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Zusammenfassung in deutscher
Sprache

Die vorliegende Arbeit behandelt dynamische Eigenschaften gekoppelter chaotischer
Tchebycheff-Abbildungen auf Netzwerken. Besondere Beachtung findet dabei die An-
wendung dieser dynamischen Systeme in dem von Beck in Ref. [I7] im Zusammenhang
mit stochastisch quantisierten Feldtheorien vorgeschlagenen Modell.

Gekoppelte chaotische Abbildungen auf Netzwerken sind zeitlich diskrete dynami-
sche Systeme, die verschiedene interessante Eigenschaften aufweisen. An jedem Kno-
ten ist die Dynamik durch die Iteration einer chaotischen Abbildung realisiert, wobei
diese in der hier vorliegenden Arbeit durch Tchebycheff-Polynome gegeben ist. Diese
speziellen Abbildungen sind konjugiert zu einer Bernoulli-Abbildung und zeigen ge-
ringstmogliche Korrelationen hoherer Ordnung. Sie kénnen dementsprechend als ‘ma-
ximal chaotisch’ bezeichnet werden [17]. Durch die Kopplung zwischen den verschiede-
nen Abbildungen entlang der Verbindungen eines Netzwerks wird eine Vielzahl kom-
plexer dynamischer Muster erzeugt. Diese raum-zeitlichen globalen Dynamiken sind
ein emergentes Phinomen des Systems, hervorgerufen durch das Zusammenspiel der
gekoppelten Elemente, und konnen nicht durch die Betrachtung der einzelnen isolier-
ten Bestandteile verstanden werden. In diesem Sinne représentieren gekoppelte chao-
tische Abbildungen auf Netzwerken ein prototypisches Modell zur Untersuchung des
Zusammenhangs zwischen lokaler Dynamik, Netzwerkstruktur und emergenter globa-
ler Dynamik. Entsprechende Systeme stellen ein intensiv studiertes Forschungsgebiet
im Rahmen der Theorie dynamischer Systeme und der statistischen Physik komple-
xer Netzwerke dar. Es finden sich zahlreiche Anwendungen als phidnomenologische
Modelle, beispielsweise auf dem Gebiet der Turbulenz, der Musterbildung oder zur
Untersuchung von Synchronisationsprozessen auf Netzwerken [7, [69] [70].

Eine neue als ‘Chaotic-Strings’ bezeichnete Anwendung gekoppelter chaotischer
Abbildungen auf Ring-Netzwerken im Zusammenhang mit Quantenfeldtheorien wird
in Ref. [I7] vorgeschlagen. Das Standardmodell der Elementarteilchenphysik ist ei-
ne physikalische Theorie zur Beschreibung der bekannten Elementarteilchen und de-
ren fundamentalen Wechselwirkungen, formuliert als relativistische Quantenfeldtheo-
rie [49, 53], 63]. Es steht in exzellenter Ubereinstimmung mit experimentellen Befun-
den. Nichtsdestotrotz kann es keine abschlieende ‘Theory Of Everything’ darstellen.
Beispielsweise ist die Beschreibung der Gravitation als fundamentale Wechselwirkung
im Rahmen des Standardmodells nicht moglich [49]. Weiterhin enthélt es ca. 20 freie
Parameter, deren Werte nicht aus der Theorie selbst folgen und die demnach expe-
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rimentell bestimmt werden miissen [110]. Das in Ref. [I7] vorgestellte Modell liefert
einen phdnomenologischen Ansatz zur Erklarung der Werte dieser Parameter. Dem-
nach werden diese mittels zusétzlicher Felder festgelegt und stabilisiert, welche durch
gekoppelte Tchebycheff-Abbildungen auf Ring-Netzwerken beschrieben werden. Die
raum-zeitlich chaotische Dynamik dient weiterhin als stochastisches Feld fiir die sto-
chastische Quantisierung von Feldtheorien nach Parisi-Wu [82]. Bemerkenswerterwei-
se zeichnen sich im Modell bestimmte numerische Werte der Kopplungsstéirke der
Dynamik aus, die mit Kopplungskonstanten des Standardmodells der Elementarteil-
chenphysik assoziiert werden konnen. Obwohl das in Ref. [I7] vorgeschlagene Modell
keine vollstéandige Theorie darstellt und die physikalische Einbettung der chaotischen
Dynamik noch nicht abschlieend geklart ist, motivieren diese Resultate eine einge-
hendere Untersuchung.

Die vorliegende Arbeit untersucht das Chaotic-String-Modell im Hinblick auf die
dynamischen Eigenschaften der zugrundeliegenden Systeme gekoppelter Tchebycheff-
Abbildungen. Die Ergebnisse ermoglichen ein grundlegenderes Verstandnis der Dyna-
miken und liefern somit einen essentiellen Beitrag zu einer kritischen Diskussion der
moglichen physikalischen Einbettung und Interpretation des Modells. Die Relevanz
der untersuchten Aspekte, beispielsweise Synchronisationseigenschaften oder ein ma-
ximal stochastisches Verhalten des Systems, ist nicht auf das Chaotic-String-Modell
beschriankt. Vielmehr sind diese Konzepte auch unabhéingig von konkreten Anwen-
dungen von Interesse in der Theorie dynamischer Systeme und komplexer Netzwer-
ke [7, [70].

Auf eine allgemeine Einleitung der vorliegenden Arbeit in Kapitel [I] folgt in Ka-
pitel [2| eine Einfithrung in die fiir die Behandlung gekoppelter chaotischer Abbil-
dungen relevanten Konzepte aus der Theorie der dynamischen Systeme und kom-
plexen Netzwerke. Chaotische Abbildungen sowie wichtige Mafle zu deren Beschrei-
bung werden charakterisiert und verschiedene Beispielabbildungen vorgestellt. Be-
dingt durch die besondere Relevanz fiir das Chaotic-String-Modell [I7] liegt der Fo-
kus auf Tchebycheff-Polynomen. Daran anschliefend wird die Notation zur Beschrei-
bung komplexer Netzwerke eingefithrt und wichtige Netzwerkeigenschaften definiert.
Weiterhin erfolgt eine kurze Ubersicht verschiedener Netzwerkmodelle. Gekoppelte
chaotische Abbildungen auf Netzwerken verbinden dann die zuvor vorgestellten Kon-
zepte aus den Bereichen der dynamischen Systeme und komplexen Netzwerke. Die
entsprechenden dynamischen Systeme werden definiert und der aktuelle Stand der
Forschung in diesem Bereich iibersichtsartig wiedergegeben.

Nach dieser allgemeinen Einfiihrung in die Theorie gekoppelter chaotischer Abbil-
dungen auf Netzwerken wird in Kapitel |3 das in Ref. [17] vorgeschlagene Chaotic-
String-Modell vorgestellt. Es handelt sich dabei um gekoppelte Tchebycheff-Abbil-
dungen auf Ring-Strukturen. Die zugehorigen Evolutionsgleichungen und Observa-
blen werden definiert und qualitative Einblicke in die auftretenden Dynamiken ge-
geben. Von entscheidender Bedeutung in diesem Modell sind zwei formal aus den
Evolutionsgleichungen abgeleitete Observablen, welche als Wechselwirkungsenergie
und Selbstenergie der Dynamik bezeichnet werden. In Ref. [17] wird angegeben, dass
bestimmte mit einer verschwindenden Wechselwirkungsenergie assoziierte Kopplungs-
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konstanten des dynamischen Modells mit Kopplungskonstanten des Standardmodells
der Elementarteilchenphysik identifiziert werden kénnen. Die entsprechenden nume-
rischen Beobachtungen aus Ref. [I7] werden dargestellt und eine dort vorgestellte
physikalische Einbettung des Modells skizziert.

Kapitel [ behandelt diskrete Symmetrien gekoppelter Tchebycheff-Abbildungen auf
Netzwerken. Die mathematische Herleitung des Chaotic-String-Modells fiihrt zu ins-
gesamt 16 scheinbar unterschiedlichen Dynamiken, basierend auf Tchebycheff-Abbild-
ungen zweiter und dritter Ordnung [I7]. In Ref. [17] wurde aufgrund von Symmetrie-
argumenten diese Anzahl auf lediglich sechs grundlegend unterschiedliche Dynami-
ken reduziert. Die Untersuchungen in Kapitel 4] bestétigen diese Argumente mit Hilfe
einer vollstandigen Analyse diskreter Symmetrietransformation der entsprechenden
Dynamiken. Diese Transformationen sind allgemein fiir bipartite Netzwerkstruktu-
ren formuliert. Ein bipartites Netzwerk besteht aus zwei disjunkten Teilmengen von
Knoten mit Netzwerkverbindungen lediglich zwischen Knoten aus unterschiedlichen
Teilmengen. Ein Ring-Netzwerk mit einer geraden Anzahl von Knoten ist eine spezi-
elle Realisierung eines solchen bipartiten Netzwerks.

Eine der grundlegenden Observablen des Chaotic-String-Modells ist die Wechsel-
wirkungsenergie. Von besonderem Interesse in Ref. [17] sind bestimmte zu einer ver-
schwindenen Wechselwirkungsenergie fithrende Kopplungen der chaotischen Dyna-
mik, da fir diese eine numerische Ubereinstimmung mit Kopplungskonstanten des
Standardmodells beobachtet wird. Da die Wechselwirkungsenergie im Wesentlichen
ein rdumliches Korrelationsmaf fiir die Dynamik auf den Knoten des Rings darstellt,
wird in Ref. [I7), 21] eine Interpretation der entsprechenden dynamischen Zusténde als
‘maximal chaotisch’ oder ‘maximal stochastisch’ nahegelegt. Solch eine Interpretation
sollte jedoch ein allgemeineres dynamisches Prinzip zur Auszeichnung bestimmter Dy-
namiken und Kopplungswerte liefern und wére demzufolge nicht nur an eine spezielle
Observable gekoppelt.

Die Wechselwirkungsenergie ist ein solches spezielles raumliches Korrelationsmaf3
und gibt demzufolge nur in begrenztem Umfang Aufschluss iiber die Eigenschaften der
Dynamik. Um bestimmte dynamische Zustédnde als maximal stochastisch zu beurtei-
len oder um ein vergleichbares dynamisches Prinzip aufzustellen, ist ein tiefergehendes
Verstéandnis iiber diese Observable hinaus unverzichtbar.

Ein erster Schritt zu einem solchen besseren Verstdndnis wird in Kapitel [5| un-
ternommen. Obwohl die Wechselwirkungsenergie jeweils separat fiir alle gekoppelten
Knoten-Paare definiert ist, wird in Ref. [I7] der rdumliche Mittelwert dieser lokalen
Observablen iiber das gesamte Ring-Netzwerk betrachtet. Die in Kapitel |5| vorgestell-
ten Rechnungen zeigen, dass dieser rdaumliche Mittelungsprozess zu missversténdlichen
Ergebnissen fithren kann. Fiir einen weiten Bereich von Kopplungen stellt sich die
Dynamik als nicht-ergodisch heraus, was zu einer Abhéngigkeit der Observablen vom
jeweiligen Knoten des Netzwerks und den Anfangsbedingungen fiihrt. Insbesonde-
re wird gezeigt, dass zwei der in Ref. [I7] mit Kopplungskonstanten des Standard-
modells identifizierten Nullstellen der Wechselwirkungsenergie lediglich aus diesem
globalen Mittelungsprozess resultieren, fiir die jeweiligen Dynamiken diese Observa-
ble aber lokal nicht verschwindet. Fiir die sechs weiteren interessanten Nullstellen der
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Wechselwirkungsenergie wird ein ergodisches Verhalten der Dynamik beobachtet, und
die Wechselwirkungsenergie verschwindet lokal. Diese Nullstellen werden im weiteren
Verlauf von Kapitel [5| numerisch mit hoher Prizision berechnet und anhand dieser
Rechnungen die entsprechenden Ergebnisse aus Ref. [I7] bestétigt.

In Kapitel [o] wird ein eventuelles maximal chaotisches Verhalten der Chaotic-String-
Dynamiken fiir die Nullstellen der Wechselwirkungsenergie iiberpriift. Um eine ge-
nauere Charaktisierung der Dynamik zu erreichen, werden zuerst verschiedene auf
dem Lyapunov-Spektrum basierende Mafle betrachtet. Die Lyapunov-Exponenten ei-
nes dynamischen Systems beschreiben die Separationsrate nahe aneinanderliegen-
der Trajektorien im Phasenraum, wobei bereits ein positiver Exponent chaotisches
Verhalten indiziert. Neben dem gréfiten Lyapunov-Exponenten wird der Mittelwert
iiber alle positiven Lyapunov-Exponenten und die Lyapunov-Dimension der Dyna-
miken berechnet. Diese drei Mafle zeigen Maxima fiir ungekoppelte Tchebycheff-
Abbildungen und Minima fiir synchronisierte Fixpunkte und stellen demnach In-
dikatoren fiir die Chaotizitdt der Dynamik dar. Die numerischen Rechnungen zeigen,
dass fiir groflere Kopplungswerte ein grofler Teil oder sogar das gesamte Lyapunov-
Spektrum nicht-positive Werte annimmt und dementsprechend zahlreiche Richtungen
im Phasenraum existieren, in welchen die Dynamik nicht-chaotisches Verhalten zeigt.
Fiir kleine Kopplungen wird ein vollstéindig positives Lyapunov-Spektrum beobach-
tet, was eine stark chaotische Dynamik indiziert. Jedoch zeigen sowohl der maxi-
male Lyapunov-Exponent sowie der mittlere positive Lyapunov-Exponent ein mit
steigender Kopplung monoton abfallendes Verhalten. Demzufolge ist hinsichtlich die-
ser Lyapunov-Mafle kein maximal chaotisches oder maximal stochastisches Verhalten
zu erkennen und die Existenz eines dementsprechenden dynamischen Prinzips zur Se-
lektion von Kopplungswerten mit verschwindender Selbstenergie kann ausgeschlossen
werden.

Das Lyapunov-Spektrum einer Dynamik héngt von der zeitlichen Evolution des
Systems ab, wiahrend die Wechselwirkungsenergie lediglich rdumliche Korrelationen
beriicksichtigt. Eine Moglichkeit, das dynamische Prinzip eines maximal stochasti-
schen Verhaltens beizubehalten, ist eine Abschwéchung dieses Prinzips auf raumliche
Korrelationen. Zur Uberpriifung dieses abgeschwiichten Prinzips werden in Kapitel |§I
neben den bereits genannten Lyapunonv-Maflen auch Kumulanten héherer Ordnung
und das Transinformationsmafl berechnet. Diese beiden letzteren Messgréfien ver-
schwinden jeweils fiir statistisch unabhéngige Zufallszahlen und dienen somit als In-
dikatoren fiir rdumliche Korrelationen. Fiir Chaotic-String-Dynamiken basierend auf
Tchebycheff-Polynomen zweiter Ordnung liefert bereits der Kumulant erster Ord-
nung andere Nullstellen als die Wechselwirkungsenergie, wodurch eine Identifikation
mit Standard-Modell-Kopplungen nicht méglich ist. Die Nullstellen der Wechselwir-
kungsenergie fiir Chaotic-String-Dynamiken basierend auf Tchebycheff-Polynomen
dritter Ordnung korrespondieren fiir kleine Kopplungen zwar mit den Nullstellen des
Kumulanten erster Ordnung, Kumulanten héherer Ordnungen verschwinden fiir die-
se Kopplungen jedoch nicht. Auch die Transinformation zeigt fiir die Nullstellen der
Wechselwirkungsenergie kein besonderes ausgezeichnetes Verhalten.

Die Untersuchungen in Kapitel [| widersprechen demnach einer Interpretation der
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Nullstellen der Wechselwirkungsenergie durch ein maximal chaotisches oder maxi-
mal stochastisches Verhalten der jeweiligen Dynamik. Dementsprechend sind diese
Nullstellen lediglich anhand einer speziellen Observable, der Wechselwirkungsenergie,
ausgezeichnet, jedoch nicht durch ein allgemeineres dynamisches Prinzip. Folglich soll-
te das in Ref. [I7] vorgeschlagene Chaotic-String-Modell diese Observable mit starken
physikalischen Argumenten begriinden, da eine Motivation mittels eines allgemeinen
dynamischen Prinzips nicht moglich ist.

Das Chaotic-String-Modell ist in Ref. [I7] auf einem Ring-Netzwerk definiert. In
Kapitel [7|wird eine Erweiterung des Modells basierend auf der Einfithrung einer regel-
baren Unordnung des Systems untersucht. Zum einen wird eine inhomogene Vertei-
lung der Kopplungsstérken betrachtet, zum anderen eine Perturbation der Netzwerk-
struktur durch zusétzliche Netzwerkverbindungen, welche die Ring-Struktur in ein
sogenanntes ‘Small-World’ Netzwerk iiberfiithren [88]. Es wird beobachtet, dass beide
Arten von Unordnung zu einer Verschiebung der jeweiligen Nullstellen der Wechsel-
wirkungsenergie fithren, wodurch eine Interpretation als Standard-Modell-Kopplung
erschwert wird. Es zeigt sich jedoch, dass durch eine passende Kombination von so-
wohl inhomogener Kopplungsverteilung als auch Perturbation der Netzwerkstruk-
tur die Nullstellen erhalten bleiben. Eine Ausnahme stellt eine Nullstelle einer auf
Tchebycheff-Polynomen dritter Ordnung basierenden Dynamik dar, welche als elek-
tromagnetische Kopplung identifiziert wird und fiir die eine solche Kombination sich
gegenseitig ausgleichender Arten von Unordnung nicht gefunden werden kann.

In Kapitel [§ und [9] werden Synchronisationeigenschaften gekoppelter Tchebycheff-
Abbildungen auf Netzwerken untersucht. Die Rechnungen basieren auf dem soge-
nannten ‘Master-Stability-Formalismus’, mittels dessen die Stabilitdt des synchroni-
sierten Zustands in allgemeiner Form zu den spektralen Eigenschaften des Netzwerks,
ausgedriickt durch Eigenwerte einer die Netzwerkstruktur darstellenden Matrix, in
Beziehung gesetzt werden kann [7],[96]. Kapitel [8| behandelt vollstéindige Synchronisa-
tion, das heifit, alle Knoten des Netzwerks zeigen exakt identisches Verhalten. Zwei-
Gruppen-Synchronisation auf bipartiten Netzwerken wird in Kapitel[J]untersucht. Bei
dieser zweiten Art von Synchronisation sind jeweils alle Knoten verschiedener Teil-
mengen der Knoten synchronisiert, das Verhalten der jeweiligen Gruppen unterschei-
det sich jedoch. Es wird beobachtet, dass fiir gekoppelte Tchebycheff-Abbildungen die
synchronisierte Dynamik fiir vollstdndige wie auch fiir Zwei-Gruppen-Synchronisation
sowohl chaotisches, wie auch periodisches Verhalten oder sogar einen stabilen Fix-
punkt aufweisen kann. Semi-analytische Berechnungen zeigen, dass fiir einen groflen
Bereich der Kopplungswerte die Synchronisation einen stabilen Zustand darstellt.
Neben diesen semi-analytischen Berechnungen werden auch analytische Resultate fiir
vollstéandig und zwei-Gruppen-synchronisierte Fixpunkte und Periode-2-Orbits her-
geleitet. Aufgrund der Verwendung des Master-Stability-Formalismus kénnen die Er-
gebnisse auf die im Rahmen des Chaotic-String-Modells betrachteten Ring-Netzwerke
angewendet werden, sind aber allgemein fiir beliebige (fiir Zwei-Gruppen-Synchroni-
sation bipartite) Netzwerkstrukturen giiltig.

Zahlreiche weiterfithrende Fragestellungen kénnen mit den in der vorliegenden Ar-
beit betrachteten Methoden und Konzepten behandelt werden. Eine logische Fort-
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fiihrung der in Kapitel [4] vorgestellten Analyse diskreter Symmetrien wére eine Er-
weiterung auf r-partite Netzwerke, die aus insgesamt r disjunkten Teilmengen von
Knoten bestehen. Gekoppelte chaotische Abbildungen auf solchen r-partiten Netz-
werken werden kompliziertere Transformationseigenschaften aufweisen. Es wére in-
teressant, die daraus resultierenden allgemeineren diskreten Symmetrien sowie die
Auswirkung einer Symmetriebrechung auf die Dynamik zu untersuchen.

In Kapitel [6] werden Lyapunov-Mafie und Korrelationen hoherer Ordnungen fiir das
Chaotic-String-Modell berechnet. Es liegt nahe, diese Betrachtungen auf allgemeine
Netzwerkstrukturen auszuweiten und so den Einfluss der Netzwerkstruktur auf die
Chaotizitat der Dynamik zu untersuchen. Ein weiterer interessanter Ansatz ist die
Anwendung der in Kapitel [§ und [J eingesetzten Methoden im Rahmen der in Kapi-
tel [7] eingefithrten Netzwerkunordnung und inhomogenen Kopplungsverteilungen. Es
stellt sich die Frage, ob Unordnungsphédnomene die Synchronisierbarkeit von Netz-
werken verringern oder steigern. Eine dhnliche Fragestellung betrifft die Gruppen-
Synchronisation, wie sie in Kapitel [9] anhand von Zwei-Gruppen-Synchronisation auf
bipartiten Netzwerken untersucht wird. Welche Auswirkung hat eine Perturbation
der bipartiten Netzwerke auf die Dynamik? Es ist vorstellbar, dass die Zwei-Gruppen-
Synchronisation in verminderter Form erhalten bleibt, aber auch die Ausbildung neuer
raum-zeitlicher Muster ist denkbar. Mit Hinblick auf das Chaotic-String-Modell liefert
die vorliegende Arbeit zahlreiche neue Erkenntnisse und tiefere Einsichten in die dem
Modell zugrundeliegenden dynamischen Systeme. Der hier gewéhlte Ansatz ist eine
Untersuchung unter dynamischen Gesichtspunkten. Es ist zwingend, dass zukiinftige
Untersuchungen einer physikalischen Einbettung und Interpretation dieses Modells
die hier vorgestellten Ergebnisse beriicksichtigen.



1 Introduction

Chaos is a nowadays well-known mathematical concept with applications in a mul-
titude of disciplines, including physics, biology or economics [3, 94]. The most im-
portant characteristic for chaotic behaviour is its sensitivity on initial conditions:
a small difference in the initial conditions grows exponentially in time. Since ini-
tial conditions in nature are always only known up to a certain restricted precision,
the long-term behaviour of chaotic systems is in general unpredictable, although the
dynamics is completely deterministic. This chaotic behaviour is not restricted to
high-dimensional, evidently complex systems, but can already be observed in simple
one-dimensional discrete-time systems, for which the logistic map is the archetypical
example [36].

Although there is still ongoing research, many features of low-dimensional chaos
are well understood today, and elaborate descriptions and methods, often inspired by
concepts from statistical physics, have become standard techniques in this field [3],[94].
But what happens, when several chaotic systems are coupled? An approach to this
question was proposed by Kaneko in the 80s by the introduction of the coupled
map lattice model [64]. Such a dynamical system consists of a population of low-
dimensional maps on a regular lattice structure, which interact by a diffusive next-
neighbour coupling. Although it is a rather abstract model governed by a simple time-
discrete evolution equation, the coupled map lattice dynamics exhibits a rich structure
of complex dynamical phenomena. It has been used as a model to quantitatively
study the dynamics of spatially extended systems, with applications ranging from
hydrodynamical flows, turbulence, and chemical reactions to synchronization [29,
69, [70]. A straightforward modification of this model is the globally coupled map
dynamics, where the next-neighbour coupling is replaced by an all-to-all coupling,
leading to qualitatively new phenomena like cluster synchronization [68]. There are
various studies on coupled map lattices and globally coupled map models, but up
to now only a limited understanding of the dynamics has been achieved. Several
rigourous analytical results are known for the small coupling limit, but for larger
couplings most studies are based on numerical methods.

The coupled map lattices and globally coupled maps are two special cases of coupled
map networks, which have recently been studied by scientists in the field of complex
networks. In principle, every system consisting of a collection of objects which in
some way relate to each other can be described by a network. The individual object
is abstracted as a node, and the relation between objects is represented by a link of the
network. One example is a power grid, where transmission stations are represented
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by nodes, and transmission lines as links, another one the WWW, with the web pages
corresponding to nodes and hyperlinks to links, respectively. Initiated by the seminal
work of Watts and Strogatz in 1998 [114], in the last decade a science of complex
networks has emerged. Initially, most research has been based on a static point of
view, that is the description of the respective network structures by various mea-
sures, and the development of generic models which reproduce real world properties
and thus provide insights into their structure and function. Only recently scientists
have started to address dynamical properties of networks, and the focus has shifted to
the interplay between network structure, local dynamics, and the emerging dynamics
on a global level. A prototypical class of dynamical network models are coupled map
networks, which are the natural generalization of the coupled map lattice using con-
cepts from the science of complex networks. There have already been several studies
on these systems, with the focus on synchronization properties [7], but the dynamical
properties of coupled map networks are still far from being well-understood.

Apart from being of interest in the theory of dynamical systems, an interesting
application in connection with quantum field theories in particle physics has been
pointed out by Beck in Ref. [I7] for a certain class of coupled map lattices. The
standard model of particle physics is a coherent model, which characterizes particles
and forces in nature [49, 63 [63]. It provides a unified description of the strong,
weak and electromagnetic forces in the language of quantum field theory [51], O7].
Although it is in excellent accordance with experimental data, the standard model is
not a complete theory. Besides failing to incorporate gravity, one major shortcom-
ing is its dependence on about 20 parameters (coupling constants, masses, mixing
angles [32], [56], [TT0]), which are not fixed by the standard model itself. In order to ex-
plain the observed values of these parameters, one has to apply anthropic arguments,
or embed the standard model into a larger, more fundamental theory. A phenomeno-
logical approach to this problem, based on coupled Tchebycheff map lattices, has been
proposed by Beck in Refs. [16] 17, 21]. In this model, called ‘chaotic strings’, the cou-
pled map lattice dynamics generates the noise needed for the Parisi-Wu approach of
stochastic quantization [82]. By considering two formal energies which depend on
a global coupling parameter, in Ref. [I7] the author reproduces a large number of
standard model parameters to an accuracy of about four decimal digits.

Although the model introduced by Beck in Refs. [16] I7] is not a complete theory
itself, but rather a preliminary model, due to its surprisingly exact numerical findings
it deserves further attention. In this thesis I will study the chaotic string model and
its network generalization from a dynamical point of view. The results are not only
of importance for a better understanding of the specific chaotic string dynamics and
the connections to a possible physical embedding, but are also relevant to the theory
of coupled map network dynamics in general.

The second chapter of the present work starts in Sec. with the definition of
chaotic maps and some of their properties. Some examples of chaotic maps are given,
with a focus on Tchebycheff polynomials, which are of relevance for the chaotic string
model. The following Sec. introduces the notation for describing complex net-
works, defines important network properties, and reviews selected network models.



The concepts of chaotic dynamical systems and complex networks are brought to-
gether in Sec. 2.3 thereby introducing coupled map networks. The respective dy-
namical models are defined, and results from the literature are reviewed.

Chapter [3] reviews Beck’s chaotic string model. In Sec. the dynamical model
itself is introduced. Subsequently Sec. defines two formal energies (self energy
and interaction energy) for the chaotic string model. In Ref. [17] it is observed,
that certain chaotic string couplings corresponding to a vanishing interaction energy
correspond to running coupling constants of the standard model of particle physics.
The respective numerical findings of Ref. [17] are displayed in Sec. [3.3] A possible
physical embedding of the chaotic string model as proposed in Refs. [16] 17, 20] 21]
is reviewed in Sec. [3.4

Chapter 4| contains a detailed treatment of discrete symmetries of the chaotic string
dynamics and its observables. Although in Ref. [I7] some of these symmetries have
already been listed, an complete formal analysis of the respective properties has been
missing up to now.

In Chap. [5| the interaction energy of chaotic strings is studied. An important con-
cept in Beck’s model is the interpretation of the chaotic string dynamics as generating
the noise of stochastic quantization [I7]. Since the interaction energy is basically a
correlation measure, in Refs. [I7, 21] dynamical states corresponding to a vanishing
interaction energy are interpreted in terms of a most random behaviour. For this
interpretation to hold, according to a presumed ergodic behaviour of the dynamics
the interaction energy should vanish locally at every lattice site, and not just due to
spatial averaging only. In Sec.[5.I]this condition is checked for zeros of the interaction
energy, which in Ref. [I7] are associated with standard model couplings. Addition-
ally, in Sec. selected numerical results of the Beck theory are verified by extensive
computations.

