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3.2 Cooperation and competition in the Häussler system. . . . . . . . . . . . . 36
3.3 Training of control units employing active regions. . . . . . . . . . . . . . 38
3.4 Schematic active inputs regions. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Control unit weights at an intermediate stage and in their converged states. 46
3.6 Time development of input specificity and synaptic spread. . . . . . . . . 48
3.7 Final transformation scales and their time development. . . . . . . . . . . 49
3.8 Average output RPFs and their transfer functions. . . . . . . . . . . . . . 50
3.9 Analysis of the norm of the receptive-projective fields. . . . . . . . . . . . 53
3.10 2D receptive-projective fields at an intermediate stage. . . . . . . . . . . . 55
3.11 2D receptive-projective fields in their converged state. . . . . . . . . . . . 57
3.12 Probability-based Scale Organization. . . . . . . . . . . . . . . . . . . . . 58

4.1 Link interactions of control units that lead to the self-organization of
different translations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Shifter Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Converged weight configurations for different modes of the model. . . . . 68
4.4 Synaptic spread development for the different modes of the model. . . . . 69
4.5 Final tranformations on a shifter circuit. . . . . . . . . . . . . . . . . . . . 71

5.1 Sanger’s rule applied to natural inputs. . . . . . . . . . . . . . . . . . . . . 74
5.2 Experimental IT responses and used probability densities. . . . . . . . . . 75
5.3 The bilinear generative model. . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Natural image patches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Converged generative weights for a single control unit. . . . . . . . . . . . 82
5.6 Simulation result and Gabor fit. . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Illustration of the color coding of the generative fields. . . . . . . . . . . . 83
5.8 Control unit responses on disjoint input patterns. . . . . . . . . . . . . . . 84
5.9 Histograms of the output units. . . . . . . . . . . . . . . . . . . . . . . . . 85

7



5.10 Final generative weights for two control units. . . . . . . . . . . . . . . . . 86
5.11 Topographic maps extracted from the generative weights. . . . . . . . . . 87
5.12 FERET Face images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.13 Generative Weights learned from FERET data. . . . . . . . . . . . . . . . 89

8



1 Introduction

A long standing mystery surrounding the functioning of the brain is how it manages to
handle the enormous variety of different neuronal activity patterns and organize these so
that they are related in a meaningful way. These patterns can be sensory, motor, but
also internally generated patterns. A major difficulty is the identification of a particular
pattern’s semantics, because the relation of patterns with the same meaning can be
extremely complicated, for example the firing patterns of retinal cells generated by objects
seen from a different angle. Patterns with identical meaning can even be structurally
unrelated, like many synonyms in language. It is obvious that the brain needs to transform
patterns from all modalities to a representation that is closer to their semantics than it is
to their appearance, so that it can build interrelations with the ability to generalize. In
other words: an abstract way of thinking is more powerful than only relating instances of
the abstract problem. Moreover, the brain seems to build abstract representations of the
world, in the extreme case even in single cells. A prominent example is a cell in the medial
temporal lobe that fires exclusively for stimuli containing Jennifer Aniston (Quiroga
et al., 2005), independent of the visual appearance, that is, the specific pattern elicited
on the retina. In this thesis we present a framework that shows how transformations,
which solve the task of generating more abstract representations in the visual domain,
can be organized.

A big part of the anatomical diversity and physiological complexity of the brain is
already developed at birth. The study of these enormously complex patterns, and how
biology is able to organize them, is therefore an interesting research question. Most models
for postnatal learning in theoretical neuroscience either presume an ad hoc structure to
be already in place or assume a very simple unstructured initial structure. The latter
seems theoretically preferable due to Occam’s Razor because it is simple. However,
this assumption does not correspond to the brain at the time of eye-opening: the brain
at this stage has been structured by self-organization, guided by the genetic program
that developed over millions of years, to implement specific functions. These functions
can be very specific, like primitive reflexes, for example the “rooting reflex” of human
babies that assists breastfeeding, or they can be more fundamental and general, like
the learning programs that form the basis for reinforcement learning (Sutton and Barto,
1998; Bergmann et al., 2009), a broadly applicable learning paradigm for behaving agents.
This genetically driven self-organization process seems to be so precise and powerful, that
it is possible that a person who never experienced a sensory phenomenon from a given
modality can still perceive this modality. For example, a person who is born without
limbs can perceive phantom limbs (Brugger et al., 2000), and a person who was born
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blind might experience vision during sleep (Bértolo et al., 2003). In conclusion, the
prenatal organization of the brain is essential to its postnatal function and its subsequent
development and the initial structure has therefore to be taken into account for the
understanding of brain function and postnatal development.

However, there is a problem in the direct applicability of the argument for the design
of models for the brain: we only have a rough knowledge and do not know the precise
organization of cortical networks at the time of eye-opening. A major goal of this thesis
therefore is to describe structures, in particular the before-mentioned transformations,
that can be self-organized prenatally from simple local interactions and that are consistent
with neuroscientific findings. To this end, we follow the hypothesis of innate learning (e.g.
Albert et al., 2008), which assumes that the brain starts to organize and learn already
before eye-opening in its postnatal mode. Following this hypothesis, we generally apply
the methodology and key ideas of models that have been designed for, and shown to be,
postnatally successful to the prenatal stage.

1.1 Invariance in Vision

We constrain our investigations to the visual domain, because the visual parts of the cortex
are the best investigated structures in the brain and it is known that much of the primate
neocortex is involved in vision; approximately 60% of the macaque cortex. However,
there is a long-lasting, still not completely solved open computational question (Pitts and
McCulloch, 1947): How is the brain able to recognize stimuli of an object, while the retinal
firing patterns it produces vary considerably due to translation, rotation or even more
complicated three dimensional transformation? In fact, it is possible that two different
objects at the same position are more similar, in the sense of an Euclidean metric on the
retinal neural firing patterns, than the same object under different transformations(see e.g.
Duda et al., 2001, p.189). As the number of possible appearances times the number of
different identities of objects is enormous, it is impossible to store all of them. Further, in
this case the system would be unable to generalize to new views of a known object, which
our visual system is capable of (e.g. Biederman and Cooper, 1991; Wang et al., 2005,
see however Cox and DiCarlo, 2008). This problem is termed the invariance problem
and many different models for its solution have been proposed in the literature. These
can roughly be grouped into two groups (Wiskott, 2006): normalization- and invariant
feature-based.

1.1.1 Feature-based Invariance

The general idea of feature-based approaches is to make the response of output neurons
invariant with respect to changes in the inputs that correspond to object transformations,
for example translation. A possible, and widespread way to achieve this response is to
use alternating layers of feature detectors (“simple cells”) and pooling cells (“complex
cells”) (Rosenblatt, 1961; Fukushima, 1980; LeCun et al., 1989; Riesenhuber and Poggio,
1999; Deco and Rolls, 2004). Simple cells differing in the desired invariant parameter
(for example position, scale etc.), but with otherwise identical receptive fields, project
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to the pooling cells, which hence become invariant through a non-linear response on its
inputs, for example a maximum operation (Riesenhuber and Poggio, 1999). Alternatively,
the non-linear response functions of output cells can be learned by slowness (Wiskott
and Sejnowski, 2002; Einhäuser et al., 2002). The exclusive focus on building invariant
responses has the disadvantage that the information of how the invariant representation
came about is lost, i.e. in particular where the information was pooled from. Resolving
ambiguities, however, needs the interaction of higher level representations with lower,
less invariant representations (see e.g. Lee and Mumford, 2003). This can be seen for
example for segmentation or figure ground segmentation. It seems therefore necessary to
explicitly model the processes that lead to the invariant responses.

1.1.2 Normalization

The normalization approach transforms the appearance of an object to a standardized
form in its output. For example, if an object is translated or scaled in the input it is
actively transformed to a standardized position or scale. The standardized representation
then is invariant with respect to the set of transformations and we therefore shall call
them invariance transformations. Selection of the necessary transformation can be based
on a segmented version of the object in the input, which also allows for learning (Loos
and Malsburg, 2002). Alternatively, and more common, is the correspondence-based
selection of the transformation: this approach seeks a transformation of the input to
the output that minimizes the distance (usually measured with least squares) of the
output to a pattern stored in memory (e.g. Lades et al., 1993; Olshausen et al., 1993;
Wiskott and von der Malsburg, 1996; Arathorn, 2002; Lücke et al., 2008; Wolfrum et al.,
2008). The active seeking of a transformation in these networks has the advantage
that information loss is minimal and that important where-information is accessible. It
has been shown recently that psychophysical data is well in line with the paradigm of
coordinate transformations (Graf, 2006).

A particular focus in this thesis is on the development of the necessary invariance
transformations that are needed for the normalization approach and chapters 3 and 4
show that simple transformations can already be self-organized before birth. The next
subsection introduces the main framework we build upon throughout the thesis, which
potentially allows for an integration of both normalization- and feature-based approaches,
and hence can benefit from their respective advantages.

1.1.3 Bilinear Models and Modulatory Synapses

The traditional model of a rate-coding neuron is to assume a linearly weighted sum of its
inputs, that then gets passed through a non-linear transfer function to yield the neuron’s
output rate. From a computational perspective it has been argued, that networks with
multiplicatory interactions are more efficient in performing complex computation (e.g.
Durbin and Rumelhart, 1989; Koch, 1999). We therefore here shortly motivate and
introduce the modulatory networks we used in this thesis.

The transfer function of the traditional model implements several biophysical constraints
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of a neuron, for example its firing threshold and the saturation frequency of a neuron,
which it cannot exceed. In general, however, there are many effects that seem to make
this model much too simplistic. For example, different states of neural firing (regular
firing or bursting), complex interactions and computations in the dendrite (Häusser
et al., 2000), like for example dendritic spikes, and short-term synaptic plasticity, such
as depression (Markram and Tsodyks, 1996) or facilitation (Markram et al., 1998) of
synaptic transmission, significantly complicate the input-output relation. To abstract
from this enormous complexity we therefore assume the neuron to calculate an unknown
function of its input:

y = f(x), (1.1)

where y denotes the neuron’s output activity and x is its input activity vector. For
simplicity we assume this function to be stationary throughout this thesis. Assuming f
to be a twice differentiable real function, its Maclaurin approximation of second order is:

y ≈ f(0) +
∑
i

xi
∂

∂xi
f(0) +

1
2!

∑
i

∑
j

xixj
∂2

∂xi∂xj
f(0) +O(x3),

= c+
∑
i

wixi +
∑
i

∑
j

wijxixj , (1.2)

where in the second line we replaced the gradient of f(0) and its Hessian with the
parameters wi and wij . From this formula we see that the traditional model corresponds
to an approximation up to linear order plus compensating the errors to a real neuron
with a nonlinear transfer function. Instead, throughout this thesis we will take the
second-order term into account, but for mathematical simplicity will neglect a nonlinear
transfer function1. Note that the multiplicative second-order term is nonlinear and
hence allows for complex computations (Hertz et al., 1991). Each summand in the this
term is linear in xi, if xj is assumed constant (and vice versa), this is why it is called
bilinear (Tenenbaum and Freeman, 2000). Similar to the Maclaurin expansion presented
here, a Volterra or Wiener expansion can be used to analyze non-linear systems (Dayan
and Abbott, 2001). As an example, this technique has been applied to a neuronal chain
in the catfish retina and was shown to be superior to linear analysis methods and can be
truncated with small error after the second order term (Marmarelis and Naka, 1972).

There is plenty of physiological and theoretical evidence for multiplicative effects.
For example, it has been discovered recently that glia cells, which have so far been
considered to play a passive role in information processing, can modulate synaptic
transmission (Haydon, 2001; Möller et al., 2007). However, this interaction is most
likely too slow to account for the fast modulatory effects of equation 1.2. The nonlinear
effective transfer function in a leaky integrate and fire (LIF) neuron model has been
shown to yield a logarithmic transformation of its synaptic inputs to firing rates (Tal and
Schwartz, 1997). The sum of the outputs of several neurons therefore corresponds to a
product of their inputs. Similarly, there is direct evidence that specific neurons in locusts
perform a logarithm of their inputs, sum these up and exponentiate afterwards, and

1An exception is chapter 2 where we use only the linear approximation.
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therefore implement a multiplication of synaptic inputs (Gabbiani et al., 2004). Short-
term synaptic depression has been shown to have effective multiplicatory effects (Rothman
et al., 2009) and shunting inhibition at the same synapse (Volgushev et al., 1996; Kubota
et al., 2007) and supra-linear interaction of apical and distal inputs (Larkum et al., 1999;
Schaefer et al., 2003) implements multiplications as well. Finally, it has been shown that
multiplications can also be implemented at the network level (Salinas and Abbott, 1996).

1.2 Topography

According to von Waldeyer-Hartz’s neuron doctrine the brain consists of discrete units,
the neurons, and adding the standard assumption that (chemical) synapses are the sole
connections between neurons2, information processing in the brain is based exclusively
on neurons and their interconnections. It follows that the locations of neurons do not
play a functional role, only their connectivity.

However, and luckily so for modern neuroscientific methods (for example fMRI), it has
been found that neurons are arranged systematically. For example, visual responsive
cells in the retina project topographically to lateral geniculate nucleus (LGN), that
is, neighboring retinal cells innervate neighboring LGN cells. The same holds further
downstream for simple cells of primary visual cortex (V1) (Hubel and Wiesel, 1968). This
particular ordering of projections leads to a topographic representation that has been
termed “retinotopic map” and is a special case of topographic maps. Retinotopy can
also be found to a lesser degree in extrastriate areas and topographic maps have been
found in all sensory systems as well as in many motor systems. Further, there are also
functional topographic maps, for example the orientation map in V1, tonotopy maps in
auditory cortex (Talavage et al., 2000) or odor maps in olfactory cortex (see Imai et al.,
2009), to name but a few.

Why are neurons systematically ordered, despite any obvious functional relevance?
Common answers to this question are of anatomic nature: the topographic organiza-
tion minimizes wiring length, and therefore volume and energy consumption of the
brain (Durbin and Mitchison, 1990). This argument holds if the assumption that func-
tionally similar neurons need more connections is valid. Further, it is known that electrical
synapses are numerous in the brain (Connors and Long, 2004) leading to local interactions
of neurons. Also for synaptic plasticity, it has very recently been found in hippocampus
that astrocytes control thousands of excitatory synapses in their vicinity (Henneberger
et al., 2010). Both effects lead to statistical dependencies of nearby neurons and together
with statistical learning might lead to topographic representations.

There is also a functional theory that explains topography (Hyvärinen, 2002): the
general idea is based on the assumption that simple cell activities are used in further
computations, for example pooling into complex cells (Hyvärinen et al., 2001), and on
the assumption that functionally similar cells need to be considered significantly more
often in these computations. Application of any statistical learning, like Hebbian learning
or generalizations thereof, on the basis of topographically ordered simple cells, then leads

2This is also sometimes considered to be part of the neuron doctrine
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to a massively reduced search space, by focusing connections only to a local area. In
Topographic Independent Component Analysis (Hyvärinen et al., 2001), simple cells are
ordered according to their (residual) statistical dependencies, which naturally leads to
topography, simple and complex cell responses.

Finally, it has also been shown that topography is a useful representation for fast
dynamically changing networks, such as the Dynamic Link Architecture (Lades et al.,
1993), which is especially applicable to the subtle differences in face recognition. These
networks implicitly encode relations between different input dimensions by preserving
relative positions of features, an uncommon idea in statistical neuroscience. This is an
idea which we will systematically exploit in chapter 5. For chapters 3 and 4 topography
is of crucial importance, because it sets up a coordinate system that can be used to
organize real-world transformations prenatally.

1.2.1 Ontogeny of Topography

It has been found that retinotopy in superior colliculus (SC) (Chalupa and Snider, 1998),
lateral geniculate nucleus (LGN) (Jeffery, 1985) and primary visual cortex (V1) (Cang
et al., 2008) develops before photoreceptors are able to transduce light. Likewise,
eye-segregation of inputs in LGN, ocular dominance columns in V1 and even orientation-
selectivity in V1 start to develop before vision begins (Huberman et al., 2008).

Historically, there have been two competing theories explaining the prenatal emergence
of retinotopy. The chemoaffinity hypothesis was proposed by Roger Sperry (Sperry,
1963) and states that each neuron possesses unique receptors on its projecting fibers
and the target neurons posses corresponding unique cytochemical markers (ligands), so
that each fiber gets connected to its correct target neuron to establish a topographic
map. As the number of chemical signals would be prohibitive large in this model, he
suggested gradients of ligands and receptors to code for positions in the input and the
output neuronal fields. Indeed, in the recent years corresponding ligands, ephrin family
molecules (Drescher et al., 1995) and Wnts (Schmitt et al., 2006) have been identified
together with their complementary receptors, Eph and Ryk/Frizzled(s). Both ligands can
have attractive or repulsive effects, depending on the receptors on a fiber. Disruptions in
map formation have been observed for EphA, EphB and Wnt/ryk signaling knockout
mice (Huberman et al., 2008). Interestingly, it has been found that solitary cells find
their correct location (Gosse et al., 2008), thus excluding competition effects of cells to
be a necessity for rough retinotopy formation.

An alternative activity-based theory has been suggested by Willshaw and von der
Malsburg (Willshaw and von der Malsburg, 1976) and is based on the idea of corre-
lated activity of neighboring cells in the retina to code for neighborhood relationships.
These input correlations could be interpreted as a prenatal model of the neighborhood
correlations in postnatal image statistics (see e.g. Hyvärinen, 2002). Assuming lateral
correlations and Hebbian learning of cells in the target can then be used to exploit the
input correlations to build a topographic map. An analytically solvable model inspired
by this idea is described in more detail in chapter 2 and many similar models have
been proposed (see for a review Goodhill, 2007). Indeed, retinal waves impose lateral
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(a) (b)

Figure 1.1: Subfigure (a) shows recorded retinal waves from ferrets before eye-opening,
taken from (Feller et al., 1996), and subfigure (b) plots simulated retinal waves, that
were simulated as described in (Godfrey and Swindale, 2007).

correlations on RGCs (retinal ganglion cells) (see Figure 2.1).
Contemporary interpretations of the ontogeny of retinotopy include both suggested

models (Goodhill, 2007; Huberman et al., 2008), although each by itself could describe
the emergence independently. It has been shown that the prevention of retinal waves in
ephrin knockout (ephrin−A2/5−/−) mice leads to the abolishment of topography in the
naso-temporal dimension (Pfeiffenberger et al., 2006). Chemoaffinity-based mechanisms
precede activity-based refinement of retinotopy and therefore set the stage for the latter
mechanism, which otherwise would either need time-dependent parameter tuning (Zhu,
2008) or expensive long-range lateral interactions (see section 2.4).

1.3 Prenatal Waves

For all prenatal models we describe in this thesis, the candidate input patterns are
prenatal waves. Therefore, we here give a short review of the physiological findings.

Retinal waves consist of active retinal ganglion cells that often form a simply-connected
area of activity but can also consist of several simply-connected areas. They are ignited
by the firing of solitary or few spontaneously firing cells that then activate neighboring
cells (Wong, 1999). Activated cells burst for a given period of time and subsequently are
in a refractory period, when they cannot get activated, even by neighboring activities.
This leads to an active area of varying size on the retina, 200µm up to 1mm in an
in vitro macaque retina (Warland et al., 2006) that migrates, which is hence called a
“wave”. Figure 1.1a shows recorded retinal waves from ferrets and Figure 1.1b shows
simulations of retinal waves, which we produced using the method described in (Godfrey
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and Swindale, 2007). Retinal waves are phylogenetically stable and can be found in both
low and high vertebrate species (Wong, 1999). Suppression of retinal waves from P11 to
P15 in mice by tetrotoxin (TTX) shows that they are critical for retinotopy refinement
in this late ontogenetic phase (Hooks and Chen, 2006) and hence are crucial for correct
visual system development. For a more extensive review on retinal waves see (Wong,
1999; Huberman et al., 2008).

Cortical Waves have been investigated less, in comparison to retinal waves. However,
cortical calcium waves have been found in slices of rat cortex, that lead to long-range
correlations of 8mm and more (Garaschuk et al., 2000), and therefore presumably influence
long range connections. Further, in vivo recordings in ferrets showed that synchronous
activity bursts with patchy correlations of a mean distance of 1mm (Chiu and Weliky,
2001), suggesting that cortical correlations are a stable phenomenon across different
mammalian species. Importantly, the correlations persisted even under blockage of LGN
and are therefore generated by cortical circuits.

1.4 Outline of Thesis

In chapter 2, we describe a model for the establishment of retinotopic mappings, that can
be solved analytically, due to Gaussian assumptions. Chapter 3 shows that correlation-
based learning on prenatal waves can account for the self-organization of transformations
necessary for normalization-based object recognition. In chapter 4 we show that for
translations, it is possible to organize the connectivity structure also for multilayer circuits.
Finally, chapter 5 derives a probabilistic model that allows for the simultaneous learning
of transformations and features in a bilinear setting.
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1.5 Notational Conventions and List of Symbols

xi activity of input unit i
Ni size of input neuronal field
yo activity of output unit o
No size of output neuronal field
ck activity of control unit k
zl activity of memory or second output layer unit l
Ini active region resembling a prenatal wave (i is the input position, n indexes different regions)
x̂i, ŷo, ĉk inputs to units i, o and k
woi forward weight from input unit i to output unit o
gio generative weight from output unit o to input unit i
wkoi forward bilinear weights for control unit k
w̃ki effective input weight footprint of control unit k
giok generative bilinear weights for control unit k
ξ vector of uncorrelated noise
N (x,x0,Γ) Gaussian function centered around x0 with covariance matrix Γ
α unspecific weight growth rate
C
I/O
ij effective lateral interaction of units i and j in the input (I) or output (O) layer

Coo′ii′ coupling matrix for weights woi and wo′i′

Foi weight cooperation term for the weight woi
Boi competition term for the weight woi
ω relative weighting of input and output based competition
κk gain modulating variable of control unit k
ζ(t) stimulus specificity at time t
s(k) average synaptic spread of control unit k
S(k) scale factor of the transformation implemented by control unit k
r(k, o) synaptic center-of-mass for control unit k and output unit o
ν frequency or wave number
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2 A Gaussian Generative Model for the
Ontogeny of Retinotopy

In this chapter, we present a novel model for the emergence of topographic mappings
and establish a first link to information processing. In section 2.2 we analytically show
all possible solutions to the system. Further, we derive equations for the estimation of
the hidden variables in section 2.3, as well as a learning rule for the weights. Using these
equations we show that an implementation of the model reliably yields the expected
results.

2.1 Introduction

Modeling of topographic mappings by now has a long tradition in computational neuro-
science and dates back more than 30 years (Willshaw and von der Malsburg, 1976), see
section 1.2.1. Like many models for topography formation (Goodhill, 2007), we formulate
an activity-based model that makes use of lateral correlations in the input and the output
neural fields.

In contrast to most modeling studies of topography, we shall however take a different
approach. Our goal here is not to directly model the emergence of topography, but instead
we build a simple model that attempts to build a good code for the input statistics it
receives. Topography then is a result, if reasonable neurophysiological constraints, i.e.
long-range excitatory connections or positive firing rates, are taken into account.

