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1 Introduction

Dynamic mixture models for the volatility of financial variables are gaining popularity, partly

because they often provide a plausible disaggregation of the conditional variance process, and

partly because they have been shown to deliver accurate out–of–sample predictive densities,

which is important for risk management applications such as the computation of Value–at–

Risk. A finite mixture of a few normal distributions, say two or three, is capable of capturing

the skewness and kurtosis detected in both conditional and unconditional return distributions,

and can, when coupled with GARCH–type equations for the component variances, exhibit

quite complex dynamics, as often observed in financial markets. For example, there may

be components driven by nonstationary dynamics, while the overall process is still stationary.

This corresponds to the observation that markets are stable most of the time, but, occasionally,

subject to severe, short–lived fluctuations. A general univariate normal mixture GARCH

model, generalizing earlier specifications such as Vlaar and Palm (1993) and Wong and Li

(2001), has been proposed by Haas et al. (2004) and Alexander and Lazar (2006) and further

investigated by Alexander and Lazar (2005), Ausin and Galeano (2007), Bertholon et al. (2006),

Haas et al. (2006a), Bauwens and Rombouts (2007), Wu and Lee (2007), and Giannikis et al.

(2008).

All of the papers cited above are confined to univariate processes. Many problems in

finance, however, are inherently multivariate and require us to understand the dependence

structure between assets. For example, in applications to portfolio management, correlations

between assets are often of predominant interest. Quite recently, in order to cope with such sit-

uations, Bauwens et al. (2007) proposed a multivariate version of the normal mixture GARCH

model developed in Haas et al. (2004) and Alexander and Lazar (2006), investigated its fourth–

moment structure and demonstrated its practicability in an application to a bivariate stock

return series.

In this paper, we extend the work of Bauwens et al. (2007) in several ways. First, we

enrich the model’s structure by allowing for leverage effects, i.e., the “stylized fact” that, for

stock returns, past negative shocks have a deeper impact on volatility than positive shocks.

As this asymmetry is a robust feature of stock return series, we expect that its inclusion into

the model will in many instances enhance its performance in density and volatility forecasting.

Secondly, we provide a more complete characterization of the fourth–moment structure of the

model, where we allow both for dynamic asymmetries, i.e., leverage effects, as well as for

asymmetry of the conditional mixture density. Bauwens et al. (2007) account for the second

type of asymmetry in the definition and the application of their model, but the fourth–moment
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matrix as well as the autocorrelation matrices of the squares of the process are derived only for

the symmetric case. However, skewness is frequently observed in stock return distributions, so

that results for the more general specification are highly desirable. Moreover, to the best of our

knowledge, no results on the fourth–moment structure of multivariate GARCH models with

leverage effects exist in the literature so far. Finally, concerning the application of our model,

we consider the bivariate volatility dynamics of the Dow Jones Industrial Average (DJIA) and

NASDAQ indices, including the computation and backtesting of out–of–sample measures of

Value–at–Risk.

The paper is organized as follows. In Section 2, we define the model and discuss estimation

issues and theoretical properties, such as the existence of unconditional moments and the

dynamic autocorrelation structure of the squared process. Section 3 provides an application

to a bivariate stock return series, along with the computation and backtesting of out–of–sample

Value–at–Risk measures. Section 4 concludes and identifies issues for further research, where

we focus on possible remedies for the curse of dimensionality that will emerge in applications

to time series of high dimension. Technical details are gathered in a set of appendices.

2 The Model and its Properties

In this section, we define the multivariate normal mixture GARCH process, discuss estimation

issues, and present some theoretical properties.

2.1 Finite Mixtures of Multivariate Normal Distributions

An M–dimensional random vector X is said to have a k–component multivariate finite normal

mixture distribution, or, in short, MNM(k), if its density is given by

f(x) =

k∑
j=1

λjφ(x; μj , Hj), (1)

where λj > 0, j = 1, . . . , k,
∑

j λj = 1, are the mixing weights, and

φ(x; μj , Hj) =
1

(2π)M/2
√
|Hj |

exp

{
−

1

2
(x − μj)

′H−1
j (x − μj)

}
, j = 1, . . . , k, (2)

are the component densities. The normal mixture random vector has finite moments of all

orders, with expected value and covariance matrix given by (see, e.g., McLachlan and Peel,

2000)

E(X) =
k∑

j=1

λjμj , (3)
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and

Cov(X) =
k∑

j=1

λjHj +
k∑

j=1

λj(μj − E(X))(μj − E(X))′, (4)

respectively. We will also make use of the third and fourth moments of a multivariate normal

mixture distribution, which are given in Appendix B.

It is well–known that the class of finite normal mixture distributions exhibits an enormous

flexibility with respect to distributional shape. For example, for univariate mixtures, Bertholon

et al. (2006) show that even the class of two–component normal mixtures spans the feasible

set of skewness–kurtosis combinations, D = {(γ, κ) : κ ≥ γ2 + 1}, where γ and κ are the

usual moment–based measures of skewness and kurtosis, respectively, i.e., γ = m3/m
3/2
2 , and

κ = m4/m2
2, where mi, i = 2, 3, 4, denotes the ith central moment of any random variable

with finite fourth moment (cf. Wilkins, 1944). See also Cohen (1967) for related results in the

context of estimation by the method of moments. This illustrates the capability of the normal

mixture to capture a broad range of distributional shapes, although a note of caution is always

in order when interpreting the widely used moment–based measures γ and κ as indicators of

shape.

A question that naturally arises in the estimation of mixture distributions is identifiability.

Obviously, a lack of identification always arises as a consequence of label switching, but this

can be ruled out by restricting the parameter space such that no duplication appears, e.g.,

by imposing λ1 > λ2 > · · · > λk. However, there is a more fundamental problem when the

class of density functions to be mixed is linearly dependent (Yakowitz and Spragins, 1968).

Fortunately, the class of multivariate finite normal mixtures is identifiable, as has been shown

by Yakowitz and Spragins (1968), who generalized Teicher’s (1963) result for univariate finite

normal mixtures.

An issue which has not been satisfactorily resolved so far is the empirical determination of

the number of mixture components, i.e., the choice of k in (1). It is well–known that standard

test theory breaks down in this context (McLachlan and Peel, 2000). However, there is some

evidence that, at least for unconditional mixture models, the Bayesian information criterion

(BIC) of Schwarz (1978) provides a reasonably good indication for the number of components

(see McLachlan and Peel, 2000, Ch. 6, for a survey and further references). According to Kass

and Raftery (1995), a BIC difference of less than two corresponds to “not worth more than

a bare mention”, while differences between two and six imply positive evidence, differences

between six and ten give rise to strong evidence, and differences greater than ten invoke very

strong evidence. However, in the context of multivariate dynamic mixture models, for reasons
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of parsimony, it will usually be reasonable to a priori restrict the number of components to be

rather small, e.g., k = 2 in (1).

2.2 Multivariate Normal Mixture GARCH Processes

The M–dimensional time series {εt} is said to be generated by a k–component multivariate

normal mixture GARCH(p, q) process, or, in short, MNM(k)–GARCH(p, q), if its conditional

distribution is a k–component multivariate normal mixture (1)–(2), denoted as

εt|Ψt−1 ∼ MNM(λ1, . . . , λk, μ1, . . . , μk, H1t, . . . , Hkt), (5)

where Ψt is the information set at time t. By imposing μk = −
∑k−1

j=1(λj/λk)μj on the mean of

the kth component it is, by (3), guaranteed that εt in (5) has zero mean. Furthermore, stack

the N := M(M + 1)/2 independent elements of the covariance matrices and the “squared”

εt (i.e., εtε
′

t) in hjt := vech(Hjt), j = 1, . . . , k, and ηt := vech(εtε
′

t), respectively. Then the

component covariance matrices evolve according to

hjt = A0j +

q∑
i=1

Aij η̃ij,t−i +

p∑
i=1

Bijhj,t−i, j = 1, . . . , k, (6)

where η̃ij,t = vech[(εt − θij)(εt − θij)
′]; θij , i = 1, . . . , q, and A0j are columns of length M and

N , respectively; and Aij , i = 1, . . . , q, and Bij , i = 1, . . . , p, are N ×N matrices, j = 1, . . . , k.

The θij ’s are introduced in order to allow for the leverage effect in applications to stock market

returns, i.e., the strong negative correlation between equity returns and future volatility. In the

univariate GARCH literature, various specifications of the leverage effect exist; see, e.g., Ané

(2006) and Broto and Ruiz (2006) for recent investigations of such models. The specification in

(6) can be viewed as a multivariate generalization of one of the earliest versions, namely Engle’s

(1990) asymmetric GARCH (AGARCH) model. In the univariate framework, this model has

been coupled with the normal mixture GARCH structure by Alexander and Lazar (2005), who

demonstrate, in an application to European stock indices, its superior fit when compared to

the normal mixture GARCH process with symmetric variance dynamics. We will denote the

asymmetric MNM(k)–GARCH(p, q) as MNM(k)–AGARCH(p, q). We also note that, for p =

q = 1, Engle’s (1990) specification coincides with the quadratic GARCH (QGARCH) model of

Sentana (1995), so that, in this case, specification (6) can also be interpreted as a MNM(k)–

QGARCH(1, 1) model. Finally, in some applications, a symmetric conditional density will be

appropriate, so that, in (5), μ1 = · · · = μk = 0. We will denote this restricted symmetric

version as MNMS(k)–(A)GARCH(p, q). An overview of the different model specifications is

provided in Table 1.
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Table 1: Variants of MNM–GARCH models.
Model Conditional Density Leverage Effect

MNMS(k)–GARCH(p, q) symmetric no

MNMS(k)–AGARCH(p, q) symmetric yes

MNM(k)–GARCH(p, q) possibly asymmetric no

MNM(k)–AGARCH(p, q) possibly asymmetric yes
A symmetric conditional density is enforced by restricting the component means

in (5) to zero, i.e., μ1 = · · · = μk = 0. The absence of a leverage effect is imposed

by restricting the θij ’s in (6) to zero, i.e., θij = 0, j = 1, . . . , k, i = 1, . . . , q.