The interaction energy is only one specific spatial correlation measure. Chapter []
studies the notion of a most random behaviour of distinguished chaotic string dy-
namics by means of other observables from dynamical system theory. In Sec.
several Lyapunov measures are numerically calculated, which provide estimations of
the chaoticity of the chaotic strings dynamics. Sec. analyzes spatial correlations
by considering higher-order cumulants and the mutual information measure.

In Chap. the original Beck model of coupled Tchebycheff map lattices is studied.
This model is generalized in Chap. [7| by the introduction of a tunable disorder to the
chaotic string dynamics. Inhomogeneous coupling weights as well as small-world
perturbations of the ring-network structure are discussed.

Chapters [§ and [J treat synchronization properties of coupled Tchebycheff networks.
By application of master stability functions [96], the complete synchronization of these
systems is studied semi-analytically. The stability of synchronized fixed points and
period-2 orbits on general network structures is analytically determined. The notion
of synchronization is expanded to two-cluster synchronization on bipartite networks
in Chap. 0] Master stability functions for this kind of cluster synchronization are
formulated, and subsequently applied to coupled Tchebycheff map networks.

In Chap. 10| the results are summarized and possible future studies are proposed.
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2 Chaotic map networks

The main topic of this thesis are coupled Tchebycheff map networks, with the fo-
cus on the application in the chaotic string model proposed by Beck in Ref. [17].
In order to introduce the reader to this topic, in the following chapter I will review
several concepts from dynamical system theory and the science of complex networks.
After defining chaotic maps and explaing some of their properties, the relevant no-
tation for complex networks is etablished and some network models are discussed.
Subsequently, coupled map networks are defined and dynamical properties of these
dynamical models are reviewed.

2.1 Chaotic Maps

2.1.1 One-dimensional maps

In this thesis I will mostly focus on one-dimensional chaotic maps as the individual
units of the network dynamics [3,[04]. A one-dimensional map is a function f : [ — I
whose domain and range are the same interval I € R. For x € I the set of points
{z, f(x), f*(x),...} is called the orbit or trajectory of x under f. One writes z(0) for
the initial value, and z(t) = f*[x(0)] for the value of x at time ¢.

A point p is a periodic point of period k, if f¥(p) = p, and k is the smallest such
positive integer. Obviously, if a point p is periodic with period k, it is also periodic
with period 2k,3k,.... For k£ = 1 the periodic point is called a fixed point. The
stability of a periodic orbit {p(0),...,p(k — 1)} is accounted for the time evolution of
a small perturbation, which is given by the derivatives along the orbit:

Hf'[p(t)] <1 : stable orbit,

ﬂf’[p(t)] >1 : unstable orbit. (2.1)

If the product in this equation is exactly equal to one, one has to consider higher-order
derivatives to get information about the stability of the orbit.

A periodic point with a stable orbit is called a ‘sink’, whereas a periodic point with
an unstable orbit is called a ‘source’. If an orbit converges to a periodic orbit, it is
called asymptotically periodic.



2 Chaotic map networks

The average per-step divergence of nearby points along the orbits is quantified
by the Lyapunov number O[z(0)] of the orbit {z(0),z(1),...}, which for a one-
dimensional map f is given by

Olx(0)] = Jim (1 e(O)]l - £Vl .. [7w(o)]) (22)

if this limit exists. The Lyapunov exponent p[z(0)] of this orbit is defined as the
natural logarithm of the Lyapunov number:

ple(O)] = Jim & (1n | O]+ -+ In| (0] (2.3)
Hence the stability of a periodic point corresponds to a negative Lyapunov exponent.
Note that the concept of Lyapunov numbers and exponents also applies to nonperiodic
orbits. A bounded orbit, which is not asymptotically periodic and has a positive
Lyapunov exponent, is called chaotic. Such an orbit shows sensitive dependence
on initial conditions, that means that even infinitesimally close points move after
sufficiently large number of iterations at least some prescribed nonzero distance away.

The definitions in the last paragraph apply to specific orbits of a map, which often,
depending on the initial value, can be either chaotic or periodic. In order to make
more general statements about a map, it is useful to consider probability distributions
of its iterates for various initial condtions [22], 94].

Consider an ensemble of different initial conditons z(0). For a certain subset of the
phase space A C I, the probablity measure w(A;0) gives the probability of having
x(0) € A. The probability density p(x;0) is defined by

w(A;0) = /Adac p(x;0). (2.4)

Consider the orbits of different initial values x(0) under the map f(z), which are
initially distributed according to the probability density p(x;0). The probability
measure w(A;t) of these iterates after ¢ iterations of the map is given by

w(A;t) = /Adx p(x;t). (2.5)

It holds
W(Ait+1) = w(f 7 (A)s1), (2.6)
where f7!(A) denotes the preimage of A. This relation follows from the fact, that the
probability of having iterates x(t+1) in the subset A must be equal to the probability
of having iterates x(¢) in the preimage f~1(A).
An invariant probability measure satisfies the condition

w(Ast+1) =w(A;t), (2.7)

that is, it describes a stationary state of the probability measure. The corresponding
probability density is called an invariant density.
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Ensemble averages over an observable O(x) are obtained by

<O>ensemble:/] dzp(x)O(x). (2.8)

I assume an invariant density, so the index ¢ in p(z;t) has been omitted.
A time average of the observable O(z) is defined by

=

<O>time,x(0) = }520 n Z Olz(7)], (2.9)
7=0

which in general depends on the initial value x(0).

A map f(x) together with an invariant density p is called ‘ergodic’, if for every
observable O(x) the ensemble average with respect to p is equal to the time average
for arbitrary initial conditions up to a set of measure zero. Consequently, for such
an ergodic map one obtains the invariant measure by iterating an initial value and
counting the relative number of iterates in a certain subset A of the phase space [22].

Usually there exist different invariant measures for a certain map [22]. For example,
consider a map f(z) with an unstable fixed point p;. The Dirac delta function
d(z — py) is an invariant density of the map, but since the fixed point is unstable,
this density is only relevant for the fixed point itself and its preimages. In contrast,
a natural invariant measure is the invariant measure, which one obtains by iterating
a randomly chosen point [22]. It is relevant for all values of the phase space up to a
subset of measure zero.

By means of this probability concept one can apply a Lyapunov exponent to a map
f(z) rather than to a single orbit. If there exist a natural invariant measure for the
map, it implies that the right-hand side of Eq. is the same for all initial values
z(0) up to set of measure zero. In general this is then called the Lyapunov exponent
of the map, without stating explicitly the reference to the respective natural invariant
measurd

2.1.2 Examples of chaotic maps

The circle map On the unit circle, denoted by S', a point is determined by an
angle ¢ € [0,27) measured in radians. The circle map C': S — S! defined by

Cn(¢p) =m-¢ (mod 27), (2.10)

where m denotes an integer larger one, is a simple example for a chaotic map [39).
One can write the angle ¢(t) as

8(t) = 21 <i %@) (2.11)

ITo be precise, this holds if the map has only one attractor. If there are several attractors in the
system, one has to attribute natural invariant measures to each attractor, and in general obtains
different Lyapunov exponents. See Ref. [94] for details)
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with s;(t) € {0,1,...,m — 1}. The most common case is m = 2, where Eq. (2.11) is

just the binary representation of the angle ¢.
In this representation Eq. (2.10]) reads

o(t+1) = 27r<

— 97 i;ﬁ?) (mod 27)
= 27 sl(t)—i—isj_l.(t)) (mod 2)

— o i%ﬁ”) (2.12)

By comparing the first and the last line of this set of equations, this leads to s;(t+1) =
s;—1(t). Thus, if one identifies ¢ with the sequence sy, so, ..., the action of the circle
map C,,(¢) on ¢ corresponds to a shift of the sequence sy — s1, 83 — $a, ..., denoted
as a Bernouilli shift. Accordingly the circle map C,,(¢) is equivalent to a Bernouilli
shift of m symbols [39].

The baker map Consider the map B(z) : [0,1] — [0, 1] (called baker map) defined
by

Bz) :{ Qﬁ 1

Obviously it holds that |B'(x)| = 2 for all x € [0, 1], so every orbit has Lyapunov
exponent In 2. Consequently no stable periodic orbit exist, and this map is chaotic
(see Ref. [39]).

<z
<z

[— N

(2.13)

o= O
IN A

The logistic map The logistic map L(x) : [0, 1] — [0, 1] is defined by
L(z) = ax(1 — z). (2.14)

This map is chaotic for a = 4, with Lyapunov exponent In 2 for all chaotic orbits |36,
39].
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Figure 2.1: Tchebycheff polynomials of second order Ty (z) (left) and third order T3(x)
(right).

Tchebycheff polynomials Of special interest in this thesis is a class of maps denoted
as Tchebychef polynomials T}, : R — R, defined as

T()(CC) = 1,

Ti(z) = =z,

Ty(z) = 22° —1,

Ts(z) = 4a® — 3. (2.15)

Higher order polynomials can be determined by the following relation:
To1(x) = 22T, () — T (). (2.16)

For m > 2 these polynomials are chaotic with Lyapunov exponent Inm for chaotic
orbits. Fig.[2.1|shows T5(x) and T3(x). All Tchebyscheff polynomials map the interval
[—1, 1] to itself, so for an initial value z(0) in this set, all future iterations also remain
in this set. In the following I will always assume that the dynamics is restricted to
this interval [—1,1].

For T, : [-1,1] — [—1,1] holds

T,, = cos[m arccos z|. (2.17)

To show the chaotic behaviour of Tchebycheff polynomials one uses the concept of
topological conjugacy [39]. For this purpose define h : St — [—1,1] by h(¢) = cos ¢,
and furthermore C,(¢) = m¢ as the circle map. Note that the function h(¢) is just
a projection from St to the z-axis. It follows

hoCpn(¢) = cos[md]
= cos[m arccos|cos|¢]]]
= T,.(cos¢)
= T, 0h(¢). (2.18)
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By use of the fact that the circle map is chaotic, one can show via this relation that
the Tchebychef polynomials are also chaotic for m > 2. The circle map C,,(¢) and
the mth order Tchebycheff polynomial are said to be semi-conjugated (instead of
conjugated), since h(¢) = cos ¢ is not injective, but always maps two different points
on the unit circle S! to the same point on the real axis. A consequence of this semi-
conjugacy to the circle map is that the mth order Tchebycheff polynomial is also
semi-conjugated to a Bernouilli shift of m symbols. By means of this semi-conjugacy
it can also be shown that the Tchebycheff polynomials are ergodic with the natural
invariant density of all Tchebycheff polynomials with m > 2 given by [17]

1
) = = (2.19)

One can calculate time averages of observables O(x) by

(O>:/_ dxp(z)O(x). (2.20)

1

Higher-order correlation functions of iterates x(t) of Tchebyscheff maps are given by
(@(t+7) 2+ 7 )time = (@] T=@)])

B /_ dp(x) [ (x) - f=(x) - f7(2). (2.21)

1

In Ref. [55] it has been shown, that compared with other maps T conjugated to a
Bernouilli shift, Tchebycheff maps have least non-vanishing higher-order correlations.
In this sense the iterates of these maps are closest to uncorrelated Gaussian white
noise, obtained by a smooth deterministic system [I7]. This interpretation of Tcheby-
cheff polynomials as being ‘most random’ will be of further relevance in later chapters
of this thesis.

2.1.3 Higher-dimensional maps

The definition of orbits, fixed points and periodic points of higher-dimensional maps
f: RY — RY is analogous to the case of one-dimensional maps as given before 3, 94].
The stability of a fixed point p € RV of f depends on its Jacobian matrix Df(p),

defined as of of
7o) . 5t(p)
Df(p) = : : : (2.22)
Fm) - g (p)
The fixed point p is a source, if all eigenvalues of Df¥(p) are greater 1. If there
exist both some eigenvalues with magnitude larger 1 and some smaller 1, p is called a

saddle. Just like a source, a saddle point has an unstable orbit. In case all eigenvalues
are smaller 1, the fixed point p is a sink and has a stable orbit. The same principle

10
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holds for periodic points p with period k, where f has to be replaced by f*. For a
periodic orbit {p(0),p(1),...,p(k — 1)} of period k one obtains by use of the chain
rule

Df*[p(0)] = I1;=; Df [p(?)]. (2.23)

Thus the stability of a periodic orbit of period k is determined by the eigenvalues of
the product matrix of the k£ Jacobian matrices along the orbit.

The concept of Lyapunov exponents as a measure of the divergence or contraction
of nearby orbits can also be applied to higher-dimensional maps. Different from the
one-dimensional case, the Lyapunov exponent might not only depend on the initial
condition, but in general will depend on the direction in which the orbits are initially
separated. Consider an initial condition x(0) and an infinitesimal displacement in the
direction of a tangent vector £(0). The evolution equation of this tangent vector is
given by

§(t) = Df[x(t —1)] - £(t — 1), (2.24)

and consequently

§() = (ZDEx(7)]) - £(0). (2.25)

The Lyapunov exponent for initial condition x(0) and initial deplacement £(0) is
defined as

= iml n M
pux(0),£(0)] = lim —1 [|§<0>!]

1 [IDFx(0)] - €()
[ €0)] ] (2.26)

For an N-dimensional map f and a given initial value x(0), there will be at most N
different Lyapunov exponents, depending on the choice of the tangent vector £(0).
One can show [94] that the Lyapunov exponent is approximated by

0600 = fin 0[SO, 2.7
with .
Ji[x(0)] = (th[X(O)D - Df*[x(0)]. (2.28)

By choosing eigenvectors u; of J;[x(0)] as the tangent vector £(0), one obtains the
N Lyapunov exponents p;[x(0)] > pa[x(0)]... > un[x(0)]. For an arbitray tangent
vector £(0), the corresponding Lyapunov exponent u[x(0),£(0)] will converge to the
largest one of these exponents, that is u1[x(0)]. In order to let u[x(0),£(0)] converge
to p2[x(0)], the initial tangent vector £(0) has to lie in the subspace orthogonal to
the eigenvector u; of J;[x(0)]. Subsequent Lyapunov exponents are obtained by
this principle of choosing the initial tangent vector orthogonal to the eigenvectors
associated with the already calculated exponents.

A common way to visualize the different Lyapunov exponents of an /N-dimensional
map is to consider an N-dimensional ball with infinitesimal radius dr around the

11
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initial value x(0). Under application of the map f the shape of this ball will evolve
into a ellipsoid centered around the respective iteration of the initial value x(0). For
large times the rate of growth or shrinking of the principal axes of this ellipsoid is
given by the Lyapunov exponents [3].

As for one-dimensional maps, a Lyapunov exponent larger zero indicates chaotic
behaviour and sensitivity to initial conditions. For numerical techniques and further
details on Lyapunov exponents of higher-dimensional maps see Refs [3], 04].

2.2 Complex networks

Many complex systems consisting of a collection of objects which in some way relate
to each other can be described by complex networks. In such a description, the
individual object is abstracted as a node and the relation between objects as links
connecting these nodes. Examples vary from interconnected neurons in the brain
over power plants connected by transmission lines to social systems, consisting of
a multitude of interacting individuals. In the following sections the notation for
the description of networks is defined, and basic network structure properties and
structure models are introduced. For a more detailed account on complex networks
see Refs. [2, 28] 42} 8§)].

2.2.1 Properties of complex networks

A network or graph G = (V,€) consists of the set of vertices (or nodes) V =
{v1,v9,...,ux} and the set of edges (or links) & = {é1,éq,...,éx}, where the edge
éx formally is given by the pair {i,j} of vertices i and j which are connected by
it. The size of the network is given by N = |G| = [V|, the number of edges by
K = ||G|| = |€]. For a directed network the link é; is the ordered pair (7, j), where
the first node ¢ is denoted as the target and the second node j as the source of the
edge. The node v; will usually be referred to by its label ¢, whereas the link (4, 7) is
sometimes also referred to by the notation e;;. For an undirected network e;; and ej;
relate to the same link. For convenience I will also use the notation (4, 7) for a link
in an undirected network.

It is often helpful to represent the network G by its adjacency matrix A, which is
defined by

(2.29)

A — 1 : there is a link from node j to node ¢,
Y1 0 else.

Obviously for an undirected network the adjancy matrix is symmetric.

If two nodes i and j are connected by a link (7, j), they are called neighbouring
or adjacent. The set of neighbouring nodes of a node ¢ is denoted by the symbol
N;, with the number of neighbors || called the degree k; of the vertex. The degree
distribution p(k) gives the probability that a randomly picked vertex has degree k.
It provides a first characterization of the network structure. Note that for directed

12
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networks this notion has to be extended to the out-degree (in-degree) k%“* (ki") and
the respective sets N2“ (N/") and degree distributions p°“*(k) (p™(k)). It holds

k;n = ZAij>
2%
=" Ay (2.30)

jev

A graph G’ = (V',&’) is called a subgraph of G = (V, &), if V' CVand & C E. If
the subgraph G’ contains all links of G that join nodes in V' C V| then G’ = G[V'] is
called the subgraph of GG induced by V'.

A path P[i — j] in G is a subgraph consisting of a chain of neighbourings node
and their connecting links, starting at node ¢ and ending at node j, with no edge or
node repeated. The path length {(P[i — j]) is the number of links contained in this
chain. The shortest path P;[i — j] is a path from i to j with a minimal number
of links in it. One calls the path length [(Ps[i — j]) of such a shortest path from i
to j the distance d;;. If for every pair of distinct nodes 7 and j there exists a path
P[i — j], the graph is said to be connected, otherwise it is called unconnected. For
a connected graph the average distance

(d) = m Z dij (2.31)

1,J€V

is another basic characterization of the graph structure If the graphs consists of
different unconnected subgraphs, the distance between nodes from different subgraphs
and consequently the average distance is infinite. In this case one has to consider an
alternative measures, called the network efficiency
1 1

E = NV D) Z o (2.32)
i,JEV
Note that a fully connected network, where every vertex has a direct edge to every
other vertex, shows £ = (d) = 1.

Different from the degree distribution p(k), which only contains information about
the local properties of the network, the average distance incorporates global informa-
tion about the network topology.

Another basic property of complex networks is the degree of clustering, that is the
likelihood that two neighbours of some node are neighbours themselves. Such a struc-
ture of three mutually connected nodes is called a triangle or 3-cycle. In undirected
networks this clustering property is formally accounted for by the clustering coefficient

C; of node 7, defined by
201'

ki(k; — 1)’
where o; denotes the number of edges between neighbors of i, and k;(k; — 1)/2 is
the maximum possible number of such edges.. The clustering coefficient (C) of the

C; = (2.33)

13
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network is then defined as the average of C; over all vertices:

(€)= % pyes (2.34)

eV

Symmetries of networks [ call vertices or sets of vertices similar, if the network
looks identical for them. For example in a ring structure, for any node the networks
looks the same, thus all nodes are called similar. The same holds for all coupled
pairs of nodes in a ring. However, if for instance node 7 is part of a triangle in the
network, whereas node j is not, for these two nodes the networks obviously has to
look different and hence ¢ and j cannot be similar.

Weighted networks The binary structure of graphs, where a link is either present
or absent, can be generalized by the concept of (link-) weights. A weighted network
GY = (V,E,W) consists of the set of vertices and edges, and additionally a set of
weights W = {w, W9, ..., Wk }, which are real numbers associated with the respective
links. The weights are usually represented by the matrix W, given by

W — w; @ weight of the link é; = (7, ) from node j to node i, (2.35)

“ 1 0 : node j and node i are not connected by a link. '
For weighted networks the notion of the degree k; of a node ¢ can be generalized to
the node strength s;, given by

JEV

If W;; = Ajj, the network is unweighted and it holds s; = k;. For a directed weighted
network, the node properties analogous to the node in-degree and out-degree are the
node input strength si" = »°. |, w;; and output strength s = 3" ), w;;.

i =

2.2.2 Network structure models

In this section I will review some selected network models and their structural prop-
erties. For a wider and more general review and the comparison between network
models and real networks see Refs. [2] 28] [42] [§].

Complete graph A complete graph is a network of N vertices with K = N(N—1)/2
edges. Every vertex is directly connected to every other vertex, so the average distance
is minimal with (d) = 1, and the clustering coefficient is maximal with(C') =1 . The
degree distribution is a delta function p(k) = o[k — (N — 1)].

14
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Regular structures A very simple and regular network structure is a one-dimensional
lattice of N vertices with periodic boundary conditions, that is a ring with next-
neighbor coupling. For this network the adjacency looks as follows:

0 1 0 0 1
1 0 1 0 - 0

A= .. | (2.37)
1 0 0 1 0

For every vertex has the same degree k; = 2, the degree distribution is given by a delta
function p(k) = 0(k—2). Due to the absence of any triangles in such a ring structure,
the network shows vanishing clustering coefficient (C') = 0, while the average distance
(d) scales with the ring size N for large rings [8§].

A generalization of this concept is the m-ring, that is a one-dimensional lattice
with periodic boundary conditions, where every vertex is connected to its m neigh-
bours on the left and on the right. The degree distribution is displayed by a delta
function P(k) = 6(k — 2m), while the clustering coefficient can be calculated to be
(C)y =3(m—1)/2(2m—1), and the average distance (d) ~ N/m for 1 < m < N [2§].

Random graphs An undirected random graph in the sense of Erdés and Rényi
(called a ER random graph or a Poisson graph) is constructed by connecting every
possible pair out of a set of N vertices with probability p. On average such a ER
random graph has K = pN (N —1)/2 edges, and the average degree is (k) = p(N —1).
The degree distribution is a binomial distribution, which for large N and fixed (k)
can be approximated by a Poisson distribution [42]:

(k)"

p(k) = exp [ (1) 0 (2.38)
Since the probability p of having an edge (j, k) is independent from the occurence
of edges (i,7) and (i, k), the average clustering coefficent is given by (C) = p =
(k) /(N — 1), which converges to zero for large N and (k) < N (or p < 1). The

average distance scales for large network sizes N as (d) ~ In[N|/In[(k)] [28].

Small-world networks A complex network is said to have the small-world prop-
erty if the average distance (d) depends at most logarithmically on the network size
N[28]. This is the case for random graphs as defined in the last paragraph, whereas
for m-rings the average distance grows lineary with N, so these regular networks do
not have the small-world property. On the other hand m-rings show a highly clus-
tered structure, in contrast to the the vanishing clustering coefficient of large random
graphs [8§].

The so-called small-world networks are constructed by methods similar to the sem-
inal Watts and Strogatz model, proposed in Ref. [I14]. These networks combine the
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2 Chaotic map networks

small-world property with a large clustering coefficient. The essential ingredient is
the addition of short cuts to the regular network structures of m-rings by rewiring
of edges or by the addition of randomly place new edges. On the one hand the
connection of formerly unconnected neighbourhoods by these short cuts lowers the
clustering coefficient (C'), while on the other hand a decrease of the average distance
(d) is induced. Since the decrease of the average distance happens faster than the
decrease of the clustering coefficient, for a small, but non-zero short-cut density one
obtains networks which show the small-world property but still have large clustering
coefficients [28].

r-partite networks An r-partite network (V, £) of size N consists of r adjoint subsets
of vertices Vi, Vs, ...,V with |J_, V; = V, such that for every edge (i,j) € & the
vertices ¢ and j lie in different sets V,(;) and V, ;). Here the discrete valued function
(i) allocates to every vertex i the corresponding label of the set with v; € V,;). The
number of vertices in every subset is denoted by N; = |V

By proper labeling of the vertices, the adjacency matrix A of such an r-partite
network can be displayed in the following block form:

0 Auz  Apg e A
Asn 0 Ass e A
A= : - : , (2.39)
Ap—iy 0 Ap—ir—2) 0 Apr—1)
Apy oo Apr—a)  Apro) 0

with A jy a N1 x Ny matrix, and A ;) = A(TM) for undirected networks.

In later chapters I will devote some attention to undirected bipartite networks
(V,€) = Vi UW,, €), that is r-partite networks with » = 2. With Aq9) = B, the
corresponding adjacency matrix of such an undirected bipartite network is of the form

A= ( o ﬁ) (2.40)

In a complete bipartite network, all Ny- Ny edges between the two different subsets are
present. The special case with N; = (N —1) and Ny = 1 is called the star network. A
bipartite m-ring is a one-dimensional lattice, where every vertex is connected to each
m vertices on the left and on the right, under omittance of edges between vertices from
the same subset. Analogously a bipartite random graph is constructed by connecting
all pairs of nodes from the two subsets with probability p. It is easy to see that the
average degree for such a random bipartite graph is given by (k) = 2pN; Ny /N, and
the degree distribution is a superposition of two binomial distributions.

2.3 Coupled map networks

A coupled map network (CMN) is high-dimensional time-discrete dynamical system
consisting of the following three ingredients:
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2.3 Coupled map networks

e A weighted network G = (V, £, W) which describes the network topology and
the strength of the connections.

e Local variables x; € I, lying in a local space I C R™ associated with every
vertex v; € V.

e Functions f : I — [ which act on the variables x;.

In the following a CMN will always be described by the update rules for the individual
variables x € I. For a mathematically more rigorous definition of CMNs see Ref [71].
Unless otherwise stated, it is assumed that I = [a, b] is an interval in R and accordingly
the x; are one-dimensional variables. A wide class of coupled map networks is defined

by

zi(t+1) = (1 — ;) filai(t +ZAUW”9U[$]( )]- (2.41)
7j=1

Here the z;(t) are time-dependent local variables and the A;; are the entries of the
adjacency matrix of a weighted network G = (V, £, W). The functions f; : I — I
are called local functions, whereas the functions g;; : I — I are denoted as coupling
functions. The weight W;; determines the strenght of the link (7, j) from node j to
node i. To assure that the orbits of the local variables stay in the interval I, the total
input strenght s; = Zj A;jW;; has to fullfill 0 < 's; < 1.

Note that the CMN is in principle a high-dimensional map F : I — I, where I
is the product space of the N local spaces. Consequently, the stability of periodic
orbits, Lyapunov exponents, etc. can be calculated as described in the previous
section. However, for large system sizes N this can be very complicated, and one
treats CMNs rather as a complex system assembled from local maps than as one
high-dimensional map.

The simplest realizations of CMNs belonging to this class are given by undirected
networks with A;; = Aj; and the choice W;; = €/k;, where € € [0, 1] is denoted as
the coupling strength. With the local functions f;(x) = f(z) being the same for all
vertices i, and the coupling functions g;;(x) = g(z) also equal for all connected pairs
of vertices, the evolution equation is written as

zi(t+1)=(1—¢) a ZA,]g ;(t (2.42)
CMNs of this form will be denoted as standard coupled map networks.

2.3.1 Coupled map lattices

Coupled map lattices were introduced by Kaneko in the 80s as a simple model showing
the essential features of spatiotemporal chaos [64]. In their simplest version they are
defined as standard CMNs on a ring-network with f(x) = g(z):

wi(t+1) = (1= O fl®)] + 5 (w1 O] + Sl (0)]). (2.43)
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2 Chaotic map networks

The local function f(z) is often given by the logistic map f(z) = L(z) = az(1 —
x). Depending on the parameters a and €, various patterns in these CMLs can be
observed. For a respective phase diagram in the a-e plane see Refs. [37, (66, [69] [70].
In the following I will qualitatively review different patterns, which are observed in
this class of dynamical systems [69)].

e A frozen random pattern is characterized by a sequence of regular and chaotic
domains along the lattice, where the size and periodicity of the dynamics in
this domains can greatly vary. These patterns are fixed in time and depend on
the initial conditions.

e For increasing nonlinearity a, for a transient dynamics larger domains become
unstable and split into smaller domains. The boundaries of the domains start
to move, and domains of a few special sizes are selected. The spatial sequence
of the domains after this selection process is then fixed in time. The dynamics
in the domains is less chaotic, that is a motion with shorter temporal periods.
This kind of dynamical behaviour is called pattern selection.

e For larger coupling parameter €, the domain structures of the frozen random
pattern or pattern selection can move in time, denoted as travelling waves.

e One special example of pattern selection is that of a zig-zag pattern. The dy-
namics in the zig-zag patterns varies with a spatial and temporal period 2.
Regions of the zig-zag pattern with different phase are separated by a defect,
which shows chaotic behaviour. The defect moves in space, which can be in-
terpreted as a kind of Brownian motion. These moving defects pair-annihilate
by collision. Depending on the nonlinearity parameter a, the number of defects
thus decrease in time, or defects are recreated spontaneously (defect turbulence).

e In spatiotemporal intermittency (STI), ordered states with a spatially regu-
lar structure and periodic or weakly chaotic dynamics (‘laminar regions’) and
spatially disorganized, temporally chaotic regions (‘burst regions’) coexist in
space-time. One differentiates between two types of STI. For the first type
(STI-I), a laminar lattice site remains laminar, as long as there are no bursts in
its neighbourhood. This differs STI-I from the second type of spatiotemporal
intermittency (STI-II), for which such spontaneous creation of bursts occur.

o For fully developed spatiotemporal chaos (FDSTC), the dynamics does not show
an ordered spatial structure, but can rather be interpreted as a product state
of local chaos with a rapid decay of spatial correlations.