Methodologically we therefore build on top of the both technically and neuroscientifically
successful class of generative models, which we introduce taking vision as an example:
Why is computer graphics so advanced these days that it can be hard to tell apart
real and rendered pictures and the reverse problem, computer vision, is still far from
competing with the visual systems of animals? One reason why the vision problem is
difficult is because we only receive a two-dimensional input from the three-dimensional
world, and hence inputs are necessarily ambiguous. Therefore, any visual system needs
prior information to interpret the inputs. Visual illusions illustrate that prior information
can lead to wrong interpretations, even in humans. The generation of inputs from an
internal model on the other hand, like in computer graphics, is fully determined and hence
simpler. In probabilistic terms, this generation process is formalized with a generative
distribution:

p(x|y;G), (2.1)
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where x here denotes the input and the yi are called latent variables or causes. G is a set
of parameters of the model. Further, prior information on y is usually incorporated in
the model: p(y|G), a term, that is unconditional with respect to x. Recognition in this
type of model then amounts to the estimation of the latent variables y given an input.
Luckily, this reversal of probabilities is mathematically given by Bayes’ theorem:

p(y|x;G) =
p(x|y;G)p(y|G)

p(x|G)
. (2.2)

Thus, we have a way to relate a comparatively simpler generative model with a recognition
model1.

The marginal distribution of a generative model,

p(x|G) =
∫
p(x|y;G)p(y|G)dNy, (2.3)

gives the probability distribution of the generated inputs, if sampled according to the
prior p(y|G), and hence is the unconditioned firing distribution of the upstream units.
A faithful model therefore should approximate the real input distribution p(x) as close
as possible by adapting its parameters G. This is the key idea of representational
learning:

p(x|G) != p(x). (2.4)

Using this idea, we show that the parameters G of a simple Gaussian model (one that
takes only statistics up to second order into account) become similar to topographic maps
in the brain.

2.2 An Analytically Solvable Model of Retinotopy

Neighborhood correlations are a widespread phenomenon in the brain and can be found
subcortically, e.g. in the immature ferret lateral geniculate nucleus (LGN) (Ohshiro and
Weliky, 2006), and in all cortical regions. Figure 2.1 shows two examples in the visual
domain: the two-dimensional Pearson correlation coefficient2 has been calculated from
neuronal activities of simulated retinal waves, as described in section 1.3, see Figure 2.1a,
and a one-dimensional cut through its maximum is shown in Figure 2.1b. Qualitatively,
the shape of the correlation function can be seen to be similar to the correlations shown
for postnatally recorded activities in inferotemporal cortex (IT), see Figure 2.1c (this plot
is taken from Kiani et al., 2007). As even these very different neuronal fields yield similar
second-order statistics, we therefore in the following make the reasonable assumption,
that the lateral correlations are the same, or very similar, on all levels. We formalize the

1Unfortunately, a formula for the probabilities of the hidden variables, p(y|x;G), can usually not be
given in closed form even for moderately complex systems, due to unsolvable integrals.

2The Pearson correlation coefficient is defined as the covariance of two variables divided by their
respective standard deviations.
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Figure 2.1: The Pearson correlation coefficient calculated from activities of prenatal
retinal waves is shown in 2D in (a) and a one-dimensional cut in (b), whereas (c) shows
the correlation from postnatally recorded data in inferotemporal cortex (taken from Kiani
et al., 2007). Both share a monotonic decrease from the center, which we modeled with
an exponential function.

input distribution with a multivariate Gaussian probability density function (pdf):

p(x) = N (x,x0,Γ), (2.5)

=
1√

det 2πΓ
exp

(
−1

2
(x− x0)T Γ−1 (x− x0)

)
,

where x0 denotes the center of the Gaussian and Γ is a real symmetric positive-semidefinite
matrix that parameterizes x’s covariances (i.e. the lateral correlations of the input
neuronal layer). We assume the input to be homogeneous, i.e. all components of x0 are
equal to a constant. This corresponds to the same average firing activity of all neurons
in the input layer.

Standard second-order statistical methods, like probabilistic principal component
analysis (pPCA) or factor analysis (FA) assume uncorrelated causes to build an efficient
and non-redundant code of their inputs (see e.g. Dayan and Abbott, 2001). This is
inconsistent with the finding of neighborhood correlations in the activities of neurons on
all levels in the cortex, which implies redundant coding. We therefore explicitly model
correlations in the prior probability distribution of the hidden variables. For simplicity we
assume that the dimensionality of the latent variables is equal to the input dimensionality
(dimy = dimx), and as discussed above, we assume the same distribution with the same
covariances for the latent variables y as for the inputs x, equation 2.5:

p(y) = N (y,y0,Γ), (2.6)

where like for the input x0, we here also assume homogeneity of y0 with the same average
firing activity as in the input. Note that for Γ = I the prior of this model is identical to
the priors of both pPCA and FA.

To complete the generative model, we need to define a generative distribution, equa-
tion 2.1. In this chapter, we focus on the simple and common approach (see e.g. Olshausen
and Field, 1996; Bell and Sejnowski, 1997) that uses a linear generative model for the
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magnitudes of upstream units:

x = Gy, (2.7)

where G = (gio) is a matrix3 containing the generative weights of the model. Hence, given
the y activities, the input is determined by equation 2.7 and we have a deterministic
generative model. The corresponding generative distribution is given by:

p(x|y;G) = δ(x−Gy). (2.8)

In the following, we will identify the generative matrix G with the parameters G, as the
matrix G contains all parameters of the model.

Using equations 2.6 and 2.8 the integral appearing in the calculation of the marginal
distribution, equation 2.3, can be solved in closed form:

p(x|G) =
∫ ∞
−∞

δ(x−Gy)N (y,y0,Γ) dNy

=
1√

det 2πΓ
exp

(
−1

2

(
G̃x− y0

)T
Γ−1

(
G̃x− y0

))
, (2.9)

where G̃ is the inverse of G. Rearranging terms the marginal becomes:

p(x|G) =
1√

det 2πΓ
exp

(
−1

2
(x−Gy0)T G̃TΓ−1G̃ (x−Gy0)

)
=
√

detGGT N (x, Gy0, GΓGT ), (2.10)

and is therefore proportional to a Gaussian distribution.
To estimate the parameters of the generative model, we invoke the representational

learning idea, equation 2.4:

p(x) != p(x|G), (2.11)

N (x,x0,Γ) !=
√

detGGT N (x, Gy0, GΓGT ).

The probability distributions of equation 2.11 can only be equal if detGGT = 1, if the
means are equal and if the covariance matrices are equal. For non-vanishing input and
latent means x0 and y0, which is necessarily the case for the non-negative firing rates of
real neurons, it follows from Gy0

!= x0, and with the homogeneity assumptions for the
input and the output, that the generative matrix is normalized:∑

o

gio
!= 1, ∀i. (2.12)

The equality of the covariance matrices turns the determination of the parameters G into
an algebraic problem:

GΓGT != Γ, (2.13)

3This matrix is also called mixing matrix in independent component analysis.
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which means that the covariance matrix Γ is congruent to itself with the matrix G. In
the following, we shall assume, that G is non-negative, because for neuronal systems
long-range projections are commonly from pyramidal cells, and are hence excitatory4.
Further, non-negativity constraints have turned out as a powerful ingredient to the
learning of part-based representations (Lee and Seung, 1999).

For the special case Γ ∝ I it follows from equation 2.13 that G is orthogonal, that
means in particular: ∑

o

g2
io = 1, (2.14)

and hence g2
io ≤ 1. In the following we use the term stochastic matrix: a matrix is

stochastic, if it consists exclusively of real non-negative values and if its rows are normed
to 1. G therefore is an orthogonal stochastic matrix (see equation 2.12).

Theorem 1. An orthogonal stochastic matrix G needs to be a permutation matrix.

Proof. We proove the theorem by contradiction. Let us concentrate on an arbitrary row
i of G and assume that g2

io < 1, ∀o, inconsistent with the assumption of permutation
matrices. Due to non-negative gio, we have g2

io ≤ |gio|,∀o. As the rows are normalized,
equation 2.12, at least one entry o in row i must be positive and hence this implies
g2
io < |gio| for this particular o. From equations 2.12 and 2.14 follows the contradiction:

1 =
∑
o

g2
io <

∑
o

|gio| =
∑
o

gio = 1. (2.15)

Therefore, there is a k for which g2
ik = 1 and gio = 0,∀o 6= k. As we chose i to be an

arbitrary row, this must hold for all rows and since G is invertible, all rows of G have to
have a 1 at a different position, and hence G is a permutation matrix.

Theorem 2. For the general case of an arbitrary covariance matrix Γ, G is
orthogonal.

Proof. Let us first derive a characterization of all solutions of equation 2.13. The matrix
Γ is an invertible covariance matrix and hence symmetric and positive-definite. It can
therefore be eigen-decomposed:

Γ = QΛQT , (2.16)

where Λ = diag(λ1, ..., λN ) is a diagonal matrix with the real positive eigenvalues of Γ on
its diagonal and Q is an orthogonal matrix. We substitute Γ for its eigen-decomposition,
equation 2.16, in equation 2.13:

GQΛQTGT = QΛQT ,

QTGQΛQTGTQ = Λ, (2.17)

4Note that there are exceptions to the rule of excitatory projection neurons, e.g. the GABAergic
cerebellar Purkinje cell (Purves et al., 2004, p.143). However, this cell is in the cerebellum and the
current theory focuses on connections between retina, LGN and cortex.
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where for the second line we multiplied with QT from the left and Q from the right and
made use of the orthogonality of Q. As Γ is positive-definit, Λ contains only positive
eigenvalues. We therefore substitute Λ =

√
Λ
√

Λ and multiply with
√

Λ
−1

from the left
and right side:

√
Λ
−1
QTGTQ

√
Λ
√

ΛQTGQ
√

Λ
−1

= I,

HTH = I, (2.18)

where we defined H =
√

ΛQTGQ
√

Λ
−1

, which is orthogonal and hence has a full set of
eigenvalues, all of which have an absolute value of 1. As G is similar to H (with the
similarity transformation Q

√
Λ
−1

) it has the same eigenvalues.
Theorem 1 showed that in case of orthogonality, a stochastic G must be a permutation

matrix. A permutation matrix is orthogonal. Therefore, the statement that G is
orthogonal is equivalent to the statement of G being a permutation matrix. We will now
show that if G is not a permutation matrix, it violates the constraint that all eigenvalues
need to have an absolute value of 1 and hence G must be orthogonal.

A matrix G that differs from a permutation matrix must differ in at least one row-vector
v, with 0 ≤ vi < 1, ∀i. Further, the normalization property of G means that

∑
i vi = 1.

Let’s now construct the matrix M that does not contain any entries of 1 anymore, by
cutting out each column and row of G which contains a 1. This is illustrated in the
following example:

G =



v1

v2

0 · · · 1 · · · 0 0
· · ·

0 · · · 0 · · · 1 0
...
vk


=


V 1

1 x V 1
2 x V 1

3

0 1 0 0 0
V 2

1 x V 2
2 x V 2

3

0 0 0 1 0
V 3

1 x V 3
2 x V 3

3

 , (2.19)

with vi being an arbitrary vector with the same constraints as v and x denotes an
arbitrary value. For this exemplary case the matrix M is:

M =

 V 1
1 V 1

2 V 1
3

V 2
1 V 2

2 V 2
3

V 3
1 V 3

2 V 3
3

 . (2.20)

Note that for an eigenvector w = (w1,w2,w3) of M (with the size of the vectors wi

being equal to the size of the blocks V ) the vector (w1, 0,w2, 0,w3) is an eigenvector of
G with the same eigenvalue. Hence, if M violates the eigenvalue constraint, so does G.

If M is reducible, that is, if there exists a permutation matrix P such that M can be
transformed to an upper triangular form:

M̃ = PMP T =
(
M1 M2

0 M3

)
, (2.21)
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where M1, M2 and M3 are non-trivial (each is of size bigger than or equal to 1) square
matrices. Then we only need to investigate the matrix M1, as M̃ and M share their
eigenvalues (they are similar) and hence the eigenvector w = (w1, 0), where w1 is an
eigenvector of M1, is an eigenvector of M with the same eigenvalue. If the square matrix
M1 is a single value, (1, · · · , 0) is an eigenvector with eigenvalue M1 < 1! If M1 is not a
single value, but reducible, we recursively perform the reduction exemplified with M . If
M1 is not reducible and not a single value, we can employ the Perron-Frobenius theorem
for irreducible matrices:

1. the matrix M1 has a so called Perron-Frobenius eigenvalue r, which is positive and
real

2. the number h of eigenvalues with absolute value of r is called the period of M1.
These eigenvalues are given as λl = re

2πil
h (l = 0, · · · , h− 1) and are simple roots

of the characteristic polynomial of M1.

For the case we consider, r = 1 as all eigenvalues of G need to have an absolute value of
1. For the same reason M1 needs to have full periodicity, that is h = K with K being
the size of matrix M1. The characteristic polynomial of the matrix M1 therefore is:

λK = 1. (2.22)

The Cayley-Hamilton theorem states that every square matrix (over a commutative ring)
satisfies its own characteristic polynomial. Application of the theorem yields:

MK
1 = I. (2.23)

We now use that, by construction, the sum over the rows of M1 is smaller or equal to
1 and all entries are non-negative and strictly below one to show that the equality of
equation 2.23 is impossible. Consider first the quadratic case (we write M instead of M1

for simplicity of notation from now on):

M2
ij = (MM)ij =

∑
l

MilMlj <
∑
l

Mil ≤ 1. (2.24)

As M2
ij < 1, we can apply the same argument to get (MM2)ij < 1. We see via induction

that therefore MK = I is impossible.
Therefore, if G is not orthogonal, at least one eigenvalue has an absolute value different

from 1, in contradiction with the similarity of G to the orthogonal matrix H.

Theorem 3. If Γ is a non-degenerate matrix all solutions G are symmetric permutation
matrices.

Proof. Theorem 2 showed that G is orthogonal. Multiplying equation 2.13 with G from
the right hand side therefore yields:

GΓ = ΓG, (2.25)
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hence the commutator of G and Γ vanishes, [G,Γ] = 0. We substitute the eigendecompo-
sition for Γ:

GQΛQT = QΛQTG,

G̃Λ = ΛG̃, (2.26)

where we defined the matrix G̃ = QTGQ. For non-degenerate Γ, Λ is a diagonal matrix
with mutually different entries on its diagonal. Hence G̃ is an arbitrary diagonal matrix.
The orthogonality constraint of G̃, G̃G̃T = 1, implies for the square of its diagonal
elements to equal unity. G̃ is therefore a signature matrix, a diagonal matrix with ±1 on
its diagonal. It is easy to see that signature matrices are involutory matrices:

G̃G̃ = I, (2.27)

which means that G needs to be involutory as well, as

QTGQQTGQ = I ⇔ GG = I. (2.28)

An involutory orthogonal matrix is symmetric.

Taking together the results of theorem 1 and theorem 2, G in general must be a
permutation matrix. Substituting a permutation P for G in equation 2.13, we get

PΓP T != Γ, (2.29)

and see that all P which leave Γ invariant under exchange of rows and columns by
applying P , are possible solutions. Note that the topographic identity solution Γ = I is
always a solution and it is a unique solution, precisely if no other permutation fulfills the
congruency invariance of Γ.

The analytic result presented leaves open if the method works for differently sized input
and output fields. In the next subsection we therefore show with simulations that the
model indeed converges to topographic solutions in a probabilistic model, even without
the constraints on G from this section.

2.3 The Probabilistic Topographic Model

In this section we provide simulations of the proposed generative model for retinotopy
formation. To this end, the generative distribution needs to be probabilistic, as will be
seen in the following. We therefore generalize equation 2.7, so that the magnitudes of
upstream neurons are given by:

x = Gy + ξ, (2.30)
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where we assume ξi to be uncorrelated Gaussian noise with variance σ2, i.e. σi = σ, ∀i.
The corresponding generative distribution is a multivariate Gaussian:

p(x|y;G) = N (x, Gy, σ2I) (2.31)

=
1

(2πσ2)Nx/2
exp

(
−(x−Gy)T (x−Gy)

2σ2

)
. (2.32)

To complete the model, we take the same prior on the latent variables y as in the previous
section, equation 2.6. We also introduce an optional Laplacian prior on the parameters:

p(G) =
∏
io

α

2
exp (−α|gio|) , (2.33)

which is shown in the results section 2.3.1 to have a similar effect as constraining the
weight matrix to be non-negative, like in the previous section. This prior forces the weights
to be sparse, similar to forcing sparse activities in cortex (Olshausen and Field, 1996)5.
In qualitative accordance with the suggested prior p(G), the probability distribution of
synaptic weights in visual cortex has been shown to be heavy-tailed (Song et al., 2005).

For the simulations, the representational learning idea (equation 2.4) has to be for-
mulated to work online, i.e. the parameters G of the model have to be modified at each
presentation of an input x independently, to finally converge to a solution of equation 2.4.
We derive an online learning rule by minimizing the Kullback-Leibler divergence, which
measures the difference of two probability distributions:

DKL(p(x), p(x;G)) =
∫
p(x) ln

p(x)
p(x;G)

dNx (2.34)

= −
∫
p(x) ln p(x;G) dNx+ const., (2.35)

where the second term is independent of the parameters and hence considered constant.
As inputs in an online simulation are sampled from the distribution p(x), we can neglect
the integral and directly maximize the log likelihood :

L = ln p(x;G) (2.36)

= ln
∫
p(x|y;G) p(y) p(G) dNy. (2.37)

In the following we want to identify the estimates of y with actual neural responses,
and therefore we assume that actual latent variables ŷ are at the maximum a posteriori
probability6. Hence we approximate the integral in equation 2.37 by evaluating it at its
maximum, which is a standard approach if the integral is intractable (e.g. Olshausen

5For an explanation see chapter 5.
6Alternative theories of neural coding could however be implemented. For example, particle filtering or

alike (Lee and Mumford, 2003).

27



and Field, 1996; Karklin and Lewicki, 2009). The maximum a posteriori estimation
ŷ = argmaxyL̃ = argmaxy ln p(x|y;G) p(y) p(G) can be written in closed form:

∇yL̃ =
GTx−GTGy

σ2
+ Γ−1 (y0 − y) != 0, (2.38)

ŷ =
[
GTG+ σ2Γ−1

]−1 (
GTx+ σ2Γ−1y0

)
. (2.39)

Note that this estimation is only influenced by Γ for non-vanishing noise σ 6= 0.
For each presentation of an input, the generative weights are then adapted by moving

them along the gradient of the log likelihood at the estimate ŷ:

G(t+ 1) = G(t) + η
dL̃
dG

(2.40)

dL̃
dG

= σ−2 (x−Gŷ) ŷT − α sgn (G) , (2.41)

where sgn(X) is the signum function and returns a matrix with the sign of its elements.
η is a learning rate and ασ2 parameterizes the relative strength of the generative power
of the model (equation 2.31) and the sparseness of the generative weights (equation 2.33).
Interestingly, for α = 0, the learning rule in equation 2.41 is equivalent to the Oja learning
rule (Oja, 1989), which is known to lead to weights that span the subspace (in case of
lower output than input dimensionality) that the weights with highest variance in PCA
span7. Note that the topography prior on the latent variables y (equation 2.6), which
correlates neighboring latent variables as given by the hyperparameter Γ, does not enter
the gradient in equation 2.41 (the first term results from the generative distribution,
equation 2.31, and the second from the Laplacian prior on the parameters, equation 2.33).
However, we see from equation 2.39 that the hyperparameter Γ enters proportionally
to the variance of the probabilistic generative model. A deterministic model, like the
one from the previous section, corresponds to vanishing variance, and hence vanishing
influence of the topography prior, if the simulations are performed with the derived
equations. Hence, for the simulations, a non-vanishing variance is required for the model
to develop topography.

2.3.1 Simulations

For the simulations, we sampled an input xt from the multivariate Gaussian distribution,
equation 2.5, for each iteration t. The generative weights were initialized to uniform
random values in [0, 0.5]. Maximum a posteriori estimates for yt were then calculated
for each input using equation 2.39 and the weights subsequently updated according to
equation 2.41.

Parameters. For all simulations shown, we used an input noise of σ = 1, a constant
learning rate η = 0.02 and an input field of 20 units, while the size of the output field

7In contrast to the Oja network, G in our system is a generative weight matrix and not a feed-forward
linear transformation.

28



0 5 10 15

0

5

10

15

(a)

0 5 10 15

0

5

10

15

(b)

0 2 4 6 8

0

5

10

15

(c)

Figure 2.2: Resulting mappings after t = 80000 iterations. The y-axis in each subfigure
indexes the input domain and the x-axis the output domain. Subfigure (a) shows the
result for equally sized input and output neuronal fields, mean-free Gaussians in the
input and the prior of the output (x0 = y0 = 0) and a non-negativity constraint on the
generative matrix. In subfigure (b) faster convergence is observed when not enforcing
non-negativity but weight sparseness α = 0.01. Subfigure (c) shows that the system
generalizes to differently sized input and output fields.

was varied. The hyperparameter matrix Γ was set to:

Γi,j = exp(−γ|i− j|), (2.42)

to qualitatively fit the shape of the measured correlations in Figure 2.1. The precise
shape turns out to be not important, as long as a monotonic decrease is present. For
example, simulations with a Gaussian in equation 2.42 yielded similar results. The lateral
extend of the correlations was set to γ =

√
5/N, with N being the size of the input or

output field. Note that for bigger γ values (corresponding to a smaller range of the lateral
correlations) the system is not guaranteed to yield a consistent topographic mapping,
i.e. the weight matrix might converge to local minima with only piecewise topographic
solutions. Smaller γ values, on the other hand, yield consistent topographic mappings,
but the system’s convergence to the final diagonal is slower. Results on varying y0, α
and restricting the generative weights to be positive are described in the next paragraph.

Results. Figure 2.2 shows the resulting generative weight matrix at t = 80000 iterations.
For vanishing mean (x0 = y0 = 0) of the Gaussians and clamping all weights to non-
negative values after each learning step, the weight matrix is topographic, see Figure 2.2a,
yet not fully converged to a one-to-one mapping. Setting the means x0 and y0 to
positive values significantly speeds up convergence, as then the linear superposition in
equation 2.30 is (mostly) additive and no negative effects can help in the reconstruction
of the inputs. A similar faster convergence can be seen in Figure 2.2b, where we did not
restrict the weights to be non-negative, but alternatively set the sparseness constraint
on the weights to α = 0.01. Without a sparseness constraint, the weights converge
to arbitrary orthogonal vectors spanning the PCA subspace. The most sparse vectors
spanning this subspace consist of only one non-zero entry, thus constraining the estimation
enormously.

Comparing Figure 2.2a and 2.2b, we see that two different solutions are possible. As
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mentioned above (equation 2.29), multiple solutions are related to permutation invariances
of Γ and in this case reflect the inversion symmetry Γi,j = Γ−i,−j = ΓN−i+1,N−j+1 (see
equation 2.42; N is the size of the covariance matrix).

Finally, Figure 2.2c shows the result for a smaller output size, No = 10, relative to
the input, Ni. The simulation shown used positive means and non-negative weights,
but sparseness constraints yield similar results. This demonstrates that the system can
handle different scales, which is of particular importance in chapter 3.

2.4 Discussion

In this chapter we derived a model for the formation of topographic mappings by employing
probabilistic methods. Assuming all probability distributions to be Gaussians, the model
can be solved analytically. To our knowledge, this is the first model that offers direct
analytical insight in the solution of a topographic model. However, Häussler (Häussler and
von der Malsburg, 1983) offered a detailed mathematical analysis of retinotopy formation
for periodic boundary conditions. In contrast, the presented account does not need this
biologically unrealistic assumption and is mathematically simpler and more compact.
Further, it establishes a link to the necessary requirements (positive weight matrix or
sparse weight matrix) and to permutation invariances in the covariance structure of the
input and the output fields.