To compactify the notation and facilitate the theoretical analysis of the model, note that,

by (A.3) in Appendix A, vech(εt−iθ
′

ij +θijε
′

t−i) = 2D+
Mvec(θijε

′

t−i) = 2D+
M (IM ⊗θij)εt−i. Then

we rewrite (6) as

hjt = Ã0j +

q∑
i=1

Aijηt−i −

q∑
i=1

Θijεt−i +

p∑
i=1

Bijhj,t−i, j = 1, . . . , k, (7)

where Ã0j := A0j +
∑q

i=1 Aijvech(θijθ
′

ij), and Θij := 2AijD
+
M (IM ⊗ θij), j = 1, . . . , k,

i = 1, . . . , q. Let ht := (h′

1t, . . . , h
′

kt)
′; Ã0 := (Ã′

01, . . . , Ã
′

0k)
′; Θi := (Θ′

i1, . . . ,Θ
′

ik)
′, Ai :=

(A′

i1, . . . , A
′

ik)
′, i = 1, . . . , q; and Bi :=

⊕k
j=1 Bij , i = 1, . . . , p, where

⊕
denotes the matrix

direct sum. Using these definitions, we have

ht = Ã0 +

q∑
i=1

Aiηt−i −

q∑
i=1

Θiεt−i +

p∑
i=1

Biht−i. (8)

For estimation purposes, the general formulation as given in (6) is not directly applicable,

and parameter constraints are required in order to guarantee positive definiteness of all con-

ditional covariances matrices. A particular restriction of the vech form (6) of the multivariate

GARCH process serving this purpose is implied by the BEKK model of Engle and Kroner

(1995) which specifies the covariance matrices as

Hjt = A�
0jA

�′

0j +
L∑

�=1

q∑
i=1

A�
ij,�(εt−i−θij)(εt−i−θij)

′A�′

ij,� +
L∑

�=1

p∑
i=1

B�
ij,�Hj,t−iB

�′

ij,�, j = 1, . . . , k,

(9)

where A�
0j , j = 1, . . . , k, are lower triangular matrices. As shown by Engle and Kroner (1995),

each BEKK model implies a unique vech representation (the converse is not true), and, once

a BEKK representation (9) is estimated, the matrices Aij and Bij of the vech model (6) can

be recovered via

Aij =
L∑

�=1

D+
M (A�

ij,� ⊗ A�
ij,�)DM , i = 1, . . . , q, j = 1, . . . , k, (10)
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and analogously for the Bij , where DM and D+
M denote the duplication matrix and its Moore–

Penrose inverse, respectively, both of which we briefly review in Appendix A. Thus, all results

derived for the vech model are also applicable to the BEKK model. In practical applications,

L = 1 is the standard choice, as well as p = q = 1. For this specification, it follows from

Proposition 2.1 of Engle and Kroner (1995) that the model is identified if the diagonal elements

of A�
0j , as well as the top left elements of matrices A�

1j and B�
1j , j = 1, . . . , k, are restricted to

be positive. In addition, while, for L = 1, the BEKK model already involves fewer parameters

than the unrestricted vech form, further simplifications can be obtained by imposing that A�
ij

and B�
ij , j = 1, . . . , k, are diagonal matrices, giving rise to a diagonal BEKK specification. The

latter parametrization is parsimonious enough to be applicable to a relatively large number of

assets, and, as noted by Bauwens et al. (2006), although diagonal BEKK models are, due to

the inherent restrictions on the cross dynamics, not suitable if volatility transmission is the

object under study, “they usually do a good job in representing the dynamics of variances and

covariances.” Moreover, in the last paragraph of Section 2.3, we will make precise a statement

of Bauwens et al. (2007), namely, that “an advantage of the mixture model is that in high

dimensions, simple models with few parameters could be mixed to obtain more flexibility than

specifying a complex one–component model”. In applications to very high–dimensional time

series, however, even the diagonal BEKK model for the component covariance matrices will

be too heavily parameterized, and techniques for dimensionality reduction, such as the use

of factor structures, will be called for; see Section 4 for a brief discussion of these issues and

possible starting points for further research in this direction. In the following discussion of

the vech specification we will always assume that positive definite covariances matrices are

guaranteed, without further specifying the constraints employed for achieving this.

2.3 Existence of Moments and Autocorrelation Structure

It is clear that, for practical purposes, the most important MNM(k)–AGARCH(p, q) process

is the specification where p = q = 1, which is defined by (5) and

ht = Ã0 + A1ηt−1 − Θ1εt−1 + B1ht−1. (11)

For later reference, we summarize the dynamic properties of the process given by (5) and

(11) in Proposition 1. The corresponding results for the MNM(k)–GARCH(p, q) specification,

which are of less relevance for the applications, are provided in an earlier version of this paper

(Haas et al., 2006b).

We denote as ρ(A) the largest eigenvalue in modulus of a square matrix A, i.e.,

ρ(A) := max{|z| : z is an eigenvalue of A}, (12)
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and define the vector of mixing weights λ := (λ1, . . . , λk)
′. Following the classic papers of Engle

(1982) and Bollerslev (1986), we assume for simplicity that the process starts indefinitely far

in the past with finite fourth moments.

Proposition 1 The MNM(k)–AGARCH(1,1) process given by (5) and (11) is covariance

stationary if and only if ρ(C11) < 1, where the kN × kN matrix C11 is defined by

C11 = λ′ ⊗ A1 + B1. (13)

Moreover, the unconditional fourth moment E(ηtη
′

t) exists if and only if, in addition, ρ(C22) <

1, where C22 is the (kN)2 × (kN)2 matrix given by

C22 = (A1 ⊗A1)GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN ) + 2ÑkN (B1 ⊗ λ′ ⊗A1) + B1 ⊗B1. (14)

In (14), GM is the N2 × N2 matrix defined in (B.13) in Appendix B.2, Λ = diag(λ1 . . . , λk),

Kmn is the commutation matrix defined in Appendix A, and Ñn = (In2 +Knn)/2. The uncon-

ditional covariance matrix follows from (4) and expression (C.22) in Appendix C.1, and the

fourth–moment matrix can be obtained from expressions (B.15) and (C.23) in Appendices B.2

and C.1, respectively.

If ρ(C22) < 1 holds, the multidimensional autocovariance function of the squared process,

Γ(τ) := E(ηtη
′

t−τ ) − E(ηt)E(ηt)
′, is given by

Γ(τ) = (λ′ ⊗ IN )Cτ−1
11 Q, τ ≥ 1, (15)

where Q is a constant matrix given in (C.24) in Appendix C.2.

Note that (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN ) in (14) is the explicit expression for the matrix

Λ̃PkN� defined only implicitly in Theorem 2 of Bauwens et al. (2007). This makes the fourth–

moment condition more practicable. Also note that, analogously to Sentana’s (1995) results

for the QGARCH(1,1) model, the leverage parameters do not affect the second– and fourth–

moment conditions. The results of Proposition 1 are derived in Appendices B and C. From

(15), the autocorrelation matrices, Rτ , can be calculated in the usual way. I.e., if D =

IN � Γ(0), where Γ(0) = E(ηtη
′

t) − E(ηt)E(ηt)
′, then

R(τ) = D−1/2Γ(τ)D−1/2. (16)

The term determining the rate of decay of Γ(τ) is Cτ
11. Thus, under covariance stationarity,

the largest eigenvalue in magnitude of the matrix C11 defined in (13) can be used as a measure

for the persistence of shocks to volatility. Furthermore, the stationarity condition ρ(C11) < 1

allows some components to be nonstationary, in the sense that the covariance stationarity
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condition for single–component multivariate GARCH(1,1) processes, i.e., ρ(A1j + B1j) < 1

(Bollerslev and Engle, 1993), is not satisfied for some components. Nevertheless, the overall

process can still be stationary, as long as the corresponding mixing weights are sufficiently

small. This has also been noted by Bauwens et al. (2007) and parallels the situation in the

univariate case (see Haas et al., 2004; and Alexander and Lazar, 2006).

As mentioned at the end of Section 2.2, in applications to a large number of assets, the

diagonal BEKK model, which implies a restricted diagonal vech model, provides a parsimo-

nious parametrization for the dynamics of variances and covariances. It is worthwhile to

point out that this specification, when enriched with a normal mixture GARCH structure,

can generate much more complex dynamics of the second moments than those achievable by

the corresponding single–component GARCH(1,1) model. To illustrate, consider the diago-

nal two–component MNM–GARCH(1,1) model with μ1 = μ2 = 0M×1, and Θ1 = 02N×M .

Then we have hjt = A0j + A1jηt−1 + B1jhj,t−1, and, provided that max{ρ(B11), ρ(B12)} < 1,

hjt = (IN − B1j)
−1A0j + (IN − B1jL)−1A1jηt−1, j = 1, 2, where L is the lag operator, i.e.,

Lτxt = xt−τ . Therefore, from (4) and the diagonality of matrices A1j and B1j , j = 1, 2, the

dynamics of vech[cov(εt|Ψt−1)] = λ1h1t + λ2h2t =: ht are described by

ht = λ1(IN − B11)
−1A01 + λ2(IN − B12)

−1A02

+[λ1(IN − B11L)−1A11 + λ2(IN − B12L)−1A12]ηt−1

= λ1(IN − B11)
−1A01 + λ2(IN − B12)

−1A02 (17)

+(IN − B11L)−1(IN − B12L)−1[λ1(IN − B12L)A11 + λ2(IN − B11L)A12]ηt−1,

which implies a GARCH(2,2) structure for the conditional covariance matrix, i.e.,

ht = A0 + (λ1A11 + λ2A12)ηt−1 − (λ1B12A11 + λ2B11A12)ηt−2 (18)

+ (B11 + B12)ht−1 − B11B12ht−2,

where A0 = λ1(IN − B12)A01 + λ2(IN − B11)A02. Thus, and in sharp contrast to the single–

component model, even if the parameter matrices A1j and B1j , j = 1, 2, are diagonal, as

may be required in high–dimensional problems, the overall conditional variances and covari-

ances in ht will have a (restricted) GARCH(2,2) structure, allowing for a rich set of possible

autocorrelation structures of the squared process. In particular, Equation (18) bears some

resemblance to the GARCH(2,2) representation of the (univariate) component GARCH model

of Ding and Granger (1996), which often captures the autocorrelation structure of squared

returns much better than the GARCH(1,1) specification (see, e.g., Maheu, 2005; Bauwens and

Storti, 2007; and Haas, 2007). The reasoning above can easily be generalized to the diagonal

8



MNM–GARCH(1,1) process with k components, resulting in a GARCH(k, k) structure for the

overall covariance matrix, ht. We finally note that (17) and (18) are not generally valid for

models with nondiagonal parameter matrices. However, in this case, ht has the ARCH(∞)

representation

ht = λ1(IN − B11)
−1A01 + λ2(IN − B12)

−1A02 +
∞∑
i=1

(λ1B
i−1
11 A11 + λ2B

i−1
12 A12)ηt−i, (19)

which is still evocative of the corresponding representation of the conditional variance in Ding

and Granger’s (1996) model, as given in Equation (4.7) of their paper. In addition, by taking

unconditional expectations on both sides of (19), this ARCH(∞) representation can be used

to obtain an explicit expression for E(ht) in terms of the original model parameters, which

may, as suggested by a referee, be used for covariance targeting, so that the model–implied

unconditional covariance matrix matches its sample analogue.

