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Abstract

We established a protocol of the SuperSAGE technology combined with next-generation sequencing, coined ‘‘High-
Throughput (HT-) SuperSAGE’’. SuperSAGE is a method of digital gene expression profiling that allows isolation of 26-bp tag
fragments from expressed transcripts. In the present protocol, index (barcode) sequences are employed to discriminate tags
from different samples. Such barcodes allow researchers to analyze digital tags from transcriptomes of many samples in a
single sequencing run by simply pooling the libraries. Here, we demonstrated that HT-SuperSAGE provided highly sensitive,
reproducible and accurate digital gene expression data. By increasing throughput for analysis in HT-SuperSAGE, various
applications are foreseen and several examples are provided in the present study, including analyses of laser-microdissected
cells, biological replicates and tag extraction using different anchoring enzymes.
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Introduction

Next Generation Sequencing (NGS) technology is revolution-

izing the way we study biological problems [1,2]. The four main

NGS platforms already allowed the de novo sequencing of a

multitude of bacterial, archaeal, fungal, plant and animal

genomes, and this development is spurred on by the rapid

development of efficient sequence assembly software tools like

‘‘Velvet’’ [3]. NGS also enables rapid whole genome re-

sequencing without the cloning and costs associated with

conventional Sanger sequencing, so that SNP identification can

be enormously facilitated and catalyzes genetic studies in a wide

array of organisms [4].

Another important application of NGS is gene expression

analysis. Traditionally, sequencing-based gene expression was

approached by Expressed Sequence Tag (EST) analysis [5], Serial

Analysis Gene Expression (SAGE) [6], LongSAGE [7], Super-

SAGE [8] and Massively Parallel Sequencing Signatures (MPSS)

[9]. Until quite recently, microarray technology has dominated

gene expression profiling. However, the development of NGS

technologies totally changed the way we study gene expression, the

structure of the transcriptome, and RNA processing. It is clear that

sequencing-based transcriptome analysis in many ways is superior

to microarrays, since sequencing-based method is digital, highly

accurate, and easy-to-perform, whereas the microarray-generated

data are analog and less accurate, and their acquisition requires

specific probe and array designs. Therefore, some have predicted

that microarrays will soon be replaced by sequencing-based digital

gene expression analysis [10]. Application of NGS to gene

expression analysis has catalyzed the development of techniques

like Digital Gene Expression TAG (DGE-TAG), DeepSAGE

[11,12] and RNA-Seq [13,14]. However, the standard DGE-TAG

assay provides relatively short tag reads (21 bp) which sometimes

leave tag-to-gene annotation more difficult, and RNA-Seq

requires a large amount of sequence reads to fully cover the

dynamic range and to provide a truly quantitative gene expression

profiling. Therefore, a reliable protocol of tag-based gene

expression profiling based on sequencing of longer tag fragments

is highly desirable. Since the cost of sequencing continues to decay,

it is additionally important to develop an indexing protocol that

permits to analyze multiple samples in a single sequencing run,

thereby increasing sample throughput per run, and reducing the

costs per sample.

In this report, we introduce a protocol for NGS-based

SuperSAGE profiling that is adapted to the simultaneous analysis

of multiple samples and coined High-Throughput (HT-) Super-

SAGE. For multiplexing different samples in a single sequence run

and a single lane on the Illumina Genome Analyzer, we use index

sequences (bar-coding). Here, we illustrate this method to

demonstrate its sensitivity, reproducibility and accuracy. Finally,

we portray some of the possible applications of this advanced

technology, with examples from several different species.
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Results

HT-SuperSAGE protocol for sample multiplexing
The workflow of our experimental procedure from RNA to the

sequencing of high-throughput SuperSAGE (HT)-SuperSAGE

tags is depicted in Figure 1. This method mimics the original

SuperSAGE protocol [8] up to the step where the 26-bp tag

fragments are cut from double-stranded cDNAs (Figure 1, step 5).

However, after this step we do not form ‘‘ditags’’ comprising two

tags in inverted orientation as described in the original Super-

SAGE protocol [7]. Instead, two adapters are ligated to each end

of a single tag (Figure 1, step 6), and the ‘‘adapter-tag’’ fragments

are amplified by PCR for a limited number of cycles (Figure 1,

step 7).

Increasing sequencing reads, rare transcripts could be obviously

identified in Ht-SuperSAGE. Also, according to Asmann et al.

