinalen Ortes z (links), (gemessener Strom 3,84 mA).

Abbildung 2-17: Entsprechend 6-16 bei einem Anodenpotential $\Phi_{A1/2}$ = 3000V und einem magnetischen Feld B_z = 0,021 T, (gemessener Strom 3,66 mA).

und direkt mit denen aus der Emittanzmessung und numerischen Simulationen zu vergleichen. Später konnte durch das von J. Pozimski erstellte Computerprogramm CCDEMI aus den Leuchtdichteprofilen unter Berücksichtigung der numerischen Fehler die Strahlemittanz berechnet werden. Die Abbildungen 6-16 bis 6-19 zeigen die Entwicklung der Emittanz und des longitudinalen Leuchtdichteprofiles des Ionenstrahles nach dem Transport durch die DGPL – LEBT für ein konstantes magnetisches Feld von $B_z = 0,021$ T und einem von 2000 V bis 5000 V anwachsenden Anodenpotential. Die exemplarisch ausgesuchten Meßergebnisse zeigen deutlich das durch Erhöhung der Anodenspannung vergrößerte Fokussiervermögen des Linsensystems. Dabei wurde bedingt durch die größere Potentialtiefe in der DGPL das Einschlußvermögen in longitudinaler Richtung verbessert. Bevor jedoch die Linsen ihre maximale Fokussierstärke erreicht haben, sorgt die Potentialdifferenz im noch nicht vollständig gefüllten Potentialtopf zu einer Dekompensation des Ionenstrahles. In Abbildung 6-20 ist der Verlauf des Kompensationsgrades in Prozent als Funktion des Anodenpotentials dargestellt c). Bei vollständiger Dekompensation des Ionenstrahles durch die DGPL bei einem Anodenpotential $\Phi_{A1/2} = 3000V$ kann auch in der Darstellung der

Abbildung 6-18: Entsprechend 6-16 bei einem Anodenpotential $\Phi_{A1/2}$ = 3500V und einem magnetischen Feld B_z = 0,021 T, (gemessener Strom 3,97 mA).

Abbildung 6-18: Entsprechend 6-16 bei einem Anodenpotential $\Phi_{A1/2}$ = 5000V und einem magnetischen Feld B_z = 0,021 T, (gemessener Strom 4,01 mA).

Funktion des Faradaytassenstromes in Abhängigkeit vom Anodenpotential a) ein Minimum bei $\Phi_{A1/2} = 3000V$ festgestellt werden. Das entspricht den zu erwartenden Ergebnissen beim dekompensierten Strahltransport durch eine LEBT – Sektion im Bezug auf die Transmission. Der dabei zu erwartende Anstieg der RMS – Emittanz bestätigt sich in dem Maximum der Funktion in Abbildung 6-20 b), in der die gemessene RMS – Emittanz als Funktion des Anodenpotentials aufgetragen ist. Nach dem Minimum des Faradaytassenstromes und des Kompensationsgrades steigt die Funktion für beide Größen bis zu einem Potential von $\Phi_{A1/2} =$ 3500 V steil an und erreicht dann ein Plateau. Umgekehrt proportional verhält sich die Funktion der RMS – Emittanz. Daraus läßt sich folgern, daß ab einem Potential von $\Phi_{A1/2} =$ 3500 V die eingeschlossenen Elektronen zu einer fast vollständigen Depression des Anodenpotentials führen, so daß bei gleichzeitiger Steigerung der Transmission der Kompensationsgrad im Ionenstrahl anwächst. Der kompensierte Transport und die zunehmende Fokussierstärke der Linse führen dabei zu einer drastischen reduktion der RMS – Emittanz. Das verhalten von Kompensationsgrad und Transmission des Ionenstrahles im Bezug auf den Füllgrad der Linse zeigen, daß der Strahlfokus schon bei nicht vollständig

Abbildung 3-20:Darstellung des Verlaufes des Faradaytasenstromes a), der gemessenen RMS - Emittanz b) und des Kompensationsgrades im Strahl c) als Funktion des Anodenpotentials in der DGPL für ein konstantes magnetisches Feld von $B_z = 0.021 \text{ T}$.

gefüllter Linse durchlaufen wird. Darum war es auch in allen durchgeführten Versuchen sehr schwierig die Emittanz im Strahlfokus zu bestimmen, denn bei gezündetem nichtneutralem Plasma war die Fokussierstärke der Linse für die zur Verfügung stehenden Strahlenergien viel zu groß. In Abbildung 6-18 ist die Phasenraumverteilung in der Nähe des Strahlfokus dargestellt. An der Verteilung der Winkelkoordinaten über den Ort x und am Leuchtdichteprofil neben der Darstellung läßt sich jedoch erkennen, daß der Strahlfokus bereits passiert wurde.

In einer zweiten Meßreihe wurde der Ionenstrahltransport durch die DGPL bei konstantem Anodenpotential von $\Phi_{A1/2} = 5000V$ und unter Variation des magnetischen Feldes bei sonst der ersten Meßreihe entsprechenden Parameter untersucht. Die Darstellungen der Phasenraumverteilungen und der longitudinalen Leuchtdichteprofile in den Abbildungen 6-21 bis 6-24 stellen wieder exemplarische Beispiele des gesamten Datenmaterials dieser Meßreihe dar und zeigen die Entwicklung der Emittanz bei steigendem magnetischen Feld im Linsenzentrum. Der Kompensationsgrad des Ionenstrahls wurde im Gegensatz zur ersten Meßreihe durch das angelegte Anodenpotential bei noch geringem Einschluß von Elektronen gering reduziert. Und auch der in Abbildung 6-25 c) dargestellte Verlauf des Kompensationsgrades als Funktion der Magnetfeldstärke unterscheidet sich von dem aus der ersten Meßreihe in Abbildung 6-20 c). Die Erhöhung des magnetischen Feldes bewirkt bei konstantem Anodenpotential neben der Erhöhung der Dichte der eingeschlossenen Ladungsträger auch einen Anstieg der radialen Verluste. Durch die dadurch verursachte Reduzierung der Potentialdepression stellt das Anodenpotential eine Senke für die

Abbildung 6-21: Emittanz eines 12 keV He⁺ - Strahles nach Transport durch die DGPL bei einem Anodenpotential $\Phi_{A1/2} = 5000$ V und einem magnetischen Feld B_z = 0,016 T (rechts) und Entwicklung des Restgasleuchtens als Funktion des longitudinalen Ortes z (links), (gemessener Strom 2,82 mA).

Abbildung 6-22: Entsprechend 6-21 bei einem Anodenpotential $\Phi_{A1/2}$ = 5000V und einem magnetischen Feld B_z = 0,018 T, (gemessener Strom 2,97 mA).

