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Zusammenfassung 
Das Enzym Chinol:Fumarat-Reduktase (engl. quinol:fumarate reductase; QFR) des 

anaeroben ε-Proteobakteriums Wolinella succinogenes katalysiert den terminalen Schritt 

der Fumaratatmung. Bei dieser Form der anaeroben Atmung wird Sauerstoff durch 

Fumarat als terminaler Elektronenakzeptor ersetzt. Die QFR ist ein dihämhaltiger 

Membranproteinkomplex, der die Oxidation von Menachinol zu Menachinon an die 

Reduktion von Fumarat zu Succinat koppelt. Beide b-Typ Hämgruppen (das 

Niedrigpotentialhäm wird auch als distales und das Hochpotentialhäm als proximales 

Häm b in der Transmembranuntereinheit C bezeichnet) sind Teil der 

Elektronentransportkette zwischen den zwei katalytischen Seiten des Redox-Enzyms. 

Obwohl die Reduktion von Fumarat durch Menachinol exergonisch ist, reicht die Energie 

nicht für die Erzeugung eines membrandurchspannenden elecktrochemischen 

Protonenpotentials Δp aus. Es wurde bewiesen, dass diese Reaktion durch einen 

neuartigen Mechanismus katalysiert wird, bei dem der Transmembranelektronentransfer 

durch einen Transmembranprotonentransfer ermöglicht wird. Dieser neuartige, 

essentielle und kompensatorische Transmembranprotonentransfer (E-Weg) ist im 

oxidierten Zustand der QFR inaktiviert, wobei der Aminosäurerest Glu C180 der 

Transmembranhelix V (lokalisiert in der C-Untereinheit) und das C-Ring-Propionat des 

distalen Häms Schlüsselfunktionen übernehmen. 

Ziel dieses Projekts war durch die Anwendung einer Kombination aus sowohl 

zeitaufgelösten, als auch statischen spektroskopischen Versuchen, eine detaillierte 

Einsicht in den Mechanismus des transmembranen, elektronengekoppelten 

Protonentransfers zu erhalten. Durch statische FTIR Differenzspektroskopie können 

Änderungen von oxidierten und reduzierten Zuständen eines Redox-Proteinsystems 

selektiv und sensitiv  bestimmt werden. Als Techniken werden in diesem Kontext 

elektrochemisch induzierte FTIR Differenzspektroskopie und komplementäre 

computergestütze elektrostatische Berechnungen angewandt. Um den katalytischen 

Mechanismus der QFR zu eruieren, sind zeitaufgelöste Experimente nötig. "Rapid scan" 

FTIR Differenzspektroskopie erlaubt es, den Verlauf der Reaktion in einer 

zeitabhängigen Weise zu verfolgen. Dazu werden die zeitaufgelöste Fourier 

transformierte Infrarot- (tr-FTIR) und transiente Absorptionsspektroskopie verwandt. Im 

Folgenden werden die Details der individuellen Unterprojekte kurz erlaütert. 
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1. pH-Abhängigkeit der Redox-Mittelpunktpotentiale der Hämgruppen 
Die elektrostatischen Wechselwirkungen zwischen protonierbaren und redoxaktiven 

Gruppen resultiert in einer Kopplung von Protonierung und Reduktion in biologischen 

Ladungstransferreaktionen, die im Allgemeinen als Bohr-Effekt bekannt sind. Im Kontext 

des derzeit diskutierten Mechanismus von gekoppelten Elektronen- und Protonentransfer 

in der QFR von W. succinogenes, wurde der Aminosäurerest Glu C180 als 

Schlüsselkomponente des "E-pathway“ identifiziert. Für die Wildtyp QFR von W. 

succinogenes wurde mittels elektrochemisch induzierter statischer FTIR Spektroskopie 

(im Bereich von 1800 bis 1000 cm-1) gezeigt, dass die redoxabhängige Protonierung des 

konservierten Restes Glu C180 pH-abhängig ist. 

Solche pH-Abhängigkeiten von oxidierten-reduzierten Mittelpunktspotentialen von 

Hämgruppen wurden schon vorher gemessen. In der vorliegenden Arbeit wurde dieses 

für Enzymvariante E180Q gemessen. Der Vergleich der Ergebnisse zeigt, dass der Rest 

Glu C180  eine Schlüsselrolle bei der Herstellung der pH-Abhängigkeit im Wildtyp-Enzym 

spielt. Mittels FTIR Doppeldifferenzspektroskopie konnte gezeigt werden, dass die 

Reduktion eines Häms für eine signifikante Protonierung des Glu C180 ausreichend ist, 

und dass eine sehr kleine zusätzliche Protonierung dieses Restes im vollständig 

reduzierten  Enzym im physiologischen pH-Bereich stattfindet. Die pH-Abhängigkeit der 

Protonierung des Glu C180 während einer Einzelreduktion wurde auch durch 

korrespondierende MCCE (multiconformation continuum elektrostatischen) 

Berechnungen vorausgesagt. Diese pH-Abhängigkeit korreliert genau mit der pH-

Abhängigkeit der Chinol-Oxidationsaktivität des Enzyms. 

 

2. pH- und Redox-Abhängigkeit der individuellen Hämporphyrine und anderer 
relevanter Reste 
In diesem Teil des Projekts werden elektrochemisch induzierte Fourier-Transformation 

Infrarot (FTIR) Differenzspektren von Wildtyp QFR aus W. succinogenes  diskutiert. Der 

spektrale Bereich umfasst 1800-500 cm-1 mit einer detaillierten Beschreibung des 

niedrigfrequenten Bereichs. Das Protein weist eine prominente Schwingungsbande bei 

840-825 cm-1 auf. Diese  spezifische Bande ist pH-unabhängig, jedoch abhängig vom 

Oxidationszustand des Häms. Dies basiert auf der γ(CmH) Schwingung des 

Hämporphyrinrings. Weitere spektrale Eigenschaften, wie die Ringschwingung, die 
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empfindlich auf den Redox-Zustand des Proteins reagiert, erscheinen in der 

Niedrigfrequenzregion zwischen 800 und 650 cm-1. In einigen wichtigen Enzymen ist die 

Eisen-Histidin-Bindung die einzige starke Bindung zwischen der Hämgruppe und dem 

umgebenden Protein, deshalb ist es von großem Interesse, Eigenschaften dieser 

Wechselwirkungen zu  charakterisieren. Die Signale bei 926 (ox), 915 (red), 864 (red) 

und 860 (ox) cm-1 sind charakteristisch für Histidinliganden, die eine markante pH-

Abhängigkeit besitzen. Der Übergang des Niedrigpotential-Häms bD trägt signifikant zum 

FTIR-Vollbereich-Differenzpektrum bei. Dieses weist in allen Fällen eine pH-

Unabhängigkeit auf. Die axialen Histidinliganden des Niedrigpotentialhäms bD wurden als 

wichtige Reste identifiziert. Die Ergebnisse deuten darauf hin, dass Protonierung, 

Deprotonierung und Konformationsänderungen an den Redoxübergang der Häme der 

QFR gekoppelt sind. 

 

3. Analyse des katalytischen Mechanismus der QFR durch Verwendung von durch 
Lichtimpuls freigesetzter Substratbindung 
Das Interesse am Verständnis des katalytischen Reaktionsmechanismus der QFR führte 

zur Untersuchung der Möglichkeit, die Reaktionschemie des Enzyms durch Lichtimpuls 

freigesetztes Substrat (caged compounds) zu untersuchen. Ein Vorteil der Benutzung 

von "caged compounds" in der FTIR Differenzspektroskope besteht darin, dass man mit 

dieser Methode simultan Informationen über den Redox-Zustand und über den 

Protonierungszustand involvierter Co-Faktoren, sowie weitere Details über die das 

Verhalten des Proteins erhalten kann. 

"Rapid scan" FTIR ist bereits angewandt worden, um den Mechanismus der 

fotochemischen Freisetzung von Fumarat von seiner "caged" Fumaratvorstufe zu 

untersuchen. Alpha-carboxy-o-nitrobenzyl (CNB)-caged Substrate sind im Allgemeinen 

für kinetische Messungen im sub-Millisekunden Bereich geeignet. Hier wird demonstriert, 

dass die neu entwickelte CNB-Fumaratverbindung als fotolabiles Substrat für diese 

Zwecke genutzt werden kann. Die Synthese, fotochemische Charakterisierung und die 

Anwendbarkeit dieser neuartigen "caged compounds" wird diskutiert. Es wurden 

signifikante Unterschiede in der spektralen Position der spezifischen 

Absorptionsdifferenzbanden zwischen den kinetischen Spektren von verkapseltem 

Fumarat in Abwesenheit und Anwesenheit von der QFR beobachtet. Diese 
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Beobachtungen demonstrieren, dass die Bindung von Fumarat an die QFR im 

Millisekundenbereich direkt nach dem Lichtimpuls  mit möglicher Beteiligung von nur 

einigen Bindungsstellen spezifischer Aminosäurereste vonstatten geht. 

Zusammengenommen hilft die exakte Erforschung der schnellen Freisetzung von 

Fumarat bei dem Verständnis molekularer Prozesse, die assoziiert während der 

katalytischen Aktivität der QFR auftreten. 

Konsitent und komplementär zum vorherigen Versuch der Benutzung von caged 

Fumarat wurde "caged" Menachinol (2-Methyl-3-methylamino-1,4-napthoquinone(ol), 

kurz MMAN(H2)) in einem ähnlichen Versuch zur Untersuchung kinetischer Phänomene 

charakterisiert. Die FTIR Differenzspektroskopie nutzt den molekularen Mechanismus mit 

Chinolfreisetzung aus, in dem Markerbanden für das Zielsubstrat detektiert werden. Im 

vorliegenden Kontext ist die bevorzugte "caging"-Gruppe 1-(4,5-dimethoxy-2-

nitrophenyl)ethyl (DMNPE). "Caged" Chinone können die Substratchinone in Lösung 

freisetzen, welche dabei in Lösung reduziert werden können und Chinole generieren; 

dadurch kann die enzymatische Reaktion der QFR eingeleitet werden. Es wurden 

Experimente in Anwesenheit der QFR in optimierten Versuchsbedingungen durchgeführt. 

Für die kontrollierten Lichtimpulse wurde der XeCl eximer Laser zusammen mit einem 

Bucker IFS-66 Setup benutzt. 

 

4. Bestimmung der Lebenszeit des angeregten Zustandes und der 
Elektronentransfergleichgewichtsrate zwischen Niedrig- und Hochpotentialhäm in 
der QFR 
Dieses Kapitel befasst sich mit einem Initialversuch zur Bestimmung der Lebenszeit des 

angeregten Zustands und der Elektronentransfergleichgewichtsrate zwischen Niedrig- 

und Hochpotentialhäm in der QFR. Dabei wird transiente Laser-Spekroskopie (transient 

ultrafast pump probe spectroscopy) mit einer Auflösung im Picosekundenbereich 

angewandt. Wie zuvor erwähnt besitzt die membranständige Untereinheit der QFR zwei 

b-Typ Hämgruppen, die für den transmembranen Elektronentransfer essentiell sind. Sie 

verbinden die zum Periplasma orientierte Stelle der Chinoloxidation mit dem Ort der 

Fumaratreduktion, der cytoplasmatisch in der Untereinheit A lokalisiert ist. Die 

Ergebnisse erlauben es, zum ersten Mal in einer zeitaufgelösten Weise, eine Reihe von 

widersprüchlichen Vorhersagen betreffend katalytischer Reaktionen der QFR zwischen 
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sowohl experimentellen, als auch theoretischen Studien betreffend zu testen. In diesem 

Kontext wurde die potentielle physiologische Relevanz von schnellen Gleichgewichten, 

die assoziiert sind mit Redoxreaktionen mit geringem elektrochemischem Potential 

diskutiert. 
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Summary 
The enzyme quinol:fumarate reductase (QFR) from the anaerobic ε-proteobacterium 

Wolinella succinogenes is a membrane protein complex that couples the catalysis of the 

oxidation of menaquinol to menaquinone to that of the reduction of fumarate to succinate. 

This is the terminal step in fumarate respiration, a form of anaerobic respiration in which 

oxygen is replaced by fumarate as the terminal electron acceptor in many anaerobic 

microorganisms. In QFR, both the heme groups (low-potential distal and high-potential 

proximal heme b group in transmembrane subunit C) are part of the electron transport 

chain between the two catalytic sites of the redox enzyme. Although the reduction of 

fumarate by menaquinol is exergonic, it is not exergonic enough to support the 

generation of a transmembrane electrochemical proton potential Δp. Evidence has 

previously shown that this reaction is catalysed by a novel mechanism, involving the 

facilitation of transmembrane electron transfer by transmembrane proton transfer via an 

essential compensatory transmembrane proton transfer pathway (“E-pathway”) which is 

inactive in the oxidized state of the enzyme. The two key constitutents of the the pathway 

are the amino acid residue Glu C180 of the transmembrane helix V (located in subunit C) 

and the ring C propionate of the distal heme bD.  

The aim of the project was to obtain, by employing a combination of time-resolved 

as well as static spectroscopic approaches, a detailed insight of the transmembrane 

electron coupled proton transfer mechanism. Minute changes in both the oxidized and 

reduced states of a redox protein system can be selectively and sensitively monitored by 

static Fourier Transformed Infrared (FTIR) difference spectroscopy. The technique 

employed in this context, electrochemically induced FTIR difference spectroscopy, is 

complemented by computer-based electrostatic calculations. In order to elucidate the 

catalytic mechanism of the important reactions in QFR, it is necessary to investigate 

these in a time-resolved manner. Rapid scan FTIR difference spectroscopy is a suitable 

technique that allows the course of the reaction to be monitored in a time dependent 

fashion. The techniques employed in this context are time-resolved (tr-FTIR) and 

transient absorption spectroscopy. In the following, the details of individual sub-projects 

are discussed in brief. 
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1. pH-dependence of the redox midpoint potentials of the heme groups  
The electrostatic interactions between protonatable and redox-active groups result in the 

coupling of protonation and reduction in biological charge transfer reactions which is 

commonly known as the redox Bohr effect. In the context of the currently discussed 

mechanism of coupled electron and proton transfer in the QFR of W. succinogenes, the 

amino acid residue Glu C180 emerged as a key component in the “E-pathway”. For W. 

succinogenes wild-type QFR, electrochemically induced static FTIR difference 

spectroscopy (in the mid-infrared region from 1800 to 1000 cm-1) has been employed. 

The study showed that the redox-dependent protonation change of the conserved 

residue Glu C180 is a function of pH. Comparisons of the results obtained for the E180Q 

variant enzyme indicated a key role of Glu C180 in establishing this pH-dependence in 

the wild-type enzyme. As indicated by FTIR double difference spectroscopy, single heme 

reduction was sufficient for significant protonation of Glu C180 to occur and there was 

very little additional protonation of this residue in the fully reduced enzyme in the 

physiological pH range. The pH dependence of the protonation of Glu C180 upon single 

heme reduction was also predicted by the corresponding multiconformation continuum 

electrostatics (MCCE) calculations. Furthermore, this pH dependence correlated 

perfectly with the pH dependence of the quinol oxidation activity of the enzyme. 

 

2. pH- and redox-dependence of individual heme porphyrins and other relevant 
residues  
In this part of the project, electrochemically-induced FTIR difference spectra of W. 

succinogenes wild type QFR in the spectral range from 1800-500 cm-1 has been reported 

with a detailed description of the low frequency range. The protein showed a prominent 

vibrational band at 840-825 cm-1. This particular band is independent of pH but depends 

on the heme oxidation state. It originates from to the γ(CmH) motion of the heme 

porphyrin ring. Further spectral features such as the ring vibrations sensitive to the 

protein’s redox state are shown in the low frequency infrared region between 800 and 

650 cm-1. It is of crucial interest to find markers for the interaction in the iron-histidine 

bond. The signals at 926 cm-1 (oxidised), 915 cm-1 (reduced), 864 cm-1 (reduced) and 

860 cm-1 (oxidised) are characteristic of histidine ligands that demonstrate a prominent 

pH-dependent behaviour. In the low infrared region, there is a significant contribution of 
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the low potential heme bD transition to the full range FTIR difference spectra, that is, in all 

cases, independent of pH. The axial histidine ligands to the low potential heme bD are 

identified as important residues. Protonation/deprotonation and conformational changes 

are experimentally shown to be coupled to the QFR heme redox transition. 

 

3. Monitoring QFR catalytic mechanism by involving photo-releasable substrates 
binding 
The interest in understanding the underlying catalytic reaction mechanism of QFR led to 

the exploration of the possibility of using photo-releasable substrate to probe the reaction 

chemistry of the enzyme. One of the advantages of using caged compounds in FTIR 

difference spectroscopy is that this method can simultaneously provide information on 

the redox and/or protonation state of the cofactor involved and subsequent details on the 

protein response.  

Rapid scan FTIR spectroscopy has been applied to study the mechanism of 

photochemical release of fumarate from its “caged”-fumarate precursor. Alpha-carboxy-

o-nitrobenzyl (CNB)-caged substrates are generally suitable compounds for kinetic 

measurements in the sub-millisecond range. Here it is demonstrated that the newly 

developed compound (CNB-fumarate) can be used as a photolabile substrate for this 

purpose. The photochemical characterisation and applicability of this novel caged-

compound is reported. Significant differences in the spectral positions of specific 

absorbance difference bands have been observed between the kinetic traces of caged 

fumarate in the absence and presence of QFR. These observations demonstrate that 

binding of fumarate to the QFR enzyme occurs within milliseconds time window following 

the flash with possible involvement of only few binding site specific amino acid residues. 

Overall, an accurate and sensitive probing of rapid release of fumarate helps to 

understand the molecular processes associated during catalytic activity of QFR. 

Complementary with the previous approach of employing caged fumarate, in a 

similar approach to study the kinetic phenomena, caged menaquinol (2-Methyl-3-

methylamino-1,4-napthoquinone(ol) (MMAN(H2) has been characterised. The suitability 

of FTIR difference spectroscopy to harness the molecular mechanisms involving quinol 

release relies on the identification of marker bands for the target substrate and therefore 

detailed characterisation of the cage substance. In the present context, the preferred 
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caging group is 1-(4,5-dimethoxy-2-nitrophenyl)ethyl (DMNPE). Caged quinones can 

release the substrate quinone in solution which can thereby be reduced in solution 

generating quinol; and can thus trigger the QFR enzymatic reaction. Experiments were 

performed with the presence of QFR in optimised experimental conditions. 

 

4. Determination of excited state life time and electron transfer equilibration rate 
between the low- and high-potential hemes in QFR 
The two heme b groups in the membrane integral subunit of QFR are essential for 

transmembrane electron transfer linking the site of quinol oxidation oriented towards the 

periplasm to the site of fumarate reduction located in the cytoplasmically located subunit 

A. This particular study describes an initial attempt to determine the excited state life-time 

and an electron transfer equilibration rate between the low- and high-potential hemes in 

QFR by using transient ultrafast pump-probe spectroscopy with picosecond time 

resolution. The results allow, for the first time, in a time-resolved fashion, to test a 

number of conflicting predictions regarding the catalytic reactions of QFR between both 

experimental and theoretical studies. The potential relevance of fast equilibration 

associated with the low-driving-force redox reaction is discussed in this context. 
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1 Introduction 
1.1 Respiration and chemiosmotic theory 
1.1.1 Cellular respiration and ATP generation 
A cell can harvest energy from food by the means of cellular respiration. Cellular 

respiration consists of metabolic reactions and processes that take place in a cell or 

across the cell membrane to obtain biochemical energy from the oxidation of fuel 

molecules (e.g. glucose, amino acids, fatty acids etc.). The energy released is stored as 

"high-energy" carriers. Glycolysis, the first step of process, is the breakdown or splitting 

of glucose into pyruvic acid. The second step, oxidative phosphorylation, is the 

complete oxidation of pyruvic acid to carbon dioxide and water where electrons are 

transferred from electron donors to electron acceptors such as oxygen, in oxidation-

reduction (“redox”) reactions. 

Organisms that use oxygen as a final electron acceptor in respiration are 

described as aerobic. There are organisms, however, that can respire using organic 

molecules as terminal electron acceptors instead of oxygen. These are referred to as 

anaerobic. The redox reactions in oxidative phosphorylation release energy, which is 

used to form adenosine triphosphate (ATP). In eukaryotes, these redox reactions are 

carried out by a series of protein complexes within mitochondria, whereas in 

prokaryotes, these proteins are located in inner membranes of the cell. These linked 

sets of enzymes are called electron transport chains. In eukaryotes, five major protein 

complexes are involved, whereas in prokaryotes many different enzymes are present, 

using a variety of electron donors and acceptors depending on adaptation with respect 

to environment. The energy released as electrons flowing through this electron transport 

chain is used to transport protons across the inner mitochondrial membrane, in a 

process called chemiosmosis.  

The “chemiosmotic hypothesis” postulated by Peter Mitchell (Mitchell, 1961) 

states that chemiosmosis generates potential energy in the form of a pH gradient and 

an electrical potential (∆p) across this membrane. This storage of energy is tapped by 

allowing protons to flow back across the membrane and down this thermodynamic 

gradient, through ATP synthase. The later uses this energy to generate ATP from 

adenosine diphosphate (ADP) (Voet et al., 1999). 
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1.1.2 Aerobic respiration 
Aerobic respiration is the release of energy from glucose or other organic substrates in 

the presence of oxygen. Aerobic respiration is divided into three processes: glycolysis, 

Krebs cycle and the electron transport chain, which produces ATP through 

chemiosmotic phosphorylation. After the pyruvate broken down from glycolysis, it enters 

the mitochondrion to be fully oxidized by the Krebs cycle. The product of this process is 

energy in form of ATP by substrate-level phosphorylation, NADH and FADH2. The 

energy conversion is as follows: 

C6H12O6 (aq) + 6 O2 (g) → 6 CO2 (g) + 6 H2O (l)      (∆Hc = -2880 kJ)............(1) 

  The post glycolytic reactions take place in the mitochondria in eukaryotic 

cells, and in the cytoplasm (or mitochondrial matrix) in prokaryotic cells. In mitochondria, 

respiratory enzyme complexes (complex I-V) are anchored in the inner membrane. 

Three (complex I, III, and IV) of them are proton pumps. Complex I (NADH coenzyme Q 

reductase) transfers electrons from the Krebs cycle electron carrier nicotinamide 

adenine dinucleotide (NADH), to ubiquinone, which also receives electrons from 

succinate via complex II (succinate dehydrogenase). Complex III (cytochrome bc1 

complex) catalyses electron transfer from the quinol (QH2) to cytochrome c (cyt c). 

Complex IV (cytochrome c oxidase) uses the electrons and hydrogen ions to reduce 

molecular oxygen to water. The electrochemical proton potential generated therein is 

finally used by complex V (ATP synthase) for the production of ATP from ADP and 

inorganic phosphate. 

 

1.1.3 Anaerobic respiration 
Although all eukaryotes are strictly aerobes, prokaryotes can use terminal electron 

acceptors other than oxygen, such as nitrate (NO3
-), nitrite (NO2

-), sulphate (SO4
2-), 

fumarate, dimethyl sulfoxide (DMSO) and others in their different modified respiratory 

systems (Enger, 2003), (Karp, 2008). Anaerobic respiration is far less efficient than 

aerobic respiration, but many organisms can use it when necessary, usually when 

oxygen is lacking. These are called facultative anaerobes and include yeasts and other 

fungi, bacteria, parts of plants such as germinating seeds and waterlogged roots, 

certain worms and similar animals found in stagnant water or at the sea-bottom, and 

mammalian muscle cells. A few bacteria and similar microbes are obligate anaerobes 
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because they can not use oxygen at all, oxygen being highly poisonous to them. 