In order to analyze quantitatively the coupled map lattice dynamics, several con-
cepts from low-dimensional dynamical system theory have been extended to the
spatio-temporal dynamics, for instance Lyapunov analysis, information flow or corre-
lations [67, [69, [70]. Also different approaches towards a statistical mechanical theory
of spatio-temporal chaos have been made, using a mapping to a statistical mechanics
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2.3 Coupled map networks

of a higher-dimensional spin system, or the the application of the Perron-Frobenius
operator. For details see Refs. [31], 67, [69, [70].

Possible applications of coupled map lattice models include pattern formation,
crystal growth and boiling, convection, spiral and traveling waves in excitable media,
cloud dynamics or simple abstract models for ecological systems or evolution. For
short reviews and references of the respective articles see Ref. [70]. Another appli-
cation for coupled map lattices in quantum field theories and elementary particle
physics was proposed in Ref.[I7] and further developed in Refs. [I8, 19, 20]. In these
models certain classes of coupled map lattice called ‘chaotic strings’ are introduced
as spatio-temporal chaotic models of vacuum fluctuations. Sincle this application is
the main topic of this thesis, ‘chaotic strings’ are introduced separately in the next
chapter.

In the physics community in the last decade the attention has shifted from studying
regular CMLs to more general CMNs involving complex network topologies. However,
there is still ongoing research in this field. As an example in Ref. [33] the behaviour
of small truncated coupled map lattice with random inputs at the boundaries has
been investigated. More recently, Ref. [95] considers desynchronized wave patterns
in synchronized chaotic regions of CMLs, whereas in Ref. [I09] the properties of
Lyapunov vectors in CMLs are studied. The chaoticity of CMLs from the viewpoint
of a thermodynamic formalism is accounted for by calculation of the statistics of
Kolmogorov-Sinai entropy [22] and Lyapunov exponents in Ref. [104].

2.3.2 Globally coupled maps
Globally coupled maps (GCMs) are a mean-field version of the CML, given by

zi(t +1) = (1= &) flas(t)] + % Z ;@] (2.44)

This corresponds to a standard CMN on a fully connected network structure. As
the local dynamics usually the logistic map L(z) = 1 — ax? is chosen. By use of the
transformation y;(¢) = f[z;(t)] Eq. (2.44) can be recast into

bt 1) = £ (=t + 5 D ws(0)] (2.45)

which is an equivalent model.
One observes the following dynamical attractors of the globally coupled map dy-
namics [70]:

e In a coherent state with complete synchronization all orbits x;(t) coincide, and
the dynamics is governed by local logistic map x(t + 1) = flx(t)].

e For a completely desynchronized state all network sites ¢ have different values
z;(t) at all times and oscillate without any synchronization.
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2 Chaotic map networks

e C(Cluster synchronization denotes the state, where the set of vertices is partitioned
into several clusters, whose vertices are mutually synchronized. One classifies
the state of the GCMs by the size of the respective clusters Ni. The dynamics
of r-cluster GCMs are governed by the equations

Xi(t+1) = (1= f X)) + ) af[Xi(®)], (2.46)

where X (t) denotes the value of z(t) in the k-th cluster. The couplings € are
‘effective couplings’, given by
Ny,
€ = € (2.47)
The limits of cluster synchronization are the coherent state with » = 1 cluster, and
the completey desynchronized state with » = N different clusters.

As for the CML one can study the behaviour of the GCMs dependent on the
nonlinearity a of the logistic map and the coupling parameter €, and thus obtains
a phase diagram in the a-€ plane [68]. In most cases one finds various states with
different clusterings as attractors of the dynamics, whose selection depends on the
initial condition. Dependent on the relative number of initial condition (basins of
attraction) which lead to either coherent, few-cluster or many-cluster states, one
differentiates four phases [70]:

e Coherent phase: Coherent states for (almost) all initial conditions
e Ordered phase: Few-cluster states for (almost) all initial conditions

e Partially ordered phase: Coexistence of few-cluster and many-cluster states,
dependent on the initial conditions

e Desynchronized phase: Many-cluster states (with & ~ N) for (almost) all initial
conditions

The respective phases and their bifurcations have been studied qualitatively as well
as quantitatively in great detail (see Ref. [70] and references therein).

2.3.3 Coupled map networks with complex topology

These models provide a generalization from the lattice structure in CMLs and the fully
connected network structure for GCMs to complex network topologies as introduced
in Sec. Up to now, the research in this fields focuses on various synchronization
phenomena. Respective models and results will be reviewed in Sec. of this thesis.
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2.3 Coupled map networks

2.3.4 Dynamical network structures

In the studies presented so far, the underlying network structure (V,€) and the
weights VW were assumed to be static. Recently also CMNs on time-varying network
structures have been studied, in some cases with an interplay between the dynamics
on the network with the evolution of the network itself.

A very general and mathematically rigorous study on the synchronization of CMNs
with time-varying couplings has been performed in [76]. In Ref. [99] the spatiotem-
poral dynamics of a standard CML with dynamical rewiring is studied. In this study
at every time step a fraction p of randomly chosen nearest-neighbour edges are re-
placed by random edges. As a result the authors observe synchronized periodic orbits
in an optimal window of p values. A generalization of this model is considered in
Ref. [83], where different rewiring frequencies are taken into account. Keeping the
rewiring probability p constant, two different types of dynamics are observed. For
slow rewiring, the dynamics of the network is spatiotemporally chaotic, whereas for
a high frequency of rewiring for a large range of coupling strengths the systems ends
up in a spatiotemporal fixed point.
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‘Chaotic strings’ are a class of coupled map lattices with second and third order
Tchebycheff polynomials as the local dynamics [I7]. These dynamical systems have
been proposed by Beck as spatio-temporal models for rapidly fluctuating scalar fields
associated with vacuum fluctuations [16, [I7]. Apart from this application, these
models are also very interesting from a dynamical point of view. Based on a simple
time-discrete evolution equation with only a few parameters, the resulting dynamics
show various spatio-temporal patterns, ranging from regular patterns to fully devel-
oped spatio-temporal chaos (for some impressions see Figs .

In the following chapter I will introduce the chaotic string dynamics and related
observables, show some of the results connected with the coupling constants of the
standard model of particle physics, and give a short review on a possible physical
embedding. For more details see Refs. [16], 17, 18, 19} 20} 21].

3.1 Definition

Chaotic strings as defined in [I7] are standard CMNs on a ring-network, with the
evolution equation given by

vt +1) = (U= f 0] + 5 (gleir ()] + gleen 0)]), (3.1)
where it is supposed that node ¢ is connected to nodes i +1 and ¢ — 1. For ¢ = 1 and
i = N periodic boundary conditions are invoked (see the adjacency matrix displayed
in Eq. (2.37)). The local space associated with every vertex is the interval I =
[—1, 1], and the functions f(z) and g(z) are given by positive and negative Tchebycheff
polynomials Ty, (z) = £T,,(z) up to order m = 3 as defined in Sec. (2.1.2).

Various combinations of different Tchebycheff polynomials can be inserted into
Eq. (3.1), but in Ref. [I7] only the six combinations displayed in Tab. are of
interest. In the construction of the model presented in Ref. [I7] it is assumed that at
every time step two actions occur: The first part consists in an update of the variable
x;(t) — z;(t') at every vertex i:

zi(t) — xi(t') = T [2:(8)] = £T0[24(¢)]. (3.2)

The second action x;(t') — xz;(t+ 1) consists in the application of a diffusive coupling
to the nearest neighbours:
€

zilt!) = @it +1) = (1= Juil) + 5 <mi_1(t’) n xiﬂ(t')). (3.3)
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3 Chaotic strings

label [m, s, b] f(z) g(x)
24 2,+,1] Ty(x) =22*—1 Ty(z) = 22° — 1
2B [2,+,0] Ty(z)=22*-1 Ti(z) ==z
24— [2-1] Th(x)=222—-1 T o(z)=—(222—-1)
2B~ [2-0] Ty(z)=22*-1 T 1(z) =—x
3A [3,4+,1] Ts(z) =42® — 3z Ty(z) = 43 — 3x
3B [3,+,0] Ty(x)=42®—3x Ti(x) ==z

Table 3.1: The six dynamics considered in Ref. [I7]. The label [m, s, b] denotes the
order of the Tchebycheff polynomial (m), and distinguishes between forward (s = 1)
and backward coupling (s = 0), and diffusive (4) and anti-diffusive (—) coupling.

This kind of procedure is called diffusive forward coupling, and corresponds to the
chaotic string dynamics labeled by 24 and 3A, depending on the order of the Tcheby-
cheff polynomial which is applied in the first action of every time step [I7]. In a
variation of this procedure, in the second action the coupling occurs not to the al-
ready updated neighbouring variables x;+1(¢'), but to the original variables z;1;(t).
This variation is denoted as backward coupling (in the literature also called linear
coupling [37]), and is applied in the chaotic string dynamics labeled by 2B and 3B.
Another variation is the application of a so-called anti-diffusive coupling , that is

z(t) = 2t + 1) = (1 — )zi(t)) — %(wi,l(t’) n xm(t')) (3.4)

in the case of forward coupling (occuring for the 2A~ dynamics), or

z(t) =zt +1) = (1 — )zi(t) — %(xi_l(t) + xi+1(t)>. (3.5)
when backward coupling is applied (corresponding to the 2B~ dynamics).[]

The N one-dimensional local variables z;(t) of the chaotic string can be written
as an N-dimensional vector x(¢), with the evolution equation then defined as the
application of an N-dimensional function f(x). To distinguish the different chaotic
string dynamics, this function is given a label [m, s, b], with m € {£2,+£3}, s = &, and
b € {0,1}. The label m denotes the order of the (positive or negative) Tchebycheff
polynomial which is applied, whereas the label s distinguishes between diffusive (+)
or anti-diffusive (—) coupling. The label s accounts for either forward (s = 1) or
backward (s = 0) coupling. With the definition T}, (z) = T,,(z) and T2 (x) := z, the
chaotic string dynamics can be written as

x(t 4 1) = fms¥x(t); €], (3.6)

I Note that this anti-diffusive coupling is only applicable if the local space is an interval of the form
I = [—a,a]. For an asymmetric phase space [—b, a] with b # a the application of the evolution
equation possibly yields a value outside the phase space.
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with

frmeblixe ey = (1 — €) T () + S% (Tsl(%fl) + T&(%H))- (3.7)

For each choice of parameters [m, s, b] the coupling € is defined in the interval [0, 1].

In principle the different combinations of positive /negative Tchebycheff polynomial,
forward /backward coupling and diffusive /anti-diffusive coupling lead to eight different
chaotic string dynamics for every order m of Tchebycheff polynomials. By symmetry
arguments, the number of different chaotic strings can be reduced to the six dynamics
displayed in Tab. [17, 102]. These discrete symmetries of chaotic strings will be
studied in detail in Chap. [

In order to get a first impression of how the dynamics looks like depending on the
coupling parameter €, in Figs. for each of the six chaotic strings a snapshot of
all z;(t) at some time ¢ for € € [0, 1] is displayed. Figs. [3.8 show spatio-temporal
pattern as well as overlayed return plots for some dynamics and coupling values (see
Ref. [17] for similar and additional figures). One observes chaotic behaviour, with
the x; randomlike distributed in the interval [—1, 1], but also synchronized states and
various complicated patterns.
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Xi(t)

0 0.2 0.4 0.6 0.8 1
€

Figure 3.1: Snapshot of the 24 chaotic string dynamics. All z;(t) of the chaotic string

dynamics of a lattice with size N = 101 are displayed at one time step ¢ after 7' = 10?
iterations.

Xi(t)
o

Figure 3.2: Same as Fig. but for the 2B dynamics.
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X;(t)
o
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€

Figure 3.3: Same as Fig. , but for the 2A~ dynamics.

x;(t)

Figure 3.4: Same as Fig. but for the 2B~ dynamics.
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Xi(t)
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Figure 3.6: Same as Fig. but for the 3B dynamics.



3.1 Definition
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Xi(t)

Figure 3.7: The 2A chaotic string dynamics for € = 0.08. Top: All z;(¢) for 100
iterations after a transient Ty = 103. Bottom: Scatterplot of all z;(t + 1) vs. z;(¢) for
the iterations shown in the upper figure. Network size N = 101.
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Figure 3.8: Same as Fig. but for e = 0.16.
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Figure 3.9: Same as Fig. , but for e = 0.85.
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Figure 3.10: Same as Fig. , but for the 2B dynamics with € = 0.59.
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|attice site i
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Figure 3.11: Same as Fig. but for the 3A dynamics with € = 0.8.
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Figure 3.12: Same as fig. but for the 3B dynamics with € = 0.95.
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3.2 Interaction energy and self energy

In Ref. [I7] two types of formal energies are introduced, which generate the chaotic
string dynamics. Whereas the self energy is connected with the individual update,
the interaction energy accounts for the diffusive or anti-diffusive coupling. Of main
interest are time-averages of these observables, that is expection values of the form

m,s,b . 1 1 d
Or=tl(e) = (O(x)) = Jim —— T t:%;l Ox()], (3.8)
with
x(t) = (£*)[x(0); ] (3.9)

The expectation depends on the underlying dynamics [m, s, b], the coupling e and the
form of the observable O. It might also depend on the ring size N, but I assume that
the network is large enough to neglect this dependence [33],[52]. The function O might
explicitly depend on the whole set of local variables x; (for instance as an average
operator), or only on certain subsets or individual x;. For numerical calculations
one will choose a finite number of iterations T" and a finite transient Tj, resulting in
some small statistical fluctuations. However, note that also for 7' — oo for a given
dynamics fI"™*%(x;€) the value O™ (¢) might depend on the initial value x(0).
Unless otherwise stated I will assume that for the considered dynamics almost all
intial values x(0) yield the same expectation value — if for some dynamics f™**(x; ¢)
the contrary is observed, the expectation is stated as not being well-defined. This
topic will be of further interest in Sec.

Self energy As stated before, the first action in the evolution equation of the chaotic
string dynamics is an update of x;(t) at every node i by application of the mth order
Tchebycheff polynomial. This can be written as

() — 2i(t) = Tolzi(t)] — 2:(t) = Flay(t), (3.10)

with F(z) being a formal force causing the change of the variable x;(t). This force
can be generated by a formal potential energy V' (x) via

F(z) = —%V(aj). (3.11)

This energy V(x), denoted as self-energy in Ref. [17], is then given by

V(z)=— /(f [Tm(x') — x’} dr' + C, (3.12)

where C' is some constant. Since the self energy is not connected with the coupling
term in the evolution equation, its definition does not depend on the choice of forward
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or backward coupling (label b) and diffusive or anti-diffusive coupling (label s). For
m = £2 and m = £3 one gets

2 1
v () = i<—§x3 + :E) + 51‘2 +C,

3 1

The self energy of the chaotic string dynamics with the parameters [m, s, b] at lattice
site ¢ is given by

vER ) = 4 <—§(mi)3 + x> + <%(1’i)2> +C,
vERSNe) = & <—(a:i)4 + g(:ci)2> + <%(xi)2> +C. (3.14)

The notation () refers to the time-average as given in Eq. (3.8). In Ref. [17] the
additive constant C' is chosen as

= —% (@)%, (3.15)

so only the first term on the left handed side of Eq. remains. This choice
of the additive constant is mainly motivated by aesthetical reasons — for instance it
holds Vit jm|,s,6)(€) + Vi=jm|,s,5(€) = O (see Ref. [I7] for details). However, this definition
bears the problem that C'is not a constant, but in fact a function of the coupling € in
the same way as the self energy itself. Therefore the theory put forward in Ref. [17]
should provide further physical motivation for this specific choice.

Interaction energy Similar to the definition of the self energy, in Ref. [17] a formal
interaction energy is defined. This interaction energy generates the second action
applied in the evolution equation, that is the diffusive coupling (label s =‘+’) as

given in Eq. (3.3)):

zi(t+1) — zi(t) = —g (:ci(t’) - xm@')) - %(x,-(t’) . xi,l(t’)>. (3.16)
For anti-diffusive coupling (label s =*-") this reads
n(t+1) — zi(t) = —g (xi(t') + wi+1(t’)> - %(mi(t') + xi+1(t’)>. (3.17)

The right-hand side can be interpreted as the sum over forces, each one given by the
derivative of a formal interaction energy W (x;,x;) times the coupling constant e:

— Wiz, zj) = —%(aﬁl — sxj), (3.18)
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where the label s = + distinguishes forward from backward coupling. The interaction
energy is then given by

1
W(J]Z‘,Z)’Jj> = Z(l’z — S[Ej)2 + C
S 1 A
= -2 (@iw) +; ((:ci)Q + (ﬁ) e (3.19)

where C' is again an additive constant.
By applying the time average one obtains the observable

wimst(e) = <—§m]> + <§1 <(a:i)2 + <x§)> +C, (3.20)

which by the choice
Y 1 )2 2
C <4((:cl) + (q:]>> (3.21)

simplifies to
m,s,b 1

Note that for ((z;)%) = ((x;)?), this constant C' has the same value as the constant C
which occurs in the definition of the self energy. However, as already stated for the
self energy, this C' is a function of e, resulting in problems for the interpretation as
an additive constant.

3.3 Chaotic strings and standard model couplings

Up to now the chaotic string dynamics has been defined as a special type of stan-
dard chaotic map networks, with the individual dynamics given by Tchebyscheff
polynomials up to third order, and a one-dimensional lattice as the network topol-
ogy. These kinds of systems are usually considered as prototypic models of complex
spatio-temporal behaviour, with applications for pattern formation, flow systems or
turbulence, to name just a few [29, 69, [70]. As a new application of coupled map
lattices, Refs. [16, 17, 21] claim that the chaotic string model can be used as a model
of vacuum fluctuations, which might fix the fundamental constants of the standard
model of particle physics. The minimal standard model of particle physics depends
on 19 free parameters [32], 49, [56, 110]:

e Three coupling constants gg, gw, g1 for the gauge group SU(3) x SU(2) x U(1),

e Yukawa coefficients determining the masses of the six quarks (u, d, ¢, s,t,b) and
three lepton flavors (e, p, 7),

e Higgs mass and vaccum expectation value,
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Zero running SM coupling
Y = 0.0008164 ad,(3my) ~ 0.0008166
e = 0.0073038 al (3me) ~ 0.007303
§ B)—0.0018012 a2, (3m,) + % (3mg) ~ 0.0018
P =0.017550  a”:, (3mg) + a&(3m.) ~ 0.01755
§
2B
€]
en
€
(2B
€1

4 = 0.120093 as(my + 2my) ~ 0.1208
= 0.3145 Ozs(mggo++ + 2my,)
= (0.1758 as(Mmgger+ + 2my)

) =0.095370 as(my + 2my)

Table 3.2: Zeros €* of the interaction energy W (e) resulting from the coupled string
dynamics, and the corresponding standard model (SM) couplings (taken from [17]).

e three angles and a phase of the Cabibbo-Kobayashi-Maskawa matrix,
e a phase for the QCD vacuum.

If one includes Einstein’s classical theory of gravity, this amounts to at least 20
adjustable parameters of the standard model of particle physics.

In Sec. two kinds of formal energies for the six chaotic string dynamics were
introduced. The self and interaction energy are functions of the coupling parameter
e. The interesting finding is, that the energies show a distinguished behaviour (zeros
with a negative slope for the interaction energy, minima for the self energy) for cou-
pling values € which coincide with running standard model or gravitational couplings
a(FE), the energy E given by the masses of the known quarks, leptons, and gauge
bosons. By identifying ¢ = a(FE), thus one can obtain a large number of very precise
predictions. In this thesis I will focus on the interaction energy. For results obtained
by considering the self energy of chaotic strings, see Refs. [16, 17, 21, [80]. Table
displays distinguished zeros of the interaction energy W (e) and associated running
standard model couplings. One observes that the smallest zeros of the 34 and 3B
dynamics numerically coincide with running electroweak couplings at the smallest
fermionic mass scales, whereas the smallest zero of the 24 dynamics can be identi-
fied with the strong coupling at the W boson mass scale. The smallest zero of the
2B~ dynamics might allow a prediction of the Higgs mass. The smallest zeros of the
2B and 2B~ agree with strong couplings at energy scales given by certain glueball
masses.

The numerical agreement between numerical values for the distinguished zeros and
standard model couplings is impressive. In the next chapter possible physical embed-
dings for the chaotic string dynamics will be reviewed.
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3.4 Physical embedding

In Refs. [16, [I7] it was shown that the coupled map lattice dynamics can formally
be derived from one-dimensional continuum field theories in the limit of inifinite
self-interaction strength. The key principles in this derivation are the use of the
Parisi-Wu stochastic quantization approach and a transition to discrete space-time
and discrete fictious time, the latter being an additional dimension introduced in
this quantization method [I5], 82, 87]. A similar formal derivation was performed
in Refs. [I8, 19, 20, 21], where a stochastically quantized equation of motion of
a homogeneous scalar field in Robertson-Walker metric was considered in discrete
physical time and fictitious time. In this case one obtains, for a suitable choice of the
parameters and the potential the coupled chaotic map lattice dynamics.

The chaotic string dynamics can be interpreted as a dynamics of vacuum fluctua-
tions generating the noise of the Parisi-Wu approach of stochastic quantization [17].
A possible connection to the dark energy of the universe has been proposed in
Refs. [20, 2I]. The chaotic fields then generate effective potentials for moduli fields,
which fix the parameters of the Standard Model. Further interpretations can be found
in Ref. [17].

The observables of interest are the ‘self energy’ and the ‘interaction energy’ of the
chaotic string, defined in Sec. 3.2l Whereas the self energy is only motivated by
the formal derivation of the dynamical equations, the interaction energy can also be
interpreted as a correlation measure of the dynamics.

Up to now there is no straightforward method to embed the chaotic strings in
already existing physics, but rather different ways of interpreting different parts of the
model. One aspect which occurs rather frequently is the notion of a ‘strongest possible
chaotic behaviour’, which makes the dynamics suitable to model vacuum fluctuations.
For the uncoupled Tchebyscheff maps this strongest possible chaotic behaviour is
expressed by least higher-order correlations of the iterates of the map [14, 55]. In
this sense these iterates can be called closest to Gaussian White Noise, but still being
completely deterministic. For the coupled map lattice with non-vanishing coupling
also spatial correlations between different lattice sites occur. Since the interaction
energy is basically a correlation function for neighbouring lattices sites, a dynamical
state with a vanishing interaction energy may be interpreted as a state of strongest
random properties. From this point of view distinguished coupling values are those
corresponding to dynamical states of strongest random properties.
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4 Discrete symmetries of chaotic
strings

In Sec. the chaotic string dynamics has been defined. It has been shown that
for every order m of the Tchebycheff polynomials invoked in the dynamics, there
are eight different combinations of positive/negative polynomial, forward/backward
and diffusive/anti-diffusive coupling. In Ref. [I7] it has been stated that due to
symmetry reasons some of these combinations lead to equivalent dynamics, but a
detailed analysis of these symmetry relations has been missing up to now. In the
following section I will study discrete symmetries of the chaotic string dynamics and
show that several of the dynamics can be transformed into each other by simple
discrete coordinate transformations. Also the symmetry properties of the interaction
energy and the self energy are considered.

Although in Ref. [I7] the dynamics is restricted to a ring network, the symmetry
considerations presented here are valid for the more general class of bipartite networks
as defined in Sec. [2.2.2] of which the ring network is only one specific example/[l]

4.1 Symmetries for the coupled Tchebycheff map
dynamics

Consider a standard coupled map network with the functions f(z) and g(z) given by
the different combinations of Tchebycheff polyonmials as defined in Sec. [3.1}

zit+1) = (1 — )Tl (£)] + skii ZTg[mj(t)]. (4.1)

For the definiton of the labels [m,s,b] see Tab. As the underlying topology I

consider bipartite networks (V, E) of size N, which consist of two subsets of vertices

Vi, V. Recall that for a bipartite network V = V; Vs, Vi [] Vo = &, and edges only

exist between vertices from different sets. A ring is a special example of a bipartite

network, reducing Eq. to the chaotic string dynamics considered in Ref. [17].
Define the functions P: I — I, PO : [ - T and P® : [ — I by

P(x) = —ux;, (4.2)

1Similar, but more complicated symmetries would hold for general r-partite networks.
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1) s ieV

P(x) = { x;, 1 1€V, ] (4.3)
@) B r, 1€V,

PG = { —x; 1 1E€Vy (44)

Recall that here I denotes the combined product space of all local intervals [—1,1].
Thus the function PM) (P®) just flips the sign of all z; in the subset V) (V,), whereas
it leaves the z; in the set Vy (V) unaffected. On a ring this operation corresponds to
a sign flip at every second ring site. The function P without index flips the sign at
all nodes x;.

Obviously it holds

PoP=PYoPW =P opP® =1, (4.5)
PYoP® =P@opl =P, (4.6)

Of interest is the dynamical state x(t) of all variables at time ¢, which follows from
the initial condition x(0) by applying ¢ times the evolution equation:

x(t) = £+ o (£ (i - 2)]) = .. = (F1+)' [x(0)]. (4.7)

For convenience at this point I do not explicitly display the coupling € in the function
flmsl(x; ¢).

One can easily see that Tchebycheff maps of odd order m, = 1,3,... are odd
functions of =z,
Tmo(_x) = _Tmoa (48)
whereas Tchebycheff maps of even order m, = 2,4, ... are even function of x,
T, (=) =T, (). (4.9)

Using the odd/even character of the Tchebyscheff polynomials and the transforma-
tions P, PM and P® one can derive the following relations:

Coupled network dynamics based on odd-m Tchebyscheff polynomials (m, =

1,3,...):
[mo,+,1]\t .
Cmot A]\E (f ) . teven
(f ) { P o (flmet1)t ¢ odd, (4.10)
(flmo— 1)t PW o (fimetdlyt o p), (4.11)
P® o (flmet)t o PA) . ¢ even
[—mo,—,1]\t
(f ) { P(2) o (f[mo,—&-,l})t o P(l) t Odd, (412>
(f[mo,f,O])t P(l) o (f[m07+70])t o) ]_:)(1)7 (413)
P o (fimet0)t o P+ ¢ even
[=mo,+,0]\t
(f ) { P® o (flme+0)t o PO+ ¢ 0dd, (4.14)
[mo,+,0]\¢t .
o 0] (f ) : t even
(f ) { P o (flmet0t . ¢ odd. (4.15)
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4.1 Symmetries for the coupled Tchebycheff map dynamics

Coupled network dynamics based on even-m Tchebyscheff polynomials (m, =

2,4, ...):
(Fmme )t = P o (flmetly, (4.16)
(f[—me,—J])t — P o <f[m€7_71])t’ (417)
(Fmetyt = P o (flmet Oy o P, (4.18)
(Fomem )t = Po(gme )it o flmet ] (4.19)

These relations hold under the exchange P « P®) since the way of labeling the
subsets V; and Vs is arbitrary.

Eqgs. (4.10)-(4.19) reveal that various apparently different dynamics yield trajecto-
ries which differ just by a sign of the z;(t) at either all nodes 4, or at the nodes i € V;,
that is in one of the both sets of nodes contained in the bipartite network. By consid-
ering the right handed side of Eq. (4.10)-(4.19) one can deduce that for odd m there
are only two essentially different dynamcs ([m,, +, 1] and [m,, +, 0]), while for even m,
there remain four essentially different dynamics ([m., +, 1],[m., +, 0],[me, —, 1],[m., —, 0]).
Accordingly, when considering m = 2 and m = 3, of interest are only the six chaotic
string dynamics introduced in Sec.

One should note, that some of these relations have to been taken with some care.
Whereas the change fl=2+1 — f251 results in a global sign flip of the trajectory
for identical initial conditions (expressed by the application of the operator P after
t times iterating the function f), for the change fI=%%0 — f2+0 3]s0 a change of
the initial conditions x(0) — —x(0) is required (the operator P is applied before and
after iterating the function f). This leads to a different trajectory, but in general to
the same dynamical behaviour, that is the trajectory ends up in the same attractor
and expectations of observables coincide. Nevertheless, if the dynamics shows non-
ergodic behaviour, this change of initial conditions might lead to the convergence to
a different attractor and thus different expectations of observables. Consequently,
the loss of ergodicity can lead to a breaking of the discrete symmetry due to the
existence of multiple attractors. To provide for this finding, in Chap. [5[ not only
the behaviour of observables dependent on the coupling ¢ and the applied evolution
equation function "% is studied, but also indications about wether or not the
dynamics shows ergodic behaviour.
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4 Discrete symmetries of chaotic strings

Explicit calculations of Eqs. (4.10)-(4.19)
In the following I display the calculations which lead to the relations (4.10))-(4.19).