[15], increasing sequencing reads (0.5 to 96 million) in DGE

analysis, dynamic range of its profiling data is proportionally

expanded. However, more than millions of tags are not always

essential for every study, and simultaneous analysis of multiple

different samples might be required as an application of gene

expression analysis. Therefore, it is imperative to multiplex

samples (libraries) to increase sample throughput per run and

reduce the cost of analysis per sample. For analyzing multiple

samples in a single sequencing run, we employ an indexing (bar-

coding) system. Adapter fragments harboring different index

sequences are ligated separately to 26-bp tag fragments derived

from different biological samples. Adapter-tag fragments from

different libraries are pooled and sequenced together. Later, the

sequence reads are separated in silico according to their index

sequences. We have designed 4-base oligonucleotides located at

the end of adapter-1 (just downstream of the sequencing primer

site) as the index. Therefore, the first four bases in a sequence read

encode the index, and the subsequent 26–27 nucleotides are tag

sequences derived from mRNA, including the recognition site of

the anchoring enzyme (Figure 1, bottom).

Figure 1. Scheme of high-throughput SuperSAGE. Details of the experimental procedure are described in Results and Material and Methods.
doi:10.1371/journal.pone.0012010.g001
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Preparation of HT-SuperSAGE libraries
We prepared total RNAs from 24 different tissue samples

derived from three different organisms (rice, zebra fish, Arabidopsis;

Table 1). In 20 of the samples, 5mg total RNA was used for cDNA

synthesis. Four of the samples (sample g, h, i and j; Table 1)

represented RNAs purified from two fungal pathogen-infected rice

cells, rice pollen and rice anther wall cells, which were isolated by

laser microdissection, LMD [16]. For the rice mature leaf sample,

cDNA was divided into three tubes, and three different indexed

adapters were ligated to each (samples a, b, and c; Table 1) aiming

to evaluate the influence of PCR-amplification cycle number on

expression profiles as described below.

Double-stranded cDNA was digested with the anchoring

enzyme NlaIII (recognition site: 59-CATG-39), and tag fragments

were isolated from the NlaIII site closest to the poly-A tail of

cDNA. For the two Arabidopsis tissue samples (samples s and t;

Table 1) we used DpnII and BfaI in addition to NlaIII to test how

different anchoring enzymes affect the final transcription profiles.

Equal amounts of each cDNA were separated into three tubes and

digested with NlaIII, DpnII and BfaI, so that tags could be

extracted from three different positions (59-CATG-39, 59-GATC-

39 and 59-CTAG-39,respectively) that are closest to the poly-A tail

in the cDNA sequences.

Adapter-1 fragments, ligated to EcoP15I-digested fragments,

contain a 4-bp index (bar-code) sequence for library identification.

In the present study, a total of 27 adapters with different index

sequences were prepared and allocated to individual libraries

(Table 1). Equal amounts of PCR products (123–125bp) from all

the libraries were mixed in one tube, and the resulting DNA pool

was sequenced using three lanes in a flow-cell of the Illumina

Genome Analyzer GAII.

Tag sequence retrieval
In total, 16,057,777 sequence reads (35-bases) were obtained by

sequencing. As described, the first four bases are index sequences

for library discrimination, and therefore the actual tag sequence

Table 1. Summary of all the analyzed samples.

Sample code Sample name Index seq
Number of
total tags

Number of
unique tags

Number of non-
singleton tags

a rice leaf(3-cyclePCR) GCCC 353,524 51,314 18,956

b rice leaf (5-cycle PCR) GCCA 517,891 69,055 24,706

c rice leaf (10-cycle PCR) GCCT 295,439 45,846 16,790

d 5 PCR rice seedling-1 GCCG 367,798 74,506 22,902

e 5 PCR rice seedling-2 GCAC 483,836 78,205 26,379

f 5 PCR rice seedling-3 GCAA 388,658 71,455 23,549

g M.grisea-infected rice cells (30h after inoculation) GCAT 729,542 91,311 31,954

h M.grisea-infected rice cells (48h after inoculation) GCAG 383,022 69,448 21,736

i rice pollen cells GCTC 348,370 67,317 24,002

j rice anther wall tissue GCTA 301,118 69,498 22,162

k rice mutant seedling (lm1) GCTT 537,192 92,133 29,377

l M.grisea-infected rice leaf GCTG 420,326 84,014 27,586

m CM552 seedling (allele of lm1) GCGC 311,581 63,781 21,120

n SG0807 seedling (allele of lm1) GCGA 321,433 67,868 21,817

o rice germinating seed (c.v.Dunghan shali at low temp) GCGT 489,818 91,408 28,873