Without oxygen, pyruvate is not metabolized by cellular respiration, rather undergoes a 

process of fermentation. The pyruvate is not transported into the mitochondrion, but 

remains in the cytoplasm. Anaerobic respiration is less efficient at using the energy from 

glucose since 2 ATP are produced during anaerobic respiration per glucose, compared 

to the 30 ATP per glucose produced by aerobic respiration. Anaerobic respiration may 

be used by a cell even before the oxygen levels are depleted. The results are usually 

substances such as lactic acid (lactate), pyruvic acid (pyruvate) or ethyl alcohol 

(ethanol). The reaction can be represented by the general chemical equation:  

 

C6H12O6 (aq) → 2 C3H4O3 (aq) + 2 H2 (g)     (∆Hc = -120 kJ)................(2) 

 

1.2 Anaerobic fumarate respiration in Wolinella succinogenes 
Wolinella succinogenes, a member of ε-subclass of the proteobacteria, performs 

oxidative phosphorylation with fumarate instead of molecular oxygen as terminal 

electron acceptor and molecular hydrogen or formate as electron donors (Kröger and 

Innerhofer, 1976), (Kröger et al., 2002), (Lancaster, 2004). Fumarate respiration, 

defined by the reduction of fumarate by the above donors, is catalyzed by an electron 

transport chain in the bacterial membrane and the free energy associated with the 

electron transfer reactions is responsible for the generation of a transmembrane 

electrochemical proton potential (Δp) across the bacterial membrane. The proton 

potential in turn drives the reaction catalysed by the ATP synthase. The fumarate 

respiratory chain, shown in Figure 2, consists of hydrogenase, fumarate reductase, 

formate dehydrogenase and the ATP synthase. Fumarate respiration is the most 

commonly occurring type of anaerobic respiration, probably due to the fact that 

fumarate can be formed from the common substances of life (e.g. carbohydrates and 

proteins). 

 The enzyme quinol:fumarate reductase (QFR) is a diheme-containing membrane 

protein complex that couples the two-electron reduction of fumarate to succinate 

(reaction 1, Figure 1) to the two-electron oxidation of the low-potential menaquinol to 

menaquinone (reaction 2, Figure 1). QFR is also able to catalyse the reverse reaction in 

vitro (Lemma et al., 1991) and can thus also operate as a succinate:quinone reductase 
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(SQR). Menaquinone-6 and methyl-menaquinone-6 (both are derivatives of 1, 4- 

naphthoquinone with a six isoprenyl side chain) are the major quinone species 

(Lancaster and Simon, 2002) involved here. The high potential quinones are generally 

used in aerobic respiration and the low potential quinones are used in bacterial 

anaerobic respiration (Figure 2).  

 
Figure 1 The schematic reaction of two-electron reduction of fumarate to succinate (reaction 1) to the 

two-electron oxidation of quinol to quinone (reaction 2) (Kröger et al., 1992), (Lancaster, 2004), (Lemma 

et al., 1991).  

 

 
Figure 2 The scheme of anaerobic respiration in Wolinella succinogenes (Lancaster, 2003). The key 

enzymes involved in fumarate respiration are shown here. The MK/MKH2 indicates 

menaquinone/menaquinol couple. QFR is shown in pink. 

 



Introduction 5 

1.3 Structural and functional properties of Quinol Fumarate 
Reductase (QFR) 
1.3.1 QFR is a member of the succinate:quinone oxidoreductases (SQORs) 
superfamily 
Succinate:quinone reductase (SQR or aerobic respiratory “complex II”) (Cecchini, 2003), 

(Lancaster, 2004), (Saraste, 1999) catalyzes the oxidation of succinate by quinone, the 

reverse reaction to that catalysed by QFR. Both SQR and QFR complexes together 

constitute the succinate:quinone oxidoreductases (SQORs; EC 1.3.5.1) superfamily 

(Hägerhäll, 1997), (Lancaster and Simon, 2002), (Lancaster, 2003), (Ohnishi et al., 

2000). SQORs are classified in five different types (A-E) (Figure 3) based on their 

individual hydrophobic domain and heme content. QFR from W. succinogenes is a type 

“B” SQOR having one hydrophobic subunit C and two heme groups, one proximal and 

another distal with respect to the hydrophilic subunit (Lancaster et al., 1999). As QFR 

and SQR catalyze the same reaction in both directions, they can be distinguished only 

based on the direction of the catalysed reaction in vivo. 

 
Figure 3 Classification of succinate:quinone oxidoreductase (SQOR) superfamily. The integral 

transmembrane subunits (in green) can contain heme groups (yellow rectangles). The hydrophilic 

subunits are drawn in red (subunit B) and blue (subunit A) (modified from (Lancaster, 2001)). 

 

1.3.2 The 3D structure and catalytic reactions in QFR 
The 3D structure of two different crystal forms (A and B) of W. succinogenes QFR in its 

oxidized state has been previously solved at resolutions of 2.2 and 2.33 Å, respectively 

(PDB ID 1QLA and 1QLB, respectively) (Lancaster et al., 1999). The structure is shown 
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in Figure 4. Recently an improved crystal structure was solved at 1.78 Å resolution 

(PDB ID 2BS2) (Madej et al., 2006a).  
  The enzyme is a homo-dimer and each monomer comprises two hydrophilic 

subunits (FrdA & FrdB with their respective molecular masses 73 kDa and 27 kDa) and 

one hydrophobic, membrane-integrated subunit FrdC (molecular mass 30 kDa). The 

larger hydrophilic subunit A contains a covalently bound flavin adenine dinucleotide 

(FAD), the smaller hydrophilic subunit B contains three iron-sulphur clusters ([2Fe-2S], 

[4Fe-4S], [3Fe-4S]) and the hydrophobic subunit C contains two heme b groups, 

proximal heme bP and distal heme bD (proximal and distal convention is used according 

to their relative proximity to the hydrophilic subunits A and B). Heme bP corresponds 

(Haas and Lancaster, 2004) to the “high-potential” heme bH (Em,7 = -9 mV) (Lancaster et 

al., 2000) and heme bD to the low-potential heme bL (Em,7 = -152 mV) (Lancaster et al., 

2000). 
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Figure 4 The 3-dimensional structure of W. succinogenes QFR homo-dimer of the hetero-trimeric 

complexes of subunits A (turquoise and blue), B (purple and red) and C (green and light blue) (Lancaster 

et al., 1999). The six prosthetic group in each hetero-trimer are the covalently-bound FAD, the [2Fe-2S], 

the [4Fe-4S] and the [3Fe-4S], the proximal heme (bH) and the distal heme (bL). 

 

1.3.3 Catalytic sites are oriented to opposite sides of the membrane 
As evident from the high-resolution X-ray structure of W. succinogenes QFR, the binding 

site of succinate/fumarate is located between the FAD-binding domain and the capping 

domain next to the plane of the FAD isoalloxazine ring (Lancaster, 2004), (Lancaster et 

al., 2001). The polar nature due to the H-bonding environment around the carboxylic 

groups generates a positive charge at the C-β position of the polarised fumarate (Figure 

5). The hydride transfer to this C-β position from FAD cofactor along with protonation at 
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C-α by an arginine located at the opposite side of fumarate catalytic site constitutes the 

reduction of fumarate with two protons (Lancaster et al., 2001). 

 

 
Figure 5 Possible mechanism of fumarate reduction in W. succinogenes QFR. Hydride transfer from the 

N5 of FAD to the β-methenyl of fumarate is coupled to proton transfer to the position of the substrate from 

the side chainof Arg A301 (Lancaster et al., 2001). 

 

The site for menaquinol oxidation is located distally, close to the periplasmic site of the 

membrane and close to the low potential heme bD (Lancaster et al., 2000). The 

functional role and location of the glutamate residue (FrdC-E66) indicates that this 

particular residue plays a vital role in transferring two protons which are liberated upon 

menaquinol oxidation in the hydrophobic phase can be released on the periplasmic 

aqueous phase. 

Catalytic functionality of QFR, therefore, couples the two-electron reduction of 

fumarate to succinate to the two-electron oxidation of menaquinol to menaquinone, 

transferring electrons from periplasmic quinol-oxidising site to the cytoplasmic fumarate-

reducing site. The linear arrangement of the prosthetic groups in the complex (Figure 4) 

provides a straight forward pathway by which electrons could be transferred efficiently 

between the two sites of catalysis (Lancaster, 2004). In case of electron transfer 

proteins, it has been postulated (Page et al., 1999) that physiological electron transfer 

between prosthetic groups occurs if their edge-to-edge distance is shorter than 14 Å. 
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Based on this, efficient electron tunnelling can only be ensured in case of the cofactors 

of each single heterotrimer in QFR, but not between the two different monomers.  

The redox midpoint potentials (Em) of the cofactors are summarized in Table 1 

and taken from the references mentioned in Table 1. Furthermore, calculation of the 

electron transfer rate constants between cofactors has allowed identification of the rate-

limiting steps of the catalytic reaction (Figure 4). 

 
Table 1 Redox midpoint potential (Em) of the cofactors from the W. succinogenes QFR. The titration of 

heme groups was determined at pH 7.0, iron-sulphur clusters and FAD at pH 7.3 (Mileni et al., 2006). The 

midpoint potentials for MK/MKH2 and fumarate/succinate couples were taken from (Lancaster, 2004), 

(Lancaster et al., 2000). 

Cofactor type Em (mV) 

Fumarate/Succinate 25 

FAD
.-
 -125 

[2Fe-2S]
2+/1+

 -112 

[4Fe-4S] 
2+/1+

 -340 

[3Fe-4S] 
1+/0

 -61 

Proximal heme -9 

Distal heme -152 

MK/MKH
2
 -75 

 

The establishment of various enzymatic activity assays on QFR (Lancaster et al., 2000), 

(Lancaster et al., 2005) has provided powerful methods for its functional study. The 

QFR from W. succinogenes is a highly active membrane protein complex with turnover 

times (i.e. the inverse of turnover rates) in the range of tens of milliseconds (calculated 

from a specific activity of 7.4 U mg-1 (Lancaster et al., 2000). 

 

1.3.4 Proton-coupled electron transfer (PCET) reactions in QFR 
The orientation of the catalytic sites of fumarate reduction (Lancaster et al., 2001), 

associated with proton binding, and menaquinol oxidation (Lancaster et al., 2000), 

associated with proton release, towards opposite sides if the membrane indicated that 

quinol oxidation by fumarate should be an electrogenic process in W. succinogenes 

(Figure 4), i.e. associated directly with the establishment of an electrochemical proton 
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potential across the membrane. Support for the ∆p and ∆pH generation came from the 

experiments of some diheme-containing representatives of the superfamily of QFRs and 

succinate:menaquinone reductases (SQRs). When quinones with finely-tuned 

oxidation/reduction potential were used, the succinate:menaquinone reductase from 

Bacillus licheniformis supported the ∆p generation making the otherwise 

thermodynamically unfavourable oxidation of succinate by menaquinol (Madej et al., 

2006b). However, analogous experiments for isolated W. succinogenes QFR 

reconstituted into liposomes had shown that the oxidation of quinol by fumarate as 

catalysed by this enzyme is an electroneutral process (Biel et al., 2002), (Geisler et al., 

1994), (Kröger et al., 2002), (Madej et al., 2006b).  

 

1.3.5 The E-pathway hypothesis explains the overall electroneutrality 
To reconcile these apparently conflicting experimental observations mentioned in 1.3.4, 

the so-called ‘E-pathway hypothesis’ (Lancaster, 2002) was proposed (Figure 6). 

According to this working hypothesis, the transmembrane transfer of two electrons in W. 

succinogenes QFR is coupled to the compensatory, parallel translocation of one proton 

per electron from the periplasm to the cytoplasm. The proton transfer pathway used is 

transiently established during reduction of the heme groups and is closed in the 

oxidised enzyme. Two most prominent constituents of this suggested pathway are 

thought to be the ring C propionate of the distal heme bD and, in particular, the amino 

acid residue Glu C180, after which the “E-pathway” was named (Figure 6). Since the 

first proposal of this hypothesis, a number of theoretical (Haas and Lancaster, 2004) 

and experimental results (Haas et al., 2005), (Lancaster et al., 2005), (Mileni et al., 

2005) have been obtained that support it (reviewed in (Lancaster et al., 2006), 

(Lancaster et al., 2005)). 

  A combination of 13C labelling of the heme propionates (Mileni et al., 2005) with 

redox-induced FTIR experiements and multiconformation continuum electrostatics 

(MCCE) calculations (Haas and Lancaster, 2004) support a (de)protonation event, 

possibly accompanied by a conformational change (of at least one of the two distal 

heme propionates) upon heme reduction. Since it was established that the ring D 

propionate of the low-potential heme is involved in an extensive salt-bridge interaction 

with a nearby Arg residue (Haas and Lancaster, 2004), (Lancaster et al., 1999) the 
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obvious candidate for the observed effects is the ring C propionate, which is fully 

consistent with the proposed role of the residue in the E-pathway hypothesis. 

  The Glu C180 residue is conserved in all ε-proteobacterial diheme-containing 

QFR enzymes (Lancaster, 2002). The essential role of Glu C180 residue was first 

supported by multiconformation continuum electrostatics calculations (Haas and 

Lancaster, 2004), which predicted that this residue undergoes the combination of a 

change in protonation and conformation upon reduction of the heme groups, a result 

that was also obtained experimentally by the combination of FTIR difference 

spectroscopy (Haas et al., 2005) and site-directed mutagenesis, involving the 

replacement of Glu C180 with a Gln residue (Lancaster et al., 2005). The mutant E180Q 

was unable to grow with fumarate as the terminal electron acceptor. The mutant did 

grow when fumarate was replaced by nitrate and the variant QFR was produced. After 

refining the structure of the variant QFR at 2.2 Å resolution, any major structural 

changes compared to the structure of the wild-type enzyme was ruled out (Lancaster et 

al., 2005).  
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Figure 6 The ‘E-pathway’ hypothesis and the electron and proton transfer in the Wolinella succinogenes 

QFR. (Lancaster, 2002), (Lancaster et al., 2006). On the left side, hypothetical ∆p generation is shown as 

suggested by the essential role of Glu C66 for menaquinol oxidation by W. succinogenes QFR (Lancaster 

et al., 2000). The prosthetic groups of the W. succinogenes QFR dimer are displayed (coordinate set 

1QLA; (Lancaster et al., 1999)). Also indicated are the side chain of Glu C66 and a tentative model of 

menaquinol (MKH2) binding, based on the coordinates of QFR-bound DMN (PDB entry 2BS4 (Lancaster 

et al., 2005)). The position of bound fumarate is taken from PDB entry 1QLB (Lancaster et al., 1999). The 

arrangement of the prosthetic groups such as heme bD, heme bP, [3Fe-4S], [4Fe-4S], [2Fe-2S] and FAD 

as well as determined midpoint (Em) potentials (Table 1) suggest that electron transfer is proceeding in 

such an order. On the right side, “E-pathway hypothesis” is depicted. The two protons that are liberated 

upon oxidation of menaquinol (MKH2) are released to the periplasm (bottom) via the residue Glu C66. In 

compensation, coupled to electron transfer via the two heme groups, protons are transferred from the 

periplasm via the ring C propionate of the distal heme bD and the residue Glu C180 (indicated by the blue 

circles) to the cytoplasm (top), where they replace those protons which are bound during fumarate 

reduction. In the oxidised state of the enzyme, the “E-pathway” is blocked. However, upon reduction, the 

‘E-pathway’ is open. 
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1.3.6 Experimental evidence for E-pathway and alternative implementation of the 
E-pathway hypothesis 
Non-functionality of the ‘E-pathway’ in the E180Q variant gave rise to the electrogenicity 

of catalysis. This came from the observation that the variant E180Q was only very 

weakly catalytically active upon 2,3-dimethyl-1,4-naphthoquinol (DMNH2) oxidation by 

fumarate and the addition of the protonophore carbonyl cyanide m-

chlorophenylhydrazone (CCCP) enabled the catalysis of DMNH2 oxidation (Madej et al., 

2006a). Initially, the problem to detect the Δp in the E180Q variant was attributed to the 

small difference in the oxidation-reduction midpoint potential between the 2,3-

dimethyl,1,4-naphthoquinone (DMN/DMNH2) couple (Em = -35 mV) (and the 

fumarate/succinate) couple, making the overall reaction only mildly exergonic (ΔG ≈ -12 

kJ/mol) under standard conditions at pH 7 (Madej et al., 2006a). Therefore, a substrate 

analogue with lower redox midpoint potential, namely the 2-methyl-3-methylamino-1,4-

naphthoquinone (MMAN), was designed. The advantage of the MMAN/MMANH2 couple 

was its lower redox potential compared to that of the DMN/DMNH2 couple, (ΔEm = -90 

mV (Madej et al., 2006a)), thus increasing the ΔG of the reaction from ΔG ≈ -12 kJ/mol 

to ΔG ≈ -30 kJ/mol under standard conditions at pH 7 (Madej et al., 2006a) and, in 

principle, providing sufficient driving force for the establishment of Δp in the direction of 

quinol oxidation by fumarate. 

In contrast to the results obtained with the wild-type enzyme, quinol oxidation by 

the E180Q variant was clearly associated with an acidification of the interior of the 

proteoliposomes (the generation of a proton gradient, ΔpH) (Madej et al., 2006a) as well 

as TPB- entry into the proteoliposomes (the generation of a membrane potential Δψ) 

(Madej et al., 2006a). Taken together with the results obtained for the proteoliposomal 

wild-type enzyme, these results clearly demonstrate the presence and absence of the 

“E-pathway” in the WT and E180Q-variant enzymes, respectively (Madej et al., 2006a). 

While the E-pathway hypothesis as depicted in Figure 6 is the simplest model 

compatible with the experimental data obtained so far, it is by no means unique. The 

simplifying assumption that both protons released upon quinol oxidation are released 

via the same pathway may turn out not to be true, as may the assumption that both E-

pathway protons have the same entry point. In particular, the scenario that one proton is 

transferred directly from the quinol oxidation site to the E-pathway (Figure 7) also 
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explains the available data. However, there is no such proton transfer connectivity 

apparent from the structure of the oxidised enzyme, so this scenario would require an 

appropriate conformational change during catalysis (Lancaster et al., 2008), (Madej et 

al., 2009). 

 
Figure 7 Alternative implementation of the E-pathway hypothesis. (Lancaster et al., 2008), (Madej et al., 

2009) 

 

1.3.7 The redox Bohr effect and the role of Glu C180 as a key residue in the E-
pathway 
Functional cooperativity between specific protein centres plays a major role in global 

regulation in protein functionality. Change of the redox state of a single metal ion, for 

instance, within the protein structure can impair the proton effectors to bind (or unbind) 

to a particular residue or charged group. This coupled electrostatic interaction between 
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the redox-active groups and the protonable residues is called redox Bohr effect in 

biological redox proteins (Papa et al., 1998). In many complex redox-active membrane 

bound proteins, this electron/proton linkage, therefore, play a major role in energy 

transduction processes. Redox Bohr effect can also influence the vectorial proton 

translocation in specific proton pumping mechanisms in respiratory chain (Papa, 1976), 

(Papa et al., 1994).  

 

Theoretical and thermodynamic background of the redox Bohr effect 
The standard Nernst equation (derived by W. H. Nernst in 1889) (potentials with respect 

to the SHE at pH 7.0) for a half cell reaction  

a red → a ox + ne-  

The equilibrium redox potential (Eh) can be represented as  

ox

red
mxh a

a
nF
RTEE ln−= ……….……………….…….(3) 

Where, Emx is the midpoint potential of the redox reaction with x as the ambient pH 

value, R is the universal gas constant (8.314 J-1 K-1 mol-1), T is the absolute temperature 

(TK = 273.15 + T 0C), n is the number of electron transferred in the half cell reaction, F is 

the Faraday constant (columbic charge per mole of electron) (9.64853 * 104 Cmol-1), 

ared and aox are the activities of the reduced and oxidized species respectively. 

For a single electron (n=1) redox-coupled reaction where both acidic and basic form 

exist for a particular chemical species, the two half cell reaction can be represented in a 

combined way (Dutton, 1978). For a single protonation reaction, which also involves a 

single electron change (n=1),  

red H = ox + e- + H+ under standard condition (T = 298.15K) yields equation (4) as  

Eh = Em0 06.0
]ox[

]H red[log06.0 −− pH   ……………(4) 

Equation (4) represents a linear pH dependence of Em0 being valid within an ambient 

pH range. For a broader range of pH, the release and uptake of proton and electron can 

be schematically represented as depicted in Figure 8. The scheme reflects the basis of 

the mechanistic aspect of the redox Bohr effect (Papa et al., 1998).  
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Figure 8 Graphical scheme of the redox Bohr effect mechanism (figure adapted and modified from Louro 

et al., 1996). Proton exchange reactions in either the fully reduced or fully oxidized state are indicated by 

vertical arrows. Pure redox reactions of the protonated or deprotonated species are indicated by 

horizontal arrows. The diagonal line indicates the coupled reaction. 

 

Kred and Kox are the dissociation constants for the deprotonation of the fully reduced 

species and deprotonation of fully oxidized species, respectively. 

H] [red
]][H[red

red

+−

=K ……………………………….............(5a) 

H] [ox
][ox][H

ox +

+

=K …………………………………………..(5b) 

Considering the total oxidized species and the total reduced species, the entire redox 

reaction (2) can be represented as: 

Eh = Em0 
H] [ox[ox]
H] [red][redlog06.0 +

−

+
+

−  ……………………..(6) 

In equation (6), replacing the [red H] and [ox+ H] from equations (5a) and (5b) 

respectively, we obtain: 

Eh = Em0 
])H[(
])H[(

log06.0
ox

red
+

+

+
+

+
K
K ………………………..(7) 

This final equation (5) can be schematically represented as: 
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Figure 9 The pH dependence for the redox potential of centres participating in the redox Bohr effect 

(figure adapted and modified from Louro et al., 1996). 

 

1.4 Static and Time-resolved Approaches Towards a Detailed 
Investigation of Coupled Electron and Proton Transfer in QFR 
Only a limited number of existing biophysical techniques can be employed to investigate 

the details of the substrate-protein interactions (Breton and Nabedryk, 1996), (Breton et 

al., 1996), (Brudler et al., 1995). Although limited by its resolution, X-ray crystallography 

(Deisenhofer and Michel, 1989), (Ermler et al., 1994), (Lancaster et al., 1995) provides 

the most crucial information on the general geometry of the binding site and on the 

identity of the involved amino-acid residues. Techniques like EPR and solid-state NMR 

can be utilized though they are also limited for detecting a single redox state of the 

system. Minute changes in both the oxidized and reduced states of a redox protein 

system can be selectively and sensitively monitored by Fourier Transformed Infrared 

(FTIR) difference spectroscopy. Rapid scan FTIR difference spectroscopy is a suitable 

technique that allows the course of the reaction to be monitored in a time dependent 

fashion (Barth et al., 1995), (Barth et al., 1996). 

 

1.4.1 Static approaches 
In the case of W. succinogenes QFR, the circumstances for investigating redox Bohr 

effects are favourable since the amino acid sequence (Körtner et al., 1990), (Lauterbach 
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et al., 1990) as well as the crystal structure of the enzyme is known (Lancaster et al., 

1999). Furthermore, a mutagenesis system for W. succinogenes QFR is established 

(Simon et al., 1998) that allows investigating specific enzyme variants. One of the 

general consequences of the redox Bohr effects in cytochromes is the pH dependence 

of the heme midpoint potentials (Wilson and Leigh, 1972). In this present study, the 

(de)protonation event with respect to the heme redox transition in the W. succinogenes 

QFR wild-type enzyme and variant E180Q were investigated with the help of 

electrochemically induced FTIR spectroscopy.  

Although considerable efforts have been devoted and significant details are 

already known regarding the catalytic mechanism and enzymatic function of QFR, only 

little is known to date about the low infrared contribution of the heme porphyrin modes 

and the heme-ligating groups. Heme porphyrin ring vibration and involvement of heme 

ligating groups have been previously well studied (Boucher and Katz, 2002), (Dörr et al., 

2006), (Dörr et al., 2008) and hence, are expected to contribute in this spectral region of 

interest (Berthomieu et al., 2006), (Marboutin et al., 2006), (Marboutin et al., 2009), 

(Xerri et al., 2009). Therefore, in another approach employing static FTIR technique, we 

used static electrochemically induced FTIR difference spectroscopy to unveil the redox- 

and pH-dependent properties of heme porphyrins and heme ligands with individual 

contributions from both heme groups, namely the proximal heme bH and the distal heme 

bL. Individual contributions from the low- and the high- potential heme give rise to 

different signals in the low infrared range. The role of axially ligated histidine ligands can 

also be investigated by changes in their FTIR signal with pH variation within a certain 

physiological pH (or pD depending upon solvent/buffer used) range of QFR. In the case 

of heme-containing redox proteins, electron-coupled proton transfer reactions are 

frequently mediated by changes in the hydrogen bonding pattern of heme-ligated 

histidines (Costa et al., 1992), (Haas et al., 2005), (Lancaster et al., 2005). 

 

1.4.2 Time-resolved approaches 
Possible involvement of specific amino acid residues and cofactors in this electron-

coupled proton transfer pathway has been reported in previous studies (Lancaster et al., 

2005), (Haas et al., 2005). Earlier studies of Unden et al. (1984) on QFR demonstrated 

that the kinetic response of the redox cofactors to the addition of 2,3-dimethyl-1,4-
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naphthoquinol is consistent with the results obtained from the reconstitution 

experiments (Lancaster et al., 2000). Therefore, the necessary components of the 

electron transport chain are kinetically competent as members of the catalytic process. 

