
Borrelia recurrentis Employs a Novel Multifunctional
Surface Protein with Anti-Complement, Anti-Opsonic
and Invasive Potential to Escape Innate Immunity
Sonja Grosskinsky1, Melanie Schott1, Christiane Brenner1, Sally J. Cutler2, Peter Kraiczy3, Peter F. Zipfel4,

Markus M. Simon5, Reinhard Wallich1*

1 Infectious Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany, 2 School of Health and Bioscience, University of East London,

Stratford, London, United Kingdom, 3 Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt/Main, Germany, 4 Department of

Infection Biology, Leibniz-Institute for Natural Products Research, Jena, Germany, 5 Metschnikoff Laboratory, Max-Planck-Institute for Immunobiology, Freiburg, Germany

Abstract

Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic
variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first
time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement
regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to
retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi
B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated
killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and
to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B.
recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate
immunity and to persist in human tissues, including the brain, may help to understand the pathological processes
underlying louse-borne relapsing fever.
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Introduction

B. recurrentis, the causative agent of louse-borne relapsing fever

(LBRF) is transmitted to humans, its reservoir host, by contam-

ination of abraded skin with either hemolymph or feces of an

infected human body louse (Pediculus humanus humanus) [1,2]. The

last century has seen multiple epidemics of LBRF in Europe, with

high mortality rates up to 40%. However, currently epidemic

outbreaks of LBRF are only reported from Africa [3,4]. LBRF is a

systemic inflammatory disease, characterized by one to five

relapses of fever and a massive spirochetemia [5]. If treated with

antibiotics, the mortality is reduced to 2–6%, however, patients

often suffer from Jarish-Herxheimer reactions [6].

In order to survive in human tissues, including the blood, B.

recurrentis has to escape innate and adaptive immune defence

processes. Complement acts as an important part of host innate

immunity, which is essential for recognition and elimination of

microbes. However, pathogenic organisms can evade complement

attack that is either mediated by the acquisition of host regulators

to the surface of the pathogen or by expression of endogenous

complement regulators [7]. An increasing number of pathogenic

microbes utilize host complement regulators for immune evasion

and for down-regulation of complement activation. In fact we and

others have recently demonstrated that tick-borne pathogens, B.

hermsii and B. burgdorferi, are able to bind complement regulatory

proteins, i.e. factor H (CFH), CFH-like protein 1 (CFHL-1) and

CFH-related protein 1 (CFHR-1), via their surface lipoproteins

CRASP-1, thereby conferring resistance to complement attack

[8,9,10,11,12]. Surface bound CFH controls complement activa-

tion by accelerating the decay of the C3 convertase of the

alternative pathway and by inactivating newly formed C3b

[13,14]. CFH represents the main human fluid phase regulator

of the alternative pathway of complement activation and belongs

to the factor H protein family, consisting of seven structurally

related proteins in humans, including Factor H-related proteins

(CFHRs) [15]. All factor H protein family members are composed

of short consensus repeats (SCRs) [16]. Among those, CFHR-1

was recently shown to inhibit complement activation by interfering

with C5 convertase and terminal complex formation (unpublished

data).

Another common strategy of pathogens to circumvent the

immune system and to persist is based on their capability to exploit

host plasma derived proteases, in particular human plasminogen/

plasmin (PLG) in order to breach tissue barriers. Recently, we

have identified and characterized a number of PLG-binding outer

surface lipoproteins in related spirochetes, including B. burgdorferi

and B. hermsii. B. burgdorferi was shown to bind PLG via a multitude

of lipoproteins, such as CRASP-3 (ErpP), CRASP-4 (ErpC),
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CRASP-5 (ErpA), OspA and as yet to be defined molecules

[17,18]. B. hermsii, on the other hand, was found to interact with

PLG via a 21-kDa lipoprotein, which also binds CFH via distinct,

non-overlapping domains [9]. Surface bound PLG is subsequently

processed via urokinase-type plasminogen activator (uPA) to active

plasmin, a broad-spectrum serine protease, capable of degrading

constituents of the extracellular matrix and basement membranes

[19,20]. The fact that surface-bound PLG retains its proteolytic

activity, even in the presence of serum inhibitors, suggests this

process as a suitable means of pathogens to readily disseminate

and to persist in the host.

CFH- and C4b-binding proteins of B. recurrentis have been

proposed [21], but so far these proteins have not been isolated.

Here we provide evidence that B. recurrentis express a novel

multifunctional surface lipoprotein, which by exploiting host

proteins confers resistance to both, complement attack and

opsonization and simultaneously acquires an increased potential

to invade host tissues.

Materials and Methods

Bacterial strains and growth conditions
Relapsing fever spirochetes B. recurrentis strain A1 and A17, B.

hermsii (ATCC35209) strain HS1 and the Lyme disease spirochete

B. burgdorferi strain B313, which is a clonal mutant of B31 lacking

all linear and circular plasmids with the exception of cp32-1, cp32-

2, cp32-4, cp26 and lp17, were cultivated in BSK-H complete

medium (PAN Biotech, Aidenbach, Germany) supplemented with

5% rabbit serum (Cell Concept, Freiburg, Germany) at 30uC [22].

Bacteria were harvested by centrifugation and washed with

phosphate-buffered saline. The density of spirochetes was

determined using dark-field microscopy and a Kova counting

chamber (Hycor Biomedical, Garden Grove, CA). E. coli JM109

were grown at 37uC in LB medium.

Isolation and cloning of HcpA, construction of expression
plasmids and production of recombinant proteins

Isolation of the CFH binding protein of B. recurrentis was carried

out by co-immunoprecipitation. Protein G sepharose beads

(Amersham Bioscience, Freiburg, Germany) were loaded with

polyclonal anti-factor H antibody (Calbiochem, Schwalbach,

Germany) and purified human factor H (Calbiochem). Subse-

quently, beads were incubated overnight at 4uC with whole cell

lysates of B. recurrentis A1. Immunoprecipitates were separated by

SDS-PAGE and visualized by staining with colloidal Coomassie

(Pierce/Thermofisher, Bonn, Germany). The selected protein

band of approximately 17 kDa was cored from the gel and

subjected to mass spectrometric analysis. The identified peptides

matched an open reading frame of 525 bp of the B. recurrentis A1

genome, designated hcpA.

