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Abstract

Background: Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based
similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular
structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening.

Methodology/Principal Findings: We introduce and validate a partially rotation-invariant three-dimensional molecular
shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we
parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape
descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large
compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for
candidate prioritization.

Conclusions/Significance: 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay.
Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome
corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large
compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be
a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.
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Received November 19, 2010; Accepted June 3, 2011; Published July 27, 2011

Copyright: � 2011 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received an academic MOE software license from Chemical Computing Group Inc., Montreal, Canada. M.R. acknowledges partial support
from DFG grant MU 987/4-2 and the FP7-ICT programme of the European Community under the PASCAL2 network of excellence, ICT-216886. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors received an academic MOE software license from Chemical Computing Group Inc., Montreal, Canada. There are no patents,
products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials,
as detailed online in the guide for authors.

* E-mail: gisbert.schneider@pharma.ethz.ch

. These authors contributed equally to this work.

¤ Current address: Institute for Pure and Applied Mathematics (IPAM), University of California, Los Angeles, Los Angeles, California, United States of America

Introduction

Ligand-based virtual screening [1,2], quantitative structure-

property and structure-activity relationships [3,4], and other

concepts in computational medicinal chemistry are based on the

similarity principle [5], which states that (structurally) similar

compounds generally exhibit similar properties. Such methods

require quantitative representations of molecules, usually in the

form of chemical descriptors, i. e., computable numerical

attributes in vector form [6].

Numerous molecular 3D-descriptors and alignment methods

have been proposed. Examples include CoMFA (comparative

molecular field analysis) [7], Randic molecular profiles [8], 3D-

MoRSE code (3D-molecule representation of structures based on

electron diffraction) [9], invariant moments and radial scanning

and integration [10], radial distribution function descriptors [11],

WHIM (weighted holistic invariant molecular descriptors) [12],

length-to-breadth ratios [13], USR (ultrafast shape recognition,

based on statistical moments) [14], ROCS (rapid overlay of

chemical structures, based on Gaussian densities) [15], VolSurf

(volumes and surfaces of 3D molecular fields) [16], GETAWAY

(geometry, topology, and atom weights assembly) [17], and shrink-

wrap surfaces [18], to name just a few prominent representatives.

In computer graphics, several methods exist for the more

general problem of comparing arbitrary 3D objects [19,20],

including distribution-based shape histograms [21], the D2 shape

descriptor [22], and, the scaling index method [23]; the view-

based methods of extended Gaussian images [24], and the light

field descriptor [25]; the surface decomposition-based methods of

Zernike moments [26], REXT (radialized spherical extent

function) [27], and spherical harmonics descriptors [28].

Spherical harmonics have been used in cheminformatics as a

global feature-based parametrization method of molecular shape

[28–38]. Their attractive properties with regard to rotations make

them an intuitive and convenient choice as basis functions when

searching in a rotational space [31]. A review article by
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Venkatraman et al. [38] highlights applications of spherical

harmonics to protein structure comparison, ligand binding site

similarity, protein-protein docking, and virtual screening. Jakobi et

al. [37] use spherical harmonics in their ParaFrag approach to

derive 3D pharmacophores of molecular fragments. Recently,

Ritchie and co-workers have applied the ParaSurf and ParaFit

methodologies [32,33] (Cepos InSilico Ltd., Erlangen, Germany)

in a virtual screening study on the directory of useful decoys

(DUD) data set [39], which motivates 3D shape-property

combinations specifically for flexible ligands [40]. The DUD data

set was also used in a comparative analysis of the performance of

various shape descriptors alone and in combination with property

and pharmacophore features [41]. See the section on related

methods for further discussion of spherical harmonics approaches.

In this work, we introduce a partially rotation-invariant

descriptor of molecular shape based on spherical harmonics

decomposition coefficients. The idea is to decompose the

molecular surface using spherical harmonics and to use the norm

of the decomposition coefficients as a description of molecular

shape. In this, we take advantage of the fact that the norm of the

coefficients does not change under rotation around the z-axis,

which we align to the primary axis of the molecule. We

retrospectively evaluate our descriptor, and prospectively apply it

to screen for novel inhibitors of the enzymes cyclooxygenase-1

(COX-1) and cyclooxygenase-2 (COX-2). Particular focus is on

the practical application of the virtual screening technique as an

evaluation of its actual suitability for early-phase drug discovery.