The performed simulations revealed that long-ranging lateral correlations need to be
imposed to both the input and the output neuronal fields for a consistent topographic
mapping to emerge. This finding is consistent with the Häussler theory, see chapter 3, and
seems therefore to be necessary for activity-based topographic mappings. However, long-
range lateral connections are expensive. Nature therefore saves resources by preorganizing
a rough topographic map using chemical gradients (Sperry, 1963; Huberman et al., 2008)
and only in a later stage refines these mappings with activity-based mechanisms similar
to the proposed method. An alternative approach to long-range lateral correlations has
been suggested in (Zhu, 2008), where a fine-tuning of unspecific synaptic growth has
been used to organize consistent mappings. However, compared to the biological solution,
still more resources are needed, as a full all-to-all connectivity needs to be established
initially, while in biology single synapses have been shown to find their targets (Cang
et al., 2008) and even get sorted during migration (Imai et al., 2009).

The current model was motivated from both information theoretical ideas (building
an efficient code of the input data) and neurophysiological evidence, for example the
lateral correlations in the output. From the purely information theoretic perspective it
remains elusive why the model should build a topographic code. A potential advantage
might be redundant coding of the inputs to compensate for the high noise in the firing of
cortical neurons (London et al., 2010). Indeed, a reduction of information content due to
second-order correlations has been observed in the retina (Puchalla et al., 2005), primary
visual cortex (Reich et al., 2001; Gawne et al., 1996) and IT (Gawne and Richmond,
1993). In chapter 5 we show that higher order statistical relationships can be used to
build a topographic code and reduce redundancy simultaneously.
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3 Self-Organization of Topographic Bilinear
Networks for Invariant Recognition

In this chapter, we present a model for the emergence of ordered fiber projections that serve
as a basis for invariant recognition. After invariance transformations are self-organized,
so-called control units competitively activate fiber projections for different transformation
parameters. The model presented in this chapter builds upon an abstraction of the
activity-based mechanism for the development of retinotopy, as described in chapter 2.
In contrast to organizing a single identity mapping from input to output, activity regions
of varying position and size are employed to install different transformations. We provide
a detailed analysis for the case of 1D input and output fields for schematic input patterns
that shows how the model is able to develop specific mappings. We further discuss results
that show that the proposed learning scheme is stable for more complex, biologically
more realistic, input patterns and that the model generalizes to 2D neuronal fields. Some
parts of this chapter have been published in (Bergmann and von der Malsburg, 2011).

3.1 Introduction

We discussed in section 1.1 that a central problem for visual perception is the generation
of representations of environmental input patterns that are invariant to transformation
(e.g. translation and scale). These representations, which may reside in inferotemporal
cortex (Tanaka, 1996), enable the brain to recognize and examine objects in spite of
rapidly changing retinal images. A possible mechanism for the construction of invariant
representations is based on variable fiber projections (Hinton, 1981), called dynamic
links (von der Malsburg, 1981) or shifter circuits (Anderson and van Essen, 1987; Wolfrum
and von der Malsburg, 2007b). As described in section 1.1.2, the underlying idea of
these approaches is to normalize input patterns by applying a transformation to yield a
standardized representation: active fiber projections route the input information to their
corresponding invariant output position, while fiber projections that are inconsistent with
the current invariance transformation get switched off. Hence, the approach factorizes the
representation of input data into the invariant code representing the input independent
of the transformation and a code for representing which transformation was needed to
achieve this invariance (coded in the activity of the fibers themselves). Invariant object
recognition has been modeled on this basis (Olshausen et al., 1993; Lades et al., 1993;
Wiskott and von der Malsburg, 1996; Arathorn, 2002; Lücke et al., 2008; Wolfrum et al.,
2008). Dynamic links may be controlled by temporal correlations of neuronal activities
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in a rapid reversible version of Hebbian learning, and face recognition has been modeled
in this way (Wiskott and von der Malsburg, 1996). Unfortunately, this mode of control
is too slow to handle the required numbers of specific bindings in realistic time, taking
more than a hundred times longer than adult object recognition. However, the switching
of connections can be accelerated with the help of control units, dedicated units able to
modulate the links they contact. Control units are uncommon in that the signal flow on
their neurites is bidirectional, incoming during unit activation, outgoing during synaptic
control (Hinton, 1981): on the one hand, these units collect information on the similarity
of activity patterns at the pre- and postsynaptic side of the links under their control, and
on the other hand, they modulate the strength of these links and therefore implement
transformations. Consequently we call the set of their neurites receptive-and-projective
fields (RPFs). Control units could be a special type of cells which learn to contact
with their processes synapses that are experiencing strong pre- and postsynaptic signal
correlations. This is akin to Hebbian learning, with the difference that not the synapse is
strengthened but the modulatory contact of the control unit. It is not clear which cortical
cell type or types are to be identified with control units (see, however, the hypothesis
that astrocytes play this role, Möller et al., 2007). On the other hand, the control
unit hypothesis could be interpreted as being a mathematical abstraction of nonlinear
neuronal network effects (see section 1.1.3), that in detail would inevitably be more
complicated. Although there are plenty of theoretical and experimental investigations of
possible multiplicatory neuronal interactions (see the discussion in section 1.1.3), it is up
to future research how the bidirectional multiplications required for normalization-based
approaches can be implemented in detail.

In many dynamic link models, like dynamic link matching (Lades et al., 1993; Wiskott
and von der Malsburg, 1996), the development of the strength of each link is independent.
This needs a huge number of control units, causes a big search space and leads to the
inability of the system to make use of the statistics of transformations it is confronted
with. These issues can be tackled by letting each control unit modulate several links, see
Figure 3.1. As proposed in (Olshausen et al., 1993; Zhu and von der Malsburg, 2004),
the RPFs of control units should be intermediate between controlling single links, as
in (Lücke et al., 2008; Wolfrum et al., 2008), and the total set of connections involved in a
transformation from the input to the whole invariant output window. The latter, though
most efficient (in that a single active control unit could project a whole figure into an
invariant output window in inferotemporal cortex) is unrealistic for several reasons: First,
due to the limited spatial range of neurites. Second, because a whole projection has to
traverse several cortical areas (e.g. V1 - V2 - V4 - IT), as modeled in (Anderson and
van Essen, 1987; Wolfrum and von der Malsburg, 2007b). And finally, since the number
of required control units would be too large to cover the space of all possible projection
patterns. Nevertheless, for the sake of simplicity, the concrete model of this chapter
lets each global projection pattern be controlled by a single control unit. However, if
we considered the output field of our model as being only a patch of the whole output
window, the RPFs of the model would indeed be of intermediate size.

Mathematically, we implement the control unit idea by employing bilinear mod-
els (Tenenbaum and Freeman, 2000; Grimes and Rao, 2005; Olshausen et al., 2007;
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Figure 3.1: Two different connectivity patterns for control units. Left: A single control
unit controls a single link, and hence maps a single input point to a single output point.
Right: Control units that control many links allow for a whole mapping from a set of
input points to a set of output points and hence implement a transformation from the
input field to the output field. The effective search space to find correspondences of the
input and the output can therefore be considerably reduced and the transformations can
be adapted to the statistics of the inputs.

Berkes et al., 2009; Memisevic and Hinton, 2010; Bergmann and von der Malsburg, 2010),
for which output activities are proportional to the product of input and control unit
activity (see section 1.1.3). In comparison with the general bilinear responses as given in
equation 1.2, where the output activity is given by a bilinear sum of input neurons, we in
the following assume that multiplicative effect is restricted to the interaction of control
units with “feature units”, i.e. no multiplicative effects within these populations are
assumed. If control units responsible for alternate transformations compete in a winner-
take-all fashion, the stage is set for very rapid transformation detection and subsequent
transformation-specific signal routing. This leads to the compensation of variations of
input patterns and generates an invariant representation that can be exploited for object
recognition (Olshausen et al., 1993; Arathorn, 2002; Lücke et al., 2008; Wolfrum et al.,
2008).

Note that the invariance problem (for example in vision) is a phylogenetically very old
problem. Even the very first animals with a visual receptor field have had an evolutionary
advantage in being able to recognize invariantly, for example in recognizing a predator
or food. In particular, recognizing a predator independent of its position in the visual
field and appropriately activating corresponding motor patterns significantly increased
probability of progeny. If we take into account that animals might also be confronted
with predators in early postnatal life, we conclude that it would be advantageous to
have the invariance problem solved already before birth. The age of the problem and
the evolutionary pressure involved as well as the conservatism of evolutionary designs
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suggests a common prenatal solution in many species.
The result of this prenatal process is best observed in precocial animals, i.e. animals

that “are (relatively) mobile at the moment of birth or hatching” (Starck and Ricklefs,
1998). For moving, a reliable (visual) sensory system is extremely beneficial. Taking
into account the high dimensionality (approximately 108 rod cells in the human retina)
of the highly nonlinear sensory inputs, and given the very short time until recognition
functions, postnatal learning of the real-world transformations is unlikely in these animals.
Therefore, the sensory system must already be structured to be able to solve the invariance
problem. For altricial animals the necessity of a prenatal invariance network is not so
obvious, as they in principle have more time to learn the statistics of their environments.
Nevertheless, it is known for human newborns to track schematic human faces (Goren
et al., 1975; Morton and Johnson, 1991) as well as veridical faces (Cassia et al., 2004),
which implies at least a partial solution of the invariance problem at birth1. It has been
hypothesized that the neonate face likeness results from prenatal PGO waves (Bednar
and Miikkulainen, 2004). After eye-opening and under the influence of visual input,
further learning can then refine mappings and can deform them appropriately to take
into account varying magnification factors due to retinal inhomogeneities (fovea, visual
streak etc.).

In the following we are concerned with the problem of the ontogenetic development
of appropriate connectivity patterns for control units which correspond to meaningful
real-world transformations (e.g. translations), which hence can be used postnatally to
generate invariant representations for recognition. No developmental mechanism for the
organization of the transformations has been proposed so far. To compensate for object
transformations in a recognition system (see e.g. Arathorn, 2002; Wolfrum et al., 2008),
the transformations need to be mutually consistent in the output representations they
produce. Take for example the special case of translations, where this means that a
pattern at one position on the retina needs to yield an identical output as the same
pattern at a different position. This implies that the RPFs of the two control units which
implement the two transformations need to have the same connectivity, just translated. In
particular, the ordering of the connections needs to be identical. We solve this consistency
problem by demanding the same ordering in the output representation as in the input
representation, thus we demand topography to be preserved. Note that this assumption
is well in line with neuroscientific evidence, where topography has been found in most
brain areas and most species.

In a nutshell, our model is based on the idea that synaptic plasticity, driven by temporal
signal correlations, generates a tendency towards neighborhood-preserving projection
patterns, see chapter 2. In contrast to the process of the establishment of retinotopy,
which leads to a single mapping, we assume that under the influence of slow activity
waves a whole set of different topographic projection patterns are gradually installed.
Each mapping corresponds to a different transformation parameter, induced by the
position and size of an activity wave. The waves necessary for our model might be

1Note that newborn vision is two orders of magnitude less accurate than adult vision (Hendrickson,
1994), simplifying the finding of correspondence with a face scheme.
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projected retinal waves (Meister et al., 1991; Warland et al., 2006; Huberman et al., 2008)
and/or spontaneous cortical waves (Chiu and Weliky, 2001). Eventually, each control
unit has a receptive-and-projective field (RPF) in the form of a topographic mapping.
We propose a related model for the ontogenesis of multiple topographic mappings for the
simpler case of one dimensional input and output neuronal fields with periodic boundary
conditions and restricted to translations, but potentially over several layers, in chapter 4
(see also (Bergmann and von der Malsburg, 2008; Zhu et al., 2010)).

What transformations are most likely to be already implemented at eye-opening? At
least some of the real-world transformations are likely to be rather complicated. It is
therefore unlikely that the whole set of transformations which the organism is confronted
with postnatally can be instantiated prenatally. Yet, under the premise of topographic
representations, all transformations should be more or less distorted mappings from the
input to the output. A good approximation to all of them are affine transformations
(i.e. the set of first order Taylor expansions of all possible topographic mappings).
Hence, a system incorporating translations, scales and rotations is able to solve all
mapping problems at least approximately. Note that newborn acuity of vision is two
orders of magnitude worse than in adults (Hendrickson, 1994) and therefore this initial
approximation may not be a big drawback, if mappings get refined later. We show in
this chapter, that it is the set of affine transformations that a prenatally plausible model
can self-organize.

The mechanism proposed in this chapter is an extension of a model for the process
of topographic self-organization (Häussler and von der Malsburg, 1983), described in
section 3.2, applied to a bilinear model of neuronal information processing (Tenenbaum
and Freeman, 2000; Grimes and Rao, 2005; Olshausen et al., 2007), and is described
in section 3.3. The results of our model in chapter 3.4 show that visual stimuli are not
necessary to organize a network with real-world invariance transformations. Indeed they
might even make it more difficult, as it is non-trivial to disentangle pattern information
and transformation information contained in visual stimuli.

3.2 The Häussler System

Instead of explicitly modeling the emergence of topographic maps by the model described
in chapter 2, we here describe an abstract formulation, that is both simpler to understand
and faster to simulate, as activity variables have been removed by adiabatic elimina-
tion (von der Malsburg, 1995) and therefore the dynamics is autonomously formulated in
the weight variables.

On an abstract level all self-organizing map-formation mechanisms (for a review
see Swindale, 1996; Goodhill, 2007) share two essential ingredients (see Figure 3.2):
cooperation of neighboring connections and divergent and convergent competition.
The first biases for a topographic structure, because a strong connection supports the
growth of a neighboring connection with a close input coordinate and a close output
coordinate. The second ensures convergence to a one-to-one mapping: at an output
neuron o all incoming connections compete, and similarly, at an input neuron i all
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Figure 3.2: Interactions leading to the self-organization of topographic mappings. At
an output neuron o all incoming connections compete, as depicted by the minus sign.
Similarly, at an input neuron i all outgoing connections compete. On the other hand,
there is cooperation (denoted by the plus sign) between two connections that run from
neighboring input units (i′ and i′′) to neighboring output units (o′ and o′′). The strength
of this cooperation falls off with the distance of neurons within the two fields.

outgoing connections compete. In the following, we formalize map formation in terms
of an abstract model that has been proposed by (Häussler and von der Malsburg, 1983)
and is termed the Häussler system in the following. It has the advantage that it is
simple and analyzable, can be simulated efficiently, and is compatible with a full range
of models (e.g. Swindale, 1996; Goodhill, 2007; Hyvärinen et al., 2001). All detailed
models for the topography mechanism, see for example the model of chapter 2, involve
statistical dependencies in neural activity patterns to encode neighborhood relationships
in the connected neural fields and to drive synaptic plasticity.

The mapping from the input to the output area is represented by a set of links (o, i),
with o and i representing output and input coordinates, respectively. The weight value woi
of link (o, i) indicates the strength with which output unit o and input unit i are connected.
In the Häussler system, weight values are positive and a value of zero represents the
absence of a connection. The set of all links forms a mapping W = (woi).

The Häussler system, which is formulated as a set of differential equations, was inspired
by an equation proposed by (Eigen, 1971) for the evolution of species in theoretical
biology:

ẇoi = α+ woiFoi(W )− woiBoi(α+WF (W )), (3.1)

where α is a non-negative unspecific growth term. Qualitatively, this equation leads to a
strong competition (in case of α = 0 a hard winner-take-all competition) of weights that
compete in the B-term. Foi(W ) mediates weight cooperation of neighboring weights.
The explicit form of the cooperation coefficient Foi is derived in (von der Malsburg, 1995)
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using Hebbian learning and yields a strictly positive weighted sum of neighboring weights
with the coupling matrix C:

Foi(W ) =
∑
o′,i′

Coo′ii′wo′i′ . (3.2)

The coupling matrix Coo′ii′ is a monotonically falling function of both |o− o′| and |i− i′|
and describes the mutual cooperative support that link (o, i) receives from its neighbors
(o′, i′).

The competition term Boi contains as argument besides α the matrix WF (the
component-wise Hadamard product (WF (W ))oi = woiFoi(W )), and is the average of
growth rates of all competitors to woi:

Boi(M) =

(∑
o′

mo′i/No +
∑
i′

moi′/Ni

)
/2, (3.3)

where M = (moi) is a matrix. The two different sums in this term implement the divergent
and convergent competition, shown in Figure 3.2, that is necessary for map-formation.
Biophysically this term might be implemented by a normalization of weights on the
output side and a competition for growth factors mediated by the input side.

For the case of periodic boundary conditions, the system can be treated analyti-
cally (Häussler and von der Malsburg, 1983). It has been shown that starting from a
deviation of the homogeneous solution to the system, W = 1 (the matrix in which all
entries equal 1), the system (equation 3.1) converges to a diagonal matrix (in case of the
same size of the input and the output fields, Ni = No), hence a topographic one-to-one
mapping of the input to the output. Numerical simulations show that in the case of
non-periodic boundary conditions the system reliably converges to the identity mapping,
similar to the system proposed in chapter 2. Due to biological plausibility, we restrict our
studies in the current chapter to the investigation of systems with non-periodic boundary
conditions.

3.3 The Model

The model (see Figure 3.3) consists of two layers of neurons, called input field and
output field. There are short-range connections within the fields and excitatory all-to-all
connections between them. In addition, there is a set of control units that are able to
modulate the connections between the layers.

The purpose of the model is to demonstrate that different transformations can be
organized on the basis of spontaneous activity in the input field. Activity in the input
field is restricted to active regions, described in subsection 3.3.1, each anticipating the
later appearance of object images with different position and size. Using the learning
rule described in subsection 3.3.2, a single control unit active for a region slightly biases
its RPF to get restricted to that region and to form a topographic map from that region
to the whole output field. Subsection 3.3.3 describes the unsupervised winner-take-all
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Figure 3.3: Training of control units. Different regions are active at different times in
the input field (presumably primary visual cortex, left plane). Control units (full circles)
learn to be activated by, and to activate connections. After self-organization, a control
unit activates connections that form a topographic projection from an active region to
the output field, which thus forms an invariant window (in an upstream cortical area,
presumably IT), right plane.

(WTA) mechanism that was used to determine which control unit gets activated for a
given input region. The increased bias of a control unit for a region, introduced during
learning, increases its chances to win for that region on its next appearance. Iteration of
the process leads to the emergence of topographic maps specialized to input regions. In
a nutshell, restricted active regions of input activity yield the selection of a dedicated
control unit, which then refines its RPF to a transformation from this region to the output
region. Note that although not motivated probabilistically, the proposed method bears
some similarities to the Expectation-maximization (EM) algorithm: control unit activities
are unobserved latent variables and are set in the WTA mechanism, this corresponds to
the E-step. Their RPFs are then updated using these activities, corresponding to the
M-step. This process is iterated until convergence.

3.3.1 Input and Output Activities

Unit activities are denoted by xi (i ∈ {1, .., Ni}), yo (o ∈ {1, .., No}) or ck (k ∈ {1, ..,K})
referring to input field, output field or control units, respectively.

Inputs. In order for the model to work, there are some constraints on the input signal
statistics. The main goal of the model is to demonstrate that control units can develop
different transformations. In particular, for different translations and scales, this means
that the connectivity of control units needs to get specialized to different input regions.
We therefore assume the input signal to be constrained to regions of activity and to be
zero elsewhere. Note that this assumption is well in line with prenatally observed retinal
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waves (see section 1.3).
To motivate the topography-generating cooperation between connections described in

equation 3.2, activity-based Hebbian models invoke short-range correlations in the input
activities (von der Malsburg, 1973; Goodhill, 2007). We shall follow this approach and
demand the correlations to fall off monotonously with the relative distance of two cells.

We distinguish two possibilities to generate signals with the desired constraints: First,
the input signal could be generated by coupling independent spontaneous noise sources
restricted to the active region of shape I:

xi = Ii

Ni∑
j

CIijξj , (3.4)

where ξi is taken to be independent, identically distributed (i.i.d.) noise with mean value
〈ξi〉 = µ1 and second moment

〈
ξ2
i

〉
= µ2. Hence, 〈ξiξj〉 = µ2

1 + µdδij with µd = µ2 − µ2
1.

See section 3.3.4 for the dynamical diffusion model we used to derive the explicit form
of the coupling matrix CIij , which is strictly positive and monotonously decreasing with
|i− j|. Alternatively, neurons in the input could be allowed to produce noise if they are
in the area of the current active region and coupling of neighboring cells happens only
afterwards:

xi =
Ni∑
j

CIijξjIj , (3.5)

hence in this case activity in the input field is not constrained to the area I, due to lateral
correlations. In the rest of the chapter we focus on the latter possibility, equation 3.5,
because it is harder in the sense that the input region constraint is weakened by the lateral
correlations. However, we also performed simulations for the simpler case of equation 3.4
and found the results to be qualitatively similar.

Outputs. The output units receive input in the form of a bilinear term (Tenenbaum
and Freeman, 2000) (see equation 1.2):

ŷo =
K∑
k

Ni∑
i

wkoixick. (3.6)

According to this, the input ŷo to output unit o depends linearly on the input activities
xi if the control unit activities ck are constant, and vice versa. The coefficient wkoi is
the connection-strength of control unit k to the link from input unit i to output unit o.
Similar to the input field, the output field also needs to code neighborhood relationships
for a Hebbian-based mechanism to develop topographic mappings. Therefore we assume
that the final output activities result from the input ŷo by multiplication with a coupling
matrix COop:

yo =
No∑
p

COopŷo =
No∑
p

COop

K∑
k

Ni∑
i

wkpixick, (3.7)

where the explicit shape of the coupling matrix COop is given in section 3.3.4.
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3.3.2 Synaptic weight dynamics

We now concentrate on the development of the synaptic weights wkoi of the control
units, that is, of their RPFs. These are to be shaped by two tendencies. On the one
hand, they have to concentrate on one active input region. On the other hand, they
have to develop a topographic structure, connecting the input region to the output field
with one-to-one connections linking neighbors to neighbors. Note that the specific map
formation mechanism we chose here, the Häussler system described in section 3.2, is not
critical for the mechanism to work and could be substituted by other map formation
mechanisms. As for the Häussler system in section 3.2, the learning rule is formulated as
a simple third-order differential equation:

ẇkoi = α+ wkoi cov (yo, xi)− wkoiBoi(α+Wk cov (y ⊗ x)), (3.8)

Boi(M) =

(∑
o′

mo′i/No +
∑
i′

moi′/(ωNi)

)
/(1 + 1/ω), (3.9)

where [Wk cov (y ⊗ x)]oi = wkoi cov (yo, xi) and the standard definition of the covariance
cov (x, y) = 〈(x− 〈x〉) · (y − 〈y〉)〉 (the brackets 〈〉 denote expectation values). Weights
are modified by this equation only for a single control unit k, which is determined by a
winner-take-all mechanism from the current active input region, see section 3.3.3. We
therefore set ck = 1 for only one control unit and ck′ = 0 for all other units. Like in the
Häussler system, α is a non-negative unspecific growth term.

