Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,1'-(9-Octyl-9*H*-carbazole-3,6-diyl)diethanone

### Aamer Saeed,<sup>a</sup>\* Madiha Kazmi,<sup>a</sup> Shahid Ameen Samra,<sup>a</sup> Madiha Irfan<sup>a</sup> and Michael Bolte<sup>b</sup>

<sup>a</sup>Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and <sup>b</sup>Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 21 June 2010; accepted 20 July 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.086; data-to-parameter ratio = 14.6.

The central structural element of the title compound,  $C_{24}H_{29}NO_2$ , is a carbazole unit substituted with two acetyl residues and an octyl chain. The acetyl residues are nearly coplanar [dihedral angles = 5.37 (14) and 1.0 (3)°] with the carbazole unit which is essentially planar (r.m.s. deviation for all non-H atoms = 0.025 Å). The octyl chain adopts an all-*trans* conformation. The crystal packing is stabilized by  $C-H\cdots O$  hydrogen bonds.

#### **Related literature**

For details of the biological activity of carbazoles, see: Yamashita *et al.* (1992). For properties of aromatic carbazolyl groups, see: Law (1992). For the properties and applications of carbazole-containing polymers, see: Strohriegl & Grazulevicius (1997).



### **Experimental**

#### Crystal data

 $C_{24}H_{29}NO_2$  $V = 4086.7 (10) Å^3$  $M_r = 363.48$ Z = 8Orthorhombic, *Pbca*Mo K $\alpha$  radiationa = 18.746 (2) Å $\mu = 0.07 \text{ mm}^{-1}$ b = 10.3842 (18) ÅT = 173 Kc = 20.994 (3) Å $0.32 \times 0.29 \times 0.12 \text{ mm}$ 

#### Data collection

| Stow | IPDS II diffractometer  |
|------|-------------------------|
| 8614 | measured reflections    |
| 3613 | independent reflections |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.044 & 248 \text{ parameters} \\ wR(F^2) &= 0.086 & H\text{-atom parameters constrained} \\ S &= 0.85 & \Delta\rho_{\text{max}} = 0.20 \text{ e } \text{ Å}^{-3} \\ 3613 \text{ reflections} & \Delta\rho_{\text{min}} = -0.20 \text{ e } \text{ Å}^{-3} \end{split}$$

2024 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.031$ 

# Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| C13-H13···O2 <sup>i</sup>   | 0.95 | 2.59                    | 3.474 (2)    | 154                       |
| $C23-H23\cdots O2^{i}$      | 0.95 | 2.39                    | 3.298 (3)    | 160                       |
| $C28-H28A\cdotsO1^{i}$      | 0.98 | 2.40                    | 3.363 (2)    | 166                       |
| C26-H26···O1 <sup>ii</sup>  | 0.95 | 2.54                    | 3.484 (2)    | 173                       |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x,  $-y + \frac{1}{2}$ ,  $z + \frac{1}{2}$ .

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2151).

#### References

- Law, K. Y. (1992). Chem. Rev. 93, 449-453.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Strohriegl, P. & Grazulevicius, J. V. (1997). Photoconductive Polymers, edited by H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, Vol. 1, pp. 553–561. New York: Wiley.
- Yamashita, Y., Fujii, N., Murkata, C., Ashiawa, T., Okabe, M. & Nakano, H. (1992). *Biochemistry*, **31**, 12069–12074.

Acta Cryst. (2010). E66, o2118 [doi:10.1107/S1600536810028928]

## 1,1'-(9-Octyl-9H-carbazole-3,6-diyl)diethanone

## A. Saeed, M. Kazmi, S. Ameen Samra, M. Irfan and M. Bolte

#### Comment

Carbazole and its derivatives have attracted extensive interest because of their biological activity (Yamashita *et al.* 1992). The carbazole based compounds demonstrate high thermal, morphological, chemical and environmental stability. Two basic properties of the fully aromatic carbazolyl group are the easy oxidizability of nitrogen atom and its ability to transport positive charge centers *via* the radical cation specie (Law, 1992). Carbazole containing polymers have been extensively studied for different applications due to their good hole transport and electroluminescent properties. (Strohriegl & Grazulevicius 1997). The title compound was prepared in order to study some photophysical properties of carbazole derivatives. It was synthesized by the reaction of carbazole and with octyl bromide in a two phase system of 50% aqueous KOH and benzene in the presence of tetrabutylammonium bromide as phase transfer catalystfollowed by Friedel-Craft acetylation using anhydrous aluminium chloride.