The gene encoding HcpA was amplified by PCR using primers

BrF and BrR (Table 1), cloned into pGEM-T Easy vector

(Promega, Mannheim, Germany) and sequenced by using the

BigDye terminator cycle sequencing kit (PE Applied Biosystems).

The resulting plasmid pGEM-Br was used as template for

construction of expression plasmids by PCR amplification. For

recombinant full-length HcpA protein, primers BrBam and BrSal

were used, for N- and C-terminal deletion mutants, these primers

were applied in combination with D48Bam, D78Bam, D145Sal or

D115Sal (Table 1) resulting in recombinant proteins HcpA D48-

175, D78-175, D18-145 and D18-115, respectively. After digestion

with restriction enzymes BamHI and SalI, PCR fragments were

ligated in frame into the His6-tag encoding sequence into vector

pQE-30Xa (Qiagen, Hilden, Germany). For expression of N-

terminal His-tagged fusion proteins the plasmids were transformed

into E.coli strain JM109 and recombinant proteins were purified as

recommended by the manufacturer (Qiagen).

Expression of recombinant proteins of CFH, CFHL-1 and
CFHR-1

Deletion constructs of CFH (CFHSCR1-7, CFHSCR8-20,

CFHSCR15-20, CFHSCR15-19) and CFHR-1 were expressed in

Spodoptera frugiperda Sf9 insect cells infected with a recombinant

baculovirus. The cloning, expression and purification have been

described previously [14,23]. The CFH deletion mutant

CFHSCR19-20 was amplified by PCR, ligated in frame into pQE-

30Xa vector and expressed as fusion protein with an N-terminal

His6-tag. Expression and purification was done as recommended

by the manufacturer (Qiagen).

SDS-PAGE, Ligand affinity blot and ELISA
Borrelial whole cell lysates (15 mg) or purified recombinant

HcpA proteins (200 ng) were subjected to Tris/Tricine-SDS-

PAGE under reducing conditions and transferred to nitrocellulose

Table 1. Oligonucleotides used in this study.

Primer Sequence (59 to 39) purpose of use

BrF TTC AGA AGT GGA GCA ATC amplification of hcpA gene

BrR ACA TAA TAA ACG AAT TTT AAT CTA TG amplification of hcpA gene

BrBam CAT TAT TGG ATC CGA ACT CTT AAG C generation of expression plasmid

BrF1 AAA CAG GCT CAA TCA GCT C amplification of hcpA gene

BrR1 TCT AGA TCA TTA AAG TTT GCA G amplification of hcpA gene

BrSal ACA TAA TAA ACG TCG ACT AAT CTA TG generation of expression plasmid

D48Bam CAG GCT GGA TCC TTT TTT CAA GAA TC construction of deletion mutants

D78Bam AA GAT GGA TCC CAA AAG ACA TTA AAC construction of deletion mutants

D145Sal TA TAA GTC GAC TTA TAT AGA GTT TAT TG C construction of deletion mutants

D115Sal AA AGA GTC GAC TTA GAT AAA CTT TAT CG construction of deletion mutants

BrTBam TTC AGA AGT GGA TCC ATC construction of pBR

BrTSph GGT AAT TAA TTA TGC ATG CAA TAA TTA ATT ATT TCA AG construction of pBR

doi:10.1371/journal.pone.0004858.t001
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as previously described [24]. For ELISA using non-denatured

recombinant proteins, microtiter plates (MaxiSorp, Nunc) were

coated with HcpA or the deletion mutants (100 ml; 1 mg/ml) for

2 h at room temperature. The wells were washed with PBS/

0.05%Tween, blocked with PBS/5% BSA and incubated with

CFH (10 mg/ml), 50% normal human serum (NHS) or PLG

(20 mg/ml) for 1 h at RT. After washing, HcpA bound proteins

were detected by goat anti-CFH (Calbiochem) or goat anti-PLG

(Acris) antibodies or CFHR-1 specific mouse mAb JHD8 followed

by peroxidase-conjugated rabbit anti-goat IgG (Dianova) or sheep

anti-mouse secondary antibody (GE Healthcare), respectively.

Substrate reaction was performed with o-phenyldiamine dihydro-

chloride (Sigma-Aldrich) and absorbance was measured at

492 nm. For competition inhibition assay, HcpA (2 mg/ml) was

coated on microtiter plates. To analyze the ability of PLG to

inhibit the binding of CFH to HcpA, plates were incubated

simultaneously with constant amounts of CFH (3 mg/ml) and

different amounts of PLG (0.001–100 mg/ml). The ability of CFH

to inhibit the binding of PLG to HcpA was determined by adding

constant amounts of PLG (10 mg/ml) with different amounts of

CFH (0.001–100 mg/ml). HcpA bound CFH and PLG were

detected as described above. For detection of purified recombinant

HcpA full-length protein and deletion mutants, the anti His6-tag

monoclonal mouse antibody (Calbiochem) was used.

Immunofluorescence analysis
Spirochetes (16107) were washed with Tris buffer (30 mM Tris,

60 mM NaCl, pH 7.4) and incubated with mAb directed against

HcpA (BR-1) for 1 h at RT. For detection of CFH-binding cells

were treated with purified human CFH for 1 h at RT followed by

incubation with CFH-specific mAb JHD7. Spirochetes were then

washed with Tris buffer/0.1% BSA, spotted on coverslips and

allowed to air-dry for 1 h. After methanol fixation, samples were

dried for 15 min and incubated for 1 h in a humidified chamber

with Cy3-labeled rabbit anti-mouse IgG (1/200, Dianova). Cells

were visualized at a magnification of 10006using a Nikon Eclipse

90i upright automated microscope and images were obtained

using a Nikon DS-1 QM sensitive black and white CCD camera at

a resolution of 0.133 mm/pixel.