Materials and Methods

Spherical harmonics
Let l[f0,1,2, . . .g, let jmjƒl, let (h,w) indicate spherical

coordinates, and let Pm
l denote the Legendre polynomials [42].

The spherical harmonics [43] Y m
l of order l (frequency, angular

quantum number) and degree m (azimuthal quantum number),

Y m
l (h,w)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lz1

4p

(l{m)!

(lzm)!

s
Pm

l ( cos h)eimw, ð1Þ

form an orthonormal (with respect to integration over the unit

sphere) and complete set of basis functions (Fig. 1). They are

solutions to Laplace’s differential equation +2Y~0 in spherical

coordinates [44].

Any square-integrable spherical function f (h,w) can be

decomposed as

f (h,w)~
X?
l~0

Xl

m~{l

cm
l Y m

l (h,w), ð2Þ

with complex coefficients cm
l . The spherical harmonics decompo-

sition can be viewed as a generalization of the Fourier

decomposition to three dimensions [45].

The coefficients cm
l of an harmonic expansion can be found using

the orthonormality property. Multiplying each side of Eq. 2 by the

complex conjugate Y
m

l (h,w) and integrating over the sphere yields

cm
l ~

ðp
h~0

ð2p

w~0

f (h,w)Y
m

l (h,w) sin (h)dwdh: ð3Þ

Small values of l correspond to low frequencies, and describe the

overall low-resolution shape; higher values of l add finer, high-

frequency detail. The coefficients are unique, and can therefore be

used as feature vectors for shape description.

Rotation of a molecule (its shape function f ) changes the

coefficients. A conventional solution is to define a canonical

orientation of the molecule. For the purpose of shape comparisons,

this implies an alignment of the compared molecules, with all

associated problems and computational requirements. As an

alternative, we use a partial orientation in conjunction with

certain rotational invariance properties of the coefficients.

Descriptor definition
Let X~(~xx1, . . . ,~xxn)T[Rn|3 denote the Cartesian coordinates of

points ~xx1, . . . ,~xxn[R3 sampled from a molecular surface. We

assume that the surface is ‘‘star-like’’ (single-valued) in the sense

that rays radiating outward from the molecule’s origin intersect the

surface only once (this is more of an issue for proteins; as argued

elsewhere [35], small molecules are little, if at all, affected). Let

B[Rn|k denote the spherical harmonics basis functions Y m
l

evaluated at ~xx1, . . . ,~xxn, 0ƒlƒL, {lƒmƒl, with L[N the

maximum order used and k~
PL

l~0

Pl
m~{l 1~(Lz1)2 the

number of basis functions. The sampled molecular surface X can

be reconstructed using a matrix C[Rk|3 of coefficients as X~BC.

The coefficient matrix is given by C~B{X, where B{ denotes

the pseudo-inverse [46] of B.

Lemma. The p-norm of the rows of C does not change under

rotation around the z-axis (polar axis, change in w).

Proof It is sufficient to consider a single coefficient, i.e., n~k~1,

and ~cc~b{1~xx~(x,y,z)=b. Here, ~xx~(x,y,z)[R3 is a sampled

surface point, ~cc[R3 are coefficients, and b[R is the spherical

harmonics basis function Y m
l . From Eq. 1, it is clear that if w

changes, only the part exp (imw) of the spherical harmonic basis

function Y m
l (h,w) changes, while the rest of Y m

l stays constant.