Kompensationselektronen im Strahl dar. Dieser Effekt ist mit einer Differenz von 32 % zwischen maximalem und minimalem bestimmten Kompensationsgrad im Vergleich zur ersten Meßreihe mit einer Differenz von 98 % gering. Deshalb ist der Einfluß des sich ändernden Kompensationsgrades auf den Verlauf der Transmission als Funktion des magnetischen Feldes im Zentrum der Linse klein, so daß dieser bis zu seinem Maximum der wachsenden Elektronendichte im Linsensystem proportional ist. Danach steigt der Radius des überfokussierten Strahles an und läßt durch Teilchenverluste an der Wandung der LEBT und durch überschreiten des Radius der Faradaytasse die Transmission sinken. Der Verlauf der RMS – Emittanz als Funktion des magnetischen Feldes in der Linse korrespondiert mit dem Verlauf des Kompensationsgrades durch einen geringen Anstieg der Emittanz als Resultat der Dekompensation. Bei steigender Magnetfeldstärke und zunehmender Fokussierstärke der Linse verringert sich der Betrag der RMS – Emittanz bis diese nach Überfokussierung des Ionenstrahles wieder ansteigt. Die charakteristische Änderung der Strahlparameter bei dem

Abbildung 6-23: Entsprechend 6-21 bei einem Anodenpotential $\Phi_{A1/2} = 5000V$ und einem magnetischen Feld B_z = 0,019 T, (gemessener Strom 3,20 mA).

Abbildung 6-24: Entsprechend 6-21 bei einem Anodenpotential $\Phi_{A1/2} = 5000V$ und einem magnetischen Feld B_z = 0,02 T, (gemessener Strom 2,92 mA).

Transport durch die Doppel - Gabor - Plasmalinse für den gesamten untersuchten Parametersatz der äußeren Felder B_z{0,014 T; 0,04 T}und $\Phi_{A1/2}$ {2000 V; 5000V}entsprach dabei den vorgestellten Messungen. Bei wachsendem Anodenpotential und konstantem Magnetfeld steigt die Fokussierkraft des Linsensystems der Theorie entsprechend linear an, um bei maximaler longitudinalen Linsenfüllung in eine Sättigung überzugehen. Entsprechend steigt bei konstantem Anodenpotential in dem Linsensystem für wachsende magnetische Felder die Fokussierung überlinear für höhere Magnetfelder. Die signifikanten Unterschiede zwischen den Ergebnissen der beiden Meßreihen bestätigen die Möglichkeit auf der durch das theoretischen Beschreibung DGPL Gleichungssystem zur der aufgespannten Lösungsmanigfaltigkeit für zwei gleiche äußere Feldkonfigurationen verschiedene Elektronendichten im inneren des Linsensystems zu finden. Um die Unterschiede zwischen den eingeschlossenen Elektronendichten und deren Auswirkungen auf den Strahltransport zu verdeutlichen sind in Abbildung 6-26 die Phasenraumverteilungen im Strahlfokus für die Meßreihe mit konstantem Magnetfeld (links) und mit konstantem Anodenpotential (rechts) dargestellt. Der Betrag der RMS – Emittanz für den Strahlfokus der ersten Meßreihe beträgt

Abbildung 4-25:Darstellung des Verlaufes des Faradaytasenstromes a), der gemessenen RMS - Emittanz b) und des Kompensationsgrades im Strahl c) als Funktion des magnetisches Feldes in der DGPL für ein konstantes Anodenpotentials von $\Phi_{A1/2} = 5000$ V.

Abbildung 6-26: Darstellung der Phasenraumverteilung des Ionenstrahles im Fokus für die erste Meßreihe mit konstantem Magnetfeld und Variation des Anodenpotentials (links) und für die zweite Meßreihe mit konstantem Anodenpotential und Variation des magnetischen Feldes (rechts). Die Strahlparameter entsprechen dabei Abbildung 6-18 bzw. 6-23.

dabei $\varepsilon_{n,rms,100\%} = 0,0370 \pi mmmrad und für die zweite Meßreihe <math>\varepsilon_{n,rms,100\%} = 0,0438 \pi mmmrad$. Daraus ergibt sich ein Emittanzwachtum von durchschnittlich 14 % gegenüber der Strahldrift (s. Kapitel 4.5) und stellt damit ein gutes Resultat für eine LEBT – Strecke dar. Beim Vergleich der Ergebnisse aus der ersten Meßreihe mit dem Strahltransport durch eine Solenoid – LEBT ist das Eittanzwachtum sogar geringer ausgefallen. Dieser Sachverhalt favorisiert den Betriebszustand in dem sich die DGPL bei der Erfassung der ersten Meßreihe befand, obwohl der Kompensationsgrad dabei im Strahl drastisch reduziert wird. Um einen

Abbildung 6-27: Darstellung der Phasenraumverteilung, die mit Hilfe des Computerprogramms CCDEMI aus dem longitudinalen Leuchtdichteprofil des Ionenstrahls errechnet wurde, die Strahlparameter entsprechen dabei Abbildung 6-18.

möglichen Einfluß der durch die Wechselwirkung des Ionenstrahles mit der Emittanzmeßanlage produzierten Sekundärelektronen auszuschließen, wurden wie bereits erwähnt parallel zu den Emittanzmessungen die longitudinale Entwicklung des Abbildung Restgasleuchten aufgenommen. In 6-27 exemplarisch ist die Phasenraumverteilung dargestellt die den Parametern aus

Abbildung 5-28: Darstellung der durch LINTRA berechneten Phasenraumverteilung nach Transport des He⁺ - Referenzstrahles durch die DGPL - LEBT (links) und Verlauf der entsprechenden Strahlenvelope (rechts) die Strahlparameter entsprechen Abbildung 6-18.

Abbildung 6-26 (links) entspricht. Unter Berücksichtigung der numerischen Fehler des Verfahrens zur zerstörungsfreien Bestimmung der Emittanz kann ein Einfluß des Zustandes des nichtneutralen Plasmas in der Linse durch die zusätzliche Produktion von Ladungsträgern durch Sekundärprozesse ausgeschlossen werden. Die theoretische Begründung für die Stabilität eines Plasmazustandes liegt in den für diesen Zustand relevanten Verlustmechanismen, die ein Anwachsen der Elektronendichte durch zusätzliche Akkumulation von Ladungsträgern ausschließen. Dadurch ist eine Übereinstimmung der aus den experimentell bestimmten Abbildungseigenschaften der DGPL mit den durch das Transportprogramm LINTRA berechneten Ergebnissen prinzipiell gegeben. Bei der numerischen Simulation des Linsensystem durch GABOR können die verschiedenen Zustände des nichtneutralen Plasmas, wie sie durch die Messungen bestätigt wurden, nicht berechnet werden. Ein Vergleich der in Abbildung 6-28 berechneten Phasenraumdichte nach dem Transport des He⁺ - Referenzstrahles durch die DGPL – LEBT zeigt tendenziell die Struktur, wie sie in der in Abbildung 6-26 (rechts) dargestellten Phasenraumverteilung des Fokus der zweiten Meßreihe zu erkennen ist.