3 Application to Stock Market Returns

We investigate the bivariate time series of daily returns of the Dow Jones Industrial Average

(DJIA) and the NASDAQ indices from January 1990 to September 2007, a sample of T =

4, 474 observations. The data were obtained from Yahoo Finance. Continuously compounded

percentage returns are considered, i.e., rit = 100 × log(Pit/Pi,t−1), i = 1, 2, where Pit denotes

the level of index i at time t. We denote the return vector at time t by rt = (r1t, r2t)
′, where

r1t and r2t are the time–t returns of the DJIA and the NASDAQ, respectively.

We first estimate the model over the first ten years of data, i.e., over the period from 1990–

1999, accounting for the first 2,527 observations. The remaining observations are retained for

computation and backtesting of out–of–sample Value–at–Risk measures. The return series are

shown in the top panel of Figure 1, and a few descriptive statistics for the in–sample period are

provided in Table 2. To specify the mean equation, we calculate the sample autocorrelation

(SACF) and sample partial autocorrelation functions (SPACF) over the in–sample period, as

shown in the middle and bottom panels of Figure 1. While there are no significant first–order

dependencies in the returns of the DJIA, both the SACF and SPACF of the NASDAQ are

significant at lag one and cut off after the first lag, which does not correspond to any standard

textbook pattern. However, the residuals from a first–order autoregression of the NASDAQ

returns fail to exhibit any significant spikes, and, therefore, we model returns as

rt = ν + Frt−1 + εt, where F =

⎛
⎝ 0 0

0 f22

⎞
⎠ , (20)
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Table 2: Descriptive statistics of DJIA/NASDAQ returns over the in–sample period, 1990–

1999.
covariance/

mean correlation matrix skewness kurtosis JB

DJIA NASDAQ

DJIA 0.056 0.795 0.728 –0.410 8.201 2919.2
(0.000)

NASDAQ 0.086 0.723 1.241 –0.540 7.692 2441.2
(0.000)

The top right entry of the “covariance/correlation matrix” is the correlation coefficient,
and the bottom left entry is the covariance. “skewness” denotes the moment–based
coefficient of skewness, γ = m3/m

3/2

2
, and “kurtosis” the moment–based coefficient

of kurtosis, κ = m4/m2

2, where mi = T−1

t(rt − r̄)i, i = 2, 3, 4, and r̄ = T−1

t rt.
JB is the Jarque–Bera test for normality, based on the result that, under normality,
JB = Tγ2/6 + T (κ − 3)2/24

asy
∼ χ2(2). p–values are given in parentheses.

ν is a 2×1 vector of constants, and εt follows a GARCH process in BEKK form as given by (9),

with p = q = L = 1. All parameters are estimated simultaneously by maximum likelihood.

3.1 Estimation Results

Several versions of the general mixture GARCH model (5)–(6) with p = q = 1 have been

estimated. Namely, the single–component model, which corresponds to k = 1 in (1), and

which is just the standard Normal–GARCH process, has been estimated with and without

imposing a symmetric reaction to negative and positive shocks. The first of these models,

where θ11 = 0 in (6), will be denoted by Normal–GARCH(1,1), and the second by Normal–

AGARCH(1,1). Also, two–component models are considered with and without symmetric

conditional mixture densities, i.e., with and without imposing μ1 = μ2 = 0 in (5), as well as

with and without leverage effects. To refer to these different models, we will use the typology

of Table 1.

Table 3 reports likelihood–based goodness–of–fit measures for the models and their rankings

with respect to each of these criteria, i.e., the value of the maximized log–likelihood function,

and the AIC and BIC criteria of Akaike (1973) and Schwarz (1978), respectively. While it is

not surprising that the Normal–GARCH model is the worst performer with respect to each of

these criteria, several additional observations are worth mentioning. First, the normal mixture

specifications allowing for asymmetric conditional densities, i.e., admitting nonzero component

means in (5), are always favored against their symmetric counterparts. This is not the case

when we consider the dynamic asymmetry, i.e., leverage effects. The improvement in log–

likelihood is much larger when passing from the symmetric MNMS(2)–GARCH(1,1) to the

MNMS(2)–AGARCH(1,1) model (difference in log–likelihood: 23.7) than when passing from

10
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Figure 1: The top panel shows the percentage returns of the DJIA (left) and the NASDAQ

(right). The middle and bottom panels show the sample autocorrelation (SACF) and partial

autocorrelation functions (SPACF) over the period from 1990 to 1999 (in–sample period),

respectively. Dashed lines represent approximate 95% one–at–a–time confidence intervals.

11



Table 3: Likelihood–based goodness of fit.

Distributional L AIC BIC

Model K Value Rank Value Rank Value Rank

Normal–GARCH(1,1) 14 –5606.9 6 11241.8 6 11323.5 6

MNMS(2)–GARCH(1,1) 26 –5504.2 4 11060.5 4 11212.2 4

MNM(2)–GARCH(1,1) 28 –5482.6 3 11021.3 3 11184.7 1

Normal–AGARCH(1,1) 16 –5592.5 5 11217.0 5 11310.4 5

MNMS(2)–AGARCH(1,1) 30 –5480.5 2 11021.0 2 11196.1 3

MNM(2)–AGARCH(1,1) 32 –5467.6 1 10999.2 1 11185.9 2
The leftmost column states the type of volatility model fitted to the bivariate NASDAQ/DJIA returns. The
column labeled K reports the number of parameters of a model (including the mean equation); L is the
log–likelihood; AIC = −2L + 2K; and BIC = −2L + K log T , where T is the number of observations. For
each of the three criteria the criterion value and the ranking of the models are shown. Boldface entries
indicate the best model for the particular criterion.

the asymmetric MNM(2)–GARCH(1,1) process to its AGARCH(1,1) counterpart (difference

in log–likelihood: 15.1). As a consequence, the MNM(2)–GARCH(1,1) specification performs

best overall according to the BIC. We note, however, that the difference in BIC for the latter

two models is insignificant according to the Kass and Raftery–recommendation mentioned at

the end of Section 2.1. Also, a closer inspection of the parameter estimates will reveal that

the leverage effect may be an exclusive feature of the high–volatility component, so that the

difference in the number of parameters between these models shrinks from four to two, which

would reverse the models’ ranking. Moreover, a likelihood ratio test for θ1 = θ2 = 0, with

associated test statistic LRT = 2 × (5482.6 − 5467.6) = 30.1, would reject at conventional

critical values given by the asymptotically valid χ2 distribution with four degrees of freedom,

thus favoring the model with leverage effects.

The maximum likelihood estimates (MLEs) are reported in Tables 4 and 5 for the models

without and with leverage effects, respectively. The function fminunc in Matlab (version 6.5)

was used to find the MLEs. We did not encounter convergence problems, and the estimates

were robust with respect to different sets of starting values. As our focus is on volatility

dynamics, the parameters of the mean equation (20) are not reported. Shown are the parameter

matrices A�
0j , A�

1j , and B�
1j , j = 1, 2, of the BEKK representation (9). In addition, we

report the component–specific persistence measures, i.e., the largest eigenvalues of the matrices

A1j + B1j , j = 1, 2, where these matrices have been recovered from the BEKK representation

using (10), as well as the largest eigenvalues of the matrices C11 and C22 defined in Proposition

1. The two–component models have been ordered such that λ1 > λ2. Furthermore, the

implied unconditional overall and component–specific covariance matrices and their associated

correlation coefficients are shown in Table 6.
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Table 4: MNM–GARCH(1,1) parameter estimates for DJIA/NASDAQ returns

Normal–GARCH(1,1) MNMS(2)–GARCH(1,1) MNM(2)–GARCH(1,1)

A�
01

⎛
⎜⎝ 0.055

(0.021)
0

0.114
(0.027)

0.070
(0.022)

⎞
⎟⎠

⎛
⎜⎝ 0.007

(0.020)
0

−0.016
(0.035)

0
(−)

⎞
⎟⎠

⎛
⎜⎝ 0.006

(0.019)
0

−0.022
(0.026)

0
(−)

⎞
⎟⎠

A�
11

⎛
⎜⎝ 0.100

(0.021)
0.090
(0.018)

−0.137
(0.034)

0.385
(0.033)

⎞
⎟⎠

⎛
⎜⎝ 0.060

(0.020)
0.060
(0.015)

−0.139
(0.031)

0.290
(0.030)

⎞
⎟⎠

⎛
⎜⎝ 0.074

(0.019)
0.055
(0.015)

−0.111
(0.029)

0.270
(0.026)

⎞
⎟⎠

B�
11

⎛
⎜⎝ 1.006

(0.006)
−0.030
(0.006)

0.044
(0.012)

0.916
(0.014)

⎞
⎟⎠

⎛
⎜⎝ 1.002

(0.003)
−0.017
(0.004)

0.025
(0.006)

0.954
(0.008)

⎞
⎟⎠

⎛
⎜⎝ 1.000

(0.003)
−0.016
(0.004)

0.022
(0.006)

0.956
(0.008)