Coupled network dynamics based on odd-m Tchebyscheff polynomials (m, =
1,3,...): Recall that T,,,, (—z) = —T,,,.

e Eq (4.10):

FE 00 = (1= ) (T () + - i (“Tu(e) . (420)
With }
P I)) = =)
= - {<1 oo (1) + 1 jiTmo<xj>}
and

freti®ox) = £ (x)

7=1
(4.21)
one obtains
flometll(x) = P o flmet 1 — flmet1(p o x). (4.22)
Accordingly, one can write
(flomot )t — (flmetll o P o P o flmet:11)t/2 : teven
P o flmetll o (fmetll o P o P o flme (=172 ¢ odd
B (flmet 1)t . ¢ even
- { Po (f[m°’+’1])t ;¢ odd. (4.23)
e Eq (4.11):
c N
£ x) = (1= )T, (2:) — T > T (). (4.24)
P =1
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4.1 Symmetries for the coupled Tchebycheff map dynamics

For 7 € V; one has

For 7+ € V, holds

This leads to

PO o flmo—1] 4 P(l)) —  flmo,+1]
:> (f[mm*vl})t — P(l)

e Eq (4.12)):

Fremlx) = (1 —€) (<D, (2

= (1—-¢T,

= f[—mo,—,l] — Po f[ma

= flme—

PO o (flmet 1)t o

= (f[*mo,7,1]>t _ { PMo (f[mo+1])

In the last step P o P = P® has been used.

e Eq (4.13):

N
€
E Z Tmo (x])
r—
¢ N
(@) = =3 T (1)
rt
¢ N
(@5) EZTmO( ;)
r—
c N
k,' Z Tmo (x])
(] ]:1

o (fmettht o p()

(4.25)

(4.26)

(4.27)

(4.28)
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£ x) = (1= €T, () ij. (4.29)

Performing similar steps as before this can be recast into

(f[mo,7,0]>t — P(l) o (f[mo,+,0]>t o P(l) (430)
« Eq (E1d):
N
) = (1= 0 (<Tow)) + - D
4 - mo 2 kz J
j=1
N
= - {(1 — )T, (i) — k_z%}
i
e
= (1= T (o) — (1)
7 j 1
= flome 0l = P o flme 0l = glme.= 00 g P
PW o (flme+ 0yt o P 1 ¢ even
mo,+,0\t __
= (f[ ]) o { P® o (f[mc’ +0) oPW . todd (4.31)
e Eq (4.15):
N
Meo,— E
L) = (=) (T () = 1 D7
i1
N
€
= — {(1 — )T, (z;) + o Z:rj}
L
N
€
= (1—=€&)Tn,(—z:) + T (=)
(A jzl
— f[—mo,—,O] — Po f[mo,—O—,O} — f[mo,—i-,O] oP
[mo,+,0]\t .
om0\t (f ) : t even
= (f ) o= { P o (flme Ot ¢ odd (4.32)

Coupled network dynamics based on even-m Tchebyscheff polynomials (m, =
2,4,...): Recall that T, (—z) = T,,,.

e Eq (4.16):
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i)

= (f[_mey'i‘,l} )t

e Eq (4.17):

= (f[—me,—,l])t

e Eq (4.18):

)

= (f[_m67+,0} )t

e Eq (4.19):

— ) = j”(—x)

(P o fimetll o P)iml) o P o flmet]

P o (flmetll o P o P) D lme+1]

P o (flmetiyt (4.33)

- {(1 = )Ty () kiiZTmom)}
£ ) = N ()

P o (fimet1)t (4.34)
(1= ) (T 2)) + 3 s
- {(1 = T () + - Z(—xn}

— " ()
(Po fFlme+0] o P)t
P o (flmet0 o p o P)t-Dflme+0l o p

P o (flmet 0t o p (4.35)
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N
Fm ) = (=) (D) = = D
3 i—1
€ ]N
- {(1 = )T () + - Zx]}
4 j=1
= —fm )
p N
L% = (= T () + - D ()
[
N
= (=T () = = Y
e
= %)

= (f[—me,—,O])t = (Po f[me,—i-,()])t
Po (f[me,Jr,O] o O)(tl) o f[me,Jr,O]
P 0o (f[me,—,[)])(t—l) 0o f[m€7+70] (436)

4.2 Symmetries of the interaction energy and the self
energy

In Sec. the interaction energy I/Vgn’s’b} and self energy V;-[m’s’b] have formally been
derived from the evolution equation of the chaotic string dynamics. The self energy
is given by

2

3
V[ig’s’b] = * <—(ZL'Z')4 + §($Z)2> (437)
for the chaotic string dynamics based on second and third order Tchebycheff polyno-
mials, respectively. The interaction energy is defined as

Wi[;l’s’b](e) = -5 <%xzx]> : (4.38)
The notion (-) refers to a time average over long iteration times.

In Refs. [I7] distinguished couplings € are those which correspond to minima of the
self energy V(e€), and to zeros of the interaction energy W (e) displaying a negative
slope W’(e). For these notions the sign of V(¢) and W (e) are of importance.

As derived in the last section, all 16 possible combinations [+m, s, b] for m = 2,3
basically lead to six different dynamics. I will now examine the effect of switching
between positive and negative Tchebycheff polynomials (m — —m) and between
diffusive and anti-diffusive coupling (s = 1) — (s = —1) for both types of energies.
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Transformation m — —m: For all chaotic string dynamics with m = 2 the energies
transform as

V[+2,s,b}(€) _ V[*st]( ) = V[QSb]( ), (4.39)
W[+2,s,b}(€) o Wl ZSb}( ) = W[st]( ). (4.40)

In contrast, the m = 3 dynamics show a different behaviour:

visste) — yl3stl(e) = —yBs(e), (4.41)
WH?”S’I](E) N [ 3,5,1] (6) 3 s, 1}(6), (442)
W 3.s.0] (&) — W l=3:s.0] (e) W[3 8,0](e) (4.43)

Note that the above well-defined symmetry behaviour was only achieved due to the
special choice of the additive constant C' in Eq. (3.15) and Eq. (3.21]). Other choices

would not make the problem symmetric under the transformation m — (—m).

Transformation (s = 1) — (s = —1): Whereas for chaotic string dynamics with
m = 2 this transformation yields a completely different behaviour, for m = 3 one
obtains

V[:I:3,+,b](€) N V[i37_7b](6) = V[i3’+7b}<6), (444>
WS () WEB=H (o) = BN (), (4.45)

These relations show that although several combinations of [+m, s, b] yield equiva-
lent dynamics, the respective interaction energy and self energy may differ by a sing.
In Ref. [17] all results are obtained by considering Eqs. (4.37)) and (4.37)) for positive
sign only. This is not consistent with the formal derlvatlon of these observables which
lead to positive as well as negative leading sign, depending on the label [im, s, b,
and thus needs clarification by the author of Ref. [17].

In the following chapters of this thesis I follow Ref. [I7] and consider the interaction
energy only with a positive leading sign, that is W (e) = (z;x;), where for simplicity
the prefactor 1/2 has been omitted.
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5 Interaction energy of chaotic
strings

In the following chapter I will take a closer look at the interaction energy of chaotic
strings as defined in Sec. [3.2l The main purpose is to review and check the results
given in Ref. [I7]. In addition I will also investigate the aspect of spatial homogeneity
of the interaction energy.

5.1 Dependence of the interaction energy on initial
values and node

One of the main claims of the theory advocated in Ref. [I7] is that there are particular
coupling values of the chaotic string dynamics, which coincide with coupling constants
of the standard model of particle physics. These couplings are distinguished as zeros
" with a negative slope of an observable called interaction energy W (e) (see Sec.[3.2)).
In this section I will study the behaviour of W (e) depending on the coupling e for
the six interesting chaotic string dynamics (see Sec. , thus reviewing some results
from Ref. [I7].

As an extension to the pure inspection of formerly known results I will also study
whether or not the dynamics exhibits ergodic behaviour. For this purpose the notion
of ergodicity is used in a mathematically rather sloppy sense, meaning that time-
averages of observables do not depend on the initial value (up to a set of measure
zero). Additionally it is demanded that expectations of observables defined at similar
subsets of nodes, that is for structurally equivalent sets of nodes, yield the same result
(see Sec. for the definition of similar sets of nodes). For a more mathematical
treatment of ergodicity in coupled map lattices see Refs. [30) B1].

In [I7] the interaction energy has been calculated as an average

W(e) = Wipring = ((2:(H)2;(t))time ring - (5.1)

that is an average not only over time but also over all coupled pairs of nodes, i.e.
neighbouring ring sites. It is possible that for non-ergodic dynamics and thus spatially
inhomogeneous values W;; # Wy with i # i, j # j', the interaction energy W (e) in
principle could vanish due to this spatial averaging procedure only, without vanishing
locally for neighbouring nodes ¢ and j. Recall that a main physical interpretation of
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the chaotic string dynamics was the use as a noise field for stochastically quantized
fields (see Sec. [3.4). According to this interpretation dynamical states of vanishing
interaction energy could be associated with a strongest random or chaotic behaviour.
In Chap. [6] I will evaluate this notion of a most random behaviour in more detail.
But already at this point it is obvious, that a dynamical state where W(e) = 0 is
only fullfilled due to the spatial average, but not because of W;; = 0 for all connected
pairs i, j, contradicts such an interpretation as being suitable as a spatiotemporal
noise field.

Let us examine this notion of ergodic behaviour and spatial homogeneity with
the help of natural invariant densities. Consider an ergodic dynamics where the
invariant density can be obtained by iterating a single initial value and producing
a histogram [22]. The notion of ergodicity at this points refers to the independence
of the invariant density on the initial conditions. For a coupled map network with
vanishing coupling € = 0 the invariant density p(z1, x2, ..., zy) is given by

p(x1, 79, ..., vy5) = I p(z), (5.2)

that is the product of the densities at the respective nodes. These local densities
p(x;) are identical, as long as the local maps coincide. Thus although the dynamical
state x;(t),7 = 1,..., N in general will show a behaviour with x;(t) # z;(t) for ¢ # j,
time averages (F[z;(t)])tjme Will yield the same value for all nodes 2E|

If the coupling is switched on, necessarily spatial correlations occur and the factor-
ization of the density does not hold anymore. However, one might consider locally
restricted densities p(x;), given by

plx;) = H/dl’jﬂ(l’l,l‘g, ey TN). (5.3)
J#
Numerically these locally restricted densitities are obtained by histograms evaluated
only at the respective node 7, ignoring the dynamics at the other nodes j # i. This
concept can easily be extended to subsets of nodes larger than one, for instance
p(z;,x;), where node ¢ and j are neighbours in the network.

In Sec. the notion of similar nodes in a network has been introduced, for which
the network structure looks identical. For a spatially ergodic dynamics it is expected
that the dynamics at similar nodes show analogous behaviour. A counterexample
is the occurence of spatial patterns (for instance a frozen random pattern [69]) in a
coupled map lattice, where attractors can have strong spatial dependence despite of
the spatial symmetry of the underlying dynamical model. In terms of densities this
implies that for similar nodes ¢+ and ;7 one expect that the locally restricted densities
are identical, that is p(z;) = p(z;). The same should hold for similar subsets of nodes.
For the special case of a ring structure and edges (i, 7), (i, 7') it is hence demanded
that

ﬁ(xivxj) = ﬁ($i/,$j/), (54>

'"Dynamical states with z;(¢) = z;(t) are called synchronized and will be of interest in Chap. 8] of
this thesis.
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Figure 5.1: Interaction energy for the 2A dynamics. The thick line shows the spatial
average W (e), whereas the red dots show all the respective W;;(¢). Ring size N = 500,
T = 109 iterations, transient Ty = 5 - 10*, one realization.

since all directly coupled pairs of nodes in a ring structure are similar. Consequently
for a homogeneous dynamics all time averages over functions F'(x;,x;) should yield
the same result for every coupled pair of nodes.

Obviously from W;;(e) = Wy ;(e) does not follow that p(x;, x;) = p(zy, zj), since
the interaction energy is only one specific test function. However, in order to avoid
numerically expensive calculations, at this point I restrict the studies to this specific
function, which is of relevance for the theory put forward in [17].

Figures [5.115.6] show the interaction energy for the six interesting chaotic string
dynamics for the whole coupling range € € [0, 1]. Apart from displaying the spatial
average W (e) as it is done in Ref. [I7], the figures also visualize W;;(e) for all edges
(7,7) in the ring. These figures reveal that depending on the dynamics, for large
intervals in the coupling range the interaction energy is not spatially homogeneous .

It is of interest to study this dependence of W;; on the respective edge (i, j) more
quantitatively. For this purpose I define the following inhomogeneity measures:

oW = ({05 - <m‘(€)>12nit>edges>

TedgesW:6) = (\/{Wi(0))edges — (Wis(€) adges)

(5.5)

mit

where () refers to an average taken over all edges in the ring-network, and

edges
(*)init to an average taken over an ensemble of initial values x;(0). I will explain these

definitions: To calculate oj,i¢, I choose some dynamics, for instance the 24 chaotic
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Figure 5.2: Same as Figure , but for the 2B dynamics.
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Figure 5.3: Same as Figure , but for the 2A~ dynamics.
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Figure 5.4: Same as Figure but for the 2B~ dynamics.
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Same as Figure , but for the 3A dynamics.
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Figure 5.6: Same as Figure , but for the 3B dynamics.

string, and some coupling value € and calculate for an ensemble of initial values
the local observable, in this case the interaction energy W;;(e) for all neighbouring
edges. Then I determine the standard deviation of this quantity with respect to the
ensemble of inital values. Finally, I take the average over all edges, thus getting a
measure of the inhomogeneity of the interaction energy at a specific pair of nodes
with respect to different initial values. To calculate the quantity Tedges I perform
the above averaging procedure in reverse order.

Figures[5.7H5.12|show the results of the numerical calculations for the six interesting
chaotic string dynamics as a function of the coupling e. Apparently both oj,;; and
aedgeS(W; ¢) show nearly identical behaviour and are non-vanishing for large ranges
of the coupling parameter €, thus indicating non-ergodic behaviour in the sense of
expectation values which depend on the node at the network and the initial value
chosen. In the regions where ojit (W;e) and Todges 15 significantly different from
zero, one has to be very careful when numerically calculating expectations of observ-
ables since the result may strongly depend on the initial values. Typical phenomena
that occur in these regions are multiple attractors and frozen random patterns with
very large relaxation times.

Since oj;¢ and Tedges show very similar behaviour, I consider now the combined

homogeneity measure o(W;€) given by

o(Wse) = \/<(m/i'(6)>2>edges,init - <Wij(€)>(2adges,init ’ (5.6)

where the standard deviation is now simultaneously determined from an average over
all initial values and all coupled pairs of nodes.
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Figure 5.7: Inhomogeneity measures oyt (W; €) and Uedges(w? €) for the 2A dynam-

ics. For the numerical calculations I used 50 different initial conditions,
N = 500 nodes, T' = 107 iterations and a transient of Ty = 5 x 10%.
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Figure 5.9: Same as Fig. , but for the 2A~ dynamics.
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Figure 5.11: Same as Fig. , but for the 3A dynamics.
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Figure 5.12: Same as Fig. , but for the 3B dynamics.
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5 Interaction energy of chaotic strings

In the theory of chaotic strings the zeros of the interaction energy Wi(e) are of
main interest. I now study the behaviour of o(W;€) for the zeros €* associated with
standard model coupling in Ref. [I7], checking for non-ergodic behaviour. Unfortu-
nately for a finite number of iterations 7" and for finite network size N, statistical
disorder will prevent a completely vanishing inhomogeneity measure o(W;e). To
discriminate between an inhomogeneous non-ergodic dynamics and a homogeneous
ergodic dynamics with a nonzero o(W;e€) due to finite-iteration time/size statistical
fluctuations, I determine o(W;¢€) as a function of the number of iterations (recall that
Wi;(e€) is a time average (x;(t)x;(t)),). For statistical fluctations it is expected that

o(W;elT) oc T7V2, (5.7)

due to the Central Limit Theorem, whereas for an inhomogeneous (non-ergodic)
dynamics it should hold
o(W;€e|T) = constant (5.8)

due to very slow decay of correlations and different attractors in the system.

Fig. shows o (W €|T') for the eight interesting zeros which were associated with
standard model couplings in Ref. [I7]. Whereas one observes for six of these zeros
the decay o(W;e|T) oc T2, two of them correspond to dynamical states which
show o(W;e) ~ constant. These two zeros correspond to non-ergodic behaviour
and the interaction energy W (e) only vanishes due to an average over all edges in
the ring, or over various initial conditions. As a consequence these zeros should be
discarded from being possibly associated with standard model couplings, since an
interpretation of the dynamical states as noise fields for chaotic quantization is not
applicable. Interestingly, the interpretation of these zeros in Ref. [I7] as corresponding
to strong coupling constants between glueballs was rather speculative and far-fetched,
so their exclusion due to this dynamical reasoning is actually advantageous for the
theory of chaotic strings.
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Figure 5.13: The relative time-dependent inhomogeneity measure o(W;¢|T)/e for
eight distinguished values €¢* with W (e*) = 0. The numerical values of these zeros
have been taken from Ref. [I7]. The relative value o/¢ rather than the absolute value
o has been plotted to facilitate the distinction between the different curves and to
give an idea about the numerical accuracy of the calculatios. As a visual guide also
o(W;€|T) o< T~/? is displayed. Parameters are ring size N = 500, ten different
initial conditions, transient 7" = 5 x 10%.
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5 Interaction energy of chaotic strings

5.2 Precise numerical determination of the zeros

In this section I review and check some of the results given in Ref. [I7] concerning
the zeros of the interaction energy of the chaotic string dynamics. In Ref. [17] the
interesting zeros of the interaction energy have been numerically calculated with
high precision (up to seven digits). Since the respective calculations have not been
repeated by any other sources, these results need to be checked. For this purpose I
determine six of the eight interesting zeros reported in Ref. [I7], excluding the zeros
which correspond to non-ergodic dynamical states as shown in the last section.

The determination of the zeros is realized by means of the following procedure. I
choose a ring of size N = 10, as it has been done in Ref. [I7]. Then I calculate the
interaction energy W (e) for ten different initial conditions, which are randomly drawn
from a distribution that is given by the natural density of the uncoupled Tchebycheff
maps. The calculation incorporates the average over T iterations and over all edges.
The latter average can be performed, since it has been checked in the last section
that the interaction energy does not depend on the considered coupled pair of nodes
for the dynamics at these zeros. I start with some interval in the coupling range
around the zero and some moderate number of iterations, that is T = 10°. For all
e in the coupling range W(e) is calculated, that is the average over ten different
initial conditions, and the standard deviation of this average. I then fit a continuous
line through the data points obtained from the average W(e), and also through the
values which are given by the average plus/minus the standard deviation. This yields
the zero € with W(e*) = 0 and an estimation of the error. In the next step this
procedure is repeated for the coupling range given by the error around the zero, and
higher precision up to T'= 107. See Fig. [5.14

In Tab. the respective numerical results are compared to the values given in
Ref. [I7]. It is observed that although the same network size and number of itera-
tions was used for calculation, the obtained results are in parts less precise than the
numerical values given in Ref. [I7]. T expect this slight discrepancy to have its origin
in the way how the error was obtained. Since in Ref. [I7] the calculation of the error
has not been described in detail, it is not possible to compare the procedures, but
the present method rather overestimates the uncertainity in the numerical value of
the zeros. However, the important result is that all zeros obtained in Ref. [I7] are
situated in the range of the errorbars of our calcuations, which are of the order of
1076,

62



5.2 Precise numerical determination of the zeros

0.0003

0.0002 |

0.0001 |

W(g)

-0.0001

-0.0002

-0.0003 r

-0.0004 :

0.120085 0.12009 0.120095 0.1201 0.120105

€

Figure 5.14: Numerical determination of the zeros ¢* with W (e*) = 0, here for the 24
dynamics. I obtain W (e) by taking the average over ten different initial conditions,
and estimate the zero by fitting a continuous line through the respective data points.
The error is estimated by doing the same for the average plus/minus the standard
deviation with respect to the average over the different realizations. For this figure

network size N = 10*, T' = 107 iterations, transient Ty = 10%.

Z€ero Ref. [17] our result
e 1 0.0008164(8) | 0.000813(8)
&1 0.0073038(1) | 0.007308(9)
e*® 1 0.0018012(4) | 0.001804(6)
e*® 1 0.017550(1) | 0.017550(3)
e 1 0.120093(3) | 0.120094(1)
P71 0.095370(1) | 0.095370(1)

Table 5.1: Zeros of the interaction energy: Comparison between the obtained numer-
ical results and the values given in Ref. [I7]. For details about the numerical methods

see the text.
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6 Correlations and most-random
behaviour in coupled Tchebycheff
map networks

6.1 Interaction energy and most-random behaviour

In Ref. [21I] an interpretation of the chaotic string dynamics as vacuum fluctuations
has been proposed. A key notion of this concept is the most random or most chaotic
behaviour. It can be shown that deterministic maps with strongest chaotic prop-
erties are those conjugated to a Bernouilli shift [22]. Amongst this class of maps,
Tchebyscheff polynomials are distinguished by having least higher-order correlations
and thus can be interpreted as being most chaotic [I7]. If one considers a chaotic
string dynamics with vanishing coupling € = 0, one obtains a population of uncoupled
chaotic maps with strongest chaotic behaviour and without any spatial correlations
in the system. But what is the most random/chaotic behaviour for coupling € > 0 ?
In Ref. [21] it has been proposed that such a most random behaviour is distinguished
by a vanishing correlation function

(@:(8)2;(t))time (6.1)

where 7 and j are neighbouring lattice sites and the average is taken over long iteration
times. One recognizes this measure as being the interaction energy W (e). It has been
tempting to evoke the most random principle to the chaotic string dynamics in order
to justify the found zeros of the interaction energy.

In this chapter I will take a closer look at this so-called most random behaviour.
The interaction energy is only one spatial correlation function, which does not take
into account the temporal evolution of the dynamics. To overcome this, different
Lyapunov measures are calculated. Subsequently, other spatial correlation measures
like higher-order cumulants and mutual information are considered. The question
is: are dynamical states distinguished by a vanishing interaction energy also ‘special’
with respect to other correlation measures, or does one have to rely on this specific
measure in order to get the results advocated in Refs. [17, 21]?
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6 Correlations and most-random behaviour in coupled Tchebycheff map networks

6.2 Lyapunov exponents of chaotic strings

The aim of the following section is to evaluate the chaoticity of the chaotic string
dynamics by means of Lyapunov measures [11], 43| (65, [TTT]. As pointed out in Sec. ,
the dynamics of a coupled map lattice of size N corresponds to the iteration of an
N-dimensional map. Accordingly the Lyapunov spectrum is formed by N exponents
Wmaz = M1 > ... > pn, one for each independent eigendirection (see Sec. or
Ref. [94]). Note that this Lyapunov spectrum describes the spatiotemporal evolution
of the system, whereas the interaction energy defined in Sec. only measures spatial,
but not temporal correlations.

The multiplicative ergodic theorem by Oseledec guarantees the existence of well-
defined Lyapunov exponents under rather general conditions [94]. With respect to
the natural measure on an attractor one obtains Lyapunov exponents independent
from the initial conditions (as long they are in the basin of attraction), except for a
set of Lebesgue measure zero. So by numerically iterating a random initial condition,
one obtains the right Lyapunov exponent of the dynamical system. For coupled map
lattices there might be different attractors with possibly different Lyapunov spectra.
Therefore the measures based on the Lyapunov spectrum defined in the following
will be averaged over several different realizations in order to evaluate the chaoticity
under general conditions. Any possible dependence on initial conditions will not be
considered.

The maximum Lyapunov exponent of the dynamics fi,,q, describes the rate of am-
plification of an arbitrary small displacement [94] and can be used as a first measure
of the chaoticity of the dynamics. Recall that already one positive Lyapunov expo-
nent renders the dynamics chaotic, since small displacements grow exponentially in
time. Depending on the coupling and the individual dynamics, many Lyapunov expo-
nents might be positive, so another quantity of interest is the net-average of positive
Lyapunov exponents:

N
1
h=(i)ips0 = 3 > O (). (6.2)
i=1
Here O(p) is the Heaviside function
0 : <0
ow={ {130 (63

Note that the sum in Eq. is divided by the system size N, not by the number
of positive Lyapunov exponents. In the following, A will be denoted as the average
positive Lyapunov exponent of the system. In the literature, this quantity is often
set equal with the Kolmogorov-Sinai entropy (KS entropy), although in general it is
only an upper bound for this measure [22].

Another possible measure of the chaoticity of the dynamics is based on the geo-
metrical structure of the attractor. Divide the N-dimensional phase space into a grid
of N-dimensional cubes with side-length ¢ and consider the relative number of itera-
tions, in which typical orbits pass the respective cubes. To be precise, for a certain
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6.2 Lyapunov exponents of chaotic strings

choice of cubes labeled with 7 and cube side-length 0, define for coupled map lattices
the weight
. ni(T)
wi = fim =5

(6.4)

with 7" the number of iterations and n;(7T") the number of times the orbit (), ..., x y (¢)
passes the cube labeled by i. For cube side-length 4§, let 72(9) denote the total number
of cubes i with w; > 0, that is the number of cubes necessary to cover the attractor
set. The box-counting dimension [94] of the attractor set is defined as

In[7(9)]
Dy = lim m . (6.5)
In order to measure the chaoticity of the dynamics, apart from being numerically
expensive to calculate, this box-counting dimension has one major drawback. Al-
though it estimates the fraction of the phase space which is covered by the attractor,
it does not incorporate the magnitude of the respective weights w;. A measure which
overcomes this problem is the information dimension Dj, defined by [44]

5 w; Infw;]
D — 1. J_
TEEN T e

(6.6)

where the summation takes place over all cubes j with non-zero weights w;. For the
determination of this quantity, cubes ¢ with a larger weight w; have a greater influence
than cubes which are only rarely passed by the trajectory of the dynamical system.
For higher-dimensional systems it is numerically difficult to obtain the information
dimension by straightforward calculations, but it can be estimated by the Lyapunov
dimension (also called Kaplan-Yorke dimension), which is based on the Lyapunov
spectrum [44]. Let K be the largest integer such that

K
> =0 (6.7)
=1

Recall that the Lyapunov exponents pu; can be positive as well as negative, and are

arranged in decreasing order p; > ... > py. The Lyapunov dimension Dy, is defined
as
0 if all pu; <0,
K .
Dp=q K+ >l m fK<N, (6.8)
N if K =N.

In order to get a better understanding of these three measures, consider the 2A
dynamics. For vanishing coupling ¢ = 0, one obtains N independent chaotic map
dynamics, each with Lyapunov exponent p; = In2. Consequently, it holds 4. =
h =1In2, and Dy = N. If the dynamics is completely synchronized, that is s(t) =
x1(t) = ... = xpy(t), then according to Chap. this synchronized trajectory is given
by the individual second-order Tchebycheff dynamics with Lyapunov exponent In 2.
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6 Correlations and most-random behaviour in coupled Tchebycheff map networks

In order to have stable synchronization, all the remaining Lyapunov exponents have
to be negative. This results in fie, = In2, h = In2/N and Dy, given by Eq. with
Dy > 1. As a further example consider a hypothetical stable fixed point of a coupled
map lattice dynamics. For the fixed point to be stable, all Lyapunov exponents have
to be negative. Consequently, in this case 4 < 0, h = Dy = 0.

These estimations show that the different measures have a maximum for the uncou-
pled case, which corresponds to the trivial most chaotic or most random dynamics,
since there are no spatial correlations and the dynamics at every node is given by
the respective chaotic map. On the other hand, the respective minima are given
for a synchronized fixed point, which is the most regular structure possible in a
higher-dimensional system. Consequently, these are suitable measures to evaluate
the chaoticity or randomness of the spatio-temporal dynamics.

Figures display the Lyapunov spectrum, the maximum and the average
positive Lyapunov exponent, and the Lyapunov dimension for the six chaotic string
dynamics for the coupling range € € [0,1]. One observes that for small couplings
up to around € = 0.1, all Lyapunov exponents are non-negative, corresponding to
a Lyapunov dimension D; = N. For larger couplings, a part or even all of the
Lyapunov exponents become negative, and one obtains smaller values for ji,,42, b, Dr.
These dynamical states correspond to spatio-temporal patterns different from the
fully developed spatio-temporal chaos obtained for the small-coupling region [66].
Note that there is some concurrence between the behaviour of D; and A on the
one hand and the inhomogeneity measure considered in Sec. This concurrence
does not always hold, since the respective quantities estimate different, not always
equivalent facets of the dynamics. For instance a fully synchronized fixed point does
not show any spatial inhomogeneity, whereas its Lyapunov dimension is zero. On
the other hand, if the dynamics is spatially inhomogeneous in the sense defined in
Sec. [5.1], this corresponds to patterns different from fully developed spatio-temporal
chaos and accordingly Dy < N.