Abbildung 6-26 (links) entspricht. Unter Berücksichtigung der numerischen Fehler des Verfahrens zur zerstörungsfreien Bestimmung der Emittanz kann ein Einfluß des Zustandes des nichtneutralen Plasmas in der Linse durch die zusätzliche Produktion von Ladungsträgern durch Sekundärprozesse ausgeschlossen werden. Die theoretische Begründung für die Plasmazustandes liegt in den für diesen Zustand relevanten Stabilität eines Verlustmechanismen, die ein Anwachsen der Elektronendichte durch zusätzliche Akkumulation von Ladungsträgern ausschließen. Dadurch ist eine Übereinstimmung des aus den experimentell bestimmten Abbildungseigenschaften der DGPL mit den durch das Transportprogramm LINTRA berechneten Ergebnissen prinzipiell gegeben. Bei der numerischen Simulation des Linsensystem durch GABOR können die verschiedenen Zustände des nichtneutralen Plasmas, wie sie durch die Messungen bestätigt wurden, nicht berechnet werden. Ein Vergleich der in Abbildung 6-28 berechneten Phasenraumdichte nach dem Transport des He⁺ - Referenzstrahles durch die DGPL - LEBT zeigt tendenziell die Struktur, wie sie in der in Abbildung 6-26 (rechts) dargestellten Phasenraumverteilung des Fokus der zweiten Meßreihe zu erkennen ist.

6.1. Messungen am Xenon – Strahl

Nach dem die Messungen am Heliumstrahl, die der Untersuchung des Strahltransportes durch die DGPL dienten abgeschlossen waren, konnten direkte Vergleiche zwischen den Änderungen der Strahlparameter für den Transport durch eine Solenoid – LEBT, für eine LEBT - Sektion mit einer Gabor - Plasmalinse und der Strahldrift gezogen werden. Die daraus gewonnene Erkenntnis, daß die Verwendung einer DGPL die Strahloptik im Bezug auf Abbildungsfehler nicht wesentlich Beeinflußt und gegenüber der Solenoid - LEBT mindestens gleichwertig erscheinen läßt, bildete die Basis für die Untersuchungen am Xenon - Strahl. Dabei wurden auch hierbei, wegen der unterschiedlichen Ergebnisse bei den Messungen am He⁺ - Strahl in Abhängigkeit von den Einstellungen der Linsenparameter, zwei Meßreihen durchgeführt. Bei der ersten Meßreihe wurden wieder das magnetische Feld konstant gehalten während das Anodenpotential im Linsensystem variiert wurde. In der zweiten Meßreihe wurde das Anodenpotential bei gleichzeitiger Änderung des Magnetfeldes festgehalten. Obwohl neben der Messung der Emittanz auch die longitudinale Entwicklung des Leuchtdichteprofils des Ionenstrahles aufgenommen wurde, sind die Ergebnisse nicht mit in die Arbeit aufgenommen worden. Die Begründung dafür lag in dem nur durch numerische Fehler bestimmten Unterschied zwischen den aus beiden Meßmethoden bestimmten Strahlparameter. In Abbildung 6-29 und 6-30 ist die Entwicklung der Phasenraumverteilung in Abhängigkeit vom Anodenpotential bei einem konstanten Magnetfald mit $B_z = 0.21$ T an exemplarisch ausgewählten Beispielen dargestellt. Die Meßreihe beginnt mit dem Transport des Strahles nur unter Einfluß des angelegten Magnetfeldes a). Die Begrenzung im Strahlradius ist dabei wieder auf die im maximalen Hub limitierte Emittanzmeßanlage zurück zu führen. Bei der Erhöhung des Anodenpotentials auf $\Phi_{A1/2}$ = 1500 V wird an der Emittanzfigur die sich bildende Raumladungswolke der eingeschlossenen Elektronen sichtbar, in dem der Teil des Strahles, der innerhalb des Radius der Raumladungswolke lag, zu einem Parallelstrahl fokusiert wurde. Außerhalb der Raumladungswolke passierte der Strahl unbeeinflußt und behielt seinen ursprünglichen Divergenzwinkel bei. Die Ursache für die in der Mitte der Emittanzfiguren b) und c) überlagerte Phasenraumverteilung wird bei der Auswertung der Meßergebnisse näher beleuchtet. Mit steigendem Anodenpotential wächst der Radius der Elektronendichteverteilung an, bis bei einem Potential von $\Phi_{A1/2} = 3000$ V der Strahl vollständig durch die elektrostatische Kraft der Raumladungswolke fokussiert wird d).

Abbildung 6-29: Darstellung der Phasenraumverteilung eines Xe+ - Strahles nach Transport durch die DGPL - LEBT für ein magnetisches Feld von $B_z = 0,21$ T und ein Anodenpotential von a) $\Phi_{A1/2} = 0$ V, b) $\Phi_{A1/2} = 1500$ V, c) $\Phi_{A1/2} = 2000$ V und d) $\Phi_{A1/2} = 3000$ V.

Die in Abbildung 6-30 c) dargestellte Phasenraumverteilung im Strahlfokus bei einem Anodenpotential von $\Phi_{A1/2} = 5000$ V wird durch Abbildungsfehler überdeckt, deren Struktur in Abbildung 6-30 d) bei einer Überfokussierung des Ionenstrahles sichtbar werden. Durch diese Abbildungsfehler ist die Bestimmung der tatsächlichen Größe der RMS - Emittanz unmöglich, die im Strahlfokus $\varepsilon_{n,rms,100\%} = 0,0400 \pi$ mmmrad beträgt und damit im Bezug auf die Strahldrift um einen Faktor acht angestiegen ist.. Aus diesem Grund ist auch eine Bewertung des Verlaufes der RMS – Emittanz als Funktion des angelegten Anodenpotentials, wie er in Abbildung 6-31 dargestellt ist, sehr schwer. Bei kleinen Blendenpotentialen entspricht der Verlauf der Funktion noch dem bei den entsprechenden Messungen am Helium – Strahl, während bei zunehmender Ausbildung der Ladungsträgerwolke bei weiterer

Abbildung 6-29: Darstellung der Phasenraumverteilung eines Xe⁺ - Strahles nach Transport durch die DGPL - LEBT für ein magnetisches Feld von $B_z = 0,21$ T und ein Anodenpotential von a) $\Phi_{A1/2} = 3500$ V, b) $\Phi_{A1/2} = 4500$ V, c) $\Phi_{A1/2} = 5000$ V und d) $\Phi_{A1/2} = 5500$ V.