⎞
⎟⎠

ρ(A11 + B11) 0.997 0.995 0.994

θ11 – – –

λ1 1 0.817
(0.041)

0.835
(0.031)

μ1 – –

(
0.053
(0.016)

, 0.111
(0.019)

)
′

A�
02 –

⎛
⎜⎝ 0.340

(0.111)
0

0.484
(0.119)

0.244
(0.108)

⎞
⎟⎠

⎛
⎜⎝ 0.393

(0.086)
0

0.449
(0.081)

0
(−)

⎞
⎟⎠

A�
12 –

⎛
⎜⎝ 0.353

(0.121)
0.200
(0.117)

0.043
(0.158)

0.711
(0.151)

⎞
⎟⎠

⎛
⎜⎝ 0.370

(0.117)
0.198
(0.115)

−0.011
(0.142)

0.736
(0.145)

⎞
⎟⎠

B�
12 –

⎛
⎜⎝ 0.975

(0.078)
−0.080
(0.077)

0.082
(0.134)

0.728
(0.129)

⎞
⎟⎠

⎛
⎜⎝ 0.915

(0.058)
−0.033
(0.057)

−0.032
(0.072)

0.830
(0.076)

⎞
⎟⎠

ρ(A12 + B12) – 1.158 1.185

θ12 – – –

λ2 0 0.183
(0.041)

0.165
(0.031)

μ2 – –

(
−0.267
(0.091)

,−0.563
(0.115)

)
′

ρ(C11) 0.997 0.995 0.996

ρ(C22) 0.995 0.995 0.996
Approximate standard errors are given in parentheses. If parameters with nonnegativity restrictions were
extremely close to the boundary, we reestimated the model with these parameters set to zero, so that their
standard errors are not reported. This applies to the lower diagonal element of A�

01 for model MNMS(2)–
GARCH(1,1), as well as to the lower diagonal elements of A�

01 and A�
02 for model MNM(2)–GARCH(1,1).

Note that matrices A�
0j , A�

1j , and B�
1j , j = 1, 2, correspond to the BEKK representation (9) of the model,

while matrices A1j + B1j , j = 1, 2, the maximal eigenvalues of which are reported, are associated with the
vech representation (6). ρ(C11) and ρ(C22) denote the largest eigenvalues of the matrices C11 and C22, defined
in Proposition 1, which determine whether the unconditional second and fourth moments, respectively, exist.
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Table 5: MNM–AGARCH(1,1) parameter estimates for DJIA/NASDAQ returns

Normal–AGARCH(1,1) MNMS(2)–AGARCH(1,1) MNM(2)–AGARCH(1,1)

A�
01

⎛
⎜⎝ 0.054

(0.027)
0

0.116
(0.031)

0.075
(0.025)

⎞
⎟⎠

⎛
⎜⎝ 0

(−)
0

0
(−)

0
(−)

⎞
⎟⎠

⎛
⎜⎝ 0

(−)
0

0
(−)

0
(−)

⎞
⎟⎠

A�
11

⎛
⎜⎝ 0.111

(0.023)
0.095
(0.019)

−0.129
(0.036)

0.398
(0.036)

⎞
⎟⎠

⎛
⎜⎝ 0.061

(0.020)
0.056
(0.015)

−0.138
(0.031)

0.284
(0.029)

⎞
⎟⎠

⎛
⎜⎝ 0.069

(0.020)
0.051
(0.015)

−0.112
(0.028)

0.261
(0.026)

⎞
⎟⎠

B�
11

⎛
⎜⎝ 1.004

(0.007)
−0.035
(0.008)

0.044
(0.014)

0.906
(0.017)

⎞
⎟⎠

⎛
⎜⎝ 1.000

(0.003)
−0.014
(0.004)

0.023
(0.006)

0.958
(0.007)

⎞
⎟⎠

⎛
⎜⎝ 0.999

(0.003)
−0.013
(0.003)

0.017
(0.005)

0.962
(0.006)

⎞
⎟⎠

ρ(A11 + B11) 0.996 0.997 0.996

θ11

(
0.257
(0.080)

, 0.318
(0.062)

)
′

(
−0.163
(0.099)

,−0.124
(0.083)

)
′

(
−0.136
(0.100)

,−0.098
(0.078)

)
′

λ1 1 0.754
(0.036)

0.763
(0.033)

μ1 – –

(
0.047
(0.018)

, 0.099
(0.021)

)
′

A�
02 –

⎛
⎜⎝ 0.060

(0.075)
0

−0.162
(0.126)

0
(−)

⎞
⎟⎠

⎛
⎜⎝ 0.088

(0.081)
0

−0.092
(0.122)

0
(−)

⎞
⎟⎠

A�
12 –

⎛
⎜⎝ 0.322

(0.072)
0.173
(0.082)

0.029
(0.095)

0.632
(0.100)

⎞
⎟⎠

⎛
⎜⎝ 0.331

(0.076)
0.115
(0.081)

−0.013
(0.099)

0.587
(0.093)

⎞
⎟⎠

B�
12 –

⎛
⎜⎝ 0.985

(0.040)
−0.108
(0.052)

0.101
(0.078)

0.679
(0.081)

⎞
⎟⎠

⎛
⎜⎝ 0.970

(0.040)
−0.072
(0.051)

0.076
(0.055)

0.737
(0.058)

⎞
⎟⎠

ρ(A12 + B12) – 1.023 1.017

θ12 –

(
0.613
(0.157)

, 0.778
(0.134)

)
′

(
0.664
(0.164)

, 0.860
(0.126)

)
′

λ2 0 0.246
(0.036)

0.237
(0.033)

μ2 – –

(
−0.153
(0.061)

,−0.321
(0.071)

)
′

ρ(C11) 0.996 0.995 0.995

ρ(C22) 0.993 0.991 0.992
Approximate standard errors are given in parentheses. If parameters with nonnegativity restrictions were extremely
close to the boundary, we reestimated the model with these parameters set to zero, so that their standard errors
are not reported. This applies, for models MNMS(2)–AGARCH(1,1) and MNM(2)–AGARCH(1,1), to the diagonal
elements of A�

01 and to the lower diagonal element of A�
02. Note that, when both diagonal elements of A�

01 are set
to zero, the sign of the bottom left element is not identified, and, consequently, given its closeness to the boundary
(zero), it was likewise fixed to zero. See the legend of Table 4 for further explanations.
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Table 6: Unconditional (component–specific) covariance matrices and implied correlations.

Model Normal–GARCH(1,1) MNMS(2)–GARCH(1,1) MNM(2)–GARCH(1,1)

E(εtε
′

t)

(
0.900 0.723
0.781 1.297

) (
0.793 0.704
0.686 1.197

) (
0.782 0.696
0.671 1.190

)

E(H1t) –

(
0.536 0.624
0.435 0.907

) (
0.549 0.624
0.433 0.876

)

E(H2t) –

(
1.942 0.822
1.808 2.490

) (
1.877 0.800
1.698 2.401

)
Model Normal–AGARCH(1,1) MNMS(2)–AGARCH(1,1) MNM(2)–AGARCH(1,1)

E(εtε
′

t)

(
0.854 0.716
0.734 1.230

) (
0.701 0.689
0.583 1.023

) (
0.695 0.685
0.547 0.918

)

E(H1t) –

(
0.470 0.607
0.375 0.812

) (
0.463 0.600
0.338 0.685

)

E(H2t) –

(
1.408 0.796
1.220 1.668

) (
1.412 0.786
1.157 1.535

)
The table reports the unconditional overall and component–specific covariance matrices of the error term
εt, as implied by the parameter estimates given in Tables 4 and 5. The associated correlation coefficients
are shown in upper triangular parts of the respective matrices.

In discussing the parameter estimates, we first draw attention to a common characteristic

of all mixture models, irrespective of their allowance for asymmetry and/or leverage: All these

models identify two components with distinctly different volatility dynamics. More precisely,

the first component, i.e., the component with the larger mixing weight, is stationary in the

sense that ρ(A11 +B11) < 1, and it has less weight on the reaction parameters in A11 and more

weight on the persistence parameters in B11, relative to the second component. An inspection

of Table 6 also shows that Components 1 and 2 can be characterized as low– and high–volatility

components, respectively. The latter is nonstationary in the sense that ρ(A12 + B12) > 1, and

it has considerably more weight on the reaction and less on the persistence parameters. This

implies that the high–volatility component reacts more strongly to shocks, but has a shorter

memory. However, all estimated mixture models are stationary in the aggregate with finite

fourth unconditional moments, because, for all models, the largest eigenvalues of the matrices

C11 and C22, defined in (13) and (14), respectively, are less than unity. Another observation

arising from Table 6 is that the correlations are higher in turbulent markets, i.e., in the high–

volatility component, a phenomenon that has recently been investigated, among others, by

Ang and Chen (2002) and Patton (2004). An informal comparison of Table 6 with columns

3–4 of Table 2 also shows that all models fit the unconditional covariance/correlation structure

reasonably well, although the mixture models with a leverage effect do slightly worse in this

regard.

If nonzero component means are allowed for, we observe that, both for the MNM(2)–

15



GARCH(1,1) model in Table 4 and the MNM(2)–AGARCH(1,1) model in Table 5, the low–

volatility component is associated with positive means, and the high–volatility component is

associated with statistically significant negative means for both indices, implying that the low–

and high–volatility components can be interpreted as bull and bear markets, respectively. A

similar finding holds for the leverage effects, i.e., the dynamic asymmetries in the GARCH

structure, as reported in Table 5. For both mixture AGARCH models, a leverage effect seems

to be present mainly in the high–volatility, bear market component. The leverage parameters

in the first component, θ11, are negative, and thus seem to indicate a “reverse” leverage effect,

but they are also insignificant statistically. On the other hand, the leverage parameters of

the nonstationary component, θ12, are rather large, compared to those of the fitted Normal–

AGARCH model, indicating a very strong negative relation between current returns and future

volatility. It is also interesting to note that the introduction of the leverage effects reduces the

persistence measure of the high–volatility component somewhat, i.e., ρ(A12 + B12) decreases.