The central structural element of the title compound is a carbazole moiety substituted with two acetyl residues and an octyl-chain. The acetyl residues are coplanar [dihedral angles  $5.37 (14)^{\circ}$  and  $1.0(3^{\circ}]$  with the carbazole moiety which is essentially planar (r.m.s. deviation for all non-H atoms 0.025Å). The octyl chain adopts an all *trans* conformation. The crystal packing is stabilized by C—H…O hydrogen bonds.

### Experimental

Aluminium chloride, 4.0 g (3 mmol) and acetyl chloride, 2.35 g (3 mmol) were added successively to 10 ml of dry chloroform. The mixture was stirred for 10 minutes at 0 C to obtain a clear solution. A solution of 4.46 g (2 mmol) of N-octylcarbazole in 10 ml of dry chloroform was added drop wise to the above solution at 0°C during 15 minutes. The reaction mixture was stirred at room temperature for three hours. After the completion of the reaction (TLC control), the reaction mixture was poured into a stirred solution of 10% HCl (50 ml). The organic layer was separated, washed with distilled water three times and treated with anhydrous NaSO<sub>4</sub>. The solvent was removed *in vacuo* to leave a solid which was recrystallized from ethanol to afford title compund (85%) as dull green crystals having bread mold smell. m.p. 145 °C; Anal. calcd. for  $C_{16}H_{23}N_{O4}$ : C, 65.51; H, 9.70; N, 4.77%; found: C, 65.58; H, 9.65; N, 4.81%.

#### Refinement

H atoms could be located in a difference Fourier map. They were refined using a riding model with isotropic displacement parameters  $U_{iso}(H)$  set to  $1.2U_{eq}(C)$  and with C—H ranging from 0.95Å to 0.99 or  $U_{iso}(H)$  set to  $1.5U_{eq}(C_{methyl})$  and with C—H = 0.98 Å. The methyl groups were allowed to rotate but not to tip.

Figures



Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

# 1,1'-(9-Octyl-9H-carbazole-3,6-diyl)diethanone

| Crystal d | lata |
|-----------|------|
|-----------|------|

| C <sub>24</sub> H <sub>29</sub> NO <sub>2</sub> | F(000) = 1568                                         |
|-------------------------------------------------|-------------------------------------------------------|
| $M_r = 363.48$                                  | $D_{\rm x} = 1.182 {\rm ~Mg~m}^{-3}$                  |
| Orthorhombic, Pbca                              | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ac 2ab                         | Cell parameters from 3794 reflections                 |
| a = 18.746 (2) Å                                | $\theta = 3.6 - 25.9^{\circ}$                         |
| b = 10.3842 (18)  Å                             | $\mu = 0.07 \text{ mm}^{-1}$                          |
| c = 20.994 (3) Å                                | T = 173  K                                            |
| $V = 4086.7 (10) \text{ Å}^3$                   | Plate, colourless                                     |
| <i>Z</i> = 8                                    | $0.32\times0.29\times0.12~mm$                         |

## Data collection

| Stow IPDS II two-circle diffractometer   | 2024 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.031$                                                     |
| graphite                                 | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ |
| ω scans                                  | $h = 0 \rightarrow 22$                                                    |
| 8614 measured reflections                | $k = 0 \rightarrow 12$                                                    |
| 3613 independent reflections             | $l = 0 \rightarrow 24$                                                    |

## Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                      |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.044$ | H-atom parameters constrained                                                             |
| $wR(F^2) = 0.086$               | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0389P)^{2}]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| <i>S</i> = 0.85                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                                       |
| 3613 reflections                | $\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$                                       |
| 248 parameters                  | $\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$                                    |
|                                 |                                                                                           |

0 restraints

Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc<sup>\*</sup>=kFc[1+0.001xFc<sup>2</sup> $\lambda^3$ /sin(20)]<sup>-1/4</sup>

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (3)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x            | У            | Z            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|--------------|---------------------------|
| N1  | 0.70663 (9)  | 0.23596 (8)  | 0.66696 (8)  | 0.0259 (4)                |
| 01  | 0.68112 (9)  | 0.13339 (7)  | 0.37076 (7)  | 0.0482 (4)                |
| 02  | 0.45645 (10) | 0.58614 (10) | 0.56767 (8)  | 0.0579 (5)                |
| C1  | 0.75428 (11) | 0.21735 (9)  | 0.72139 (9)  | 0.0300 (5)                |
| H1A | 0.7787       | 0.1332       | 0.7170       | 0.036*                    |
| H1B | 0.7255       | 0.2147       | 0.7609       | 0.036*                    |
| C2  | 0.81004 (11) | 0.32270 (10) | 0.72736 (9)  | 0.0340 (5)                |
| H2A | 0.8416       | 0.3023       | 0.7638       | 0.041*                    |
| H2B | 0.7856       | 0.4050       | 0.7370       | 0.041*                    |
| C3  | 0.85589 (12) | 0.34086 (10) | 0.66809 (10) | 0.0335 (5)                |
| H3A | 0.8247       | 0.3640       | 0.6318       | 0.040*                    |
| H3B | 0.8797       | 0.2584       | 0.6577       | 0.040*                    |
| C4  | 0.91269 (11) | 0.44553 (10) | 0.67644 (10) | 0.0342 (5)                |
| H4A | 0.8892       | 0.5259       | 0.6907       | 0.041*                    |
| H4B | 0.9463       | 0.4186       | 0.7103       | 0.041*                    |
| C5  | 0.95472 (12) | 0.47302 (9)  | 0.61566 (10) | 0.0358 (5)                |
| H5A | 0.9770       | 0.3921       | 0.6007       | 0.043*                    |
| H5B | 0.9213       | 0.5024       | 0.5822       | 0.043*                    |
| C6  | 1.01263 (12) | 0.57443 (10) | 0.62449 (10) | 0.0376 (5)                |
| H6A | 1.0499       | 0.5396       | 0.6531       | 0.045*                    |
| H6B | 0.9916       | 0.6509       | 0.6455       | 0.045*                    |
| C7  | 1.04725 (13) | 0.61615 (10) | 0.56216 (12) | 0.0472 (6)                |
| H7A | 1.0098       | 0.6487       | 0.5331       | 0.057*                    |
| H7B | 1.0695       | 0.5402       | 0.5418       | 0.057*                    |
| C8  | 1.10405 (14) | 0.72094 (10) | 0.57099 (14) | 0.0696 (9)                |
| H8A | 1.0812       | 0.8006       | 0.5855       | 0.104*                    |
| H8B | 1.1282       | 0.7366       | 0.5303       | 0.104*                    |
| H8C | 1.1390       | 0.6926       | 0.6028       | 0.104*                    |
| C11 | 0.71650 (11) | 0.18471 (9)  | 0.60607 (9)  | 0.0251 (4)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C12  | 0.66565 (10) | 0.23960 (8)  | 0.56417 (9)  | 0.0217 (4) |