Erhöhung des Potentials die Abbildungsfehler zunehmen und dadurch die Emittanz stark ansteigen lassen. Der Verlauf der Funktion des Faradaytassenstromes in Abhängigkeit vom angelegten Potential entspricht dagegen unter Berücksichtigung der Fehler in Messung und Auswertung dem Verlauf bei den entsprechenden Messungen am He⁺ - Strahl. Mit zunehmendem Anodenpotential sinkt erst die Transmission, wegen der Dekompensation des Xe⁺ - Strahles. Dann steigt die Transmission fast linear mit dem ansteigenden Potential um bei vollständiger Linsenfüllung ein Plateau zu erreichen. Aus diesem Verhalten und der Reproduzierbarkeit der Meßergebnisse durch zahlreiche Meßzyklen läßt sich eine Funktionsstörung der DGPL ausschließen. Ähnlich wie der Verlauf der RMS – Emittanz

Abbildung 6-31:Darstellung des Verlaufes des Faradaytasenstromes a), der gemessenen RMS - Emittanz b) und des Kompensationsgrades im Strahl c) als Funktion des Anodenpotentials in der DGPL für ein konstantes magnetisches Feld von $B_z = 0,021$ T.

weicht auch der Verlauf des Kompensationsgrades in Abhängigkeit vom Anodenpotential von den Erwartungen ab. Dabei ist wieder zu bemerken, daß bei noch nicht vollständig ausgebildeter Raumladungswolke die Verläufe zwischen den Messungen am Helium - Strahl und am Xenon – Strahl vergleichbar sind. Die Ermittlung der Strahlparameter im Strahlfokus wurde bei dieser Meßreihe nicht nur durch das kritische Verhalten der Linsenparameter bei der Einstellung der äußeren Felder für diesen Bereich erschwert, sondern die gemessenen Phasenraumverteilungen und Leuchtdichteprofile ließen keine eindeutige Bestimmung des Strahlfokus auf Grund der Überlagerten Abbildungsfehler zu. Der indirekte Beweis für eine Fokussierung des Ionenstrahles liegt in der in Abbildung 6-30 d) dargestellten Phasenraumverteilung, die bei einem Anodenpotential von $\Phi_{A1/2} = 5500$ V der eines Überfokussierten Strahles entspricht.

In der zweiten Meßreihe wurde der Ionenstrahltransport durch die DGPL – LEBT analog zu den Messungen am Helium – Strahl bei konstantem Anodenpotential von $\Phi_{A1/2} = 5000$ V und unter Variation des magnetischen Feldes bei sonst der ersten Meßreihe entsprechenden Parameter untersucht. Die Darstellungen der Phasenraumverteilungen in den Abbildungen 6-32 bis 6-33 stellen wieder exemplarische Beispiele des gesamten Datenmaterials dieser Meßreihe dar und zeigen die Entwicklung der Emittanz bei steigendem magnetischen Feld im Zentrum des Linsensystems. Das Verhalten der Linse entsprach dabei wieder den theoretischen Überlegungen, die Fokussierstärke der DGPL stieg bei wachender Magnetfeldstärke. Zu Beginn der Meßreihe wurde die Auswirkung des angelegten Potentials

Abbildung 6-32: Emittanz eines 12 keV Xe⁺ - Strahles nach Transport durch die DGPL bei einem konstantem Anodenpotential von $\Phi_{A1/2} = 5000V$ und einem magnetischen Feld von a) $B_z = 0$ T, b) $B_z = 0,016$ T, c) $B_z = 0,018$ T und d) $B_z = 0,019$ T.

auf den Strahltransport bei ausgeschaltetem Magnetfeld untersucht. Neben der Limitierung des Strahlradius durch den Hub der Emittanzmeßanlage konnten dabei keine Veränderungen an der Phasenraumverteilung gegenüber dem driftenden Strahl festgestellt werden. Durch die Erhöhung des Magnetfeldes auf $B_z = 0,016$ T ist die Fokussierkraft der Raumladungswolke so stark, daß der aus dem divergenten Ionenstrahl ein Parallelstrahl geworden ist, das die in Abbildung 6-32 b) dargestellte Phasenraumverteilung belegt. Dabei ist die Ausdehnung der Elektronenwolke an den durch deren Randfelder erzeugten Abberationen festzustellen. Die weitere Entwicklung der Emittanzfigur bei steigendem Magnetfeld ist mit der Entwicklung aus der ersten Meßreihe vergleichbar. Nach dem zünden des nichtneutralen Plasma in der DGPL bei einem Magnetfeld von $B_z = 0,021$ T werden die Abbildungsfehler der Doppel – Gabor – Plasmalinse wieder dominierend, so daß Aussagen über das wahre

Abbildung 6-33: Emittanz eines 12 keV Xe⁺ - Strahles nach Transport durch die DGPL bei einem konstantem Anodenpotential von $\Phi_{A1/2}$ = 5000V und einem magnetischen Feld von a) B_z = 0,019 T, b) B_z = 0,02 T, c) B_z = 0,021 T und d) B_z = 0,022 T.

Emittanzwachstum beim Ionenstrahltransport mit diesen Einstellungen des Linsensystems nicht möglich sind. Der Verlauf der RMS - Emittanz als Funktion des angelegten Magnetfeldes unterscheidet sich Erwartungsgemäß von dem Verlauf aus der ersten Meßreihe, stimmt jedoch gut mit den Ergebnissen der entsprechenden Messungen am Helium - Strahl überein. Das liegt an der Tatsache, daß die Abbildungsfehler der DGPL erst nach der Überschreitung der Magnetfeldstärke von $B_z = 0.02$ T das Emittanzwachstum entscheidend beeinflussen in diesem Bereich aber gleichzeitig der Strahlradius nach Überfokussierung und zu einem Emittanzwachstum führt. Auch für den Verlauf ansteigt des Farradaytassenstromes und den Kompensationsgrades ergibt sich bei dem Vergleich der zweiten Meßreihen beim Transport des Xe⁺ - Strahles sowie des He⁺ - Strahles, also bei

Abbildung 6-34:Darstellung des Verlaufes des Faradaytasenstromes a), der gemessenen RMS - Emittanz b) und des Kompensationsgrades im Strahl c) als Funktion des magnetisches Feldes in der DGPL für ein konstantes Anodenpotentials von $\Phi_{A1/2} = 5000$ V.

konstantem Anodenpotential bei gleichzeitiger Variation des magnetischen Feldes, eine Übereinstimmung beider Strahlgrößen. Dabei steigt der Farradaytassenstrom, wie in Abbildung 6-34 dargestellt, mit zunehmender Fokussierstärke des Linsensystems an, während der Kompensationsgrad nach der Überschreitung einer Magnetfeldstärke von $B_z = 0,018$ T auf Grund der durch das Magnetfeld bestimmten Verlustkanäle sinkt. Die Identifizierung des Strahlfokus in Abbildung 6-33 c) ist gegenüber der ersten Meßreihe durch die besser ausgeprägten Strukturen in der Phasenraumverteilung möglich. Trotzdem verhindern die erwähnten Abbildungsfehler eine direkte Bestimmung des Betrages der RMS – Emittanz und damit die Möglichkeit zur Bestimmung des wahren Emittanzwachstums durch den Transport des Ionenstrahles mit der Doppel – Gabor – Plasmalinse.