(Note, however, that the interpretation of ρ(A12 + B12) as a persistence measure is a little

awkward when ρ(A12 +B12) > 1.) However, at the same time, its mixing weight, λ2, increases,

so that the overall persistence of the model, as measured by ρ(C11), remains approximately

unchanged.

To assess the models’ fit of the unconditional distribution, Figures 2 and 3 present the

empirical densities of the residuals for the DJIA and the NASDAQ, respectively, as obtained

via kernel density estimation (see, e.g., Silverman, 1986), along with kernel estimates of sim-

ulated samples of length 1,000,000 from the estimated models. The kernel estimator is given

by f̂i(x) = (Th)−1
∑T

t=1 K[(x− εit)/h], i = DJIA, NASDAQ, where we use a Gaussian kernel,

i.e., K(x) = (2π)−1/2 exp{−x2/2}, and h = 1.06σ̂iT
−1/5, where σ̂i is the respective sample

standard deviation. While it is usually difficult to see the fatter tails in such figures, it is appar-

ent that the empirical density is remarkably more peaked than the unconditional distribution

implied by the single–regime Normal–GARCH(1,1) process, while the mixture models provide

a much closer approximation to the empirical densities. Recall that the leptokurtosis observed

in financial time series includes both peakedness and tailedness. In fact, both features reflect

the same phenomenon, because, as noted by Ruppert (1987), if one moves probability mass

from the shoulders of a distribution to the tails, then to keep the scale fixed one must also

move mass from the shoulders to the center.

Finally, Figures 4 and 5 show the empirical autocorrelations of the squared residuals for

the two series, along with their theoretical counterparts implied by the six estimated GARCH

models. As often observed in the literature since Ding et al. (1993) and Ding and Granger

(1996), the empirical autocorrelations decay rapidly at the beginning and then decrease rather
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Figure 2: Kernel density estimates for the DJIA errors. Shown are, for each fitted GARCH
model, kernel density estimates for the estimated empirical DJIA errors in (20) (dashed line),
along with kernel estimates for the error distributions implied by the respective models (solid
line), as obtained from simulated samples of length 1,000,000.
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Figure 3: Kernel density estimates for the NASDAQ errors. Shown are, for each fitted GARCH
model, kernel density estimates for the estimated empirical NASDAQ errors in (20) (dashed
line), along with kernel estimates for the error distributions implied by the respective models
(solid line), as obtained from simulated samples of length 1,000,000.
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slowly, with the NASDAQ exhibiting more significant lags than the DJIA. While the single–

regime models fail to capture this pattern, the mixture models tend to do better in this

regard. However, the mixture models with leverage effects, with the exception of MNMS(2)–

AGARCH(1,1) in case of the NASDAQ, suffer from the autocorrelations being much too

small at the beginning. Overall, models MNMS(2)–GARCH(1,1) and MNM(2)–GARCH(1,1)

provide the best fit to the empirical autocorrelations of the squares, which can presumably be

explained by the reasoning at the end of Section 2.3.

3.2 Application to Value–at–Risk

In this section, we evaluate the models’ capability to accurately measure the out–of–sample

Value–at–Risk (VaR) of portfolios formed from the stock indices under investigation. In Section

3.2.1 we discuss methods for evaluating the VaR measures provided by the respective models,

and Section 3.2.2 presents the empirical results.

3.2.1 Backtesting Value–at–Risk Measures

VaR is a widely employed tool in risk management (e.g., Christoffersen and Pelletier, 2004),

and it can briefly be defined as follows. For a given model, the VaR at level ξ for period t,

denoted by VaRt(ξ), is implicitly defined by F̂ (VaRt(ξ)|Ψt−1) = ξ, where F̂ (·|Ψt−1) is the

conditional cumulative distribution function (cdf) of the portfolio return, rp,t, implied by the

model under consideration. A violation or hit is said to occur at time t if rp,t < VaRt(ξ).

To test the models’ suitability for calculating accurate ex–ante VaR measures, we define the

binary sequence

It =

⎧⎪⎨
⎪⎩

1, if rp,t < VaRt,

0, if rp,t ≥ VaRt.
(21)

Then the empirical shortfall probability is ξ̂ = x/T , where x =
∑T

t=1 It is the number of

observed violations, and T is the number of forecasts evaluated. Two tests on the sequence

(21) will be conducted, which can be characterized as tests for correct unconditional and

conditional coverage, respectively.

For the first test, based on ideas of Kupiec (1995), we note that, from both the risk

management and the regulatory perspective, the main interest is often whether a model’s

actual shortfall probability is greater than the target probability ξ. Therefore, the check

whether ξ̂ is significantly larger than ξ is conducted using a one–sided binomial test, where
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the p–values are calculated by

p =

T∑
i=x

(
T

i

)
ξi(1 − ξ)T−i. (22)

If, according to (22), ξ̂ is significantly larger than ξ, then the model under investigation

on average tends to underestimate the risk of the financial position. However, as stressed

by Christoffersen (1998) and Lopez (1999), a satisfactory backtesting method should be able

to detect both deviations from the unconditional nominal shortfall probability, ξ, as well as

violation clustering. For example, a VaR model that fails to appropriately account for higher–

order dynamics in the return density (e.g., ARCH effects) may be correct on average (have

unconditional shortfall probability ξ), but in any given period will have uncorrect probability of

violation, leading to violation clustering. See, however, Jorion (2002) for a skeptical discussion

of the economic significance of violation clustering.

A duration–based backtesting approach which allows to detect rather general deviations

from independence of the sequence (21) has recently been developed by Christoffersen and

Pelletier (2004). Statistically, correct conditional coverage implies that the sequence {It}

defined in (21) is a random sample from a Bernoulli distribution with probability (of violation)

parameter ξ, which in turn implies that the number of days between two violations is geometric.

More formally, define the duration of time in days between two violations as

Di = ti − ti−1, (23)

where ti denotes the day of violation number i. Then, for a correctly specified VaR model, the

probability density function of the duration is given by

fG(d; ξ) = (1 − ξ)d−1ξ, d ∈ N. (24)

The geometric distribution is characterized unambiguously by its “lack of memory” property

(cf. Rohatgi, 1976, p. 191), which means that the probability of observing a hit today does

not depend on the number of days elapsed since the last violation. The statistical concept for

characterizing the memory of a lifetime distribution is the hazard function, λ(d), which, in the

discrete framework, is defined to be the conditional probability of a violation on day d given

that d − 1 days have passed without a violation, that is,

λ(d) := Pr(D = d|D ≥ d) =
Pr(D = d)

Pr(D ≥ d)
=

f(d)∑
∞

j=d f(j)
=

f(d)

S(d)
, (25)

where S(d) := Pr(D ≥ d) denotes the survivor function. The “lack of memory” property of

the geometric distribution (24) is associated with a constant hazard function, i.e., λG(d) = ξ
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for all d ≥ 1. In contrast, violation clustering corresponds to a decreasing hazard function (or

negative duration dependence), implying that the probability of a no–hit spell ending shortly

decreases as the spell increases in length. Christoffersen and Pelletier (2004) propose to test

the iid–ness of the binary sequence (21) via the “lack of memory” property of the sequence

of durations defined in (23). The approach is to specify a lifetime distribution with a flexible

hazard function that nests the geometric, so that the “lack of memory” property can be tested

by means of likelihood ratio (LR) tests. See Kiefer (1988) and Christoffersen and Pelletier

(2004) for a discussion of how to construct the likelihood function in the case of censored

spells.

In the applications of their approach, Christoffersen and Pelletier (2004) use the continuous

analogue of (24), i.e., the exponential distribution, which, for testing, can be nested in the

continuous Weibull distribution. As shown by Haas (2006), however, tests based on a discrete

analogue of the continuous Weibull nesting the geometric (24) have (often considerably) more

power to detect violation clustering, and, therefore, we employ the discrete Weibull distribution

of Nakagawa and Osaki (1975), given by the probability density function

fDW (d; a, b) = exp{−ab(d − 1)b} − exp{−abdb}, a, b > 0, d ∈ N, (26)

with distribution, survivor, and hazard functions given by FDW (d; a, b) = 1 − exp{−abdb},

SDW (d; a, b) = exp{−ab(d − 1)d}, and λDW (d) = 1 − exp{−ab[db − (d − 1)b]}, respectively.

The geometric (24) is nested in (26) for b = 1 and ξ = 1 − exp{−a}, and (26) has decreasing

(increasing) hazard if b < 1 (b > 1). Thus, the hypothesis of a correct conditional (cc) shortfall

probability ξ implies a simultaneous test of

H0,cc : b = 1 and a = − log(1 − ξ). (27)

As pointed out by Christoffersen and Pelletier (2004), although the large–sample properties

of the LR test are known, they may not lead to reliable inference in particular for small VaR

levels, because, even if the return series is reasonably long, the associated series of durations will

be rather short due to the scarcity of violations. Thus, for controlling the size of the tests, the

Monte Carlo technique of Dufour (2006) is adopted for calculating p–values. To implement

this technique, we first generate N independent realizations of the LR test statistic, LRi,

i = 1, . . . , N , under the null hypothesis, i.e., using durations constructed from independent

Bernoulli hit sequences, where we use N = 9, 999. We denote by LR0 the value of the test

statistic obtained for the original sample. As there are no nuisance parameters under the

null hypothesis, the only complication is that the test statistics derived from binary sequences

such as (21) are discrete random variables, i.e., it may happen that LRi = LR0 for some i,
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1 ≤ i ≤ N . Thus, we need a rule to break ties between the test value obtained from the

original sample and those obtained from Monte Carlo simulation under the null hypothesis.

As shown by Dufour (2006), in this situation, the Monte Carlo p–values can be calculated as

follows. For each test statistic, LRi, i = 0, . . . , N , draw a random variable, Ui, i = 0, . . . , N ,

which is independently uniformly distributed over the interval (0, 1). The Monte Carlo p–value,

pN (LR0), is then given by

pN (LR0) =
NGN (LR0) + 1

N + 1
,

where

GN (LR0) = 1 −
1

N

N∑
i=1

1(LRi ≤ LR0) +
1

N

N∑
i=1

1(LRi = LR0)1(Ui ≥ U0),

and 1(A) is the indicator function associated with statement A, i.e., 1(A) = 1 if A is true and

1(A) = 0 otherwise.