p rice germinating seed (c.v. Kakehashi at low temp) GCGG 92,410 29,779 7,214

q rice germinating seed (c.v.Dunghan shali ,submerged) GACC 394,443 65,955 22,510

r rice germinating seed (c.v. Kakehashi ,submerged) GACA 784,859 114,234 36,423

u zebrafish embryo 10.5h after fertilization GAAC 484,471 85,922 26,788

v zebrafish embryo 12h after fertilization GAAA 665,730 106,953 30,791

w zebrafish embryo 13.5h after fertilization GAAT 582,844 113,931 29,656

x zebrafish embryo 15h after fertilization GAAG 620,402 105,314 30,772

y zebrafish embryo 16.5h after fertilization GATC 466,332 82,625 24,741

z wild type rice (cv. Sasanishiki) leaf ACCC 530,176 71,640 23,806

ex1 Pex33-overxpressing rice leaf TCCA 456,718 71,591 25,389

s1 Arabidopsis leaves (NlaIII; CATG) GACT 399,106 67,949 23,903

s2 Arabidopsis leaves (DpnII; GATC) GACT 260,326 51,671 18,669

s3 Arabidopsis leaves (BfaI;CTAG) GACT 233,475 43,168 16,069

t1 Arabidopsis stems (NlaIII; CATG) GACG 303,549 63,738 23,318

t2 Arabidopsis stems (DpnII; GATC) GACG 351,677 66,435 25,207

t3 Arabidopsis stems (BfaI;CTAG) GACG 239,537 45,630 18,064

Total 13,115,603

doi:10.1371/journal.pone.0012010.t001

HT-SuperSAGE
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starts at the fifth base in the read and terminates at the anchoring

restriction enzyme sites (NlaIII, DpnII or BfaI; Figure 1, bottom).

After removing incomplete sequences (without index sequences

and/or anchoring enzyme sites), 13,142,905 reads were selected.

Using a script written in Perl, these sequence reads were separated

into 27 groups based on index sequences, and then tag sequences

were extracted and their frequencies counted in each group.

Sequence reads from Arabidopsis samples (samples s and t; Table 1)

were further classified into three subgroups each on the basis of the

anchoring enzymes (NlaIII, DpnII and BfaI).

Since the distance between recognition and cleavage sites is not

uniform for EcoP15I, tags with various sizes are frequently

produced. The distribution of tag lengths in a selected library

(Figure S1; rice leaf sample; sample c) shows that the most

abundant tag length in these libraries is 27-bases (66%), followed

by tags of 26-bases (25%). In the following analysis, we decided to

extract 26-bp sequences from all the reads to represent Super-

SAGE tag.

Identification of libraries by index sequences
After classification of sequences by index and anchoring enzyme

sites, the 26-bp tag profiling data were obtained from all the 31

samples (Table 1). The number of tags varied from 92,410 (sample

q) to 729,542 (sample g) with an average of 423,964 tags per

sample. The top ten most abundantly expressed tag sequences in

each group were BLASTed against non-redundant (nr) nucleotide

sequences of Genbank. Most of them completely matched genome

or cDNA sequences from the species of origin (Table S1). As

expected, tag sequence data from different biological samples were

properly discriminated by the 4-bp index sequences.

However, it is still possible that single-base errors in the 4-bp

index might cause contamination of tags from different samples.

To evaluate the frequency of contamination we focused on an

index sequence GACT (sample s1; Arabidopsis thaliana tissue), which

can change to GCCT, GCTT, GACC or GACA (sample c, k, q or

r; Oryza sativa tissues), respectively, by a single-base error. Errors in

these index sequences could be a potential cause, when the species

identified by the tag sequences does not correspond to the species

represented by the index sequence. In each sample, the most

abundant 5,000 tags were applied to a BLAST search against

UniGene data of Oryza sativa and Arabidopsis thaliana. In sample s1

(Arabidopsis), 8 tags matched Oryza sativa genes, while no Arabidopsis

tags were found in data of samples c, k, q or e, suggesting that

contamination due to errors in the index sequences indeed occurs,

albeit at a low level (data not shown). In fact, their frequency was

less than 0.2% of total analyzed tags, indicating that they do not

cause distortion in the gene expression profiles.