|------|--------------|--------------|--------------|------------|
| C13  | 0.66665 (11) | 0.20425 (9)  | 0.49974 (9)  | 0.0249 (4) |
| H13  | 0.6334       | 0.2406       | 0.4707       | 0.030*     |
| C14  | 0.71716 (11) | 0.11499 (9)  | 0.47877 (10) | 0.0260 (4) |
| C15  | 0.76638 (11) | 0.06208 (9)  | 0.52180 (10) | 0.0295 (5) |
| H15  | 0.8003       | 0.0013       | 0.5068       | 0.035*     |
| C16  | 0.76684 (11) | 0.09608 (9)  | 0.58571 (9)  | 0.0290 (5) |
| H16  | 0.8004       | 0.0599       | 0.6145       | 0.035*     |
| C17  | 0.72007 (12) | 0.08031 (9)  | 0.40940 (10) | 0.0310 (5) |
| C18  | 0.77287 (12) | -0.01784 (9) | 0.38732 (9)  | 0.0405 (6) |
| H18A | 0.7674       | -0.0314      | 0.3414       | 0.061*     |
| H18B | 0.7646       | -0.0992      | 0.4098       | 0.061*     |
| H18C | 0.8213       | 0.0127       | 0.3963       | 0.061*     |
| C21  | 0.65132 (10) | 0.32388 (11) | 0.66472 (9)  | 0.0240 (4) |
| C22  | 0.62341 (11) | 0.32930 (10) | 0.60171 (9)  | 0.0234 (4) |
| C23  | 0.56768 (10) | 0.41338 (8)  | 0.58793 (9)  | 0.0249 (4) |
| H23  | 0.5486       | 0.4182       | 0.5461       | 0.030*     |
| C24  | 0.54038 (10) | 0.49026 (10) | 0.63647 (9)  | 0.0249 (4) |
| C25  | 0.56898 (11) | 0.48308 (11) | 0.69854 (9)  | 0.0264 (4) |
| H25  | 0.5495       | 0.5364       | 0.7309       | 0.032*     |
| C26  | 0.62438 (11) | 0.40090 (8)  | 0.71366 (9)  | 0.0262 (4) |
| H26  | 0.6434       | 0.3969       | 0.7556       | 0.031*     |
| C27  | 0.48115 (12) | 0.58090 (11) | 0.62149 (10) | 0.0320 (5) |
| C28  | 0.44961 (11) | 0.66343 (9)  | 0.67328 (10) | 0.0367 (5) |
| H28A | 0.4168       | 0.7263       | 0.6544       | 0.055*     |
| H28B | 0.4879       | 0.7088       | 0.6957       | 0.055*     |
| H28C | 0.4235       | 0.6089       | 0.7034       | 0.055*     |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$   | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|------------|-------------|--------------|--------------|-------------|
| N1  | 0.0267 (9)  | 0.0301 (4) | 0.0209 (9)  | 0.0028 (7)   | -0.0033 (8)  | 0.0032 (7)  |
| 01  | 0.0590 (11) | 0.0599 (4) | 0.0255 (9)  | 0.0280 (8)   | -0.0093 (9)  | -0.0055 (6) |
| O2  | 0.0641 (12) | 0.0820 (6) | 0.0276 (9)  | 0.0404 (9)   | -0.0134 (9)  | -0.0098 (9) |
| C1  | 0.0336 (12) | 0.0367 (4) | 0.0198 (11) | 0.0043 (9)   | -0.0051 (11) | 0.0048 (8)  |
| C2  | 0.0343 (13) | 0.0419 (4) | 0.0258 (12) | 0.0033 (10)  | -0.0061 (10) | -0.0030 (9) |
| C3  | 0.0323 (11) | 0.0375 (4) | 0.0306 (12) | 0.0017 (9)   | -0.0050 (11) | -0.0043 (9) |
| C4  | 0.0329 (11) | 0.0383 (5) | 0.0315 (13) | 0.0030 (9)   | -0.0040 (11) | -0.0048 (9) |
| C5  | 0.0390 (13) | 0.0353 (4) | 0.0330 (13) | 0.0008 (9)   | -0.0035 (11) | 0.0015 (7)  |
| C6  | 0.0354 (12) | 0.0404 (4) | 0.0372 (13) | 0.0002 (10)  | -0.0037 (11) | -0.0020 (8) |
| C7  | 0.0437 (15) | 0.0484 (5) | 0.0494 (16) | -0.0020 (10) | 0.0038 (13)  | 0.0011 (10) |
| C8  | 0.0539 (19) | 0.0634 (6) | 0.092 (2)   | -0.0126 (11) | 0.0141 (18)  | 0.0065 (11) |
| C11 | 0.0276 (11) | 0.0257 (4) | 0.0219 (11) | -0.0021 (9)  | 0.0010 (10)  | 0.0025 (8)  |
| C12 | 0.0219 (10) | 0.0199 (4) | 0.0233 (11) | -0.0022 (8)  | -0.0003 (9)  | 0.0009 (7)  |
| C13 | 0.0269 (10) | 0.0267 (4) | 0.0211 (11) | 0.0002 (8)   | -0.0018 (10) | 0.0013 (7)  |
| C14 | 0.0292 (10) | 0.0264 (4) | 0.0224 (11) | 0.0011 (8)   | -0.0007 (10) | -0.0010 (8) |
| C15 | 0.0316 (12) | 0.0272 (4) | 0.0298 (12) | 0.0070 (8)   | -0.0010 (10) | -0.0001 (8) |
| C16 | 0.0315 (13) | 0.0287 (4) | 0.0268 (11) | 0.0059 (9)   | -0.0055 (10) | 0.0016 (8)  |