Thus, b~ exp (imw)d for some constant d[R depending only on

m,l,h, but not on w. Since j exp (imw)j~1, and thus jbj~jdj,

Figure 1. Spherical harmonics by order lƒ3 (columns, left to
right) and degree m[f{l, . . . ,lg (rows, bottom to top). Shown are
negative real (blue), positive real (red), negative imaginary (green), and
positive imaginary (yellow) parts of Y m

l .
doi:10.1371/journal.pone.0021554.g001

Spherical Harmonics Descriptor
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Figure 2. Surface reconstruction using spherical harmonics. Shown are the original surface (top left), the surface after alignment to the z-axis
(top middle), and reconstructions using spherical harmonics of order l up to 1 (top right), 3 (bottom left), 6 (bottom middle), and 9 (bottom right).
doi:10.1371/journal.pone.0021554.g002

Figure 3. Spherical harmonics decomposition coefficients cm
l of a molecular surface for 0ƒlƒ9. The original (top left) and the rotated

(top right) surfaces yield coefficients with identical norm (bottom), up to numerical noise (differences were below 2:10{13).
doi:10.1371/journal.pone.0021554.g003

Spherical Harmonics Descriptor
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jj~cc jjp~
x

b

��� ���pz y

b

��� ���pz z

b

��� ���p� �1=p

~
1

jdj jj~xx jjp: ð4Þ

After a rotation around the z-axis (a change in w), the same holds

for the rotated point ~xx 0~(x’,y’,z’) and its coefficient ~cc 0, i.e.,

jj~cc 0jjp~jdj
{1 jj~xx 0jjp. Since the rotation matrix is unitary,

jj~xxjjp~jj~xx 0jjp, and it follows that jj~cc jjp~jj~cc 0jjp.

Our spherical harmonics descriptor is the k-component vector

(jj~cc0
0jjp,jj~cc{1

1 jjp,jj~cc0
1jjp,jj~cc1

1jjp,jj~cc{2
2 jjp, . . . ,jj~ccL

Ljjp)

of the norms of the coefficients. It is a description of molecular

shape that is invariant to rotations around the z-axis.

Before spherical harmonics decomposition, we place molecules

into a common frame of reference by translating their center of

gravity to the coordinate system origin and by aligning their first

principle component (the direction of maximum variance as given

by principle component analysis [47]) with the z-axis. In other

words, we align molecules according to their longest spatial extent,

and then apply our descriptor which is invariant to rotations

around the z-axis.

Descriptor computation
Gaussian contact surfaces [48] of all compounds were computed

using MOE (Molecular Operating Environment, version 2009.10,

Chemical Computing Group Inc., Montreal, Canada, www.

chemcomp.com ). Spherical harmonics decomposition was then

carried out on the vertices of these surfaces, giving approximate

coefficients [49]. To limit computational expense, we truncated

spherical harmonics expansions after order L~9. The resulting

k~(9z1)2~100 decomposition coefficients were sufficient to

represent fine molecular detail and approximately reconstruct the

original molecular surfaces (Fig. 2). The partial rotational

invariance of the coefficient norms jjcm
l jj is demonstrated in

Fig. 3. Computation was done in Matlab (The MathWorks,

version R2007a, www.mathworks.com ), partly based on code by

Dr. Andrew Hanna (University of East Anglia, United Kingdom,

www.cmp.uea.ac.uk/,aih ). Average computing time was v3
seconds per compound, which is acceptable for medium-sized

libraries but will require speed-up for high-throughput virtual

screening.

Related methods
Spherical harmonics have been widely used in cheminformatics

as a global feature-based parametrization method of molecular

shape [28–38]. Most current approaches, including ours, use the

center of gravity as the center of the spherical harmonics

decomposition. Molecular surface sampling can be done by

sampling iso-probability surfaces of molecular property densities.

One aspect in which methods differ is the way they deal with

rotations in 3D space.

Ritchie and Kemp [31] apply the rotational property of

spherical harmonics (a rotation of the surface can be simulated

by rotating the expansion coefficients) to maximize the pairwise

superposition of two molecules. The software ParaSurf superposes

molecules using a brute-force rotational search over the three

Euler rotation angles [50]. In a recent publication, Cai et al. [36]

use a similar approach to obtain the minimal root-mean-square

distance between a ligand molecule and a target protein. In these

related studies, molecular surfaces were rotated by transforming

their expansion coefficients.

Standard orientation of compounds prior to spherical harmon-

ics decomposition was proposed by Morris et al. [34]. Their work

registered molecules and binding pockets in a standard frame by

translating their center of mass to the coordinate origin and

aligning their variance-covariance matrix to the axes of the

coordinate system. They then use the coefficients of a real

spherical harmonics expansion to describe and compare the

molecular shape of binding pockets and ligands. This approach

aligns molecules to minimize rotation-dependent differences in the

coefficients.