A special interest underlied in the question of possible structural and redox-related 

changes upon substrate binding that might be involved in the control of such a 

transiently established proton transfer pathway. This interest in understanding the 

underlying catalytic reaction mechanism of QFR led to explore the possibility of using 

photo-releasable substrate to probe the reaction chemistry of the enzyme (Gerwert, 

1993), (Lübben and Gerwert, 1996). One of the advantages of using caged compounds 

in FTIR difference spectroscopy is that this method can simultaneously provide 

information on the redox and/or protonation state of the cofactor involved and 

subsequent details on the protein response (Mezzetti et al., 2003).  

For studying rapid reactions, the conventional techniques are limited in time 

resolution to resolve the underlying mechanisms. Therefore, in order to probe dynamics 

of ultrafast molecular events, short pulses are essential for initial perturbation (Barth et 

al., 1995), (Barth et al., 1996). Based on the fact that the two heme groups in QFR have 

different redox potentials, chemical reduction can generate a mixed-valence state in 

QFR. Upon excitation by a short laser flash on such a semi-reduced state of QFR, 

electrons on the reduced high potential heme can be selectively excited and thereby the 

decay of the transient absorption can be monitored. 

The planar heme prosthetic group (Fe-Protoporphyrin) gives this class of proteins 

their rich and interesting spectroscopic properties. The absorbance of the hemes is due 

to redox induced charge transfer between the electronic systems of the central iron and 

the porphyrin ring or the ligands ligated to the hemes (Franzen and Boxer, 1997). For 

the hemes, a ground state, S0, and three excited states, S1 to S3, are considered; and 

the corresponding transitions are of the type π-π* (Guest and Noe, 1988), (Franzen and 

Boxer, 1997). The two dominant contributions in the spectra are caused by S0  S1 (α-

band) and S0  S3 (Soret-band) transitions. Thus, the strong π to π* electronic 

excitation of the porphyrin ring around 400 nm is commonly known as Soret band (or 

gamma band) in cytochromes. This band couples the nuclear motion of the heme and 

its axial ligands. This coupling leads to spectral broadening of the optical transition and 

a strong Raman signal (Shelnutt, 1981). The Soret band in W. succinogenes QFR is 
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positioned at 415 nm in the oxidised state of the heme and at 428 nm in the reduced 

state of the heme. Changes in the overlap between the dyz, dxz (or dπ) orbitals of the iron 

with the eg π* orbitals of the porphyrin affect the absorption energy and are hence 

responsible for the Soret band bathochromic shift in different heme redox states 

(Franzen and Boxer, 1997), (Franzen et al., 2002). 

 

1.5 Relevance and usefulness of the employed methods 
In the so-called mid-infrared region (2300-1000 cm-1), reaction-induced FTIR difference 

spectroscopy is a very powerful and highly sensitive technique to extract information 

about subtle changes occurring within the active sites of the protein (Mäntele, 1993). A 

variation in the redox state of active centres in proteins can bring about structural 

changes. Electrochemically-induced FTIR difference spectroscopy is a useful method to 

study these conformational reorganisations of the protein backbone, side chains, 

cofactors and subsequent protonation/deprotonation events (Haas et al., 2005), (Hellwig 

et al., 1996), (Hellwig et al., 1998), (Mäntele, 1993), (Mileni et al., 2005). In order to 

investigate the pH dependence of the amino acid residue Glu C180 in the framework of 

redox Bohr effect, electrochemically induced FTIR difference spectroscopy has been 

performed in the mid-infrared region from 1800 to 1000 cm-1. The 

protonation/deprotonation state and the change of the hydrogen-bonding environment 

of Glu C180 has been previously investigated (Haas et al., 2005) with respect to the 

heme redox transition. In the present study, spectra of WT QFR and QFR E 180Q 

variant have been recorded between pH 5.5 and pH 9.0 showing a strong pH 

dependency of the protonated carboxylic acid band assigned to Glu C180 around 1740 

cm-1 indicating protonation changes of the involved carboxylic acid group therein. The 

observed differences between WT and E180Q are discussed with respect to the 

mechanism of the proposed “E-pathway hypothesis”.  

Various methods have been developed which can be applied to calculate pKas of 

residues in proteins. The biophysics simulation program MultiConformation Continuum 

Clectrostatics (MCCE) combines the molecular mechanics and the continuum 

electrostatics (Alexov and Gunner, 1997), (Beroza and Case, 1996), (Gunner and 

Alexov, 2000), (Spassov et al., 2001), (You and Bashford, 1995). These methods keep 

the protein dielectric constant low and allow the consideration of multiple positions of 
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side chains. Analysis of the results provides a picture of different residues throughout 

the protein that change their position or charge and occupancy upon simulated pH 

and/or Eh titration. In the present context; MCCE, calculations have been performed in 

order to obtain Glu C180 residue occupancy with four different modeled redox states of 

the distal and proximal heme groups with respect to the variation in pH range from 5 to 

9. It has been shown that the experimentally obtained results perfectly correlate with 

theoretical electrostatic calculations (Haas and Lancaster, 2004) of simulated heme 

reduction and are relevant for the understanding of the catalytic mechanism of QFR. 

In the case of redox-active proteins, studying metal-ligand vibrations is crucial to 

obtain important information about the metal-ligand bond strength and its role in specific 

redox-linked mechanisms. Vibrational spectroscopy can be applied to probe specific 

chemical groups involved in metal binding and the characteristics of metal-ligand 

interactions. Vibrational transitions are independent of the metal’s magnetism and redox 

state and hence describe the electronic properties of a particular amino acid ligated to a 

specific metal (Gourion-Arsiquaud et al., 2005). Metal–ligand vibrations of single bonds 

contribute to the spectrum in the low- and far- infrared range (1000 - 50 cm-1). FTIR 

measurement in the low-frequency (“low-frequency” region of IR spectrum is generally 

referred to <1000 cm-1) spectral range is often limited by the extensive absorption of 

water modes (Chu et al., 1999), (Dörr et al., 2006), (Wolpert and Hellwig, 2006). The 

use of D2O (Goulden, 1959), small sample layer thickness (Fabian and Mäntele, 2002) 

and sufficiently concentrated protein samples can solve this problem to a significant 

extent. Reliable low-frequency FTIR difference spectra can be obtained with a precise 

temperature control of ±0.1°C.  

Time-resolved FTIR (tr-FTIR) spectroscopy is a useful and established tool to 

analyse the changes in secondary structural population (or conformational changes) in 

protein’s substrate binding domain with the ligand binding process (Barth and Zscherp, 

2000). Mechanism of photochemical release of fumarate from the caged fumarate was 

studied. Vibrational difference spectra for the formation first of the aci-nitro anion 

intermediate and subsequent structural and functional reorganisations were traced in 

the millisecond to second time domain. Spectral characteristics of the reaction products 

arising from the caging group have been determined. Although the entire reaction 

kinetics was completed within approximately 200 ms after the flashing, it was possible 
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to obtain difference spectra between the cage only and the released cage with QFR in 

solution (in phosphate buffer, pH 7.4) in the presence of glutathione. For the assignment 

kinetic data were compared to the equilibrium measurements of fumarate binding to 

QFR reflected in attenuated total reflection (ATR) FTIR experiments and its correlation 

with the possible structural changes. This allows identification of the transient 

intermediates upon substrate binding.  

In another time-resolved approach to investigate the inter-heme electron transfer 

in QFR, VIS difference spectra were obtained by separately applying chemical reducing 

agent such as dithionite and/or DMNH2 (2, 3-dimethyl-1, 4-naphthoquinol). DNMH2 

reduction was particularly carried out in order to make specific reduction of only the high 

potential heme. As the DMN/DMNH2 redox couple has midpoint potential of -75 mV 

(Madej et al., 2006a) which is only able to reduced the high potential heme specifically, 

it is therefore suitable for kinetic studies to create such a state where the high potential 

heme only will be occupied with electron and thereby the measurement of electron 

transfer from the high potential heme to the low potential heme would be feasible. A 

single-beam spectrum was measured and taken as a reference for subsequent potential 

steps that covered the heme potential range between fully reduced and fully oxidized. 
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2 Materials and methods 
2.1 Materials 
2.1.1 List of mediators 
One of the rate-limiting factors in protein electrochemistry is the diffusion of the protein 

to the working electrode. Addition of small redox-active substances (so called “redox 

mediators”) can considerably shorten the diffusion time (Baymann et al., 1991), 

(Baymann et al., 1999), (Dutton, 1978) of the large protein complexes and therefore 

fasten the electron exchange rate between the protein and electrode surface. This 

electrical contact is important in case of large and slowly-diffusing proteins containing 

redox-active groups (cofactors) which are deeply lying and hidden within the protein’s 

core. Effective electron transmission is ensured by matching the range of the redox 

midpoint potential of the cofactors and that of the used mediator’s composition. Since 

QFR contains several cofactors with different redox midpoint potential values (Mileni et 

al., 2006), the mediator composition was designed accordingly with substances (Haas 

et al., 2005), (Hellwig et al., 1998), (Hellwig et al., 2000) which covered the entire 

potential range under examination. Table 2 shows the actual list of mediators used for 

electrochemical measurements. 

 
Table 2 List of mediators for electrochemical measurements. 

Mediator                   MW (g/mol)    Em (mV) vs. Ag/AgCl     Solvent          Company 

tetrachlorobenzoquinone        245.9           72                    diethyl ether    Aldrich 

2,6-dichlorophenolindophenol    290.1               9                      ethanol             Sigma 

ruthenium hexaminchloride       274.2             -8                      water                Aldrich 

anthraquinone-2,6-disulphonate 368.0              -23                     water               Fluka 

1,2-naphtoquinone                  158.2               -63                    ethanol            Aldrich 

anthraquinone                            207.1               -108                  ethanol            Fluka 

trimethylhydroquinone             152.2               -108                  ethanol             Aldrich 

5-hydroxy-1,4-naphtoquinone   174.2                 -158                ethanol           Fluka 

duroquinone                             164.2                 -198              ethanol           Fluka 

menadione                                172.2               -220               acetone          Sigma 

2-hydroxy-1,4-naphtoquinone   174.2             -333               ethanol           Aldrich 

anthraquinone-2-sulphonate     328.3           -433               ethanol           Aldrich 

neutral red                            288.8               -515                ethanol           Sigma 

benzyl viologen                      409.4              -568                water              Sigma 
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methyl viologen                   257.2               -628                water               Sigma 

 
2.1.2 List of chemicals 
Table 3 List of chemicals. 

Substance                                      Company                           Website 

Mercaptopropionic acid        Fluka, Switzerland    www.sigmaaldrich.com 

K2HPO4 and KH2PO4   Carl Roth GmbH & Co., Germany www.carlroth.com 

KCl                                        Merck, Darmstadt, Germany  www.merck.de 

n-dodecyl-β-D-maltoside (LM)    Glycon Biochemicals, Germany  www.glycon.de 

Sodium borate                          Merck, Germany   www.merck.de 

Cacodylic acid - sodium salt, 3 H2O Fluka, Switzerland   www.sigmaaldrich.com 

Hydrochloric acid                             Merck, Germany   www.merck.de 

D2O (99.9% purity)                Deutero GmbH, Germany  www.deutero.de 

EDTA       GERBU, Germany   www.gerbu.de 

L-Glutathione    Fluka, Switzerland   www.sigmaaldrich.com 

DTT      Merck, Germany   www.merck.de 

Tris     Carl Roth GmbH & Co., Germany www.carlroth.com 

Morpholinoethanesulfonic acid (MES) Carl Roth GmbH & Co., Germany www.carlroth.com 

CHES     Merck, Germany   www.merck.de 

Mono-ethyl fumarate   Fluka, Switzerland   www.sigmaaldrich.com 

 
2.1.3 List of laboratory equipment 
Table 4 List of laboratory equipment 

Device         Company  

Modified IFS 25 FTIR spectrometer   Bruker Optics, Ettlingen, Germany 

(Including UV/VIS spectrometer as provided by Institute of Biophysics, JWGU) 

Modified IFS 66 FTIR spectrometer    Bruker Optics, Ettlingen, Germany 

Potentiostat (designed and constructed in JWGU) as provided by Institute of Biophysics, JWGU 

Spectroelectrochemical cell    as provided by Institute of Biophysics, JWGU 

Potentiostat chi600C      IJ Cambria Scientific Ltd, Carms UK 

Spectroelectrochemical cell type 1    IJ Cambria Scientific Ltd, Carms UK 

Spectroelectrochemical cell type 2    IJ Cambria Scientific Ltd, Carms UK 

Gold mesh (for working electrode)    Buckbee-Mears, St. Paul, USA 

Table centrifuge “4 K 10”     Sigma, Steinheim, Germany 

Table centrifuge “Labofuge 200”    Heraeus, Hanau, Germany 

Table centrifuge “5415C”     Eppendorf, Hamburg, Germany 

Precision balances      Sartorius, Göttingen, Germany 
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Centrisart I filtration tubes     Sartorius, Göttingen, Germany 

Vivaspin 500 µL concentrators     Vivascience, Hannover, Germany 

pH meter       SevenEasy Mettler Toledo (for buffer), Roth 

FTIR (IFS 66) CaF2 windows    Innovectis GmbH, Frankfurt Main, Germany 

FTIR (IFS 66) sample holders     as provided by Institute of Biophysics, JWGU 

AtmosBagTM (AL-211)      Sigma-Aldrich Co., Milwaukee, USA 

ZnSe windows      Thorlabs, Munich, Germany 

Double-beam spectrophotometer   U3000, Hitachi, Japan 

XeCl excimer laser (RD-EXC-200)  Radiant Dyes Laser Accessories GmbH, 

Wermelskirchen, Germany. 

fs laser system CLARK CPA 2001 (Dexter, MI, USA) 

 

2.2 Infrared Spectroscopy 
2.2.1 Vibrational and vibrational-rotational (infrared) spectroscopy 
These spectra originate from transitions induced between the vibrational energy levels 

of a molecule on the absorption of radiation belonging to the infrared (IR) region (Phan, 

2009). IR spectra are shown by molecules when vibrational motion is accompanied by a 

change in dipole moment of the molecule. An infrared spectrum represents a fingerprint 

of a sample with absorption peaks which correspond to the frequencies of vibrations 

between the bonds of the atoms making up the molecule (Fabian and Mäntele, 2002). 

Because each different material is a unique combination of atoms, no two compounds 

produce the exact same infrared spectrum. Therefore, infrared spectroscopy can result 

in a positive identification (qualitative analysis) of every different kind of material. In 

addition, the size of the peaks in the spectrum is a direct indication of the amount of 

material present. With modern software algorithms, infrared is an excellent tool for 

quantitative analysis (Rahmelow et al., 1998). 
 

2.2.2 The Michelson interferometer 
The main component in the FTIR spectrometer is a Michelson interferometer (Griffiths, 

1986), (Moss et al., 1990). This device splits and recombines a beam of light such that 

the recombined beam produces a wavelength-dependent interference pattern or an 

interferogram.  
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Figure 10 Optical schematic of a Michelson interferometer. (Adapted from “Fundamental Infrared 

Spectroscopy” by Hue Phan) (Phan, 2009)  

 

A typical Michelson interferometer consists of two mirrors and a beamsplitter positioned 

at an angle of 45 degrees to the mirrors. A KBr beamsplitter coated with Germanium is 

used for mid IR region. Incident light strikes the beamsplitter so that half of the light is 

transmitted through the beamsplitter and half is reflected to the mirrors. The two 

components are then reflected back and recombined at the beamsplitter with half of the 

light passing on toward the sampling areas and half travelling back toward the source. 

The signal at the detector is a cosine wave. 

The interference signal measured by the detector as a function of the optical path 

length difference is called the interferogram. An interferogram shows the intensity of the 

infrared radiation as a function of the displacement of the moving mirror. At the peak 

position, the optical path length is exactly the same for the radiation that comes from the 

moving mirror as it is for the radiation that comes from the fixed mirror. The 

interferogram contains the basic information on frequencies and intensities 

characteristic of a spectrum but in a form that is not directly interpretable. Thus, the 

information is converted to a more familiar form, a spectrum, using Fourier Transform 

methods. A spectrum is calculated from the interferogram by computing the cosine 

Fourier transform of the interferogram. 
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2.2.3 Fourier transformation 
Interferogram measured by an interferometer is the sum of the interferograms of all the 

constituent frequencies present in the source. The Fourier transformation, then, breaks 

down the interferogram to reveal these constituent frequencies telling us which are 

present, and in what amount. The interferogram belongs in the length (e.g. cm) domain. 

Fourier transformation (FT) is a well-known computer-aided mathematical technique 

that inverts the dimension, so the FT of the interferogram belongs in the reciprocal 

length domain, which is the wavenumber (cm-1) domain. The spectral resolution in 

wavenumbers per cm is equal to the reciprocal of the maximum retardation in cm. 

 

2.2.4 Fourier transform infrared spectroscopy 
FTIR spectroscopy is preferred over conventional dispersive infrared spectroscopy for 

several reasons. It is an essentially non-destructive technique which provides a precise 

measurement method without any external calibration. Furthermore, it can increase 

speed and sensitivity having a greater optical throughput. The interferometer device can 

overcome the slow scanning speed by measuring all the infrared frequencies 

simultaneously rather than individually. The interferometer produces a unique type of 

signal which has all of the infrared frequencies “encoded” into it. Every data point (a 

function of the moving mirror position) in an interferogram has information about every 

infrared frequency which comes from the source. There are three significant practical 

advantages of FTIR over the dispersive technique which renders the FTIR method 

accurate and reproducible: (1) Multiplex (or Felgett) Advantage: Because all of the 

frequencies are measured simultaneously, most measurements by FTIR are made in a 

matter of seconds rather than several minutes. (2) Throughput (or Jacquinot) 

Advantage: Sensitivity is dramatically improved with FTIR for many reasons. The 

detectors employed are much more sensitive, the optical throughput is much higher 

which results in much lower noise levels, and the fast scans enable the coaddition of 

several scans in order to reduce the random measurement noise to any desired level 

(referred to as signal averaging). (3) Internally Calibration (or Connes) Advantage: 

Instruments generally employ a HeNe laser as an internal wavelength calibration 

standard. These instruments are self-calibrating and never need to be calibrated by the 

user (Herres and Gronholz, 1985). 
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The sentitive identification has made made FTIR an invaluable tool for quality 

control applications. In addition, the sensitivity and accuracy of FTIR detectors have 

dramatically increased the practical use of infrared for quantitative analysis.  

 

2.3 Electrochemistry 
Classical electrochemistry can be applied for investigating redox-active proteins. 

However suitable conditions and adaptations of the electrochemical techniques are 

required. The redox state of an entire protein or a specific cofactor can be triggered by 

imposing a certain redox potential value (Moss et al., 1990), (Mäntele, 1996). 

Afterwards the redox induced changes within the protein can be monitored by suitable 

spectroscopic means. The electrolyte solution basically contains freely moving ions 

where the two electrodes system constitutes a “half-cell”. Depending on the applied 

voltage, in the boundary surface between electrode and solution, a half-cell potential 

arises and therefore electrons tend to flow along their gradient resulting in a reduction or 

oxidation reaction. 

The Nernst equation describes the correlation between the redox potential of the 

half-cell and the activity of the oxidised/reduced species at a certain temperature. The 

redox potential of a half-cell can be determined only when it is compared with a second 

half-cell. The potential of the second cell can be set to zero (reference electrode) e.g. 

standard hydrogen electrode (SHE). Since the NHE works corrosively and explosively, it 

is hardly used in practice. Instead reference electrodes are used like the Ag/AgCl or the 

calomel electrode. One can get the actual potential by adding the reference potential to 

the measured potential value. One of the major advantages of this technique is to 

monitor the redox potential to some intermediate conditions or any desired value, the 

other being the reversibility of the reaction. The measurement can be hampered by the 

high flow of current resulting in Ohm's voltage drop in the cell. Introduction of a third 

electrode called counter electrode, can solve this problem by constituting a three-

electrode array. 
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2.3.1 The electrochemical cell 
All electrochemically induced FTIR and UV/VIS difference spectra presented in this 

work were collected using the ultra-thin-layer spectroelectrochemical cell (Mäntele, 

1993), (Moss et al., 1990) shown in Figure 11.  

 
Figure 11 A schematic view of the spectroelectrochemical cell:  a: CaF2-window, b: Plexiglass ring, c: 

PVC body, d: Platinum counter electrode, e: Gold grid working electrode, f: Rubber O ring, g: Inlet for the 

Ag/AgCl reference electrode. The figure was taken from ref. (Moss et al., 1990). 

 

The cell consists of a PVC body with four openings. In the cell the three-electrode array 

is described. The cell is completely assembled with the two CaF2-windows after filling 

with sample. 7-8 µL of the prepared protein solution is applied on the window, which is 

then fit in such a way into the cell that a thin sample film is formed. This must be 

nonporous and cover the entire window area. The gold grid working electrode (E) has a 

mesh size of 30x30 µm with about 50% optical transparency. Afterwards the cell is fixed 

between two screwable metal plates. Depending on the strength of pressing the plates, 

a sample layer thickness of the film on 5-10 µm can be adjusted. The arrow in the 

Figure 11 shows the direction of the optical radiation. The water absorption within the 

sample layer is thus optimised to a value under 1 OD so that the detector can produce a 

sufficiently large signal. In order to establish the contact between the electrodes and the 

protein solution, the cell compartment is filled up by with buffer. Finally the reference 

electrode, connected with the inside of the cell by a salt bridge, is screwed in. 
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2.3.2 Surface modification of the gold grid working electrode 
Full reversibility of the electrode reaction is ensured only if a direct contact of the protein 

with the electrode surface can be avoided. Proteins with redox-active groups "poison" 

the electrodes by adsorbing at the metal surface and thereby denaturing irreversibly. A 

reversible electrode reaction is then no more ensured. In order to avoid this direct 

contact of the protein with the electrode surface, a protective layer of surface-modifying 

substances are used, which can set a contact with the protein with the metal surface 

and this contact can be received at the same time. They are called "surface modifier" 

(or “activators”) (Veiseha et al., 2007) and must be specified accordingly with respect to 

the protein under examination, the rate of the reaction and accessibility upon right 

orientation of the electrode surface. Usually the mediator substances contain two 

different functional groups, of which one is in contact with the metal surface and another 

one interacts with the protein. A solution of 2 mM mercapto propionic acid (Gries et al., 

1997) in ethanol was used and afterwards a monolayer of the surface modifier was 

created using an ultrasonic bath for 20 minutes. 

 

2.3.3 Redox mediators 
With increasing size of the protein, the charge transfer between electrode and protein 

runs more slowly. Often the redox-active cofactors lie buried within the protein core and 

thus badly attainable. Both the problems can be solved by the using redox mediators. 

These are small, redox-active molecules which can diffuse in contact zones making fast 

electron transfer possible to the cofactors. Generally one uses several mediators in a 

solution mixture (see chapter 2.1.1). The mixture of fifteen different redox mediator 

substances is listed in Table 2 (also see (Haas et al., 2005)). 

 

2.3.4 Electrochemically induced FTIR spectroscopy of QFR 
2.3.4.1 Sample preparation 

Cells of W. succinogenes wild-type enzyme were grown and the QFR enzyme purified 

by Nicole Hilgendorff according to a protocol described previously (Lancaster et al., 

1999). The protein solution was washed with the corresponding buffer in a centristat I 

filtration tube (Sartorius, Göttingen, Germany) of 100 kDa cutoff mass with 4 washing 

cycles of 20 min each. The final sample volume was adjusted in Vivaspin 500 μL 
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concentrators (Vivascience, Hannover, Germany) (Haas et al., 2005). Buffer solutions 

were prepared at a concentration of 50 mM in H2O (or D2O) with 100 mM KCl and 

0.03% LM detergent present in it. 7-8 µL of 0.6 mM protein solution was sufficient to fill 

the spectroelectrochemical cell. For measurements with pH values 5.6, and 7.4, MES 

(Morpholinoethanesulfonic acid) and Tris-HCl buffers were used, respectively. For pH 

8.5, CHES (2-(Cyclohexylamino)-ethanesulphonic acid) buffer was used. For high and 

low pH buffer preparations the pH was finally adjusted by adding DCl or NaOD solution, 

respectively. 