| C17             | 0.0344 (12)   | 0.0304 (4)           | 0.0281 (12) | 0.0030 (9)  | -0.0002 (11) | -0.0031 (8) |
|-----------------|---------------|----------------------|-------------|-------------|--------------|-------------|
| C18             | 0.0476 (15)   | 0.0435 (5)           | 0.0303 (13) | 0.0130 (10) | -0.0009 (11) | -0.0073 (7) |
| C21             | 0.0238 (10)   | 0.0266 (4)           | 0.0217 (11) | -0.0039 (8) | 0.0013 (9)   | 0.0037 (8)  |
| C22             | 0.0228 (10)   | 0.0275 (4)           | 0.0200 (10) | -0.0014 (9) | 0.0015 (9)   | 0.0026 (8)  |
| C23             | 0.0252 (10)   | 0.0293 (4)           | 0.0202 (10) | 0.0004 (8)  | -0.0014 (9)  | 0.0009 (7)  |
| C24             | 0.0243 (10)   | 0.0305 (5)           | 0.0200 (11) | 0.0034 (9)  | 0.0012 (10)  | 0.0012 (8)  |
| C25             | 0.0273 (10)   | 0.0315 (4)           | 0.0204 (11) | 0.0002 (9)  | 0.0038 (9)   | -0.0006 (8) |
| C26             | 0.0281 (11)   | 0.0324 (4)           | 0.0180 (10) | -0.0020 (8) | 0.0014 (10)  | 0.0013 (7)  |
| C27             | 0.0325 (13)   | 0.0384 (5)           | 0.0251 (12) | 0.0054 (10) | 0.0012 (10)  | 0.0012 (9)  |
| C28             | 0.0377 (14)   | 0.0439 (4)           | 0.0285 (12) | 0.0140 (9)  | 0.0032 (11)  | -0.0022 (8) |
| Geometric paran | neters (Å, °) |                      |             |             |              |             |
| N1—C21          |               | 1 382 (2)            | C11—        | C16         | 1 386        | (2)         |
| N1-C11          |               | 1.302 (2)            | C11—        | C12         | 1.500        | (2)         |
| N1—C1           |               | 1.597(2)<br>1 463(2) | C12—        | C13         | 1.402        | (2)         |
| 01-C17          |               | 1.103(2)<br>1.223(2) | C12         | C22         | 1.455        | (2)         |
| $0^{2}-0^{27}$  |               | 1.223(2)<br>1.222(3) | C12         | C14         | 1.455        | (2)         |
| C1 - C2         |               | 1.222(3)             | C13         | H13         | 0.950        | 0           |
| C1H1A           |               | 0.9900               | C14-        | C15         | 1 403        | (3)         |
| C1—H1B          |               | 0.9900               | C14—        | C17         | 1.103        | (3)         |
| $C^2 - C^3$     |               | 1 524 (3)            | C15-        | C16         | 1.301        | (3)         |
| C2—H2A          |               | 0.9900               | C15         | H15         | 0.950        | 0           |
| C2_H2B          |               | 0.9900               | C16-        | H16         | 0.950        | 0           |
| $C_2 = C_4$     |               | 1.532(2)             | C17—        | C18         | 1 494        | (2)         |
| C3_H3A          |               | 0.9900               | C18-        | H18A        | 0.980        | 0           |