Flow cytometry
Briefly, 107 B. recurrentis A1 and A17, B. hermsii HS1 and B.

burgdorferi B313 cells were washed twice with PBS, blocked for

15 min at RT with PBS/10%BSA, and incubated with 10 mg/ml

of biotinylated CFH in FACS-buffer (PBS/1%BSA) for 1 h at RT.

As a negative control, spirochetes were incubated with same

concentration of biotinylated BSA. Cells were washed intensively

for three times and stained with phycoerythrin (PE) labeled

streptavidin (Bio-Rad). Cells were then fixed with 1% parafor-

maldehyde overnight and analyzed on a FACS-Calibur (BD

Biosciences) and CellQuest software (BD).

In situ protease treatment of spirochetes
Cells of B. recurrentis strain A1 were treated with proteases using

a modified, previously described method [25]. Briefly, intact

borrelial cells were incubated with either proteinase K or trypsin

and whole-cell protein preparations were separated by SDS-

PAGE (13%) as described [26].

Surface plasmon resonance analysis
Protein-protein interactions were analyzed using surface

plasmon resonance with a Biacore 3000 instrument (Biacore

AB), as described elsewhere [27].

Cofactor asssay
Cofactor activity of CFH bound to immobilized HcpA or intact

B. recurrentis A1 cells was analyzed by measuring factor I-mediated

conversion of C3b to inactive C3b (iC3b) [28].

Substrate assay for plasmin bound to spirochetes and
HcpA

Intact B. recurrentis A1 cells (16108) were incubated with 10 mg

PLG (Chromogenix) in the presence or absence of 100 mM

tranexamic acid for 30 min at 30uC in Eppendorf tubes. Following

two washes, B. recurrentis were resuspended in 50 ml assay buffer

(30 mM Tris, 60 mM NaCl, pH 7.4), transferred to microtiter

plates and uPA (25 ng, Chemicon Int., Hampshire, UK) as well as

plasmin substrate D-Val-Leu-Lys 4-nitroanilide dihydrochloride

(20 mg, S-2251, Sigma-Aldrich, Taufkirchen, Germany) was

added. The absorbance change at 405 nm was monitored for up

to 6 hours directly in the plates. Similarly, HcpA (0.2 mg) was

coated on microtiter plates and after blocking, PLG in the

presence or absence of 100 mM tranexamic acid was added,

incubated for 10 min at 37uC and experiment was carried out as

described above. For plasmin-dependent degradation of fibrino-

gen, HcpA (0.2 mg) coated microtiter plates were incubated with

PLG. Subsequently, fibrinogen (500 ng, Calbiochem) and uPA

(10 ng) were added and incubated at 37uC for 0.5, 1, 2, 4 and 6 h.

Reaction mixtures were then separated by SDS-PAGE, trans-

ferred to nitrocellulose and probed with rabbit anti-fibrinogen Ab

(Calbiochem) and peroxidase-conjugated goat anti-rabbit second-

ary antibody (Dianova) for detection of fibrinogen degradation

products.

C3b deposition and degradation on borrelial surface
Anti-opsonic properties of plasmin bound to the borrelial

surface were investigated by a C3b deposition and degradation

assay based on whole-cell ELISA. Intact B.recurrentis, B. burgdorferi

B313 and transformed B. burgdorferi B313/pBR spirochetes (107/

well) were washed, resuspended in PBS and immobilized onto

microtiter plates (MaxiSorp, Nunc) overnight at 4uC. After

washing with PBS/0.05%Tween, wells were blocked with PBS/

0.1% gelatine for 1 h at RT and incubated with 10% normal

human serum (NHS) for 30 min at 37uC. B. burgdorferi B313 and

B313/pBR were processed instantly, whereas B. recurrentis cells

were incubated with PLG (10 mg) in the presence or absence of the

lysine analogue tranexamic acid (TA); as a negative control, cells

were treated with buffer. Bound PLG was activated by uPA for 3 h

at 37uC. Deposited C3b was then detected by incubation with

biotinylated rabbit anti-human C3c IgG (Dako) followed by

peroxidase-conjugated streptavidin (Amersham Bioscience) and

analyzed as described above.

Construction of a shuttle vector for transformation of B.
burgdorferi B313

The HcpA encoding hcpA gene including its native promoter

region was amplified by PCR using primers BrTBam and BrTSph.

The resulting amplicon was cloned into pBSV2 yielding shuttle

vector pBR [29]. Transformation of B. burgdorferi B313 and

characterization of transformants was previously described [30].

Expression of HcpA of post-transformation B. burgdorferi B313 was

determined by Western blot using mAb BR-1 and sheep anti

mouse peroxidase-conjugated secondary Ab.

High-passage, non-infectious B. burgdorferi strain B313 were

grown in 100 ml BSK medium and harvested at mid exponential

phase (108 cells/ml). Electrocompetent cells were prepared as

described previously [30] with slight modifications. Briefly, 50 ml

Innate Immune Escape
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aliquots of competent B. burgdorferi strain B313 cells were

electroporated at 12.5 kV/cm in 2-mm cuvettes with 10 mg of

plasmid DNA. For control purpose B. burgdorferi strain B313 cells

also were transformed with pBSV2 vector alone. Cells were

immediately diluted into 10 ml BSK medium and incubated

without antibiotic selection at 30uC for 48 to 72 h. Bacteria were

then diluted into 100 ml BSK medium containing kanamycin

(30 mg/ml) and 200 ml aliquots were plated into 96-well cell culture

plates (Corning) for selection of transformants. After three weeks,

wells were evaluated for positive growth by color change of the

medium, confirmed by dark-field microscopy for the presence of

motile spirochetes.

The hcpA genes of transformed B. burgdorferi B313 strain was

detected by PCR using primers BrF1 and BrR1 (Table 1) and

expression of the HcpA was determined by Western blot and

ligand affinity blot analysis.

Serum susceptibility testing of Borrelia strains
The serum susceptibility of B. recurrentis A1, B. burdorferi B313 and

transformed B. burgdorferi B313 was assessed using a survival assay.