Influence of PCR cycle numbers on expression profiling
Since PCR amplification of adapter-tag fragments may cause a

distortion in transcript profiles due to preferential amplification of

a subset of tags, we evaluated how the number of PCR cycles

affects tag profiles. As described above, adapter-2 ligated tag

fragments from rice mature leaf were separated into three tubes

and adapter-1 fragments with different indexes (a, b and c) were

ligated. These ligation products, with the a, b and c index

sequences were amplified for three, five or ten cycles of PCR,

respectively. Sequence reads from these PCR products were

separated by index sequences and tag abundance data obtained

for each sample. Counts of individual tags are plotted for samples a

(3-cycles; x-axis) versus b (5-cycles; y-axis) (in Figure 2A, or for

samples a (3-cycles; x-axis) versus c (10-cycles; y-axis) in Figure 2B.

In both cases, their tag counts showed highly significant

correlations (R2.0.9), which readily demonstrates that an increase

in PCR cycle numbers up to 10 does not cause any significant

distortion in the expression profile.

HT-SuperSAGE versus original SuperSAGE
Compared to the original SuperSAGE technique, several

modifications were introduced into HT-SuperSAGE. In particu-

lar, the steps of ditag formation, the PCR conditions and the

sequencing method were altered. To compare the tag frequencies

obtained by the two protocols, cDNAs from two different samples

(rice seedlings; sample f, and M. grisea-infected rice leaf sheath;

sample l) were divided into half and either applied to Illumina

sequencing (HT-SuperSAGE), or 454 pyrosequencing (original

SuperSAGE) [17]. In HT-SuperSAGE, adapter-tag fragments

were amplified for five PCR cycles. In the original SuperSAGE

analysis, ditags were formed by ligation of two adapter-tag

fragments, and PCR-amplified for 23 cycles. After sequencing of

the ditag PCR products, duplicated ditag sequences were excluded

before tag extraction and counting, and thus followed the original

SAGE protocol [7]. The total number of tags obtained by these

Figure 2. Influence of PCR cycle numbers on tag abundance. Tags from mature rice leaf samples were ligated to adapter-2 sequences,
separated into three tubes, and then three differently indexed adapters-1 (a, b and c, respectively) were ligated. The adapter-1 ligated fragments were
PCR amplified for three (sample a), five (sample b) and ten cycles (sample c), and subsequently directly sequenced. After sequencing, tag abundance
data was obtained for each sample. Individual tag counts are plotted for sample a versus b (A), and sample a versus c (B). Correlation coefficient in
each plot is shown as inset (R2), and regression line is indicated as curved line due to the plot on logarithmic scale.
doi:10.1371/journal.pone.0012010.g002
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two methods was shown in Table S2. For a comparison of the two

protocols, individual tag counts obtained in both are plotted

(Figure 3). The tag profiles between HT-SuperSAGE and con-

ventional SuperSAGE were basically similar, although the corre-

lation coefficients were not high (R2 = 0.742 for sample f, and

0.818 for sample l).

We recognized that tags containing homopolymer sequences

are underrepresented in the original SuperSAGE library se-

quenced using 454 pyrosequencing (Table S3). Such tags

harboring homopolymer stretches frequently carry similar se-

quences with one or two base changes in the original SuperSAGE

data, while such variant sequences were not observed in HT-

SuperSAGE (Table S4). BLAST searches suggest that only one tag

sequence has a perfect match to the database, and the variants do

not. This fact strongly suggests that the variants originated from

PCR or sequencing errors. To evaluate the influence of

homopolymer or erroneous sequences in the tags, we excluded

the tags harboring homopolymer (.5 nucleotides) sequences and

the tags, which did not completely match rice or Magnaporthe

genome sequences. Their correlation coefficients between HT-

SuperSAGE and conventional SuperSAGE were improved to

0.799 in sample f and 0.836 in sample l (Figure S2). We conclude

from these results that HT-SuperSAGE provides more accurate

expression data from tags containing homopolymer sequences

than the original SuperSAGE method. In addition, the HT-

SuperSAGE protocol does not involve ditag ligation, which

obviously bias SAGE results, and, moreover, uses much less

PCR cycles (10 or less, compared to 23 cycles for SuperSAGE).

We speculate that these differences between HT-SuperSAGE and

original SuperSAGE are responsible for the discrepancy in tag

counts, shown even after removal of homopolymer-containing and

erroneous tags.