6.1. Analyse der Abbildungsfehler

Bevor die Ergebnisse der Untersuchung des Transportes des Xenon – Strahles durch die DGPL - LEBT ausgewertet werden, erfolgt an dieser Stelle die Analyse der Abbildungsfehler der DGPL und die Eingrenzung deren Ursachen. Zuerst kann ausgehend von den theoretischen Überlegungen ein Einfluß der unterschiedlichen Ionenmassen und Strahlströme auf die Struktur der im Linsensystem eingeschlossenen Raumladungswolke ausgeschlossen werden. Das Bedeutet, daß die Abbildungsfehler die im Unterschied zu den Messungen am Helium – Strahl beim Transport des Xenon – Strahles gemessen wurden, nicht auf eine Änderung der Elektronendichteverteilung in der Doppel – Gabor – Plasmalinse

zurückzuführen sind. Diese Überlegung wurde durch die Untersuchung der Transmission des Xe⁺ - Strahles in Abhängigkeit vom angelegten magnetischen Feld für drei verschiedene Anodenpotentiale experimentell bestätigt. Die in Abbildung 6-35 dargestellten Verläufe der Faradaytassenströme als Funktion des Magnetfeldes sind durch ihre direkte Proportionalität

Abbildung 1-35: Darstellung des Verlaufes des Faradaytassenstromes als Funktion des magnetischen Feldes für drei verschiedene Anodenpotentiale beim Transport eines Xe^+ - Strahles mit 12 keV Strahlenergie.

zur Fokusierstärke des Linsensystems und damit zur maximalen Dichte der eingeschlossenen Elektronen mit den durch die numerische Simulation der DGPL berechneten und in Abbildung 6-9 dargestellten Dichteverläufe vergleichbar. Nachdem eine von den Parametern des Ionenstrahles abhängige Dichteänderung der in der DGPL befindlichen Elektronenwolken ausgeschlossen werden kann, und der Einfluß der Ionenmasse bei durch elektrostatische Kräfte fokusierenden Systemen keine Rolle spielt, wurde in einem nächsten Schritt der Strom der Restgasionen, die nach Gleichung (6.23) aus dem Linsensystem heraus beschleunigt werden, quantitativ und qualitativ untersucht. Dazu diente der in Abbildung 6-36 schematisch dargestellte Versuchsaufbau. Neben dem Strom der Restgasionen, der mit der Faradaytasse gemessen wurde und etwa 6 % des Strahlstromes ausmachte, ergab eine Messung

Abbildung 6-36: Schematische Darstellung des Versuchsaufbau zur Betimmung des Stromes und der Phasenraumverteilung der aus der DGPL beschleunigten Restgasionen.

der Emittanz der aus der Linse beschleunigten Restgasionen, für Linsenparameter wie sie denen aus Abbildung 6-29 d) entsprechen, die in Abbildung 6-37 dargestellte Phasenraumverteilung. An ihrer Struktur ist zu erkennen, daß wenn überhaupt Anteile daraus

Abbildung 2-37: Darstellung einer exemplarisch ausgewählten Phasenraumverteilung der aus der DGPL beschleunigten Restgasionen für Linsenparameter die denen in Abbildung 6-29 d) entsprechen.

in der gemessenen Phasenraumverteilung des Ionenstrahles integriert sein sollten, so würden sich diese auf den Kernbereich der Emittanzfigur, mit der größten Intensität beschränken. Außerdem kann die in Abbildung 6-29 dargestellte Struktur der Abbildungsfehler der DGPL mit der gemessenen Phasenraumverteilung der aus dem Linsensystem beschleunigten Restgasionen nicht verifiziert werden.
in der gemessenen Phasenraumverteilung des Ionenstrahles integriert sein sollten, so würden sich diese auf den Kernbereich der Emittanzfigur, mit der größten Intensität beschränken. Außerdem kann die in Abbildung 6-29 dargestellte Struktur der Abbildungsfehler der DGPL mit der gemessenen Phasenraumverteilung der aus dem Linsensystem beschleunigten Restgasionen nicht verifiziert werden.

In Kapitel 3.1.2 wurde bereits auf die Rekombination des Ladungszustandes der transportierten Xenon – Ionen im Dipolfeld des Massenspektrometers hingewiesen. Darum soll an dieser Stelle untersucht werden, ob auch beim Transport des Xe⁺ - Strahles durch die in einer GPL eingeschlossene Elektronenwolke solche Umladungsprozesse statt finden. In Abbildung 6-38 ist der schematische Aufbau zur Versuchsdurchführung dargestellt.

Abbildung 1-38:Schematische Darstellung des Versuchsaufbaus zur Bestimmung der Rekombination des Ladungszustandes der Xenon - Ionen beim Transport durch ein Elektronentarget.

Aus technischen und organisatorischen Gründen konnte dabei nicht die in den Experimenten zur Untersuchung des Strahltransportes verwendete Doppel -Gabor - Plasmalinse benutzt werden. Statt dessen wurde eine einzelne Gabor – Plasmalinse benutzt, deren Funktion sich bereits in zahlreichen Versuchen bestätigt hatte, und in diesem Experiment nicht zur Fokussierung des Ionenstrahles eingesetzt werden sollte, sondern ihre Aufgabe bestand darin, ein Elektronentarget auf der Achse der Apparatur zu etablieren. Durch die Untersuchung der Transporteigenschaften der Linse in einer Vielzahl vorangegangener Experimente [POZ97, MEU99] konnten die Linsenparameter so gewählt werden, daß die maximale Dichte der Elektronenwolke in der GPL etwa 10 % der Dichte in der DGPL entsprach. Zuerst wurde das Massenspektrum ohne den Betrieb der GPL aufgenommen. In Abbildung 6-39 ist der Strom des in der Faradavtasse Massenspektrometers als Funktion der durch die Auswertungssoftware bestimmten Ionenmasse dargestellt. In Abbildung 6-39 a) ist der Peek der Xe⁺ - Ionen als Ausschnitt aus dem gesamten Massenspektrum dargestellt und entsprechend in Abbildung 6-39 c) der Peek für die Xe^{2+} - Ionen. Die Skalierung der Masse stimmt wie bereits in Kapitel 3.1.2. nicht mit der tatsächlichen Masse der Ionen überein, da die Auswertesoftware höhere Ladungszustände bei der Transformation des am Dipolmagneten angelegten Stromes in die Ionenmasse nicht berücksichtigt. Bei dem

Abbildung 6-39: Darstellung des Faradaytassenstromes im Massenspektrometer als Funktion der auf Masseeinheiten geeichten Feldstärke des Dipolmagneten für das Stromaxima: a) der Xe+ - Ionen ohne Betrib der GPL, b) nach dem Einschluß von Elektronen in der GPL, c)) der Xe2+ - Ionen ohne Betrib der GPL und d) nach dem Strahltransport durch die in der GPL eingeschlossenen Elektronen.