Cells grown to mid-logarithmic phase were harvested, washed and

36107 spirochetes were resuspended in BSK-H medium (PAN)

supplemented with either 50% or 25% NHS or heat inactivated

serum (hiNHS) as indicated. Cells were incubated in Eppendorf

tubes at 30uC for 3 days. At day 0, 1, 2 and 3, cells were washed in

0.85% NaCl, transferred to microtiter plates and incubated with

SYTO9 (Molecular Probes, Invitrogen) as recommended by the

manufacturer. Subsequently, relative growth of spirochetes was

determined measuring the fluorescence intensity at 485 nm/530 nm

on a microtiter plate reader (Victor2 plate reader, Perkin Elmer).

Production of monoclonal antibodies
Monoclonal antibodies directed against HcpA were generated

by immunization of Balb/c mice with the respective purified

recombinant protein according to a method as described

elsewhere [31]. For specific detection of CFHR-1, mAb JHD8

and for specific detection of His-tagged CFH deletion mutant

SCR19-20, mAb JHD7 were generated accordingly.

Nucleotide sequence deposition
The hcpA gene sequence encoding HcpA has been deposited in

the EMBL/GenBank databases under the following accession

numbers: FM946025.

Statistical analysis
Statistics were analyzed with the unpaired Student’s t-test, P

values less than 0.01 were considered significant.

Results

B. recurrentis spirochetes acquire complement regulators
CFH and CFHR-1

In light of previous experience that B. hermsii and B. burgdorferi

can specifically bind CFH via their outer surface lipoproteins

[8,11,32], B. recurrentis spirochetes were incubated with biotiny-

lated human CFH and analysed by flow cytometry. As seen in

Figure 1A, both, B. recurrentis strains (A1 and A17) and B. hermsii

HS1, but not B. burgdorferi B313, which lacks the CFH-binding

lipoprotein, were able to bind CFH. In addition, biotinylated

control protein, BSA, did not bind to any of the borrelial strains

(Fig. 1A). Binding of CFH to intact and viable B. recurrentis

Figure 1. Binding of CFH and CFHR-1 to the spirochetal surface. Binding of CFH to intact B. recurrentis cells was analyzed by flow cytometry
and immunofluorescence microscopy. (A) Spirochetes were incubated with biotinylated purified human CFH (bold lines) or as a negative control with
biotinylated BSA followed by PE-labeled streptavidin. B.hermsii HS1 and B. burgdorferi B313 were included as controls. (B) Cells were incubated with
purified human CFH followed by the CFH-specific mAb JHD7 and a Cy3-conjugated anti-mouse IgG. Images were obtained employing
epifluorescence microscopy. On the right panel the corresponding differential interference contrast image (DIC) is depicted. (C) Whole cell lysates of
B. recurrentis strain A1 and A17 (B.r. A1 and B.r. A17) were separated by Tris/Tricine SDS-PAGE, transferred to nitrocellulose membrane and incubated
with normal human serum. CFH binding was detected employing CFH specific mAb JHD7 and binding of CFHR-1 was analyzed using specific mAb
JHD8. For control, cell lysates of B. hermsii HS1 (B.h HS1) and B. burgdorferi B313 (B.b B313) were included.
doi:10.1371/journal.pone.0004858.g001
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spirochetes was confirmed by microscopy, using a CFH-specific

mAb, JHD7 (Fig. 1B). By applying ligand affinity blot analysis for

detection of CFH- and CFHR-1 binding molecules, a protein of

approximately 17 kDa was detected in B. recurrentis but not in B.

burgdorferi B313 (Fig. 1C), termed human complement regulator(s)

and plasminogen binding protein A (HcpA) [8,9].

HcpA is a CFH, CFHR-1 and PLG binding protein
To isolate and further characterize HcpA, whole cell lysates of

B. recurrentis A1 were incubated with CFH and subsequently

treated with a goat anti-CFH immune serum. A resulting co-

precipitated protein of 17 kDa was analyzed by mass spectrometry

and peptides generated matched an open reading frame of 525 bp

on the genome of B. recurrentis A1 (unpublished data), designated

hcpA. Due to the presence of a spirochetal lipobox at its N-terminus

HcpA represents a putative outer surface lipoprotein [33]. The

deduced amino acid sequence exhibits 54% similarity with the

recently identified BhCRASP-1 of B. hermsii HS1 (Fig. 2) [8]. A

BLAST search detected another protein with significant homology

in the genome of B. turicatae, indicating that this protein is to be

found in other Borrelia species. To further elucidate the binding

properties of HcpA for complement regulators CFH and CFHR-1,

various N- and C-terminal deletion mutants of HcpA were

generated. Variants of the encoding hcpA gene lacking the

hydrophobic leader peptide and the indicated N- or C-terminal

regions were cloned and expressed as His-tagged fusion proteins in

E. coli (Fig. 3). Expression of each protein was confirmed by

immunoblot analysis using anti-His antiserum (Fig. 3A).

To assess binding of recombinant HcpA for CFH and CFHR-1,

ligand affinity blotting techniques and ELISA were employed in

combination with intact HcpA and various deletions thereof. CFH

and CFHR-1 only bound to full-length HcpA, but not to any of

the deletion mutants. This indicates that long-range intramolec-

ular interactions are involved in the formation of the CFH and

CFHR-1 binding site rather than linear peptide sequences

(Fig. 3A). Furthermore, full-length and mutant HcpA proteins

were analyzed for binding of human PLG using ELISA. Full-

length HcpA (residues 18 to 175) as well as the truncated versions

bound PLG (Fig. 3B), thus indicating that the binding site for PLG

is localized to the central domain of HcpA. Together, these data

suggest that CFH and PLG bind to distinct, non-overlapping

domains of the HcpA molecule (Fig. 3C). To verify this

assumption, competition assays were performed using immobilized

HcpA and increasing amounts of PLG or CFH (up to 100 mg/ml)

in combination with constant amounts of CFH (2 mg/ml) or PLG

(10 mg/ml), respectively. As shown in Fig. 3D, PLG did not

compete with CFH for binding to HcpA even at high

concentrations (100 mg/ml). Vice versa, using up to 100 mg/ml

of CFH no inhibition of PLG binding to HcpA could be observed.