| C3_H3B          |               | 0.9900               | C18-        | H18R        | 0.980        | 0           |
| C4-C5           |               | 1 527 (3)            | C18-        | H18C        | 0.980        | 0           |
| C4 C5           |               | 0.9900               | C21_        | C26         | 1 397        | (2)         |
| C4—H4B          |               | 0.9900               | C21         | C20         | 1.377        | (2)         |
| C5-C6           |               | 1.524(2)             | C22—        | C22         | 1 302        | (3)         |
| C5_H5A          |               | 0.0000               | C22-        | C24         | 1.302        | (2)         |
| C5—H5B          |               | 0.9900               | C23-        | H23         | 0.950        | 0           |
| C6-C7           |               | 1.524(3)             | C24-        | C25         | 1.411        | (3)         |
| С6—Н6А          |               | 0.9900               | C24-        | C25         | 1.411        | (3)         |
| C6—H6B          |               | 0.9900               | C25-        | C26         | 1 381        | (2)         |
| C7-C8           |               | 1 534 (3)            | C25         | H25         | 0.950        | 0           |
| С7—Н7А          |               | 0.9900               | C26-        | H25         | 0.950        | 0           |
| C7H7B           |               | 0.9900               | C27-        | C28         | 1 505        | (3)         |
| C8-H8A          |               | 0.9900               | C28         | H28A        | 0.980        | 0           |
| C8_H8B          |               | 0.9800               | C28         | H28R        | 0.980        | 0           |
| C8—H8C          |               | 0.9800               | C28         | H28D        | 0.980        | 0           |
| C21—N1—C11      |               | 108.65 (15)          | N1—0        | C11—C12     | 109.0        | 1 (13)      |
| C21—N1—C1       |               | 124.87 (15)          | C13—        | C12—C11     | 119.0        | 0 (14)      |
| C11—N1—C1       |               | 125.69 (15)          | C13—        | C12—C22     | 134.2        | 6 (16)      |
| N1—C1—C2        |               | 112.93 (12)          | C11—        | C12—C22     | 106.7        | 0 (16)      |
| N1—C1—H1A       |               | 109.0                | C14—        | C13—C12     | 119.1        | 6 (17)      |
| С2—С1—Н1А       |               | 109.0                | C14—        | С13—Н13     | 120.4        |             |
| N1—C1—H1B       |               | 109.0                | C12—        | С13—Н13     | 120.4        |             |
|                 |               |                      |             |             |              |             |