Rotation-invariant spherical harmonics descriptors were applied

by Kazhdan et al. [28] and Mavridis et al. [35,51], using the fact

that expansion coefficients of the same order l transform among

themselves to construct rotationally invariant spherical harmonics

coefficients jj
Pl

m~{l cm
l jj2. In their approach, coefficients of the

same order l are binned together, thereby losing information

contained in the individual degrees m, but gaining complete

rotational invariance.

In this work, we combine partial orientation of the molecules

with the magnitude of the expansion coefficients as a partially

rotation-invariant shape descriptor. Our proposed descriptor

retains more information than the spherical harmonics descriptors

by Kazhdan et al. [28] and Mavridis et al. [35,51] in the sense that

coefficients within the same order are not summed up, but kept.

Compared with standard orientation methods, our descriptor is

potentially less susceptible to problems in the orientation step than

most others because only the first (and most stable) principle

component is used for orientation.

Retrospective evaluation
For retrospective validation, we ranked the compounds in a

database according to their similarity to a reference compound, as

measured by Euclidean distance and our descriptor. Two concep-

tually different collections of reference data were used, the DUD data

set (release 2, from http://dud.docking.org/r2 , unmodified data)

[39], and the COBRA data set (version 10.3, 11 244 compounds

annotated with activity on a total of 677 individual macromolecular

targets) [52]. COBRA 10.3 contains 168 COX-2 inhibitors.

Gaussian contact surfaces were generated with the MOE

2009.10 (Molecular Operating Environment, Chemical Comput-

ing Group Inc., Montreal, Canada, www.chemcomp.com )

GaussianSurface function, with parameter pos set to ‘aPos a’,

rad ‘dock_aRadius a’, nearpos ‘aPos a’, neardist ‘5’, maxMb ‘1’,

and fuzzy ‘0’. All other parameters were kept at their default

values. Virtual screening experiments in COBRA were carried out

using a single conformation generated by CORINA (version 2007,

Molecular Networks GmbH, Erlangen, Germany, www.molecu-

lar-networks.com ).

We used the selective COX-2 inhibitor SC-558 and the non-

selective inhibitor indomethacin as queries for ligand-based

similarity searching, with the conformations extracted from the

crystal structure (protein data bank [53] identifiers (PDB ID) 6cox

[54] and 4cox [54]). Enrichment factors [55], receiver operating

characteristic curves (ROC curves [56]), and the area under these

curves (ROC AUC) were used as performance measures.

Prospective virtual screening
We screened the ChemBridge compound pool (457 226

compounds, ChemBridge Corp., San Diego, USA, www.chem-

bridge.com) for potential COX ligands using a single CORINA

conformer query as in the retrospective screening. The database

was preprocessed using the ‘‘washing’’ procedure in MOE

(protonation of strong bases and de-protonation of strong acids;

all other parameters were kept at their default values).

Spherical Harmonics Descriptor
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To reduce computational effort and allow for pharmacophore

feature-based compound ranking, the screening compound pool

was pre-filtered using a self-organizing map (SOM [57]) trained on

the ChemBridge collection and 275 COX-1 and COX-2

inhibitors from the COBRA database. SOM topology was toroidal

with 20|20 neurons (1 200 molecules per neuron on average);

compounds were represented using the 150-dimensional CATS2D

topological pharmacophore descriptor [58,59] and compared

using the Manhattan distance. The initial width of the Gaussian

neighborhood function was set to 5; training was terminated after

5:106 steps (using each compound 10 times on average). We used

the MOLMAP software tool for SOM generation [60].

After pre-filtering, 21 950 compounds of the ChemBridge

database that were similar to the COX inhibitors from the

COBRA database were retained for virtual screening using our

spherical harmonics shape descriptor. Two potent COX inhibitors

served as reference molecules (queries; Fig. 4). All parameters were

set to the values used in retrospective virtual screening. The

spherical harmonics descriptor was calculated for the 21 950

retained molecules and for the two reference molecules.