To map the binding domain of CFH that interacts with HcpA,

recombinant deletion constructs of CFH representing SCRs 8-10,

SCRs 15-10, SCRs 19-20, and SCRs 1-7/FHL-1 were employed.

HcpA showed strong binding to CFH and deletion constructs

CFHSCR8-20, CFHSCR15-20, CFHSCR19-20, as well as CFHR-1.

Construct CFHL-1 (CFHSCR1-7) did not bind to HcpA, indicating

that the most C-terminal domains (SCR19-20) of CFH are

involved in binding (Fig. 4A). We next conducted surface plasmon

resonance analyses, a more physiological assay system, to further

define the CFH domain interacting with HcpA. CFH and deletion

constructs CFHSCR8-20, CFHSCR15-20 and CFHSCR19-20 bound to

immobilized HcpA with similar intensity (Fig. 4B). However, in

the absence of SCR20, represented by the deletion construct

CFHSCR15-19, binding to HcpA was completely abrogated

(Fig. 4B). As indicated by the schematic representation, domain

SCR20 of CFH displays 97% sequence similarity to the SCR5 of

CFHR-1 (Fig. 4C) [7]. Therefore it is assumed that the binding

region of CFHR-1 for HcpA is located in the C-terminus,

accordingly.

HcpA is exposed on the outer surface of B. recurrentis
To determine whether HcpA is exposed on the outer surface of

B. recurrentis immunofluorescence microscopy was performed.

Intact B. recurrentis spirochetes were incubated with the HcpA

specific mAb BR-1 followed by a Cy3-conjugated secondary

antibody (Fig. 5A, left panels). B. recurrentis expressed HcpA on its

outer surface and the staining showed a patchy distribution.

Mouse mAb LA21 directed against the periplasmic flagellin was

used as an internal control to confirm that the fragile spirochetal

outer membrane was intact (right panels). To further verify surface

localization of HcpA, B. recurrentis spirochetes were pre-treated

with either proteinase K or trypsin, lysed, separated by SDS-

PAGE and assayed by Western blotting. Fig. 5B demonstrates a

significant reduction of HcpA after 2 h of incubation with trypsin

at concentrations $12.5 mg/ml, whereas treatment with protein-

ase K at low concentrations ($3.125 mg/ml) resulted in complete

degradation. Signal intensity observed for flagellin remained

unchanged, indicating that periplasmic flagella were not affected

by proteolytic digestion. These data strongly suggest that HcpA is

exposed on the outer surface of B. recurrentis.

Figure 2. HcpA exhibits 54% amino acid sequence similarity to BhCRASP of B. hermsii HS1.
doi:10.1371/journal.pone.0004858.g002
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Figure 3. Binding of CFH, CFHR-1 and PLG to HcpA. (A) Purified recombinant HcpA protein and various deletion mutants were separated by
SDS-PAGE and transferred to nitrocellulose. Membranes were incubated with a monoclonal anti-His-tag mAb (upper panel). CFH and CFHR-1 binding
capabilities were analyzed by ligand affinity blotting utilizing normal human serum and goat anti-CFH immune serum (middle panel) or the CFHR-1
specific mAb JHD8 (lower panel). (B) Microtiter plates were coated with full-length recombinant HcpA and the indicated deletion mutants,
respectively, and incubated with CFH, normal human serum (as source for CFHR-1) or PLG. Binding was detected using goat anti-CFH, the CFHR-1
specific mAb JHD8 or goat anti-PLG immune serum followed by the respective peroxidase-conjugated IgGs. (C) Diagrammatic representation of
native and expressed recombinant HcpA proteins and their binding characteristics for serum proteins CFH, CFHR-1 and PLG as determined by ligand
affinity blot analysis and ELISA. Numbers refer to amino acid residues. (D) Dose dependent binding of CFH and PLG by HcpA. A competition inhibition
assay was performed, adding different amounts of PLG or CFH to inhibit the binding of 2 mg/ml CFH (left panel) or 10 mg/ml PLG (right panel) to
immobilized HcpA. Bound CFH and PLG was detected using goat anti-CFH (dashed line) and goat anti-PLG Ab (solid line), respectively, followed by
peroxidase-conjugated secondary antibody.
doi:10.1371/journal.pone.0004858.g003
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CFH retains cofactor activity when bound to HcpA
To assess whether HcpA-bound CFH maintains its complement

regulatory function, cofactor activity of the attached CFH was

analyzed by measuring factor I-mediated conversion of C3b to

iC3b. To this end, CFH was attached to immobilized HcpA and

incubated with C3b and factor I. As shown in Figure 6A, HcpA-

bound CFH efficiently mediated C3b conversion as indicated by

the appearance of C3b cleavage products (68, 46 and 43 kDa a9-

chain). Incubation of immobilized HcpA alone had no effect on

C3b conversion under similar conditions. Next we determined

whether CFH also retains its cofactor activity after previous

binding to B. recurrentis. Accordingly, spirochetes were pre-treated

with CFH and after intensive washings, incubated with factor I

and C3b. Lysates were separated by SDS-PAGE and C3b

cleavage products were detected by Western blotting. Surface-

bound CFH retained cofactor activity as indicated by the presence

of representative C3b inactivation products (Fig. 6B). B. recurrentis

spirochetes alone did not promote cleavage of C3b demonstrating

that B. recurrentis lack endogenous C3b cleaving activity and

cofactor activity for cleavage. Thus, binding of CFH to the surface

of B. recurrentis renders them resistant to complement attack.