| C2_C1_H1B    | 109.0       | C13_C14_C15     | 120 19 (17)  |
|--------------|-------------|-----------------|--------------|
| HIA—CI—HIB   | 107.8       | C13—C14—C17     | 119.33 (17)  |
| C1 - C2 - C3 | 114 21 (15) | C15-C14-C17     | 120 44 (15)  |
| C1—C2—H2A    | 108.7       | C16—C15—C14     | 121.80 (15)  |
| С3—С2—Н2А    | 108.7       | C16—C15—H15     | 119.1        |
| C1—C2—H2B    | 108.7       | C14—C15—H15     | 119.1        |
| C3—C2—H2B    | 108.7       | C11—C16—C15     | 117.59 (17)  |
| H2A—C2—H2B   | 107.6       | C11—C16—H16     | 121.2        |
| C2—C3—C4     | 112.73 (16) | C15—C16—H16     | 121.2        |
| С2—С3—НЗА    | 109.0       | O1—C17—C18      | 119.81 (17)  |
| С4—С3—Н3А    | 109.0       | O1—C17—C14      | 120.92 (15)  |
| С2—С3—Н3В    | 109.0       | C18—C17—C14     | 119.25 (17)  |
| С4—С3—Н3В    | 109.0       | C17—C18—H18A    | 109.5        |
| НЗА—СЗ—НЗВ   | 107.8       | C17—C18—H18B    | 109.5        |
| C5—C4—C3     | 113.32 (16) | H18A—C18—H18B   | 109.5        |
| С5—С4—Н4А    | 108.9       | C17—C18—H18C    | 109.5        |
| С3—С4—Н4А    | 108.9       | H18A—C18—H18C   | 109.5        |
| С5—С4—Н4В    | 108.9       | H18B—C18—H18C   | 109.5        |
| C3—C4—H4B    | 108.9       | N1—C21—C26      | 128.64 (17)  |
| H4A—C4—H4B   | 107.7       | N1—C21—C22      | 109.47 (16)  |
| C6—C5—C4     | 113.28 (17) | C26—C21—C22     | 121.87 (16)  |
| С6—С5—Н5А    | 108.9       | C23—C22—C21     | 119.59 (16)  |
| С4—С5—Н5А    | 108.9       | C23—C22—C12     | 134.23 (17)  |
| C6—C5—H5B    | 108.9       | C21—C22—C12     | 106.15 (15)  |
| С4—С5—Н5В    | 108.9       | C24—C23—C22     | 118.92 (17)  |
| Н5А—С5—Н5В   | 107.7       | С24—С23—Н23     | 120.5        |
| C5—C6—C7     | 113.29 (18) | С22—С23—Н23     | 120.5        |
| С5—С6—Н6А    | 108.9       | C23—C24—C25     | 120.40 (16)  |
| С7—С6—Н6А    | 108.9       | C23—C24—C27     | 118.81 (17)  |
| С5—С6—Н6В    | 108.9       | C25—C24—C27     | 120.78 (17)  |
| С7—С6—Н6В    | 108.9       | C26—C25—C24     | 122.04 (16)  |
| Н6А—С6—Н6В   | 107.7       | С26—С25—Н25     | 119.0        |
| C6—C7—C8     | 113.2 (2)   | С24—С25—Н25     | 119.0        |
| С6—С7—Н7А    | 108.9       | C25—C26—C21     | 117.18 (17)  |
| С8—С7—Н7А    | 108.9       | C25—C26—H26     | 121.4        |
| С6—С7—Н7В    | 108.9       | C21—C26—H26     | 121.4        |
| С8—С7—Н7В    | 108.9       | O2—C27—C24      | 120.39 (18)  |
| H7A—C7—H7B   | 107.8       | O2—C27—C28      | 119.58 (18)  |
| С7—С8—Н8А    | 109.5       | C24—C27—C28     | 120.00 (18)  |
| С7—С8—Н8В    | 109.5       | C27—C28—H28A    | 109.5        |
| H8A—C8—H8B   | 109.5       | C27—C28—H28B    | 109.5        |
| С7—С8—Н8С    | 109.5       | H28A—C28—H28B   | 109.5        |
| H8A—C8—H8C   | 109.5       | С27—С28—Н28С    | 109.5        |
| H8B—C8—H8C   | 109.5       | H28A—C28—H28C   | 109.5        |
| C16—C11—N1   | 128.72 (17) | H28B—C28—H28C   | 109.5        |
| C16—C11—C12  | 122.26 (16) |                 |              |
| C21—N1—C1—C2 | -76.3 (2)   | C13—C14—C17—C18 | -178.38 (14) |
| C11—N1—C1—C2 | 92.42 (16)  | C15—C14—C17—C18 | 4.0 (2)      |
| N1—C1—C2—C3  | -56.0 (2)   | C11—N1—C21—C26  | -177.94 (14) |