Figure displays the average positive Lyapunov exponent h and the maximum
Lyapunov exponent fi,,., for the small coupling regions of all six dynamics. For the
coupling values € in these ranges, the dynamics only has positive Lyapunov expo-
nents and thus Lyapunov dimension Dy = N. If one tries to observe a most random
behaviour of the dynamics for non-zero coupling, it should be for a coupling in this
region. However, as Fig. |6.13| reveals, both Lyapunov measures (i, and A mono-
tonically decrease for increasing coupling €. Thus with respect to these measures, the
dynamical states characterized by the zeros of the interaction energy do not show a
most chaotic/most random behaviour.
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Figure 6.1: Left: Lyapunov spectrum for the 2A dynamics, depending on the cou-
pling e. Right: Lyapunov exponents larger zero (black) and smaller or equal to zero
(white). Calculations where performed for lattice size N = 101, T' = 10? iterations,
a transient 7, = 10° and one realization. It has been checked that other initial
conditions yield similar results.
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Figure 6.2: 2A dynamics. Maximum Lyapunov exponent fi,.., average positive
Lyapunov exponent h, and Lyapunov dimension D; depending on the coupling e.
All measures have been normalized by the value for the uncoupled dynamics, that
is In2 for p,., and h, and lattice size N for Dj;. Parameters are the lattice size
N = 101, number of iterations 7" = 10* and transient Ty = 10%. All quantities have
been averaged over 10 realizations.
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Figure 6.3: Same as Fig. , but for the 2B dynamics.

1.2 T T T T T

0

=

=]

N
1

_02 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

€

Figure 6.4: Same as Fig. , but for the 2B dynamics.
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Figure 6.5: Same as Fig. , but for the 2A~ dynamics.
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Figure 6.6: Same as Fig. , but for the 24~ dynamics. The plot has been truncated
at fmar/In2 = —1.5.
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Figure 6.7: Same as Fig. but for the 2B~ dynamics.
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Figure 6.8: Same as Fig. but for the 2B~ dynamics.
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Figure 6.9: Same as Fig. , but for the 3A dynamics.
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Figure 6.10: Same as Fig. , but for the 3A dynamics, with normalization In 3.

73



6 Correlations and most-random behaviour in coupled Tchebycheff map networks

Hi

0 01 02 03 04 05 06 07 08 09
€

Figure 6.11: Same as Fig. but for the 3B dynamics.
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Figure 6.12: Same as Fig. , but for the 3B dynamics, with normalization In 3.

74



08

06

04 r

Mmax/In2

hin2 ——

11

0.06
€

0.02 0.04

02 r
0.1

“max

/In2

b2 — ‘

0

0.96

0.94

0.92

0.9

0.88

0.86

001 002 003 004 005 006 007 008 0.09
€

Hima/1N3
8 7, L

0

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.01¢
€

6.2 Lyapunov exponents of chaotic strings

09
0.8
0.7
0.6
05
04
03 r
0.2

0.1

0.9 r
0.8
0.7
0.6
05
04
03t
0.2

0.1

Umax/IN2
hin2

0

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.02

0.06 0.08 0.1

/In3

Hmax

hin3

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.01¢

€

Figure 6.13: Rescaled maximum Lyapunov exponent ../ Inm and average positive
Lyapunov exponent h/Inm for all six dynamics in the small coupling range, where
all Lyapunov exponents are positive and thus D, = N. Parameter m = 2 for 2A (top
left), 2B (top right), 2A~ (middle left), 2B~ (middle right), m = 3 for 34 (bottom
left), 3B (bottom right). Calculations where done for N = 101, T' = 10* (24, 2B,
2A7, 2B7) or T = 10° (3A, 3B), T, = 10°. An average over 10 different initial
conditions has been taken.
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6.3 Spatial correlation measures

In the last section it has been shown that for the small coupling region all Lyapunov
exponents of the chaotic string dynamics are positive. The maximum Lyapunov
exponent fi,,q. as well as the average positive Lyapunov exponent A show a monoton-
ically decreasing behaviour for increasing coupling strength. There is no distinguished
behaviour for the zeros of the interaction energy W (e), which contradicts an inter-
pretation of the dynamics as being most random for these specific coupling values.
The interaction energy only quantifies spatial correlations, whereas the Lyapunov
measures introduced in the last section depend on the spatio-temporal dynamics as
a whole. Accordingly, a possibility to keep the interpretation of a most random be-
haviour would be a reference to spatial correlations only. In order to follow this
argument, in this section spatial correlation measures like higher order cumulants
and mutual information are studied. For the sake of simplicity, only next neighbour-
correlations will be considered.

6.3.1 Higher order cumulants

In Sec. the density p(x;, x;) has been introduced, where nodes i and j are neigh-
bours in the ring-network. This quantity defines the probability density for observing
simultaneously the value z; at a node 7 and the value z; at a neighbouring node j
during the iteration of the dynamics, independently from the dynamical state of the
remaing nodes. In the following only spatially homogeneous chaotic string dynamics
will be considered, so this densitiy is the same for all pairs of coupled nodes. Set the
two-dimensional vectors x = (z1,73)T and a = (a;,a2)T. Suppose that the densitiy
p(x1,z2) = p(x) is given, then the characteristic function [50] is defined by

o) = [ dxexplia- Kp(x). (6.9)
which characterizes the density p by means of the Fourier inversion formula
5(5) = 15z [ daexpl-ix- alo(a) (6.10)
p(x) = 27)? exp|—ix : .
If the moments (z]"z3"?) exist, then
mi .mo . 8 m . a m
<$1 Ty >: |:(—Za—al) 1(_7[8_@) 2¢(a) a:0. (611)

The logarithm of the characteristic function

®(a) = log [¢(a)] (6.12)

is called the cumulant generating function [50]. If all moments exist, then ¢(a) and
accordingly ®(a) can be expanded in a power series. Whereas the coefficients in the
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6.3 Spatial correlation measures

Taylor expansion of the characteristic functions are the moments of the density p, the
corresponding coefficients in the expansion of the cumulant generating functions are
called cumulants:

({21 25)) . (6.13)

In the case of vanishing coupling, the density p(x1, z3) factorizes, and for the cumulant
generating function holds

®(a) = log [¢(a1)] + log [¢(az)] - (6.14)
All mixed terms ((z7"'25?)) must then be zero. The cumulants are a measure of the
degree of correlation of the density 5 [50].

By comparing the Taylor expansion of the characteristic function and the cumu-
lant generating function, one can express the different cumulants by means of the
moments. For the general formula to calculate the cumulants, see Ref. [50]. In the
following, all cumulants up to fourth order, that is ((z]"'x5?)) with m; +my < 4 will
be displayed. As an abbreviation the notation

C(my,mg) = (27" 257)) (6.15)

is used. Note that due to the spatial homogeneity of the dynamics, C(mq, mq) =
C(mg,my), so only terms with m; > my will be considered.

Cumulants of order 1:

C(1,0) = (1) . (6.16)

Cumulants of order 2:
C(l, ].) = <[E1£L’2> — <I’1> <ZE2> s (617)
C(2,0) = (%) — (z1). (6.18)

Cumulants of order 3:

C(2,1) = (zjzs) — (27) (z2)
—2 (xy23) (1) + 2 (1) (23) (6.19)

C(3,0) = (a}) — 3(x]) (x1) + 2 (21)° . (6.20)
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6 Correlations and most-random behaviour in coupled Tchebycheff map networks

Cumulants of order 4:

C(2,2) = (ajx3) —2(afws) (x2) — 2 (xdw1) (21)
_ <x%> <x%> -2 <x1x2>2 +2 <x%> ($2>2
+2(x2) (21)” + 8 (w122) (1) (T2) — 6 (21)” (20)? (6.21)

c(3,1) = <mi’x2> — 3 (z1) <mfac2> — (z2) <x‘i’>
—3(a7) (m122) + 6 (x7) (1) (22)
+6 (z129) (:1:1>2 -6 <x1)3 (z2) , (6.22)

C(4,0) = (1) —4(x1)(2}) -3 <:17%>2
+12 (a?) (21)* — 6 (z1)". (6.23)

Figures|6.14 show higher order cumulants for the small coupling region for all
six chaotic string dynamics. It seems that the 24 and 2B~ dynamics share a similar
behaviour, as well as the 2B and 2A~ dynamics. The reason for this coincidence is
not clear and should be the aim of future studies.

As a comparison to the different cumulants the interaction energy W (e) is displayed.
For all dynamics based on second order Tchebyscheff polynomials, the interaction
energy differs from the first order cumulant C'(1,1). This is due to non-vanishing
moments (z;) at the respective nodes for these dynamics. Accordingly, when consid-
ering the first order cumulant as the lowest-order spatial correlation function, zeros
are shifted to different, smaller coupling values for the 24 and 2B~ dynamics. For
the 2B and 2A~ dynamics, there are no zeros in the small coupling region.

For the 3A and 3B dynamics the situation is slighty different. Due to the sym-
metry T3(—xz) = —T3(z) for the third order Tchebyscheff polynomial, the moments
(x;) vanish and the interaction energy is equal to the first order cumulant C(1,1).
However, higher-order cumulants do not vanish for the zeros of the interaction energy.
So these distinguished couplings are only ‘special’” with respect to these first order
correlations, but not with respect to higher order correlation measures.
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Figure 6.14: Higher order cumulants for the small coupling region of the 2A (top)
and 2B~ (bottom) dynamics. For this coupling region all Lyapunov exponents are
positive and accordingly D; = N. Parameters are the network size N = 101, T' = 10*
iterations, transient 7y = 103. The cumulants have been averaged over all coupled
pairs in the ring-network.
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Figure 6.15: Same as Fig.|6.14] but for the 2B (top) and the 24~ (bottom) dynamics.
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Figure 6.16: Same as Fig. , but for the 3A (top) and the 3B (bottom) dynamics.
Since the moment (z;) vanishes for these dynamics in the small coupling region, the
interaction energy and the first-order coincide, and the respective curves lie on top
of each other in these figures.
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6 Correlations and most-random behaviour in coupled Tchebycheff map networks

6.3.2 Mutual information

The mutual information I evaluates the difference between the density p(x1, z5) and
the product of the individual densities p;(z1)pe(z2) [103].

For the calculation of I consider two neighbouring nodes ¢ and j. Divide the
phase space [—1, 1] of the individual map into L cells of equal size 2/L, labeled with
integers 1,..., L. For a large number of iterations 7" of the dynamics, let n;(c) (n,(3))
count the number of times x;(¢) (z;(¢)) lies in the cell o (). Let n;;(cr, 3) count the
number of times where x;(t) lies in cell a and simultaneously () lies in cell 5. After
a sufficient long iteration time 7" define

wi(a) = ni;(m )
w;(B) = njéﬁ) ;
wii(a, f) = M (6.24)

In the limit L — oo the quantity w;(«) corresponds to the density p(z;) (the same
holds for w; and w;;). The mutual information is defined as

=N (o B) log | il 8)
1= 3o e 2 T 022

Since this quantity depends on the number of cells L, all numerical calculations
will be performed for increasing L in order to assure the convergence of the mutual
information.

For vanishing coupling it holds

wi;(a, B) = w;(a)w;(B) (6.26)

and consequently [ = 0.

Figures. display the mutual information for the coupling regions where
the interesting zeros of the interaction energy are observed. For the 24 and 2B as well
as the 34 and 3B dynamics basically a monotonically increasing behaviour of [(e) for
increasing coupling € is observed. For the 2A™ and the 2B~ dynamics local minima at
€ &~ 0.7 are observed, but these minima do not correspond to zeros of the interaction
energy. Thus the mutual information confirms the findings of the previous sections:
The dynamical states corresponding to a vanishing interaction energy W(e) = 0 are
distinguished by W (e) only, but not by other correlation measures. This contradicts
an interpretation of these states in terms of a most random behaviour.
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Figure 6.17: Mutual information I for the coupling region with Lyapunov dimension
D; = N of the chaotic string dynamics based on second order Tchebycheff poly-
nomials. Top left: 2A. Top right: 2B. Bottom left: 2A~. Bottom right: 2B~.
Calculations were done for ring size N = 101, and an average over all coupled pair of
nodes and 10 different initial conditions has been performed. The ratio between the
number of iterations 7' and the number of boxes L has been fixed to T//L = 5-103, so
the statistics for the different choices of L is approximately the same. In the figures,
the curves for the three different values of L coincide and thus lie on top of each
other.
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Figure 6.18: Same as Fig. for the small coupling region. Top: 2A dynamics.
Bottom: 2B dynamics.
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Figure 6.19: Same as Fig. but for the 2A~ (top) and the 2B~ (bottom) dynamics.
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Figure 6.20: Same as Fig. |6.18], but for the small coupling region of the 3A (top) and
3B (bottom) dynamics. For the respective calculations the ratio between the number
of iterations 7' and the number of boxes L has been fixed to T/L =5 - 10*.
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7 Disordered chaotic strings

In the last chapter I have shown that the interpretation of dynamical states with a
vanishing interaction energy in terms of a most random behaviour cannot be applied.
The dynamics for couplings €* with W (e*) = 0 thus is ‘special’ with respect to W (e)
only. Although the physical embedding of the interaction energy needs more clarifi-
cation, it seems to be the relevant observable for the theory proposed by Beck [17].

Instead of studying alternative measures as done in the last chapter, in the following
chapter I will keep the interaction energy as the relevant observable, but alter the
chaotic string model itself by the introduction of disorder phenomena. The first
extension is coupling disorder and addresses the local randomization of the coupling
weights of the Tchebyscheff maps. The second extension is network disorder and
addresses the random small-world deformation of the ring topology.

7.1 Coupling disorder

The network generalization of the chaotic string dynamics as defined in Sec. is
given by

N
Aii€ii

nilt+1) = (1= &) fla0)] + > S5 gl 1) (7.1)

j=1

Here A;; is the adjacency matrix representing the network structure, k; is the degree

of node 7, and ¢;; denotes the coupling weight of the link from node j to node i. The

quantity
1 N
€ = E Z Az‘jﬁz‘j (7-2)
1 jzl

measures the average weight of links connected to node i. The functions f(x) and
g(x) are given in Tab. [3.1]

A straightforward way to introduce perturbations to a uniform coupling is random
disorder. It allows different coupling weights ¢€;; between different neighbouring ver-
tices. In order to assure that x;(¢) is bound to [—1, 1], some care has to be taken.
For every edge a random disorder number &;; is drawn from the uniform distribution
defined on [1 — A, 1+ A] with A € [0,1]. The disordered coupling weight ¢;; is then
defined as

ki&ij

€j = —=v———¢€- (7.3)
> i1 Aijij
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Figure 7.1: Relative shift (e*(A) — ¢})/¢; of the zeros e%QA) (red), efBi) (blue),
6;3A) (black), 6§3B) (green) as a function of the coupling disorder A. ¢ denotes the
respective zero for zero disorder A = 0. The interaction energy has been calculated
with a ring size N = 1001, T'= 10° (2A and 2B~ dynamics) and 7' = 107 (34 and
3B dynamics) iterations, and an average over 10 disorder realizations, respectively.

The coupling weights €;; obtained by this procedure are symmetrically distributed
around the average value €, and it holds ¢; = € for all 7.

The interaction energy W (e, A) has now also become a function of the coupling
disorder A. The zeros of the interaction energy, given in Tab. will shift as a
function of A. This is illustrated in Fig. [7.1] The numerical calculations reveal that

the zeros eg?’B), E?A) and 6523_) are shifted to smaller coupling values for increasing

disorder parameter A, whereas the zero eéBA) is shifted to larger coupling values. The

Zeros efm) and ef’B) have not been considered. Due to their smallness the numerical

calculations are too expensive to reach acceptable convergence.

7.2 Network disorder

Network disorder is different to coupling disorder. The ring-network structure is
perturbed and the coupling is kept homogeneous. A straightforward way to introduce
perturbations to the ring-structure is to add random short-cuts, thus obtaining a
small world network [89, [1T4]. I start with the original one-dimensional lattice, where
every vertex ¢ is only coupled to its respective neighbours on each side, and thus has
degree k; = 2, leading to an average degree (k) = 2 of the network. In order to
obtain a small world network, additional edges &£,49 are randomly placed between
previously uncoupled vertices. Since every new edge increases the degree of both
adjacent vertices, the average degree of the resulting small world network is given by
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Figure 7.2: Relative shift (e*((k)) — €})/€} of the zeros e§2A) (red), e?B*) (blue),
eé?’A) (black), EéBB) (green) as a function of the network disorder (k). € denotes the
respective zero for zero disorder, that is a ring structure with (k) = 2. The interaction
energy has been calculated with a ring size N = 1001, T' = 10° iterations (2A and 2B~
dynamics), T' = 107 iterations (3A and 3B dynamics) and 10 network realizations.

(k) = 2+ (2|€aaa|/N), which in the following is used as the disorder parameter.

The interaction energy W(e, (k)) is now also a function of the network disorder
parameter. Its zeros will shift as a function of (k). This is illustrated in Fig.[7.2] The
numerical calculations reveal that for increasing network disorder all zeros are shifted
to larger coupling values.

7.3 Discussion

In Ref. [I7] the 2A and 2B~ couplings are associated with running strong coupling
constants a,(F) at certain energy scales. A shift of the zeros €* = a,(F) thus can
be related to a shift of the associated energy scale E. Figure shows this energy
shift for the 2B~ dynamics. According to Ref. [17], the zero ") is associated with
the strong coupling constant at an energy scale given by F = 2m,; + E’, with m; the
mass of the top quark and E’ proposed to be the Higgs mass my. For zero coupling
disorder and a ring-network one obtains my ~ 160 GeVE| This value is just above
the currently estimated energy range 115 — 150 GeV of the Higgs mass [84]. In case
of an experimental detection of the Higgs boson, the introduction of network disorder
could then allow to shift the energy scale £’ to the observed value, and thus to keep
the interpretation £’ = my.

'Numerical differences to the result given in Ref. [I7] arise from the way how the quark masses
and thresholds are handled in the calculation of the running strong coupling constant.
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Figure 7.3: Energy shift in the interpretation of the zero 65287) as a running strong

coupling constant a(E). According to Ref. [17] the energy is given by F = E' 4 2m;,
where m; is the top quark mass (literature value m; = 170.9 GeV [5]), and E’ is
supposed to be the Higgs mass my. The lower part shows the shift due to coupling
disorder, whereas the upper part shows the shift due to network disorder. The running
strong coupling a,(E) has been calculated as in Ref. [25].

The 3B zero is supposed to be related to a combination of two electroweak cou-
plings. Hence a shift can be associated to a different combination or a change in the
energy scale. Note however, that the energy-dependence of the electroweak coupling
is much smaller than for the strong coupling.

As one can see in Figs. for three out of the four considered zeros the
coupling and network disorder shift the zero €* in different directions. For these zeros
I find a curve (k) (A) with W (e*)=0, where €* is fixed to the respective value obtained
for a homogeneous coupling and an unperturbed ring-network structure as in Ref. [17]
(see Fig. [7.4)). This finding implies that for these zeros the specific combination of
coupling and network disorder reproduces the zero €* as given in Ref. [I7] for the
ring with homogeneous couplings. In contrast to the zeros of the 2A, 2B~ and 3B
dynamics, the zero 6§3A) of the 3A dynamics is shifted to larger values for coupling
as well as network disorder. Thus it is not possible to combine the two forms of
disorder in order to maintain the value as given in Ref. [I7]. In Ref. [I7] the zero e§3A)
is related to the running electromagnetic coupling a(F) at three times the electron
mass scale ¥ = 3m,. This is a rather small energy. In fact, the fine structure constant
e (0) at zero energy is a lower bound for a running electromagnetic coupling. It is
an interesting observation that the zero of the 3A dynamics is only shifted to larger
values, but not to smaller values. These would not allow for an interpretation in
terms of smaller energies due to the lower bound. The larger values are associated to
larger energy scales, which are of the order 10 MeV for network disorder and of the
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Figure 7.4: Specific combinations of coupling and network disorder, which leave the
zero €* of the interaction energy independent of A and (k), and keep it equal to its
non-perturbed value. The interaction energy has been calculated with N = 1001
and T = 10°, 10 coupling/network disorder realizations for the 2A (red) and 2B~
(blue) dynamics, and 100 coupling/network disorder realizations for the 3B (green)
dynamics.

order 10 GeV for coupling disorder (see Fig.|7.5)).

91



7 Disordered chaotic strings

<k>

205 21 215 22 225

23

0.0077

0.0076

w 0.0075 |

0.0074

45 GeV

Energy

10 MeV
[
1.5MeV

0.0073 F

Figure 7.5: Energy shift in the interpretation of the zero e§3A) as a running elec-
tromagnetic coupling constant a(E). According to Ref. [16] the energy is £ ~ 1.5
MeV~ 3m, for zero coupling and network disorder. The lower curve shows the energy
shift for increasing network disorder, whereas the upper curve shows the shift due to
increasing coupling disorder. The running electromagnetic coupling ae;(F) has been
calculated as given in Ref. [I7], with particle masses and the fine structure constant

a(0) taken from Ref. [5].
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8 Complete synchronization of
networks

In the previous chapters various properties of coupled chaotic Tchebycheff map net-
works were studied. For such systems, due to the complicated spatio-temporal dy-
namics in general only a numerical treatment is possible. One of the few properties
which allows an investigation via analytical measures is the synchronized behaviour of
the dynamics. Here complete synchronization denotes the dynamical state in which
every node follows the same trajectory.

The following studies on complete synchronization of coupled Tchebycheff map
networks, that is chaotic strings and their network generalizations, are motivated by
two arguments. On the one hand the analytical results allow to obtain a deeper
understanding of the dynamics, beyond the insights offered by the various numerical
results. On the other hand, synchronization is a topic of general interest in the
research field of complex networks, to which much attention has been devoted in
the last years (see Ref. [7] for a recent review). Although several results on the
complete synchronization of coupled map networks have been obtained (see Sec. ,
a detailed and extensive study of different concrete systems is still missing in the
literature. Accordingly, the application of the master stability formalism to the six
coupled Tchebycheff dynamics is not only of interest in connection with the theory by
Beck, but also for the research of synchronization phenomena on complex networks
in general.

After giving a short review over the research field of coupled map network syn-
chronization, in the following chapter I will display various results concerning the
stability of complete synchronization on coupled Tchebycheff networks. These results
are obtained by means of the master stability formalism as introduced by Pecora and
Carrol [96].

8.1 Synchronization in coupled map networks

Synchronization denotes a coherent dynamical behaviour of two or more units, where
this coherence might be expressed by the coincidence of trajectories, frequencies or
phases, or by another kind of mutual relation [98]. The simplest case is that of
complete or identical synchronization, where every unit shows exactly the same be-
haviour and all respective trajectories coincide [7, 08]. A more general concept is
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8 Complete synchronization of networks

that of nearly-synchronous states or ‘fuzzy’ synchronization, where the behaviour
of the system is slightly detuned from identical synchronization [98]. These types
of synchronization are mostly studied by coupled map models or models involving
diffusively-coupled oscillators. In another approach, systems of phase oscillators are
used to study the interlocking of oscillation frequencies, with the most prominent
model for this kind of synchronization proposed by Kuramoto [I]. Mainly of impor-
tance for the field of neuroscience are pulse-coupled models, which aim to reproduce
the dynamics of neurons [7].

Whereas in this field initially mostly systems of only a few dynamical units were
studied, nowadays the focus has shifted to the synchronization of large populations,
which are coupled in a way that can be described in the language of complex networks
[2, 28], 88]. These models allow to study the connection between local dynamics, struc-
ture of the network, and the emergent global behaviour of the system. Applications
include genetic networks, circadian rhythms, neuronal networks, wireless communi-
cation networks or power grids [7].

In the following section a brief overview about results on the synchronization
of coupled map networks is given. For further information on synchronization in
general, and the synchronization of complex networks, the reader is referred to
Refs. [T}, [7, 8, 26} 27, 28, 03, [08], 106], T07] and references therein.

Coupled map lattices with a distance-dependent coupling are considered in Refs. [0,
A7, [112]. For these systems the evolution equation is given by

zi(t +1) = (1 —e) flzi(t)] + m ; B(dij) flz; ()], (8.1)

where the function B(d) depends on the distance d;; between nodes ¢ and j in the
network. This corresponds to a global coupling, with coupling weights determined
by the distances on the network. Although these kind of models in principal could
include all kind of network models, in the literature only one- or two-dimensional
lattices are considered. A common choice for the distance-dependent function is
B(d) = 1/d* with a > 0, or B(d) constant for distances smaller or equal to some
cutoff parameter d.,; and zero otherwise. The common standard coupled map lattice
is then obtained for B(d) constant and cut-off parameter d.,, = 1, and the global
coupling for B(d) = 1 and no cut-off.

In Ref. [81] the mutual synchronization and clustering in randomly coupled logistic
map networks is studied. The evolution equation for this model is given by

w|mz

zi(t+1) = (1= &) fla( Z Ay fla;(t (8.2)

where the matrix A;; is a symmetric random matrix with entries either zero or one,
such that for the average degree holds 0.5 < (k) /(N — 1) < 1. The coupling ¢
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8.1 Synchronization in coupled map networks

depends on the degree of the respective node:
ki
(k)
Here € € [0, 1] is an overall coupling strength. The authors numerically study different
measures of synchronization dependent on the average connectivity (k) /(N — 1) and
the coupling €, observing not complete synchronization, but fuzzy synchronization of
the whole network or of dynamical clusters, which vary in time.

Reference [62] presents conditions for the stability of the complete synchronized
state for coupled map networks by use of linear stability analysis, dependent on the
spectral properties of the network structure. The authors also obtain some sufficient
conditions for synchronization using global stability analysis. Apart from these an-
alytical results, numerical results for synchronization on various network structures
are given.

The authors of Ref. [74] consider coupled maps on scale-free networks, where the
dynamics is given by

(8.3)

gl'ZE

zi(t +1) = (1 =€) fla: ()] + 23 1 Amk}f leAw j (8.4)

The parameter o controls the coupling strength from node j to node 7, depending on
the degree k;. For larger o the coupling from nodes with higher degree is strenghted,
whereas for a < 0 the opposite effect is obtained. The authors numerically study the
synchronization for different random and deterministic scale-free networks and the
role of the most connected nodes in the collective dynamics.

The synchronization between two coupled map networks is analytically and numer-
ically studied in Ref. [72]. This kind of synchronization between separate networks
is called ‘outer’ synchronization, compared to the ‘inner’ synchronization of just one
network. The authors show results for the synchronization between networks with
identical as well as different connection topologies.

In Refs. [12, 3] the authors study complete synchronization for coupled map
networks, including directed networks with positive and negative weights and gen-
eral pairwise coupling functions. This generalization allows non-diffusive coupling
schemes, for which the authors observe synchronous behaviour which differs from the
behaviour of the respective single units in isolation.

Phase synchronization and cluster formation in coupled maps on different networks
is studied in Refs. [4], 60, [61]. The authors consider standard coupled map networks
of the form

zit+1)=(1—e)f k}:&ﬁxj (8.5)

with f(z) being the logistic map and g(z) = f(x) or g(x) = z. Phase synchronization
between two nodes is defined as the number of times the respective variables show
simultaneously a local minimum. To be precise, let n; and n; denote the number
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of times the variables x;(¢) and x;(t) have a local minimum in the time interval 7T,
respectively. The number of times these local minima coincide is denoted by n,;. The
phase distance between the nodes i and j is defined as

Tn; + nj — 27?@'

di':
J
ni+nj

, (8.6)

which is zero if all local minima match with each other, and d;; = 1 if none of the
minima occur simultaneously. A cluster of nodes is defined as being phase synchro-
nized, if d;; = 0 for all pairs of nodes in the cluster. In Ref. [60] two mechanisms of
cluster formation are described. Synchronized clusters, where network connections
occur mostly between nodes of the same cluster, is denoted as self-organized phase
synchronization. If the network connections are dominantly present between different
phase synchronized clusters, the mechanism is called driven phase synchronization.
In Ref. [6I] various numerical studies on cluster (phase) synchronization on various
network topologies are presented. The authors consider scale-free networks, coupled
map lattices, small-world networks, a Caley tree, higher dimensional lattices and ran-
dom networks. As an extension to the model described by Eq. , also a small
parameter mismatch for the individual maps, and the circle map as the individual
dynamics of the system is discussed. The stability analysis of synchronized chaotic
and periodic states in globally coupled networks and complete bipartite networks is
presented in Ref. [4], where the results are compared to the numerical results displayed
in Refs. [60, 61].