Surface bound PLG is processed by host-derived
plasminogen activators to plasmin, cleaves fibrinogen
and exhibits anti-opsonic activities

To assess whether B. recurrentis-attached PLG can be processed

to active plasmin, spirochetes were pre-treated with PLG and

subsequently incubated with the exogenous human plasminogen

activator uPA. As shown in Figure 7A, B. recurrentis-attached PLG

was readily processed by exogenous uPA. In contrast, only

marginal plasmin activity was observed in the presence of

tranexamic acid, a competitive inhibitor of the lysine-binding site

of PLG. These data demonstrate that spirochetal surface-bound

PLG is accessible for uPA, and that processed plasmin retains its

proteolytic activity. No plasmin was generated from surface-bound

PLG in the absence of uPA, indicating that spirochetes do not

express endogenous plasminogen activators. Similar findings were

observed when recombinant HcpA was coated onto microtiter

plates supporting the notion that HcpA-bound PLG can be

processed to stable functional active plasmin (Fig. 7B).

The proteolytic activity of HcpA-bound plasmin was further

analyzed by its ability to cleave fibrinogen. When incubated with

HcpA-bound plasmin, fibrinogen was degraded to low molecular

mass fragments, as assessed by Western blotting (Fig. 7C). In the

absence of either PLG or uPA, no fibrinogen degradation was

observed. Furthermore, the addition of the plaminogen inhibitor

tranexamic acid to the reaction mixture abrogated the respective

proteolytic activity (data not shown).

Upon activation of complement by bacterial pathogens C3b is

covalently attached to the target surfaces and together with the

cleavage products, such as iC3b, the C3b molecules opsonize the

pathogenic organisms for phagocytosis. To assess whether plasmin

bound to HcpA is able to degrade C3b deposited on the cell

surface of B. recurrentis a C3b deposition and degradation assay

based on whole-cell ELISA was performed. Spirochetes were

immobilized onto microtiter plates and treated with human serum

and PLG. After extensive washing B. recurrentis-bound PLG was

activated by uPA and deposition of C3b molecules on the

spirochetal cell surface was monitored. B. recurrentis-bound active

plasmin led to a dramatic decrease of C3b molecules on the

spirochetal surface when compared to control spirochetes cultured

either with buffer alone, or those pre-treated with PLG in the

presence of tranexamic acid (Fig. 8). Thus, B. recurrentis cell surface-

bound plasmin exhibits anti-opsonic properties by cleaving C3b

molecules.

HcpA confers resistance to complement-mediated killing
To further verify the significance of HcpA of B. recurrentis for

complement resistance and removal of C3b from the bacterial

surface the serum-sensitive B. burgdorferi B313 strain, lacking CFH

and CFHL-1 binding proteins was transformed with the shuttle

vector pBR containing the complete hcpA gene (B. burgdorferi B313/

Figure 4. Mapping of the CFH domain interacting with HcpA.
(A) Purified recombinant HcpA protein was separated by SDS-PAGE and
transferred to nitrocellulose membranes. The membrane strips were
incubated with either normal human serum (NHS), recombinant CFHL-1
(CFHSCR 1-7), several deletion constructs of CFH (CFHSCR8-20, CFHSCR15-20,
CFHSCR15-19, CFHSCR19-20) or recombinant CFHR-1 (CFHR-1). Bound
proteins were visualized using either polyclonal anti-CFH immune
serum (a-CFH) or mAb specific for SCR19-20 (JHD7) or CFHR-1 protein
(JHD8), respectively. (B) Binding of CFH and deletion mutants to HcpA
as analyzed by surface plasmon resonance. Recombinant HcpA was
immobilized to the surface of a sensor chip and CFH or various deletion
mutants (CFHSCR15-20, CFHSCR19-20, CFHSCR15-19) were applied in the fluid
phase. No binding was detectable for CFHSCR15-19 mutant. (C) Schematic
representation of the CFH, CFHL-1 and CFHR-1 protein. Complement
regulatory domains in SCR1-4 are shown in gray and the HcpA binding
region in SCR20 of CFH and the corresponding SCR5 of CFHR-1 are
highlighted in black with white fonts. SCR domains are aligned vertically
according to their amino acid sequence similarities.
doi:10.1371/journal.pone.0004858.g004
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pBR). Expression of HcpA was determined by Western blot

analysis using an HcpA-specific mAb, BR-1. B. recurrentis A1 and

the transformed B313/pBR isolate, but not the CFH and CFHL-

1-deficient B. burgdorferi B313 mutant, expressed HcpA (Fig. 9A,

upper panel). HcpA expression on the cell surface of transformed

B. burgdorferi B313 strains was also detected by whole cell ELISA

(Fig. 4B). Moreover, the expressed HcpA protein bound CFH as

confirmed by ligand affinity blotting (Fig. 9A, middle panel). In

addition, we demonstrate that HcpA expressed on the surface of

transformed B. burgdorferi B313/pBR cells promotes degradation of

deposited C3b (Fig. 9C). To compare the susceptibility of B.

recurrentis A1, B313 and B313/pBR to complement-mediated

killing, the three strains were subjected to a human serum

sensitivity assay. Accordingly, B. burgdorferi B313/pBR, B. recurrentis

A1, and B. burgdorferi B313 were incubated in NHS or heat-

inactivated serum for up to three days. Spirochetal growth was

monitored by uptake of a nucleic acid dye. As shown in Figure 9D,

B. recurrentis A1 readily multiplied during the 72 h time interval in

normal human serum, demonstrating the pronounced resistance

to human serum of louse-borne relapsing fever spirochetes.

Serum-sensitive B. burgdorferi B313 as well as B313 spirochetes

containing the shuttle vector alone (data not shown) did not grow

under similar conditions, suggesting their susceptibility to

complement-mediated lysis (Fig. 9E). In contrast, B313/pBR

expressing HcpA survived and multiplied in human serum. B.

burgdorferi B313 and the transformed B313/pBR isolate showed

similar growth rates when cultured in heat-inactivated human

serum. These findings strongly suggest that HcpA is required for

resistance of B. recurrentis to complement-mediated killing.