Enzyme inhibition assay
Inhibition of COX-1 (ovine) and COX-2 (human recombinant)

activity was measured using a COX inhibitor screening assay kit

(Cayman Chemicals, Ann Arbor, MI, USA, www.caymanchem.

com ), according to the manufacturer’s protocol. SC-560, a

selective COX-1 inhibitor, and celecoxib, a selective COX-2

inhibitor, served as positive controls. The COX inhibitor

screening assay directly measures the amount of prostaglandins

PGE2, PGD2 and PGF2a produced by SnCl2 reduction of COX-

derived PGH2. In addition to this protocol, the amounts of

prostaglandins were quantified by LC-MS/MS analysis as

described previously [61].

Whole blood assay
COX-1 whole blood assay. One-milliliter heparinized

human blood samples were incubated with 4ml test substance (in

DMSO) or 4ml DMSO (control) for 10 min at 37 0 C . After this,

thrombocyte aggregation was stimulated by addition of calcium

ionophore A23187 (50mM) for 30min at 37 0C . Plasma was

separated by centrifugation for 20min at 2000rpm, 4 0 C and kept

at {80 0 C until assayed for TXB2 by LC-MSMS (see below).

COX-2 whole blood assay. For the determination of COX-

2 activity, 1ml of heparinized human blood was incubated at

37 0 C with 10ml of acetylsalicylic acid (1mgml{1 in PBS), 4ml
DMSO or 4ml inhibitor (in DMSO) for 10min. After this, 2ml of

LPS (5mgml{1 in DMSO) was added and incubated for 24hr at

37 0 C . The reaction was terminated by quickly chilling on ice.

Plasma was separated by centrifuging (20min, 2000rpm, 4 0 C ),

stored at {80 0 C until analysis of prostaglandins by LC-MS/MS

within two weeks.

Extraction procedure. 250ml plasma was incubated with

600ml 45mM H3PO4, 100ml 0:15M EDTA, 10ml BHT

(butylated hydroxytoluene, 2mgml{1), 20ml MeOH, 20ml
internal standard PGE2 {d4 (25ngml{1), PGD2 {d4
(25ngml{1), PGF 2a {d4 (10ngml{1), 6k PGF{1 a{d4
(10ngml{1), TXB2 {d4 (25ngml{1) for 1min, and passed

through a ABS ELUT-Nexus cartridge (Varian, Darmstadt,

Germany) preconditioned with methanol (1ml), followed by

distilled water (1ml). The cartridge was washed with distilled

water (1ml) and 30% MeOH (1ml). PGE2, PGF2a,

6{keto{PGF la and TXB2 were eluted with hexane-

ethylacetate-isopropranolol (30:65:5, v/v, 1ml). After vaporating

the solvent under nitrogen atmosphere, the residue was

reconstituted in 50ml acetonitrile / formic acid. PGE2

concentrations were quantified by means of a validated LC-MS/

MS assay described previously [61]. The lower limit of

quantification was 10pgml{1.

Results and Discussion

We validated our spherical harmonics (SpH) descriptor in a

retrospective setting (statistical validation on known data), and in a

prospective study to obtain biochemical confirmation of our

model.

Retrospective evaluation
As a first analysis, we used the DUD compound collection for a

preliminary comparison of selected shape- and structure-based

virtual screening methods. ROC AUC [62] values were computed

Figure 4. Reference COX inhibitors used for prospective
screening with the shape descriptor. Indomethacin (top, PDB ID
4cox), a non-selective COX inhibitor, and, SC-558 (bottom, PDB ID 6cox),
a selective COX-2 inhibitor.
doi:10.1371/journal.pone.0021554.g004

Table 1. Results (ROC AUC) of retrospective virtual screening
of DUD data set for COX-2 inhibitors.

Single query DUD COX-2

Method SC558 Indomethacin average + std.dev.

CATS2D 0.76 0.49 0.636 0.14

LIQUID v.1 0.59 0.60 0.586 0.10

LIQUID v.2 0.80 0.61 0.746 0.12

PRPS 0.83 0.15 0.766 0.19

SpH 0.91 0.84 0.866 0.12

ShaEP 0.89 0.79 0.616 0.03a

ROCS n.d. n.d. 0.68a

aValues reproduced from the original study by Vainio et al. [68], with ShaEP and
ROCS run in ‘shape-only’ mode.