Complete synchronization of coupled logistic maps on small-world networks is stud-
ied in Ref. [48]. The authors derive the connection between the linear stability of the
synchronized state and the spectral properties of the network. By numerical deter-
mination of the respective eigenvalue spectrum it is shown that synchronization is
always possible in the thermodynamical limit of infinitite network size.

8.2 Master stability functions for complete
synchronization on complex networks

The articles reviewed in the last section mostly treat different synchronization phe-
nomena in specific systems. The method of master stability functions [96] differs from
these approaches by relating the stability of the synchronized state of a networked sys-
tem to the spectral properties of a general, not explicitly defined underlying network
topology.

In the literature usually the case of coupled time-continuous systems is treated
(oscillators). For these systems it is common to consider a diffusive coupling, so for
a synchronized state the dynamics is given by the local function at the respective
nodes. Since the phase space is usually unbounded, one does not have to take care
of a renormalization as it is done for coupled map networks, where the dynamics
always is bounded to a product space of intervals. Due to this renormalization, the
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8.2 Master stability functions for complete synchronization on complex networks

evolution equations for coupled map networks are initially not formulated by means
of a diffusive coupling, and the synchronized dynamics in general differs from the
local function.

Nevertheless, in order to connect to the literature, in the following I will review
the derivation of the formalism for this case, and later formulate the master stability
formalism for coupled map networks.

Consider a weighted network G = (V, £, W) with N nodes, where at every node i
an M-dimensional variable x; is defined. Note that this differs from the notation for
CMNs which I have used up to now, where at every node a one-dimensional variable
was defined.

Without coupling the dynamics at every node is given by the same equation

ox
— =F(x), xeR™. 8.7
One assumes a diffusive-type coupling, where node i receives input from node j via

the coupling function G : RM — RM:

N
X
8&5 =F(x;) + ¢ Y AiWi; {G(x;) — G(x:)} . (8.8)
j=1

Here W;; is the weight of the connection from node j to node ¢, and € is an overall
coupling strength. Although in principle one could insert the overall coupling strength
into the weight matrix by replacing W — €W, it is often convenient to keep it
separately. In most cases the weight matrix is set to W;; = 1 for all entries, or used
as a renormalization of the input strength via W;; = 1/k; for every node, but more
general assignments are possible. The adjacency matrix A;; has only entries 0 and 1,
but does not have to be symmetric, that is, directed networks are not excluded.

From the diffusive-type coupling used in Eq. and the use of identical functions
F(x) and G(x) for every node i, it follows that the synchronization manifold is an
invariant manifold of the dynamics. This means that solutions x; = x5 = ... = Xy
remain synchronized under the time evolution, since for these solutions for every node

the dynamics of Eq. (8.8)) reduces to Eq. (8.7)).
It is convenient to rewrite Eq. (8.8)) by use of the generalized Laplacian

N .
AW s =1
Lij = 2y AulWig 2 g =i 8.9
’ { AW o g #1, (8.9)
obtaining
8Xl‘ N
j=1

Consider the time evolution of small perturbations from a synchronized solution s(t),
denoted by &;(t) = x;(t) — s(t) for all nodes i:

9,
ot

— DF(s)&; — EZ Li;DG(s)&; (8.11)

97



8 Complete synchronization of networks

with DF(s) and DG(s) the Jacobians of the respective functions evaluated at the
synchronized solution s(t). Unite all perturbations into an M x N matrix £, where

the entry &;; denotes the ¢th component of the perturbation of node j. For clarity, I
display Eq. (8.11)) explicity for these components:

0; < [ OF, N oM e
ot Z (axk S(t)> ékj - EZZLﬂ a—xk

k=1 =1 k=1

) £ (8.12)
s(t)

This is a variational equation in matrix form:

9)
a—f = DF(s)¢ — eDG(s)¢LT, (8.13)
where LT is the transpose of L. In the original approach in Ref. [96] the matrix L
was supposed to be diagonalizable, but this has been generalized in Ref. [90] to be
applicable to non-diagonizable matrices by use of the Jordan canonical transformation
of L.

For any N x N matrix L there exists an invertible matrix S, which transforms L
into Jordan canonical form as

0
1 b
STILS =J = ' , (8.14)
B,
where the B;’s are Jordan blocks of the form
A

1 A

B; = ) ) (8.15)

and A are the eigenvalues of L, which may be complex. Since E;VZI Li; = 0, there is
always one eigenvector \; = 0, corresponding to the eigenvector (1,1,...,1)T, which
has already been included into the matrix in (8.14]). Due to the Gerschgorin Circle
Theorem [57] all eigenvalues have nonnegative real components, and accordingly can
be sorted by the magnitude of their real parts in ascending order A\ = 0, Ay, ..., Ay
By applying L = SJS™! to Eq. (8.13) one obtains

0
a—ﬁ — DF(s)¢ — eDG(s)€(SJS )"
= DF(s)€ —eDG(s)é(S™HT ISt (8.16)

Multiplication with (ST)™! = (S7!)T from the right and the change of variables
n = &(S71)7T leads to the variational equation

% = DF(s)n — eDG(s)nJ". (8.17)
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8.2 Master stability functions for complete synchronization on complex networks

Whereas the column vector ¢ of the original matrix ¢ stands for the perturbation
associated with the respective node 7, the columns of the new matrix n are associ-
ated with linear combinations of different column vectors of £, thus corresponding to
perturbation modes of the entire network. Consequently, if all entries of the matrix n
converge to zero, complete synchronization is lineary stable and viceversa. A special
role plays the mode 7, associated with the eigenvalue A\; = 0. As one can see by the
form of the eigenvector (1,1,...,1)T, this perturbation always lies in the direction of
the synchronization manifold and hence does not explicitly influence the stability of
the synchronized state.
If L is diagonizable, for the ¢th column of 7, Eq. reads

0
with \; the ith eigenvalue of L. Thus the equations for the different columns »;
decouple and are all of the following form:

%z = [DF(s) — vDG(s)] z. (8.19)
The (in general complex) parameter 7 stands for €)\;, if the ith column of 7 is con-
sidered. In this case z stands for 7.

Eq. is called a master stability equation. Of interest is the linear stability of
the solution z = 0 dependent on the parameter . This stability is usually accounted
for by the largest Lyapunov exponent Aj.(7y) for the solution z = 0, which is called
the master stability function of the system. Here the index ‘1¢” distinguishes the one-
cluster synchronization (all nodes are identically synchronized) from the two-cluster
synchronization studied in the next chapter. The important point is that the network
structure only enters via the Laplacian eigenvalue A. Thus for determining the linear
stability of the synchronized state of the network one performs the following two
steps:

e Calculate the master stability function Ai.(7) in the whole complex plane, that
is the Lyapunov exponent of Eq. (8.19)) for the solution z = 0, and determine
the regions where A;.(y) is negative.

e Determine the Laplacian eigenvalues of the weighted network. The synchronized
state is stable if all eigenvalues times the coupling strength e are situated in
regions with Aj.(y) < 0.

The first step considers the dynamical component, that is the individual function
F(x), the coupling function G(x) and the synchronized solution s(¢). The network
structure is incorporated in the second step via the Laplacian eigenvalues. By means
of this separation it is possible to study on the one hand the structure of the master
stability equation of different dynamical systems without considering explicit network
structures (first step), or on the other hand the synchronizability of networks for
general classes of dynamical systems (second step).
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8 Complete synchronization of networks

If one considers networks with a real Laplacian eigenvalue spectrum, the master
stability function Ai.() only has to be evaluated for real parameter v. One observes
that for most systems either one of two cases occur [7]: In the first case there is an
interval [Ymin, Ymaz|, for which Aj.(7) < 0 (bounded master stability function), for the
other case (unbounded master stability function) it holds Aj.(y) < 0 for v > Yinin.

Recall that for a networked system the parameter in the master stability func-
tion 7 = e)\; stands for the overall coupling strength times the respective Laplacian
eigenvalues of the network. Hence for unbounded master stability functions it is
in principle always possible to achieve stable synchronization by applying a sufficient
large coupling strength, in order to have e\y > 7,,in. Accordingly for unbounded mas-
ter stability a large smallest non-zero eigenvalue Ay points to good synchronizability
of the network.

More interesting is the case of bounded master stability functions, where for stable
synchronization it has to hold that e\s > 7, and simultaneously eAy < YViae,
where according to the conventional ordering A; is the smallest non-zero eigen-
value, and Ay is the largest eigenvalue. That is, for a given dynamical system
With Yomin, Ymaez and a explicit network structure with Laplacian eigenvalues Ao, Ay,
the coupling range for which synchronization is stable is given by [€min, €maz], With
€min = Ymin/A2 a0d €naz = Ymaz/An. Consequently, synchronization is only pos-
sible if Ax/A2 < Ymaxz/Vmin- This ratio between the largest and smallest non-zero
eigenvalue

AV g (8.20)

A2
is an objective measure of the synchronizability of the network, with the optimal
value R = 1. The key advantage of the master stability formalism is that R can be
studied for various networks without considering an explicit dynamical systems. In
recent years there has been a great number of studies following this approach in order
to connect the synchronizability R of networks to structural properties like average
distance, degree distribution or clustering [59) 86}, 02, [115], find and design networks
with optimal synchronization properties [41], [58, 00, Q1] or study specific network
topologies like small-world networks [I0] or network motifs [75]. For a recent review
see Ref. [7].

If the generalized Laplacian has complex eigenvalues, it is more difficult to obtain
general predictions about the synchronizability of networks, since in this case the
specific form of the area of negative master stability function in the complex plane
might be important [7, [45].

In Ref. [90] it has been shown that this formalism also holds if the generalized
Laplacian is not diagonizable. In this case the perturbation modes 7; do not decouple
in the respective Jordan blocks of Eq. (8.15)). However, it can be shown that also for
non-diagonalizable networks the master stability function assures the linear stability
of the synchronized solution (see Ref. [90] for details). Compared to the case of net-
works with a diagonalizable Laplacian, in the case of nondiagonizability, the transient
to synchronization might be longer.
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8.2 Master stability functions for complete synchronization on complex networks

The master stability formalism as presented here is only applicable to complete
(identical) synchronization of networks of identical units, where all individual tra-
jectories exactly coincide. An application of this concept to fuzzy synchronization,
where the dynamics is slightly detuned from identical synchronization was recently
proposed in Ref. [T08]. This approach allows to study systems with non-identical
units, which is an important step to a more general use of master stability functions.

Master stability functions for standard coupled map networks

In order to connect to the literature in the field, up to now I have reviewed the
master stability formalism for networked systems, where the local dynamics is given
by a higher-dimensional continuous-time system. In the following I formulate this
technique for standard coupled map networks, where locally without coupling the
dynamics is given by an one-dimensional map.

A standard coupled map network is defined by the evolution equation (see Sec.

wi(t +1) = (1= 0] + 33 Agoles (1), (3:21)

where A;; is the symmetric adjacency matrix of an undirected network. In contrast
to systems of coupled oscillators, these evolution equations are not of a diffusively
coupled type, and thus the synchronized dynamics does not have to be given by the
individual dynamics f(z). In order to get an equation which is of the same form as
Eq. (8.10)), this has to be recast into

N
it +1) = (1 =€) fl2:(t)] + eglxs(t)] — € > Lijglw; (1)) (8:22)
j=1
with 4
that is Eq. with W;; = 1/k;. The important difference between Eq. (8.10]) and
Eq. (8.22)) is that the synchronized dynamics with s(t) = zi(t) = ... = zn(t) is

governed by the function

he(z) .= (1—¢€)f(x)+eg(x), (8.24)

which depends on the coupling e. In the following the function h.(x) will be denoted
as the synchronized dynamics. Up to now this concept of a coupling-dependent
synchronized solution has not been stated explicitly in the literature. Note that for
the case g(x) = f(z) it holds h.(z) = f(x).

Perturbations ;(¢) from the synchronized solution are united into a row vector &,
for which the evolution equation analogous to Eq. reads

E(t+1) = h(s)€ —eg(s)6L". (8.25)
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8 Complete synchronization of networks

Instead of Jacobian matrices, in this equation occur one-dimensional derivatives:

~ Oh, oy
Oz @ Oz,

z=s(t)

h.(s) g'(s) . (8.26)

s(t)

The generalized Laplacian L with L;; = §;; — A;j/k; for a symmetric adjacency matrix
A;j; is similar to a symmetric matrix ) and thus diagonalizable with real eigenvalues:

By diagonalization of Eq. (8.25) one obtains the following master stability equation,
which is the analogon of Eq. (8.19):

z(t+ 1) = [hl(s) — eAd'(s)]2(t), (8.28)

where A are the different Laplacian eigenvalues Ao, ..., Ay (recall that the eigenvalue
A1 = 0 does not affect the stability of the synchronized solution).

The largest Lyapunov exponent of the solution z = 0 of Eq. is the master
stability function for the system. It has to be evaluated for real parameters v = €A,
with € € [0,1] and A € [0,2] [35]. Note that the coupling € does not only enter
explicitly as a multiplicative factor in Eq. (8.28)), but also implicitly by determining
the dynamics of the synchronized solution

s(t+1) = he[s(?)). (8.29)

An exception to this e-dependence is the case of f(x) = g(z), for which h.(z) =
f(x), and thus the master stability function only depends on the product e\, that is
Arc(e, A) = Aje(eX).

Numerically Aj (e, \) is calculated by means of

Asc(e, A) Z%ggo% Y Wlafs(t)] — eAg'ls(t)], (8.30)

where s(t) is obtained by iteration of Eq. for a random initial condition, 7y is
some transient and 7T is the number of iterations used for the determination. The
master stability function Aj.(e, A = 0) yields the Lyapunov exponent of the synchro-
nized solution itself.

8.3 Complete synchronization of coupled Tchebycheff
map networks

In the last section the technique of master stability functions has been introduced.
By means of this technique one can consider the synchronizability of networks with-
out referring to a specific dynamical system, or one can study the synchronization
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8.3 Complete synchronization of coupled Tchebycheff map networks

properties of specific systems for general network topologies. In the following I will
use this formalism in the latter sense to study the stability of synchronized solutions
of coupled Tchebycheff map networks. Of interest are the six dynamics which have
been introduced in Chap. [3] The results show which kind of synchronized dynamics
can occur, and gives the conditions for having stable synchronized states on arbitrary
networks. In order to explicitly study the synchronization of these dynamics on a
specific network, one has just to put in the eigenvalues of the generalized Laplacian
of the respective network.

The determination of synchronization properties for each dynamics is performed in
different steps. Table shows the synchronized solution h.(z) for all six dynamics.
Whereas h(x) for the 24 and 3A dynamics is given by the respective Tchebycheff
polynomials, for the four other dynamics new functions, depending on €, are ob-
tained. These functions are studied numerically by means of the calculation of the
respective bifurcation diagrams and Lyapunov exponents. In the next step the mas-
ter stability functions for these dynamics are numerically obtained. Finally, for some
dynamics explicit solutions of h.(x) and the respective stability regions are analyti-
cally determined. These are the chaotic solutions of the 24 and 3A dynamics, and
synchronized fixed points and period-2 orbits for the remaining four dynamics. The
latter case has been solved in Ref. [38] for a ring network by standard techniques.
However, the approach with master stability functions allows to address the stability
of synchronization for general synchronized orbits and arbitrary network structures.
Accordingly, the results of Ref. [38] are only one special case for the application of
the master stability function and will be used to check the calculations.

The analytical results for the fixed points and period-2 orbits have been obtained
by use of a symbolic manipulation package. After the determination of the respective
orbits, the Lyapunov exponent p(¢€) of the synchronized solution h.(x) and the associ-
ated range of stability is calculated. The results allow to check the numerical results
obtained in the respective bifurcation diagrams. Subsequently, the master stability
function Aj.(e,\) for the respective orbit and the region of stable synchronization
in the e-A plane is determined, which has to be compared to the numerical result.
Note that the Lyapunov exponent of the synchronized solution p(e) is identical to the
master stability function Aj.(e, A = 0). As an application the range of stability for a
ring network, that is a chaotic string, is calculated and compared to the results given
in Ref. [38].
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8 Complete synchronization of networks

label f(x) g(x) he(x)
2A 222 — 1 222 — 1 2172 — 1
2B 227 — 1 | (1—€)(22° = 1) +ex
2A~ 202 —1 | —(222 - 1) (1—2¢)(22% - 1)
2B~ 272 — 1 —x| (1—-¢€)(222—-1) —ex
3A || 42® —3x | 42’ —3x 42 — 3z
3B | 423 — 3x | (1—¢)(4x® —3x) + ex

Table 8.1: Coupled Tchebycheff map network dynamics

8.3.1 2A dynamics

For the 2A dynamics it holds h.(x) = T(x), hence the synchronized solution s(t) is
given by the dynamics of the second order Tchebycheff polynomial, s(t+1) = T[s(?)].
The master stability equation reads

A1) = [(1 = N)TLs(B)] 2(F), (8.31)

with Ty(z) = (22% — 1), and Tj[s(t)] the derivative of the polynomial evaluated along
the synchronized solution s(t). The Lyapunov exponent of the solution z = 0 of this
equation and thus the master stability funtion is obtained via

Ai(e,N) = lim —( Z In[|(1 — Xe)T5[s ()H])

T—oo T
t=To+1

= In[|]1 —eM]+1n2, (8.32)

where the Lyapunov exponent In2 of Th(x) has been used (see Sec. [2.1.2). As a
consequence, the master stability function Aj.(e, ) is negative and synchronization
is stable in the region of the e-A plane determined by

1/2 < el < 3/2. (8.33)

This result can be interpreted in different ways. On the one hand it is possible to
consider a fixed coupling € and different network structures. Synchronization is stable
for networks which have Laplacian eigenvalues Ao, ..., Ay in the range (1/2¢,3/2¢).
Since the eigenvalues are restricted to the range A € [0,2], one immediately learns
that for € < 1/4 synchronization is never stable. On the other hand one might be
interested in a network with smallest non-zero Laplacian eigenvalue Ay and largest
eigenvalue Ay and different couplings. In this case, synchronization is stable for
couplings € € (1/2X2,3/2A\y). Due to the restriction € € [0, 1], for networks with
Ag < 1/2 synchronization is never stable. An important example for this case is a
ring network with nearest neighbour coupling, that is the chaotic string dynamics
considered in Chap. 8| For a ring network A\ &~ 0, and consequently for the 2A
chaotic string dynamics complete synchronization is not stable for any ¢ € [0,1].
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8.3 Complete synchronization of coupled Tchebycheff map networks

Another simple example is a network consisting of only two connected nodes. The
respective Laplacian has eigenvalues A\; = 0 and Ay = 2 [35], so synchronization is
stable for € € (1/4,3/4). This latter case will be of interest in the next chapter, where
two-cluster synchronization of bipartite networks is studied.

8.3.2 3A dynamics

Analogously to the 2A dynamics considered in the last section, it holds h.(z) = T5(z),
resulting in the master stability equation

2t +1) = [(1 = A)TLs(B)] 2(2). (8.34)

By means of the Lyapunov exponent In3 of T3(x) and the same arguments as in the
last section, one can show that the region of stability is given by

2 4
= A< - 8.35
5 <eA<g (8.35)

Consequently, for the 3A chaotic string dynamics (that is a large ring network) com-
plete synchronization is never stable in the coupling range ¢ € [0,1]. If only two
connected nodes are considered, synchronization is stable for € € (1/3,2/3).

8.3.3 2B dynamics

For the 2B dynamics, the synchronized solution h.(x) depends on the coupling (see
Tab. . Figure shows the phase diagram of h.(x) for different couplings €, and
the Lyapunov exponent p(e) for random initial conditions. Apart from regions with
chaotic behaviour, the synchronized solution for the 2B dynamics is periodic for a
large coupling range. The synchronized dynamics

he(z) = (1 —¢€)(22° — 1) + ex (8.36)

has two fixed points z(s1) = —1/2 and x(s2) = 1. At first the stability for these fixed
points is checked by considering the Lyapunov exponent of the synchronized solution
p(€) = Inf|hc(xys)|]. One obtains that x(s2) is never stable in the range ¢ € [0, 1],
whereas x(z1) is stable for € € (1/3,1] (see Fig. [8.1). The master stability equation
with z(s1) = —1/2 inserted reads

2(t+1) = [da)(1 —€) + (1 — N)]2(2), (8.37)
leading to the master stability function
Aic(e,N) =Inf[dzs1(1 —€) +€(1 = N)]]. (8.38)

Recall that 11(e) = Ajc(e, A = 0). The master stability function is shown in Fig. [8.2]
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Figure 8.1: Left: Bifurcation diagram and Lyapunov exponent u(€) of h(x) for the 2B
dynamics. The fixed point is stable in the range (1/3, 1], the period-2 orbit is stable for
e € (0.183...,1/3), consistently with the analytical results. The bifurcation diagram
has been obtained by displaying 200 iterates after a transient of 10° steps. Right:
Area of stability (black) in the A-e plane for complete synchronization determined by
a negative master stability function for the 2B dynamics. The Lyapunov exponent
of the synchronized solution and the master stability function have been numerically
determined over 10° iterates, after a transient of 10* iterates. Both have been checked
for various initial conditions.
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Figure 8.2: Left: Analytical obtained master stability function A;j.(e, A) for the fixed
point of the completely synchronized 2B dynamics. The plot has been truncated at
Aic(e,\) = 0 in order to identify the boundaries between the regions with positive
and negative values. Right: Region of stable synchronized fixed point for the 2B
dynamics, consistent with the numerically obtained result in Fig.
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Figure 8.3: Left: Analytical obtained master stability function Aj.(e,\) for the
period-2 orbit of the completely synchronized 2B dynamics. Right: Regions of stable
synchronized period-2 orbit for the 2B dynamics, consistent with the numerically
obtained result in Fig. [8.1}

The curve in the e-\ plane separating the regions of stable/unstable synchronization
is given by
3e —1
A= (8.39)

€
Note that the coupling range of stable synchronization is determined by the largest
Laplace eigenvalue Ay. For a large ring network it holds Ay ~ 2 and accordingly the
synchronized fixed point is not stable for any e € [0, 1]. The same holds for a network
consisting of two connected nodes.
The period-2 orbit of the synchronized solution h.(x) is given by

1 —e£V5—18c+9¢

To) 4(1 —¢) ’

(8.40)

which are real numbers for € € [0,1/3] (denoted as the range of validity). Straight-
forward calculations show that this orbit is stable for h.(z) for

€€ (%(3 —V6), %) = (0.183...,0.333...). (8.41)

The master stability function for the range of validity is shown in Fig. [8.3] Stability
is stable in the region between the curves in the e-A plane given by

VL VA-18c+9¢
= : ,
1+ V32 —6e+ 3¢

€

A (8.42)

In order to obtain the coupling range of stability for the ring structure, these
relations have to be solved for A = 0, and A = 2, respectively. One obtains a stable
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Figure 8.4: Same as Fig. , but for the 24~ dynamics. Note the symmetry h.(x) =
—h(1—¢(z) in the bifurcation diagram of the synchronized dynamics (left figure).

synchronized period-2 orbit for

€€ (%(3—%6),%(11—\/%). (8.43)

8.3.4 2A~ dynamics

Figure shows the bifurcation diagram of h.(z) for different couplings €, and the
Lyapunov exponent p(e) for random initial conditions. One immediately observes
some symmetry in the figure. The synchronized solution is given by

he(z) = (1 —2¢)(22% — 1), (8.44)

50 it holds he(x) = —h@—¢(2), as can be seen in the bifurcation diagram in Fig. [8.4]
Since the Lyapunov exponent depends on the absolute value of the function it follows
p(e) = p(1—¢). Due to the parameter A, this symmetry is lost for the master stability
function Aj.(e, A), which is displayed in Fig. The fixed points of the synchronized
solution are given by

14+ v9 — 32¢ + 32¢2
4(2¢ — 1)

T(fk) = (8.45)

For € € [0,1] the fixed point x(s ) is complex, whereas x (s is real. The range of
stability for x(s_y for the synchronized solution is given by

€€ (é(4 —6), é(4 + \/6)> = (0.193...,0.806...). (8.46)

Note the symmetry € < (1—¢). Figure[8.5|shows the master stability function and the

108



8.3 Complete synchronization of coupled Tchebycheff map networks

2 T T T T
\\unai
4 15
$ NN unstable
SRR 7
1 &“\\\“\\\*s“ %Q\\\\ ////’:i":’i abl
08 LR i = sevle
ARV i 2
N
241 RN A os |
0.2 ///Q»l 1
w09 A
o] i
unstable|
0.6 08 f 0 0 . . .
0 0.2 0.4 0.6 0.8 1

€

Figure 8.5: Same as Fig. but for the fixed point of the 24~ dynamics.

region of stability for this fixed point. The boundaries between the stable/unstable
region are given by

_ _ P
)= (1 — 2€)v9 — 32¢ + 32¢ (8.47)
e(1 — /9 — 32¢ + 32¢2)

for larger € and A, and

)= (1 —2€)(2 — V9 — 32¢ + 32¢2) (8.48)
e(—1+ 9 — 32¢ + 32¢2)

for smaller €, and for larger ¢ and smaller A\. For a ring network it follows that the
fixed point is stable for € € (5/14,9/14) = (0.357...,0.642...). The period-2 orbit of
the synchronized 2A~ dynamics is given by

—1+v5 — 32¢ + 32¢2
= 8.49
m(p»i) 4(1 _ 26) ) ( )

which in the coupling range [0, 1] are real numbers for the two intervals
€€ {0, é(4 - \/6)] and € € {%(4 +6), 1} . (8.50)
This period-2 orbit is stable for the synchronized dynamics in the regions
€€ (é(4 —/10), %(4 - \/6)) and € € (%(4 +6), é(4 + \/E))). (8.51)
Again, there is a symmetry ¢ <> (1 — ¢). This symmetry is lost for the master
stability function Aj.(e,\) due to the introduction of the parameter . Figure

shows Aj.(e, \) and the region of stability for the period-2 orbit in the lower coupling
interval of validity. The boundaries between the stable/unstable region are given by

1—2e 1
A= € <_1 - 2¢/£(1 — 8 + 862)> ' (8.52)
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Figure 8.6: Left: Analytical obtained master stability function Aj.(e, A) for the
period-2 orbit of the completely synchronized 2A~ dynamics in the low-coupling re-
gion of validity. Right: Regions of stable synchronized period-2 orbit for the 2A~
dynamics, consistent with the numerically obtained result in Fig.

For the ring-network this has to be solved for A = 2, which leads to a stable synchro-

nized period-2 orbit in the coupling range
€ L Ll (0.122...,0.166...) (8.53)
€ ———,= ] =1(0.122...,0.166...) . :
2 76 ’

For the higher coupling interval of validity, the corresponding master stability func-
tion and region of stability is shown in Fig. 8.7l The curves which separate regions

of stable/unstable synchronization read
1-2 2
A= (1 (8.54)
€ 2v/1 — 8¢ + 8¢2
and L9 )
A= (-1- (8.55)
€ 2v/—1 + 8¢ — 8¢
For the ring network, with A = 2 the completely synchronized period-2 orbit is stable
for
e(2 (74 2V7) (8.56)
€ = — .
6’14
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Figure 8.7: Left: Analytical obtained master stability function Aj.(e,\) for the
period-2 orbit of the completely synchronized 2A~ dynamics in the low-coupling re-
gion of validity. Right: Regions of stable synchronized period-2 orbit for the 2A~
dynamics, consistent with the numerically obtained result in Fig.

8.3.5 2B~ dynamics

The bifurcation diagram and the Lyapunov exponent for general initial conditions of
the synchronized 2B~ dynamics is shown in Fig.[8.8l One observes periodic solutions
for a wide interval of the coupling range.

The fixed points are given by

14 €+ V9 — 14€ + 9¢€2
4(1 —e) ’

T(px) = (8.57)

where x4y is complex, and z(s_) is real in the coupling range € € [0,1]. The fixed
point x s,y is stable for the synchronized solution in the interval € € (5/9,1). Fig.
shows the master stability function and the range of stability for the synchronized
fixed point of the 2B~ dynamics. The boundary between the region of stable/unstable
synchronization is given by

B —1 4+ 9 — 14€ + 9¢2

€

A (8.58)

As it is visible in the second part of Fig. [8.9] the stability of the fixed point on a
network is determined by the eigenvale A = 0, that is, by the Lyapunov exponent
p(€) expressing the stability of the fixed point for the synchronized solution itself.
Accordingly, the stability of the completely synchronized fixed point of the 2B~
dynamics does not depend on the network structure.