Application of HT-SuperSAGE to biological studies
HT-SuperSAGE handles a large number of samples at low cost,

hence recommends itself for an application to various biological

studies. We demonstrated that this technique is applicable to

expression analyses of tissues placed under different environmental

conditions and collected at different time points of organ

development, as well as genetic mutants and transgenic plants as

exemplified in Table 1. Also, a combination of HT-SuperSAGE

and LMD allows to characterize cell-specific gene expression.

Apart from these well-accepted applications, we suggest two new

applications below, which were impractical in the previous Sanger

sequencing-based gene expression analysis.

Gene expression analysis of biologically replicated
samples

Analyses of biologically replicated samples are prerequisite for

evaluating whether an identified differential gene expression pattern

is in fact a response to a particular treatment, or not. In the current

study, shoot tissues were collected from three separate rice plants

grown under identical conditions, and served as the biological

replicates (sample d, e and f in Table 1). The comparison of tag

counts between the replicates e and f showed a highly significant

correlation coefficient (R2 = 0.9816), while a comparison between

samples involving sample d did not (Figure S3). Among these tag

profiling data one tag with the sequence CATGACAAGTT-

TTTGTTAATAATAAT, corresponding to the ribulose-bispho-

sphate carboxylase activase gene (Os11g0707000 was represented

by less counts in sample d (3,291 tags) as compared to the two other

replicates (11,544 and 9,234 tags). As shown in the present result,

owing to the low cost and high-throughput, HT-SuperSAGE allows

taking sufficient number of biological replicates to verify the gene

expression profiles.

Tag extraction using different anchoring enzymes
To test the effect of different anchoring enzymes on the final

expression profiles, we employed two restriction enzymes DpnII

and BfaI in addition to NlaIII for the isolation of tags from the

same cDNA samples. For this experiments we used Arabidopsis leaf

and stem samples. Obtained tags were mapped to Arabidopsis genes

for comparing count of each tag for the individual gene (Table S5).

If all cDNAs harbored recognition sites of the three anchoring

enzymes equally, then tag counts for each gene should be similar

among the tags obtained by the three anchoring enzymes.

Actually, it was frequently observed that tag counts for particular

genes were undetectable or significantly less for one or two

anchoring enzymes. In order to estimate the frequency of these

‘‘missing transcripts’’, we focused on the 1,000 most abundantly

expressed genes in Arabidopsis leaf and stem based on the present

HT-SuperSAGE data (Table S5). The abundance of transcripts

from each gene was represented by the average of normalized tag

Figure 3. Comparison of tag abundance between HT-SuperSAGE and original SuperSAGE. Synthesized cDNAs from rice seedling RNA
(sample f) and M. grisea-infected rice leaf sheath RNA (sample l) were divided into half and both applied to HT-SuperSAGE and original SuperSAGE,
respectively, using 454-pyrosequencing. Obtained counts of individual tags from the two methods are plotted (panel A for sample f, and panel B for
sample l). Correlation coefficient in each plot is shown as inset (R2), and regression line is indicated as curved line due to the plot on logarithmic scale.
doi:10.1371/journal.pone.0012010.g003

HT-SuperSAGE
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counts (tag counts per one million tags) among all NlaIII, DpnII,

and BfaI tags, respectively. A ‘‘missing transcript’’ was defined as a

tag, whose count was less than 10% of transcript abundance

(average from the sum of tags obtained from the three enzymes). It

was observed that missing transcripts in NlaIII or DpnII tags

comprised approximately 7–8% of expressed genes (Table 2). BfaI

tags were more frequently missing than others (around 19% of

expressed genes). There was no significant difference in the

frequency of missing transcripts between Arabidopsis leaf and stem

samples. Also, individual missing transcripts from each gene were

equally distributed between two tissue samples, indicating the good

reproducibility of these result. This ‘‘missing’’ transcript phenom-

enon is undoubtedly a consequence of differences in the location

and presence/absence of the restriction enzyme recognition site in

the transcript.

Discussion

Here we present an easy-to-perform protocol for a new

technique called HT-SuperSAGE, which consists of a modified

SuperSAGE protocol with the Illumina Genome Analyzer next

generation sequencing platform. The major advantage of HT-

SuperSAGE over other similar techniques is that 26-bp tag

sequences can be isolated from each transcript, which is so far the

longest tag sequence obtained from a defined position of

transcripts. These 26-bp tags allow a much better and unambig-

uous tag-to-gene identification, which is just not possible with

shorter tags [8]. Importantly, in HT-SuperSAGE we incorporated

an indexing scheme to multiplex the libraries and increase the

throughput, which actually allowed an analysis of 31 libraries in

three eighth of the capacity of a single Illumina GAII sequencing

run (Table 1). It should be easy to analyze .100 libraries in a

single sequencing run by simply employing a corresponding

number of different index sequences. Considering to the power of

sequencing technology, huge number of tags (more than ten

million) could be easily analyzed. However, we suggested analysis

of 0.5–1 million tags per a sample as routine studies, since 20–30

thousands of unique non-singleton tags could be identified in this

scale of analysis, which were expected to cover most of expressed

genes in eukaryotes. The high throughput and low costs of HT-

SuperSAGE now allows the analysis of biological replicate (i.e.