Vergleich der beiden Strommaxima für die Xe⁺ - und Xe²⁺ - Ionen mit dem in Abbildung 3-7 (unten) dargestellten gesamten Massenspektrum des Strahles ist eine Reduzierung der Strommaxima um ca. 10 % nach Einbau der GPL zwischen Diagnosetank und Massenspektrometer festzustellen. Diese Verluste in der Transmission sind dabei auf die verlängerte Driftstrecke zwischen Ionenquelle und Massenspektrometer zurück zuführen. Bei dem Transport des Xenon – Strahles durch die GPL bei einem Anodenpotential von $\Phi = 2200$ V und einem zentralen Magnetfeld von $B_z = 0,0047$ T reduzierte sich das in Abbildung 6-39 b) dargestellte Strommaxima für den Xe⁺ - Peek um 5 %. Die Ursache hierfür liegt in der Verschiebung des Strahlspots durch die fokussierenden Felder in der GPL, die sich bei einem Durchmesser von d = 1 mm der Eingangsblende des Massenspektrometers, bemerkbar macht. Ein weiterer Teil der Verluste könnte durch die Rekombiantion der Xenon - Ionen zu Xenon - Atomen, die im Massenspektrometer verloren gehen, ausgemacht werden. Werden die am Xe⁺ - Peek bestimmten Verluste von ca. 5 % vom Strommaxima der Xe²⁺ - Ionen abgezogen resultiert daraus ein maximaler Betrag von ca. $I_{FDT} = 1,65 \cdot 10^{-11}$ A der noch problemlos meßbar gewesen wäre. In Abbildung 6-39 d) ist jedoch der Betrag des erwarteten Strommaxima so klein, daß er fast durch das Hintergrundrauschen der Meßapparatur verdeckt wird. Die Konsequenz aus diesem Resultat ist, daß fast alle zweifach geladenen Xenon -Ionen durch Rekombination des Ladungszustandes in einfach geladene Xenon – Ionen und neutrale Xenon - Atom überführt wurden. Der untersuchte Ionenstrahl bestand als Ergebnis dieser Untersuchung demnach aus einfach geladenen Xenon - Ionen, die aber wegen ihrer unterschiedlichen Ladungszustände im Bereich des Extraktionssystems der Ionenquelle nach Gleichung (2.5) unterschiedliche kinetische Energien haben mußten. Die in der Ionenqelle erzeugten Xe^+ - Ionen hatten eine kinetische Energie von W = 12 keV, während die durch Rekombination entstandenen Xe^+ - Ionen die doppelte kinetische Energie besaßen.

6.1. Analyse der Ergebnisse der Messungen am Xenon – Strahl

Durch das im letzten Abschnitt gewonnene Resultat, daß der Ionenstrahl nach dem Transport durch die DGPL aus Ionen mit gleichem Ladungszustand aber unterschiedlicher kinetischer Energie besteht, läßt sich der vermeintliche Abbildungsfehler der Doppel – Gabor – Plasmalinse erklären. In Abbildung 6-40 ist die Phasenraumverteilung des Ionenstrahles nach Transport durch die DGPL – LEBT mit den aus Abbildung 6-29 d) entsprechenden

Abbildung 2-40: Darstellung der Phasenraumverteilung eines Xenon - Strahles nach Transport durch die DGPL - LEBT, die durch die rote Ellipse begrenzte Emittanzfigur entspricht der Phasenraumverteilung der Xe⁺ - Ionen mit einer kinetischen Energie von $W_{kin} = 12 \text{ keV}$, die Phasenraumverteilung innerhalb der blauen Ellipse entspricht den Xe⁺ - Ionen mit $W_{kin} = 24 \text{ keV}$.

Parametern vergrößert dargestellt. Dabei ist deutlich die Überlagerung von zwei Phasenraumverteilungen, die durch eine blaue und eine rote Ellipse graphisch begrenzt wurden, zu erkennen. Die Emittanzfigur die innerhalb der roten Ellipse liegt, entspricht der Phasenraumverteilung der Xenon – Ionen mit einer kinetischen Energie von $W_{kin} = 12 \text{ keV}$, während die in der blauen Ellipse liegende Phasenraumverteilung den Xenon – Ionen mit einer kinetischen Energie von $W_{kin} = 24 \text{ keV}$ zuzuordnen ist. Da die Rekombination des Ladungszustandes nicht für alle Xe²⁺ - Ionen an einem longitudinalen Ort von statten geht,

Abbildung 3-41: Darstellung der Ergebnisse der numerischen Simulation des Transportes des Xe+ -Strahles durch die DGPL - LEBT a) Phasenraumverteilung des ersten Teilstrahles mit einer kinetischen Energie von Wkin = 12 keV, b) Phasenraumverteilung des zweiten Teilstrahles mit einer kinetischen Energie von Wkin = 24 keV, c) Vereinigung der Phasenraumverteilungen der beiden Teilstrahlen und d) Strahlenvelope des ersten Teilstrahles (rot) und des zweiten Teilstrahles (grün).

sondern sich die Änderung des Ladungszustandes prinzipiell auf der gesamten Länge einer jeden Ladungsträgerwolke im inneren des Linsensystems vollziehen kann, kommt es zu einer Verschmierung der Phasenraumverteilungen, wie sie in den Abbildungen zur Illustration der Entwicklung der Phasenraumverteilung in Abhängigkeit von den Parametern der DGPL in Kapitel 6.3 gerade bei geringer Fokussierkraft des Linsensystems zu sehen sind. Bei

zunehmender Dichte der eingeschlossenen Elektronenwolke kann eine Separation der Phasenraumverteilungen der Xenon - Ionen in Abhängigkeit von ihrer Energie festgestellt werden. Die numerische Verifikation der experimentellen Ergebnisse ist in Abbildung 6-41 dargestellt. Dabei wurde zuerst der Verlauf der Strahlenvelope (rot) d) und die Phasenraumverteilung a) für die Xe⁺ - Ionen, deren kinetische Energie der Extraktionsspannung entsprach, berechnet, um dann aus dem Vergleich der Strahlradien der beiden Teilstrahlen in Abbildung 6-40 (blaue bzw. rote Ellipse) und der Fokusierkraft des Linsensystems den longitudinalen Ort mit der größten Wahrscheinlichkeit der Rekombination des Ladungszustandes zu ermitteln. Die anschließend durchgeführte Transportrechnung eines Xenon – Strahles mit der doppelten kinetischen Energie und der Phasenraumverteilung des ersten Teilstrahles am ermittelten Ort der Redistribution, hatte als Ergebnis die in Abbildung 6-41 b) dargestellte Phasenraumverteilung, die der eines Paralelstrahles entspricht. Der Envelopenverlauf dieser Rechnung ist In Abbildung 6-41 d) grün eingezeichnet. Obwohl die angenommenen Startbedingungen der beschriebenen Transportrechnung experimentell nicht überprüft werden konnten, denn dazu wäre eine Emittanzmessung in Abhängigkeit von der longitudinalen Strahlenergie nötig, repräsentiert die Vereinigung der beiden Phasenraumverteilungen a) und b) in c) die gemessene Emittanzfigur unter Berücksichtigung der numerischen und systematischen Fehler gut.