The period-2 orbit of h(z) is

B —1+4+ e+ /5 — 14e + 9¢2

x(Pai) - 4(1 _ 6) ) (859)
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which are real numbers for € € [0,5/9] and are stable for the synchronized solution
for

1 1
A= (5(7 —/22), 6) = (0.256...,0.555...). (8.60)
The boundary between stable/unstable period-2 orbit synchronization

1 — VA 1de £ 92
\ = €+ 9e (8.61)

€

is displayed in the second part of Fig. [8.10l The coupling range of stable synchro-
nization for a ring network is determined by the boundary for A = 2:

€c (%(5 —/10), é) = (0.367...,0.555...). (8.62)

8.3.6 3B dynamics
The synchronized solution of the 3B dynamics is given by

he(z) = (1 — €)(4a® — 3x) + ex. (8.63)

This function differs from the other dynamics by being a polynomial of third order and
showing the symmetry h.(x) = —h.(—z). According to this symmetry, for every orbit
x(0), (1), ..., there is an orbit —z(0), —z(1), ..., leading to a symmetric bifurcation
diagram. The first part of Fig. shows this bifurcation diagram. Different to the
other cases, for this function for a certain parameter range € the bifurcation diagram
depends on the initial condition. In this case one observe two attractors, with the
orbits and basin of attraction of the first attractor given by the negative values of
the orbits and and basin of attraction of the second attractor (see the third part of
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attractors, displayed by black and red dots in the figure. The orbits in the respective
attractors only differ by a sign, hence the Lyapunov exponents j(€) are identical. Top
right: Basin of attraction for the respective attractors, determined by 200 different
initial conditions. Bottom: Region of stability in the e-A plane (black), associated
with a negative master stability function Aj.(e, A) of the dynamics. Parameters as in
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Figure 8.12: Same as Fig. , but for the fixed point of the 3B dynamics.

Fig. . Since the stability of periodic orbits of the synchronized solution, and the
master stability function only depend on even functions of z, the respective stability
does not depend on the initial condition.

The synchronized solution has the fixed points x(, +) = 1 and z(5,) = 0. Whereas
the first ones are not stable in the range € € [0, 1], the fixed point z(y,) is stable in
the range (1/2,1). The respective master stability function and the range of stability
is displayed in Fig. [8.12] The region of stable synchronized fixed point is separated
from the region of instability by the curve

REC ) (8.64)

€

Accordingly, this fixed point is not stable for the ring network.
There are three different period-2 orbits. The first one

Vv1—2¢

o (8.65)

L(py,+) =

contains real numbers for € € [0,1/2]. This orbit is stable for e € (1/4,1/2). The
respective master stability function and region of stability is displayed in Fig. [8.13]
The curves separating regions of stable/unstable synchronization for this orbit are
given by
4(1 -2 2(1 -4
A= u and A = u (8.66)
€ €
Thus one obtains stability for a ring network for € € (1/4,2/5).
The synchronized dynamics has two more period-2 orbits, which only differ by a

sign:

3 —4de F /b — 24e + 16€2
8(1—¢) ’

T(pyt) = T

3 —4de F /b — 24e + 16€2

_ . 8.67
L (p3,&) + 8(1 _ 6) ( )
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Figure 8.14: Same as Fig. , but for the second and third period-2 orbit of the 3B
h, for

dynamics.

(8.68)

1
4

)

(3-5

1
4
upper bound is given by the range of validity € < 1/4, whereas the lower bound of

stability is determined by the curve

(8.69)
(8.70)

2€

—3 + 4de + V41 — 216¢ + 144¢>

A:

which leads to the range of stability

for a ring-network.
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9 Cluster synchronization

In the literature mostly complete synchronization as presented in the last chapter
is studied. Another type of coherent behaviour is cluster synchronization, where
subgroups of the population of dynamical units mutually synchronize, but the various
groups or clusters show different behaviour.

For diffusively coupled systems of identical units, complete synchronization is al-
ways possible. This is due to the fact that the coupling only incorporates terms
depending on the difference in the state of the respective system, which vanish for
identical states. For cluster synchronization in general this is not the case. Accord-
ingly many works focus on the conditions of having cluster synchronization as well as
on the stability of these specific states [23], 24] [77, [79]. Also adaptive approaches [7§],
generation of clusters by pinning [73] or cluster synchronization of systems with non-
identical nodes [113] is studied.

In the following chapter I will take a different approach. One can easily see, that for
standard coupled map networks with a bipartite topology, that is two groups of nodes
only with intergroup links, two-cluster synchronization is always possible. Of interest
is the type and the stability of the synchronized dynamics for arbitrary bipartite
networks. The class of bipartite networks not only covers all tree-like networks,
but also all networks containing loops with an even number of nodes. The stability
is studied by master stability functions for two-cluster synchronization similar to
the formalism put forward in Ref. [105], which is a generalization of the method
introduced in Ref. [96].

9.1 Master stability functions for two-cluster
synchronization on bipartite networks

In this section the application of the master stability formalism to the case of two-
cluster synchronization on bipartite networks is generalized. Bipartite networks con-
sist of two adjoint sets of nodes V; and V,, with links only between nodes from different
sets (see Sec. [2.2). This class of networks not only covers all tree-like networks, but
also all networks containing loops with an even number of nodes [40]. One example
of a bipartite network is a ring-structure with an even number of nodes, another one
the star-network with a central node, which is connected to all other nodes of the
network.
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9 Cluster synchronization

Label the nodes of the bipartite network in such a way that nodes 1, 2, ..., N; belong
to the first set V;, and nodes Ny + 1,..., N belong to the second set V5. The size of
the respective sets is |Vi| = Ny, [Va| = Ny, with N7 + Ny = N the size of the whole
network. The adjacency matrix A is then of the form

A:(é)T fj) (9.1)

where B is an Ny x Ny matrix. As a generalization of the class of dynamical systems
considered in the last chapter, different functions f(x) and g(x) are allowed for the
corresponding evolution of first- or second-set nodes, respectively. With the notation

N 1 : izl,...,Nl (ZGVl)
a(@)—{2 L =N+ 1. N (i€W), ©2)

the more general evolution equation reads

2i(t4+1) = (1 = €) fa@li(t ZA”ga(Z z;(1)] . (9.3)

A two-cluster synchronized solution is z;(t) = sa(;)(t) for all nodes 7. Inserting this
into Eq. (9.3]) leads to the evolution equation for s;(¢) and s3(t):

sit+1) = (1—e€)fi[si(t)] + egus2(t)],
sp(t+1) = (1 —¢)folsa(t)] + egafsi(t)]. (9.4)

This solution corresponds to the occurrence of synchronized clusters due to interclus-
ter couplings (see Sec.. There are two synchronized clusters, the respective sets
V1 and V,, with no links within the respective clusters, but only between nodes from
different clusters.

In the following, master stability functions for two-cluster synchronization for ar-
bitrary functions fo(;) (%), ga@)(2) and arbitrary bipartite network configurations of
the type displayed in Eq. are derived. By application of these functions one
does not have to linearize every specific bipartite network dynamics for itself, but is
able to assess the stability properties of different networks by means of their spectral
characteristics, analogous to the formalism presented in the last chapter for complete
synchronization.

The dynamics of small perturbations &(t) = z;(t) — s4z)(t) from the two-cluster
synchronized state is given by

Gt +1) = (1= & fo[sai) ZAwga(z Sa() (DIE () (9.5)

Due to the restriction to bipartite network Conﬁgurations with couplings only among
nodes from different sets this can be recast into

fz‘(t + 1) = (1 - E)f [Sa z)( )]Sz( ) + ga () (Z Az]&] > ) (9-6)
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9.1 Master stability functions for two-cluster synchronization on bipartite networks

where the label

{2 coi=1,...,Ny (1 €V), (9.7)

1 : i=N+1,...,N (i eW)

has been used. By use of the normalized Laplacian L = d;; — A;;/k;, this can be
rewritten as

Si(t + 1) = {(1 - E)f(;(i) [Sa(i) (t)] + Egoc( Sa z) }52 Ega (4) Sa(z Z L’L]S] 3

(9.8)
This is an equation similar to Eq. in the last chapter. The introduction of
the generalized Laplacian L allows to derive a master stability function for two-
cluster synchronization, which is very similar to the one derived in the last chapter
for complete synchronization.
In the following all perturbations &; are united into one vector & of dimension N.
Define the time-dependent diagonal N x N matrices

]E/ _ ( f{(sl)]lf\h 0 )
0 fé(SQ)]lJ\b ’

N 91(52)]11\71 0 )
= ! 9 99
g ( 0 gs)in, (9.9)

where 1,; denotes the unity matrix of dimension M. The matrix equation then
reads

§t+1)=[(1-of +e — e - L] (). (9.10)

For the derivation of the master stability function for complete synchronization one
would now diagonalize L in Eq. (9.10), obtaining a decoupling of different perturba-
tion modes. Due to the appearance of the matrices f’ and ¢’ the situation for two-
cluster synchronization is more complicated. In this case one needs to incorporate
specific properties of the eigenvectors and eigenvalues of the normalized Laplacian L
for bipartite networks, which are derived in the following paragraphs.

Properties of the normalized Laplacian for bipartite networks

Define the matrix () as

A,
Vkik;
which is similar to L by means of the transformation L = K~'2QK"?, with K;; =
0ijk;. Since @) is a real symmetric matrix, it can be diagonalized and has a basis
of orthonormal real eigenvectors {v;}¥, [85]. Write all eigenvectors in the form

= (y',z")T with y € RM, z € R,

Let v be such an eigenvector of ) corresponding to the eigenvalue A\. Then u =
(—yT,z")7T is also an eigenvector of @, associated with the eigenvalue (2 — \) [9} [35].
Without loss of generality it is assumed in the following that N; > N,. If one chooses

Qij = by — (9.11)
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v = (yT,0) and evaluates the eigenvalue equation Qv = Av for A = 1, due to the
block structure of the adjacency matrix A in Eq. (9.1)) it follows

Z\/Wyj—o i=N +1,...,N. (9.12)
This set of equations has at least (N7 — N3) non-zero solutions [57]. So there exist
at least (N; — No) eigenvectors v = (y',0)T with y € RM, associated with the
eigenvalue A\ = 1. Depending on the rank of A there might be additional A = 1
solutions of the eigenvalue equation )Jv = Av, which then come in pairs as for the
eigenvalues A # 1 [57].

The matrix @ can be diagonalized by the transformation J = S™1QS, where J is
a diagonal matrix with the eigenvalues \; of () on the diagonal. The columns of S
are just the eigenvectors v of (). In the following these columns are ordered in such
a way that S has the form

ct DT

S:(g _DC g) St=8T=[ —CcT DT |, (9.13)
ET 0

where for ¢ = 1,..., Ny the ith column of S is the eigenvector corresponding to the
eigenvalue J\;, and the respective (i + N2)th column is the eigenvector for Ay, =
(2 — X\;). The remaining columns are the eigenvectors v = (y*,0)T associated with
the eigenvalue A = 1. Thus for N; > N, it holds C € RN D ¢ RN2*N2 apd
E € RV (Mi=N2) - From the condition S™'S = 1 one obtains 207C = 2DTD = 1,
ETE = IL(leNQ) and ETC = 0, CTE = 0.

The relations derived in the last three paragraphs are now applied to Eq. . Using
the transformations Q = SJS™!, L = K~Y/2QK"? and the fact that K, f’ h’ J are
all diagonal matrices, one obtams from Eq. (9.10 -

STIKY2e(t+1) = [(1—e)S'f'S+eS71gS

—€e(S71G'S)J]STIKY2E(t) | (9.14)
which is an evolution equation for the new perturbation variable n = S™'K 1/2¢ The
matrices S~1f’S and S~1¢’S with S and S~ as given in Eq. (9.13) become

/ !
L1 Tl Sl .
f = 2 f(_)]lNz f(+)]lN2 , 0 y (915)
0 0 2fi(s1)Lw—na)
/ /
o1 Sl gt 0
S g8 = 5 g(,)]lNQ g(+)]1N2 0 ) (9'16>
0 0 293(31)]1(1\71—1\72)

Iy = 9a(s1) £ gi(s2) (9.17)
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have been introduced.
For the last (N7 — N3) components of 7, the matrix equation (9.14]) is already
diagonal:

it +1) = [(1 = ) fils1(t)] + egils2(t)] — Aiegalsa(t)]] mi(2) - (9.18)

Since the eigenvalues and corresponding columns in S were ordered in such a way
that \; =1 for i = 2N, + 1,..., N, this simplifies to

ni(t +1) = (1 — ) fils1(t)]mi(t) - (9.19)

It remains the calculation for the remaining first 2Ny components of 7. For i =
1,..., Ny one obtains by use of Eq. (9.15)) and A,y n, = (2 — \;) the set of equations

20t +1) = [(1 =€) f(4) + el = N)g(p)] mi(t)
(

+ [(1 - 6)f(,—) - 6(1 - Al)gE—)] 1i+ N (t) )
(A=) ffy+e(X = X)g(y] mi(t)

27h‘+N2 (t + 1)

0= ffy — el = Mgl mamad) . (9:20)
For i =1,..., Ny define new variables
Xi(t) = ni(t) = nieny(t) |
vi(t) = ni(t) + mipn, () (9.21)

and obtain the evolution equations

Xi(t+1) = (I=afilsi(O)xi(t) + e(1 = Xi)gi[s2()]wi(t) |
vit+1) = (1= e)fsls2(t)]ri(t) + (1 = Xi)golsi(t)]xa(t) - (9.22)

For every ¢+ = 1, ..., Ny this is a two-dimensional stability equation of the form

(260) = (o™ o “ikn )

(g M) (0 ) e

This equation is the analogue of Eq. , with the first matrix inside the square
brackets being the Jacobian of the synchronized dynamics as given in Eq. , and
the second term being the Jacobian of the coupling function times the eigenvalue A
of the normalized Laplacian L.

In the following I will denote the synchronized dynamics as defined in Eq. by
the two-dimensional function h(s), analogous to the case of complete synchronization
presented in the last chapter:

o (T —=¢)fi(s1) + eqi(s2)
h.(s) = < (1= ) fals2) + egals1) ) : (9.24)
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9 Cluster synchronization

The largest Lyapunov exponent Ao (€, A) of Eq. depending on the coupling € and
the eigenvalue parameter \ of the generalized Laplacian is the master stability func-
tion for two-cluster synchronization on bipartite networks. For numerical methods to
calculate the Lyapunov exponent for higher-dimensional systems see Refs. [3, [04].

One has to give special attention to the eigenvalue A = 1. For N; # N, at least
(N7 — N3) of the eigenvalues of L are equal to 1 and the Lyapunov exponent of
Eq. has to be considered, where A = 1 was already inserted. If there are more
than (N; — Ny) eigenvalues A = 1 of L, these additional eigenvalues come in pairs, as
for A # 1, and Eq. — that is Ag.(€, A = 1) — has to be evaluated.

Recall that the eigenvalues A\ of the generalized Laplacian L are bound to the
interval [0, 2], and for bipartite networks always occur in pairs A, (2 — \). According
to the calculations in the last paragraphs, in Eq. the parameter \ stands for
such pairs A, (2 — A). Accordingly As.(€,A) only has to be evaluated in the range
A € [0, 1]. Analogously to the case of complete synchronization the largest Lyapunov
exponent Ag.(€, A\ = 0) — where again A = 0 stands for the pair A = 0, A\ = 2 — does
not affect the stability of the synchronized state, since the associated perturbations
lie in the direction of the synchronization manifold.

For the special case fi(x) = fo(z) = f(x) and g1(z) = g2(x) = g(z) the synchro-
nized dynamics h.(s) is equivalent to a coupled map network consisting of only two
nodes. Accordingly the stability condition for complete synchronization s; = sy of
these two coupled maps can be studied by means of the master stability function
Aic(e,N\). The Laplacian L of a network of two coupled nodes has eigenvalues A = 0
and A = 2, so the two nodes synchronize to a common trajectory if Aj.(e, A = 2) < 0.
Consequently complete synchronization on a bipartite network is stable if two-cluster
synchronization is stable — determined by As.(€, \) — and additionally complete syn-
chronization for two coupled maps is stable — determined by Aj.(e, A = 2).

9.2 Two-cluster synchronization on bipartite
Tchebycheff networks

In the following section the master stability formalism for two-cluster synchroniza-
tion will be applied to the six chaotic string dynamics presented in Chap. The
original model proposed by Beck in Ref. [17] is defined one a ring-network, that is
a one-dimensional lattice. Such a network is a bipartite network'} Accordingly, two
cluster synchronization is possible, with s;(t) and sy(¢) alternating on the lattice.
However, the chaotic string model can be generalized to all kind of networks as a
special realization of standard coupled map networks, see Chap. |7l The master sta-
bility formalism for two-cluster synchronization can then be applied to all network
realizations, which show a bipartite structure.

The respective synchronized dynamics for each of the six chaotic string dynamics

1For simplicity, an even network size is assumed.
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9.2 Two-cluster synchronization on bipartite Tchebycheff networks

label f(zx) g(x)
2A Ty(z) =22% — 1 Ty(z) =22° — 1
2B TQ(J}) = 2.%’2 —1 Tl(l') =T
24 Ty(z) =22 -1 T o(x)=—(222-1)
2B~ Ty(x)=22>—1 T i(z)=—x
3A  Ty(z) =42 — 3z Ty(z) = 423 — 3x
3B Ts(r) =423 — 3z Ti(x) =x

Table 9.1: The six chaotic string dynamics considered in Ref. [17].

is given by

_ [ @=e)f(s1) +€g(s2)
)= (e oo ) 2
with f(z) and g(z) as displayed in Tab. [9.1] (see also Chap. [3).

For each of the six dynamics, Eq. yields a different two-dimensional dynam-
ics, depending on the coupling €. These types of two coupled map systems often
show rather complicated behaviour, including multistability and period-doubling or
Naimark-Sacker bifurcations [34) 100, 101]. A detailed analytical treatment for each
of the possible synchronized two coupled map dynamics and its network stability
properties for the whole coupling range ¢ € [0,1] is far beyond the scope of this
thesis. As a first approach in this direction, in the following apart from numerical
studies exact analytical results on the stability of selected two-cluster synchronized
fixed points and period-2 orbits of bipartite Tchebyscheff networks will be given.

9.2.1 Two-cluster synchronized fixed points and period-2 orbits
A fixed point is determined by the equation h.(s) = s, that is

s1 = (L—e)f(s1) +eg(s2),
s = (1—¢€)f(s2) +€g(s1). (9.26)
Here only the fixed points with s; # sy are considered, for fixed points with s; = s
(complete synchronization) see Chap. . Obviously the equation is symmetric under
S1 > S9.
Denote the fixed point by s* = (s}, s3). Its stability as a synchronized two-cluster

state on a network is determined by the master stability function As.(€, ). Consider
the matrix occuring in the stability equation (9.23]) for the fixed point s*:

(1 — G)f’(sf) (1 /\)Eg'( *)
( (1= Neg'(s7)  (L—e€)f/(s3) ) (9.27)

The eigenvalues are the solutions x4 (€, A), ka(€, A) of the characteristic polynomial

(L= e)f'(s7) = K] - [(1 =€) f'(s3) — K] — (1 = \)’g'(s1)g/(s3) = 0, (9.28)
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9 Cluster synchronization

and the master stability function is then given by

Asc(e,A) = max In[|k; (e, A)|]. (9.29)

i=1,2
For A = 0, the master stability function expresses the stability of the fixed point for
the two-dimensional synchronized dynamics itself. In case Ag.(€, A = 0) < 0, the fixed
point is stable for h.. The stability of the synchronized fixed point in the network is
then determined by Ag.(€, \) for A € (0, 1], where A stands for the eigenvalues of the
generalized Laplacian.
In principle the stability of two-cluster synchronized states with higher periodicity

can be studied in the same way as for the fixed point. In the following I will treat
one special kind of period-2 dynamics, given by

s1(t+2) = so(t+1) = s1(t),
so(t+2) = s1(t+1) = sa(t). (9.30)

This is a zig-zag pattern [37], with s1(¢) and s(¢) alternating in time and space. The
pattern is defined by the following set of equations:

s1 = (1—€)f(s2) +eg(s1),
So = (1 — E)f(Sl) + EQ(SQ). (931)

There is a symmetry for the case when g(x) = f(z). By replacing e — ¢ = (1 —¢)
one obtains

si = (1=¢€)f(s1) +€f(s2),
so = (1—€)f(s2) +€f(s1), (9.32)

which defines a fixed point. Accordingly, for f(x) = g(z) a fixed point s of h,
corresponds to a zig-zag pattern for h(;_,. This symmetry will be generalized to
general periodic orbits in Sec. [0.2.2]

Denote the two points of the zig-zag patterns by sj,s;. In order to obtain the
master stability function, one has to consider the eigenvalues k1, ko of the product
matrix

(1=aF() (1=Neg/(s) | ( (1= f(s) (1= Neg/(s3)
( (1 - )\)69’(5;) (1 — e)f’(s’{) ) ( (1 _ )\)eg’(s’{) (1 . E)f/(Sz) ) . (933)

The characteristical polynomial is given by

0 = [(1=ef(s1)f/(s3) + €1 = N)7g(s])* — x] -
[(1 =) f'(s1)f'(s3) + (1 = \)’g'(s3)* — ]
—E(L =)’ (L= N (f'(s1) - f'(s3)) - (g (s1) + 9 (53)) (9.34)
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which is solved by

e2(1—N\)?

ke = (L= (DS5) + S

[g'<si>2 T4y

£(g/(s5) + g/(s;»\/ (6D = (65 + Ay S PP e3)| (039

Accordingly, the master stability function for synchronized zig-zag patterns on bipar-
tite networks reads
Aoe(e,N) = max In[|rs (e, N)]]. (9.36)

9.2.2 Symmetries of two coupled maps

For the 2A and the 3A dynamics the synchronized two-cluster dynamics h, has the
following form:

si(t+1) = (1—e)f[si(t)] + ef[s2(2)],

Sot+1) = (1 —e)f[sa(t)] + ef[s1(t)], (9.37)
with f(x) the respective Tchebycheff polynomial. One obtains the trajectory s(t) =
(51(t), s2(t)) by iterating this equation for some initial value s(0). Consider h(_,
which is given by

sit+1) = ef[si(®)] + (1 — ) f[s2(t)],

so(t+1) = ef[s2(t)] + (1 =€) fs1(2)]. (9.38)
By comparing Eq. (9.37) and Eq. (9.38)) one observes that the application of h¢_

corresponds to the application of h, before or after s; and s, have been interchanged.
With the function X : R? — R? defined by

X((Z;>)=<Z> (9.39)

h(l—e) = h6 oX=Xo he. (940)

this can be formulated as

Compare an orbit s(t) obtained by iterating the function h,, and the orbit s(¢) gen-
erated by h;_.. Assume that s(0) = s(0). With Eq. (9.40) and X o X = 1 one
obtains

8(t) = (ha-o)'[s(0

(9.41)
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This shows that the orbits of h, and h(;_ for identical initial conditions coincide up
to a swap of s; and s,. As a consequence, all periodic points of h, with even periodic
points are also periodic points of h;_.. Periodic points with an odd period of h,
are also periodic points of h(_), but with double the period in order to cancel the
operator X. Consequently, a fixed point of h, is transformed into a zig-zag pattern
with period 2 for h(;_), which has been shown as a special case of this symmetry in
the last section.

In order to evaluate the linear stability of the periodic orbits, one has to consider
the Jacobian

Dh![s(0)] = 1:[ Dh,[s(7)], (9.42)

where the chain rule has been used (see Sec. [2.1.3)). The respective Jacobians are

en by (1—¢€)f'(s1) f'(s2)
Dh,(s) = ( e e ) (9.43)

One can easily show that

Dh(_o(s) = ( (1) (1) ) * Dh,(s),

Dh(_,(¥os) = Dh.(s)e ( ; (1) ) | (9.44)
With s(t) as given in Eq. this leads to
t—1 t—1
[[Dha ()] = [ Dhe[s(7)] (9.45)
7=0 7=0
for even ¢ and
2t—1 2t—1

[[ Dha—o (7)) = [ ] Dhefs(7)] (9.46)

for odd t. Since the stability of the respective periodic orbits depends on these
products, one obtains equal ranges of stability for parameter € and (1 — ¢).

Example: Two-cluster synchronized fixed point and zig-zag pattern of the 2A dy-
namics For the 2A dynamics, f(x) = g(x) is given by the second-order Tchebyscheff
polynomial. In Ref. [46] the stability of a fixed point with spatial period two for a
coupled logistic map lattice was calculated. Since the second-order Tchebycheff poly-
nomial is conjugated to the logistic map, the results obtained in Ref. [46] can be used
to check the following calculation of a two-cluster synchronized fixed point of the 2A
dynamics.

Equation (9.26)) for this dynamics is solved by

1+ /9 — 36€ + 32€2
S4 = .
= 4(1 = 2¢)

(9.47)
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9.2 Two-cluster synchronization on bipartite Tchebycheff networks

This fixed point is a real value for two different coupling ranges:

€€ [O, g] , €€ E,l] . (9.48)

The left part of Fig. displays s, and s_ depending on the coupling value €. One
can easily show that for the lower coupling ¢ € (0,3/8] the value s, lies outside
the phase space [—1,1]. For ¢ = 0 it holds s, = 1, but for vanishing coupling the
2A dynamics reduces to uncoupled Tchebyscheff maps, so this point can be excluded

from consideration. Consequently one has to consider only the coupling range [3/4, 1].
With f(z) = g(x) = Ty(z) = 22* — 1 the characteristic polynomial (9.28)) reads

0=1[4(1—-€)sy — k] [4(1 —€)s_ — K] — 16€*(1 — N\)?s,s_. (9.49)

In order to compare with the results from Ref. [46], consider explicitly the solutions
for A =0:

1 — €+ /9 — 5de + 105€¢2 — 64¢3

Ke(e,A=0)=— 5 1

(9.50)

The solutions k4 are real for

35 1 3 1 1/3
€< [@ + 705 (22329 — 10368\/§> + 2 (827 n 384\/5) } ~0.8231. (9.51)

When solving In[|k4(e, A = 0)|] = 0, one observes that the lower bound for stability
is determined by the relation x_ = (—1), which is given by

€ =

1
= (4 + \/6) ~ 0.806186. (9.52)
The upper limit is determined by the absolute value of the complex solutions |k4| =
|k_| = 1. This fixes the upper limit of the coupling range of having a stable fixed
point for h, as

1
= (19 + \/ﬁ) ~ 0.86075. (9.53)

These results coincide with the findings in Ref. [46]. The solutions of Eq. (9.49)) with
A # 0 are given by

1—e¢
ki(e,N) = T 5 (9.54)
| /0= 54+ 32612 = N\ — (644 72A — 36X%) + (105 + 164 — 8X?),

1— 2e¢

The curve in the e-A plane separating real from complex values of (e, \) is given by

~ (1—¢)V/I8 — 153¢ + 460¢% — 576¢® + 256¢

AMe) =1
(€) 2¢(2 — 9¢ + 8¢2)

(9.55)

127



9 Cluster synchronization

15 : : : : : : : | : 1
Sy
/ S e
! ‘_. 1 08 |
05 f '
. 06 |
9 of ST < stable
,,,,,, ’ 04 t
-05 pr 1
|
KRS | 02 r
unstable unstable
-15 L L L L L L L L L 0 L L L L
0O 01 02 03 04 05 06 07 08 09 1 0.75 0.8 0.85 0.9 0.95 1
€ €

Figure 9.1: Left: The fixed point (s;,s_) of the synchronized dynamics h, for the
2A dynamics. Right: Region of stability for the fixed point in the e-\ plane for
€ € [3/4,1], determined by a negative master stability function As.(€, \) for this fixed
point.

Analogous to the case for A = 0, one obtains the boundary curves for stable synchro-
nization in the e-A plane by setting x_ = (—1), which yields

N V10 — 129¢ + 62662 — 14723 + 1796€* — 1088€5 + 256¢5

Ae) =1 .
(€ 2¢(2 — 9¢ + 8¢2) o (956)
and |ky| = |k_| = 1, leading to
18 — 193¢ + 808€? — 1692¢? + 1892¢* — 1088¢€® + 256€6
Mo —1- Y €+ oo € F 1805 CEDDT (957)

2¢(2 — 9¢ + 8¢€?)