 

2.3.4.2 Spectroelectrochemistry 

For the estimation of the layer thickness of the protein solution before each 

measurement, an IR absorption spectrum was recorded where the empty sample 

chamber served as reference. It was essential to maintain the the optical path length of 

the spectroelectrochemical cell as a thin layer (an order of 10 μm) for fast equilibration 

in the cell. The sample could be fully oxidized or reduced, depending on the applied 

electrode potential. The miniature Ag/AgCl/3M KCl reference electrode was inserted in 

one side of the cell, close to the working electrode. The electrical contact was ensured 

by the buffer solution filled from the other side. First, a potential was applied to the 

sample. In the present work the potential range was examined from -0.6 to +0.3 V with 

respect to the SHE. Within the range of 2000 to 1000 cm-1, 128 interferograms with 

spectral of 4 cm-1 were acquired. After a certain time when a redox equilibration was 

established, a second potential is applied and then a second spectrum was taken. Now 

from both the spectra the actual difference spectrum was computed. In order to achieve 

a good signal-to-noise ratio, 15-20 difference spectra were averaged.  

For the low-frequency IR experiments, FTIR redox difference spectra in the 

range from 2000-500 cm-1 were collected using a modified Bruker setup (IFS 25 and 

IFS 28). A KBr beam splitter and a DTGS detector were used. The spectra were 

obtained by averaging 2 times 256 scans at a spectral resolution of 4 cm-1. FTIR 

difference spectra were calculated from the two different single beam spectra with the 

initial single beam spectrum taken as reference. For a single experiment, 50-100 

(ideally 80) difference spectra have been averaged. The spectrum of the early cycle and 

those of the late cycles were very similar indicating no significant change in spectral 
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pattern during the course of several redox cycles. The ultra-thin spectroelectrochemical 

cell (Moss et al., 1990) for the visible and IR was adapted to a lower spectral range. For 

this purpose the infrared windows were changed to ZnSe and the pathlength was 

reduced to 5-6 µm (Wolpert et al., 2004). To avoid denaturation of protein, prior to the 

measurement, the gold grid working electrode was chemically modified by a mixture of 

2 mM solution of mercaptopropionic acid and cysteamine in 1:1 ratio (see chapter 2.3.2). 

Redox mediators were used at a final concentration of 35 µM, thereby shortening the 

time required for equilibration (Haas et al., 2005), (Hellwig et al., 1998). Control 

measurements showed that there were no spectral contributions from the mediators at 

identical experimental conditions. Approximately 7 µL protein solution was sufficient to 

fill the spectroclectrochemical cell. The equilibration generally took 7-8 minutes for the 

full potential step from -0.37 V to +0.21 V with respect to the SHE at pH 7.0. For 

obtaining FTIR difference spectra due to individual single heme redox transitions, an 

intermediate potential value was used (Mileni et al., 2005). The spectrometer was 

equipped with a thermostated water bath for experiments at a fixed temperature of 5 °C. 

Spectroscopic data processing and analysis were performed by the Bruker OPUS and 

the ORIGIN program. 

 

2.4 Time-resolved FTIR difference spectroscopy 
2.4.1 Caged substrates 
Flash photolysis of photoactivable probes provides a means of controlling the release, 

both spatially and temporarily (Marriott, 1998). 2-nitrobenzyl (NB) derivatives are by far 

the most common photolabile protecting groups. Most of the caged reagents described 

in the literatures have been derivatives of ortho-nitrobenzylic compounds (such as, 2 

nitrobenzaldehyde, 2-nitrobenzyl and/or 1-(2-nitrophenyl) ethyl 

acetate/phosphate/sulphate/tosylate) (Bonetti et al., 1997),(Janko and Reichert, 

1987),(Viappiani et al., 1998) which are activated by photolysis at <360 nm. Their 

application in biochemistry was pioneered in the usage of caged-ATP (Kaplan et al., 

1978) and later on the work on the release of photolabile chelators for the rapid 

photorelease of divalent cations (Kaplan and Ellis-Davies, 1988). Photo-fragmentation 

of the usual NB (2-nitrobenzyl) or NPE (1-(2-nitrophenyl)ethyl) groups with a carboxy 

substituent on the benzylic carbon (e.g. α-carboxy- 2-nitrobenzyl (CNB)) has been 
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widely applied as the most common photochemistry among the available range of 

photolabile protecting groups for rapid release of biologically-active species at or near 

their site of action in biological systems (Corrie et al., 2008). The ionized side chain 

confers improved water solubility and rapid release of the bioactive species upon flash 

photolysis occurs from corresponding NB or NPE cages. Previous studies of CNB 

cages make the implicit assumption that the carboxy substituent is an inert bystander 

that does not participate in the photocleavage reaction (Corrie et al., 2008). In most 

cases their application is limited by the low efficiency of activation and the generation of 

reactive o-nitrosocarbonyl photoproducts (Barth et al., 1997), (Geißler et al., 2005). In 

these kinetic studies of QFR, the suitability of caged fumarate is an important issue. 

This is dependent on the stability of the cage against spontaneous hydrolysis, inactivity 

of QFR in presence of unphotolysed caged substrate and a non-inhibitory effect on the 

photoproduct. Synthesis of a novel cage substrate called α-carboxy-o-nitrobenzyl 

(CNB)-caged fumarate (Paul, R., Bamann C., Enela Džafić, E., Mileni, M., Fendler, K., 

Mäntele, W., and Lancaster, C.R.D., in preparation) is presented here. In case of CNB-

caged compounds, since the photolysis process is irreversible, the method consists of 

controlled illumination and quantification of the photo product. The new caged-

compound is characterised with regard to its suitability in studies incorporating QFR. It 

is shown that the photolysis of the caged fumarate activates indeed the QFR without 

inhibition by the photoproducts or the unphotolysed caged fumarate.  

Complementary to our approach of employing caged fumarate in a similar 

approach to study the kinetic phenomena, caged menaquinol (2-Methyl-3-methylamino-

1,4-napthoquinone(ol) was characterized. Caged quinols can release the substrate 

quinol in solution and can thus trigger the QFR enzymatic reaction. Experiments were 

performed in the presence of QFR under optimised experimental conditions. The XeCl 

eximer laser equipped with a Bucker IFS-66 setup was used for the controlled photo-

flashing.  

 

2.4.1.1 Synthesis of the caged fumarate 

The reaction scheme of the synthesis is illustrated in Figure 12. 
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Figure 12 Reaction scheme for the synthesis of the CNB-fumarate. 

 

Synthesis and initial characterisations of the α-carboxy- 2-nitrobenzyl (CNB)-caged 

fumarate were performed by Dr. C. Bamann in the Fendler group (Dept. Biophysical 

Chemistry, MPIBP, Frankfurt am Main). The reaction sequence starts with the 

commercially available mono-ethyl fumarate (Fluka) that reacts with t-butanol to the 

mixed diester of fumarate (60% yield, (Neises and Steglich, 1985)). 1H-NMR (250 MHz, 

CD2Cl2) δ 6.73 (d, 2H, C3,4H); 4.22 (q, 2H, CH2); 1.49 (s, 9H, C(CH3)3); 1.29 (t, 3H, CH3). 

Selective hydrolysis by LiOH (Denmark et al., 1996) leads to t-butylfumarate (67% yield). 
1H-NMR (250 MHz, DMSO) δ 6.59 (d, 2H, C3,4H); 1.45 (s, 9H, C(CH3)3). The reaction to 

the α-carboxy-o-nitrobenzyl (CNB) fumarate (“caged fumarate”) follows a modified two-

step procedure from (Gee et al., 2002). Coupling with the activated photolabile group 

(Bromo-(2-nitro-phenyl)-acetic acid-t-butyl ester, a generous gift from Dr. C. Grewer) 

provides the product with the t-butyl protecting groups. 1H-NMR (250 MHz, CD2Cl2) δ 

8.17 (d, 1H, C3H), 7.72-7.53 (m, 3H, ArH); 6.59 (d, 2H, C9,10H); 5.83 (s, 1H, CH), 1.50 (s, 

9H, C(CH3)3); 1.39 (s, 9H, C(CH3)3). The caged fumarate is obtained as an oily 

compound after hydrolysis of the protecting groups with TFA and separation on a LM-20 

sephadex column (45% yield). 1H-NMR (250 MHz, CD2Cl2) δ 8.07 (d, 1H, C3H), 7.78-

7.52 (m, 3H, ArH), 6.97 (d, 2H, C3,4H); 5.32 (s, 1H, CH). 
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2.4.1.2 Synthesis of the caged-MMAN 

The 2-step synthesis scheme of the caged-MMAN is shown in Figure 13. The caged-

MMAN compound was synthesised and provided by by Dr. H. Nasiri in the Schwalbe 

group (J. W. G. University, Frankfurt am Main). 

 
Figure 13 The two-step reaction required for synthesizing the caged menaquinol from the menaquinone 

precursor of DMNPE. The first two steps represent the synthesis of the caged substrate and reduction of 

the quinone to quinol, respectively. The synthesis involves the following conditions: APPH3 (1.1 equiv); 

DEAD (1.1 equiv); THF, 0˚C then room temperature (83%). The final reaction (3rd) depicts the release of 

the substrate upon photolysis. 

 

2.4.1.3 Visible spectroscopy and flash-photolysis 

UV/VIS spectra were recorded on a double-beam spectrophotometer (U3000, Hitachi, 

Japan). Flash-photolysis studies were performed on a home-built setup (Bamann et al., 

2008). The reaction was started with a 10 ns flash from a XeCl excimer laser (308nm). 

Absorbance changes were recorded with a Si photodiode with a Xe lamp (75 W) as the 

perpendicular measuring light. Signals were amplified by a current-voltage converter 

and further subjected to a low pass filter (1 MHz). 

 

2.4.2 Time-resolved FTIR measurements 
W. succinogenes WT QFR sample preparation for FTIR experiments has been 

described in detail previously (Haas et al., 2005) Briefly, after concentrating the sample 
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(in potassium phosphate buffer, pH 7.4) 4-6 μL were put on a CaF2 window of a trough 

of 10 μm depth and 8 mm diameter. The sample was sealed with a second flat CaF2 

window and was thermostated at 5°C during the whole measurement time. The sample 

mixing was performed inside an anaerobic AtmosBagTM under continuous argon gas 

purging. The sample mixture was concentrated by drying inside the inert gas chamber 

and the final volume was around 1-2 μL which was then sandwiched between the two 

CaF2 windows with a fixed sample path length of 10 µm.  

 
Figure 14 Scheme describing a typical time-resolved FTIR measurement. 

 

Photolytic release of substrate from caged derivative is triggered by a 20 ns flash (50 

mJ/ per area; ~30 mJ on sample) from a XeCl excimer laser (HCl/H2/Ne/Xe) (RD-EXC-

200) from Radiant Dyes Laser Accessories GmbH, Wermelskirchen, Germany. Time-

resolved measurements were performed on a modified Bruker (Bruker Optics, Ettlingen, 

Germany). An IFS 66 spectrometer equipped with a liquid N2 cooled HgCdTe detector 

of selected sensitivity. Experimental data were acquired at spectral resolution of 4 cm-1 

with the Blackman-Harris 4-term apodization function and a zerofilling factor of two. For 

an increased sensitivity of FTIR data acquisition, an IR cut off filter of 2000 cm-1 was 

used. The limiting factors in this technique are the speed of the moving mirror as well as 

data acquisition and the digitization. The time needed for one interferometer cycle 



Materials and methods 37 

(double sided, forward-backward mode) is typically 65 ms. A schematic description for a 

typical time-resolved measurement is shown in Figure 14. 

The measurement started with recording of the reference spectrum co-added 

from 300 scans (baseline spectra) characterising the unperturbed sample. At this point, 

the time was set to zero and the flash was fired. Subsequently 1 spectrum with 1 scan 

(I1), 1 spectrum with 1 scan (I2), 10 spectra with 1 scan (I3), 10 spectra with 1 scan (I4), 

10 spectra with 4 scans (I5), 10 spectra with 4 scans (I6) and 10 spectra with 40 scans 

(I7) each were recorded. A kinetic baseline measurement was performed in similar 

sequence without the photolysis flash before the real measurement. Difference spectra 

were obtained by subtracting the reference spectrum recorded before the flash from the 

spectra obtained after photolytic release of substrate (Figure 14). The Bruker OPUS 

software was used for the rapid acquisition of spectra. 

Glutathione, a peptide composed cysteine, glutamic acid and glycine, was used 

as a radical scavenger for absorbing the photolytic byproducts and as a protectant 

against oxidative and free radical damage. Dithiothreitol (DTT) can also be used as an 

alternative to glutathione. In a typical experiment, a reference spectrum coadded from 

300 scans was first recorded; then photolysis was induced by applying a single laser 

flash. 

 

2.4.3 ATR-FTIR microdialysis cell 
The microdialysis cell has been described in detail previously (Džafic et al., 2009). The 

instrument involves a microperfusion-cell using a diamond attenuated total reflection 

(ATR) unit with 7 reflections. The flow ATR unit is divided into two compartments (one 

for the sample and one for effector molecule) by the dialysis membrane. The membrane 

is mounted above the diamond. The solution of the target protein in the first 

compartment with a sample volume of below 5 μL is in contact with the ATR diamond. 

The second compartment for the flowing effector molecules has a volume of 100 μL 

which is perfused by a peristaltic pump. One of the major advantages dealing with the 

microdialysis cell is that the sample volume can be substantially less (below 5 μL). 

Equilibration of the protein and effector molecules was reduced by more than a factor of 

three to four in the presence of an ultrasound head of an ultrasonic scaler (Džafic et al., 

2009). The temperature of the ATR-unit is regulated by a circulated water bath. Inside 
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the ATR perfusion cell an equilibrium spectra of WT QFR in phosphate buffer pH 7.4 

was taken and the spectra for fumaric acid and the buffer spectra (taken at identical pH 

value) was afterwards subtracted in order to obtain the intrinsic effect of fumarate 

binding to QFR. This difference spectrum arises only due to the secondary structural 

changes and fumarate binding domain movement of QFR upon fumarate binding to the 

oxidised protein. 

 

2.5 Transient absorption spectroscopy 
2.5.1 Sample preparation 
Cells of W. succinogenes wild-type enzyme were grown and the QFR enzyme purified 

by Nicole Hilgendorff according to a protocol described previously (Lancaster et al., 

1999). The WT QFR was washed and concentrated in 100 mM potassium phosphate 

(KPi) buffer at pH 7.4 containing 100 mM KCl as supporting electrolyte and 1 mM n-

dodecyl-β-D-maltoside (cmc = 0.17 mM) (VanAken et al., 1986) as detergent. Samples 

with protein concentrations of about 1.5 mM were prepared for the spectroscopic 

experiments. For the necessary washing cycles, Centrisart I filtration tubes with a 

molecular weight cut-off of 100 kDa and a volume of 2 mL were used. 

 

2.5.2 Stationary spectroscopy 
Absorption spectra of WT QFR samples were recorded at room temperature using a 

Jena-Specord S100 photodiode array spectrometer. Aliquots of the described samples 

were diluted with adequate buffers by a factor of 10 and measured in 1 mm path length 

fused silica cuvettes. Absorption spectra were corrected for light scattering. 

 

2.5.3 Time-resolved absorption spectroscopy  
The time-resolved measurements were performed using a CLARK CPA 2001 (Dexter, 

MI, USA) laser/amplifier system operating at a repetition rate of ~1 kHz at a central 

wavelength of 775 nm (Huber et al., 2001), (Lenz et al., 2006). The QFR samples were 

excited by pulses generated using a noncollinear optical parametric amplifier (NOPA) 

with the output tuned to 560 nm for which the maximum excitation energy was kept at 

75 nJ. For the probe pulses, a white light continuum was generated by focusing 

amplified 775 nm light into a 5 mm sapphire window. Femtosecond time delays between 



Materials and methods 39 

pump and probe were controlled by a translation stage covering delay times up to 1.5 

ns (Amarie et al., 2007). To minimize accumulation of photoproducts, the sample was 

translated continuously both horizontally and vertically in a direction normal to the 

bisector of the pump and probe beams at ~10 cm/s. 

 

2.6 Electrostatic calculations 
2.6.1 The “Multiconformation Continuum Electrostatics” (MCCE) method 
MCCE (Multi-Conformation Continuum Electrostatics), developed by M. R. Gunner and 

coworkers, is a biophysics simulation program combining continuum electrostatics and 

molecular mechanics. A detailed description of MCCE can be found in (Alexov and 

Gunner, 1997) and in (Gunner and Alexov, 2000). The MCCE2.0 includes the "MCCE" 

main program, the Poisson-Boltzmann equation (Nicholls and Honig, 1991) solver 

"DelPhi" developed in Barry Honig's Lab (http://honiglab.cpmc.columbia.edu/delphi), 

MCCE tools, and parameter directories. The MCCE method was implemented locally at 

the MPI of Biophysics by Prof. C. R. D. Lancaster. It allows the determination of the 

equilibrium conformational and ionization states of all protein side chains, non-solvent 

exposed water molecules, ions, ligands, cofactors, and prosthetic groups at a given pH 

and redox potential (Eh). It makes use of several pre-selected atomic positions and 

ionization states for amino acid side chains or heme propionates, cofactors, prosthetic 

groups, buried waters, and ligands. In the present study, the MCCE method was used to 

analyze QFR and the enzyme variant in order to determine the ionization changes 

caused by changes in solution pH or Eh. Therefore, location and stoichiometry of proton 

transfers coupled to electron transfer could be well studied. Every individual side-chain 

conformation and, for practical reasons, also the ionization state of a residue, as well as 

the reduced or oxidized state of a cofactor (or prosthetic group) is characterized as a 

“conformer”. In this way, the entirety of conformers represents all allowed states of the 

protein, which are incorporated into the calculations. Simulated redox titrations are 

performed by setting a fixed pH value prior to an individual Monte Carlo sampling run 

(Alexov and Gunner, 1997), (Alexov and Gunner, 1999); (Georgescu et al., 2002) for pH 

titrations, a fixed potential Eh is set. In a similar way, possible intermediate steps of 

electron transfer via the heme groups (see Figure 6) can be simulated by keeping the 

oxidation state of the hemes and the other cofactors fixed throughout the Monte Carlo 
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sampling. Subsequently, the protein microstates found can be analyzed with respect to 

the effect that the fixed charge distribution has on the occupancy of the individual 

conformers (i.e. the protonation state of an acidic residue in terms of occupancy of the 

ionized and neutral conformer as well as the side-chain conformation). 

 

2.6.2 The individual steps in MCCE calculation 
The initialization (program start) reads in control file "run.prm" which must be in the 

working directory where MCCE program is called. The MCCE program will load 

parameter files from the parameter directory defined in "run.prm". MCCE program will 

only read in files with extension ".tpl". The file "new.tpl" is a parameter file similar to 

those in the parameter directory except no charges are assigned to any atom. This file 

is for unrecognized residues or cofactors. There is no output file from the program 

initialization, but the initilization creates a parameter database to hold information from 

the parameter files and dynamically generated parameters by the program.  

There are four major steps in a MCCE calculation. These four steps are 

connected by a few files. The program is designed to run through without stopping 

although it is possible to stop the program at each step and edit the files to instruct the 

next step. Here is the summary of the function of these 4 steps. 

2.6.2.1  Step1: formatting pdb file 

The Step 1 formats the pdb file and thus prepares an extended pdb file suitable to be 

read into step 2. The input pdb file is in standard pdb format. It can have alternative side 

chain positions, but MCCE can not process alternative backbone positions. Alternative 

side chains are treated as side chain conformers. When side chain atoms are missing, 

MCCE will complete the side chain atoms at the torsion minimum.  

 

2.6.2.2 Step2: Making rotamers 

Step 2 makes and optimizes rotamers (Dunbrack and Karplus, 1994), (Dunbrack and 

Cohen, 1997) from the structure in "step1_out.pdb" (step 1 output file is in MCCE 

extended pdb format). In this step, the rotatable bonds (defined in parameter files) of 

each residue are rotated by the steps defined in "run.prm". Then the self van der Waals 

(VDW) potential (interaction among atoms of the same side chain excluding 1-2 and 1-3 

interactions, and interaction between the side chain and backbone atoms) is calculated. 
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Side chain rotamers with high self VDW potentials are deleted. Then the side chains are 

optimized with possible hydrogen bond partners. A number of repackings starting from 

randomized initial structures (one conformer from one residue) are performed to reduce 

side chain rotamers to those with low energy local packings. Ionization states are then 

created and protons are placed on side chains. At the end of side chain rotamer 

optimization, MD simulations are carried out locally to relax the structure. 

 

2.6.2.3 Step3: calculating the energy lookup table 

The Step 3 calls PB equation solver, DelPhi, to calculate reaction field energy and 

electrostatic pairwise interaction. The result is stored as together with van der Waals 

interactions as one file per conformer. These files have extension "opp" and are located 

under directory energies. The self-energy terms (not dependent on side chains of other 

residues) of conformers are listed in file "head3.lst" The progress is dynamically 

updated is file "progress.log". 

 

2.6.2.4 Step 4: simulating pH or Eh titration with Monte Carlo sampling 

The step 4 is a titration simulation by Monte Carlo sampling (Alexov and Gunner, 1997), 

(Alexov and Gunner, 1999). The Monte Carlo sampling is performed at specified set of 

pH/Eh. At each titration point, there will be several (predefined in "run.prm") independent 

samplings. Each sampling goes through annealing, reducing, and equilibration stages. 

Statistics of conformer occupancy is only done at equilibration statge. The results of 

step 4 are reported as conformer occupancy in file "fort.38", residue net charge in file 

"sum_crg.out" and fitted pKa/Em values in file "pK.out". 

 

2.6.3 Simulated pH titrations 
Simulated pH titrations were performed by setting a fixed ambient redox potential before 

an individual Monte Carlo sampling run. In a similar way, possible intermediate states of 

electron transfer via the heme groups can be simulated by keeping the oxidation state 

of the hemes and the other cofactors fixed throughout the Monte Carlo sampling. 

Subsequently, the found protein microstates can be analyzed with respect to the effect 

that the fixed charge distribution has on the occupancy of the individual conformers (i.e. 

the protonation state of an acidic residue in terms of occupancy of the ionized and 
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neutral conformer as well as the side-chain conformation). Due to the large size of the 

QFR protein complex, the calculations were restricted to the coordinates of subunits B 

and C and the respective prosthetic groups of one QFR monomer without any 

membrane model. A set of 21 water molecules, which were found in the crystal 

structure within a radius of 9 Ǻ around the heme propionates of the two heme b groups 

and amino acid residue Glu C180, was included in the QFR model.  
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3 Results 
3.1 Electrochemically induced static FTIR approaches 
3.1.1 pH-dependence of the protonation of Glu C180 with heme redox transition 
in QFR WT 
All presented spectra were normalized to a level that represents the average maximal 

absorbance difference (Δ Abs) in the amide I range of all difference spectra that have 

been selected for presentation. The pH dependence of electrochemically induced FTIR 

difference spectra QFR WT enzyme has been reported earlier (Haas et al., 2005). In the 

oxidised-minus-reduced spectral frequency range of (de)protonated carboxyl groups 

from pH 5.5 to pH 8.8, there is observed a trend of decreasing band intensity at the 

1740 cm-1 band (Haas et al., 2005).  

 

3.1.2 The pH-dependence comparison of E180Q enzyme variant with wild-type 
enzyme 
To find the dependence of Glu C180 signal on the individual heme redox transition, pH 

dependent redox FTIR measurements of E180Q mutant have been performed. Very 

similar patterns of spectral features are reflected in the pH dependency (see Figure 15). 

At a low pH value such as pH 5.5, the observed signals are minimal. Analogous to the 

wild-type spectra, significant spectral changes occur between pH 7.5 and pH 8.5.  
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Figure 15 The pH dependence of electrochemically induced FTIR difference spectra. Overlay of reduced-

minus-oxidized difference spectra of QFR E180Q A) 3D view of the full wave number region (from 1800 to 

1000 cm-1). B) 3D view of the selected wave number region (from 1770 to 1710 cm-1). C) view of the 

selected wave number region (from 1770 to 1710 cm-1) at pH 5.5 (squares), pH 6.5 (triangles), pH 7.5 

(open circles) and pH 8.5 (filled circles).Reference electrode potentials for the shown FTIR difference 

spectra were +0.21 V (full oxidative potential) and -0.37 V (full reductive potential) (Paul et al., manuscript 

in preparation), (Haas et al., 2005). 

 

Figure 16 and Figure 17 shows the pH dependence of the electrochemically induced 

FTIR double difference spectra (WT-minus-E180Q) within a physiological pH range. 