As for the Häussler system (section 3.2), the Hebbian-like covariance term cov (yo, xi)
mediates weight cooperation and by substituting equations 3.5 and 3.7 we see that it is
a weighted sum of connections with neighboring o and i:

Foi : = cov (yo, xi) ,

=
∑
p

∑
jlm

COopwkpjC
I
jlC

I
imIlIm

(
〈ξlξm〉 − µ2

1

)
= µd

∑
p

∑
jl

COopwkpjI
2
l C

I
jlC

I
il, (3.10)

or in matrix notation
F = cov (y ⊗ x) = µdC

OWkC̃C̃
T , (3.11)

where we defined
C̃ij := CIijIj . (3.12)

The form of the derived cooperation term, equation 3.11, therefore is a special case of the
cooperation term in the Häussler system, equation 3.2, because the weight interaction
is separable. In addition to the Häussler system, however, the current active region I
modulates this cooperation term so that only weights connected to an active input unit are
allowed to cooperate. This active region-driven modulation results in the specialization
of the mapping of control unit k to specialize to an input region.
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The competition term B essentially has the same form as for the original Häussler
system, with the extension of a parameter ω to rescale the influence of the input compe-
tition. The preferred resulting scale of a mapping is influenced by the relative strength
of the input and output sums in the competition term, equation 3.9. For ω = 1 the
preferred scale of the resulting mapping, like in the Häussler system (Häussler and von der
Malsburg, 1983), corresponds to the connection of the whole input field to the whole
output field. For ω < 1 the influence of the competition in the input gets boosted, so
that the preferred resulting mapping scale becomes the relation of size ωNi to the whole
output No. A value of ω < 1 proved necessary so that it roughly corresponds to the size
of the active region I and to counter-act the tendency of the final mappings to spread
to larger input regions than the actual active region, due to the spread-out effect in
equation 3.5 (see Figure 3.4). However, as will be seen in section 3.4, a single value of
ω is able to organize a whole range of differently scaled mappings. If not mentioned
otherwise, we set ω = 0.4 and Euler-iterate equation 3.8 with iteration constant ∆t = 0.1.

3.3.3 WTA Control Unit Selection

In the last sections we described the nature of the input signals we assume and the
learning rule for a control unit k. In order for different transformations to emerge, different
control units have to compete for the different active input regions and then specialize
their RPFs for a region. The current section describes the process of competition between
control units, which we implemented with a winner-take-all (WTA) mechanism.

Correspondence-finding networks for recognition need to evaluate the similarity of an
input pattern with a stored memory pattern (see e.g. Wolfrum et al., 2008), which we
denote zl in the following. In the bilinear framework we use, each control unit needs to
evaluate this match with respect to its RPF. We assume that during activation of an
active region I, the activity patterns xi and zl fluctuate randomly and independently.
The control units then low-pass filter this noise on their input side:

ĉk =
∑
li

wkli 〈xizl〉 . (3.13)

For the prenatal case we consider, we assume the memory patterns to be unstructured,
without loss of generality 〈zl〉 := 1. Then the control unit is only a function of the inputs
xi:

ĉk = µ1

∑
lij

wkliCijIj , (3.14)

where we have made use of equation 3.5 and of the property 〈ξi〉 = µ1.
The control unit activities are then determined by a winner-take-all mechanism (for a

neurally plausible WTA mechanism see e.g. Fukai and Tanaka, 1997; Lücke, 2004a):

ck =

{
1 : k = arg maxk′{ĉk′},
0 : otherwise.

(3.15)
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Accordingly, when a region I is active, the control unit is selected, whose RPF {wkoi}
has the greatest overlap with the current input activity distribution xi, as calculated in
equation 3.14, and all others are switched off.

The model described so far couples a WTA mechanism (equation 3.15) to learning
(equation 3.8). A unit winning for a given input therefore increases its probability to win
for the same input again in the future. Note that the introduced learning rule does not
include an explicit weight normalization (for example, the sum of the weights could have
been forced to equal unity, the so-called L1 normalization). Therefore, a unit’s increase
in winning probability for a given input does not necessarily decrease the probability for
all (or most) of the other inputs. On the contrary, for mutually overlapping input regions
(see e.g. Figure 3.4a) a unit winning for any such input region increases its winning
probability for all other overlapping input regions as well. As a result, only a small
subset of control units usually win and organize their RPFs, while the other units would
remain undifferentiated. We prevent this instability by introducing an additional gain
modulation, which was inspired by the concept of intrinsic plasticity (IP) (DeSieno, 1988;
Desai et al., 1999; Zhang and Linden, 2003; Triesch, 2005). The effect of this homeostatic
mechanism is to let control units fire with equal probability. To balance the winning
probabilities we introduce the gain modulating variable κk for each control unit, that is
down-regulated while a unit is active and is up-regulated otherwise:

κ̇k = η
(
pgoalk − ck(t)

)
, (3.16)

and replace the WTA mechanism (equation 3.15) by:

ck =

{
1 : k = arg maxk′{κk′ ĉk′},
0 : otherwise.

(3.17)

We set pgoalk = 1/K for all k, so that these parameters can be interpreted as probabilities,
and the κk will stabilize at values such that the 〈ck〉T = pgoalk (with an averaging period T
spanning many stimulations), that is, the control units all fire with the same probability.

How can the parameter η be chosen to get good performance? The rest of this section
gives a rough estimate, in a linear approximation. Note that the dynamics of equation 3.16
serves a double role: 1) it controls the winning probabilities in equation 3.17 and 2)
it estimates the winning probabilities from the current activities ck(t). The first point
suggests a dynamic that is as fast as possible, η →∞. But concerning the second point,
the stochasticity of random inputs and hence the random winning of units on a small
time scale, puts an upper bound on η, that we shall approximate in the following. The
expected gain-modulation of equation 3.16 becomes:

〈κ̇k〉 = η
(
pgoalk −

〈
pwink

〉)
. (3.18)

The question now becomes how accurate we can estimate
〈
pwink

〉
. Assuming that the real

approximate winning probability is equal to pgoalk = 1/K for all k (that is approximately
the case if the mechanism of this section works) and noticing that the inputs to the
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system are chosen randomly, we can model the probability of winning n times in an
interval T as a Poisson distribution:

pT (n) =
(T/K)n

n!
exp (−T/K) , (3.19)

hence the expected number of winnings in a time interval of size T is 〈n〉T = T/K. For
Poisson processes the associated variance is equal to the mean: σ2 =

〈
n2
〉
T
−〈n〉2T = T/K.

The relative error of our estimate of
〈
pwink

〉
therefore becomes:

√
σ2

〈n〉T
=

√
K

T

!= σ̂, (3.20)

which we want to be of a predetermined size σ̂. Thus, the time we have to integrate to
achieve this relative error is T = K/σ̂2. But how does this time relate to the parameter
η? From equation 3.17 we see that the winning probability rises with κk. The simplest
Ansatz for the winning probability therefore is < pwin >= bκ (where we dropped the
index k for convenience), with b being a constant. Inserting this in equation 3.18 we get

〈κ̇〉 = η
(
pgoalk − bκ

)
(3.21)

which has the solution

κ(t) =
pgoalk

b
+ e−ηbtκ(0). (3.22)

Thus for t → ∞ the gain-control κ → pgoalk /b and by our Ansatz
〈
pwin

〉
→ pgoal. The

second term in equation 3.22 shows that initial values decrease exponentially with e−ηbt,
indicating the timescale of integration. We arbitrarily choose a decay to 1/e to equal the
timescale for our desired relative error, e−ηbT = 1/e, hence:

η =
σ̂2

bK
(3.23)

Normalizing
∑

k κk =
∑

k

〈
pwink

〉
= 1 yields b = 1 and we have obtained a direct

relationship between the desired relative error of our estimate and η. Unless mentioned
explicitly we used σ̂ = 0.05 for all simulations.

3.3.4 Equilibrium Solution of the Neural Fields

Neighborhood relations in neural fields are encoded in terms of short-range signal corre-
lations. We here introduce a simple dynamic model of the activity x̃(i, t) for the input
layer, where i indicates the position in the input field and t the time. The dynamics of
the output layer is assumed to be of the same type. Consider the function

E =
∫
i
(x̃ (i, t)− x̃ (i+ ∆i, t))2 . (3.24)
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Minimizing this function means maximizing the similarity - and therefore the correlation
- of cells ∆i apart. Therefore the correlation imposing term in the differential equation
we seek is of the form

− ∂E

∂x̃(i, t)
= x̃(i−∆i, t)− 2x̃(i, t) + x̃(i+ ∆i, t). (3.25)

If we now perform the limit ∆i→ 0 this becomes the definition of the second derivative
in space, that is an activity diffusion term. A simple linear PDE that contains this
correlation imposing term is of the diffusion type:

∂x̃(i, t)
∂t

= −τ x̃(i, t) +D
∂2x̃(i, t)
∂i2

+ x̂(i, t). (3.26)

Here, τ > 0 denotes the time constant for activity decay, D > 0 is the analogon to a
diffusion constant and determines the spatial range of correlations, and x̂(i, t) is the input
at a given position i.

To solve equation 3.26 we first perform a spatial Fourier transform2:

∂x̃ft(ν, t)
∂t

= −τ x̃ft(ν, t)− 4π2Dν2x̃ft(ν, t) + x̂ft(ν, t), (3.27)

As the basis functions of the Fourier transforms are plane waves, which are the eigen-
functions of the Laplace operator, the set of ODEs is now decoupled and the solution
can be obtained by the method of variation of parameters as

x̃ft(ν, t) = e−(4π2Dν2+τ)(t−t0)

(
x̃ft(ν, t0) +

∫ t

t0

e(4π2Dν2+τ)(t′−t0)x̂ft(ν, t′)dt′
)
. (3.28)

Under the adiabatic assumption that x̂ft(ν, t) changes much more slowly compared to the
exponential decay, that is, we can find a t0 so that x̂ft(ν, t′) is approximately constant in
the integral and e−(4π2Dν2+τ)(t−t0) is close to zero, we get the approximate solution

x̃ft(ν, t) ≈ 1
4π2Dν2 + τ

x̂ft(ν, t). (3.29)

As the prefactor is a falling function of the wavenumber ν, this is a low-pass filtered
version of the input signal x̂ft(ν, t). Taking the inverse Fourier transform and making
use of the convolution theorem, this yields

x(i, t) ≈
(

1
2
√
τD

e−
√

τ
D
|i|
)
∗ x̂(i, t), (3.30)

where ∗ denotes a convolution. The parameter τ/D determines the size of the cooperative
weight interactions in equation 3.10. In our simulations we set τ/D = 30/N2, where N is
the number of units in the input or the output.
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(a) (b)

Figure 3.4: Left: Four active regions of different size, In, where n = 1, .., 4 specifies the
different regions used in an experiment with four control units. In each time step, one of
the In is selected at random. These regions are subjected to smoothing and noise (see
equation 3.5). Right: The resulting expected values 〈xi〉 for the four active regions In.
Through a WTA mechanism (equation 3.17) the active regions determine which control
unit is activated and permitted to learn.

3.4 Results

The system considered in this section consists of Ni = 60 input units, No = 20 output
units, K = 4 control units and simulations were run with parameters α = 0 and ω = 0.4.
Although we have run many simulations with different dimensions of the input and output
and larger numbers of possible active regions and control units, we limit ourselves to the
description of this system here for clarity. Figure 3.4a shows four active regions in the
input field. The active regions are binary Ini ∈ {0, 1} (n specifies the different regions)
and are subjected to smoothing by lateral signal exchange (see Figure 3.4b) and noise,
equation 3.5. Given that the signal correlations are important for the establishment of
topography, we included this smoothing for consistency although it does not serve any
function in the simulations (see section 3.3.1). We intentionally use active regions of
different size and with full overlap in order to show that the system is able to discriminate
these regions.

At each time step, a random region n is chosen and the winning control unit is
determined using equation 3.17. This winning unit is then permitted to iterate one
step of the RPF learning rule of equation 3.8 to update its weights. This repeated
selection of control units and subsequent weight modification leads to the reorganization
and refinement of the RPF mappings. Figure 3.5a shows the RPFs of the four control

2Note that for the Fourier transformation we use the definition ν = 1/λ that leads to no additional 2π
factors for the integrals.
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(a) (b)

Figure 3.5: Control unit RPFs (receptive-projective fields) are shown for a simulation
with four control units and Ni = 60, No = 20, α = 0 and ω = 0.4. Left panels: Learning
at an intermediate stage, t = 2000. Black denotes strong links, while white is weakest.
Right: The (nearly) converged weights are drawn (t = 80000 inputs).

units at an intermediate stage of learning (t = 2000 inputs), with the input field on the
bottom and the output field on the top. As described in section 3.3.2, the parameter
value ω = 0.4 (see equation 3.8) pushes RPFs towards smaller scale factors (the ratio
of input size to output size), which is necessary to counter-act the tendency of RPFs
to spread in the input field, which happens due to the neighborhood correlations, see
equation 3.5. The shade of a link renders the strength of the connection to and from
control units – black is strongest and white is weakest. RPF entries with less than 10%
of the maximum are visually clipped. From inspection of the RPFs it is hard to tell how
well they specialized to the inputs while it is easy to see that topography has already
emerged for units 1 and 2. Evidently, the symmetry of the initial RPFs was broken,
resulting in one of the two possible map orientations possible in the one-dimensional case,
the “ascending” and “descending” orientation. In our simulation, control units 1 and 2
preserve the orientation of the inputs. The RPF of control unit 3 and 4 still contain both
map orientations, although the links corresponding to the ascending orientation seem
more pronounced in unit 3. The final map orientation of an RPF is mainly determined
by initial random weight values, but may be influenced by the random selection of active
regions in the input as well.

In the final state, after application of t = 80000 inputs (when the mean relative weight
changes have fallen below 0.25), the RPFs have converged to high specificity for one
input pattern as well as to good topography, see Figure 3.5b. Comparing the final state
(Figure 3.5b) to the intermediate stage of learning (Figure 3.5a), we see that the map
orientations prominent in the intermediate stage were already stable and did not change
in the consecutive RPF refinement.

We have performed simulations with a range of different parameter values and the
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system proves robust against many changes. To consistently obtain topographic mappings,
a critical lower bound on the size of the lateral cooperation in the fields, D/τ ' N2/50 in
equation 3.30, is to be observed, however. For smaller values the emergent transformations
tend to be only piecewise topographic. If, like in Figure 3.4, the center points of active
regions fall on varying positions, a non-vanishing positive α allows for a reorganization and
a migration of the RPFs, as demonstrated in section 3.5 for the two-dimensional case. For
the relatively small simulation presented, however, α can be set to zero. Non-vanishing
α values also allow for significantly smaller cooperation in the fields, D/τ, while still
preserving final consistent topographic transformations (Zhu, 2008).

3.4.1 Quantitative Characterization of RPF Development

In order to be able to gain better insight into progress and parameter dependence of the
system we introduce three quantities:

Input Specificity ζ(t) is a measure to analyze the assignment of the input regions to
the control units. Let ν (k|n, t) be the conditional normalized winning frequency of control
unit k given region n. We estimate this quantity with the help of a leaky integrator
(with time constant 5 · 10−3) and the constraint

∑
k ν (k|n, t) = 1. We define the input

specificity of the system as

ζ(t) =
〈

max
k

ν (k|n, t)
〉
{n}

, (3.31)

which is the highest winning frequency for a given active region, averaged over all possible
active regions. Due to the normalization of ν, ζ ∈ [0, 1]. The maximum ζ = 1 is reached
when all active regions considered are assigned reliably to a specific control unit. Note
that due to the intrinsic plasticity modulation of the WTA mechanism (section 3.3.3) the
(unconditional) winning frequencies of all control units are close to the equidistributed
goal probability 1/K, ensuring that different control units are assigned to different regions.

Scale factor S(k). A control unit k has the footprint

w̃ki =
∑
o

wkoi. (3.32)

After learning, all control units have a footprint in the form of a smoothed version of
one of the active input regions, similar to those in Figure 3.4 but with less smoothing.
For the calculation of the scale factor, we include all entries of the footprint, which are
bigger than 10% of the maximum entry and define the scale of a transformation S(k) as
the ratio of this footprint size and the (fixed) size of the output field.

Synaptic spread s(k). The goal of control unit self-organization is the establishment
of RPFs in the form of one-to-one mappings. Progress towards this goal can be assessed
with the help of the synaptic spread, which is a measure for the size of the input patch
to which an output unit is significantly connected. We define it as the synaptic standard
deviation s(k):

s(k) =
〈〈

wkoi (ri − r (k, o))2
〉1/2

{i}

〉
{o}

, (3.33)
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Figure 3.6: Left: Time course of the input specificity ζ(t) for 6 units, averaged over
50 trials. Higher η values lead to faster convergence, but at the cost of a smaller final
value. The value η = 4.2 · 10−4 follows from the theoretical analysis of section 3.3.3,
see equation 3.23. Right: The synaptic spread averaged over 50 trials is shown for 6
simulated units for the case of η = 4.2 · 10−4. Units have been ordered according to the
active regions they specialized in after each trial.

in which we make use of the center of mass of the receptive-projective field of output
unit o under control unit k:

r(k, o) =
∑
i

wkoiri, (3.34)

where ri denotes the position of unit i in the input field.
The exact time course of our system depends on the details of its formulation, which

cannot be fixed on the basis of current biological information. Moreover, topography
formation can be seen as a constraint optimization problem, and many dynamic formula-
tions have been shown to be consistent with a single optimization problem (Wiskott and
Sejnowski, 1998). We nevertheless find it useful to discuss the parameter dependence of
the developmental time course of input specificity and topography in our system.

Figure 3.6 (left) shows the average progress of input specificity, with error bars indicat-
ing standard deviations over 50 trials. Specificity converges within approximately 104

iterations to its maximal value. A higher rate coefficient η of the gain-control dynamics
(equation 3.16) leads to faster initial growth but reduces the final specificity. This has to
do with the necessity to obtain a sufficiently large sample of the randomly selected active
regions.

Figure 3.7 (left) shows a bar plot of the final scales S(k) (T = 60000 iterations) of a
system with 6 control units and active regions I ranging from a third of the output size to
twice the output size. The right side of the Figure shows their temporal development. For
both plots, units are sorted at the end of each trial by the active region they specialized
in. Initially, several of the scales decrease. The reason is strong effective cooperation of
weights in the center of the weight matrix of each control unit relative to the boundary,
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Figure 3.7: Left: Final transformation scale S for 6 units, ω = 7 and η = 4.2 · 10−4. Error
bars are standard deviations for 50 trials. Right: Time course of the scale S for the same
set of simulations.

where there are fewer cooperating partners. Comparing this Figure with Figure 3.6 (left
panel for η = 4.2 · 10−4) we see that with increasing specificity also the scale increases
again for these units. Finally, the scales converge to a stable value. Note that the final
scaling factors do not only depend on the active input regions, Figure 3.4a. For very
small regions, the scale is increased significantly due to activity leakage in the input (the
effective lateral interaction C in equation 3.5 that is illustrated in Figure 3.4b). This
is the main motivation for an ω value smaller than 1, which counteracts this effect (see
section 3.3.2). For large regions on the other hand, the effective lateral interaction C is
relatively small and therefore the effect is negligible.

In Figure 3.6 (right) the synaptic spread, averaged over 50 trials, is shown for all simu-
lated units, which are again sorted by the active regions they specialized in. Interestingly,
those units develop faster that specialize to larger active input regions and scaling factors
(compare Figure 3.7). The smallest unit stagnates for a long time, which is due to the
coexistence of the two map orders that are possible in 1D (compare Figure 3.5a).

3.4.2 Signal Processing Analysis of Final RPFs

In this section we look at the emergent mappings resulting from the self-organization
process described from the viewpoint of signal processing. In particular, we look at
potential aliasing effects, that could generate artifacts in the transformations and hence
would generate wrong wave numbers in the invariant output representations of the inputs.

We have seen that mappings can grow without unspecific weight growth, i.e. α = 0 in
equation 3.8. We here also analyze the effect of the parameter α on the converged RPFs
and show that a non-vanishing parameter α leads to a suppression of high wave numbers.
This low-pass behavior has the advantage of dampening aliasing effects.

The final synaptic spread of RPFs is controlled by the unspecific weight growth
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Figure 3.8: Left: The average RPF of all output units of control unit 2 from Figure 3.5
(standard deviations are evaluated over all output units and 20 trials), shifted to common
center-of-mass position r(k, o) for various values of α after t = 5 · 105 steps (∆t = 0.5).
NN denotes nearest neighbor. Right: Comparison of the optimal transfer function to
self-organized transfer functions.

parameter α, see equation 3.8. In Figure 3.8 we plot the RPF of one control unit,
averaged over all output units.

All RPFs have been translated (with sub-pixel accuracy) using linear interpolation,
so that their center of mass position r(k, o) (equation 3.34) is shifted to the origin3. As
can be seen, the synaptic spread grows with α. Furthermore, the weights have a strictly
monotonic decrease with distance to r(k, o). Note that the arborization of both dendrites
and axons seems to follow a simple rule for most neurons (Snider et al., 2010): they can be
characterized by a Gaussians with different standard deviations in the three dimensions
(or two for the map case). The Gaussian-like RPFs we get from our simulations therefore
are well in line with these recent experimental results. Hard winner-take-all competition
of the weights, on the other hand, would imply that only one weight in each column and
row of the weight matrix could survive. This would correspond to the survival of only
the nearest neighbor, which we have drawn for comparison. In practice however, several
weights per column and/or row can survive also for zero unspecific growth, α = 0, even
for very long iteration times4. Hence, the transformations show a low-pass behavior and
are able to suppress aliasing effects that would be produced in the nearest-neighbor case.

For the example case drawn, the output is half as big as the input, while at the same
time it is supposed to represent the same “image”. A perfect factor two zoom means
that all r(k, o) are at integer positions in the input and hence, due to the interpolation

3The precise type of interpolation did not significantly change the result of this section – we also tested
nearest neighbor, cubic spline and piecewise cubic Hermite interpolation.

4This can also be observed in Figure 3.6, right panel, where the synaptic spread does not converge to 0
but stabilizes at a small, but non-finite value.
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condition (i.e. an imagined reconstructed continuous image I(x) should be identical to Ii
at the sample point xi and therefore independent of all Ij , j 6= i for I(xi)) no interpolation
is necessary and the mapping can just copy every second pixel and neglect the others. The
emergent mappings are in general not this very special case, i.e. the r(k, o) usually are
not integer numbers. Therefore, the output values in this case depend on an interpolated
value of the input.

The (approximate) independence of the drawn weights from their actual output positions
(which can be seen from the small standard deviations in Figure 3.8), except a translation
in the input, allows for an interpretation as convolution kernels. We therefore can
compare the emerged kernels with the optimal image processing kernel for interpolation
(see e.g. (Jähne, 2005)). To do this we performed a discrete Fourier transform of the
kernels to obtain the corresponding transfer functions in Figure 3.8(right)5:

f(ν̂) =
∑
j

f(j)e−2πijν̂/N , ν̂ = 0..N − 1. (3.35)

Note that we had to use an oversampling factor β = 5 (i.e. we represented the kernels
on a grid with more sampling points than the input) of the input, to get information
about wave numbers higher than two times the Nyquist wavenumber6. This procedure
is justified, as by sub-pixel wise translations of the individual RPFs and consecutive
averaging over many trials, we get rid of the limitations of the original sampling of the
RPFs. We introduce the new variable ν = ν̂β/N to make the visualization independent of
the oversampling. Theoretically one can think of an optimal transformation constructed
in three steps: first, we reconstruct from the sampled image Ii a continuous image
I(x). Second, on this we can now apply an arbitrary transformation. Finally, we have
to re-sample with our output points. Using this construction and Shannon’s sampling
theorem we see that the optimal transfer function preserves wave numbers up to the
Nyquist wavenumber νNy = 1/2∆x and dampens all exceeding ones to 0. From the Figure
we see that the nearest neighbor transfer function shows a slight low-pass behavior and it
creates many artificial (aliasing) wave numbers. This transfer function can be analytically
calculated to be sinc(ν) = sin(2πaν)/πν (a = 0.5 here corresponds to half of the width
of the step function). Note that the same function (in position space) would be the
optimal kernel, as it corresponds to the inverse Fourier transform of the optimal transfer
function. Implementation in our model is impossible, as it involves negative values, which
would correspond to inhibitory weights. The resulting transfer function for α = 0 still
creates artificial wave numbers, although much less compared to the nearest neighbor
case. Finally, for α & 0.07 aliasing effects practically vanished but a strong low-pass
behavior persists.