multiple) samples (Figure S3), which was not easy in the previous

sequence-tag-based transcriptome analyses. Technically, there is

no problem in increasing the number of replicates, although their

data analysis procedure should be considered in further studies.

Analytical scale was flexible in HT-SuperSAGE, since number of

samples for multiplexing and sequencing reads for each sample

could be changed as we like. As described in original SuperSAGE

method, it was applicable to any eukaryotic life organisms [8]. In

view of these advantages we propose that the performance and

potential of HT-SuperSAGE is comparable, if not superior to

microarray techniques.

In the original SuperSAGE procedure, any duplicated ditag

sequence was excluded as a PCR amplification bias, which

permitted to maintain an accuracy of transcript profiles [8]. In the

present advanced method, ditag fragments are no longer produced

so that this strategy did not have to be involved. In order to

minimize distortion in the expression profiles due to the

amplification bias, we reduced the number of amplification cycles

as much as possible, although in the end the effect of PCR on tag

abundance was minimal. We proved that 10 PCR cycles yielded

enough adapter-tag DNA (at least several hundred pico gram per a

PCR reaction, starting from 5mg total RNA), and that the tag

profiles were not different for 3, 5 and 10 PCR cycles, respectively,

if high-fidelity DNA polymerase was used (Fig 2). In summary, we

propose that PCR amplifications of up to 10 cycles will not cause

any detectable errors in the final HT-SuperSAGE profile data.

To evaluate the impact of different anchoring enzymes on the

final expression profiles, 26-bp tags were extracted from different

positions within the cDNAs using the three different anchoring

enzymes NlaIII, DpnII and BfaI. Most of the tags in previous

SAGE [6], LongSAGE [7] or SuperSAGE [8] experiments were

derived from NlaIII sites in cDNA. To the best of our knowledge,

the present report introduces the first comprehensive experimental

comparison of large-scale tag data from the same cDNA pool

using three different anchoring enzymes. Our results show that

neither of the three enzymes can cover all the transcripts. Even

NlaIII, the most commonly used enzyme, missed 7–8% of the

transcripts. BfaI failed to recover ,20% of transcripts, and is

therefore not suitable for HT-SuperSAGE. It is probable that a

low frequency of BfaI recognition sites in genes may cause this

failure. According to in silico sequence data analysis of Arabidopsis

RefSeq database, within 35,286 genes, 2,000 genes (5.7%) and

1,601 genes (4.5%) did not have NlaIII and DpnII sites,

respectively. Number of genes without BfaI site was 4,733

(13.4%). These frequencies were similar to the present experi-

mental results. Pleasance et al. (2003) already reported that genes

without BfaI sites apparently outnumbered those without NlaIII or

Sau3AI (DpnII) restriction motifs both in D. melanogaster and C.

elegans [18]. This phenomenon is consistent with our experimental

results in Arabidopsis expressed genes. Since the percentages of

missing transcripts were similar in both NlaIII- and DpnII -

derived tag populations (7–8% of expressed genes), .99% ( = 1–

0.082) of expressed genes could theoretically be monitored by

employing these two anchoring enzymes.

As described above, the HT-SuperSAGE protocol was

developed for simultaneously analyzing digital gene expression of

many different samples using the Illumina Genome Analyzer

platform. Obviously, this advanced protocol is also compatible

with other next generation sequencers with minor modifications in

adapter design. We anticipate that HT-SuperSAGE-based

transcriptome analysis will become one of the most powerful

applications of the next-generation sequencing (NGS) technology.

Materials and Methods

RNA preparation
Total RNA was extracted from the tissues listed in Table 1 (rice,

Arabidopsis and zebrafish). Rice seedlings (cv. Kakehashi in sample

a to f, lm1 in sample k, CM552 in sample m, SG0807 in sample n,

cv. Sasanishiki in sample z and Pex33-overexpressing rice [19] in

sample ex1) were grown at 28uC for 30 days after seed

germination. For preparing infected fungal infected tissues,

M.grisea conidia were inoculated on the leaves of rice (cv.