3.2.2 Empirical Results

In our application, we calculate one–step–ahead out–of–sample VaR measures and consider

the VaR levels ξ = 0.0025, 0.005, 0.01, 0.025, and 0.05. The parameter estimates are updated

(approximately) every month (i.e., 20 trading days) employing a moving window of data, i.e.,

using the most recent 2,527 observations in the sample. In this manner, we obtain, for each

model, 1,947 one–step–ahead out–of–sample VaR measures.

In addition to the six GARCH models considered above, we also include the RiskMetrics

model into the comparison, which, as a benchmark, has gained some popularity among risk

management practitioners (JP Morgan, 1996). This model assumes that the conditional return

distribution is normal with a covariance matrix Ht driven by an exponentially weighted moving

average of past shocks,

Ht = λHt−1 + (1 − λ)εt−1ε
′

t−1 = (1 − λ)
∞∑
i=1

λi−1εt−iε
′

t−i, (28)

where λ is fixed at 0.94 for daily data. To make the models comparable, we couple (28) with

an AR(1) process for the conditional mean as in (20), where the parameters are estimated via

a simple least squares regression.

To select economically reasonable portfolios, we assume that the preferences of the investor

can be characterized by an exponential expected utility function of the form

U(rp,t) = − exp{−crp,t}, c > 0, (29)
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where c is the coefficient of constant absolute risk aversion, and rp,t is the portfolio return at

time t, i.e., rp,t = wtr1t + (1 − wt)r2t, where wt is the portfolio weight of the DJIA at time t.

We note that, due to our use of continuously compounded returns, the linear relation between

the returns of the individual indices and the portfolio return is only an approximation. For

daily returns, however, this approximation is usually rather accurate and standard practice;

for discussion, see, e.g., Fama (1976, Ch. 1). For a Gaussian investor with predictive density

rt|Ψt−1 ∼ N(μt, Ht), where μt = (μ1t, μ2t)
′, and Ht = (hij,t)i,j=1,2, the optimal portfolio weight

in period t is given by

wt =
h22,t − h12,t

h11,t + h22,t − 2h12,t
+

1

c

μ1t − μ2t

h11,t + h22,t − 2h12,t
. (30)

Note that the first term on the right–hand side of (30) represents the global minimum variance

portfolio (GMVP). Expected utility of a mixture investor with predictive density rt|Ψt−1 ∼

λ1tN(μ1t, H1t) + λ2tN(μ2t, H2t) is given by

E[U(rp,t)|Ψt−1] = −λ1t exp

{
−cw̃′

tμ1t +
c2

2
w̃′

tH1tw̃t

}
− λ2t exp

{
−cw̃′

tμ2t +
c2

2
w̃′

tH2tw̃t

}
,

(31)

where w̃t = (wt, 1 − wt)
′. As the portfolio problem of the mixture investor does not admit a

closed–from solution, we use the Newton–Raphson method to find the portfolio weight which

maximizes (31). To account for different risk attitudes, we do the computations for values of

c in (29) ranging from 0.1 to 1.5. Further increasing c did not result in any notable differences

compared to c = 1.5.

The results are reported in Tables 7 and 8 for the tests for unconditional and conditional

coverage, respectively. In Table 7, for each value of risk aversion, c, and VaR level, ξ, we show

the empirical percentage shortfall probability 100 × ξ̂ of the respective models, as well as the

mean absolute error (MAE) over the different c–values, given by MAE(ξ) = (1/6)
∑6

i=1 |ξ −

ξ̂(ci)|, where ξ̂(ci) is the empirical shortfall probability associated with the ith value of c,

i = 1, . . . , 6. In Table 8, as the parameter a of the discrete Weibull distribution (26) is not

easily interpretable for b 	= 1, we report, along with the estimated memory parameter b, the

quantity 100/E(D), where E(D) is the mean duration implied by the fitted discrete Weibull,

i.e., E(D) =
∑

∞

d=1 dfDW (d; a, b) =
∑

∞

d=0(1 − FDW (d; a, b)) =
∑

∞

d=0 exp{−abdb}, which may

serve as an estimate for the unconditional percentage shortfall probability.

Tables 7 and 8 show, in accordance with earlier results (e.g., Diebold et al., 1999), that

the RiskMetrics model (28) is clearly not appropriate, as it significantly underestimates the

VaR at all levels. The single–component GARCH(1,1) models, although much better than the

RiskMetrics specification, are likewise inadequate in particular for the lower VaR levels, i.e.,
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the more extreme risks. They do reasonably well for the higher levels ξ = 0.025 and 0.05. This

is reconcilable with the occasionally expressed view that normality may be an appropriate

assumption for everyday risks, given that, for example, the VaR at level 0.05 is expected to

be violated once every month.

The best results with respect to unconditional coverage, as reported in Table 7, are obtained

for the mixture model with an asymmetric conditional density and without leverage, i.e., model

MNM(2)–GARCH(1,1), although model MNM(2)–AGARCH(1,1) also performs reasonably

well. It thus appears that, in the context of the mixture models, capturing the asymmetries

in the conditional density is much more important than accounting for dynamic asymmetries

in the conditional variance. This may appear somewhat surprising in view of the in–sample

significance of the leverage terms reported in Table 3, but the finding is similar to earlier

results such as those of Loudon et al. (2000), who compare a number of both symmetric

and asymmetric univariate GARCH models when applied to British stock returns. They find

that the parameters governing the asymmetric response to negative and positive shocks are all

highly significant in–sample, but the out–of–sample performance of symmetric and asymmetric

models is fairly similar. Note, however, that an at least moderate improvement when allowing

for leverage effects is observed within the class of single–component Normal–GARCH(1,1)

models.

A comparison of the results for the duration–based tests in Table 8 with those in Ta-

ble 7 reveals that violation clustering, in general, seems to be not a serious problem, al-

though, for all models, the estimated memory parameter, b, tends to be (often slightly) be-

low unity, thus indicating mild deviations from the geometric distribution. As before, mod-

els MNM(2)–GARCH(1,1) and MNM(2)–AGARCH(1,1) exhibit the best fit. However, while

model MNM(2)–GARCH(1,1) passes the test for correct unconditional coverage for all (c, ξ)–

combinations, the hypothesis of correct conditional coverage is now rejected in two cases. In

particular, the estimated value of b = 0.61 for c = 0.1 and ξ = 0.01 indicates a relatively strong

clustering of violations, leading to a rejection at the 1% level. Similarly, significant violation

clustering is detected for several c–values at the 5% VaR level for the Normal–AGARCH(1,1)

model, where the duration–based test, in contrast to the results in Table 7, rejects the hypoth-

esis of a correctly specified VaR model.
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Table 7: Evaluation of Value–at–Risk (VaR) measures: Unconditional coverage (100 × ξ̂).

Risk aversion, c 0.1 0.25 0.5 0.75 1 1.5 MAE(α)

RiskMetrics
VaR(0.0025) 0.87∗∗∗ 0.92∗∗∗ 0.98∗∗∗ 0.98∗∗∗ 1.03∗∗∗ 1.03∗∗∗ 0.0072
VaR(0.005) 1.23∗∗∗ 1.18∗∗∗ 1.23∗∗∗ 1.23∗∗∗ 1.23∗∗∗ 1.23∗∗∗ 0.0072
VaR(0.01) 1.69∗∗∗ 1.85∗∗∗ 2.00∗∗∗ 2.00∗∗∗ 2.00∗∗∗ 2.00∗∗∗ 0.0093
VaR(0.025) 3.85∗∗∗ 3.80∗∗∗ 3.80∗∗∗ 3.80∗∗∗ 3.85∗∗∗ 3.80∗∗∗ 0.0132
VaR(0.05) 6.57∗∗∗ 6.68∗∗∗ 6.78∗∗∗ 6.73∗∗∗ 6.68∗∗∗ 6.63∗∗∗ 0.0168

Normal–GARCH(1,1)
VaR(0.0025) 0.41 0.56∗∗ 0.62∗∗∗ 0.62∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.0034
VaR(0.005) 0.77∗ 0.87∗∗ 0.92∗∗ 0.98∗∗∗ 0.98∗∗∗ 0.98∗∗∗ 0.0042
VaR(0.01) 1.49∗∗ 1.34∗ 1.44∗∗ 1.44∗∗ 1.39∗ 1.34∗ 0.0040
VaR(0.025) 3.24∗∗ 2.93 2.93 3.03∗ 2.98 3.08∗ 0.0053
VaR(0.05) 5.34 5.39 5.39 5.44 5.29 5.39 0.0038

Normal–AGARCH(1,1)
VaR(0.0025) 0.46∗ 0.56∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.67∗∗∗ 0.62∗∗∗ 0.0036
VaR(0.005) 0.72 0.82∗∗ 0.92∗∗ 0.98∗∗∗ 0.98∗∗∗ 0.98∗∗∗ 0.0040
VaR(0.01) 1.34∗ 1.23 1.39∗ 1.39∗ 1.39∗ 1.44∗∗ 0.0036
VaR(0.025) 2.98 2.88 2.77 2.82 2.88 2.82 0.0036
VaR(0.05) 4.83 5.14 5.34 5.29 5.34 5.34 0.0027

MNMS(2)–GARCH(1,1)
VaR(0.0025) 0.26 0.31 0.36 0.36 0.31 0.31 0.0007
VaR(0.005) 0.46 0.51 0.51 0.51 0.67 0.72 0.0008
VaR(0.01) 1.28 1.18 1.13 1.18 1.13 1.13 0.0017
VaR(0.025) 3.49∗∗∗ 2.88 2.93 3.08∗ 3.03∗ 3.03∗ 0.0057
VaR(0.05) 6.11∗∗ 5.91∗∗ 6.11∗∗ 5.96∗∗ 5.86∗∗ 5.75∗ 0.0095

MNMS(2)–AGARCH(1,1)
VaR(0.0025) 0.26 0.46∗ 0.51∗∗ 0.56∗∗ 0.56∗∗ 0.51∗∗ 0.0023
VaR(0.005) 0.56 0.67 0.72 0.77∗ 0.77∗ 0.82∗∗ 0.0022
VaR(0.01) 1.39∗ 1.13 1.23 1.23 1.23 1.23 0.0024
VaR(0.025) 2.98 2.82 2.82 2.82 2.88 2.82 0.0036
VaR(0.05) 5.91∗∗ 5.91∗∗ 5.65 5.44 5.55 5.65 0.0068