3.4.3 Specificity Problem

In this section we shall analyze how the system is able to achieve high specificity values
(see equation 3.31 and Figure 3.6). In particular, we investigate how the model described

5We interpret negative wave numbers as e−2πi(j−1)(−ν̂)/N = e−2πi(j−1)(N−ν̂)/N .
6DFT only gives results up to two times the Nyquist wavenumber.
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in section 3.3 normalizes the RPF of the control units, i.e. how the weights of a control
unit are constrained (e.g. the sum of all entries could equal a constant – we will refer
to this normalization as L1 norm), because these constraints influence the input drive
to the control units (equation 3.14), given the active input region we use. We shall first
show that some nomalizations would not be able to achieve arbitrarily high specificity
and then present evidence that the system uses a superposition of these norms to solve
this problem, which we ascribe to the intermediate scope of the B-term in equation 3.8,
which is neither a global sum over all weights, nor only dependent on a single weight.
Note, that the system can achieve high specificity as well if the intrinsic plasticity values
κ are chosen appropriately – we neglect this possibility here, as we shall see that already
the weight learning itself solves the problem.

We start by discussing “locally saturated” weights. In this case the constraints are
only local for each entry of the weight matrix. The weight values are then assumed to
lie in an interval between zero and the maximal possible value, which is assumed to
be the same value for all weights. The learning rule we consider (equation 3.8) does
not have a fully global normalization and hence might suggest a local saturation – in
this case the RPF footprint (see equation 3.32) would be w̃k = γ1In for unit k being
specialized to input region n. We assume Ini ∈ {0, 1} and for the sake of simplicity of
the argument we ignore lateral interactions in the input field (Cij = δij in equation 3.14).
If this normalization would be the case, the output of a unit was just the sum of the
active input units with which its RPF footprint had overlap times the saturation value
γ1. Hence, a unit specialized for a certain input region In and a unit specialized to an
input region In′ , which has the same active units and additional active entries compared
to In, would result in the same input drive from input region In.

On the other hand, if the weights would be globally L1 normalized, i.e. w̃k = γ2In/||In||1,
the discussed problem would be avoided. But in this case a similar problem occurs:
consider a unit specialized for a big input region and a unit specialized for a smaller input
region fully included in the big input region. The drive to the two units from the big
input region then would be the same and they therefore could not be differentiated.

A possible solution to the discussed specificity problem is a superposition of local
saturation and L1 norm: w̃k = γ1In + γ2In/||In||1. For linearly increasing input regions
In the input drive w̃k · In′ for an input region then is γ1min(k, n′) + γ2min(k,n′)/||k||. In
Figure 3.9 (left panel) the response of units specialized to different sizes is shown for
an input region of size 20 for the three norms discussed. It can be seen that only
the superimposed normalization has a unique maximum and therefore allows for high
specificity. Figure 3.9 (right panel) shows the sum over the weights

∑
i w̃ki for 8 control

unit RPFs from the final state of 20 simulation trials plotted over their developed input
region size preference. For comparison also theoretical plots for L1 and local saturation
are plotted. The superposition norm has been fitted to the simulation results and turned
out to be a good match with γ1 = 0.47 and γ2 = 0.51.
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Figure 3.9: Left: The input drive to control units, which are specialized to different
region sizes (x-axis), to an active region I of size 20 for three different norms. For
better visibility, the plot of the superposition norm has an offset of +1. Right: The sum
of the RPFs of the control units plotted over their preferred input region size for the
three different norms. The superposition norm has been fitted to the simulation results:
γ1 = 0.47 and γ2 = 0.51.

3.4.4 Complex Inputs

In this section we shortly describe the stability of the proposed learning scheme to
more complex active input regions. The number of different active input regions so far
exactly matched the number of possible control units. This is an unrealistic assumption
that was only chosen for simplicity and analysis purposes. It is known that e.g. retinal
waves (Meister et al., 1991; Warland et al., 2006; Huberman et al., 2008) start at a random
position and then migrate on the retina. Therefore the number of active biological regions
can be assumed to outnumber by far the number of control units. We simulated this by
picking a random position (or size) at each iteration and found topographically consistent
mappings, varying in the desired parameters, to emerge. Hence, the competitive learning
scheme used is able to develop mappings for representative input regions and the WTA
mechanism categorizes non-representative input regions to belong to a certain class.
From this perspective the system can be seen as a generalization of vector quantization
or K-means clustering, but instead of selecting prototype vectors the system develops
prototype transformations.

Finally, biological retinal waves are not necessarily simply-connected. However, the
desired mappings are supposed to map a simply-connected area from the input to the
output. We therefore performed experiments with non-linear superpositions of two input
regions, each simply-connected (as in Figure 3.4) at random positions, with a cut-off
of the superposition at 1. Surprisingly, the resulting mappings were topographically
consistent and map a simply-connected area from the input to the output. A reason
is that the combination of cooperation of neighboring weights with the competition of
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distant weights (see equation 3.8) leads to a benefit of neighboring links in the input.

3.5 2D Results

Generalization to two-dimensional input and output domains is straightforward on the
basis of equation 3.8, if only indices are replaced by two-dimensional integer vectors
i = (i1, i2) and o = (o1, o2) for input and output units:

ẇkoi = α+ Foiwkoi − wkoiBoi(α+ FWk), (3.36)

Boi(X) =

(∑
o′

xo′i/No +
∑
i′

xoi′/(ωNi)

)
/(1 + 1/ω).

Again, Ni and No are the numbers of units in the input and output field. For the 2D
simulations we chose ω = 0.2.

To speed-up computing performance we chose separable input regions,

In = In1 ⊗ ITn2
, (3.37)

which for the present simulation are 6x6 regions of the type

=



0
0
1
1
1
1

⊗
[
1 1 1 1 0 0

]
=



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0

 . (3.38)

As in this example, input regions for our simulations were constructed by choosing two
1-vectors with either the first two or the last two entries set to zero7. This procedure
gives four different active input regions, each occupying a simply-connected active region
in the input. We also chose a separable form Cii′ = Ci1i′1Ci2i′2 for the interaction
kernel, which is used to convolve the active input regions in analogy to equation 3.5. In
particular we chose it to be of a Gaussian form. This leads to the smoothing matrix
C̃ii′ = e−(i1−i′1)2/2σ2

i In1i′1
e−(i2−i′2)2/2σ2

i In2i′2
(n = (n1, n2) specifies the input region) that

generalizes equation 3.12. In our simulations, the standard deviations of the Gaussian
were set to be a fourth of the length of the input or output field, σx = Nx/4 (x being
either i or o). Using the separability assumption, the calculation of the cooperation
tensor F (W ) factors to four generalized matrix multiplications (i.e. a sum along one
dimension at a time) instead of two summations along two dimensions for each new value
(the input and the output field kernels are considered independent and hence are trivially
separable).

7Note that the active regions in two dimensions do not need to be rectangles. For example, we also
tried separable Gaussians and got similar results.
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Figure 3.10: 2D Projections of 4x4 output units to the 6x6 input space for K = 4 control
units at an intermediate stage, at t = 700 iterations. The horizontal and vertical axes in
each plot denote the coordinates in the input layer. Control units 1 and 4 have specialized
their RPFs to the left and right parts of the input field, respectively. Unit 2 just started
winning and organizing its RPF while unit 3 is still in its initial state.
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Figure 3.10 shows the projection of the weight vectors for all units of a 4x4 output
field to the 6x6 input field for K = 4 control units at an intermediate stage at t = 700
iterations. Nodes of the visualized graphs are the centers of mass r(k, o) of the output
units, calculated as in equation 3.34, while the ellipses indicate 2D synaptic standard
deviations s(k, o), calculated as in equation 3.33 without averaging. Arrows connect
neighboring output units in increasing order (solid arrows indicates the first dimension
in the output and the dashed ones the second dimension). For the simulation shown
we used a value of ∆t = 0.6 and η = 2.5 · 10−3 to Euler-iterate equation 3.36. This
relatively high iteration constant ∆t, in comparison to the η of the IP mechanism (see
section 3.3.3), leads to fast emergence of topography before the winning probabilities
of the control units are balanced. Hence, it can be seen that control unit 1 specialized
to the two left active input regions and control unit 4 to the two right ones. Control
unit 2 just started winning and only deviates slightly from its initial configuration while
the weights of control unit 3 are still in their initial state. We chose a non-vanishing
unspecific growth parameter α = 0.05 to allow for more flexible reorganization of the
mappings. As this leads to bigger standard deviations in the weights (see Figure 3.8), we
set α = 0 after t = 8000 iterations. After t = 10000 iterations the mappings converged to
their final configuration, see Figure 3.11, in which each control unit has specialized to a
single input region In. In comparison to the intermediate stage at t = 700, the RPF of
control unit 1 had to migrate to the lower left corner due to competition with control
unit 2, which specialized for the upper left corner. Similarly, competition of control unit
4 with unit 3 resulted in the migration of its RPF to the lower right corner in the input.
Note that topography is stable during migration.

The 3D cross-product of two arrows in the plots can be used to determine if the
corresponding mappings preserve mirror-symmetry: if the cross product of a solid times
a dashed arrow points out of the sheet, the corresponding mapping preserves mirror-
symmetry, otherwise it violates it. All mappings except number 1 preserve this symmetry.
As in the one-dimensional case, the initial values of the weights mainly determine the
mirror-symmetry. Comparison of the converged weights with the intermediate stage of
learning shows that analogous to the observation in Figure 3.5 the initially established
mirror-symmetry stays stable during the refinement of the mappings.

3.6 Probability-based Scale Organization

In the presented simulations, the organization of transformations with different scales
needed differently sized input regions, which seems to be consistent with in-vitro findings
of retinal waves in fetal macaques (Warland et al., 2006). However, in this section, we
demonstrate that differently sized active input regions are not a theoretical necessity
to organize transformations that differ in their scale parameters. Assume the active
input regions to be at random positions in the input and of approximately the same
size throughout the learning procedure. Transformations with big scale factors cover
a large area in the input and therefore should be responsible for many inputs, while
transformations with small scale factors should develop selectivity for only a small set of

56



1 2 3 4 5 6
1

2

3

4

5

6
Projection of Control Unit 1

x
Input

y In
pu

t

1 2 3 4 5 6
1

2

3

4

5

6
Projection of Control Unit 2

x
Input

y In
pu

t

1 2 3 4 5 6
1

2

3

4

5

6
Projection of Control Unit 3

x
Input

y In
pu

t

1 2 3 4 5 6
1

2

3

4

5

6
Projection of Control Unit 4

x
Input

y In
pu

t

Figure 3.11: 2D Projections of 4x4 output units to the 6x6 input space for K = 4 control
units. Shown are the weights in their (nearly) converged state after t = 10000 iterations.
The horizontal and vertical axes in each plot denote the coordinates in the input layer.
Compared to the intermediate stage of learning (Figure 3.10) the RPFs are more balanced
in size and input specificity. Note that although the RPFs changed between the two
Figures, their mirror-symmetries are conserved.
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Figure 3.12: Development of transformations varying in scale based on different a priori
goal probabilities pgoal of the control units. Left: The measured winning probabilities of
the 6 control units in the simulations reliable converge to their respective goal winning
probabilities (gray dashed lines). Right: Higher winning probabilities translate to bigger
scale factors of the transformations. The green dashed line shows the theoretically
calculated scales. Error bars are estimated over 50 trials.

active regions. Hence, control units implementing big scales should get activated more
often than controls for smaller scales. We implemented this idea by imposing a different
a priori winning probability for different control units, i.e. we set the values of pgoalk

to different values depending on k in equations 3.16 and 3.17. In addition, as different
transformations map from overlapping input areas, different control units need to win for
the same input region.

For the simulations, we used Gaussians with a standard deviation of 1/12Ni, with Ni=60
being the number of input units. The a priori goal probabilities of the K = 6 control units
were set linearly from pgoal1 = 0.33 to pgoal6 = 0.66, thus summing to Nwin = 3 winners for
each input region. The winners were selected by a k-WTA mechanism: the three units
with the biggest overlap with the current input region (see equation 3.14) were allowed
to organize their RPFs. All other parameters were as in the other 1D simulations.

Figure 3.12 (left panel), shows the development of a leaky integrator-based estimation
(with timescale 8 · 10−4) of the winning probabilities pwink for 50 different trials of the
simulation. The 6 gray dashed lines indicate the 6 goal win probabilities pgoalk . We can
see from the Figure that the control unit winning probabilities converge reliably to their
respective goal winning probabilities within approximately 3000− 6000 iterations. The
measured scale factors on the right panel of Figure 3.12 show that increased winning
probability indeed translates to bigger scale factors of the transformations. The green
dashed line shows the theoretical scale factors as calculated by the input area that is
expected to be covered by a transformation from its goal winning probability. The
measured transformations are bigger for mainly two reasons: first, as already discussed
in subsection 3.4.1, due to activity leakage in the input field and second, due to the finite
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size of the Gaussian input regions we used.

3.7 Discussion

The model we propose in the current chapter is based on a generalization of classic
retinotopy mechanisms (Willshaw and von der Malsburg, 1976; Häussler and von der
Malsburg, 1983). The essential difference is that shifter circuits in the form of a whole
set of topographic mappings are installed, each of which can be switched on and off
under the command of a control unit. We implemented this idea employing bilinear
networks (Tenenbaum and Freeman, 2000; Grimes and Rao, 2005; Olshausen et al.,
2007). Our simulations show that different types of transformation — translation, scaling,
rotation and reflection — can be reliably self-organized. Our main focus is on the
investigation of the one-dimensional case but we also demonstrate the extension to two
dimensions. After eye opening (corresponding to the state when the proposed mechanism
has converged) the network is immediately able to build invariant representations of
patterns, relying on the prenatally self-organized transformations. Further, it is potentially
able to separate contents and transformations of input patterns, hence both “what” and
“where” information are explicitly represented. The emergent network therefore facilitates
further development of invariant recognition and can, in its subsequent life, adapt to the
statistics of real-world transformations as well as build up a memory for content (e.g.
knowledge of faces and objects).

The necessary active input regions for our model could arise in random locations as
small and gradually growing and migrating activity regions. They may correspond to
the retinal waves as observed in prenatal mammals (Meister et al., 1991; Warland et al.,
2006; Huberman et al., 2008), projected up to visual cortex and/or they might emerge
spontaneously in cortex (Chiu and Weliky, 2001). In our model, these patterns, varying in
position and size, serve as teaching signals to control units and lead to transformations that
project topographically to an invariant window in an upstream cortical area. Interestingly,
although at first sight simply-connected regions of activity in the neural input field seem
crucial for our model, simulations on non-simply connected inputs indicate that this is
not necessary.

If indeed the active input regions necessary for the organization of alternate projection
patterns are generated spontaneously in retina or cortex, in a way simulating the postnatal
appearance of segmented figures separated from a background, the self-organization of
projection patterns can take place prenatally or before eye-opening. This is not only
biologically desirable but is even likely to alleviate the organization process decisively.
In line with the idea that retinal waves mimic the postnatal appearance of segmented
figures, is the observation that waves propagate more often along the nasal-temporal
than the dorsal-ventral axis of the retina Anishchenko and Feller (2009).

Our analysis of the temporal development of connectivity showed that control unit
specificity to input region location and size develops rather quickly, Figure 3.6 (left). It
reaches a maximum value that depends on the time constant of the homeostatic regulation
which evens out the firing probability of the control unit. If this time constant is made too
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short, the accidental over-representation or under-representation of some input regions
acts to lower the specificity that is finally reached. Note that high specificity values are
reached in spite of the absence of inhibitory weights of the control units (apart from
those that may be required to implement the WTA mechanism, equation 3.17), consistent
with the finding that GABA plays an excitatory role prenatally (Ben-Ari et al., 2007).
The refinement of topography, as measured by s(k, t) in Figure 3.6 (right), progresses
somewhat more slowly than unit specificity, although regions of small size may take
longer by more than an order of magnitude. Note that this relative order of specificity vs.
topography holds for the case of α = 0. For the more complex case of a non-vanishing α,
which allows for the migration of whole mappings, the learning rate can be increased.
In this case, it is possible for topography to develop before control unit specificity and
before subsequent re-organization/migration, as demonstrated by the 2D results.

We would like to draw attention to the effect of the unspecific weight growth parameter
α in equation 3.8 on the point spread (or sampling) function of the resulting mappings, see
Figure 3.8. With increasing α, the final sampling function shows more and more low-pass
filtering. Note that the optimal sampling function (the inverse Fourier transformation of
the step function, a sinc(x) function) would need the inclusion of inhibitory connections
between input and output.

3.8 Future Perspectives and Conclusion

There are several issues that will need further consideration. Receptive field size increases
within the cortical hierarchy and each level therefore can be expected to have a different
feature basis system to optimally represent the statistics of its inputs. For example, the
receptive fields of primary cortical neurons are specific for stimulus orientation and size.
When shifter circuits are to be used to normalize the image of a given object under
change not only in position but also size and orientation, then also feature types are to
be transformed (as modeled in (Sato et al., 2006) for the simplified assumption of higher
cortical areas sharing the same representation as V1) to establish correspondence to a
stored model. What has been treated here as a single link between the input and output
fields therefore could be interpreted as a whole trunk of connections between all feature
units in the image and model points connected by the link. In the functional adult state,
the system must be able to activate links that establish the correct correspondences not
only between points but also between feature units. Appropriate control structure for
the latter will have to be modeled in future work.

The correspondence mapping problem requires a control space of very high dimension-
ality. It is quantitatively unrealistic to assume the existence of a separate control unit
(as our model suggests) for each combination of retinal location, size and orientation.
An obvious solution would be to factorize this high-dimensional space, so that one set
of control units is responsible for position, another for scale, a third for orientation.
A given link would then be activated under the influence of several control units. To
cope with deformation, the control units should not encompass the whole projection
from an input segment to the output field but should, as proposed in (Olshausen et al.,
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1993) or (Zhu and von der Malsburg, 2004), control only the projections between smaller
patches in the input and output fields. Further, the number of parameters, which is cubic
for the three-way weights used, could be reduced significantly by factorizing them into
outer products (Memisevic and Hinton, 2010). This is not only a more efficient way of
representing the transformations, but might also speed up the prenatal learning process,
due to the smaller parameter space.

An interesting future extension of the system would include the additional organization
and incorporation of feature-preferences like prenatal orientation-specificity as has been
observed in V1 (Wiesel and Hubel, 1974; White et al., 2001). Emergence of orientation-
specificity has already been modeled by Linsker for linear networks (Linsker, 1986) and
more recently also exploiting waves (Grabska-Barwinska and von der Malsburg, 2008).
A first step in incorporating feature organization is done in chapter 5, yet we test this
model only on postnatal natural inputs.

Another simplifying assumption of our model is the assumption of direct links between
input field and output field, which would require an unrealistic number of fibers to converge
on a single target unit. As proposed under the names of dynamic connections (Feldman,
1982) or shifter circuits (Olshausen et al., 1993) this problem can be solved, in analogy to
telephone exchange systems, by making several consecutive line selections. This is also in
line with anatomical and physiological evidence of intermediate cortical areas between
V1 and IT. As shown in an optimization study (Wolfrum and von der Malsburg, 2007b),
quite modest and realistic numbers of intermediate layers and convergence/divergence
factors (and correspondingly modest numbers of control units) are sufficient to connect
a million points in V1 to an area in IT. We therefore investigate a model, which can
develop on a shifter circuit in the next chapter.
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4 Multi-layer Organization of Translations

This chapter shows that a bilinear model with local competition can account for the
emergence of translations. In contrast chapter 3, where translations, scalings and rotations
were organized, the model proposed in this chapter has no specific assumptions on its
input stimuli, except that neighboring cells are correlated (which retinal wave inputs are,
see Figure 2.1). Therefore, the model builds exclusively on self-organization and can be
analyzed formally by linear approximations (Zhu et al., 2010). Further, we show that
the model can be applied to shifter circuits (Anderson and van Essen, 1987; Wolfrum
and von der Malsburg, 2007b), a multi-layered routing structure that is necessary to save
resources (e.g. links), and that is still able to connect any point in the input to any point
in the output.

Parts of this work have been published in (Bergmann and von der Malsburg, 2008;
Zhu et al., 2010).

4.1 Model Description

As in chapter 3, the outputs of the system are given by a bilinear model, see equation 3.6,
with the 3-way connections wkoi, by which an active control unit k activates a topographic
mapping between two neuronal chains of units, which are indexed by o and i. The purpose
of the system in this chapter is to self-organize the control unit mappings wkoi to form
different translations for all k. In a postnatal stage, a control unit k can then be activated
to compensate for translations of input stimuli. We restrict the discussion of the proposed
system to the one dimensional case.

The system is a generalization of the original Häussler system, see section 3.2, which is
the special case for K = 1 control units:

ẇkoi = α+ wkoiFkoi(W )− wkoiBkoi(α+WF ), (4.1)

where we define (WF )koi = wkoiFkoi. The system incorporates the necessary interactions
for topography emergence: competition of incoming and outgoing links and neighborhood
cooperation. For more than one control unit, the fundamental ingredient to guarantee
different translations is competition of the emergent mappings. In contrast to the model
proposed in chapter 3, where the competition was implemented by a competition of whole
control units for input stimuli, we here propose that the competition is implemented at
the level of single connections: each control unit competes with all other units for the
control of each single link in a hard Winner-Take-All (hWTA) fashion, see Figure 4.1.
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Figure 4.1: Interaction of three different mappings: In addition to the original Häussler
interactions – competition of incoming and outgoing links and neighborhood cooperation
(denoted by a Gaussian in the Figure) – the model is extended with hWTA competition
of different control units over control for the same link. This leads to the emergence of
mutually non-overlapping translations in this link space, if the map orientations of all
control units are the same. To guarantee the same orientations, sequential organization,
control unit cooperation and shifter circuit constraints can be imposed.

In the following, as in the previous chapter, the term “map orientation” refers to the
two possible solutions of a translation in 1D, an ascending and a descending solution,
as discussed in section 2.3.1, see Figure 2.2. As different translations of the same map
orientation are topographic and mutually non-overlapping in link space (the outer product
of the input and output, as links connect all-to-all), they are solutions to the system.
The competitive B-term therefore gets extended to the k dimension:

Bkoi(M) =
1
3

 1
N

∑
o′

mko′i +
1
N

∑
i′

mkoi′ +
1

K − 1

∑
k′ 6=k

mk′oi

 , (4.2)

where the sum over the control units excludes self-competition to comply with the original
Häussler system for the case of K = 1, and where M = (mkoi) is a parameter to B.
The additional last competition term can be implemented locally, and therefore in a
biologically plausible way. For example, by competition of growing neurites of control
units for a neurotrophic factor released at a link.

Unfortunately, translations of different 1D map orientation are not necessarily mutually
non-overlapping in link space. In particular, the implementation of all possible translations
of each map orientation needs all possible input-output connections and therefore covers
the whole link space. Any translation of the respective mirror orientation therefore
competes at all its links. Hence, different map orientations interfere with the organization
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process. Therefore, the system has to organize all mappings with the same orientation.
A possible solution would be to impose initial conditions, which are (strongly) biased to
a single map orientation. As this, however, would itself be part of the solution to the
problem, we show several other solutions to deal with this problem.

Sequential organization. In a developing animal, it is very unlikely that all control
units develop at the same time. A single non-interacting control unit, however, is able
to break the orientation symmetry spontaneously (or depending on it’s random initial
conditions), see chapter 2. Suppose we add a single additional control unit: all mappings
of the opposite orientation to the first one lead to competition, while translations of the
same orientation are non-overlapping and therefore do not compete. The latter ones
therefore have a significant growth benefit. This leads to the sequential development of
translations of the same orientation as the initial one.