Discussion

The present results demonstrate for the first time that the

etiologic agent of louse-borne relapsing fever, B. recurrentis, express

a novel multifunctional surface lipoprotein, termed HcpA. By

exploiting host proteins, HcpA simultaneously confers resistance to

complement attack and opsonization, and in addition, imparts an

increased potential to invade host tissues. We show that B.

recurrentis can bind via its surface expressed HcpA molecule to

human complement regulators, i.e. CFH as well as CFHR-1, and

in parallel to plasminogen/plasmin. The finding that host-derived

factors retain their functional activities, when simultaneously

bound to the surfaces of the pathogen underscores the high

virulence potential of B. recurrentis and makes HcpA a promising

target for therapeutic treatment of severe louse-borne relapsing

fever [21,34,35,36,37,38].

Our data extent previous findings on a related CFH receptor

expressed by tick-borne relapsing fever B. hermsii spirochetes,

including the observation that surface bound CFH facilitates factor

I-mediated cleavage of C3b and is critical for immune evasion of

these and other pathogens [8,9]. In fact, CFH binding has also

been reported for a number of human pathogens, such as S.

pyogenes (group A streptococcus) [39], Neisseria gonorrhoeae [40], S.

pneumoniae [41,42], Borrelia burgdorferi [24,43], Candida albicans [44]

and other relapsing fever spirochetes [9,45,46]. Recombinant

HcpA specifically binds CFH and/or CFHR-1 and in addition

plasminogen, however via different binding domains. The CFH

binding site of HcpA was determined by using mutants with either

N-terminal (HcpA48-175, HcpA78-175) or C-terminal (HcpA18-145,

HcpA18-115) truncations. All mutant of HcpA caused complete

abrogation of CFH binding. These data suggest that the

determinants required for CFH binding are defined by confor-

mation rather than contiguous linear elements. This finding is

reminiscent of the observed CFH binding capabilities for B.

burgdorferi BbCRASP-1 and BbCRASP-3 [11,32,46,47]. In con-

trast, binding of PLG to HcpA was not affected by any of the

indicated truncations of the HcpA protein, demonstrating that

PLG and CFH interact with distinct HcpA domains and suggest

that both host proteins can bind simultaneously to HcpA. This

assumption is supported by our findings that PLG and CFH bind

independently and coordinately to immobilized HcpA and do not

Figure 5. Surface localization of HcpA. (A) Immunofluorescence analysis of B.recurrentis A1 after incubation with a mAb specific for HcpA (BR-1)
(left panels) or a flagellin-specific mAb (LA21, right panels) followed by rabbit anti-mouse Cy3-conjugated IgG. Corresponding differential interference
contrast images are shown in the lower panels. The images were obtained as described above. (B) Proteinase K and trypsin treatment affects surface
expression of native HcpA. B. recurrentis cells were incubated with the indicated concentrations of proteinase K and trypsin, lysed, immunoblotted,
and probed with either anti-HcpA mAb BR-1 (upper panel) or with anti-flagellin mAb LA21 (lower panel).
doi:10.1371/journal.pone.0004858.g005

Figure 6. Cofactor activity of CFH bound to either HcpA or
intact B. recurrentis spirochetes. Functional activity of CFH was
analyzed by measuring factor I-mediated conversion of C3b to iC3b.
CFH bound to HcpA coated microtiter plates (A) or to the surface of
intact B. recurrentis spirochetes (B) was incubated with C3b and factor I.
Reaction mixtures were separated by SDS-PAGE and transferred to
nitrocellulose membrane. C3b degradation products were evaluated by
detection of a9-chain cleavage fragments of 68, 46 and 43 kDa using
biotinylated rabbit anti-C3c IgG followed by peroxidase-conjugated
streptavidin. Purified iC3b was included as control.
doi:10.1371/journal.pone.0004858.g006
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compete with each other. Due to the efficient concurrent binding

of CFH and PLG to immobilized HcpA it is to be expected that

both host proteins similarly bind to HcpA expressed on the outer

surface of B. recurrentis. Further studies are needed to elucidate the

possibility that binding of CFH and PLG to the surface of B.

recurrentis may be involved in certain pathologies of the central

nervous system.

Plasma adsorption experiments and surface plasmon resonance

analyses clearly demonstrate that binding of CFH to HcpA is

exclusively associated with its C-terminal domain, SCR20. This

finding is further substantiated by the fact that HcpA bound

CFHR-1, another member of the factor H family that exhibits an

almost identical (97%) C-terminal short consensus repeat domain

[7]. Thus, the ability of the pathogen to coordinately bind CFH

and/or CFHR-1 to HcpA most probably adds to the virulence of

B. recurrentis by establishing its resistance to complement attack,

even under conditions when the human complement regulators

are differentially regulated.

Figure 7. Activation and proteolytic activity of HcpA- and B.
recurrentis-bound plasmin(ogen). Intact B. recurrentis organisms (A)
or recombinant HcpA (B) were incubated with PLG. Bound PLG was
converted into plasmin by uPA addition and plasmin activity was
measured using the chromogenic substrate D-Val-Leu-Lys 4-nitroanilide
dihydrochloride (S-2251). uPA mediated PLG activation was inhibited by
tranexamic acid (TA). Substrate cleaving was monitored by measure-
ment of the absorbance at 405 nm for up to 6 hrs. Mean of triplicates 6
SEM is shown. (C) Degradation of fibrinogen by HcpA-bound plasmin.

HcpA coated microtiter plates were incubated with PLG, subsequently
fibrinogen and uPA were added. The reaction mixtures were separated
by SDS-PAGE, transferred to nitrocellulose and probed with rabbit anti-
fibrinogen followed by peroxidase-conjugated IgG for detection of a, b
and c chains (67, 57 and 47 kDa) and the small-size degradation
products of fibrinogen.
doi:10.1371/journal.pone.0004858.g007

Figure 8. Degradation of deposited C3b by acquiring plasmin
on the surface of B. recurrentis. Spirochetes were immobilized onto
microtiter plates and incubated with 10% NHS as source for C3b.
Washed bacteria were treated with PLG in the presence or absence of
tranexamic acid (TA) and bound PLG was activated by uPA. Deposited
C3b was detected using biotinylated anti-C3c IgG followed by
peroxidase-conjugated streptavidin. C3b deposition is expressed as
the mean absorbance at 492 nm of triplicates. Error bars indicate6SEM.
*, P,0.0001.
doi:10.1371/journal.pone.0004858.g008
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Most recently, it was demonstrated that CFHR-1 is an inhibitor

of the alternative complement pathway that binds to C3b, inhibits

the C5 convertase activity and interferes with C5b surface

deposition and membrane attack complex formation (Heinen et

al., unpublished). In this context it is of interest that HcpA is also

capable of binding another member of the factor H family, i.e.