MNM(2)–GARCH(1,1)
VaR(0.0025) 0.26 0.36 0.36 0.26 0.26 0.26 0.0004
VaR(0.005) 0.41 0.46 0.46 0.51 0.51 0.56 0.0004
VaR(0.01) 0.92 0.77 0.87 0.87 0.92 0.92 0.0012
VaR(0.025) 2.57 2.26 2.41 2.52 2.52 2.62 0.0009
VaR(0.05) 5.39 5.39 5.44 5.29 5.29 5.19 0.0033

MNM(2)–AGARCH(1,1)
VaR(0.0025) 0.31 0.51∗∗ 0.46∗ 0.36 0.36 0.36 0.0014
VaR(0.005) 0.51 0.62 0.67 0.72 0.77∗ 0.77∗ 0.0018
VaR(0.01) 1.28 0.98 1.18 1.18 1.18 1.18 0.0017
VaR(0.025) 2.72 2.67 2.47 2.52 2.52 2.52 0.0008
VaR(0.05) 5.55 5.44 5.24 5.19 5.24 5.29 0.0032

Shown are the results of the tests for correct unconditional coverage of out–of–sample Value–at–Risk
(VaR) measures. “VaR(ξ)” refers to the VaR measures for a nominal shortfall probability ξ implied by

the respective models. Reported are the empirical percentage shortfall probabilities, 100×ξ = 100×x/T ,
observed for a nominal VaR level ξ, ξ = 0.0025, 0.005, 0.01, 0.025, 0.05, where x is the empirical shortfall
frequency, and T is the number of forecasts evaluated. Asterisks ∗, ∗∗ and ∗∗∗ indicate significance
at the 10%, 5% and 1% levels, respectively, as obtained from the one–sided binomial test (22). For
each model and each nominal VaR level, ξ, “MAE(ξ)” is the mean absolute error (MAE) over the

different levels of risk aversion, c, i.e., MAE(ξ) = (1/6) 6

i=1
|ξ − ξ(ci)|, where (c1, c2, c3, c4, c5, c6) =

(0.1, 0.25, 0.5, 0.75, 1, 1.5).
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4 Conclusions

Several extensions and modifications of the analysis conducted in this paper are worth ex-

ploring. Most importantly, the unrestricted BEKK parametrization employed herein will not

be suitable when the number of assets under consideration is large, because the number of

parameters increases quadratically with the dimension of the return vector. The curse of di-

mensionality plagues multivariate GARCH models in general, but it will appear even more

burdensome in the current framework, because we have as many covariance matrices to para-

meterize as we have mixture components. As noted in Section 2.2, the diagonal BEKK may be

appropriate in situations with a relatively large number of assets; a recent application to a rel-

atively high–dimensional problem in the framework of dynamic conditional correlation models

is Cappiello et al. (2006). A perhaps more promising approach, however, which may be useful

even in problems of rather high dimension, is to combine the present approach with the prin-

cipal component GARCH model proposed in Alexander and Chibumba (1997) and Alexander

(2001, 2002). In this context, a two–step estimation procedure suggests itself, where, on the

second step, as the number of factors retained should be small, a relatively low–dimensional

normal mixture GARCH model could be fitted to the factors which have been extracted on the

first step as the conventional principal components. Another issue for further research is the

development of easily implementable techniques for risk management and portfolio selection

accommodating features such as regime–specific correlation structures and leverage effects, as

documented in Section 3 of the present paper.
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Appendix

In the Appendix, we derive the conditions for the moments of the MNM(k)–GARCH(1,1)

model. We also provide expressions for these moments and the autocorrelation structure of

the process.

A Notation

To conveniently write down the unconditional moments of the multivariate normal mixture

GARCH model, use of several patterned matrices is rather advantageous, and we define them

here. A detailed discussion of (as well as explicit expressions for) these matrices can be found

in Magnus (1988). The first of these matrices is the commutation matrix, Kmn, which is the

mn×mn matrix with the property that Kmnvec(A) = vec(A′) for every m× n matrix A. We

will use the fact that the commutation matrix allows us to transform the vec of a Kronecker

product into the Kronecker product of the vecs (Magnus, 1988, Theorem 3.6). More precisely,

for an m × n matrix A and an p × q matrix B, it is true that

vec(A ⊗ B) = (In ⊗ Kqm ⊗ Ip)(vecA ⊗ vecB). (A.1)

The elimination matrix, Ln, is the n(n + 1)/2 × n2 matrix that takes away the redundant

elements of a symmetric n × n matrix, i.e., for every n × n matrix A, we have Lnvec(A) =

vech(A). In contrast, the duplication matrix, Dn, is the n2 × n(n + 1)/2 matrix with the

property that Dnvech(A) = vec(A) for every symmetric n × n matrix A. Its Moore–Penrose

inverse, D+
n , is given by D+

n = (D′

nDn)−1D′

n (Magnus, 1988, Theorem 4.1).

To compactify the expressions for the moments of our model, we will also made extensive

use of the matrix Ñn = (In2 + Knn)/2, which is discussed in Section 3.10 of Magnus (1988),

and which has the property that, for every n × n matrix A,

2Ñnvec(A) = vec(A + A′). (A.2)

Note that the matrix D+
n has a similar property. Namely, because of D+

n = LnÑn (Magnus,

1988, p. 80), we have

2D+
n vec(A) = vech(A + A′). (A.3)
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B The Third and Fourth Moments of an Asymmetric Multi-

variate Normal Mixture Distribution

In this Appendix, we provide convenient expressions for the expectations of vec[vech(xx′)x′]

and vec[vech(xx′)vech(xx′)′], when x has a multivariate normal mixture distribution with

(possibly) nonzero means, as defined in (1) and (2). These expressions will be useful for

computing the unconditional moments of the multivariate mixed normal GARCH process in

Appendix C.

To derive the expressions given in this Appendix, we draw on results of Magnus and

Neudecker (1979), Balestra and Holly (1990), and Hafner (2003). We state the central results

as Lemmas 2–4 for the third, and Lemmas 5–8 for the fourth moment. Details of the derivations

are presented only for the third moment, because those for the fourth moment are similar.

Detailed derivations are available on request from the authors.

B.1 The Third Moment

To find a compact expression for E{vec[vech(xx′)x′]}, which is needed due to the inclusion of

the leverage terms, we make use of a formula of Balestra and Holly (1990) which we state as

Lemma 2.

Lemma 2 (Balestra and Holly, 1990) For an M–dimensional random vector x, which is nor-

mally distributed with mean μ and covariance matrix H, we have

E[(x ⊗ x)x′] = vec(H)μ′ + 2ÑM (μ ⊗ H) + (μ ⊗ μ)μ′. (B.4)

We are interested in E{vec[vech(xx′)x′]} as a linear function in h, where h = vech(H).

Such an expression is provided next.

Lemma 3 For an M–dimensional random vector x, which is normally distributed with mean

μ and covariance matrix H, we have

E{vec[vech(xx′)x′]} = (IM ⊗ LM )[G̃M (μ ⊗ DM )h + μ ⊗ μ ⊗ μ], (B.5)

where h = vech(H), and

G̃M = IM3 + 2(IM ⊗ ÑM )(KMM ⊗ IM ). (B.6)

Proof. By Lemma 2, and using vec(ABC) = (C ′ ⊗ A)vec(B), we have

E{vec[vech(xx′)x′]} = E{vec[LMvec(xx′)x′]} = (IM ⊗ LM )E{vec[(x ⊗ x)x′]}

= (IM ⊗ LM )vec[vec(H)μ′ + 2ÑM (μ ⊗ H) + (μ ⊗ μ)μ′].
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Furthermore, vec[2ÑM (μ ⊗ H)] = 2(IM ⊗ ÑM )vec(μ ⊗ H), and (A.1) implies that vec(μ ⊗

H) = (KMM ⊗ IM )(μ ⊗ vec(H)). Finally, as y ⊗ x = vec(xy′) for vectors x and y, we have

μ ⊗ vec(H) = vec[vec(H)μ′] = vec(DMhμ′) = (μ ⊗ DM )h, and thus (B.5).

Next, we consider the case of a normal mixture distribution.

Lemma 4 Assume that x ∼ MNM(λ1, . . . , λk, μ1, . . . , μk, H1, . . . , Hk). Let λ = (λ1, . . . , λk)
′,

Λ = diag(λ); hj = vech(Hj), j = 1, . . . , k; h = (h′

1, . . . , h
′

k)
′; Υ = (μ1, . . . , μk); μ = vec(Υ) =

(μ′

1, . . . , μ
′

k)
′; μ̃j = vech(μjμ

′

j), j = 1, . . . , k; Υ̃ = (μ̃1, . . . , μ̃k); and μ̃ = vec(Υ̃) = (μ̃′

1, . . . , μ̃
′

k)
′.

Then,

E{vec[vech(xx′)x′]} (B.7)

= (IM ⊗ LM )G̃M (ΥΛ ⊗ DM )h + (IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(μ̃μ′),

where N = M(M + 1)/2, and G̃M is defined in (B.6).