Link Cooperation. An alternative way to consistently break the orientation symmetry
is to let the control unit links cooperate with their neighbors. A control unit that already
developed a slight orientation preference therefore imposes this preference on its neighbors
as well. Further, as neighboring links are supported, the final translations can be expected
to be ordered topographically with respect to the index of the translation, i.e. neighboring
control units can be expected to implement similar translations. The weight cooperation
term Fkoi is derived from local bilinearly generalized Hebbian learning in section 4.1.1
and is of the form:

Fkoi(W ) =
∑
k′,o′,i′

Ckk′oo′ii′wk′o′i′ , (4.3)

where C is a cooperative coupling matrix. The derivation shows that the C matrix is
separable, Ckk′oo′ii′ = CKkk′Ĉ

O
oo′Ĉ

I
ii′ . For the simulations we constructed C as an outer

product of Gaussians.
Shifter Circuit Constraints. All-to-all connections between two sheets of neural

tissue are very expensive as they scale quadratically. For the number of neurons in visual
cortex, the number of connections therefore becomes prohibitive. A possible solution is
to introduce intermediate layers, which allow a significant reduction in the number of
links needed (Anderson and van Essen, 1987; Wolfrum and von der Malsburg, 2007b).
Figure 4.2 shows a simple one-dimensional example for the case of N = 9 input and
output units and l = 2 layers1, that has been organized using optimization principles
as suggested in (Wolfrum and von der Malsburg, 2007b). The number of links in these
networks reduces to lN

l+1
l , thus is quadratic for the one layer case but less for more

layers.
It has been shown that shifter circuits can be grown prenatally (Wolfrum and von der

Malsburg, 2007a) and we therefore can assume a corresponding network to be present
before we start the control unit organization for consistent topographic maps. The
orientation symmetry in these networks is already broken, constraining control unit
neurites to shifter circuit links therefore solves the problem of interfering orientations.

1For multi-layer architectures we refer to the number of “layers” to be the number of weight layers and
not the number of unit layers.
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Figure 4.2: A shifter circuit with N = 9 input and output units and l = 2 weight layers.
The shown shifter circuit has been optimized for minimal resources (links and units), as
described in (Wolfrum and von der Malsburg, 2007b).

4.1.1 Derivation of the Weight Cooperation from Local Hebbian Rules

In this section we show that the non-local coupling matrix Ckk′oo′ii′ of equation 4.3 can be
derived from local interactions. For this derivation, we assume three different populations
of neurons: input units, output units and control units. Input units and control units play
a similar role in that they multiplicatively feed the output units. We assume the input
drive to the output units, ŷ, to be given by a simple bilinear model (see section 1.1.3):

ŷo =
∑
k′

∑
i′

wk′oi′ck′xi′ , (4.4)

where yo, xi and ck denote the firing rates of output, input and control units at positions
o, i and k, respectively.

Taking lateral interactions in each layer into account, the equilibrium state of the
output activities as a function of the given input drives in each layer can generally
be approximated by a linear equation (see chapter 3.3.4 or von der Malsburg (1995);
Bergmann and von der Malsburg (2011) for a derivation):

xi =
∑
i′

Cii′ x̂i′ , (4.5)

We assume that the input layer as well as the control layer get i.i.d. (independent and
identically distributed) noise, with 〈ξiξj〉t = δij , as inputs. The activity of the units in
each layer is then fully determined by equations 4.4 and 4.5.

Given these assumptions we now derive the expected bilinear generalized Hebbian
plasticity term:

Fkoi = 〈ckyoxi〉t (4.6)

=
∑
k′o′i′

CKkk′Ĉ
O
oo′Ĉ

I
ii′wk′o′i′ ,
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where the second line results from substituting equations 4.4 and 4.5 and using the i.i.d.
property of the noise, where we defined:

ĈOoo′ =
∑
o′′

COoo′′C
O
o′o′′ (4.7)

ĈIii′ =
∑
i′′

CIii′′C
I
i′i′′ . (4.8)

4.2 Simulations

We here present simulations of systems with N = 9 input and output units under the
various modes for breaking the orientation symmetry, discussed in the model description
in section 4.1. The differential equations 4.1 are integrated by Euler’s method with a
stepsize of ∆t = 0.05. The 3-way weights wkoi are initialized to be close to the systems’s
homogeneous stationary state W0 = (1 − ε)1 + εΞ, where Ξ is a random matrix with
each entry is sampled uniformly from the interval [0, 1]. For all simulations ε = 0.1. The
unspecific weight growth rate is α = 0.1. The cooperation function C in equation 4.3
is set to a separable Gaussian with standard deviation σ = 1.125 for input and output
dimensions, while the standard deviation in the control unit dimension depends on
the experiment performed. The Gaussians are normalized to one for each dimension∑

x′ C
X
xx′ = 1,∀x, where x denotes the input i, the output o or the control unit dimension

k. If not mentioned otherwise, the simulations are performed using periodic (wrap-around)
boundary conditions.

The final, converged weight configurations are shown in Figure 4.3. For the sequential
organization process, a single control unit was organized first and every 10 timesteps
(or every 10/∆t iterations) a new unorganized control unit was added. The effective
lateral interaction for the control units was set to CKkk′ = δkk′ , i.e. there was no lateral
cooperation of control units. The final weight configurations in Figure 4.3a of the 9
organized units show that all units organized different translations of the same orientation.

In simultaneous organization mode, for subfigure 4.3b, the effective lateral interaction
of the control units was set to a Gaussian with standard deviation σ = 1.125 and all 9
control units were organized simultaneously. Similar to the sequential case, all control
units organized different translations of the same orientation. However, control units are
topographically organized (with periodic boundaries) with respect to the transformation
they implement, i.e. neighboring control units implement neighboring translations. For
example, control unit 7 implements the mirrored identity mapping, while control unit 6
implements a translation of one pixel to the right and control unit 8 corresponds to a
translation of one pixel to the left.

Combining cooperative coupling of control units with sequential organization allows
for the organization of translations with non-periodic boundary conditions. This is not
possible in simultaneous mode, as the identity and its mirror version have more support in
this case than other translations and therefore both tend to get organized. As the control
units compete in a hard WTA fashion for each link and the existence of the identity and

67



(a) Sequential (b) Cooperative Controls

(c) Non-periodic boundaries (d) 4 units

Figure 4.3: Converged weight configurations for N = 9 input and output units. The y-axis
in each plot shows the output while the x-axis the input dimension. In the sequential
organization mode in subfigre (a), all units organize different translations of the same
orientation, while subfigure (b) shows that cooperative coupling of control units yields
also a topography of neighboring control units, that is they implement close translations.
Subfigure (c) combines sequential organization with cooperative coupling and allows for
the organization of mappings with non-periodic boundary conditions. Finally, subfigure
d) shows that the number of control units can differ (here K = 4) from the number of
input and output units.
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Figure 4.4: Synaptic spread s(k) development for the different modes. Sequential
organization (“Sequential” and “Nonperiodic” in the figure) is in general slower than the
simultaneous organization (“Cooperation” and “K = 4”) of topographic maps.

its mirror version (or translated versions thereof) would share single links, this disrupts
the organization process. Figure 4.3c shows that in sequential mode the first control unit
becomes the identity (or its mirror version, depending on the initial conditions), because
it has the biggest support from neighboring links. The cooperative coupling of control
units then most strongly supports links on both sides of this diagonal for the subsequent
control unit. A symmetry breaking occurs and one side is chosen, here the lower diagonal.
For the third control unit the support from the second unit is bigger compared to the
first one, due to the monotonous decrease of Ck(k − k′). Therefore, the sum of the
first two cooperative terms is bigger below the already organized mappings compared to
the diagonal above the identity. Hence, the symmetry is already broken and the third
mapping evolves below the second one for the case shown. This process continues until
all translations are organized. Note that due to the nature of the dynamics, one link in
each column and row survives. Hence, the mappings become “pseudo-periodic”. Note
however, that the side, which is not determined by the cooperative coupling of other
previous control units, does not necessarily organize the same orientation and develops
wrong link connections. This is why the last (k = 9) control unit is not able to organize
a translation, due to the competitive influences from all other mappings that have wrong
links. The first 8 control units were very stable in organizing translations over many
trials.

Finally, Figure 4.3d shows that the number of control units does not need to be equal
to the number of units in the input and output layers for simultaneous organization. The
standard deviation of the Gaussian for cooperative coupling of control units was set to
σ = 0.5 and its normalization was set to

∑
k′ C

K
kk′ = 2,∀k.

We analyzed the development over time of the different modes of organizing translations
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by plotting the average synaptic spread s(k), a measure of how refined the mappings
are (see equation 3.33), of the control units. Figure 4.4 shows this development for the
four different simulations performed so far. In general it can be seen, that simultaneous
organization is faster than sequential organization. For the sequential organization it
can be seen that the convergence of the weights of each control unit to a translation
becomes faster with each new mapping, as the search space gets smaller (the competition
from the already organized control units restrict the dimensionality of the weight space):
this is particularly apparent for the last 10 timesteps, when the last control unit gets
added. For simultaneous organization, it can be seen that decreasing the number of
control units significantly reduces the plateau of big synaptic spread in the beginning,
and hence speeds up organization. This is because with fewer control units, each control
unit has more possible final configurations compatible with the dynamics and therefore
convergence to a solution is faster.

Shifter Circuit. As described in section 4.1, organization on shifter circuits saves
resources and the orientation symmetry is broken. We performed simulations with the
same parameters as the other simulations, but with no cooperative coupling of control
units (i.e. CKkk′ = δkk′) and constraining the weights to the present links of a two-layered
shifter circuit (with N = 9 units on all layers), see Figure 4.2. Sequential organization of
the K = 3 control units on each layer, turns out to yield the correct topographic mappings,
see Figure 4.5. For the cases considered, we found this also possible for simultaneous
organization, in which case, however, diligent parameter tuning was necessary.

Each layer of the shifter circuit was simulated independently. A crucial ingredient to
the derivation of the dynamics is lateral correlated noise, see section 4.1.1. Note that
the projection of laterally correlated spontaneous random activity from the input to the
intermediate layer, with subsequent relaxation to equilibrium (equation 4.5), again yields
laterally correlated activity. Hence, a simultaneous simulation of all layers should be
possible if the noise is simulated explicitly and not implicitly throught the dynamics of
equation 4.1.

4.3 Conclusion and Discussion

In this chapter, we presented a dynamical system for the organization of translations
in multiple control units. We analyzed two different modes of organization: sequential
and simultaneous organization of all control units. It turned out that the sequential
organization mode is slower than the simultaneous mode, but more stable in that it can
also be used to organize mappings without periodic boundary conditions, due to less
interference with other control units. Further, sequential organization needed less tuning
and was also applicable to multi-layer networks, such as shifter circuits (Anderson and
van Essen, 1987; Wolfrum and von der Malsburg, 2007b).

Comparing the model of this chapter to the one of chapter 3, there are several pluses
on each side. The current model seems simpler and hence can be analyzed by linear
approximation (Zhu et al., 2010). However, it is restricted to translations (at least in its
current version). Further, the competition at local synapses, instead of the competition
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Figure 4.5: Sequential organization without cooperative coupling of control units yields
stable topographic mappings on a shifter circuit with N = 9 units on all 3 neuronal layers
and L = 2 weight layers. The number of necessary translations on each layer is K = 3.
(a) shows the final connections of the three control units if constrained to the first layer
(the constraint matrix is equal to sum of the three converged weight matrices). (b) shows
the result for 3 control units that organized their weights for the second layer.

of control units, as in chapter 3, makes it very sensitive to wrongly wired links, which
through the competition term affect all control units. For example, all control units of
the system need to have the same map orientation, as otherwise interfering competition
occurs. This is not the case for the model of chapter 3, where different orientations pose
no problem to the mechanism. A big advantage of the current model is the applicability
of the model to shifter circuits, making it much less resource demanding.

It was shown that the non-local interactions of the proposed model can be derived
from a purely local model with generalized Hebbian learning. However, for full biological
or computer vision applicability, the model would have to be expanded and modified in
various directions. A first step was to show its applicability to the case of non-periodic
boundary conditions. Future work needs to assess the model’s generalization to the
two-dimensional case without boundary conditions. Furthermore, the incorporation of
different feature types in the input and output, such as e.g. the orientation maps in
V1, might help with the interference problem of different control units that organize
mappings that go beyond translations.
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5 Slowness yields consistent Features
across Transformations in a Bilinear
Model

We have seen in chapter 2 that a simple Gaussian generative model can account for
the emergence of retinotopy, assuming neighborhood correlations in the retina. In this
chapter, we extend this model to higher visual processing. In particular, we focus on the
invariance problem (see section 1.1) by harvesting the power of multiplicative models,
as introduced in section 1.1.3. We apply the model to real, natural image data to
demonstrate that Gabor receptive fields, which are similar to cortical receptive fields,
emerge. Parts of this chapter have been published in (Bergmann and von der Malsburg,
2010).

5.1 Introduction

It has long been known that models that take into account input statistics only up to
second order, are not able to organize localized, bandpass-filter receptive fields. For a
translation-invariant covariance matrix of the input data, it can be shown that PCA
weights become sinusoids (Hyvärinen et al., 2009). For illustration, we applied Sanger’s
learning rule (Sanger, 1989) to natural image patches in Figure 5.1. This learning rule
assigns the first unit to the weight vector with the highest variance in the input data. The
second unit gets a weight vector which has highest variance in the orthogonal subspace
to the first weight, and so forth. Hence, Sanger’s rule is an online algorithm to arrive at
weights identical to those of (offline) PCA. It can be seen from the Figure, that the DC
component has highest variance (1st component), a horizontal low-frequency (2nd) and
then a vertical low-frequency weight follow. This result is very consistent over many trials,
and therefore reflects large enough steps in the variances associated with the weights.
The weights of the fourth and higher units are not necessarily in the same order in each
trial, as variance differences get smaller. But the general trend from low-frequeny to high
frequency weight vectors is consistent over many trials and is due to the f−γ dependency
in natural images, with γ ≈ 2 (Field, 1987).

The models we built so far assume Gaussian responses for the firing rates of the
neurons (this is made explicit in chapter 2). In contrast, cortical cells tend to fire with a
non-Gaussian statistics. Figure 5.2, left, shows the firing rates of a cortical neuron in
inferotemporal cortex (IT) of a macaque monkey freely watching a natural video (Baddeley
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Figure 5.1: Sanger’s learning rule (Sanger, 1989), which is an online version of principal
component analysis (PCA), applied to natural image patches. The resulting weights are
ordered by their variance from the upper left to the lower right. The weights converge to
sinusoids with wave numbers that decrease with variance in the input.

et al., 1997), as measured in a given time window. The distribution is very close to an
exponential distribution.

Furthermore, as the resulting weights of second-order models are not localized for natural
inputs, it is not possible to define or organize weights that are topographic with respect
to the input positions. Thus, we extend the model to also take into account higher-order
statistical dependencies, which have been shown to yield localized weights (Olshausen
and Field, 1996; Bell and Sejnowski, 1997). To construct an efficient code for the outputs
{yo}, note that the joint entropies1 are less or equal to the sum of the single entropies:

H({yo})

{
=

∑
o H(yo) iff p ({yo}) =

∏
o p (yo),

<
∑

o H(yo) else,
(5.1)

where p ({yo}) is the joint probability distribution over the outputs and p (yo) is the
probability distribution for a single output o. Hence, if we guarantee information
preservation, lowering individual entropies can reduce higher-order statistical dependencies.
This has been done using sparse priors for the latent variables, which has been found to
be the underlying principle to organize localized, band-pass receptive fields (Olshausen
and Field, 1996; Bell and Sejnowski, 1997; Weber and Triesch, 2008; Savin et al., 2010).
Further, sparse coding systems have been shown to solve the bars problem (Lücke,
2004b; Gros and Kaczor, 2010), in which the network is presented with statistically
independent bars that are non-linearly superimposed and it is supposed to detect the

1We here use the standard definition of Shannon entropy: H(X) = −
R
p(X)log (p(X)).
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Figure 5.2: Probability density functions. Left: Response of a macaque IT cell to a
natural video in a logarithmic plot (from Baddeley et al., 1997). Right: A Laplacian
prior probability density function (pdf), i.e. p(x) ∝ exp (−|x|) (dashed line), deviates
from a Gaussian pdf (solid line), i.e. p(x) ∝ exp (−x2/2), in having higher probabilities for
small and large values of x. To compensate, probabilities are lower in the intermediate
range. All shown pdfs are normalized to 〈p(x)〉 = 1. Moving the mean µ of the Laplacian,
p(x) ∝ exp (−|x− µ|), can be used to implement slowness or top-down information
(matching) in the model.

underlying generating patterns, that is, single bars. A sparse, or alternatively leptokurtotic
or supergaussian (Barlow, 1972; Field, 1994) probability distribution deviates from a
Gaussian distribution in having higher probabilities around and far away from the
mean (also called a heavy-tail distribution), while it compensates this in having lower
probabilities in the intermediate range (see Figure 5.2). Thus, compared with Gaussian
priors, populations of units with sparse priors tend to code with fewer active units.

In this chapter, we develop a bilinear model with slowness in section 5.2 and show in
section 5.3 that the proposed framework is able to organize topographic representations
of the input, i.e. maps of different kind that are invariant to the simple transformations
the network has been trained with. The model therefore builds “semantically ordered”
invariant representations, in the sense of grouping statistically dependent outputs, while
at the same time explicitly representing the underlying transformations that are necessary
to yield invariance.

5.2 The Bilinear Topographic Model

In analogy to chapter 3, where we used a bilinear model in equation 3.6, we now define
a probabilistic bilinear generative model. Here, the input data xi is assumed to be
generated by noise and by a bilinear transformation of the latent variables yo and ck:

xi =
No∑
o

K∑
k

giokyock + ηi, (5.2)
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where ηi is assumed to be Gaussian white noise with variance σ2
i . Note that the generative

weights giok are not identical to the “bottom-up” weights wkoi of chapter 3, but correspond
to a generalization of the mixing matrix in ICA (Bell and Sejnowski, 1997) or the linear
generative weights of sparse coding (Olshausen and Field, 1996). In the linear case, the
generative weights can be shown to be closely related to the classical receptive fields of
neurons. The latent variables yo and ck can be identified with the firing rates of cortical
cells.

In the following we assume i.i.d. ηi, σi = σ, ∀i. Then the generative distribution of
the generative model of equation 5.2 is:

p (x|G,y, c) =
1

(2πσ2)
Ni
2

exp

−
∑Ni

i

(
xi −

∑No
o

∑K
k giokyock

)2

2σ2

 , (5.3)

where Ni indicates the dimensionality of the input vector x, No and K the dimensionality
of the output and the control units, respectively.

5.2.1 Topography

We model the emergence of topography by following an idea discovered by Hyvärinen
and Hoyer (2001): although the prior distributions over the causes in standard linear
models, like sparse coding or ICA, bias the responses of the latent variables to be mutually
independent, the responses to natural images are not fully independent. The reason is
a too complex statistical structure of the natural images, which cannot be transformed
to fully independent causes by linear models. If we now assume the cells coding for the
latents yo to project to another layer of cells zl, we can however make use of the Central
Limit Theorem (CLT) to order the yo according to their residual statistical dependencies,
simply by forcing the next-layer cells zl to be non-Gaussian. This works, because if the
cells yo that project to cell zl were independent, the response of zl would tend to be
more Gaussian. The resulting bilinear model, including this additional layer of units, is
illustrated in Figure 5.3. The responses of the highest cells in the model are modeled
similar to the standard energy model of complex cells: zl =

∑
o Γ(l, o)y2

o . The response
of the cell zl is therefore given by pooling over the squared outputs of nearby cells yo.
Γ(l, o) defines the neighborhood function and is set to 1 if yo is in the vicinity of zl and
otherwise to 0.

We do not model the units zl explicitly, but instead employ an according prior for the
output units yo to implement the idea. As the resulting prior cannot be given in closed
form under this missing-variables model, a lower bound approximation of the prior has
been derived in (Hyvärinen et al., 2001):

p̃(y) =
∏
l

exp

(
s

(∑
o

Γ(l, o)y2
o

))
. (5.4)

It is well known, that the precise form of the sparsity forcing function s is not important
for the results, as long as the overall shape of the function is correct. We use the sparsity
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Figure 5.3: The bilinear generative model consists of three different groups of units:
Feature units yo, local pooling units zl and control units ck.

forcing function s as suggested in (Hyvärinen et al., 2001):

s(ξ) = −α
√
ξ + ε, (5.5)

where ε guarantees numeric stability and is set to ε = 0.001 for all our simulations. α = 2.0
is an unimportant parameter, as it can be absorbed in the learning rate. Note that for
Γ(l, o) = δlo and ε = 0 the resulting prior becomes the standard Laplacian distribution
(see Figure 5.2):

p(c) =
∏
k

exp (−λc|ck|) , (5.6)

which we used as a prior for the latent variables c with sparseness parameter λc.

5.2.2 Slowness

A central goal of the proposed model is to build topographic representations of the
input data which are invariant to real-world transformations on the inputs (for example
translation). Slowness has been proposed to play a central role in unsupervised learning
of invariant responses (Földiák, 1991; Wiskott and Sejnowski, 2002; Wyss et al., 2006)
and its rationale is that although the input data changes fast with time, the actual
causes (e.g. objects) tend to change slowly with time. Hence, if neurons try to code with
slowly changing responses, they are likely to catch the underlying invariant causes. Slow
Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) has been shown to be equivalent
to probabilistic learning in a linear Gaussian model with an independent Markovian
prior (Turner and Sahani, 2007). Similarly, we formalize this idea in our probabilistic
model, by shifting the topographic prior probability in the direction of the latest responses,
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thus increasing the probability of the estimates to lie closer to the latest values (see for
an illustration the shifted Laplacian distribution in Figure 5.2):

p(y) =
∏
l

exp

(
s

(∑
o

Γ(l, o)
(
yo − ŷo/β

σs

)2
))

, (5.7)

where ŷo is the output of the cell in the output field in the last timestep and σs parameter-
izes how much the estimated latent variable yo is allowed to deviate from the β fraction
of the last output ŷo. For the simulations we set σs = 1 and found the simulations to be
not very sensitive to this parameter.

An important observation can be made for the case of β = 1. The inputs to our
model are assumed to be selected randomly. Hence, the estimates ŷo will be distributed
randomly as well and follow a random walk. Due to the Central Limit Theorem (CLT),
the ŷo will therefore be normally distributed and with them the output variables yo. This
is undesired, as we wanted a non-Gaussian, sparse distribution for the output variables
yo. For the simulations, we therefore set β = 3 to weaken this effect, while at the same
time we still have the advantages of slowness.

Note that slowness for the latents y is the main ingredient that breaks the symmetry
of y and c and yields invariant responses in y, while c codes for the transformations.