The subtraction of the single difference spectra of the E180Q variant enzyme from that 

of the wild-type enzyme results in such complex spectral patterns where only the neat 

contribution from the Glu C180 residue is reflected. Although similar double difference 

spectra has previously been calculated and reported only for pH value 7.0 (Haas et al., 

2005), the isolated contribution of Glu C180 residue over a broad physiological pH 

range has been studied here. The protonation (deprotonation) event of that particular 

amino acid residue can be followed in this study. The double difference spectral pattern, 

although being complex in nature, can hint the stretching vibration of the carboxylic acid 

residue at around 1740 cm-1 region.  
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Figure 16 The pH dependence of electrochemically induced FTIR double difference spectra. Selected 

(from 1770 to 1710 cm-1).3D view of the overlay of reduced-minus-oxidized difference spectra of QFR 

WT-minus-E180Q. Reference electrode potentials for the shown FTIR double difference spectra were 

+0.21 V (full oxidative potential) and -0.37 V (full reductive potential). 

 

Figure 17 The pH dependence of the FTIR double difference spectra of QFR WT-minus-E180Q (from 

1760 to 1720 cm-1). Overlay of reduced-minus-oxidized difference spectra of QFR E180Q at pH 5.5 (solid 

line), pH 6.5 (dashed line), pH 7.5 (dotted line) and pH 8.5 (dashed-dotted line). Reference electrode 

potentials for the shown FTIR double difference spectra were +0.21 V (full oxidative potential) and -0.37 V 

(full reductive potential). 
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Analogous measurements have also been performed involving intermediate heme 

redox potential. The reduced-minus-intermediate spectra correspond to the “low-

potential step” and the intermediate-minus-oxidized spectra correspond to the “high-

potential step”. The “full-potential step” is measured to those computed by summation of 

the spectra of the “low-potential step” and “high-potential step”. By plotting the values of 

the double difference spectral intensity in Figure 18 A, it is possible to specifically trigger 

only a single heme redox transition event and its consequence on the protonation 

(deprotonation) phenomena on Glu C180 residue can be followed. One of the obvious 

observations that come out from this experiment was that the maximal contribution in 

the double-difference spectra in the full potential range originates from the redox 

transition of the high potential proximal heme bP. In addition, the double difference 

signals arising from the full redox potential step and those computed from the addition 

of those arising from the two individual redox steps exhibit a reasonable match.  
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Figure 18 A) The pH dependence of the FTIR double difference spectra of QFR WT-minus-E180Q at 

1740 cm-1. Superposition of “reduced-minus-intermediate” potential step (inverse triangles), “intermediate-

minus-oxidized” potential step (triangles), “reduced-minus-oxidized” full potential step (squares), and 

computed spectra (sum of “reduced-minus-intermediate” and “intermediate-minus-oxidized”) (circles). B) 
The pH dependence of the FTIR double difference spectra of QFR WT-minus-E180Q at 1740 cm-1. 

Superposition of “intermediate-minus-oxidized” potential step (circles), simulated pH titration of Glu C180 

bD
ox bP

red-minus-bD
ox bP

ox (shaded columns) (Haas and Lancaster, 2004). Reference electrode potentials 

for the shown FTIR double difference spectra were +0.21 V (full oxidative potential) and -0.37 V (full 

reductive potential). (A constant of the order of the noise level was subtracted to guarantee zero-

crossings of the pairs of double difference spectra at the same wavenumber. This procedure is identical 

with setting the spectra to zero at wave number around 1760 cm-1 and above where no further signals 

were observed).C) Specific activities for DMNH2 oxidation by fumarate of wild-type (circles) and Glu C180 

→ Gln variant (squares) QFR from Wolinella succinogenes as a function of pH (Paul et al., manuscript in 

preparation).The activities were measured as described by Unden et al. (Unden et al., 1980) with the 

following modifications: the temperature was 360C and the buffer used was a mixture of 50 mM citrate, 50 

mM potassium phosphate, 50 mM tris, 50 mM glycine and 50mM glycylglycine. The pH values were 

adjusted with NaOH. 

 

3.1.3 Individual heme porphyrin signal with heme redox transition  
3.1.3.1 Spectral contribution from protein backbone and side chain residues 

The full spectral region 2000-600 cm-1 shows a large number of well-pronounced 

positive and negative bands. The vibrational contribution of the IR active side chains in 

the 1800-1400 cm-1 region has been thoroughly investigated earlier (Haas et al., 2005) 

and is hence important in explanation of the cases in which the residues undergo 

protonational/deprotonation events (Haas et al., 2005), (Venyaminov and Kalnin, 1990a), 

(Venyaminov and Kalnin, 1990b). The positive and negative difference peaks arise due 

to the change in contribution upon oxidation and reduction of the protein, respectively. 

In Figure 19, trace “t” depicts the oxidised–minus–reduced FTIR difference spectrum of 

QFR wild-type in the 1000–650 cm-1 range. Traces “l” and “h” in Figure 19 show the 

spectral contribution from the low- and high- potential heme, respectively. Their 

individual spectral contribution is obtained by applying a selected redox step to the 

sample.  
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Figure 19 Oxidised-minus-reduced FTIR difference spectra of W. succinogenes QFR at pH 7.4; The 

reference electrode potentials (vs. SHE) for the spectra displayed here were +0.21 V (full oxidative 

potential) and -0.37 V (full reductive potential), -0.13 V (intermediate potential) trace “t”: Contribution of 

both hemes transition, (oxidised-minus-reduced) trace “l”: Contribution of low potential heme bD transition, 

(intermediate-minus-reduced)  trace “h”: Contribution of high potential heme bP transition, (oxidised-

minus-intermediate)  (The wavenumbers of the bands as assigned in the text and Table 5). 

 

The particular heme redox difference signal in the full spectra can now be depicted. The 

sum the respective spectra of “l” and “h” is shown in Figure 20 (red line) and compared 

with the full spectral range spectra at pH 7.4 (solid line). The spectral discrepancy in the 

measurements can arise due to the differences in equilibrium time and differences in 

the number of redox cycles performed during sample measurements. A detailed 

description of the experimental parameters has been provided in 

spectroelectrochemistry part in section 2.3.4.2. It is evident that the FTIR difference 

spectral combination of individual heme bH and heme bL redox transitions correlates 

reasonably with that of full potential redox difference spectra (Figure 20). Interestingly, 

the FTIR difference signals arising due to the redox transition of heme bL apparently 

have a higher absorption coefficient than those of heme bD to the full potential FTIR 

difference spectra (in the spectral range 1000-500 cm-1).  
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Figure 20 Spectral summation (red line) of trace “l” (contribution of low potential distal heme bD transition) 

and trace “h” (contribution of high potential proximal heme bP transition) and its comparison with full 

potential range spectra (black line, i.e. trace “t”). 

 

The superposition of the difference spectra at pH 7.4 (solid line) and pH 8.5 (gray line) 

in Figure 21, in the spectral range from 1000-600 cm-1 demonstrates reproducible data 

that can be obtained with two different pH values. The variation of the pH above pH 7.4 

does not significantly influence the low infrared spectral range. Specific spectral 

differences arise within the spectral range of 1300-1000 cm-1 due to the use of different 

buffers for measurements at two different pH values. Below 700 cm-1, the signal to 

noise ratio is too high in the redox difference spectra at pH 8.5 (Figure 21) and this 

spectral region is not shown. 
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Figure 21 Superimposition of full potential range spectra at pH 7.4 (black line, i.e. trace “t”) and full 

potential range spectra at pH 8.5 (red line). (For a more detailed assignment of IR bands above 1000 cm-

1, see (Haas et al., 2005) 

 

In the low pH range (pH 5.6), a stronger contribution in FTIR difference spectral features 

due to heme bL redox transition is found (Figure 22). There are a number of interesting 

features observable in low pH difference spectra. At low pH, the difference spectra at 

915 cm-1 shows a negative peak (Figure 22, trace 2A); whereas at high pH values this 

peak is shoulder at a positive peak (Figure 19, trace “t”). Secondly, the major difference 

at low pH are two positive peaks at 875 cm-1 and 837 cm-1 and a strong negative peak 

at 864 cm-1 (Figure 22, trace 2A). Furthermore, a shift of 9 cm-1 is found for the signal at 

750 cm-1 to 741 cm-1.  

 Strong FTIR difference bands at the mid IR range (amide I and amide II) 

suggested a redox-triggered local structural reorganisation, which has been previously 

described in detail by Haas et al. (Haas et al., 2005). In the amide I range (1690-1610 

cm-1), strong FTIR difference bands at 1678 cm-1 (turns & β-sheets) and 1632 cm-1 (β-
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sheets) signifies the absorption changes of C=O stretching vibrations from the 

polypeptide backbone (Haas et al., 2005), (Mäntele, 1993). In the amide II range (1580-

1510 cm-1), coupled C-N stretching and N-H bending modes contribute with strong 

bands at 1545 cm-1 and 1530 cm-1. 

In the following discussion the spectral contributions of heme propionates, 

porphyrin ring and metal-ligand vibrations are presented in detail. 

 
Figure 22 Oxidised-minus-reduced FTIR difference spectra of W. succinogenes QFR at pH 5.6; The 

reference electrode potentials (vs. SHE) for the spectra displayed here were +0.21 V (full oxidative 

potential) and -0.37 V (full reductive potential), -0.18 V (intermediate potential); trace 2A: Contribution of 

both hemes transition, (oxidised-minus-reduced); trace 2B: Contribution of low potential heme bD 

transition, (intermediate-minus-reduced); trace 2C: Contribution of high potential heme bP transition, 

(oxidised-minus-intermediate), (The wavenumbers of the bands as assigned in the text and Table 5). 

 

3.1.3.2 Spectral contribution from heme propionates 

In the mid IR range the carbonyl stretching modes of protonated heme propionates 

contribute at 1702 cm-1, 1692 cm-1 and 1560 cm-1 (Behr et al., 1998). They were 

previously assigned for QFR by Haas et al. (Haas et al., 2005). Symmetric and 

antisymmetric ν(COO-) vibrations were observed for the deprotonated form of heme 
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propionate. Signals were overlapped as the strong amide I mode dominates due to the 

protein backbone contribution. In the lower frequency range no significant contributions 

from the heme propionates are expected. 

 

3.1.3.3 Spectral contribution from porphyrin ring vibrations 

To probe the nature of the redox dependent changes in the heme porphyrin ring system 

in QFR, specific vibrational modes were monitored. The ν(CmH) out-of-plane heme 

porphyrin mode is attributed to the signal at 837 cm-1 in the oxidised state and to the 

825 cm-1 peak in the reduced state of the enzyme (Figure 19, trace “t”) (Berthomieu et 

al., 2006). This spectral feature at 837/825 cm-1 shows no significant pH dependence as 

the signals are comparable in the different pH values studied (see Figure 19 and Figure 

22) although at low pH value the ν(CmH) mode displays a broader feature with a 

prominent difference peak at 864 cm-1 (red) and a shoulder peak at 851 cm-1 (reduced) 

(Figure 22, trace 2A). Protonation of the heme propionate at low pH can influence the 

ν(CmH) mode and therefore lead to the two latter peaks. Alternatively, other spectral 

features can be involved. The 864 cm-1 peak is arising also due to histidine residues in 

the reduced state of the enzyme. In previous studies by Dörr et al (Dörr et al., 2006) on 

hematin and protoporphyrin-IX, the ν(CmH) vibrational mode of the porphyrin ring was 

reported to depend on the protonation state of the heme propionate side chain and 

hence a pH dependent behaviour was observed. The band at 750 cm-1 (ox) may arise 

due to the breathing of the porphyrin ring (Dörr et al., 2006) which shifted at 741 cm-1 

(ox) at low pH value. This may be a result of protonation of the propionate side chain 

upon reduction. Other far-infrared difference spectroscopic studies on heme model 

compounds reported difference bands at 839(ox)/830(red) cm-1 (Berthomieu et al., 

2006). The internal modes of the axial histidine and imidazole ligands (670-580 cm-1) 

and deformation modes of the heme pyrroles (420-370 cm-1) are sensitive to the iron 

coordination and redox state of the heme iron (Marboutin et al., 2006), (Xerri et al., 

2009).  

 

3.1.3.4 Spectral contribution from metal-ligand vibrations 

Based on sequence alignment (Körtner et al., 1990), site-directed mutagenesis (Simon 

et al., 1998) and the three-dimensional structure of W. succinogenes QFR (Lancaster et 
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al., 1999), it was found that four histidine residues are the ligands to the heme b groups. 

The axial ligands of the distal heme bD are His C44 of the transmembrane segment I 

and His C143 of the transmembrane segment IV. In the case of the proximal heme, the 

ligands are His C93 and His C182. Histidines are well recognised as heme-ligating 

residues and can act as proton acceptors (or donors) in hemoproteins (Martin et al., 

1985). The imidazole ring of the histidine ligand possesses two protonable 

(deprotonable) nitrogen atoms. Therefore depending on the protonation of nitrogen, it 

can generate four distinct forms (Hasegawa et al., 2000). The pKa of the imidazolium 

ion in water is 7.0 (Frey et al., 1994). In the microenvironment of a protein (in the active 

site, for example) this value can be lowered and is usually close to 6.0 (Hasegawa et al., 

2000). Therefore, histidine can serve as hydrogen-bond donor and acceptor within 

physiological pH range playing crucial role as a proton transfer mediator in various 

proton-transfer reactions (Frey et al., 1994), (Hays et al., 1998). As FTIR difference 

spectroscopy can detect subtle changes at molecular level, even the contribution of a 

single amino acid within the active site of a protein, conformational changes and heme-

histidine interactions can be well studied using this technique. In a far infrared 

spectroscopic study by Dörr et al (Dörr et al., 2007) on Fe-Im vibrations involving 

bis(imidazole)-iron protoporphyrin compound showed imidazole-iron-imidazole 

vibrations at 396/386/378/317 cm-1 for hemin with imidazole.  

In the oxidised-minus-reduced difference spectra of W. succinogenes QFR, 

signals at 975, 926, 915, 860 and 624 cm-1 (Figure 19, trace “t”; and Table 5 and the 

references therein) include possible contributions from histidines (Hasegawa et al., 

2000), (Mesu et al., 2005). The band positions around 926 cm-1 and 915 cm-1 form a 

broadened spectral feature. Two distinct bands are assigned to histidine vibrations. One 

of these bands (at 926 cm-1) appears upon redox transition of the heme bL and the other 

one at (915 cm-1) appears upon redox transition of the heme bH (Figure 19, trace “l” and 

“h”). At low pH values, the spectral characteristics are substantially changed due to a 

negative difference peak at 915 cm-1 (red) and a small shoulder peak at 902 cm-1 (red) 

(Figure 22, trace 2A). The following bands assignments that are typical for histidine are 

based on work reported by Hasegawa et al. (Hasegawa et al., 2000) and Mesu et al. 

(Mesu et al., 2005). Our data suggests that the reduced form of the enzyme favours the 

protonation of histidine at low pH value. The essential part of the contribution seems to 
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originate from heme bL (Figure 19, trace “t” for total contribution and trace “l” for heme 

bD contribution). This supports that the redox transition of the low potential distal heme 

is crucial for the histidine protonation/deprotonation event to occur. A very similar signal 

pattern has been observed at 860 cm-1 (ox) (Figure 19, trace “t”) which changes to a 

strong negative peak at 864 cm-1 (red) (Figure 22, trace 2A) accompanied by the 

positive peak shift to 875 cm-1 (ox) (Figure 22, trace 2A) at low pH value. (Hasegawa et 

al., 2000), (Mesu et al., 2005). The low IR spectra below 700 cm-1 was rather noisy and 

therefore wavenumber region lower than 700 cm-1 has not been shown. 

 
Table 5 Summary of tentative IR band assignments (from 1000 cm-1 to 600 cm-1) for W. succinogenes 

QFR. (For a more detailed assignment of IR bands above 1000 cm-1, see (Haas et al., 2005)). 

Wavenumber (cm-1) redox state tentative assignments          references  

1109   red protonated histidine   (Mesu et al., 2005) 

975                ox    histidine, porphyrin ring       (Hasegawa et al., 2000),  

         (Wolpert and Hellwig, 2006) 

926                     ox    histidine, porphyrin ring C-N      (Hasegawa et al., 2000),  

         (Wolpert and Hellwig, 2006) 

915                     ox      histidine                      (Hasegawa et al., 2000),  

         (Mesu et al., 2005),  

         (Wolpert and Hellwig, 2006) 

915                     red   histidine pH dependent shift  (Hasegawa et al., 2000),  

         (Mesu et al., 2005) 

897                     red   porphyrin ring                  (Dörr et al., 2008) 

875                     ox  histidine pH dependent shift      this thesis 

860                     ox   histidine,    (Dörr et al., 2006), 

porphyrin ring (pH dependent)  (Mesu et al., 2005) 

864                     red protonated histidine          (Hasegawa et al., 2000),  

         (Mesu et al., 2005) 

837                ox   ν(CmH) out-of-plane porphyrin    (Berthomieu et al., 2006) 

825                red   ν(CmH) out-of-plane porphyrin   (Berthomieu et al., 2006) 

750                ox  methionine,     (Dörr et al., 2006), 

porphyrin breathing mode  (Wolpert et al., 2004) 

741              ox porphyrin breathing mode pH dep. shift this thesis 

687              ox ν(CS) & ν(CSC) methionine, porphyrin (Wolpert et al., 2004) 
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Notes: 

(i) 687 cm-1 band may also originate from a pH dependent heme porphyrin ring vibration 

(with a possible involvement of COO heme propionate movement) (Boucher and Katz, 

1967), (Lancaster et al., 2005). 

(ii) 750 cm-1 mode can be due to S-CH2/CH3 vibration in methionine (Venyaminov and 

Kalnin, 1990a). 

(iii) Broad spectral feature around 966 and 975 cm-1 are due to a histidine residue 

overlapped with C-N and C-C stretching vibration of backbone. 

(iv) The broad 897 cm-1 (red) signal is from from the deprotonated heme porphyrin ring. 

This indicates that the heme porphyrin becomes deprotonated upon heme reduction.  

 

3.2 Time-resolved FTIR approaches 
In section 3.2.1, .a detailed description of the initial characterisation results of the caged 

fumarate and time-resolved approches to characterise the released fumarate binding to 

QFR is presented. In section 3.2.2, spectroscopic charaterisation of the caged quinol is 

shown. FTIR difference spectra of the released quinol analog in presence of QFR 

enzyme is presented in detail. 

 

3.2.1 Caged fumarate 
Synthesis and NMR spectroscopic characterisations of the caged fumarate are 

described in the material and method part (see section 2.4.1.1). In section 3.2.1.1 to 

section 3.2.1.11, results from the the UV/VIS and FTIR spectroscopic characterisation 

of the caged fumarate is shown. The substrate fumarate releases only after implying the 

laser flash. The release occurs on a submillisecond time scale. Initiation of the 

enzymatic reaction upon release of fumarate is described. Interaction of fumarate with 

QFR is shown from the time-dependent evolution of the FTIR difference spectra. 

 

3.2.1.1 UV VIS spectra of caged fumarate 

Optical absorbance measurements of CNB-caged fumarate in ethanol solvent were 

performed with the help of a diode-array UV/VIS spectrophotometer (Agilent 4853). The 

wavelength range from 200 nm to 700 nm was studied. Caged fumarate showed a 

stronger absorption peak at 212 nm and a smaller broad peak at 266 nm (Figure 23). 
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The difference spectra of caged fumarate after several laser flashes compared to the 

unphotolysed sample showed differences with positive peaks at 237 nm and 315 nm 

and a strong negative peak at 266 nm (data not shown), the isobestic point being 

located at 254 nm.  

 
Figure 23 Absorption spectra of caged fumarate (100 mM caged was dilued in ethanol solvent to a final 

measurement volume of 200 µL; the cuvette pathlength was 1 mm). 

 

These data are very similar to the CNB-glutamate data (Figure 24) with a slightly shifted 

isobestic point that can be a result of baseline drift and/or additional photoproducts (Gee 

et al., 2002). 
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Figure 24 Photolysis of CNB-fumarate and CNB-glutamate in 50 mM K-phosphate, pH 7.4. The reaction 

was started by a laser flash from a XeCl excimer laser (308 nm, 60 mJ) and absorbance changes were 

followed by a home-built single-wavelength spectrometer. 

 

3.2.1.2  IR absorption spectra of caged fumarate 

The infrared absorption spectrum of caged fumarate (a) and caged fumarate with WT 

QFR (b) is illustrated in Figure 25. Both IR spectra presented here are dominated by the 

intense water absorption at 1648 cm-1. Amide II band at 1550 cm-1 is present in the 

cage with QFR spectra (solid line). However, minute spectra feature at 1530 cm-1 can 

be observed (more prominent in the difference IR spectra) due to the antisymmetric 

vibration of the nitro group present in the cage. 
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Figure 25 IR absorption spectra of caged fumarate only (dotted line) and caged fumarate with WT QFR 

(solid line). (20 mM caged fumarate, 1 mM WT QFR, 10 micrometer pathlength in the IR cuvette, 5°C, 

100 mM potassium phosphate buffer at pH 7.4 was used in each case). 

 

3.2.1.3 Mechanism of photolysis of caged fumarate 

Upon application of two consecutive laser flashes, a considerable proportion of the cage 

could be photolysed. The flash numbers and the excimer laser energy were optimised 

by subsequent experiments to ensure that the amount of released substrate was 

sufficient for binding-induced signals. The reaction represented in Figure 26 shows the 

photolysis mechanism of caged fumarate. Central to the photolysis mechanism is the 

formation of the aci-nitro intermediate (Barth et al., 1995), (Barth et al., 1997), (Gee et 

al., 2002). 
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Figure 26 Photolysis mechanism of CNB-caged compounds. 

 

3.2.1.4 Fumarate release only after laser flash: 

The subsequent release of substrate (fumarate) is concomitant to the decay of the aci-

nitro intermediate. Therefore the release rate of fumarate can be determined by 

measuring and following the absorbance transient of the aci-nitro form (Figure 24). The 

solid black baseline in Figure 28 represents the control spectra without any laser flash, 

signifying the fact that no cage dissociation and subsequent fumarate release occurs 

without the flash. The bold solid trace in Figure 28 shows the infrared difference 

spectrum of CNB caged fumarate generated by its photolysis, with the initial formation 

of the aci-nitro intermediate and eventually the formation of final products. Flash-

induced difference spectra of CNB-caged fumarate exhibit characteristic and highly 

reproducible changes of IR absorbance. Negative bands in the difference spectra arises 

from photolytic groups that are modified during the process and positive bands are from 

groups formed upon photolysis in the aci-nitro intermediate or the final products (Barth 

et al., 1995). In order to trace the decay of the intermediate, the temperature was 

essentially fixed at 5°C and the medium pH value was set to 7.4 using phosphate buffer. 

The FTIR difference band positions are summarised in Table 6. The nitro-group of the 

CNB compound is converted to a nitroso-group and a carboxylate side chain is 

generated together with the released substrate fumarate in the final product. Therefore, 

most prominent feature in caged fumarate dissociation is the conversion of the NO2 

group to a NO group upon photolysis of the cage leading to distinct band patterns in 
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difference spectra. This band pattern remains the same in both cases with or without 

the presence of QFR. Although detailed assignment of the aci-nitro intermediate was 

not possible within the limitation of experimental time scale, the negative marker band 

positions assigned at 1529 cm-1 and 1390 cm-1 arising immediately after the flash are 

assigned to the NO2 antisymmetric and symmetric stretching vibrations, respectively 

(Figure 28). The broad positive signal around 1298 cm-1 is due to NO-stretching 

vibration. The immediate photolysis product 4 (see dissociation mechanism in Figure 

26) leads to a relatively strong keto (C=O) mode contributing around 1680 cm-1 (Görne-

Tschelnokow et al., 1992), (Walker et al., 2002). Two other prominent bands at (+)1557 

cm-1 and (+)1372 cm-1 correspond to C=O antisymmetric and symmetric vibrations, 

respectively. These two difference bands are in very good agreement with the 

characteristic band of fumaric acid (Figure 27).  

 
Figure 27 IR absorption spectra of fumaric acid at pH 2 (solid line), pH 4 (dotted line) and pH 8 (dashed 

line). (20 mM fumaric acid concentration, 10 μm IR pathlength, 5°C in 100 mM potassium phosphate 

buffer was used in each case). 