Mit den Ergebnissen aus den experimentellen Untersuchungen zum Transport eines hochperveanten niederenergetischen Xenon - Ionenstrahles und den Ergebnissen aus den entsprechenden numerischen Simulationen konnte gezeigt werden, daß die Doppel - Gabor -Plasmalinse alle Voraussetzungen für den Einsatz in einer LEBT – Strecke erfüllt. Dabei ist von besonderer Bedeutung, daß sich die Funktion der DGPL in ihrer für dieses Experiment konzipierten Form nur für den Einsatz bei Strahlenergieen über 20 keV vollständig erreichen läßt. Diese konnten leider aus technischen Gründen nicht bereitgestellt werden und so leiden die Ergebnisse der Untersuchung an einer unpräzisen Darstellung der Strahlparameter im Strahlfokus. Des weiteren werden die Ergebnisse des Ionenstrahltransportes im Hinblick auf die Transmission und das Emittanzwachstum durch die im Strahl vorhandenen unterschiedlichen Ladungszustände der Xenon - Ionen verfälscht, da die in dem Linsensystem eingeschlossenen Ladungsträgerwolken ein Elektronentarget darstellen, mit der inversen Funktion eines Strahlstripers. Die daraus resultierenden unterschiedlichen kinetischen Energien der Strahlionen und die verschiedenen longitudinalen Orte, an denen es zu den Rekombinationen des Ladungszustandes kommt, schließen eine isomorphe Fokusierung des Ionenstrahles aus. Daraus folgt außerdem eine nur bedingt mögliche numerische Abschätzung des Emittanzwachstums und der Transmission.

7. Epilog

Die Untersuchungen im Rahmen der vorliegenden Arbeit haben ergeben, daß sich die Doppel – Gabor – Plasma – Linse gut für die Fokussierung schwerer hochperveanter Ionenstrahlen eignet. Mit diesem System ist es möglich eine LEBT – Strecke zu realisieren, die gegenüber den herkömmlichen Konzepten mehrere Vorteile mit sich bringt. Der wichtigste Punkt ist die Linearität der Linsenfelder und der dadurch linearen Abbildung des Ionenstrahles durch die Ionenoptik. Leider konnte der Strahltransport ohne Abberationen durch die DGPL für einen Xe⁺ - Strahl in dieser Arbeit nicht erbracht werden, da die in Kapitel 6.8. beschriebenen dielektrischen Rekombinationen eine Interpretation der Phasenraumverteilung im Bezug auf Abbildungsfehler des Linsensystems erschwerten. Bei den Messungen am Helium – Strahl konnte jedoch gezeigt werden, daß die Abbildungsfehler der DGPL kleiner, im ungünstigsten Fall gleich groß, im Vergleich mit denen eines Solenoiden sind.

Neben den positiven Abbildungseigenschaften ist die starke Fokussierkraft der DGPL im Bezug auf die angelegten äußeren Felder ein entscheidender Vorteil für dieses Linsensystem. Durch die Fokussierung mit zeitgleicher Kompensation der Raumladungskräfte im inneren der DGPL ist eine Stromtransportgrenze, wie sie vor allem bei elektrostatischen Systemen den Transport einschränkt, bei einer LEBT – Strecke mit DGPL im wesentlichen durch die Geometrie der Drift – Sektionen bestimmt. Wegen der starken Fokussierkraft der DGPL stellt die daraus resultierende kurze Baulänge des Linsensystems, vor allem im Vergleich zu den wegen der FODO – Struktur bei Quadrupolen i.a. notwendigen Tripletts, gerade beim Transport de – und teilkompensierter Strahlen einen Vorteil dar.

Für die Planung und den Bau von LEBT – Systemen für Injektoren stellt die DGPL wegen der geringen äußeren Felder, die zur Fokussierung der Ionenstrahlen nötig sind, eine kostengünstige und kompakte Alternative dar, so daß auch wirtschaftliche Aspekte eine Integration der DGPL in geplante oder vorhandene Strukturen favorisieren.

Mit Hilfe der für die Arbeit konzipierten Software, deren Funktion und numerische Genauigkeit sich durch Vergleiche mit zahlreichen experimentellen Daten bestätigte, konnten auch Simulationen für geplante LEBT – Konzepte durchgeführt werden und eine mögliche Realisierung abgeschätzt werden. In Abbildung 7-1 ist das Ergebnis einer Transportrechnung für den Einsatz einer DGPL in einem Hochstrominjektor, wie er für das HIDIF - Projekt geplant ist, dargestellt. Im oberen Teil der Abbildung ist die Strahlenvelope des BI⁺ - Strahles dargestellt. Bei einer durch das HIDIF – Szenario bestimmten Strahlenergie von $U_{EX} = 156$ kV und einem Strahlstrom von I_{EX} = 40 mA, hatte die Perveanz des Ionenstrahles einen Betrag von K = 0,0061. Als Eingangsdatensatz diente eine gemessene Phasenraumverteilung, die an die Parameter des HIDIF - Injektors angepaßt wurde und deren normierte RMS -Emittanz $\varepsilon_{n,rms,100\%} = 0,0163 \pi$ mmmrad betrug. Durch den Transport durch die virtuelle LEBT - Sektion, in deren Drift - Strecken ein Kompensationsgrad von 85 % angenommen wurde, verdoppelte sich der Wert der normierten RMS - Emittanz. Eine Fokussierung des Strahles am Eingang des nachfolgenden Beschleunigers war mit einem Anodenpotential $\Phi_{A1/2}$ = 50 kV und einem zentralen Magnetfeld $B_{z,max,1} = 0,2$ T bzw. $B_{z,max,2} = 0,14$ T möglich, wobei die Transmission bei 100 % lag. Die Optimierung der LEBT – Strecke auf eine möglichst kurze Transportstrecke wird für einen realen Injektor schon wegen der Unterbringung von Diagnostik, Spannungsversorgung und Pumpensystem andere Parametersätze erfordern.

Neben einer grundsätzlichen Eignung der DGPL für den Transport hochperveanter niederenergetischer schwerer Ionenstrahlen, wie sie in der vorliegenden Arbeit gezeigt werden ergeben sich neue Ansätze das Linsensystem im Bezug konnte, auf die Abbildungseigenschaften zu optimieren. Ein Schwerpunkt liegt dabei in dem Design der Linsengeometrie, die gerade im Bereich der Erdblenden und in der Ausprägung der elektrostatischen äußeren Felder Auswirkungen auf die Phasenraumverteilung des

Abbildung 7-1: Darstellung der Ergebnisse einer numerischen Simulation der LEBT – Sektion mit DGPL für ein mögliches HIDIF – Szenario, oben der Envelopenverlauf des Ionenstrahls, unten Phasenraumverteilung am Eingang und Ausgang der Transportstrecke

Ionenstrahls hat. Daneben sollte die Abhängigkeit der Dichtefunktion der eingeschlossenen Ladungsträger von den Abmessungen der DGPL untersucht werden.