5.2.3 Dynamics and Learning Rule

After having defined the probabilistic model, we shall now derive the dynamics for the
latent variables as well as the learning rule. Both can be derived by noting that the input
statistics should be as close to the sample statistics from the generative model as possible.
It has been shown in chapter 2 that this density estimation procedure corresponds to
maximizing the average log likelihood 〈ln p(x|G)〉, where the marginal distribution is
given by marginalizing over both y and c:

p(x|G) =
∫
p (x|G,y, c) p(y) p(c) dy dc (5.8)

Unfortunately, the integral appearing in equation 5.8 is intractable. However, a common
approximation is to replace the integral by an evaluation at the maximum a posteriori
value (e.g. Olshausen and Field, 1996; Karklin and Lewicki, 2009):

(ŷ, ĉ) = arg max
y,c

p(y, c|x, G), (5.9)

thus, ignoring the volume around the maximum.
In general, maximizing the average log likelihood is equivalent to minimizing the

estimate of code length:

L = −ln (p (x|G,y, c) p(y) p(c)) . (5.10)
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By substituting the generative distribution, equation 5.3, and the prior distributions over
the causes, equations 5.6 and 5.7, we arrive at the objective function of the model:

L = Ni
2 ln

(
2πσ2

)
+
∑

i
(xi−

P
o

P
k giokyock)

2

2σ2

−λy
2

∑
l s

(∑
o Γ(l, o)

(
yo−ŷo/β
σs

)2
)

+ λc
∑

k |ck|. (5.11)

For finding the minimum of the objective function, we define the residual image:

ri = xi −
∑
o

∑
k

giokyjck. (5.12)

Then the gradients for the estimation of the latent variables become:

d

dyo
L = − 1

σ2

∑
i ri
∑

k giokck

−λy
(
yo−ŷo/β
σs

)∑
l s
′
(∑

o′ Γ(l, o′)
(
yo′−ŷo′/β

σs

)2
)

Γ(l, o), (5.13a)

d

dck
L = − 1

σ2

∑
i

ri
∑
o

giokyo + λc sgn (ck) , (5.13b)

where s′(ξ) denotes the derivative of the function defined in equation 5.5. For the
simulations, we used nonlinear conjugate (Polak-Ribière) gradient descent, using the log
likelihood as defined in equation 5.11 and its gradient (equations 5.13) to estimate the
latent variables y and c.

After the estimation of the latent variables, a simple generalized bilinear Hebbian
learning step on the generative weights follows:

g̃iok(t) = giok(t) + ηg
d

dgiok
L

d

dgiok
L = 2riyock, (5.14)

which is applied with a fixed learning rate ηg = 0.005. After each learning step the
weights get L2 normalized:

giok(t+ 1) =
g̃iok√∑
i g̃

2
iok

. (5.15)

5.3 Simulations

5.3.1 Natural Inputs

We applied the proposed bilinear model to natural image data recorded by van Hateren
and van der Schaaf (1998). Patches of size 32x32 were extracted at random positions
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(a) 32x32 patch (b) 32x32 patch (c) Translated (d) Translated+45◦

Figure 5.4: Subfigures (a) and (b) show randomly selected natural image patches of size
32x32 used for the simulations with a single control unit. For the case of two control
units, 16x16 sized natural inputs were placed in succession in a 32x16 field (starting
randomly on the left or the right side).

from the images for the single control unit simulations (dim(c) = 1), and patches of size
16x16 for the two control unit case. Figures 5.4a and 5.4b show two randomly selected
patches. A common procedure in simplifying the estimation of higher-order models is to
whiten the input data (for example in ICA). This means that second-order correlations
are removed and variances of individual responses are normalized to one, to help the
learning method to focus on higher-order dependencies. We did this algorithmically for
all natural inputs using PCA. Note that whitening could be implemented by Oja’s (or
Sanger’s) rule or via the model discussed in chapter 2 and is thought to be happening
upstream of cortex in the LGN and the retina, where whitening can be related to the
observed receptive fields (Dan et al., 1996; Graham et al., 2006). For the illustrations of
the generative weights after learning, they are projected back to the input space.

In case of more control units, we placed the randomly extracted image patches at
different positions in a bigger input field. To guarantee independent transformations
underlying the input data, we placed the patches at disjoint positions. Figure 5.4c shows
a pair of such inputs which are shown in succession, yet in random order, to the model
and comply to a translation. In analogy to this procedure, different transformations have
been used, for example a translation and rotation with 45◦ in Figure 5.4d. The presence
of a single patch in a bigger field of vanishing activity can be interpreted as a schematic
of early visual attention processing (Vanduffel et al., 2000; Hopf et al., 2006), which has
been shown to supress activity peripheral to the representation of a stimulus.

5.3.2 Parameters

30000 randomly selected input patches were extracted as described in section 5.3.1 and
each input was reduced to the 100 or 200 dimensions with highest variance using PCA,
for the 16x16 or the 32x32 inputs, respectively. The assumed noise level in the input
was kept constant at σ = 1.0 for all simulations. The sparseness parameters were set
symmetrically to λy = λc = 0.1, i.e. c and y differ only in dimensionality and the
estimation for y includes slowness. For their estimation, all components of y and c
were initialized independently to a value drawn from a standard Gaussian distribution
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with variance 0.1. Although we also tried bigger pooling sizes like 5x5 for Γ(l, o), for all
simulations shown the pooling size was a 3x3 neighborhood.

5.3.3 Results

In general, the learned generative fields are localized bandpass filters and are shown for
the example of a single control unit in Figure 5.5. For a single control unit, the model
essentially reduces to a linear one, with a single modulatory interaction with the control
unit activity h, which can rescale and/or invert the activities of all feature coding units
y. The resulting basis functions are similar to the ones learned in ICA or sparse coding,
with the additional property of being arranged topographically according to position,
orientation and frequency, including clusters of low wave numbers and discontinuities in
orientation, similar to pinwheels in cortex. As for TICA (Hyvärinen et al., 2001), the
results resemble the cortical organization of receptive fields in V1.

To gain further insight into the resulting generative fields, we matched 2D Gabor
functions to the results using least-square fitting as described in appendix A. Figure 5.6a
shows a generative field of a single output unit from Figure 5.5 and Figure 5.6b shows the
best Gabor fit. Both Figures look qualitatively similar and Figure 5.6c shows that the fit
residual is comparatively small. Most other generative fields yielded very good Gabor
fits, as well. A better impression of the generative field, the fitted Gabor function and
the color coding of the Figures, can be gained by Figure 5.7, which shows a 3D surface
plot of the result and the fit.

For the bilinear case of two control units, we shall first analyze the responses of the
control units to the inputs. Figure 5.8 shows the development of the response of c to
the inputs. For a given time, the responses of the last 150 estimations of c2 are plotted
against the responses of c1. Red circles denote c estimates inferred from input patches
from the left side in the input field, while green upside down triangles denote estimates
from the right side. It comes at no surprise, that the initial responses of the control
units are circular symmetric for both inputs, as can be seen from Figure 5.8a. This
is clear, as all generative fields are random and the inputs are normalized. Learning
does cluster the population code for the different inputs, i.e. specific combinations of
control unit activities code for either the left or the right input, see Figure 5.8b. As
learning proceeds, see Figure 5.8c, these clusters lie on one dimensional subspaces that
are mutually orthogonal, thus reflecting a good code for the indepence in the inputs.
Finally, sparseness forces the one dimensional subspaces to lie on the coordinate axes
themselves, because this is the most sparse code possible, with only one unit coding for
each input. Thus, the final code after generative field organization effectively resembles
a Winner-take-All response, if the input is chosen accordingly, yet can be a population
response, if necessary.

Figure 5.9 shows activity histograms of the output units y for the final 1000 iterations
of a simulation. In figure 5.9a it can be seen that the output statistics fits well the prior
Laplacian density. As has been discussed in section 5.2.2, for the case of β = 1 the output
units in the case of two control units and active slowness follow a random walk (RW) that
yields a Gaussian distribution, as can be observed in Figure 5.9b. Single inferences in this
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Figure 5.5: Generative bilinear weights without slowness for a single control unit. Input
patch dimensions were 32x32 and the output units were arranged on a periodic 24x24
grid with 3x3 neighborhood pooling and periodic boundary conditions.
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(a) Simulation Result (b) Fitted Gabor (c) Residual

Figure 5.6: Gabor fit analysis of a generative field from the simulation in Figure 5.5: (a)
shows the resulting data, (b) the best fitted Gabor function (in the least squares sense)
and (c) the residual, i.e. the result from a) minus b).

(a) Simulation Result (b) Fitted Gabor

Figure 5.7: An example generative field from the simulations to illustrate the color coding.
Left: The resulting generative field from the simulations. Right: The best Gabor fit (in
the mean least squared difference sense) to the generative field on the left.
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(a) Initial response (b) Clustering

(c) Mixed coding (d) Final response

Figure 5.8: Responses of the two control units to the two classes of transformed input
patterns. In each subplot the last 150 estimations of c2 are plotted against the responses
of c1. Red circles denote c estimates inferred from input patches from the left in the
input field, while green upside down triangles denote estimates from the right. Subfigure
(a) shows the initial response of the control units, while in subfigure (b), at t = 5208, it
is shown that relatively short learning leads to clustering. Subfigure (c), at t = 11444,
shows shrinkage to one-dimensional subspaces and subfigure (d) shows the final result
with the sparsification of the responses.
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Figure 5.9: The activity histograms of the output units are shown for different simulations
for the last 1000 estimations of a simulation. Subplot (a) shows the activity histogram
for a single control unit and inactive slowness. The distribution is Laplacian. In subplot
(b) we see that for two control units and active slowness with β = 1, the distribution
is Gaussian, as is predicted by the CLT and the random walk (RW) behavior of the
estimates. (c) For β = 3 the outputs do not follow a random walk anymore, even in case
of active slowness and the output distribution is sparse.

case still have a non-Gaussian distribution and therefore even in this case topography and
oriented generative fields emerge. However, they are not as nicely localized as for the case
of β = 3, for which the probability distribution deviates significantly from a Gaussian
and is closer to a Laplace density (see Figure 5.9c). We therefore in the following show
results for different β values.

The final generative fields can be visualized given an activity code for the control
units. Figure 5.10a shows the resulting linear generative fields given c = (1, 0) and
Figure 5.10b for c = (0, 1), respectively. Both simulations used a value β = 3. Due
to the non-Gaussian statistics, the generative fields are nicely localized and oriented
band-pass filters. Significant deviations from zero are only seen on one side of the fields,
the side where the corresponding control unit got specialized in. We used this fact in
the other subfigures of Figure 5.10, where only the non-zero parts of each given control
unit field is plotted, side by side with the other control unit field, to simplify comparison
of the generative fields. Figure 5.10c shows that slowness practically yielded identical
generative fields for the two control units, despite the inputs being translated. Similarly,
Figures 5.10d and 5.10e show that this result generalizes to orientations of the input
stimuli around 90◦ and 45◦ degrees, respectively. The same holds if the right inputs are
scaled 1.5 fold, see Figure 5.10f. For the simulations in Figure 5.10d to Figure 5.10f, the
value of β was set to unity. Though not as nicely localized as for the simpler linear case
without slowness or for β = 3, the generative fields are clearly oriented band-pass filters
and some also show good localization.

Parameters extracted from the Gabor analyis, as described in appendix A, can be
used to analyze the topographic continuity of the resulting generative fields with respect
to the extracted parameters. For the case of a single control unit, maps extracted in
this way are shown in Figures 5.11a to 5.11d. The first map, Figure 5.11a, shows that
neighboring output units have similar input positions (the input position is coded with
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(a) Unit 1 (b) Unit 2

(c) Both units (d) 90◦

(e) 45◦ (f) 1.5 Upscaled

Figure 5.10: Generative weights for two control units. (a) Generative field given a control
unit activity response of c = (1, 0) and in (b) for c = (0, 1). In this simulation β = 3. (c)
shows that the non-zero parts of the generative fields are practically identical for both
control unit activities, despite being translated. Similar, orientations around (d) 90◦, (e)
45◦ and (f) 1.5x upscaling yields accordingly transformed generative fields. For (d)–(f)
β = 1.
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(a) r (b) Θ (c) ν (d) φ

(e) r (f) Θ (g) ν (h) φ (i) r-code

Figure 5.11: Visualization of the topographic maps with respect to position (r), orientation
(Θ), frequency (ν) and phase (φ) of the generative fields extracted by fitting Gabor
functions. Subplots (a)–(d) show results for a single control unit, while (e)–(h) show
results for two control units. For the position plots, the color-coding in the input is given
in subplot (i). Orientation is color-coded as given by the color-bar in [0, π] and phases
are given by their respective color-coding in [0, 2π].

the colorcode shown in subfigure 5.11i), the map is continuous and mostly smooth with
occasional discontinuities. This result corresponds to the finding of “retinotopy” in visual
cortex. Figure 5.11b shows that the extracted orientations are even smoother, while for
frequencies, Figure 5.11c, clusters can be seen, yet the map is noisy. Similar to simple
cells in cortex, phases show no apparent topography, see Figure 5.11d.

Figures 5.11e to 5.11h show the analogous results for the bilinear case and given
c = (1, 0). The Gabor fits were restricted to the areas in the generative field that was
significantly non-zero. Qualitatively the maps are very similar to the single control
unit case. Orientation continuity and frequency topography is more pronounced, while
position continuity is slightly more noisy.

5.3.4 Face experiments

In addition to the experiments on natural inputs described in section 5.3.3, we applied
the network to the FERET database (Phillips et al., 1998), a database containing facial
images of 1196 individuals. We restricted ourselves to the fafb subset (containing images
from 1195 individuals) of the FERET database, which contains frontal face photographs
with varying facial expressions of the same subjects (see Figure 5.12a for 30 sample
faces). The photographs have been taken on the same day. In contrast to the natural
input data of section 5.3.3, face images are not rotation invariant, hence their statistics
changes if the images are rotated. This should in principle allow for an inference of the
angle of a presented face. Therefore, we tested if the current system is able to dissociate
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(a) FERET faces

(b) Original (c) Rescaled (d)
Rescaled+Rotated

Figure 5.12: Example images from the FERET database (Phillips et al., 1998). Subfigure
(a) shows a sample of the subset fafb that we used for our simulations. The first face
is shown in subfigure (b) in its original resolution, while subfigure (c) shows a rescaled
version to 32x32 pixels - the size we used in the simulations. In temporal succession to
the standard view of a face, an around 90◦ rotated version was shown, see subfigure (d).

rotated versions of faces. To this end, we presented a randomly selected image, which was
rescaled to a 32x32 sized version (see Figure 5.12b for an example in its original size and
Figure 5.12c for the corresponding rescaled version) and, in temporal succession, a 90◦

rotated version of the same image, to a network with two control units, 5x5 output units
and slowness learning in the output layer y. In contrast to the experiments with natural
images, we here do not translate the inputs to disjoint positions, but the standard views
of the faces and their rotated versions are presented at the same position. The response of
the control units during learning was very similar to the responses shown in Figure 5.8 for
natural inputs at different positions, the responses of the control units therefore essentially
resembled a WTA responses, with each of the two control units firing for either the rotated
or the standard view of a face. Similar to Figure 5.10, Figure 5.13 shows the generative
weights given c = (1, 0) (Figure 5.13a) and Figure 5.13b for c = (0, 1), respectively.
From the generative weights, we see that control unit 1 exclusively specialized to the 90◦

rotated version of the inputs, while control unit 2 specialized to the standard view of
faces. The network therefore was able to detect the underlying rotations, that is, the
hidden transformational causes, for the faces in this simple example. Importantly, the
number of output units must be small (in comparison to the output dimension) for the
case of faces, as otherwise control unit generative fields do not specialize to exclusive
standard view or rotated versions. This is due to (nearly) rotation invariant components
in faces that can be used for both versions.
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(a) Control unit 1 (b) Control unit 2

Figure 5.13: Final generative weights for two control units and learning applied to the
FERET database. Subfigure (a) shows the generative fields given a control unit activity
response of c = (1, 0) and in subfigure (b) for c = (0, 1). Clearly, the two control units
specialized on exclusively upright or rotated versions of faces.

5.4 Discussion

In this chapter, we introduced a topgraphic bilinear model for the purpose of building
invariant representations. Like in (Hyvärinen et al., 2001), nearby output cell generative
fields are organized to maximize the mutual information of their output activities. Using
maximum likelihood estimation, we performed simulations on pre-whitened natural inputs.
For the simplest case of a single control unit, most generative fields were well fitted with
Gabor functions, which themselves are good fits to the linear receptive fields of the simple
cells in V1. The Gabor analysis showed that topography emerges with respect to several
parameters: location, orientation and frequency. This is akin to the corresponding maps
observed in the cortex. The uppermost layer in the model represents complex cells and
indeed complex cells have been shown to be constrained in their wiring length, a key
assumption for topography in the model.

To investigate the invariance properties of the model, we used two control units and
added slowness (Földiák, 1991; Wiskott and Sejnowski, 2002; Turner and Sahani, 2007)
to the sparse prior of the output cells. For natural inputs presented at two disjoint
positions the response of the control units becomes similar to a Winner-Take-All (WTA)
response, due to the sparseness constraint on the control units. The model therefore
is a consistent generalization of the models in chapter 3 and chapter 4, where a WTA
mechanism is assumed to be at work. In case of only a translation of natural inputs,
the generative fields of the two control units become similar, yet shifted versions, of a
Gabor-like function. For additional input transformations, like rotations and scalings,
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the generative fields transformed accordingly. Hence, it is reasonable to assume that the
system learns representations of the input that are invariant to other transformations as
well. Future work should attack the question how complex these transformations can be.
Although the Gabor fits were not as good as for the simpler single control unit case, the
resulting topographic maps extracted from the fits showed the same topographic features
as in the simpler case.

Several models in the recent literature attempted to separate features and transfor-
mations using bilinear models (Tenenbaum and Freeman, 2000; Grimes and Rao, 2005;
Olshausen et al., 2007; Memisevic and Hinton, 2010). All these models have in common
that they do infer their latent variables on at least two successive images or a whole batch
of images. In contrast, our model uses a single input image to infer both the feature
and transformation unit activities. This is achieved by implementing slowness in the
prior of the feature coding units, to break the symmetry with the control units, and
simplified by the assumption of an attention signal in the input. Simple disjoint inputs
were chosen for analysis purposes and future work will show how the model generalizes
to more complex situations. A similar fully unsupervised bilinear approach, where each
“identity unit” has its own linear subspace, was shown to reproduce V1 organization purely
when learning from videos and it offered a new interpretation of simple and complex cells:
simple cells are coding for the appearance of a feature while complex cells would code for
their existence (Berkes et al., 2009).

Further, while all models for invariant recognition known to us either presume a
topographic organization (Lades et al., 1993; Wolfrum et al., 2008, e.g.) or neglect
topography altogether, our model learns topography from the higher-order dependencies
in the input data. From this perspective the model can be seen as a bilinear extension
of Topographic Independent Component Analysis with an additional relaxation of the
completeness demand in ICA (Hyvärinen et al., 2001; Ma and Zhang, 2007).

Recent experiments indicate that, at least in some cases, learned shapes do not
generalize across retinal position (Cox and DiCarlo, 2008) and even object identities can
be confused depending on retinal position (Li and DiCarlo, 2008), hence there does not
seem to be “full” invariance and invariance can be broken by changing the statistics
of the environment (Li and DiCarlo, 2008; Wallis et al., 2009). This is in contrast to
other studies, which showed full translation invariance (Biederman and Cooper, 1991).
In the model of this chapter, the precise featural type as well as the position of a hidden
cause (yo) depends on the control unit activities, which are position specific. If input
patterns that are presented in temporal succession and at varying positions correspond to
different object identities, the slowness learning procedure therefore will lead to hidden
causes, which vary accordingly with position. Thus, invariance is installed with respect
to this statistics and therefore “broken”. However, for a non-broken input statistics, the
model develops the same hidden causes at different positions, as shown in the results, and
therefore implements translation invariance. Therefore, if for the experiments that argue
for non-existent translational invariance, new hidden causes must be developed, while for
the experiments that claim the opposite, the set of hidden causes is sufficient, the model
is consistent with both types of experiments - although they seem contradictory at first
sight.
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An interesting extension of the model would be to add a definition of sparseness also
in time and not only in the population. It has been shown that an application of ICA to
faces with independence in time leads to independent components that resemble localized
face parts (for example the mouth) (Bartlett et al., 2002). Topographically ordering
these should yield a parts-based representation that has, in contrast to holistic features,
the flexibility for better representation of small topographic differences. Note that similar
representations are used in object recognition systems (Lades et al., 1993; Wolfrum et al.,
2008).

It is widely accepted in the neuroscientific community that the cortex is organized
hierarchically (Felleman and Essen, 1991), and it would therefore be desirable to exploit
this organization. However, standard linear methods in representational learning, like
sparse coding (Olshausen and Field, 1996) or independent component analysis (Bell and
Sejnowski, 1997), do not benefit from hierarchies, as representations would not change
significantly in the hierarchy. The topographic bilinear model of this chapter, on the
the other hand, is a well suited module in a hierarchy, due to its inherent non-linearity.
Further, the shifting prior currently used for implementing slowness can be used for
integration of top-down information, information from presumably higher cortical areas.
In this way the bilinear model can be biased to a certain representation, for example a
face, and hence would correspond to a generative version of matching.

91



92



6 Conclusion and Outlook

A central goal of this thesis was to demonstrate that invariance transformations, which are
transformations that convert input patterns to a recognizable form, can be self-organized,
both pre- and postnatally. Transformations as a basic principle to brain functioning, in
contrast to the traditional view of mere feature detectors, have the significant advantage
that they can be applied to unknown data. Feature detectors, on the other hand, are
tuned to a specific set of input patterns. Therefore, the transformation paradigm, which
inherently needs multiplicatory and therefore non-static connections, is vastly more
powerful (von der Malsburg, 1981; Durbin and Rumelhart, 1989) in processing and
generalization than traditional static neural networks. In particular, we believe that
besides the advantages in the visual domain, the concept is also necessary for higher
cortical processing or motor control. For example, grammatical rules in language, which
are independent of specific words, could be implemented by transformations. Motor
control can be seen as the inverse problem of the invariance problem, as here we try
to get a specific pattern from a more abstract goal or representation. As the bilinear
approach (Tenenbaum and Freeman, 2000) we have chosen is invertible, or even generative
in chapter 5, these problems would be possible applications of the presented networks.

A crucial ingredient for the formation of the transformations was topography in the
input and output domains. Therefore we investigated a model, which describes the
establishment of retinotopic mappings in chapter 2. The model has the advantage that
it is simple enough to offer analytical insights. Although the model’s main motivation
is to describe the formation of a topographic connectivity structure, it establishes a
connection to information processing, because it is built on top of the idea of information
preservation across cortical areas. Its key ingredients, like for all activity-based mechanisms
for topography (Goodhill, 2007), were neighborhood correlations of cell activities in the
input and the output layer and Hebbian learning. Chapter 3 extends an abstract model
for topography formation (Häussler and von der Malsburg, 1983) to a bilinear framework,
which allows for the organization of a set of invariance transformations. On the basis
of schematic prenatal waves, it was demonstrated that the network can be used to
organize translations, scales and orientations. The network was further analyzed in
detail and its robustness to more complex stimuli and generalization to two dimensional
input and output sheets was evidenced. In chapter 4 we presented a more compact
model that was able to organize translations even without the assumption of prenatal
waves. This simplification allows for easier analysis and was shown to be extensible
to several layers. The extension to several layers is of particular importance, as it
demands considerably less resources (Wolfrum and von der Malsburg, 2007b). Finally, we
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derived a probabilistic model in chapter 5 that allowed for the simultaneous learning of
transformations and features in a bilinear setting. By employing slowness and applying the
model to transformed versions of natural inputs, the model was shown to organize efficient
and consistent, or invariant, featural representations that compensate for transformations
in the input data. The proposed model is in line with recent evidence (Li and DiCarlo,
2008; Wallis et al., 2009) which indicates that there is no full invariant recognition in
monkeys and humans. Yet it also is compatible with older results (Biederman and Cooper,
1991), which claim there is full invariance, if the featural routing transformations are
powerfull enough to estimate the invariant hidden causes of the input patterns.