 

Two negative bands at (-)1307 cm-1  and (-)1177 cm-1 are attributed to the ester C-O-C 

antisymmetric and symmetric vibrational modes of the aci-nitro intermediate, 
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respectively. In the region corresponding to ν(C=O) for esters and ketones, a strong 

negative peak is observed at 1730 cm-1. This is due to the diminishing effect of the C-O-

R group (R=fumarate) from the cage to the end-products (Figure 26). 

 
Table 6 Summary of tentative IR band assignments (from 1800 cm-1 to 1000 cm-1) for CNB-fumarate 

dissociation. 

wavenumber (cm-1) signal sign (+/-)  tentative assignments  references  

1730   negative (-)          νC=O (easter & ketone)  (Haas et al., 2005) 

1674             positive (+)           ν(C=O)    (Barth, 2000) 

1529               negative (-)           NO2 As    (Barth, 2000) 

1390              negative (-)           NO2 Sym    (Barth, 2000) 

1354       negative (-)          ν(NO2) Sym                                           (Barth, 2000) 

1307              negative (-)           ν(C-O-C), Ester   (Barth, 2000) 

1298                positive (+)           ν(NO)     (Barth, 2000) 

1177             negative (-)           ν(C-O-C), Ester   (Barth, 2000) 

 
Table 7 Summary of tentative IR band assignments (from 1800 cm-1 to 1000 cm-1) for W. succinogenes 

QFR. 

wavenumber (cm-1) signal sign (+/-)  tentative assignments  references  

1730   negative (-)       Glu ν(C=O)ox; νC=O (easter & ketone)  (Haas et al., 2005) 

1721          negative (-)       Asp/Glu ν(C=O)red    (Barth and Zscherp, 2002) 

1692         positive (+)       Arg; νas (CN3H5
+), heme prop.            (Chirgadze et al., 1975),  

          (Haas et al., 2005)  

1674         positive (+)  ν(C=O); Asp/Glu ν(C=O);                          (Barth and Zscherp, 2002) 

                                                   Amide I; turns and β-sheets 

1650        positive (+)          Arg; νsym (CN3H5
+)                                    (Chirgadze et al., 1975),  

          (Haas et al., 2005)  

1612     negative (-)     Gln δ(NH2); Tyr-OH; ν(CC); Tyr-O-, ν(CC)  (Barth and Zscherp, 2002), 

          (Rahmelow et al., 1998) 

1598        negative (-)          Gln δ(NH2); Tyr-OH; ν(CC); Tyr-O-, ν(CC)      (Haas et al., 2005),  

          (Rahmelow et al., 1998) 

1558        positive (+)        heme prop.; Asp/Glu; νas(COO-)   (Haas et al., 2005)                 

1462     positive (+)         heme porph; νsym(CaCm)                                                      (Haas et al., 2005) 

1426        positive (+)          Trp ä(NH), í(CC), ä(CH)                                  (Haas et al., 2005) 

1410      positive (+)          Gln; ν(CN); Trp; δ(NH), ν(CC), ν(CH)   (Barth and Zscherp, 2002),  

          (Rahmelow et al., 1998) 

1404        positive (+)       Glu; νsym(COO-)   (Venyaminov and Kalnin, 1990a) 

1402        positive (+)          Asp; νsym(COO-)                     (Venyaminov and Kalnin, 1990a) 

1372         positive (+)          heme prop.; Asp/Glu; νsym(COO-)                                (Haas et al., 2005) 

1272        negative (-)          Trp; δ(NH), ν(CN), δ(CH)                (Barth, 2000), 

     Tyr-O; ν(C-O), ν(CC)   (Chirgadze et al., 1975) 

1267        negative (-)          Tyr-O-; í(C-O) and í(CC)                              (Haas et al., 2005),  
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          (Rothschild, 1992) 

1224        positive (+)          His; ν(CN), δ(CH), δ(NH)                                                  (Barth and Zscherp, 2002) 

1088        negative (-)          Trp; ν(NC), δ(CH)                                               (Barth and Zscherp, 2002),  

          (Haas et al., 2005) 

 

Note: Multiple assignments are given for several vibrations, which represents possible 

alternatives or additional contributions at the same wavenumber. “ν” and “δ” symbol 

indicate stretching vibration and in-plane bending vibration, respectively. The subscripts 

“as” and “sym” indicate antisymmetric and symmetric vibrations, respectively. Heme 

propionates are abbreviated as "prop.” See text for references and details of the 

assignments. 

 
Figure 28 Kinetic FTIR difference bands assignment in caged fumarate with and without the presence of 

QFR WT: difference spectra for photolysis of 30 mM Caged Fumarate (bold black line); 30 mM caged 

fumarate with 1 mM WT QFR oxidised (thin black line); 30 mM caged fumarate with 20 mM DMN(H2) and 

1 mM WT QFR reduced (red line) at pH 7.4, 5°C in 100 mM potassium phosphate buffer. In all cases 10 

mM glutathione was used. The traces represent stationary difference spectra after two consecutive 

flashes. The grey line shows the baseline control spectra without any laser flash. 
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3.2.1.5 Release on a submillisecond time scale 

Caged fumarate can be photolysed by a 308 nm laser flash from the XeCl laser as 

introduced earlier. Figure 26 shows the photolysis mechanism of the caged fumarate. 

As a positive control, the measurements are compared to CNB-glutamate. From the 

transient signal, the time constants of the decay of the aci-nitro intermediate are 

determined to 0.1 ms and 3 ms (Figure 26). The CNB-glutamate shows a similar 

behaviour with a double exponential time course (0.03 ms and 0.6 ms). For all the 

measurements the amplitude of the slow phase is not exceeding 33%. It is assumed 

that fumarate release is correlated to the fast phase of the relaxation process. From the 

analysis of the time course of the absorption transients, a release of fumarate after light 

triggering in the lower submillisecond time domain can be determined. 

 

3.2.1.6 Initiation of enzymatic reaction by photolysis of caged fumarate 

Caged fumarate is stable against hydrolysis under the conditions used in the enzymatic 

assay (50 mM K-phosphate or HEPES, pH 7.4). The ester-linkage between the 

fumarate and the CNB-group is not hydrolysed to a higher extent than 15% after 60 min. 

In the enzyme assay of QFR the oxidation of menaquinol is followed at 254 nm, a 

wavelength that is isosbestic to the unphotolysed/photolysed caged fumarate. The 

reaction is started by the addition of QFR-proteoliposomes. In the presence of 

unphotolysed caged fumarate a basal activity of the enzyme can be observed (Figure 

24). A similar result is obtained in the absence of caged fumarate, but to a slightly lesser 

extent. However, most of the basal activity is assigned to residual fumarate from the 

enzyme preparation and oxygen that may be infiltrated during the addition of the QFR-

proteoliposomes. The dependence of the enzymatic activity on the number of laser 

flashes that release the fumarate used for the turnover is a crucial factor to note. As an 

internal control fumarate is added at the end of the kinetic traces (Figure 24). It is 

inferred that the photolysis products inhibit the QFR only after a high number of flashes 

(500). Therefore the caged fumarate appears to be a suitable compound in kinetic 

studies of QFR. 
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Figure 29 Enzymatic activity of QFR. A 1 mM solution of caged fumarate was separately photolysed with 

a known area illuminated by laser flashes (17 mJ/cm2) and afterwards added to the reaction sample. 

Conditions are 50 mM HEPES (pH 7.4), 80 mM dimethylmenaquinone, reduced with excess KBH4, and 

100 mM of caged fumarate after an increasing number of laser flashes. The sample was made anaerobic 

by flushing it with nitrogen in a sealed cuvette. After recording a stable baseline, the reaction was started 

by the addition of QFR-proteoliposomes. 

 

3.2.1.7 pH dependence of photolysis reaction 

Both the photolysis reaction and the enzymatic activity are pH dependent (Figure 30). 

For the decay of the aci-nitro intermediate, the relaxation rate of the fast process is 

decreasing with higher pH values, while the one of the slow process and the relative 

amplitudes of the two phases remain constant. For the QFR-activity, a maximum is 

seen at pH 7.4. This is a crucial feature in optimising kinetic measurements where both 

the amplitude of the signal and the release rate of fumarate have to be regarded. 
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Figure 30 Flash photolysis of caged fumarate at different pH values. Applied experimental conditions are 

same as in Figure 24. HEPES and BISTRIS are used as buffers in the selected pH range. Inset: 

Relaxation rates of the fumarate release and enzymatic activity (conditions as in Figure 24). 

 

3.2.1.8 Estimation of percentage photorelease of caged fumarate per flash 

Many photo-reactions proceed via a cascade of reactive intermediates and the release 

of the desired substrate may occur with considerable delay after excitation by a short 

laser pulse (Pelliccioli and Wirz, 2002). The substrate release rate and the efficiency 

may strongly depend on the solvent, pH and buffer concentration and thereby can 

initiate a proton transfer reaction (Pelliccioli and Wirz, 2002). Under physiological 

conditions, the knowledge of the actual release rate is an important prerequisite for 

studying biological response times and the rate can vary depending upon designing of 

protecting groups. The photolysis yield of substrate fumarate from its CNB-caged 

derivative was determined after quantification of the FTIR absorption difference band 

peak intensity per flash. 30 mM caged fumarate (in 100 mM potassium phosphate 

buffer) was irradiated with 308 nm monochromatic light from the XeCl laser within 

defined time intervals. Figure 31 shows the difference in IR absorption intensity 

monitored at 1527 cm-1 with increasing number of laser flashes. At a fixed cage 

concentration, the caged fumarate (only) shows higher amplitude of absorption 

differences compared to the cage with QFR sample (Figure 28). This hints to spectral 

shading of the cage generated by the QFR sample. The decay curves could be fitted in 

an exponential manner and the average percentage yield per laser flash is estimated to 
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be approximately 12% per flash. After 8-9 flashes, almost complete (~100%) cage 

occured. This should not be misinterpreted as the exact quantum yield; rather it 

demonstrates that it is practically possible to release fumarate by approximately 12% 

from the caged fumarate under these conditions.  

 
Figure 31 Plot of exponential decay of IR difference spectral absorption intensity monitored at 1527 cm-1. 

(In circles, caged fumarate with WT QFR; in squares, cage fumarate only). 

 

3.2.1.9 Interaction / binding of fumarate on WT QFR: 

In many cases of enzymatic protein biomechanics, structural changes in the ligand-

binding domain correlate to the functional consequences of enzymatic activity. ATR 

FTIR experiments were carried out in order to probe the nature of possible 

conformational changes in the ligand binding domain. The structural changes 

associated with docking of fumarate can be traced and thereby a detailed insight about 

the substrate binding can be investigated.  

The FTIR difference spectra of substrate binding to QFR compared to the 

unbound state shows a characteristic pattern in the amide I region of the protein 

backbone absorbance (Figure 32 c). These differences can monitor conformational 

changes arising due to the fumarate binding. The band positions at (+)1706 cm-1 and (-

)1589 cm-1 may indicate protonation of Glu. The FTIR difference spectra appearing at 

band positions of 1655-1615 cm-1 region is of particular interest where α- helix and β-

sheets absorb. Bands around 1654 cm-1 are usually assigned to α-helical structures, 

while bands around 1630 cm-1 are assigned to β-sheets (Nevskaya and Chirgadze, 
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1976). In the difference spectra (Figure 32 c), these two bands are with opposite signs; 

positive (+) and negative (-), suggesting that upon substrate binding α-helical structural 

characteristics within the QFR tend to increase where as the β-sheet structural 

characteristics tend to decrease. Furthermore, a sharp negative difference band around 

1680 cm-1, which is also characteristic of amide I turns and β-sheet structure in the 

oxidised state of the protein (Haas et al., 2005), confirms diminishing of turns and β-

sheet structural parts. 
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a)

c)

b)

 
Figure 32 Binding of fumarate with QFR WT (in 50 mM phosphate buffer at pH 7.4) by ATR FTIR 

method: a) Spectrum of QFR with 50 mM fumaric acid; b) Absorption spectrum of buffer with 50 mM 

fumaric acid minus buffer without fumaric acid; c) Difference spectrum of QFR with 50 mM fumaric acid 

minus QFR without fumaric acid. 
 

Fumaric acid has its two major characteristic infrared absorption bands at 1560 and 

1374 cm-1 (Figure 32 b) Although the difference bands are closely positioned (Figure 32 

c), the (+)1551 cm-1 band possibly does not arise due from fumarate absorption. The 

original absorption band of fumaric acid positioned at 1557 cm-1 (Figure 32 b) a 
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comparatively much broader band. Therefore, it can be concluded that the 1551 cm-1 

band in the difference spectra corresponds to changes in the amide I region. In fact, the 

1551 cm-1 band is typical for helix absorption (Goormaghtigh et al., 1994). Difference 

bands at (-)1510 cm-1 and (+)1481 cm-1 could arise due to the change in properties of 

Tyr or/and Trp side chains and may involve the FAD (Haas et al., 2005). Furthermore, 

difference bands at (+)1374 cm-1 and (-)1357 cm-1 indicate possible changes in 

properties of Trp. However, contribution of small artefacts of subtraction of fumaric acid 

spectra appearing at around (+)1374 cm-1 can not be ruled out. The band at (-)1218 cm-

1 changes in properties of His upon binding of fumarate. The negative band at (-)1680 

cm-1 arises probably due to alterations in turns and the (+)1654 cm-1  band due to 

absorbance of helix and /or disordered structure, as mentioned earlier. However, it is 

not possible to distinguish between these two structures by measuring only in buffer 

containing H2O. The difference band at (+)1630 cm-1 indicates absorbance of β- or 

extended structure. Overall, possible explanation could be that secondary structure 

changes occur from turns to helix/disordered and extended structural elements upon 

fumarate binding to QFR.  

 

3.2.1.10 Comparison of FTIR difference spectra of caged fumarate with/without WT 

QFR 

FTIR difference spectra of caged fumarate with WT QFR shows specific differences 

from that of the cage (only) spectra within a time window of ~200 milliseconds after the 

release (data not shown). Minor conformational changes can be concluded from the 

amplitude (and intensity) of the difference bands. The FTIR difference band positions 

are summarised in Table 7. The 1674 cm-1 band (spectrum of only cage; Figure 28, bold 

solid line) corresponds to the C=O stretching vibration together with a possible 

contribution from C=C stretching vibrations in fumarate (Figure 28). Of special interest is 

the absorbance of the amide I mode of the polypeptide backbone, which is sensitive to 

secondary structure. An overall conformational change in the polypeptide backbone is 

evident from the broad characteristic of FTIR difference signals in the (+)1650 cm-1 

region. The (-)1730 cm-1 band is shifted to (-)1721 cm-1 when the cage is present with 

QFR and the negative effect is somehow hindered with the contradicting effect 

generated by possible protonation of the Glu/Asp side chains. With a clear effect of the 
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shifted negative peak at (-)1721 cm-1, a band appears at (+)1411 cm-1 (Figure 28, red 

line) in the difference spectra; the later being ascribed to deprotonated carboxylate 

(McMahon et al., 2004). The overall scenario indicates that fumarate binding has a 

specific effect on the QFR backbone structure.  

Symmetric and antisymmetric vibrational frequencies of arginine residues at 

1650 cm-1 and 1692 cm-1, respectively (Barth and Zscherp, 2002) may be subdued in 

the broad overlapping positive difference signals. Reactions at fumarate reaction site 

may involve the Arg A301 and Arg A404 (Lancaster et al., 2001). Redox difference 

spectra originating due to pronation/deprotonation (reduced and oxidised form, 

respectively) of arginine residue is although very unlikely. This is probably due to the 

fact that a deprotonation reaction of Arg (having a pK of ~11) is not feasible. Non-

definitive indications of involvement of protonation of arginines have been reported in 

FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer 

in bovine cytochrome c oxidase (McMahon et al., 2004) which are special in case of 

COX. 

One of the obvious observations regarding caged fumarate dissociation in 

presence of QFR is the spectral shading effect. The two heme b groups in QFR render 

the sample to be highly reddish-brown in colour at a substantial protein concentration of 

∼1mM. This high absorbance characteristic of QFR can shade the caged fumarate to 

catch sufficient flash energy, thereby lowering the amount of released fumarate for flash 

efficiency to be lower. Spectral trace from the cage (only) has almost double intensity of 

absorption difference signals compared to that when QFR is present with the cage, the 

sample layer thickness and the other experimental conditions being identical (Figure 28).  

 

3.2.1.11 Time-dependent evolution of FTIR difference spectra of caged fumarate 

with WT QFR 

Significant differences in the spectral positions of specific absorbance bands have been 

observed between the kinetic difference traces of caged fumarate in the absence and 

presence of QFR (Figure 33). The IR difference spectra in specific amino acids may 

vary with a time dependent manner that could hint that specific amino acid side chain 

are involved in the protein’s molecular reaction mechanisms. Changes at protonable 

and other residues that are sensitive to the electron distribution in the enzyme are 
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obvious in the FTIR difference spectra as discussed later. The first difference spectrum 

after 65 ms time window depicts spectral differences when every binding reaction 

should have taken place. Difference spectra recorded after this time window represent 

similar characteristics in band positions and band signs (positive or negative) as the first 

spectrum with some subtle changes related to sample integrity and stability. Although 

the current stage of the results does not allow us to interpret and represent a complete 

molecular description for the difference spectra, the FTIR difference bands (Figure 33) 

can indicate the following outcomes that are crucial to understand the binding of 

fumarate to the QFR. 

 
Figure 33 Time dependence of FTIR difference spectra for photolysis of 50 mM caged fumarate with 1 

mM WT QFR (solid line) in presence of DMN(H2) and glutathione at pH 7.4, 5 °C in 100 mM potassium 

phosphate buffer. The traces represent spectra averaged in 65 ms, 0.65 sec, 2.6 sec, and 26 sec time 

window after two consecutive flashes each with 23 kV energy per flash. The specific shaded areas in the 

kinetic difference traces indicate the wavenumber regions with major spectral changes as a function of 

time. 

 

(1) The initial 0.65 second spectral characteristic around 1650-1680 cm-1 region 

resembles the spectral characteristic of the reduced-minus-oxidized spectra of QFR 

obtained previously by electrochemically induced FTIR difference spectroscopy (Haas 
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et al., 2005). This may hint that with subsequent reduction of hemes in QFR, a rapid 

release and binding of fumarate in the presence of the menaquinol analog can actually 

start the catalytic cycle of QFR. However the heme reduction was difficult to monitor by 

the respective IR absorption bands due to the relatively low intensity of the porphyrin 

ring signal and also the fact that signals arising from heme porphyrin ring vibration 

appear in rather low-IR range (below 1000 cm-1). Changes in the 1678 cm-1 (ox) region 

incase of QFR may correspond to alteration in secondary structure elements such as 

amide I turns and β-sheet. Two distinct peaks are positioned at 1654 cm-1 and 1662 cm-

1 regions. Up to 2.6 sec duration after the release of the substrate, the (+)1654 cm-1 and 

(-)1662 cm-1 peaks are very prominent and decays gradually with the appearance of a 

single broad band around (+)1662 cm-1 spectral region for a relatively longer time 

duration (during the concomitant 26 sec). The appearance of the (+)1654 cm-1 band 

(which could correspond to an Asn ν(C=O) stretching) suggest the possible protonation 

of an Asn residue (Chirgadze et al., 1975), (Rahmelow et al., 1998), (Venyaminov and 

Kalnin, 1990a), (Venyaminov and Kalnin, 1990b). The peak positioned at 1660-1662 

cm-1 may correspond to reduced Gln. 

 

(2) A slight shift of the signal at (+)1558 cm-1 to a lower wavenumber is observed with 

increasing time (Figure 33). At a relatively larger time delay, the 1558 cm-1 peak 

eventually shifts to 1552 cm-1. The 1558 cm-1 peak position can be assigned to several 

important groups, namely, the heme propionate and the νas(COO-) of Asp/Glu residues. 

A possible explanation for that can be the following. As an important environmental 

factor, the hydrogen bonding related to these two particular acidic residues (upon 

protonation) lowers the frequency of stretching vibration. Analogous results of H-

bonding induced shift have been previously characterized and reported for His and Tyr 

residues of photosystem II (Hienerwadel et al., 1997), (Noguchi et al., 1999) and 

bacteriorhodopsin (Dollinger et al., 1986), (Roepe et al., 2002), (Rothschild, 1992). 

 

(3) The spectral feature around 1420-1405 cm-1 consists of two distinct band peaks at 

the initial time block (0.065 sec), showing decreased band intensity and a spectral 

broadening. The small band around (+)1462 cm-1 in the initial time block is probably due 

to the heme porphyrin ring νs(CaCm) signal. The (+)1416 cm-1 band may arise as a result 
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of reduced Trp δ(NH), ν(CC), δ(CH) vibrational modes. A reduced Gln ν(CN) vibrational 

mode could be proposed based on the (+)1410 cm-1 band. However, the reduction of 

these two amino acid chains is transitory and rapid enough. On a relatively longer time 

scale, the broad spectral peak covers the spectral region of 1400-1410 cm-1, which in 

turns reflects possible involvement of Glu and Asp (both assigned to νs(COO-) vibration) 

in their reduced state. From earlier studies of Venyaminov and Kalnin (Venyaminov and 

Kalnin, 1990a), it has been established that Glu and Asp bands could be assigned to 

1404 cm-1 and 1402 cm-1, respectively. However these band positions may shift +60/-90 

cm-1 upon cation chelation (Tackett, 1989) and in extreme cases the band position for 

ν(C-O) of COOH group may alter (Barth and Zscherp, 2000), (Deacon and Phillips, 

1980). 

 

(4) A prominent band peak at (-)1272 cm-1 appears in the difference spectra and with 

time this peak shifts slightly to a lower wavenumber region, around 1267 cm-1. This 

band at 1272 cm-1 has been assigned to the oxidized state in Tyr-O-, ν(C-O) and ν(CC) 

vibrations (Dollinger et al., 1986), (Hienerwadel et al., 1997). A smaller wavenumber 

shift in band position may occur as the Tyr band is sensitive to H-bonding. 

 

3.2.2 Caged 2-Methyl-3-methylamino-1,4-napthoquinone(ol) (MMAN(H2)) 
3.2.2.1 UV-VIS absorption spectra of caged-MMAN 

The UV-VIS absorption spectrum of caged-MMAN is shown in Figure 34.  
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Figure 34 Absorption spectra of caged-MMAN in 100 mM Na-phosphate buffer of pH 7.4. (Black: caged-

MMAN in its fully oxidised state, red: caged-MMAN in its half-reduced state, green: caged-MMAN in its 

fully reduced state); the dashed line points out the 308 nm wavelength where the laser flash was applied 

during flash-induced FTIR studies. 

 

UV-visible absorption spectra of oxidised and reduced solution of quinone have been 

studied extensively in many earlier studies (Bauscher and Mäntele, 1992), (Breton, 

1997), (Hellwig et al., 1999). The two positive bands at around 240 nm and 270 nm 

region are due to the π→π* transition in the Q species. There is another significant 

band peak at 380 nm arising due to the n→ π*  transition (Meganathan and Coffell, 

1985). The quinone solution in the experimental compartment can be reduced with 

KBH4 and hence the resulting spectra can be recorded with negative peak maxima at 

around 280 nm. Electron transfer reaction in quinone species occurs in a two step 

mechanism, first generating Q.- and then Q2- with the respective incorporation of two 

successive electrons. In kinetic studies of quinone containing enzymes the absorbance 

difference A280-A320 was monitored as a function of time (Madej et al., 2006a). With an 

addition of a calculated amount of borohydride it could be ideally possible to obtain the 

spectra of the half reduced species. However, from the spectral feature it can not be 

speculated wheather the singly reduced species is either MMAN- or MMANH and 

wheather the doubly reduced species is either MMANH- or MMANH2. A diode-array 

UV/VIS spectrophotometer (Agilent 4853) was used for recording different wavelengths 

simultaneously. Therefore, no further scaling was needed (Madej et al., 2006a).  
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3.2.2.2 FTIR absorption spectra of MMAN and caged-MMAN 

Figure 35 depicts the FTIR absorption spectra of the MMAN and caged-MMAN.  

 
Figure 35 FTIR absorption spectra of the MMAN and caged-MMAN. 

 

The infrared absorption spectra of MMAN and caged-MMAN do not significantly differ. 