CFHR-2, whose function is yet to be disclosed [7]. The present

data show that HcpA-bound CFH retains its regulatory capacity

and controls both C3b deposition and C3-convertase activity,

resulting in enhanced complement regulatory activity. This

process is expected to increase resistance of louse-borne relapsing

fever spirochetes to complement attack, an assumption supported

by our previous findings with B. hermsii.

There is ample evidence suggesting that binding of PLG to

bacterial surfaces, including spirochetes, is critical for their invasive

potential and persistance [9,17,48]. B. recurrentis binds PLG and

upon processing to enzymatically active plasmin by human uPA

the surface bound protease is shown to degrade the physiological

substrate fibrinogen. Together with the finding that PLG-coated

B. recurrentis also bind to the PLG receptors on endothelium cells,

our results suggest that spirochetes exploit their increased

proteolytic capacity to breach tight junctions of endothelium,

cross basement membranes, and to initiate patho-physiological

processes in the affected organs [48]. The finding that in

accordance to the related Lyme disease spirochetes, B. recurrentis

bind PLG and can disseminate from the blood to many distant

Figure 9. Ectopic expression of HcpA in serum-sensitive B. burgdorferi B313. (A) Expression of HcpA by transformed B. burgdorferi B313 was
assessed using immunoblot analysis. Whole cell lysates were separated by SDS-PAGE, transferred to nitrocellulose and probed with mAb BR-1 (upper
panel) or analyzed for CFH binding by incubation with NHS and a CFH-specific mAb (JHD7, middle panel) followed by peroxidase conjugated IgG. For
control, a flagellin-specific antibody (LA21) was used (lower panel). (B) Surface expression of HcpA as analyzed by whole cell ELISA using mAb BR-1. As
control, a flagellin-specific mAb LA21 was employed. (C) C3b deposition on the surface of B. burgdorferi B313/pBR cells incubated with 10% NHS was
determined using a whole cell ELISA as described above. Values represent the mean of triplicates6SEM. *, P,0.0001. To investigate serum
susceptibility to human serum B. recurrentis A1 (D), B.burgdorferi B313 and transformed B. burgdorferi B313/pBR cells (E) were incubated with the
indicated concentrations of NHS (dashed line) or heat-inactivated serum (solid line) at 30uC for 3 days. Cells were stained with a nucleic acid dye and
the relative growth was determined by measurement of the fluorescence intensities. Values represent the mean6SEM of a single experiment
performed in triplicate that is representative of three independent experiments. *, P,0.01; **, P,0.001; ***P,0.0001.
doi:10.1371/journal.pone.0004858.g009
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organs, including the brain, supports the assumption that similar

mechanisms could be involved [47].

It was recently shown that Staphylococcus aureus employs host

plasmin to degrade both, surface-bound IgG as well as C3b, and

thereby confers resistance to innate and adaptive immune defense

processes [49]. Our corresponding finding that HcpA bound

plasmin leads to a decrease of C3b molecules on the surface of B.

recurrentis may represent a novel mechanism, by which spirochetes

interfere with C3b deposition on their cell surface and moreover

could escape phagocytosis. In line with this assumption, trans-

formed B. burgdorferi B313/pBR cells exhibit a significant reduction

of C3b molecules deposited on their surface as compared to the

parental B. burgdorferi B313 strain. Depleted C3b at the bacterial

surface correlates with lowering phagocytic activity of human

neutrophils [49]. Modulation of opsonic molecules such as C3b

seems an ideal strategy for bacterial survival and may account for

the extraordinary virulence of B. recurrentis. Furthermore, it was

recently demonstrated that B. recurrentis acquire C4b-binding

protein, another regulator of the classical pathway of complement

activation on their surface [21]. However, in preliminary

experiments binding of HcpA to C4b-binding protein could not

be observed. In contrast, a novel 45 kDa protein was shown to

strongly interact with C4b-binding protein suggesting that in B.

recurrentis at least two different receptors for binding of the two

complement regulators, CFH and C4b-binding protein, are

expressed (unpublished).

Although the biological significance of HcpA expression by B.

recurrentis has still to be elucidated, the present finding that the B.

burgdorferi B313 mutant, deficient in CFH receptors, resists

complement-mediated killing and following transfection with hcpA

strongly suggests the involvement of HcpA in immune evasion of

B. recurrentis. Recently, ectopic expression of the B. burgdorferi

BbCRASP-1 lipoprotein on the surface of a serum-sensitive

Borrelia strain imparts resistance of the transformed isolate to

human serum [12,30,50]. In the murine model of Lyme disease

the precise role of another complement binding protein,

BbCRASP-2, was explored and the results of this study suggested

that BbCRASP-2 function is dispensable for infectivity [51].

However, studies of the biology of B. recurrentis and louse-borne

relapsing fever have been hampered by the lack of an animal

model. Further investigations are needed to fully examine the

complex interplay between B. recurrentis, serum sensitivity, and the

role of HcpA in the pathogenesis of the disease.

In summary, this is the first study showing the simultaneous and

non-competitive binding of CFH and PLG to the outer surface

protein HcpA of B. recurrentis, the agent of louse-borne relapsing

fever. Our finding that HcpA is a multifunctional virulence factor

with the potential to simultaneously mediate innate immune

evasion and degradation of extracellular matrix components

significantly adds to our understanding of the pathological

processes underlying louse-borne relapsing fever. Moreover, the

presented data support the concept of exploitation of host factors

as suitable survival strategies.
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