The right part of Fig. shows the region of negative master stabiliy function
Asc(e,A) in the e-A plane. The range of stability for A = 0 is smaller than for all
A > 0, so for this fixed point the stability is determined by the behaviour of h, it-
self, independently from the bipartite network structure. One obtains the values for
the upper and lower limit by solving Eq. and for A = 0. The range of
stability is [(4 + v/6)/8, (19 + +/73)/32], which corresponds to the numerical values
[0.806...,0.860...]. For this interval, the synchronization of the two-clustered fixed
point is stable for arbitrary bipartite networks. Due to the symmetry of the dynamics
one can immediately deduce a period-2 orbit of the dynamics. By the substitution
e — (1 —¢€) in Eq.[9.47] one obtains the zig-zag pattern

1+ /5 — 28¢ + 3262
S =
* 4(2e — 1)

(9.58)

These are real values in the phase space [—1, 1] for € € [0,1/4]. The range of stability
for the synchronized dynamics is obtained by replacing € by (1 — €) in Egs.
and . However, for determining the stability of this two-cluster synchronized
state on bipartite networks, in general one cannot use the result for the fixed point,
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Figure 9.2: Left: Master stability function As.(€, A) for the zig-zag pattern of the 2B
dynamics. Right: Regions with positive and negativ master stability function in the
e-\ plane.

since the introduction of the network parameter A in the respective master stability
function breaks the symmetry of the problem. Instead one would have to consider
Eq. (9.39)).

Example: Two-cluster synchronized zigzag pattern of the 2B dynamics For the
2B dynamics with f(z) = Ty(z) = 22% — 1 and g(x) = x, Eq. (9.31]) is solved by

Sy = —3(1 +/5). (9.59)

Inserting this in Eq. (9.35)) yields
Fa(e,\) = =4+ 8+ (=3 —2XA + A?) £ 41(1 — €)e(A — 1). (9.60)

By setting
Aoc(e,N) = In[|k+(e, N)|]] =0, (9.61)

one obtains the curve separating the regions of positive and negative master stability
function in the e-\ plane:

vV —3+ 8¢ — 4¢2

€

A=1-— (9.62)
The master stability function Ag.(€, \) and the curve given by Eq. is displayed
in Fig.[9.2] The region of stability has its narrowest range for A = 0. This correponds
to the condition for stability of the zig-zag pattern for the synchronized solution h,
itself. By solving Eq. for A = 0, one obtains the range as (3/5,1). In this
interval, the two-cluster synchronized zig-zag pattern is stable for arbitrary bipartite
networks.
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9.2.3 Numerical results

The iteration of Eq. for the synchronized dynamics h., and the calculation of
the respective master stability function As.(€, A) by determination of the Lyapunov
exponents of Eq. can be numerically performed by standard methods. Un-
fortunately, dynamical systems of two coupled maps might show multistability, that
means coexistent stable attractor. Accordingly the trajectory and hence the stability
of two-cluster synchronization might depend on the initial conditions. A numerically
complete treatment of this problem would include the determination of possibly dif-
ferent attractors, and the application of the master stability formalism separately
to each attractor dynamics. Although this would be an interesting problem, at this
point I will limit the calculations to the general behaviour of the dynamics, without
considering multiple attractors and dependence on initial conditons.

For each of the six chaotic string dynamics, in the following I will display three
different figures. For a randomly picked initial condition, a phase portrait of the
synchronized dynamics h. depending on ¢ is given. Due to the limitation on one
initial condition, this phase portrait picks for every coupling value € only one attractor.
Nevertheless this kind of figure gives a first impression about the different kinds of
behaviour of h, depending on e.

To get a further understanding of the dynamics, also the average difference

Ale) = V{(s1 — 52)?) (9.63)

is displayed, where the average is performed over all iterations minus some transient.
This measure shows wether or not the synchronized two-cluster dynamics is fully
synchronized.

A second figure shows the Lyapunov exponents of the synchronized dynamics.
Again, although I will restrict the calculations to one initial conditon and thus cap-
ture only one specific attractor for each coupling ¢, the calculation shows wether or
not the synchronized dynamics is chaotic or periodic.

Finally, for each of the six dynamics the region of stability in the e-A plane is dis-
played. The respective figures are obtained by numerically calculating the respective
master stability functions Ag.(e, A) for the whole range of ¢ € [0,1] and A € [0, 1]
and checking wether or not the master stability functions adopts a positive or nega-
tive value. These calcuations are done for various realizations, so it is differentiated
wether Ag.(€, \) < 0 for all or only some of the initial conditions.

Figures display these plots for all six chaotic string dynamics. For the
synchronized dynamics h, the phase plots reveal period-doubling bifurcations as well
as Sacker-Naimark bifurcations. The respective master stability functions As.(e, A)
show that two-cluster synchronization is stable for a wide range of coupling values,
depending on the respective dynamics.
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Figure 9.3: Left top: Phase portrait of the synchronized solution in two-cluster syn-
chronization for the 2A dynamics. The green line shows the synchronization difference
A. Left bottom: Larger (black) and smaller (blue) Lyapunov exponent of h.. Right:
Regions of negative Ag.(€, \) (black) in the e-A plane. Points where depending on the
initial conditions one numerically obtains negative as well as positive master stabiliy
functions are colored grey. Parameters are 100 different realizations for the right
figure, one realization for the left figures, T" = 10%, Ty, = 10°.
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Figure 9.4: Same as Fig. , but for the 2B dynamics.
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Figure 9.5: Same as Fig. , but for the 2A~ dynamics.
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Figure 9.6: Same as Fig. but for the 2B~ dynamics.
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Figure 9.7: Similar as Fig. , but for the 3A dynamics. Since the synchronized
solution h, shows a symmetry for s — (—s), the phase portrait is shown for two
trajectories which differ by the sign.
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10 Conclusion

The main topic of this thesis is the investigation of dynamical properties of coupled
Tchebycheff map networks. At every node of the network the dynamics is given by the
iteration of a Tchebycheff map, which shows strongest possible chaotic behaviour [17].
By applying a coupling between the various individual dynamics along the links of
the network, a rich structure of complex dynamical patterns emerges. Accordingly,
coupled chaotic map networks provide prototypical models for studying the interplay
between local dynamics, network structure, and the emergent global dynamics. Apart
from being of major interest in the theory of dynamical systems and the science of
complex networks, there are also various applications for these systems, including
models for turbulence, pattern formation or synchronization [69, [70]. An exciting
application of coupled Tchebycheff map lattices in quantum field theory has been
proposed in Ref. [I7] by Beck. In the so-called chaotic string model, the coupled map
lattice dynamics generates the noise needed for the Parisi-Wu approach of stochastic
quantization. The remarkable obversation is that the respective dynamics seems to
reproduce distinguished numerical values of coupling constants that coincide with
those observed in the standard model of particle physics [16, [17]. Although the
physical embedding proposed by Beck in Refs. [16] [17, 20, 21] does not provide a
complete theory relating particle physics to coupled map lattices, due to its numerical
results the chaotic string model deserves further attention.

The results of this thesis give insights into the chaotic string model and its network
generalization from a dynamical point of view. This leads to a deeper understanding
of the dynamics, which is essential for a critical discussion of possible physical em-
beddings. Apart from this specific application to particle physics, the investigated
concepts like synchronization or a most random behaviour of the dynamics are of
general interest for dynamical system theory and the science of complex networks.

Discrete symmetries of coupled Tchebycheff map networks are discussed in Chap. [4]
The construction of the chaotic string model in Ref. [I7] leads to a total number
of 16 different dynamics based on first and second order Tchebycheff polynomials.
By symmetry arguments, in Ref. [I7] this number was reduced to six dynamics.
The results of Chap. 4| confirm this finding by giving a detailed analysis of discrete
symmetry transformations. These transformations are formulated in a general way
in order to be also applicable to similar dynamics on bipartite network structures.
The class of bipartite networks consists of structures, which are build up by two
set of nodes with links only between nodes from differents sets, respectively. It is
straightforward to expand this notion to dynamics on r-partite networks, which then
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will show more complicated transformational symmetries. It would be interesting to
study these generalized symmetries and the impact of a potential symmetry breaking
on the dynamics.

An observable of main interest in the chaotic string model is the interaction energy.
In Ref. [I7] it is observed that certain chaotic string couplings, corresponding to a
vanishing interaction energy, coincide with coupling constants of the standard model
of elementary particle physics. Since the interaction energy is basically a spatial
correlation measure, an interpretation of the respective dynamical states in terms
of a most random behaviour is tempting. Such an interpretation would provide
a dynamical principle to distinguish certain dynamics in a more general way. A
presumed most random behaviour as the guiding principle is particularly attractive in
connection with a possible physical embedding of the dynamics as generating the noise
of the Parisi-Wu approach to stochastic quantization (see Ref. [I7, 21] for details).
The interaction energy is only one specific spatial correlation measure and thus gives
limited information about the dynamics. In order to distinguish certain states as
‘most random’, or evoke another dynamical principle, a deeper understanding beyond
this measure is essential.

A first approach is taken in Chap. [)] Although the interaction energy is defined
locally for all pairs of coupled nodes in the ring-network, in order to provide better
statistics, in Ref. [I7] the spatial average of this measure over all nodes is performed.
The results presented in Sec. show that this procedure in general yields mislead-
ing results. For a wide range of coupling values, the dynamics show non-ergodic
behaviour, and observables depend on the node in the network and the initial condi-
tions. In particular, two zeros of the interaction energy stated in Ref. [I7] turn out to
be the result of this spatial average instead of a vanishing interaction energy for every
coupled pair of nodes. Accordingly, these zeros should be omitted from consideration
as being connected to standard model couplings. Since the physical interpretation of
the corresponding coupling values has been far less obvious than for the remaining ze-
ros, this exclusion is actually in favor for the chaotic string model. For the remaining
six interesting zeros, an ergodic behaviour with locally vanishing interaction energy is
observed, so the respective results of Ref. [I7] remain valid from a dynamical system
point of view. In Sec. these six zeros of the interaction energy are computated
numerically with high precision, and the respective results of Ref. [I7] are confirmed.

Chapter [0] assesses the notion of a most random behaviour of the dynamics by
considering various observables beyond the interaction energy of Ref. [17]. In Sec.
the chaoticity of the dynamics is estimated by three measures based on the Lyapunov
spectrum of the system, which characterizes the separation of infinitesimally close
orbits. These are the maximum Lyapunov exponent, the net-average of positive Lya-
punov exponents, and the Lyapunov dimension. All measures show a maximum for
uncoupled chaotic dynamics and a minimum for a stable fixed point, and thus are
suitable for estimating the chaoticity of the dynamics. For larger couplings a large
part or even all of the Lyapunov exponents are non-positive, which means that there
are numerous directions in the phase space in which the dynamics is non-chaotic. For
small couplings it is found that all Lyapunov exponents are positive, thus indicating

136



strong chaotic behaviour. The zeros of the interaction energy connected to standard
model couplings (those which have not been excluded from consideration due to non-
ergodic behaviour) are situated in this low coupling region. However, the respective
couplings are not distinguished by the Lyapunov measures, which monotonically de-
crease with increasing coupling. Consequently, with respect to Lyapunov measures
there is no indication of a most random or most chaotic behaviour of the dynamics
for these couplings.

Whereas the Lyapunov spectrum characterizes the spatio-temporal behaviour of
the dynamics, the interaction energy is a purely spatial correlation measure, which
does not account for temporal correlations. Accordingly, a possibility to keep the dy-
namical principle of a most-random behaviour would be to refer to spatial correlations
only. The results of Sec. contradict this interpretation. Other spatial correlation
measures like higher order cumulants and the mutual information do not distinguish
the coupling values corresponding to a vanishing interaction energy. For the dynamics
based on second order Tchebycheff polynomials, the first order cumulant vanishes for
other couplings values than the interaction energy, so the respective zeros are shifted
and an interpretation as standard model couplings is not possible. The zeros of the
first order cumulant and the interaction energy coincide for the dynamics based on
third order Tchebycheff polynomials. However, higher order cumulants do not van-
ish for these couplings. Also the mutual information does not show a distinguished
behaviour for the zeros of the interaction energy:.

The results of Chap. [f] contradict an interpretation of the dynamics in terms of a
most random behaviour. The respective states corresponding to a vanishing interac-
tion energy are distinguished by this specific measure only, but not by a more general
dynamical principle. As a consequence, the model proposed by Beck in Ref. [17]
should provide strong physical motivation for this observable, and cannot rely on an
interpretation in terms of a most random dynamics.

The chaotic string model is defined on a one-dimensional lattice (ring-network)
as the underlying network topology. Chapter [7| studies a modification of the model
based on the introduction of tunable disorder. The effects of inhomogeneous cou-
pling weights as well as small-world perturbations of the ring-network structure on
the interaction energy are discussed. It is observed that certain combinations of cou-
pling and network disorder preserve the empirical relationship between the chaotic
string couplings and the running coupling constants of the standard model of ele-
mentary particle physics. For the zero of the interaction energy associated with the
electromagnetic coupling it has been found that already a small disorder pushes the
associated energy scale of the running coupling constant far away from the result
without disorder.

Synchronization properties of the chaotic string model and its network generaliza-
tion are studied in Chaps. [§ and [9] The analysis is based on the master stability
formalism, which relates the stability of the synchronized state to the spectral prop-
erties of the network [96]. Chapter [8| considers complete synchronization, where the
dynamics at all nodes of the network coincide. Two-cluster synchronization on bipar-
tite networks is studied in Chap. [0} For both types of synchronization it is shown that
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depending on the type of coupling the synchronized dynamics can display chaotic as
well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal
that the respective synchronized states are often stable for a wide range of coupling
values even for the ring-network, although the respective basins of attraction may in-
habit only a small fraction of the phase space. To provide analytical results in closed
form, for complete synchronization the stability of all fixed points and period-2 orbits
of all chaotic string networks are determined analytically. The master stability for-
malism allows to treat the ring-network of the chaotic string model as a special case,
but the results are valid for coupled Tchebycheff maps on arbitrary networks. For
two-cluster synchronization on bipartite networks, selected fixed points and period-2
orbits are analyzed.

The results of Chaps. [§] and [9] provide insights into the chaotic string dynamics
beyond the numerical results obtained in earlier works. These findings are not only
relevant for this application of coupled map networks, but for network synchronization
in general.

There are several interesting topics which can be adressed using methods and con-
cepts from this work. In Chap. [6] the various Lyapunov measures and higher order
cumulants were calculated for the chaotic string model. It would be interesting to
perform similar studies on general network topologies, and thus investigate the con-
nection between network structure and chaoticity of the dynamics. Another inter-
esting topic would be the application of the methods used in Chap. [§] and [9] to the
disordered ring-like networks of Chap. [} This would provide insights into the ques-
tion, wether the synchronizability of networks is reduced or enhanced by disorder. A
similar problem could be adressed by methods based on the formalism presented in
Chap. [0l Up to now, the analysis is applied to two-cluster synchronization on bipar-
tite networks. But what happens, if the bipartite structure is perturbed by additional
links? Does the two-cluster synchronization survive as a ‘fuzzy’ synchronized state, or
do new patterns emerge? It would also be interesting to realize the perturbations of
the network topology in a way that create distinguished patterns (called ‘motifs’) in
the network, and investigate the effects which these local structural patterns leave on
the global dynamics. Other possible future topics include the introduction of coupling
delays and non-identical local dynamics.

With respect to the chaotic string model as proposed by Beck in Ref. [I7], the
present work provides various results from a dynamical system point of view. The
findings on symmetries, ergodicity, chaoticity, effect of disorder and synchronization
properties have to be considered for any physical embedding and interpretation of
the model.
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Parts of the Chaps. [4] and [f| have been published as a peer reviewed article [I02]. An
article based on Chap. [7| has been accepted for publication.

During the preparation of this thesis, the author contributed to Ref. [54]. For
completeness, this publication is also included facsimile here.
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Fluctuating fluxes on a complex network lead to load fluctuations at the vertices, which may cause them to
become overloaded and to induce a cascading failure. A characterization of the one-point load fluctuations is
presented, revealing their dependence on the nature of the flux fluctuations and on the underlying network
structure. Based on these findings, an alternate robustness layout of the network is proposed. Taking load
correlations between the vertices into account, an analytical prediction of the probability for the network to
remain fully efficient is confirmed by simulations. Compared to previously proposed mean-flux layouts, the
alternate layout comes with significantly less investment costs in the high-confidence limit.
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L. INTRODUCTION

Much of the infrastructure of modern societies is orga-
nized in complex networks. A failure may lead to dramatic
consequences. It is important to understand the properties
and vulnerabilities of these networks. Error and attack toler-
ance against random and intentional removal of vertices and
links has already been widely studied [1-8]. Also dynamical
failures have been discussed [9-15], where a component fail-
ure and a subsequent network-wide redistribution of loads
might trigger further cascading failures.

A simple network model to describe a cascading failure
has been put forward by [9]. Every vertex i of the network
G=(V,£), described by the sets of vertices V and edges €&,
sends a unit flux s;=1 to every other vertex f#i along the
shortest-hop paths [i— f]. This results in an accumulated
vertex load

1 .
L,= mizv (i = f50)s57 (1)

The value of the path function ry,([i —f];v) is either 1 or 0,
depending on whether the vertex v is part of the shortest-hop
path from vertex i to f or not [16]. Based on the load (1), the
capacities

C(a)=(1+a)L,) 2

are assigned to the vertices. If for some reason one or more
vertices fail, a network-wide redistribution of the loads (1)
occurs due to a modification of the shortest paths. The new
load L, of vertex v may become larger than its capacity C,
and subsequent failures can occur. This sequence of events is
referred to as a cascading failure. In order to reduce or ide-
ally prevent the occurrence of such cascading failures, other
capacity layouts have been proposed [15,17] besides (2). So
far, all of these approaches have one thing in common. They
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assume the flux matrix s/ to be uniform and constant. There
are many interesting examples where this is not the case. In
communication and transportation networks s;¢ is known as
the traffic matrix which is subject to temporal fluctuations.
Electricity networks with a large share of renewable power
generation come with strongly fluctuating source fluxes.
More fluctuations in electricity networks are introduced by
power exchange markets.

There is a strong need to study the impact of fluctuating
fluxes on the robustness of networks. Vertices may fail either
directly due to an accumulation of extreme flux fluctuations
or due to a subsequent overload cascade. Immediate ques-
tions that arise are: How does an efficient capacity layout
look, which is able to cope with the fluctuating fluxes? Given
various classes of fluctuating fluxes, how do they determine
the resulting fluctuations in the accumulated vertex loads?
Are there correlations between the accumulated loads of dif-
ferent vertices and how do they look? In the following we
will give answers to these important questions.

II. LOAD FLUCTUATIONS RESULTING FROM FLUX
FLUCTUATIONS

Flux fluctuations are introduced into the modeling (1) by
varying the strengths s;; according to some distribution. For
demonstration, we pick a lognormal distribution with mean
(s)=1. The fluctuation strength is defined as its standard de-
viation o=\{(s—1)?). We distinguish two fluctuation sce-
narios. The first is denoted as pathlike, where all i are
drawn independently from each other. For the second, which
we denote as sourcelike, all s;=s; belonging to the same
source vertex i are given the same value sampled from the
lognormal distribution.

In order to develop a new capacity layout beyond the
mean-flux case (2), a good understanding is needed on how
the flux fluctuations determine the load distributions across
the network. We begin by looking at the one-point distribu-
tion p,(L,). Expression (1) can be read as a weighted sum of
independently and identically distributed random fluxes s;.
In the case of lognormal fluxes with small fluctuation
strengths o<1, this sum can be approximated again by a

©2008 The American Physical Society
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FIG. 1. (Color online) Simulated load distributions p(L,) due to
sourcelike flux fluctuations for three fluctuation strengths. Two ver-
tices with minimum (a) and maximum (b) load are depicted. One
typical realization of a random scale-free network, for which the
number of vertices, scale-free exponent, and minimum degree have
been set to N=1000, y=2.5 and k,,;,=2, has been used with 10*
fluctuation realizations. The dashed curves correspond to the three-
parameter lognormal distribution (TPLN, 3) with predicted param-
eters (4) and (5).

lognormal distribution [18]. To allow for some more flexibil-
ity we choose a three-parameter generalization of the lognor-
mal distribution

pulLy) = ot ) ““)] @)

N exp
N2my(L, - K,) [ 27,

for the description of the load distribution. To fit the load
distribution at vertex v, the three parameters w,,7,.k, are
calculated from the first three cumulants of Eq. (3) which
have to be equal to the first three cumulants of the load (1).
These are for pathlike fluxes

N
(LDe=(s"e 2

i#f=1

(rslz([iﬁf];v))”’ @

N(N-1)

and for sourcelike fluxes

N N n
g rylli = f1:v)
(L) =2 (f%) N-1) ) 5)

Figure 1 compares the predicted three-parameter lognormal
distribution (3)—(5) with simulated one-point load distribu-
tions, which have been sampled from a large number of in-
dependent flux fluctuation realizations on a typical random
scale-free network. For pathlike (not shown) as well as
sourcelike flux fluctuations and for all vertices ranging from
minimum to maximum average load, the analytical distribu-
tions fit the numerical data very well. Note that the one-point
load distribution (3) needs not to be mixed up with the dis-
tribution p((L,)) of average loads across all vertices of the
network. For the latter we reproduce the result p({L))
~(L)~% with §~2.2, which has been shown [19] to be uni-
versal for all scale-free networks with exponent 2 << y=3.
The n=2 cumulants of Egs. (4) and (5) are depicted in
Fig. 2 as a function of the averaged vertex loads. For pathlike
flux fluctuation (inset in Fig. 2) a scaling relation of the type
V(L2 ~(L,)* is found with exponent B=0.5. This disper-
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FIG. 2. (Color online) The moment (J’(LJ:\““@ of Egs. (4)
and (5) as a function of the average vertex load (L,) for one real-
ization of pathlike (inset) and sourcelike fluctuations on random
scale-free (circles) and Poisson (triangles) networks. Parameters are
N=1000, y=2.5, k=2 for the scale-free networks, and N=1000,
(k)=5 for the Poisson networks. Fifty out of 10° vertices are shown.
The dashed and dashed-dotted straight lines represent the scaling
exponents $=0.5 and 0.1.

sion relation has already been observed in [20] and related to
internal collective dynamics on the network. However, it has
not been clear whether the found value of the scaling expo-
nent is universal or not. For sourcelike flux fluctuations no
good overall scaling is observed. This is due to the fact that
only the load distribution for high average loads are Gauss-
ian shaped, whereas load distributions of vertices with small
loads have a long tail that increases the variance; consult
again Fig. 1. The asymptotic high or low load regimes are in
accordance with 8=0.5 and 0.1, respectively, indicating that
the scaling exponent 8~0.5 is not universal.

III. EFFICIENT CAPACITY LAYOUT

The good agreement of the predicted three-parameter log-
normal distributions with the vertex loads allows for a direct
construction of a new capacity layout, which is robust
against the flux fluctuations up to some confidence level. For
a single vertex the quantile

Cl/
q=f pu(Ly)dL, = F,(C,) (6)
0

describes the confidence level that its load L, remains
smaller than its capacity C,. Since 1—¢ describes the prob-
ability that the vertex will fail due to direct overloading, a
confidence level very close to one is desirable. A typical
value in engineering is ¢=0.9999. By presetting the confi-
dence level to such a targeted value, the capacity C,(q)
=F, 1(q) needed at the vertex is obtained from the inverse of
the cumulative distribution function F,. Since p,(L,) is
three-parameter lognormal, F, can be expressed in terms of
the inverse of the cumulative distribution function ® of a
centered normal distribution with unit variance. This leads to
the capacity assignment
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FIG. 3. (Color online) Probability distributions for the number
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scale-free network. Network parameters are as in the previous fig-
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the same mean (1—¢)N. The correlation parameter p of the beta-
binomial distribution has been calculated with Eqgs. (9) and (10).

Colq) = em® @4 . ™

In principle, different ¢ values could be assigned to different
vertices, but for simplicity we chose the same ¢ for all ver-
tices.

By this construction, the distribution of the number of
directly failing vertices M due to the fluctuating fluxes will
have a mean of (M)=(1-¢)N. As can be seen in Fig. 3 the
actual number may deviate much from this mean. Note that
the shown distributions only depend on the quantile ¢ and
not on the strength of the flux fluctuations. The distributions
would be binomial if the direct failure of a vertex were in-
dependent of the other vertices, however, this is not the case.
The probabilities of directly failing vertices are correlated
since all vertices on a shortest path receive the same flux
strength from the transmitting vertex.

A good approximation to the observed distributions is
provided by the beta-binomial distribution

N)B(M+a,N—M+b)

p(M:a.b) = (M Ba.b)

. (®)

where B(-,-) is the beta function. It is known to describe
correlated Bernoulli random variables [21]. The two param-
eters a and b can be rewritten as the mean (M)/N=(1-gq)
=ﬁ and the correlation measure p=ﬁ. From best fits of

Eq. (8) to the distributions of Fig. 3 we find the empirical
relation

p=awy(l-q)*, 9)

(see Fig. 4). Within acceptable precision the exponent ¢ turns
out to be independent of the network size. For wy the N
dependence
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FIG. 4. (Color online) Relation between the parameters p and
(1—g) of the beta-binomial distributions (8), which have been di-
rectly fitted to the sampled distributions of Fig. 3.

wy=wN" (10)

is found. The following table lists the fitted parameter values
for pathlike and sourcelike flux fluctuations on scale-free
(y=2.5, kyin=2) as well as Poisson networks ((k)=5).

Path ® I3 v Source ® I3 v
Poisson  1.50 0.53 0.80 Poisson 5.40 0.70 0.80
Scale-free 1.47 0.41 0.80 Scale-free 3.34 0.51 0.80

The good description by the beta-binomial distribution (8)
allows one to make an analytical prediction of the probability
that with the capacity layout (7) no vertex of the network
will fail due to flux fluctuations. This probability p(M=0;1
—q,p) with p from Egs. (9) and (10) is equal to the probabil-
ity that the network efficiency [6]

1 1
E=—— — (11)

NIN=1) . ey di
remains equal to its initial value E, of the intact network,
thus p(EL‘O: 1)=p(M=0;1-¢q,p). The network efficiency rep-
resents a measure to evaluate the quality of a capacity layout.
It includes direct as well as cascading failure of vertices. d;s
is the shortest-hop distance between vertices i and f. Figure 5
compares the predicted p(M=0;1-¢,p) with numerical
data.

Since the correlation p of the beta-binomial distribution
goes to zero as g goes to one, the probability p(%: ) can
also be approximated using the binomial distribution
PoinM=0;1-¢); see again Fig. 5. This gives a parameter-
free approximation to the probability that no vertex fails. The
same relation also holds for pathlike flux fluctuations.

Finally, we compare the investment costs /=2,,C,
=I(a)=1(g) relative to =2, c,(L,) of the two capacity lay-
outs (2) and (7). These are functions of the tolerance param-
eter a and the quantile g, respectively. Figure 6 shows the
efficiency (11) of a scale-free network as a function of /. For
sourcelike flux fluctuations the efficiency of Eq. (7) remains
close to zero up to a critical investment cost, only then to
jump up and to overtake the efficiency of Eq. (2). In the limit
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FIG. 5. (Color online) Probability for the relative efficiency to
remain E%:l given the capacity layout (7) against sourcelike flux
fluctuations. The symbols have been determined from a simulation
of 103 fluctuation realizations with strength =0.5 on a representa-
tive random scale-free (triangles) and Poisson (circles) network of
size N=1000 (other parameters as stated before). The dashed and
dotted curves represent the analytical prediction based on the beta-
binomial distribution (8) and the binomial simplification,
respectively.

E/Ey—1 the investment costs into the newly proposed ca-
pacity layout (7) are significantly smaller than for the stan-
dard layout (2). For pathlike flux fluctuations both capacity
layouts reveal an abrupt transition from low to high effi-
ciency at very low investment costs.

IV. CONCLUSION

A robust capacity layout has been developed. It is able to
cope with the load fluctuations induced by flux fluctuations
transported on the network. Within a given confidence level
it supports the network to operate at full efficiency and guar-

PHYSICAL REVIEW E 77, 056103 (2008)

" source -~
-
- -_—
0 e _ -
[ e 7
o - - = pump—|
Ve ./ | Path /
/ 8 [
oF 78
w8 ! s !
s / i I
4 | v ] | i
3 .- & I
T g I
&+ - of }Lx'x T
J
od <« — — — 1.00 1.04 1.08
T T T T T
1 2 3
1/l

FIG. 6. (Color online) Relative efficiency of a typical N=1000
scale-free network as a function of investment costs against direct
vertex failures as well as subsequent cascading failures induced by
pathlike (inset) and sourcelike fluctuations of strength o=0.8.
Dashed-dotted and dashed curves represent the capacity layouts (2)
and (7), respectively. All curves come with a confidence level of
0.99, meaning that 10 out of the simulated 10° fluctuation realiza-
tions result in relative efficiencies below the curve.

antees robustness against a cascading failure. Since these
findings have been based on a simple network model [9], it
will make sense to discuss various model extensions, such as
those proposed in Refs, [22-24], which distinguish between
internal and external fluctuation dynamics. The ultimate
challenge will be to carry over these ideas to real-life infra-
structure networks such as, for example, electricity networks
facing a growing fraction of fluctuating renewable energy
sources.
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