Proof. Lemma 4 follows from the fact that the third moment of the mixture is just the

weighted average of the component–specific moments as given in (B.5), i.e., for x mixed normal

as defined in Lemma 4, we have

E{vec[vech(xx′)x′]} = (IM ⊗ LM )

⎧⎨
⎩G̃M

k∑
j=1

λj(μj ⊗ DM )hj +

k∑
j=1

λj(μj ⊗ μj ⊗ μj)

⎫⎬
⎭ . (B.8)

Let ej be the jth unit vector in R
k. Then, for the first sum on the right–hand side of (B.8),

we have that

k∑
j=1

λj(μj ⊗ DM )hj =

⎧⎨
⎩

k∑
j=1

λj(e
′

j ⊗ μj ⊗ DM )

⎫⎬
⎭ h =

⎧⎨
⎩

⎛
⎝ k∑

j=1

λjμje
′

j

⎞
⎠ ⊗ DM

⎫⎬
⎭h

= (ΥΛ ⊗ DM )h, (B.9)

where, in the last equation in the first line in (B.9), we have used that y′ ⊗ x = xy′. For the

second sum on the right–hand side of (B.8), we find∑
j

λj(μj ⊗ μj ⊗ μj) =
∑

j

λjvec[(μj ⊗ μj)μ
′

j ] = (IM ⊗ DM )
∑

j

λjvec(μ̃jμ
′

j) (B.10)

= (IM ⊗ DM )
∑

j

λjvec[(e′j ⊗ IN )(μ̃μ′)(ej ⊗ IM )]

= (IM ⊗ DM )
∑

j

λj(e
′

j ⊗ IM ⊗ e′j ⊗ IN )vec(μ̃μ′)

= (IM ⊗ DM )
∑

j

λj(IM ⊗ e′j ⊗ e′j ⊗ IN )(KMk ⊗ IkN )vec(μ̃μ′)

= (IM ⊗ DM )
∑

j

λj(IM ⊗ vec(eje
′

j)
′ ⊗ IN )(KMk ⊗ IkN )vec(μ̃μ′)

= (IM ⊗ DM )(IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(μ̃μ′),
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where we have used the identity (A ⊗ b′)Knp = b′ ⊗ A for m × n matrix A and p × 1 vector b

(Magnus, 1988, p. 36). Finally, because (A⊗B)(C ⊗D) = (AC)⊗ (BD) if AC and BD exist,

we have (IM ⊗ LM )(IM ⊗ DM ) = (IM ⊗ LMDM ), and, by Theorem 5.5 of Magnus (1988),

LMDM = IN , N = M(M + 1)/2, so we get (B.7).

B.2 The Fourth Moment

For the fourth moment, we build on results of Magnus and Neudecker (1979) and Hafner (2003)

which we state as Lemmas 5 and 6, respectively.

Lemma 5 (Magnus and Neudecker, 1979, Theorem 4.3) For an M–dimensional random vec-

tor x, which is normally distributed with mean μ and covariance matrix H, we have

E[(x ⊗ x)(x ⊗ x)′] = 2DMD+
M (H ⊗ H) + vec(H)vec(H)′ (B.11)

+2DMD+
M (H ⊗ μμ′ + μμ′ ⊗ H)

+vec(H)vec(μμ′)′ + vec(μμ′)vec(H)′ + vec(μμ′)vec(μμ′)′.

For the result in Lemma 5, see also Magnus (1988, Ch. 10).

We are interested in E[vech(xx′)vech(xx′)′]. Using the identity vec(xx′) = x ⊗ x and the

definition of the elimination matrix LM , this can be written as LME[(x⊗x)(x⊗x)′]L′

M , which

is a simple transformation of (B.11). The case of a normal distribution with zero mean was

considered by Hafner (2003), who considered the more general class of spherical distributions.

Lemma 6 (Hafner, 2003, Theorem 1) For an M–dimensional normally distributed random

vector x with zero mean and covariance matrix H, we have

vec{E[vech(xx′)vech(xx′)′]} = GMvec(hh′), (B.12)

where h = vech(H), and

GM = 2(LM ⊗ D+
M )(IM ⊗ KMM ⊗ IM )(DM ⊗ DM ) + IN2 , (B.13)

and N := M(M + 1)/2 is the number of independent elements in H.

Our first step is to generalize (B.12) to the case of nonzero means, i.e., to consider the

terms in the second and third line of (B.11).

Lemma 7 For an M–dimensional normally distributed random vector x with mean μ and

covariance matrix H, we have

vec{E[vech(xx′)vech(xx′)′]} = GMvec(hh′) + 2GM ÑN (μ̃ ⊗ IN )h + vec(μ̃μ̃′), (B.14)

where GM is defined in (B.13), h = vech(H), μ̃ = vech(μμ′), and N = M(M + 1)/2.
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The proof of Lemma 7 can be carried out along similar lines as the proof of Theorem 1 in

Hafner (2003). The case of a multivariate normal mixture distribution is considered next. We

make use of the notation introduced in Lemma 4.

Lemma 8 Assume that x ∼ MNM(λ1, . . . , λk, μ1, . . . , μk, H1, . . . , Hk). Then,

vec{E[vech(xx′)vech(xx′)′]} (B.15)

= GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(hh′) + 2GM ÑN (Υ̃Λ ⊗ IN )h

+(IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(μ̃μ̃′).

Lemma 8 is obtained by combining the results of Lemma 7 with the fact that the fourth

moment of the mixture is just the weighted average of the component–specific moments as

given in (B.14), quite similar to equation (B.8) for the third moment, and by using arguments

similar to those in the derivation of Lemma 4. For example, to show that

k∑
j=1

λjvec(hjh
′

j) = (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(hh′), (B.16)

we essentially repeat the argument in (B.10).

C The Moments of the MNM(k)–AGARCH(1,1) Model

In this Appendix, we use the results of Appendix B to derive the unconditional second and

fourth moments of the asymmetric multivariate mixed normal GARCH(1,1) model as given in

equation (11), as well as the conditions for their existence.

C.1 Moment Conditions

We will use the notation introduced in Section 2 and Lemmas 4 and 8. Also, as defined in (12),

ρ(A) denotes the largest eigenvalue in modulus of a square matrix A. Let Wt = (h′

t, vec(hth
′

t)
′)′.

We have E(ηt−1|Ψt−2) = (λ′⊗ IN )(ht−1 + μ̃), so that, using A1(λ
′⊗ IN ) = (1⊗A1)(λ

′⊗ IN ) =

λ′ ⊗ A1,

E(ht|Ψt−2) = Ã0 + A1(λ
′ ⊗ IN )μ̃ + (λ′ ⊗ A1 + B1)ht−1. (C.17)

Moreover, using the matrix Ñn, and in particular its basic property (A.2), we have

vec(hth
′

t) = Ã0 ⊗ Ã0 + 2ÑkNvec[Ã0(η
′

t−1A
′

1 + h′

t−1B
′

1)] + 2ÑkNvec(A1ηt−1h
′

t−1B
′

1)

+(A1 ⊗ A1)vec(ηt−1η
′

t−1) + (B1 ⊗ B1)vec(ht−1h
′

t−1)

+vec(Θ1εt−1ε
′

t−1Θ
′

1) − 2ÑkNvec[(Ã0 + A1ηt−1 + B1ht−1)ε
′

t−1Θ
′

1]. (C.18)
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Using Lemmas 4 and 8, and combining (C.17) and (C.18), it is now straightforward to derive

the recursion

E(Wt|Ψt−2) = d + CWt−1, (C.19)

where

d =

⎛
⎝ d1

d2

⎞
⎠ , C =

⎛
⎝ C11 0kN×(kN)2

C21 C22

⎞
⎠ ,

and

d1 = Ã0 + A1(λ
′ ⊗ IN )μ̃

d2 = Ã0 ⊗ Ã0 + 2ÑkN (λ′ ⊗ A1 ⊗ Ã0)μ̃ + (A1 ⊗ A1)(IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(μ̃μ̃′)

+(Θ1 ⊗ Θ1)DM (λ′ ⊗ IN )μ̃ − 2ÑkN (Θ1 ⊗ A1)(IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(μ̃μ′),

C11 = λ′ ⊗ A1 + B1,

C21 = 2ÑkN (λ′ ⊗ A1 + B1) ⊗ Ã0 + 2ÑkN [B1 ⊗ (λ′ ⊗ A1)μ̃] + 2(A1 ⊗ A1)GM ÑN (Υ̃Λ ⊗ IN )

+(Θ1 ⊗ Θ1)DM (λ′ ⊗ IN ) − 2ÑkN (Θ1 ⊗ A1)(IM ⊗ LM )G̃M (ΥΛ ⊗ DM ),

C22 = (A1 ⊗ A1)GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN ) + 2ÑkN (B1 ⊗ λ′ ⊗ A1) + B1 ⊗ B1.

Iterating (C.19), we obtain

E(Wt|Ψt−τ−1) =
τ−1∑
i=0

Cid + CτWt−τ . (C.20)

From the block–triangular structure of C, we have, from (C.20), that

E(ht|Ψt−τ−1) =
τ−1∑
i=0

Ci
11d1 + Cτ

11ht−τ . (C.21)

Thus, as we have assumed that the process starts indefinitely far in the past with finite fourth

moments, the unconditional expectation E(ht) exists and is given by the limit as τ → ∞, i.e.,

E(ht) = lim
τ→∞

E(ht|Ψt−τ−1) =
∞∑
i=0

Ci
11d1 = (IkN − C11)

−1d1 (C.22)

if and only if ρ(C11) < 1, as stated in (13). By the same line of reasoning, E(Wt) exists if and

only if, in addition, ρ(C22) < 1, as stated in (14). In this case, by partitioned inversion of C,

E[vec(hth
′

t)] = (I(kN)2 − C22)
−1(d2 + C21(IkN − C11)

−1d1). (C.23)
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C.2 Autocovariance Function of the Squares

To find the autocovariance matrices, i.e., Γ(τ) = E(ηtη
′

t−τ ) − E(ηt)E(ηt)
′, we first note that

(C.21) in Appendix C.1 implies

E(ht|Ψt−τ ) =
τ−2∑
i=0

Ci
11di + Cτ−1

11 ht−τ+1 = E(ht) + Cτ−1
11 [ht−τ+1 − E(ht)].

Hence,

E(ηtη
′

t−τ ) = E[E(ηt|Ψt−τ )η
′

t−τ ]

= E{(λ′ ⊗ IN )[E(ht|Ψt−τ ) + μ̃]η′t−τ}

= (λ′ ⊗ IN )E{[E(ht) + μ̃ + Cτ−1
11 (ht−τ+1 − E(ht))]η

′

t−τ}

= E(ηt)E(ηt)
′ + (λ′ ⊗ IN )Cτ−1

11 E
{

[Ã0 + A1ηt−τ − Θ1εt−τ + B1ht−τ − E(ht)]η
′

t−τ

}
.

Thus we have (15) with

Q = E
{

[Ã0 + A1ηt − Θ1εt + B1ht − E(ht)]η
′

t

}
. (C.24)
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