Table 2. Missing transcripts from abundantly expressed
Arabidopsis genes studied by three anchoring enzymes (NlaIII,
DpnII, BfaI) in leaf and stem tissues.

Number of missing tags*

NlaIII DpnII BfaI

Leaf (sample s) 64 81 188

Stem (sample t) 76 59 205

*Missing transcripts in 1000 of the most abundantly expressed genes in each
Arabidopsis leaf or stem tissue samples (see text).
doi:10.1371/journal.pone.0012010.t002

HT-SuperSAGE
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Sasanishiki) seedlings grown for 30days. Pollen and anther wall

tissues were collected from panicles before heading of rice plants

(cv. Sasanishiki). Rice germinating seeds were prepared by sowing

rice seeds at 15uC or under submerged condition at 28uC.

Zebrafish (Tg(fli1:EGFP)y1; albino b4/b4) embryos were collected at

10.5–16.5 h after fertilization. Arabidopsis leaf and stem tissues were

collected from mature plants grown at 22uC for 2 months. For

cDNA synthesis, 5–10mg total RNA per tissue sample was used,

except for laser microdissected tissues.

RNA amplification
For RNA extraction of minute tissue samples, tissues were once

fixed with ethanol-acetate (3:1) solution, and the solution

subsequently substituted for PBS (Phosphate Buffered Saline) with

10% sucrose [16]. Fixed tissues were embedded in OCT (optimal

cutting temperature) comp0und (Sakura Seiki) for cryosectioning.

After freezing of the OCT compound with tissues, 10–14mm cross-

sections were prepared using a cryostat (Zeiss), and mounted on

glass slides coated with a membrane film for dissection. The glass

slides were then fixed by rinsing with 70% ethanol, subsequently

dried, and laser microdissection (LMD, PALM-MB; Zeiss) applied.

From tissues or cells collected by LMD, RNA was extracted using

the PicoPure RNA isolation kit (Arcturus).

The first round of RNA amplification followed the ‘‘Eberwine’’

procedure [20], which amplifies antisense RNA from cDNA

templates using T7 RNA polymerase. In the second round, we

employed an improved version of sense-strand RNA amplification

method for SAGE [21]. Extracted RNA was once amplified with

the TargetAmp 1-Round aRNA Amplification Kit (EPICEN-

TRE). From the amplified antisense RNA, double-stranded cDNA

was synthesized using random hexamers and biotinylated oligo-

dT. The cDNA, after NlaIII digestion, was captured on

streptavidin-coated magnetic beads. Then a T7 linker was ligated

to the digested cDNA on the beads, and RNA amplified from

cDNA by in vitro transcription with T7 RNA polymerase [21]. The

resulting RNA (around 10 mg) was the template for cDNA

synthesis and tag extraction. Before the bulk tag extraction process

was started, rice actin cDNA was first PCR amplified for a test of

the procedure.

Adapter preparation
For adapter-2, the two oligonucleotides (59-CAAGCAGAA-

GACGGCATACGATCTAACGATGTACGCAGCAGCATG-

39 and 59-CTGCTGCGTACATCGTTAGATCGTATGCCGT-

CTTCTGCTTG- amino-39), and for adapter-1, the two oligonu-

cleotides (59-ACAGGTTCAGAGTTCTACAGTCCGACGAT-

CXXXX-39 and 59-NNXXXXGATCGTCGGACTGTAGAA-

CTCTGAACCTGT-amino-39; XXXX encodes variable index

sequences.) were synthesized and annealed.

Adapter-2Dpn was prepared by annealing the two synthetic

oligonucleotides (59-CAAGCAGAAGACGGCATACGATCTA-

ACGATGTACGCAGCAG-39 and 59-GATCCTGCTGCGTA-

CATCGTTAGATCGTATGCCGTCTTCTGCTTG- amino-39),

and adapter-2Bfa by the annealing oligonucleotides (59-CAAG-

CAGAAGACGGCATACGATCTAACGATGTACGCAGCA-

GC-39 and 59-CTAGCTGCTGCGTACATCGTTAGATCG-

TATGCCGTCTTCTGCTTG- amino-39).