Only specific and minor differences arise in case of the cage due to the presence of the 

caging moiety. The 1453 cm-1 band is representative of the CH2 deformation in the 

linker position. The 1420 cm-1 and a prominent 1380 cm-1 band are representative of 

CH3 deformation of the aromatic methyl group and/or in-plane O-H bending, 

respectively. The 1328 cm-1 and 1274 cm-1 bands arise from the tertiary amine 

vibrations (C-N stretching). The 1328 cm-1 band may also be contributed from the NO2 

symmetrical stretching vibration. 1091 cm-1 band generally appears due to the presence 

of phosphate group in the medium buffer (P=O stretching). 1040 cm-1 band possibly 

arise due to the CH3-O stretching (As saturated C-O stretching appears in 1050-1010 

cm-1 range). A less intense signal at 1660 cm-1 might originate from the C=O group from 

quinone in solution (Bauscher and Mäntele, 1992). An overall conclusion can be that 

these assigned characteristic absorption bands are particular to the caged substrate 

containing corresponding functional groups. The FTIR difference band positions here 

discussed are summarised in Table 8. 
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Table 8 Summary of tentative IR band assignments (from 1800 cm-1 to 1000 cm-1) for caged MMAN(H2) 

dissociation. 

wavenumber (cm-1)   signal sign (+/-)             tentative assignments                    references  

1600                            positive (+)                secondary amine, C-N str., C-N-C sym.str.             this thesis 

1522                            negative (-)            NO2 antisym. str.    this thesis 

1455                            negative (-)                CH2 deformation      this thesis 

1398                            positive (+)                CH3 deformation                this thesis 

1376                            negative (-)            NO2 sym. str.    this thesis 

1328                            negative (-)               tertiary amine, C-N str., NO2 sym.str.     this thesis 

1288          positive (+)       C-O-CH3     (Mezzetti et al., 2003) 

1274                            negative (-)              tertiary amine, C-N str.,                             this thesis 

1247                            positive (+)             aromatic C-O str. this manuscript     this thesis 

1218                            negative (-)             C-N str.               this thesis 

1091                            negative (-)            phosphate buffer; P=O   (Haas et al., 2005) 

 

3.2.2.3 FTIR analysis of the caged MMAN(H2) dissociation 

The vibrational difference spectra before and after the flash is reported in Figure 36. 

The different colour codes represents diffence spectra calculated from respective 

spectra acquired at distince time intervals after triggering release of the caged substrate 

minus the spectrum acquired before applying the flash to the caged sample. Flash-

induced difference spectra exhibit characteristic and highly reproducible changes of IR 

absorbance. In the difference spectra, several positive (+) and negative (-) difference 

bands arise at specific wavenumbers. 

 
Figure 36 Characterisation of FTIR bands after caged MMAN photolysis. 
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Negative bands in the difference spectra arise from photolytic groups that are modified 

during the process and positive bands arise from groups that are formed upon 

photolysis of the cage (or the final products) (Barth et al., 1995). The experimental 

temperature was essentially fixed at 5 °C and the medium pH was set at 7.4 using 

phosphate buffer. The FTIR difference band positions are summarised in Table 8. 

Positive and negative natures of these bands and the band positions are in accordance 

as expected from literature (see also Figure 35). The caged MMAN(H2) was dissolved 

and stored in ethanol solvent in the dark. Here with the caged MMAN(H2) it was 

possible to record the spectrum instantly after the laser flash up to the first 65 ms. 

Reaction could be monitored in a time dependent manner up to an order of several 

minutes.  

Concomitant with the spectral changes observed is the formation of the desired 

menaquinol analog substrate and the expected dimethoxy nitrophenyl caging moiety 

(Figure 13). During the flash photolysis, the tertiary amine (3˚ amine) group in the cage 

is eventually converts to a secondary amine (3˚ amine) and the CH2 group (linked to the 

tertiary amine nitrogen) converts to a CH3 group. Therefore, the positive (+) FTIR 

difference bands at 1600 cm-1 and 1398 cm-1 are characteristics of the secondary amine 

and CH3 deformational vibrations (see Table 8). The negative (-) FTIR difference band 

positions represent the disappearance of the tertiary amine (1328 cm-1 & 1274 cm-1), 

the CH2 group (1455 cm-1) and the C-N bond (1218 cm-1) (see Table 8). The 

background control measurement before every trace shows no detectable signal (Figure 

36). Taken together, these FTIR difference bands characteristically represent the cage 

dissociation, and the subsequent release of quinol analog. However, the dissociation 

phenomenon is fast enough and almost instantaneous to detect susceptible changes 

within the limited lime resolution of the system. These specific difference bands are also 

in accordance with the cage IR absorption spectra (Figure 35) in their respective wave 

number positions.  

 

3.2.2.4 FTIR absorption difference spectra of caged-MMAN with QFR 

The FTIR difference spectrum of the released quinol analog and fumarate in presence 

of QFR is shown in Figure 37. 
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A)

B)

 
Figure 37 Kinetic FTIR difference bands assignment in caged MMAN with and without the presence of 

QFR WT: (in black trace) 100 mM caged MMAN only; (in grey trace) 100 mM caged MMAN with 0.5 Mm 

QFR WT, 30 mM caged fumarate; a): spectra of 65 nm after the flash, b): spectra of 26 sec after the flash. 
 

Few aspects of caged-MMAN results partially resemble the spectral features of the 

redox-induced (reduced-minus-oxidised) QFR WT data. Small changes in the difference 

spectra around 1650 cm-1 suggests that changes in the protein amide I modes are likely 

to take place. One of the most obvious observations is that the 1523 cm-1 marker band 

(relevant to NO2 antisymmetric stretching) in the MMAN spectra shifts its band position 

to 1499 cm-1, indicating possible reduction of the nitro group in the cage moiety. The 

negative peaks in the difference spectra (gray trace in Figure 37) at positions (-)1498 

cm-1 and (-)1468 cm-1 possibly hints the protonation of tyrosine and heme porphyrin in 

QFR, respectively. In case of Rb. sphaeroides the frequency of the C-O stretch of the 
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UQ0 semiquinone anion in situ has been found to be around 1500 cm-1 which is close to 

in vitro values in methanol (Breton et al., 1991). This suggests established polar 

character of the QB pocket and the H-bonding of the two quinonic oxygens with amino 

acid residues (Deisenhofer and Michel, 1989). A more detailed analysis of the position 

of the 1460-1400 cm-1 semiquinone anion band would require spectroelectrochemistry 

of quinone in various solvents and a better knowledge of the other factors, such as the 

distortion from a planar conformation of the quinone ring and C=O groups or the 

influence of the polarity of the microenvironment, which contribute to the energy of this 

vibration. One of the remarkable observations is appearance of a negative band at (-

)1376 cm-1 which suggests the possible protonation of Asp and/or Glu residues (Figure 

37). The negative band at (-)1326 cm-1 (previously detected in the cage only spectra at 

(-)1328 cm-1) is unchanged in both the cases and represents the disappearance of the 

tertiary amine group in caged MMAN dissociation (Figure 37). The similar phenomenon 

of disappearance of tertiary amine together with a possible protonation of tryptophan 

and tyrosine residues (Table 7) leads to a band shift of 1273 cm-1 band to a new 

position at 1267 cm-1 in the QFR bound state of the released substrate (Figure 37 B). 

Overall, the different state of ionization and/or protonation is expected to shed light on 

the geometrical and energetic factors (hydrogen bonding, dipolar interactions), distortion 

of the ring and substituents, microconformational changes, and electrostatic relaxation 

of QFR. With the evolution of time, there are no remarkable changes in the band 

positions and patterns of the two spectra represented in Figure 37 (A & B), suggesting 

that the release of the caged substrate and its subsequent binding to the enzyme is 

relatively faster enough to detect any kind of events such as further 

protonation/conformational changes, even after hundreds of millisecond of its release.  

 

3.3 Transient absorption spectroscopy 
Towards an understanding of the catalytic mechanism of this enzyme, the aim of the 

present work was to investigate the processes associated with inter-heme electron 

transfer in QFR. In this present study, picosecond transient absorption spectroscopy 

has been employed to resolve the actual time-scale of the inter-heme electron transfer. 

Previous studies by Champion and co-workers (Wang et al., 2000), (Zhu et al., 1994) 
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involved coherent reaction of the heme upon impulsive excitation of cytochrome c (Vos 

and Martin, 1999) using excitation and probing in the Soret band region. 

 

3.3.1 Steady state absorption study of WT QFR 
The heme Soret band absorption maximum shifts from 416 nm (oxidised, shown in 

black) to 428 nm (reduced, shown in red). The reduced spectrum (in green) was taken 

after 8 hours of continuous illumination of the QFR sample (Figure 38). Reduced-minus-

oxidised difference spectra of WT QFR show the largest contribution in the Soret region, 

whereas the contribution from the α-region is ~10% of the total absorption change in 

Soret band. Similarly, the sample was semi-reduced using DMNH2 (2, 3-dimethyl-1, 4-

naphthoquinol) as it has the midpoint potential which is well in between the two heme 

midpoint potential values. Therefore, DMNH2 (Em = -75 mV) specifically reduces the 

high potential heme bP (Em = -9 mV) and the low potential heme bD (Em = -152 mV) still 

remains in its oxidised state. The QFR sample then finally ends up in a mixed-valance 

state. The calibration and optimisation of the exact amount for DMN (2, 3-dimethyl-1, 4-

naphthoquinone) and DMNH2 needed for a certain amount of QFR was calculated 

previously (data not shown). Chemical reductions of QFR were performed under 

anaerobic conditions. In (Madej et al., 2006a), UV/VIS spectra of oxidised and reduced 

quinones and an in situ redox titration of DMN has been shown. Followed by the single 

heme reduction, reduction of both the hemes occurred during overnight excitation 

(Figure 38). 
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Figure 38 Absorption spectra of QFR WT at pH 7.4 in two different redox states. The heme Soret band 

absorption maximum shifted from 416 nm (oxidised, shown in black) to 428 nm (reduced, shown in red 

and green). In red, shown is the QFR WT “mixed-valance” state and in green shown the double heme 

reduction after 8 hours of illumination in visible light. 

 

3.3.2  Cryo temperature static VIS redox difference spectra of WT QFR 
Absorption spectra of various oxidation states of WT QFR preparations were measured 

in the visible region over a wide range of temperatures from -185 0C (88K) to room 

temperature (300K), employing a liquid nitrogen cryostat system. A carbon resister was 

used, the resistance of which shows the temperature dependence as a semiconductor 

and as a function of inverse absolute temperature. The sample preparations of WT QFR 

oxidised state (Figure 41) and WT QFR dithionite reduced state (Figure 39) were used 

respectively. The general features from low temperature spectra were the following. 

First of all, there was a sharpening of each peak in the spectra of the reduced hemes, 

especially in α- peak (Figure 39) with gradual lowering of the temperature. 
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Figure 39 Changes in absorption spectra of fully reduced QFR measured at a temperature range from 

298K to 88K. Spectra in the left side is the zoomed version (α- and β- bands are enlarged) of the full 

spectra in the left side (Experimental conditions and other details are mentioned in the materials and 

methods part). 

 

The sharpening effect is thought to be induced by the restriction of molecular oscillation 

at low temperatures. In addition, there was a tendency of the α- band peak to separate 

into two distinct peaks (α1 and α2) at low temperatures. The same kind of spectral 

features also appeared in case of the β- band. The maximum absorbance was plotted 

versus the wavelength (Figure 40). 

A B 
 

 

 

 
 

Figure 40 Plot of the absorption maxima for the α- band (shown in A) and β- band (shown in B) with the 

variation of temperatures. Values are taken from the absorption spectra of fully reduced state of QFR 

represented in Figure 39. 
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From the absorption spectra it is obvious that with temperature variation (from 300K to 

88K), a wavelength shift of the α- peak (shown in Figure 40 A) as well as the β- peak 

(shown in Figure 40 B) occurred towards the blue end by 2-3 nm. Remarkable 

intensification of extinction was observed with lowering temperature. This increase in 

extinction was induced mainly by multiple reflections from the micro crystals in the 

frozen samples, and also apparently, in part, by the above sharpening effect of the 

absorption bands. In contrast, no such effects were observed in the oxidised form of WT 

QFR (Figure 41).  

 
Figure 41 Changes in absorption spectra of fully oxidised QFR measured at a range of temperatures 

ranging 298K to 96K. (Experimental conditions and other details are mentioned in the material and 

method section). 

 

Hagihara and co-workers (Hagihara and Iizuka, 1971), (Hagihara et al., 1974) 

previously demonstrated the low temperature heme VIS spectra from purified beef-heart 

cytochromes a (a3), b, and c1, crystalline pigeon breast-muscle cytochrome c and 

crystalline yeast cytochrome c, all in the reduced form. In all the cases, prominent peak 

sharpening (especially of the α-peak) of the reduced cytochromes was observed when 

the temperature of the samples was lowered. Separation of the α-peak into two distinct 

peaks and a wavelength shift of the α-peak toward the blue end (by 3-5 nm) were 

observed when the temperature was lowered from 300K to about 10K. Similar results 

were obtained in studies on neutrophil b-type cytochrome in situ by low temperature 

absorption spectroscopy (Iizuka et al., 1985). In another study, Low temperature 
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resonance Raman spectroscopy has been employed to characterize the stabilized 

intermediate redox states of cytochrome c generated by radiolytic reduction of initially 

oxidized enzyme at liquid nitrogen temperature (Cartling, 1983). It has been shown that 

the heme group is reduced by hydrated electrons, whereas the protein conformation is 

restrained close to its oxidized form 

 

3.3.3 Time-resolved absorption changes of WT QFR 
The major goal in performing the ultrafast transient absorption experiments was to 

investigate the process (es) associated with the inter-heme electron transfer within QFR. 

During electron transfer, an “out-of-equilibrium” excited state configuration can be 

generated upon absorption of the photon. This can be represented by a “wave-packet” 

which then evolves towards the equilibrium position. As a prerequisite for the transient 

absorption experiment, low temperature static VIS redox difference spectra are obtained 

(section 3.2.2) in order to ensure if there are any distinguishable features between the 

two hemes in QFR at cryogenic temperatures. Starting with single-heme reduced 

species, after exciting at 560 nm, it is possible to observe the transient heme absorption 

bleaching with a time constant of 6.2 picoseconds. In contrast, the heme-oxidised state 

of the WT QFR sample shows no such bleaching. A control experiment performed with 

the fully reduced QFR does not show any significant bleaching. 
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Figure 42 Comparison of transient absorbance changes of QFR WT sample probed at 558 nm for fully-

reduced QFR (shown in blue; time constant of 4.8 ps), semi-reduced (shown in black; time constant of 6.2 

ps) and fully-oxidized (shown in green) redox states. Thick lines represent results from the global fit 

amplitude.  

 

Excitation of semi-reduced QFR at 560 nm results in an instantaneous bleaching of the 

α-band (around 560 nm) and the production of an excited state absorption band around 

450 nm (Figure 43). Thus, monitoring the bleach band at 560 nm it is possible to obtain 

information on the lifetime of the selectively excited heme. Figure 42 shows the kinetics 

measured at 558 nm for fully reduced (shown in blue); semi-reduced (shown in black); 

and oxidized QFR (shown in green). The experimental data can be satisfactorily fitted 

using one time constant: 4.8 ps for the fully reduced sample and 6.2 for the semi-

reduced sample. 
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Figure 43 Temporal evolution of difference absorption spectra of semi-reduced QFR at pH 7.4 after 

excitation with a 560 nm pulse. Signal amplitudes are colour coded: red indicates positive, and blue 

negative absorbance change. 

 

Figure 43 represents the 2D contour plot of the transient absorption spectra as 

described in Figure 42. An indication of product absorption at 690 nm around 100 ps 

time (Figure 43) could imply that the product of the photo excitation showed spectrum 

with broad single peak. This could allow reconstruction of the product spectrum.  

The extent of heme b reduction during the 6 ps phase is indeed far from the full 

extent of electron transfer in equilibrium. At longer time scales (and at neutral or 

physiological pH value of 7.4) the 6 ps reaction is followed by a slower electron transfer 

from the heme bP to Fe-S clusters and eventually to the FAD (data not shown). The 

results of the present study may also be compared with the previous work on ferrous 

cytochrome c by Wang et  al (Wang et al., 2000). 

In a control experiment with fully reduced QFR, no bleaching signal was 

observed (Figure 42). This can be expected result because of existence of rapid 

electron-transfer equilibrium between the two heme redox centers in the fully reduced 

state of the enzyme. Nevertheless, transfer of electron from the high potential heme bP 

to its nearby cofactor [3Fe-4S] cluster can not be ruled out as the Fe-S cluster is 

situated within the range of physiological electron transfer distance.  
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3.3.4 Absorption anisotropy and heme reorientation dynamics in QFR 
Being a planar chromophore, heme is less sensitive to the mutual orientation of pump- 

and probe-beam polarization. Theoretically, the limiting values of anisotropy are 0.1 and 

0.4 for planar and linear chromophores, respectively (Wang et al., 2000). In the present 

case involving QFR, heme anisotropy value of approximately 0.06 is obtained at a delay 

time of 1 ps (Figure 44). This value is well within the theoretical limit. In case of 

cytochrome c, the rotational depolarisation can be neglected because cytochrome c is a 

protein with the heme embedded in it and such a large object can not rotate significantly 

on the time scale of tens of picoseconds (Ansari et al., 1993). 
 

 
 

 

 

  
Figure 44 Transient bleach VIS absorption spectra of QFR semi-reduced redox state under 0.1 ps (upper 

panel) and 1 ps (lower panel) time delay. The colour coding shown in black represents parallel detection; 

colour coding shown in red represents perpendicular detection: and blue colour represents the difference 

between the parallel and perpendicular detection. 
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4 Discussion 
In the following sections, the outcomes from the different spectroscopic approaches to 

study the electron coupled proteon transfer mechanism have been discussed.  

 

4.1 Electrochemically induced static FTIR spectroscopic 
approaches 
In section 4.1.1, the redox-dependent protonation change of the residue Glu C180 in 

wild type enzyme as a function of pH are discussed in detail. In section 4.1.2, vibrational 

contributions from the heme porphyrin groups and the histidine ligand are discussed in 

detail. 

 

4.1.1 pH dependence of FTIR difference spectra of enzyme variant E180Q and 
QFR WT 
For W. succinogenes wild-type QFR, employing electrochemically induced static FTIR 

difference spectroscopy (in the mid-infrared region from 1800 to 1000 cm-1) it has been 

demonstrated that the redox-dependent protonation change of the conserved residue 

Glu C180 is a function of pH. Such a pH-dependence of the oxidation-reduction 

midpoint potentials of the heme groups has been measured previously (unpublished 

data). Comparisons of the results obtained for the E180Q variant enzyme indicate a key 

role of Glu C180 in establishing this pH-dependence in the wild-type enzyme. As 

indicated by FTIR double difference spectroscopy, single heme reduction is sufficient for 

significant protonation of Glu C180 to occur and there is very little additional protonation 

of this residue in the fully reduced enzyme in the physiological pH range. The pH 

dependence of the protonation of Glu C180 upon single reduction is also predicted by 

the corresponding multiconformation continuum electrostatics (MCCE) calculations.  

Reduced-minus-oxidized QFR WT-minus-E180Q mutant FTIR double-difference 

spectra shows pH dependence with redox triggering of the heme groups (Figure 18). In 

order to normalise distinct spectra, the absorbance difference bands of QFR WT and 

E180Q mutant at 1678 cm-1 and 1501 cm-1 are normalised for all pH values. The double 

difference spectra at 1740-1742 cm-1 show maximum absorption around pH 7.5 and pH 

8. This is in line with the fact that FTIR double-difference spectra of QFR WT and 
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E180Q variant show maximum absorption intensity around 1740-1742 cm-1 region 

(previous study at pH 7, (Haas et al., 2005) and reflects perfect agreement with the 

assigenment for the ν(C=O) stretching vibrations of the protonated carboxyl groups. The 

reduction of a single heme, namely the high potential proximal heme bP, is already 

sufficient for the significant protonation of Glu C180 residue. The additional protonation 

of this Glu C180 miminaly depends on the reduction of the low potential distal heme bD 

within the physiological pH range. This pH dependence also correlates perfectly with the 

pH dependence of the quinol oxidation activity of the enzyme. Furthermore, as inferred 

from the E-pathway, the redox-switch for coupled transmembrane electron and proton 

transfer, namely the Glu C180, is not functional in the variant. This agrees with the 

above-mentioned results from FTIR spectroscopy and electrostatic calculations. 

The pronounced differences found for WT and E180Q point out that Glu C180 is 

unequivocally involved in the pH-dependence of the heme midpoint potentials due to 

redox-coupled (de)protonation and/or an environmental change of this residue. The 

discrepancy between pKox and pKred for WT and E180Q, respectively, is considerably 

stronger for the high potential “proximal” heme (bP) than for the low potential “distal” 

heme (bD). In the variant E180Q, the high potential heme is much harder to oxidize at 

pH values above pH 5.5. This indicates that the invariably neutral charge on the side 

chain of the Gln C180 in the variant, which mimics the Glu C180 in its neutral 

protonated state, stabilizes the reduced state of the proximal heme. The asymmetry of 

the impact of the mutation E180Q on the heme redox behavior may be related to the 

observed conformational change of Glu C180, which occurs in a concerted manner with 

respect to proton uptake upon reduction of the hemes. Most probably, the Gln C180 

side chain in the variant is locked in an orientation that is similar to the one of Glu C180 

in the protonated state. In addition, the proximal heme is inevitably harder to re-oxidize 

in the variant since the Gln C180 can not be deprotonated to electrostatically ease the 

re-oxidation of heme bP as it is conceivable for the Glu C180 in the WT enzyme. 

Consequently, as observed experimentally, the activity of the enzyme variant E180Q is 

substantially reduced compared to the WT. 

The observation of a redox Bohr effect in the variant E180Q also proves that Glu 

C180 is not the only protolytic group responsible for the pH-dependence of both heme 

groups of QFR. For the low potential heme the differences in the variant might be less 
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pronounced because the ring C propionate of this heme could be the dominating 

protolytic site for bD. The redox Bohr effect of the high potential heme in the variant 

yields evidence for the presence of further protolytic groups which, in addition to Glu 

C180 in the WT, interact with heme bP. Thus, this conclusion from the obtained data 

represents an essential prerequisite for the existence of a functional “E-pathway”, since 

Glu C180 alone does not suffice for efficient proton transfer across the bacterial 

membrane.  

4.1.2 pH and redox dependence of the individual heme porphyrin signal and 
other relevant residues in QFR WT 
Although considerable efforts have been devoted and significant details are already 

known regarding the catalytic mechanism and enzymatic function of QFR, only little is 

known to date about the low infrared contribution of the heme porphyrin modes and the 

heme-ligating groups. This work demonstrates the first redox and pH dependent FTIR 

characterisation study on W. succinogenes QFR in the low frequency range below 1000 

cm-1. Prominent and reversible band patterns arise upon redox induced reactions 

suggesting that the redox induced FTIR difference spectroscopy of QFR is redox-

tunable, fully reversible and sensitive in the 2000-500 cm-1 range. Spectral features are 

in agreement with previous studies (Haas et al., 2005) within 2000-1000 cm-1 region 

suggesting that spectral data are reproducible. Minor differences may arise due to use 

of different buffers and applied experimental conditions. It is observed that specific 

bands arising in the redox difference spectra of W. succinogenes QFR are responsive 

to the contribution of particular heme groups, pH, iron-ligated histidine and ν(CmH) 

vibration of the heme porphyrin ring system. For instance, the ν(CmH) mode is found to 

be conserved in all pH cases and may serve as a marker band in further studies as 

established previously for c-type hemes (Dörr et al., 2006). 

Redox-linked protonation behaviour of histidine has been well discussed 

previously in Iwaki et al. (Iwaki et al., 2005). FTIR measurements of model compounds 

of the histidine side chain showed that the C5-N1 stretching band around 1100 cm-1 can 

be a useful IR marker of the Nδ protonated histidine imidazole ring (Noguchi et al., 

1999), (Mesu et al., 2005). In the present case, the histidine signal at 1109 cm-1 can be 

observed (Figure 20 and Figure 21). The corresponding ν(C5Nτ) ring mode of histidine 

was assigned at 1113-1104 cm-1 in the Fe, Cu, or Zn -bound complexes, especially 
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ν(C5Nτ) ring mode of the proximal histidine ligand of Fe(III) was detected at 1105-1100 

cm-1 (Marboutin et al., 2009). Presence of hydrogen bond between histidine fifth axial 

ligand and a peptide carbonyl group can also be concluded from the previous study 

(Marboutin et al., 2009).  

Histidine shows a prominent and sharp peak at 624 cm-1 (Dörr et al., 2008), 

(Wolpert and Hellwig, 2006), (Hasegawa et al., 2000), (Marboutin et al., 2009) which 

can be observed better with a Hg-light source equipped with changed beam splitter and 

other optical detection parameters. The frequency shift in case of axial histidine ligands 

has been attributed to anharmonic coupling (Franzen et al., 2000) and change of 

molecular symmetry in the coordination of iron center with histidines (Dörr et al., 2006). 