| C1—C2—C3—C4     | -178.57 (13) | C1—N1—C21—C26   | -7.6 (2)     |
|-----------------|--------------|-----------------|--------------|
| C2—C3—C4—C5     | -174.96 (14) | C11—N1—C21—C22  | 0.98 (17)    |
| C3—C4—C5—C6     | -178.36 (13) | C1—N1—C21—C22   | 171.30 (15)  |
| C4—C5—C6—C7     | -171.59 (14) | N1-C21-C22-C23  | -179.02 (12) |
| C5—C6—C7—C8     | 178.39 (15)  | C26—C21—C22—C23 | 0.0 (2)      |
| C21—N1—C11—C16  | 178.24 (14)  | N1-C21-C22-C12  | -0.66 (17)   |
| C1—N1—C11—C16   | 8.0 (2)      | C26-C21-C22-C12 | 178.35 (13)  |
| C21—N1—C11—C12  | -0.92 (16)   | C13—C12—C22—C23 | 0.5 (3)      |
| C1—N1—C11—C12   | -171.13 (13) | C11—C12—C22—C23 | 178.11 (17)  |
| C16-C11-C12-C13 | -0.7 (2)     | C13—C12—C22—C21 | -177.50 (17) |
| N1-C11-C12-C13  | 178.53 (14)  | C11-C12-C22-C21 | 0.10 (16)    |
| C16—C11—C12—C22 | -178.73 (13) | C21—C22—C23—C24 | -0.2 (2)     |
| N1-C11-C12-C22  | 0.49 (16)    | C12—C22—C23—C24 | -177.96 (16) |
| C11—C12—C13—C14 | 0.7 (2)      | C22—C23—C24—C25 | 0.2 (2)      |
| C22-C12-C13-C14 | 178.06 (14)  | C22—C23—C24—C27 | 179.51 (15)  |
| C12—C13—C14—C15 | -0.3 (2)     | C23—C24—C25—C26 | 0.0 (2)      |
| C12-C13-C14-C17 | -177.90 (14) | C27—C24—C25—C26 | -179.33 (13) |
| C13-C14-C15-C16 | -0.2 (2)     | C24—C25—C26—C21 | -0.2 (2)     |
| C17-C14-C15-C16 | 177.43 (16)  | N1-C21-C26-C25  | 178.98 (14)  |
| N1-C11-C16-C15  | -178.79 (15) | C22—C21—C26—C25 | 0.2 (2)      |
| C12-C11-C16-C15 | 0.3 (2)      | C23—C24—C27—O2  | 1.0 (3)      |
| C14—C15—C16—C11 | 0.2 (2)      | C25—C24—C27—O2  | -179.67 (18) |
| C13—C14—C17—O1  | 3.4 (2)      | C23—C24—C27—C28 | 178.84 (14)  |
| C15—C14—C17—O1  | -174.24 (15) | C25—C24—C27—C28 | -1.8 (2)     |
|                 |              |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                                                        | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------------------------------------------------------------|-------------|--------------|--------------|---------|
| C13—H13···O2 <sup>i</sup>                                                      | 0.95        | 2.59         | 3.474 (2)    | 154     |
| C23—H23···O2 <sup>i</sup>                                                      | 0.95        | 2.39         | 3.298 (3)    | 160     |
| C28—H28A····O1 <sup>i</sup>                                                    | 0.98        | 2.40         | 3.363 (2)    | 166     |
| C26—H26…O1 <sup>ii</sup>                                                       | 0.95        | 2.54         | 3.484 (2)    | 173     |
| Symmetry codes: (i) $-x+1$ , $-y+1$ , $-z+1$ ; (ii) $x$ , $-y+1/2$ , $z+1/2$ . |             |              |              |         |

Fig. 1