An important note is that the central claim of chapters 3 and 4 is not that the
organization of invariance transformations stops at birth or eye-opening and transfor-
mations are carved in stone for the rest of the animal’s life. In contrast, the claim is
that transformations can be organized, at least theoretically, before birth and therefore
organization of systems for higher level vision starts before eye-opening. Support for this
hypothesis comes also from theoretical experiments that show that lower level V1-like
Gabor features can also be organized before birth by imposing sparseness (Albert et al.,
2008) or slowness (Dähne et al., 2009) constraints on learning.

Future work should therefore address the integration of the prenatal and postnatal
learning phases. The investigations we started in chapter 5 are a first step in this
direction, and additionally incorporate feature learning, but so far without explicitly
taking into account the prenatally organized initial conditions. To do this, more efficient
representations for the transformations are necessary, like for example the approach
recently proposed in (Memisevic and Hinton, 2010), so that the huge parameter space
can be tackled efficiently. Using these networks it can then be investigated if it is possible
to also organize the features in the topographic transformations before eye-opening or
if this has to happen postnatally. Finally, the topographical organization makes these
feature transformation networks an ideal candidate for a multilayer system like the
brain (Felleman and Essen, 1991), as they are non-linear and have a neighborhood-sorted
representation, that can be efficiently exploited by higher layers.
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A Gabor Fitting of Generative Fields

We analyzed the spatial profile of the (bilinear) generative fields using a two-dimensional
Gabor function (see Figure 5.7), which are commonly used in image processing for
edge-detection and image analysis in the space and Fourier domain (Jähne, 2005). Gabor
functions have been shown to very well match the receptive fields of simple cells in
primary visual cortex (Jones and Palmer, 1987; Ringach, 2002). In the spatial domain,
Gabor functions are sinusoidals modulated by a Gaussian envelope:

Ψ
(
x′, y′

)
= A exp

(
−
(
x′/
√

2σx′
)2
−
(
y′/
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2σy′
)2
)

cos
(
2πνx′ + φ

)
, (A.1)

where x′ = (x′, y′) refers to a with x0 translated and with Θ rotated coordinate system:

x′ =
(

cos(Θ) −sin(Θ)
sin(Θ) cos(Θ)

)
(x− x0) . (A.2)

In the rotated coordinate system, the cosine only varies with frequency ν along the
x′ direction and like in (Ringach, 2002; Lücke, 2009), there was no need to vary the
orientation of the Gaussian envelope with respect to the cosine plane wave. Thus, σx′ and
σy′ give the width of the Gaussian envelope in the direction of the grating and orthogonal
to it, respectively. Finally, A denotes the amplitude of the Gabor and φ the spatial phase
of the cosine. The generative fields that resulted from the simulations, were matched to
the Gabor functions using least squares error minimization. As this procedure can get
stuck in local minima, each generative field was matched 30 times with different inital
conditions of the Gabor function, and the best fit was selected.
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Zusammenfassung in deutscher Sprache

Dieses Kapitel enthält die deutsche Zusammenfassung der Dissertation. Die Einteilung der
Kapitel entspricht der Einteilung der Arbeit. Unterkapitel wurden allerdings der besseren
Lesbarkeit halber nicht übernommen. Fachbegriffe, die keine deutschen Übersetzungen
haben, wurden in englischer Sprache beibehalten.

1 Einleitung

Ein großes Mysterium, dass die Funktionsweise des Gehirns betrifft, ist die Fähigkeit
unterschiedlichste Muster miteinander in Verbindung zu setzen. Hierzu muss das Gehirn
die zugrunde liegende Bedeutung, die Semantik, eines Musters erfassen. Dies ist kein
triviales Problem, da die Muster hochdimensional sind und Muster mit gleicher oder
ähnlicher Bedeutung oft keine einfachen mathematischen Zusammenhänge aufweisen
– wie zum Beispiel Synonyme in der Sprache. In der vorliegenden Arbeit wird eine
Theorie zur Selbstorganisation visueller Transformationen vorgestellt, die es ermöglicht
abstraktere Repräsentationen zu erzeugen, die näher an der semantischen Bedeutung der
Eingabemuster liegen.

Da das Säugetiergehirn eine lange Phase pränataler Ontogenese im Mutterleib durchläuft,
haben sich zum Zeitpunkt der Geburt schon viele Verbindungsstrukturen organisiert. In
der Mikrostruktur, das heißt auf der Ebene einzelner Synapsen, ist diese Verbindungsstruk-
tur jedoch weitgehend unbekannt. Die Verbindungsstruktur zum Zeitpunkt der Geburt
hat jedoch einen entscheidenden Einfluss auf das darauf folgende Lernen und die Or-
ganisation des Gehirns, weshalb es nötig ist mögliche pränatale Organisationsprinzipien
aufzudecken, um Einblicke in die Mikrostruktur zu bekommen. Ein Fokus der Arbeit
liegt deshalb auf der Demonstration, dass die oben erwähnten Transformationen bereits
vorgeburtlich organisiert werden können.

Zur invarianten Objekterkennung, das heißt der Erkennung von Objekten unabhängig
von ihrer mannigfaltigen Erscheinung auf der Netzhaut, gibt es im Wesentlichen zwei
Ansätze: merkmalsbasierte und transformationsbasierte Erkennung. Für die erste Klasse
von Theorien wird in der Regel eine Hierarchie von zunehmend invarianter werdenden
Merkmalen angenommen, die Schritt für Schritt als unwichtig erachtete Information (in
der Regel Information über den Ort eines Merkmals) vernachlässigt, um abstraktere
Merkmale zu erzeugen. Die transformationsbasierte Erkennung hingegen basiert auf der
Idee, Muster aktiv in eine normalisierte Repräsentierung zu transformieren. Wichtige
Information zur Transformation (also auch über den Ort eines Objektes) bleibt deshalb
bei letzterem Ansatz explizit erhalten. Um beide Ansätze zu vereinen, führen wir bilineare
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Modelle ein, die auf gewichteten Multiplikationen der Aktivität jeweils zweier Einheiten
basieren. Ein Satz von Einheiten, die wir im Folgenden Kontrolleinheiten nennen, kann
somit aktiv den Informationsfluss in höhere Areale steuern, während die Gewichtungen
die Merkmale definieren.

Ein grundlegendes und experimentell bekanntes Prinzip der Gehirnorganisation ist
seine topographische Organisation. Zum Beispiel projizieren benachbarte retinale Zellen
auf benachbarte Zellen im Thalamus. Diese Retinotopie kann auch in weiterführenden
Arealen, wie dem primären visuellen kortikalen Areal V1, beobachtet werden. Viele dieser
topographischen Karten sind bereits pränatal angelegt. Die klassische Interpretation der
Nützlichkeit topographischer Organisation besagt, dass diese Volumen, Axonlänge und
somit Energieverbrauch reduziert. In Ergänzung hierzu zeigen unsere Modelle, dass die
topographische Organisation, die ein Koordinatensystem aufspannt, genutzt werden kann,
um Transformationen bereits vorgeburtlich zu organisieren. Deshalb führt Kapitel 2 in
ein neues Modell zur Organisation der Retinotopie ein und Kapitel 3 und 4 nutzen eine
Erweiterung eines Retinotopiemechanismus, um Transformationen anzulegen. Kapitel 5
beschäftigt sich mit der postnatalen Organisation von topographischen Transformationen,
die auch die Einbeziehung einer Merkmalsextrahierung ermöglicht.

2 Ein Generatives Modell zur Ontogenese der Retinotopie

Kapitel 2 führt zuerst in die theoretischen Grundlagen probabilistischer generativer Mod-
elle ein, welche die Wahrscheinlichkeitsverteilung in der Eingabeschicht modellieren und
somit den Informationsgehalt der Daten möglichst gut abdecken. Aufbauend auf dieser
Methodik wird ein probabilistisches Modell zweiter Ordnung zur Entstehung retinotoper
Abbildungen entwickelt. Standardmodelle zweiter Ordnung, wie zum Beispiel die proba-
bilistische Hauptkomponentenanalyse (pPCA) oder die Faktoranalyse (FA), versuchen
die Redundanz in den Ausgabeeinheiten zu reduzieren. Diese Annahme ist inkonsistent
mit den allgegenwärtigen Nachbarschaftskorrelationen im Gehirn. Deshalb wird in dem
vorgeschlagenen Modell sowohl die Nachbarschaftskorrelation in der Eingabeschicht, wie
auch die a priori Wahrscheinlichkeitsverteilung der Ausgabeeinheiten, explizit mit Nach-
barschaftskorrelationen modelliert. Da Verbindungen zwischen Arealen im Gehirn in der
Regel exzitatorisch sind, nehmen wir außerdem nicht-negative Gewichte als generative
Modellparameter an.

Die einfache Struktur des Modells führt zur Reduktion des probabilistischen Lernens
auf eine algebraische Gleichung. Unter den Modellannahmen ist es möglich zu beweisen,
dass die Gewichtsmatrix orthogonal sein muss und, dass eine solche orthogonale Matrix
notwendig eine Permutationsmatrix ist. Zudem muss die Kovarianzmatrix, die die
Nachbarschaften in der Eingabe- und Ausgabeschicht definiert, invariant unter dieser
Permutationsmatrix sein. Für eine realistisch gewählte Kovarianzmatrix bleibt deshalb
nur die Identität als Lösung, oder eine Spiegelung – beides retinotope Abbildungen.

Um die Analytik zu bestätigen wurden außerdem Simulationen des Modells durchgeführt.
Hierzu wird bei Eingabe eines Musters die maximum a posteriori Lösung für die Aus-
gabeschicht berechnet und anschließend werden mit einer lokalen Hebbschen Lernregel,
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die als Gradient des log likelihood definiert ist, die Gewichte angepasst. In Erweiterung
zur Bestätigung der analytischen Resultate, zeigen die Simulationen weiterhin, dass
die Annahme nicht-negativer Gewichte durch die Annahme dünn besiedelter Gewichte
(sparse weights) getauscht werden kann, die außerdem zu schnellerer Konvergenz führt.
Zudem zeigen die Resultate der Simulation, dass das Modell auch für verschieden große
Eingabe- und Ausgabeschichten anwendbar ist, also verschiedene Skalen organisieren
kann. Dies ist besonders wichtig als Grundlage für das Modell im dritten Kapitel, da
hier Transformationen mit unterschiedlicher Skala organisiert werden.

3 Selbstorganisation Topographischer Bilinearer Netzwerke zur
Invarianten Objekterkennung

Im Gegensatz zum vorherigen Kapitel, in dem ein detaillierter Retinotopiemechanis-
mus eingeführt wurde um eine einzelne topographische Abbildung zu organisieren, wird
im dritten Kapitel ein Modell zur pränatalen Organisation mehrerer topographischer
Abbildungen vorgeschlagen. Postnatale Aktivierung einer dieser Abbildungen kann
genutzt werden um Eingaben gezielt zu transformieren und somit etwaige Objekttrans-
formationen auf der Retina (zum Beispiel Translation) zu normalisieren und invariante
Objekterkennung zu ermöglichen.

Das dritte Kapitel baut auf dem Häussler System auf, einer abstrakten Formulierung
des Retinotopiemechanismus, das durch adiabatische Elimination der Aktivitätsvariablen
erreicht wird. Somit ist die Selbstorganisation als direkte Wechselwirkung der Gewichte
formuliert. In Erweiterung zum klassischen Häussler Modell, das lediglich Nachbarschaft-
skorrelationen in der Eingabeschicht annimmt, werden die Gewichtsinteraktionen für
Eingaben mit pränatalen (retinalen) Wellen in einem bilinearen Modell abgeleitet. Reti-
nale Wellen starten in der Regel spontan an einer zufälligen Position der Retina und
führen meist zu einfach zusammenhängenden Gebieten neuronaler Aktivität auf der
Retina. Bei Anlegen eines Eingabemusters (einer Welle zu einem bestimmten Zeitpunkt),
führt ein Winner-Take-All Wettbewerb unter den Kontrolleinheiten zu einer einzelnen
aktiven Einheit. Selektiert wird die Kontrolleinheit, deren zugehörige Gewichte am
Besten auf das aktuelle Muster passt. Durch Hebbsches Häussler Lernen spezialisiert
sich diese Kontrolleinheit nun weiter auf dieses Muster, bei gleichzeitiger Organisation
einer topographischen Abbildung aus dem aktiven Bereich aus der Eingabeschicht, der
durch die pränatale Welle definiert ist, auf die ganze Ausgabeschicht.

Für den eindimensionalen Fall zeigen die Simulationen eine zuverlässige Spezialisierung
der Kontrolleinheiten auf die einfach zusammenhängenden Eingabemuster. Da sich die
verwendeten Muster in Position und Menge der aktiven Eingabeeinheiten unterscheiden,
entwickeln sich topographische Transformationen mit unterschiedlichen Translations- und
Skalenparametern. Zusätzlich, wie schon in Kapitel 2 beschrieben, können die Gewichte
abhängig von den Anfangsbedingungen in eine spiegelsymmetrische topographische
Lösung konvergieren. Weitere Simulationen zeigen, dass die Transformationen auch mit
nicht einfach zusammenhängenden Eingabemustern organisiert werden können. Auch
im biologisch interessanteren zweidimensionalen Fall zeigen die Simulationen eine sta-
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bile Organisation mehrerer Transformationen, die abhängig von den zufällig gewählten
Anfangsbedingungen in den Gewichten, eine Rotation der Eingabemuster in die Aus-
gabeschicht implementieren.

In einem zusätzlichen Unterkapitel wird demonstriert, dass die Organisation ver-
schiedener Skalen nicht notwendig auf unterschiedlich großen Eingabemustern basieren
muss. Hierzu werden gleich große Eingabemuster an verschiedenen Stellen in der
Eingabeschicht angenommen. Durch eine unterschiedliche Gewinnwahrscheinlichkeit
der Kontrolleinheiten entwickeln diese Präferenzen für eine unterschiedliche Anzahl an
Eingabemustern: eine Kontrolleinheit mit hoher Gewinnwahrscheinlichkeit entwickelt
eine Abbildung mit großer Skala, während eine seltener gewinnende Einheit eine Trans-
formation mit kleinerer Skala organisiert.

4 Organisation von Translationen in Mehrschichtigen
Netzwerken

Im dritten Kapitel wurde eine komplette Verbindungsstruktur von der Eingabeschicht
zur Ausgabeschicht angenommen, das heißt jede Eingabeeinheit kann prinzipiell jede
Ausgabeeinheit beeinflussen. Für die hochdimensionalen Eingabemuster im Gehirn ist
diese Annahme jedoch unrealistisch, weshalb im vierten Kapitel ein bilineares Modell
entwickelt wird, das auch auf ein mehrschichtiges Netzwerk, einen “shifter curcuit”,
anwendbar ist: diese Netzwerkstruktur ermöglicht eine logarithmisch in der Anzahl der
Eingabezellen wachsende Anzahl an Synapsen, statt der prohibitiv quadratischen Anzahl.
Ausgenutzt wird in diesem Modell die Orthoginalität von Translationen im Raum der
Verbindungsstrukturen um diese durch harten Wettbewerb an einzelnen Synapsen zu
organisieren. Neurobiologisch ist dieser Mechanismus einfach durch Wettbewerb um einen
wachstumsregulierenden Transmitter realisierbar. Im Gegensatz zu dem Modell des dritten
Kapitels nimmt der Mechanismus, wie das Häussler System, nur nachbarschaftskorrelierte
Eingaben an, um Translationen zu organisieren und benötigt keine pränatalen Wellen die
ein einfach zusammenhängendes Gebiet definieren.

Da die entstehenden Gewichte der Kontrolleinheiten für das vorgeschlagene Modell im
Raum der möglichen Verbindungen disjunkt sein müssen, Retinotopiemechanismen allerd-
ings immer zwei mögliche Lösungen haben (eine, die die Ordnung der Eingabeeinheiten
erhält und eine, die diese spiegelt – siehe Kapitel 2), muss das Modell diese Lösungen
für alle Kontrolleinheiten konsistent einschränken. Hierzu untersuchen wir drei ver-
schiedene Möglichkeiten. Erstens die sequentielle Organisation: die erste topographische
Transformation entwickelt eine der beiden Möglichkeiten abhängig von den Gewichtsan-
fangsbedingungen und darauf folgende Transformationen fallen durch Wettbewerb mit
der Ersten in die gleiche Richtung. Zweitens kann eine Nachbarschaftskooperation von
Gewichten verschiedener Kontrolleinheiten genutzt werden um konsistente Lösungen zu
erreichen. Drittens, ist die Lösung auf einem mehrschichtigen shifter circuit ist durch die
bestehende Struktur schon im Voraus nur in eine Richtung möglich. Simulationen für
alle drei Fälle zeigen eine stabile Organisation von topographischen Abbildungen mit
verschiedenen Translationsparametern.
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5 Slowness zur konsistenten Merkmalsorganisation in
Topographischen Bilinearen Netzwerken

Kapitel 5 nutzt Methoden des probabilistischen Lernens, um ein generatives bilineares
Modell auf das Lernen einer optimalen Repräsentation der Eingabestatistiken im postna-
talen Fall zu optimieren. Da statistische Methoden zweiter Ordnung, wie zum Beispiel die
erweiterte Faktoranalyse aus Kapitel 2, keine lokalisierten rezeptiven Felder ermöglichen
und somit keine (örtliche) Topographie möglich ist, wird “sparseness” sowohl für die Aus-
gabeeinheiten wie auch die Kontrolleinheiten verwendet, um statistische Abhängigkeiten
höherer Ordnung zu lernen und gleichzeitig Topographie zu implementieren.

Die Anwendung des Modells auf natürliche Bilder für den Fall einer einzigen Kontrollein-
heit zeigt, dass lokalisierte, Bandpass filternde rezeptive Felder entstehen, die sehr ähnlich
zu primären kortikalen rezeptiven Feldern sind. Die konvergierten Gewichte können gut
mit einer Gaborfunktion gefittet werden. Mit dieser Methode können topographische
Karten bezüglich der Parameter der Gaborfunktion, zum Beispiel Orientierung und Fre-
quenz, analysiert werden. Die Ergebnisse zeigen, dass durch die erzwungene Topographie
Orientierungs- und Frequenzkarten entstehen, das heißt benachbarte Ausgabeeinheiten
ähneln sich in ihren Gaborparametern. Entsprechende Karten wurden auch experimentell
im Kortex gefunden.

Im Falle von zwei Kontrolleinheiten wurden die natürlichen Bilder als Eingabemuster
an unterschiedlichen Positionen und mit unterschiedlicher Transformation gezeigt (zum
Beispiel einer Drehung um 45◦). Obwohl prinzipiell ein Populationscode in den Kon-
trolleinheiten für das Modell dieses Kapitels möglich ist, führt die “sparseness” der
Kontrolleinheiten nach dem Lernen der generativen Gewichte zur Aktivierung einer einzel-
nen Kontrolleinheit zu einem Zeitpunkt. Das Modell ist also als Erweiterung der Modelle
der vorigen zwei Kapitel zu verstehen und ist für die benutzten Eingabemuster konsistent
mit einem Winner-Take-All Mechanismus. Um konsistente Merkmalsrepräsentierungen
in den Ausgabeeinheiten für verschiedene, nicht zeitgleich aktive Kontrolleinheiten zu
erreichen, benutzt das Modell “slowness” der Ausgabezellen, das heißt es wird die zeitliche
Kontinuität der Identität der Objekte in der Eingabeschicht ausgenutzt, obwohl ihre
Repräsentierung sich ändern kann (zum Beispiel die erwähnten 45◦). Simulationen
zeigen, dass verschiedene Kontrolleinheiten konsistente und den Eingabetransformationen
entsprechende rezeptive Felder entwickeln. Somit wird die Aktivierung verschiedener
Kontrolleinheiten genutzt, um invariante Repräsentierungen bezüglich der gezeigten
Eingaben in den Ausgaben zu erzeugen, während die Kontrollaktivität kodiert welche
Transformation hierzu nötig ist und somit explizit den Ort des Objektes repräsentiert.

Wenn die Eingabemuster eine klare Orientierung aufweisen, zum Beispiel benutzen wir
hierzu Bilder von Gesichtern aus der FERET Datenbank, so können rotierte Versionen
(wir verwenden um 90◦ gedrehte Gesichter) dieser Muster an der gleichen Position in der
Eingabeschicht gezeigt werden, da dann eine klare Signatur der Transformation in der
Eingabe vorhanden ist. Simulationen für diesen Fall zeigen, dass die zwei Kontrolleinheiten
ihre Gewichte auf jeweils eine Orientierung der Gesichter spezialisieren. Bei Präsentierung
eines einzelnen Musters ist das Modell nun in der Lage die Identität des Gesichts in
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einem Populationscode in der Ausgabeschicht zu repräsentieren, während die aktive
Kontrolleinheit kodiert, ob es sich um ein aufrechtes oder gedrehtes Gesicht handelt –
das Modell ist also völlig unüberwacht in der Lage die zugrunde liegenden Ursachen
(Identität und Transformation) zu separieren und separat zu represäntieren.

6 Fazit und Ausblick

Ein zentraler Punkt dieser Arbeit ist, dass Invarianztransformationen, also Transforma-
tionen die es ermöglichen Eingabemuster in eine normalisierte Form zu konvertieren,
bereits vorgeburtlich angelegt werden können. Im Gegensatz zur klassischen Perspektive
einer immer abstrakter werdenden Merkmalsrepräsentierung der Eingabemuster, sind
Transformationen als grundlegendes Prinzip der Gehirnfunktion auch auf unbekannte
Eingabemuster anwendbar - und bieten somit ein grösseres Verallgemeinerungspotential.
Merkmalsextrahierung hingegen ist immer auf eine bestimmte Eingabestatistik optimiert.
Obwohl Transformationen als grundlegendes Prinzip des Gehirns in dieser Arbeit nur
für die visuelle Domäne studiert wurde, sollte eine Anwendung in anderen Modalitäten
ebenfalls von großem Vorteil sein. Zum Beispiel könnten grammatikalische Regeln, die
unabhängig von spezifischen Wörtern sind, mit Transformationen implementiert werden.
Außerdem kann das Problem der Kontrolle der Motorik als invers zum Invarianzproblem
angesehen werden, da hier eine Instanz aus einer abstrakteren Repräsentierung abgeleitet
werden muss. Da der bilineare Ansatz den wir verfolgen invertierbar ist und zudem
im Falle von Kapitel 5 sogar generativ, sind motorische Kontrollprobleme zusätzliche
mögliche Anwendwungsgebiete der eingeführten Netzwerke.

Es ist wichtig hervorzuheben, dass der zentrale These der Arbeit nicht lautet, dass die
Organisation von Invarianztransformationen zur Geburt oder dem Augenöffnen enden.
Im Gegenteil ist die Hauptthese, dass die Organisation der Invarianztransformationen
bereits vor der Geburt anfängt.

Zukünftige Arbeiten sollten deshalb die Integration der pränatalen und postnatalen
Lernphasen untersuchen. Ein erster Schritt in diese Richtung wurde in der postnatalen
Studie aus Kapitel 5 unternommen, um auch eine Merkmalsextraktion zu erreichen,
allerdings bisher ohne Einbeziehung der pränatalen Organisation. Desweiteren würde eine
pränatale Studie des Modells aus dem fünften Kapitel zeigen, ob entsprechende Merkmale
auch schon vorgeburtlich organisiert werden können. Letztlich ist die topographische
Organisation der Ausgabeschicht der Modelle optimal geeignet um diese in Hierarchien
zu implementieren und den Suchraum für Lernmechanismen sehr effizient einzuschränken.
Eine Hintereinanderschaltung dieses kanonischen Netzes ist deshalb potentiell in der Lage
mögliche Repräsentierungen in höheren Arealen des Gehirns aufzudecken und zu erklären.
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