In general, frequency of the out-of-plane mode of the axial ligand vibration is dependent 

on the metal-ligand bond stretching strength as well as the motion of the iron with 

respect to the porphyrin ring (Franzen et al., 2000). The electronegative character and 

bending of the imidazole ring of the ligand with respect to the porphyrin ring plane is 

also a determining factor of the vibrational frequency (Berthomieu et al., 2006), 

(Hasegawa et al., 2000), (Iwaki et al., 2005). 
The present work demonstrates the coupling between protonation and electron 

transfer (ET) reactions in transmembrane redox protein QFR, which includes axially 

coordinated bis-histidine-ligated heme iron along with several other redox active 

cofactors. In the oxidation-reduction process of the QFR, the distal heme-ligated 

histidines possibly undergo protonation-deprotonation. Most likely, a conformational 

change of a histidine ligand occurs upon reduction of the enzyme. This apply either to 

only one or both of the axial histidine ligands of the distal heme. Histidine should show 

displacement from heme or conformational differences in rather low pH than high pH 

because protonation of histidine occurs in the low pH range. Reduction of distal heme 

facilitates the protonation of one of the axial histidine ligands. In other words, the uptake 

of an electron causes the protonation of axial histidine of the distal heme in particular. 

Previous studies by FTIR difference spectroscopy revealed that upon redox changes of 

the distal heme, there is an involvement of that heme propionate in the electron-coupled 

proton transfer in QFR (Mileni et al., 2005).  

Our data suggest that the coupling mechanism between proton and electron 

transfer may involve a change in the heme environment. The position and orientation of 
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the histidine backbone relative to the heme plane and relative to the second histidine 

can be altered. Furthermore, this could influence the hydrogen bonding pattern of 

imidazoles axially coordinated to heme by means of electrostatic interactions. The local 

environment of ring C propionate of distal heme bL is hydrophobic enough not to be 

involved in any hydrogen bonding (Mileni et al., 2005), (Lancaster et al., 1999). 

Although the FTIR signals within the presented experimental range does not yield any 

information regarding the protonation of the Glu C180 residue, it is most likely the 

candidate for next protonation to be transferred after histidine coupled to the heme 

reduction, as established by previous studies (Haas et al., 2005), (Lancaster et al., 

2005), (Madej et al., 2006a). Costa et al. (1992) reported that upon reduction, one of the 

axial histidines in cytochrome c" is detached and left free to take up a proton in the 

physiological pH range, with no change in the total charge around the heme on going 

from the oxidised to the reduced state. Analogously, the present mechanism in QFR 

suggests that one of the distal heme faces is fairly accessible to solvent protons in order 

to allow histidine protonation. 

Future studies, addressing the assignment of signals to specific histidine 

residues, should involve suitable heme-retaining replacements of the histidine ligands 

by site-directed mutagenesis. However replacement of the histidine side chain can 

possibly result in loss of the heme group. Simon et al. (Simon et al., 1998) observed 

that replacement of any of the four histidine ligands with alanine prevents the formation 

of functional W. succinogenes QFR. On a related, but different diheme-containing 

succinate:quinone oxidoreductase, Hägerhäll et al. (Hägerhäll et al., 1995) reported that 

mutation of the axial histidine ligands (His28 and His113) by tyrosine in the isolated 

mutant in Cyt b558 resulted in loss of heme bL. A significant structural change in the 

local environment of the heme bH was a result of the His13 mutation, as was evident 

from EPR spectroscopy. For more detailed assignments of histidines, isotope labeling 

experiments (Kimura et al., 2003) are necessary. Several studies have been performed 

replacing the axial heme ligating histidine by exogenous small ligands and thereby 

monitoring the protein’s functionality and mechanistic pathways in the changed heme 

coordination environment (Barrick, 2002), (Hirst et al., 2001). 
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4.2 Time-resolved FTIR spectroscopic approaches 
In section 4.1.2, characterisation of caged fumarate and FTIR spectroscopic studies on 

the on the interaction of the released fumarate with QFR have been discussed. A 

different and alternative approach by using caged-quinol, subsequent release of quinol, 

thereby of initiating and probing the enzymatic reaction are discussed in section 4.2.2. 

 

4.2.1 Comparison of the kinetic FTIR difference spectra of fumarate substrate 
The novel CNB-caged fumarate compound is suitable for kinetic measurements with W. 

succinogenes QFR and is generally applicable for all studies involving fumarate 

reactions. In the context of the present work, it has been shown that this newly 

synthesised CNB-caged fumarate has been physico-chemically characterized and FTIR 

difference band positions (after photolysis) have been assigned accordingly. The 

release of fumarate occurs in the submillisecond time range and the enzyme is active 

only when fumarate is released. As the nitrobenzyl moiety of the α-CNB group is 

hydrophobic, it may interact and thereby associate with the hydrophobic part of proteins. 

Hydrophilicity of α-CNB group can be increased with possible inclusion of additional 

carboxylate protecting group. For instance, 4-dicarboxy-2-nitrobenzyl (4-DCNB) resulted 

in an improved distribution of the compound in aqueous and hydrophobic phase, with an 

inclination to be more in the aqueous phase (Schaper et al., 2002). The strong 

absorbance of the solvent water is an obstacle inherent to infrared techniques. 

Therefore, experiments had to be carried out with highly concentrated sample layer with 

very thin aqueous films. This need is indeed a conflicting factor in the present study 

because efficient mixing of reactant may not be guaranteed due to high sample 

concentration and enzymatic reactions could be diffusion controlled. A similar 

phenomenon was reported earlier (Ludovici et al., 2002) on a related study of the 

reaction of cytochrome bo3 oxidase with photochemically released dioxygen from a 

cobalt peroxo complex.  

In the context of the reaction of Escherichia coli cytochrome bo3 and 

mitochondrial cytochrome bc1 complexes, Hansen et al (Hansen et al., 2000) explored 

the possibility of using the 3′,5′-dimethoxybenzoin (DMB) moiety as a protecting group. 

The rapid photolysis rate and a facile synthesis of the DMB group made its use 

desirable. However, poor solubility of the caged ubiquinol in aqueous media prevented 
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full characterisation of the compound and hence led to the use of another new 

protecting group, namely the 3′,5′-bis(carboxymethoxy)benzoin (BCMB) where the 

methoxy group is replaced with carboxymethoxy group (Hansen et al., 2000). This 

decylubiquinol based on BCMB is water-soluble. In the present context our preferred 

caging group is 1-(4, 5-dimethoxy-2-nitrophenyl)ethyl (DMNPE).  

A considerable masking effect is observed in the spectra when WT QFR is 

present with the caged fumarate. Nevertheless, the presently detected signals indicate 

small but specific conformational changes in spite of the fact that the relatively strong 

band characteristics from the cage release may still mask the protein signals. The 

observed subtle changes probably involve only a few amino acids upon binding with 

QFR. As mentioned in Lancaster et al. (2001), the capping domain of the hydrophilic 

subunit A in Wolinella succinogenes QFR is the most susceptible candidate for a larger 

conformational movement. The fumarate binding site is located close to this domain. As 

evident from the preliminary results from ATR difference spectra, the secondary 

structural changes are consistent with a major contribution from this capping domain 

movement. Together with the protein secondary structural changes mainly speculated 

to be centred at the capping domain of QFR, the consideration of the possibility of an 

internal proton movement with substrate binding can not be ruled out. The bands from 

deprotonated carboxylate and protonation of a possible Glu (and/or Asp) residue(s) may 

invoke to draw such conclusion.  

The alterations in different secondary structural elements proposed here can 

involve not more than five amino acid residues which can be centred in the capping 

domain movement in fumarate binding region in QFR. In case of redox induced 

conformational changes in amide I band in heme-copper oxidases cytochrome aa3 from 

R. sphaerodes and ubiquinol oxidase from cytochrome bo3 from E. coli, 3 to 5 peptide 

bonds were involved (Lübben and Gerwert, 1996). In case of QFR, redox induced 

conformational changes can also involve such a comparable number of peptide bonds 

(Haas and Lancaster, 2004). Therefore, it can be concluded that only a few peptide 

bonds which serve as a hinge for the rigid domain movement are involved in the 

structural changes of QFR. The fumarate-binding site is localised in the flavoprotein 

subunit A of the enzyme (Lancaster et al., 1999) between the FAD-binding domain and 

the capping domain next to the plane of the FAD isoalloxazine ring. As reported earlier, 
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a third crystal form “C” of QFR revealed domain closure at the site of fumarate reduction 

(Lancaster et al., 2001). In other words, binding of substrate fumarate induces 

movement of the capping domain to close the active site to solvent. In ATR-FTIR 

studies the molecular mechanisms involving conformational changes of QFR can be 

studied at conditions close to the native reactions, even for detergent solubilised protein. 

The data obtained from the spectroscopic studies, therefore, complements and 

supplements the structural information obtained from the crystalline state (Lancaster et 

al., 1999), (Lancaster et al., 2001).  

This work presents characterisation of a novel cage substrate and FTIR 

spectroscopic studies on the interaction of the released substrate with a redox enzyme. 

Further investigations for a deeper time-resolved understanding of the redox 

mechanisms would require studies on QFR enzyme variant with substrate and the use 

of appropriate photo labile caged substrate analogs. Motivations to design modified 

cages may include isotopically labelled (13C, 18O or both) cages. 

 

4.2.2 Comparison of the kinetic FTIR difference spectra of the caged MMAN with 
the absence and presence of QFR WT 
The photosynthetic RCs are generally regarded as a model system to study quinone 

reaction (Lancaster et al., 1995), (Lancaster, 1998) because short laser pulses (or 

continuous illumination) can induce the reaction of quinones. Therefore, a detailed 

understanding of the kinetics and energetics of quinone redox chemistry is possible. 

Information regarding the conformation of the ring and the substituents as well as the 

hydrogen-bonding details can be well investigated with the help of FTIR difference 

spectroscopy (Gerwert, 1993). Flash (reaction)-induced FTIR difference spectroscopy 

(Mezzetti et al., 2003), (Mezzetti and Leibl, 2005) help to understand changes in the 

active sites or in the quinone binding site in QFR with selected sensitivity. 

Here in the context of the present work a novel caged compound is introduced, 

namely the caged quinol analogue of the naturally occurring menaquinol in QFR. QFR 

catalyzes the oxidation of menaqinol to promote the reduction of fumarate to succinate. 

Thus, the electron-coupled transmembrane proton transfer can essentially reduce 

specific residues and cofactor in its path, thereby reflecting the subsequent changes in 

the FTIR difference spectra.  



Discussion 98 

A major limitation in difference FTIR method is that vibrational modes from all the 

bonds from both the cofactor and the protein that have been perturbed lead to crowded 

difference spectra. Therefore, it is hard to assign the quinone vibrations (Buchanan et 

al., 1992) and to distinguish them from the overlapping protein modes. Future directions 

could employ chemically modified cofactors or isotopically labeled compounds. The 

geometry of the methoxy groups in ubiquinone in the QA and QB sites was probed with 

ubiquinones selectively labeled at C-2 or at C-3 (Breton et al., 1996). Approaches could 

combine site-directed mutagenesis (Breton et al., 1996), (Hienerwadel et al., 1995), 

(Nabedryk et al., 1995), 1H/2H exchange (Breton et al., 1996), (Hienerwadel et al., 1995), 

(Nabedryk et al., 1995) and selective labeling of a single type of amino-acid residue.  

Although experiences have indicated that it is not necessary to rigorously protect 

the caged reagent and the reaction products from normal ambient light, it is advised that 

these caged materials should not be exposed to direct sunlight or other strong sources 

of UV radiation. As simple and worthwhile precaution, wrapping reaction vessels and 

chromatography columns with aluminium foils are suggested. Caged materials appear 

to be less stable in solution and on silica gel than in solid form. DMNPE caged probes 

are recommended to store at -20˚C with desiccate without any light exposure.  

One of the obvious observations regarding caged MMAN(H2) dissociation in 

presence of QFR is the shading effect. The two heme b groups in QFR render the 

sample to be highly reddish-brown coloured at a substantial protein concentration of ∼1 

mM. This can shield the cage to get flashed, thereby lowering down the quantum yield 

for flash efficiency to be smaller. The caged MMAN is intensely reddish coloured at the 

experimental concentration due to the presence of the two methoxy- and nitro- group’s 

side chains. In the FTIR spectra, spectral trace from the cage (only) has almost double 

intensity of absorption difference signals compared to that when QFR is present with the 

cage, the sample layer thickness and the other experimental conditions being identical. 

 

4.3 Interheme electron transfer in the semi-reduced state of QFR WT 
In many key mechanisms of biological energy conversion, the long range electron-

transfer reactions are rapid and thus can not be resolved using conventional techniques. 

Figure 45 shows the experimentally deduced midpoint potentials of the substrates, 

prosthetic groups, and cofactors (as well as the corresponding electron transfer rates) of 
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Wolinella succinogenes WT QFR, which are involved in the catalytic mechanism of the 

enzyme. The scheme shows that some of the involved electron transfer steps are 

endergonic and some are exergonic (Figure 45). Efficient tunnelling of electrons is 

ensured due to the spatial proximity of the prosthetic groups and cofactors. The electron 

transfer step from MKH2 to heme bP actually consists of two individual steps, being rate 

limited by the MKH2 to bD step. It is obvious that, being energetically favoured, the 

electron transfer from bD to bP has to be much faster than the MKH2 to bD rate. In case 

of the QFR, upon rapid excitation, the electron can have two possibilities/destinations to 

transfer: (i) it can be transferred to the low potential heme b or (ii) it may itself show 

relaxations to its own ground state. 

Depending on the structure of biomolecules, the nature of the electron transfer 

shows pathway specificity (Gray and Winkler, 1996), (Verkhovsky et al., 2001) which 

allows structural control over the electron transfer rate. Empirical theory of non-adiabatic 

electron transfer states that electron tunnelling rate between the biological cofactors is 

determined by the “edge-to-edge” distance between them and the atomic packing 

density of the intervening structure. Over distances greater than 14 Å, a high directional 

specificity often exists to transfer electrons in natural systems (Page et al., 1999). 

Multistep tunneling accompanying several endergonic steps through chains of redox 

centres individually spaced within the 14 Å limit may occur. The specificity of the 

molecular interactions and the molecular cofactor electrostatics suggest that 

crystallographic structure (Lancaster et al., 1999) as well as the established E-pathway 

(Madej et al., 2006a) represents a highly probable conformational state of an electron 

transfer complex between the two hemes in QFR during its catalytic mechanism. 
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Figure 45 Oxidation-reduction (midpoint) potentials (in mV) of the constituents of the electron transport 

chain of the W. succinogenes QFR. The distances are given in Å and refer to inter-cofactor distances. 

Electron transfer rate constants between cofactors; reduction rates of components of the fully oxidized 

enzyme upon addidion of DMNH2; in box are reoxidation rates of the fully reduced enzyme by fumarate 

(Haas and Lancaster, 2004) and Em values for Fe-S clusters are updated from (Mileni et al., 2006). 

 

 In summary, it has been demonstrated that picosecond pump-probe transient 

absorption can be employed to study the intramolecular rapid heme-heme electron 

transfer as a part of the catalytic mechanism of the redox active protein QFR in its 

detergent solublised state and at room temperature condition. Although no definite 

estimation of the percentage of photoexcitation of the total heme and the photolysis 

quantum yield can be made, a possibility of ligand photodissciation after photoexcitation 

(Abbruzzetti et al., 2006) can not be ruled out. Photodissciation of ligand occurs in less 

than 50 fs time using femtosecond pulses with a quantum yield of approximately unity. 

The ground state unligated heme species appears in 300 fs. Two distinct excited heme 

species was shown to be formed upon ligand photodissociation (Martin and Vos, 1992). 

Previous work on cytochrome c and cytochrome b5 also suggested ligand 

photodissociation after excitation (Jongeward et al., 1986), (Jongeward et al., 1988). 
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 Although the question of which particular bond (Fe-His or Fe-Met) is photolyzed 

remained open, Jongeward et al. (Jongeward et al., 1986), (Jongeward et al., 1988) 

suggested that the Fe-His bond breaks upon photoexcitation. Detailed investigation 

involving line shape and evolution of the isosbestic point of the reported spectra 

suggested that photolysis might not take place in cytochrome b5 and that the 

assignment of histidine ligand photolysis in cyt c might be inconclusive though 

(Jongeward et al., 1986). In the oxidation-reduction process of the QFR, heme-ligated 

bis-histidine possibly undergoes protonation-deprotonation and most likely a 

displacement from heme or conformational differences of this histidine ligand occurs 

upon reduction of the enzyme (Paul, R., Hellwig, P., Khoury Y., and Lancaster, C.R.D. 

(2011) manuscript under preparation) at a relatively lower pH value. This could either 

apply to only one histidine or both the axial histidine ligands. Reduction of distal heme 

facilitates the protonation of axial histidine of the distal heme in particular. Previous 

studies by FTIR difference spectroscopy reveal that upon redox changes of the distal 

heme, there is an involvement of that heme propionate in the proton coupled electron 

transfer in QFR (Mileni et al., 2005). 
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5 Concluding remarks and perspectives 
The main aim of the project was to obtain, by employing a combination of static 

difference and time-resolved spectroscopic approaches, a detail insight of the 

transmembrane electron coupled proton transfer mechanism in W. succinogenes QFR. 

On the basis of the results otained from individual sub-projects, the following 

conclusions can be drawn. 

 

1.) pH-dependence of the oxidation-reduction midpoint potentials of the heme groups 

has been previously measured for W. succinogenes QFR. Comparison of the results to 

those obtained for the E180Q variant enzyme indicates a key role of Glu C180 in 

establishing this pH-dependence in the wild-type enzyme (Paul, R., Haas, A.H., Madej, 

M.G., Mäntele, W., and Lancaster, C.R.D., manuscript in preparation). As indicated by 

electrochemically induced FTIR double difference spectroscopy, single heme reduction 

is sufficient for significant protonation of Glu C180 to occur and there is considerably 

less extent of additional protonation of this residue in the fully reduced enzyme in the 

physiological pH range. The pH dependence of the protonation of Glu C180 upon single 

reduction is supported by the complementary electrostatics calculations. This nature of 

pH dependence correlates very well with the pH dependence of the quinol oxidation 

activity of the enzyme. 

 

2.) The data from redox-induced low-IR experiments are compatable with the coupling 

mechanism between proton and electron transfer involving a change in the heme 

environment. The γ(CH) vibration of the heme porphyrin ring depends on oxidation state 

of heme propionates. The position and orientation of the histidine backbone relative to 

the second histidine can be altered. Reduction of the distal heme, in particular, 

facilitates the protonation of one of the axial histidine ligands (Paul, R., Hellwig, P., 

Khoury Y., and Lancaster, C.R.D., manuscript in preparation). 

 

3.) Synthesis and broad physico-chemical characterisation of a CNB-caged fumarate is 

presented. This novel caged sustrate is found to be suitable for kinetic measurements 

with W. succinogenes QFR and is generally applicable for all studies involving fumarate 

reactions. The release of fumarate occurs in the submillisecond time range and the 
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enzyme is active only when fumarate is released. The detected FTIR difference signals 

indicate small but specific conformational changes in WT QFR upon fumarate binding. 

The secondary structural changes are consistent with a major contribution from the 

capping domain movement of the hydrophilic subunit A, located close to the fumarate 

binding site (Paul, R., Bamann C., Enela Džafić, E., Mileni, M., Fendler, K., Mäntele, W., 

and Lancaster, C.R.D., manuscript in preparation). 

In a complementary approach to study the catalytic mechanism, a novel caged 

quinol analog is introduced. Kinetic FTIR differences characteristically represent the 

cage dissociation, but the dissociation event is fast enough to detect succeptible protein 

conformational changes with the limited time resolution of the methodology. 

 

4.) It has been demonstrated that ultrafast transient absorption spectroscopy can be 

employed to study the intramolecular rapid heme-heme electron transfer as a part of the 

QFR catalytic mechanism. Generation of mixed valanced QFR state is possible by 

selective chemical reduction of heme by using DMNH2.  Resulting in a time constant of 

6.2 ps, excitation of the semi-reduced QFR allows probing the life time of the selectively 

excited heme (In collaboration with S. Amarie and J. Wachtveitl). This finding means 

that the excitation state of the high potential heme is significantly unstable and inter-

heme electron transfer is in the time-scale of pico seconds. The oxidised state of the 

enzyme, serving as a control, demonstrates the absence of any heme bleaching signal. 

In summary, recent advances in understanding the trans-membrane electron 

coupled proton transfer (ECPT) mechanism in QFR have been discussed. Most of the 

results discussed in this thesis have been obtained by employing time-resolved as well 

as static spectroscopic approaches. From the static FTIR spectroscopic studies, the 

redox-dependent protonation changes of the “key” residue Glu C180 has been 

discussed in the context of E-pathway. Only a single heme reduction act as a 

protonation triggering switch for Glu C180 and one of the heme-ligated  axial histidine 

ligands. The redox dependent protonation and conformational change of the heme-

ligated histidine has been discussed. The time-resolved FTIR spectroscopic studies 

indicated small but specific conformational changes in QFR upon substrate 

(fumarate/quinol) binding. Excited state life-time and an electron transfer equilibration 

rate between the low- and high- potential heme were possible to probe by employing 
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transient absorption spectroscopy. Taken together, the outcomes of the studies help in-

depth understating of the molecular processes associated during catalytic activity of 

QFR. 

Future studies, addressing the assignment of signals to specific histidine 

residues, should involve suitable heme-retaining replacements of the histidine ligands 

by site-directed mutagenesis. For more detailed assignments of histidines, isotope 

labeling experiments (Kimura et al., 2003) are necessary. Several studies have been 

performed replacing the axial heme ligating histidine by exogenous small ligands and 

thereby monitoring the protein’s functionality and mechanistic pathways in the changed 

heme coordination environment (Barrick, 2002), (Hirst et al., 2001). Further 

investigations for a deeper time-resolved understanding of the redox mechanisms would 

require studies on QFR enzyme variant with substrate and the use of appropriate photo 

labile caged substrate analogs. Motivations to design modified cages may include 

isotopically labelled (13C, 18O or both) cages. Approaches could combine site-directed 

mutagenesis (Breton et al., 1996), (Hienerwadel et al., 1995), (Nabedryk et al., 1995), 
1H/2H exchange (Breton et al., 1996), (Hienerwadel et al., 1995), (Nabedryk et al., 1995) 

and selective labeling of a single type of amino-acid residue. A spectroclectrochemical 

cell compatible with the femtosecond transient absorption setup with 1 mm pathlength 

can be used in future. With this kind of cell, the chemical single-heme reduction issue 

can be avoided because an accurate control of the redox potential will be possible from 

the externally installed potentiostat. The use of E180Q variant for similar kind of 

measurements would be of course the next evident control experiments. 
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7 Appendix 
Table 9 The simulated pH dependence of the occupancy of Glu0 C180 (cumulative occupancy of all 

neutral conformers) as a function of the four considered heme redox states. 

 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 

bD
oxbP

ox 0.983 0.951 0.858 0.685 0.466 0.266 0.054 0.000 0.000 0.000 

bD
redbP

ox 1.000 1.000 1.000 1.000 1.000 0.972 0.905 0.754 0.505 0.272 

bD
oxbP

red 1.000 1.000 1.000 0.970 0.905 0.786 0.606 0.329 0.138 0.014 

bD
redbP

red 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.978 0.922 0.821 

 

Table 10 The simulated pH dependence of the difference in occupancy of Glu0 C180 (cumulative 

occupancy of all neutral conformers) as a function of the four considered heme redox states. 

 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 

bD
oxbP

red -

minus- bD
oxbP

ox 

0.017 0.049 0.142 0.285 0.484 0.520 0.552 0.329 0.138 0.014 

bD
redbP

ox -

minus- bD
oxbP

ox 

0.017 0.049 0.142 0.315 0.534 0.706 0.851 0.754 0.505 0.272 

bD
redbP

red -

minus- bD
oxbP

ox 

0.017 0.049 0.142 0.315 0.534 0.734 0.946 0.978 0.922 0.821 
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Figure 46 The simulated pH dependence of the occupancy of Glu0 C180 (cumulative occupancy of all 

neutral conformers) as a function of the four considered heme redox states. 

 

Figure 47 The simulated pH dependence of the difference in occupancy of Glu0 C180 (cumulative 

occupancy of all neutral conformers) as a function of the four considered heme redox states. 
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