Neben einer Optimierung der Doppel – Gabor – Plasmalinse, durch welche die genannten Vorteile dieses Linsensystems noch stärker etabliert werden können, sei auch auf die Möglichkeit hingewiesen, daß sich für dieses System auch andere Anwendungsbereiche eröffnen können. Durch den Einschluß von positiven Ladungsträgern könnte die DGPL auch als Zerstreuungslinse dienen und so bei einer kontrollierten Leistungsdeposition in Strahlstoppern oder bei entsprechender Aufbauzeit der Ladungsträgerwolke als Chopper Einsatz finden.

Literaturverzeichnis

[Borries 32]	B. Borries, E. Ruska: Das kurze Raumladungsfeld einer Hilfsentladung als Sammellinse für kathodenstrahlen. Z. Phys. 76 (1932), p. 649
[BOOTH 78]	R. Booth, H.W. Lefevre: Space – charge – lens for high current ion beams. Nuc. Inst. and Meth. 151 (1978), p. 649
[BRO 88]	I.G. Brown: The physics and technology of ion sources. New York (1988)
[CONNOLLY 85]	R.C. Connolly: An investigation of quiet, steady state plasma columns produced by penning discharge. Ph. D. Thesis, University of Oregon (1985)
[DÖL 94]	R. Dölling: Raumladungskompensation driftender intensiver Strahlen niederenergetischer Ionen und Techniken zu ihrer Vermessung. Dissertation, Inst. f. Angew. Phys.,J.W. Goethe – Univ. Frankfurt/Main (1994)
[GROß 94/2]	P. Groß, J. Pozimski, T. Weis, R. Dölling and H. Klein: Experimental and theoretical investigations of emittance growth of space charge compensated beams in a magnetic transfer line. Proc. 22 nd LINAC Conf. 1994 Tsukuba, Japan
[GROß 97]	P. Groß: Untersuchungen zum Emittanzwachstum intensiver Ionenstrahlen bei teilweiser Kompensation der Raumladung. Dissertation, Inst. f. Angew. Phys.,J.W. Goethe – Univ. Frankfurt/Main (1997)
[HOL 79]	A.J.T. Holmes: Theoretical and experimental study of space charge in intense ion beams. Phys. Rev. A19 (1979),p.389
[LAW 58]	J.D. Lawson: Perveance and the bennet pinch relation in partially neutralized electron beams. J. Electr. Control 5 (1958),p. 146
[MOBLEY 73]	R.M. Mobley: Gabor lenses – experimental results at Brookhaven. Brookhaven National Laboratory, (1973)
[NOBLE 88]	R.J. Noble: Beam transport with magnetic solenoids and plasma lenses. Proc. LINAC Conf. (1988)
[PALKOVIC 89]	J.A. Palkovic, F.E. Mills, C. Schmidt and D.E. Young: Gabor lens focusing of a negative ion beam. Proc. 1989 IEEE Part. Acc. Conf., IEEE, New York (1989) 304
[POZ 90]	J. Pozimski: Messungen an einer Gabor – Plasmalinse . Diplomarbeit Inst. f. Angew. Phys., J.W. Goethe – Univ. Frankfurt/Main (1990)

[POZ 92]	J. Pozimski, P. Groß, R. Dölling and T. Weis: First experimental studies of a Gabor plasma lens in Frankfurt. Proc. 3 rd EPAC Conf. 1992, Berlin, Germany, p. 1536
[POZ 93]	J. Pozimski, P. Groß, R. Dölling and H. Klein: Determination of electron temperature in partial space charge compensated high perveance ion beams. Il Nuovo Cimento 106A (1993), p. 1713
[POZ 97]	J. Pozimski: Untersuchungen zum Transport raumladungskompensierter niederenergetischer und intensiver Ionenstrahlen mit einer Gabor - Plasmalinse. Dissertation, Inst. f. Angew. Phys.,J.W. Goethe – Univ. Frankfurt/Main (1997)
[POZ 00]	J.Pozimski, O. Meusel, A. Jakob, A. Lakatos and H. Klein: Non distructive determination of beam emittance for low energy ion beams using CCD-camera measurements EPAC 2000
[REID 96]	K. Reidelbach, J. Pozimski, P. Groß, A. Jakob, R. Dölling and H. Klein: Investigation of space charge compensated ion beams with a time resolving ion energy spectrometer. Fusion Engeneering and design 32- 33 (1996), p.189
[REISER 89]	M. Reiser: Comparison of Gabor lens, gas focusing for low energy ion beams. Proc. 13 th PAC conf.1989, Chicago, USA
[SAC 71]	F.J Sacherer: RMS envelope equations with space charge. IEEE Trans. Nucl. Sci. NS-19 (1971, p. 1105
[WEIS 91]	T. Weis: Untersuchungen zu Verhalten hochperveanter Ionenstrahl bei Raumladungskompensation. Habilitaionsschrift Inst. f. Angew. Phys.,J.W. Goethe – Univ. Frankfurt/Main (1991)
[WICK 96]	L. Wicke, R. Dölling, J. Pozimski an H. Klein: Optical beam profile analysis using a high performance multi mode CCD camera. GSI Ann. Rep. HEDIM 1995, GSI 96-02, p. 43
[XI 89]	D. P. Xi, Physica Scripta 39 (1989), p. 105

Dankesworte

Mein besonderer Dank gilt meinem Mentor Dr. J. Pozimski für seine exzellente Betreuung und seine Geduld bei den zahlreichen Diskussionen.

Herrn Prof. Dr. Klein danke ich für die Aufnahme in das Institut und für das in mich gesetzte Vertrauen. Für die Vielzahl fruchtbringender Gespräche und Anregungen danke ich neben ihm auch Herrn Prof. Dr. U. Ratzinger.

Für die gute Zusammenarbeit und das angenehme Arbeitsklima danke ich der NEST – Arbeitsgruppe: Dr. A. Jakob, A. Lakatos und C. Gabor.

Herrn Müller möchte ich für die Mühen bei der Instandsetzung verschiedenster Geräte und die guten Ratschläge und Tips danken. Der Institutswerkstatt, unter Leitung von Herrn Hausen, danke ich für die präzise und schnelle Ausführung aller Arbeiten.

Bedanken möchte ich mich noch bei all jenen nicht namentlich genannten Mitgliedern des Institutes, die durch ihr freundliches Entgegenkommen und ihre Hilfe diese Arbeit unterstützt haben.