Tag extraction and preparation of sequencing templates
Double-stranded cDNA was synthesized using the biotinylated

adapter-oligo dT primer (59-bio-CTGATCTAGAGGTACCG-

GATCCCAGCAGTTTTTTTTTTTTTTTTT-39). Purified

cDNA was digested with anchoring enzymes (NlaIII, DpnII or

BfaI), resulting fragments were bound to streptavidin-coated beads

(Dynabeads streptavidin M-270), and non-biotinylated cDNA

fragments were removed by washing. Adapter-2 (or adapter-

2Dpn, or adapter-2Bfa) was ligated to cDNA fragments on the

beads and after washing digested with EcoP15I. EcoP15I-digested

and released fragments (adapter-2- tags) were ligated to adapters-1

with defined index sequences for sample identification.

Tags sandwiched between two adapters were amplified by PCR

using PhusionHigh polymerase and GEX primers (59-AATGA-

TACGGCGACCACCGACAGGTTCAGAGTTCTACAGTC-

CGA-39 and 59-CAAGCAGAAGACGGCATACGA-39). The

PCR regime consisted of 98uC for 1min, 3–10 cycles at 98uC
for 30sec, and 60uC for 30sec. Eight tubes from this PCR

amplification (each 15ml) were pooled and concentrated PCR

products using MinElute reaction purification kit (Qiagen) were

run on an 8% non-denaturing polyacrylamide gel. After staining

with SYBR green (Takara Bio), the band at 123–125bp was cut

out from the gel, and DNA purified after its elution from the gel

pieces. The PCR product from each sample was analyzed on an

Agilent Bioanalyzer 2100. Equal concentrations of PCR products

from all the samples were mixed and applied to Illumina Genome

Analyzer II sequencing.

Sequencing
Purified and mixed PCR products were applied to cluster

formation on the flowcell of the Illumina Genome Analyzer II.

Sequencing reactions used GEX (DpnII) primer following the

instructions of the manufacturer.

Data analysis
Sorting of sequence reads based on index sequences and the

subsequent extraction of sequence tags from reads was conducted

using a script written in Perl. Tag profiling data (list of tag

sequences and their count) was registered in NCBI Gene

Expression Omnibus (its accession number is GSE20682).

Unigene databases were downloaded from the FTP site in

NCBI (ftp.ncbi.nih.gov/repository/UniGene). Magnaporthe grisea

whole genome draft sequences were downloaded from Broad

Institute (www.broadinstitute.org/annotation/genome/magnaporthe_

grisea/Downloads.html). Arabidopsis thaliana RefSeq database was

downloaded from the FTP site of The Arabidopsis Information

Resources (ftp.arabidopsis.org).

Arabidopsis tag mapping was performed with Novoalign

software (Novocraft Technologies).

Supporting Information

Figure S1 Distribution of extracted tag length. Tags were

extracted from sequence reads of sample, and number of total and

unique tags from 26 to 31 bases were estimated.

Found at: doi:10.1371/journal.pone.0012010.s001 (0.12 MB PPT)

Figure S2 Comparison of tag abundance between HT-Super-

SAGE and original SuperSAGE after removal of tags harboring

homopolymer sequences and tags, which did not completely

matched rice and Magnaporthe grisea genome sequences from

dataset in Figure 3. Criteria of tag removal was described in the

text. (panel A for sample f and panel B for sample l).

Found at: doi:10.1371/journal.pone.0012010.s002 (0.10 MB PPT)

Figure S3 Comparison of tag count among three replicated rice

shoot samples (sample d, e, and f). Red arrow indicates the tag

‘‘CATGACAAGTTTTTGTTAATAATAAT’’.

Found at: doi:10.1371/journal.pone.0012010.s003 (0.57 MB PPT)

Table S1 Summary of BLAST searching of the top 10 most

abundant tags in each sample.
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Found at: doi:10.1371/journal.pone.0012010.s004 (1.56 MB TIF)

Table S2 Total number of analyzed tags by HT-SuperSAGE

and original SuperSAGE.

Found at: doi:10.1371/journal.pone.0012010.s005 (1.56 MB TIF)

Table S3 Counts of tags containing homopolymer sequences.

Found at: doi:10.1371/journal.pone.0012010.s006 (1.56 MB TIF)

Table S4 Frequency of tags, which may have been caused by

errors.

Found at: doi:10.1371/journal.pone.0012010.s007 (1.56 MB TIF)

Table S5 Transcript amount of Arabidopsis genes analyzed by

tag extraction using three different anchoring enzymes (NlaIII,

DpnII, BfaI).

Found at: doi:10.1371/journal.pone.0012010.s008 (3.45 MB

XLS)
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