DUD COX-2 data: 426 actives, 13 289 decoys. Query SC558 has PDB ID 6cox;
indomethacin has PDB ID 4cox. n.d. = not determined.
doi:10.1371/journal.pone.0021554.t001
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for each of the methods compared. ROC AUC values lie in the

interval ½0,1�, with values closer to 1 indicating higher enrichment

of actives in a ranked list of compounds. The analysis was limited

to the original COX-2 data from DUD (426 actives, 13 289

decoys). We did not perform exhaustive comparative analyses of

virtual screening performance or focus on ‘early recognition’ of

actives [63,64], as the primary purpose of this study was to

determine whether our SpH descriptor might be a useful shape-

based filtering criterion for COX inhibitors. Retrospective

screening was restricted to COX-2, our original target.

Table 1 summarizes the results obtained for CATS2D

(topological pharmacophore descriptor [58]), LIQUID (three-

dimensional pharmacophore descriptor using Gaussian feature

points; v1: hydrogen-bond donors, hydrogen-bond acceptors,

lipophilic [65]; v2: additional aromatic, positive and negative

charge features (manuscript in preparation)), PRPS (Gaussian

pseudoreceptor model [66,67]), ShaEP (field-based subgraph

matching [68]), and ROCS (Gaussian shape model [15,69]). For

the DUD COX-2 data, ROC AUC values indicate better than

random performance for all methods. SpH yielded an average of

0.86, which compares to Ritchie’s ParaFit spherical harmonics

descriptor (note that the ParaFit ROC AUC value is not given in

the original publication; we estimated it from graphical material

provided in the article’s supplementary material [41]). Among the

tested methods, SpH performed best for the selective COX-2

inhibitor SC-558 (Fig. 4) yielding a ROC AUC = 0.91. Notably,

high values were also obtained for indomethacin (Fig. 4), a non-

selective COX inhibitor (COX-1 IC50 = 18 nM; COX-2

IC50 = 26 nM) [70]. Apparently, only the PRPS pseudoreceptor

model distinguished between the selective (ROC AUC = 0.83) and

the non-selective (ROC AUC = 0.15) query.

In contrast to DUD (unmodified data), the COBRA database

contains only druglike bioactive compounds. Ranking of the

COBRA database with SC-558 as query resulted in an enrichment

factor (computed for the first percentile) of 23. We compared this

result to those obtained by the shapelets [71] method from our

group, using the same version of the COBRA database and the

same reference structure. The shapelets shape-only virtual

screening method achieved a comparable enrichment factor of

24. ROC curves are presented in Fig. 5 (numbers for shapelets

refer to COBRA version 8.4 containing 8 311 compounds

including 136 COX-2 inhibitors).

Figure 6. Self-organizing map projection of the ChemBridge database in CATS topological pharmacophore space, using a 20|20
toroidal grid. Colors correspond to the number of compounds clustered, separately scaled for each plot, with z indicating empty neurons. The left
panel presents the distribution of the 457 226 compounds from the ChemBridge database, the right panel shows the 275 COX ligands from the
COBRA database.
doi:10.1371/journal.pone.0021554.g006

Figure 5. Receiver operating characteristic (ROC) curves for
virtual screening by ranking against the COX-2 ligand SC-558
(PDB ID 6cox). Shown are curves for shapelets (solid red line), and
spherical harmonics descriptor (dashed green line).
doi:10.1371/journal.pone.0021554.g005

Spherical Harmonics Descriptor
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In summary, our spherical harmonics coefficients-based

approach SpH achieves notable enrichment of actives and

seems suitable for COX-2 inhibitor retrieval. This outcome is

in agreement with the study of shape-based virtual screening

approaches by Ritchie et al. [41], who report high hit rates for

COX-2 using shape descriptors. We conclude that spherical

harmonics-based decomposition of molecular shape captures

structural features that are relevant for virtual screening. Due

to the limited number of published prospective applications

[72], it seems premature to render any conclusion regarding

certain implementation preferences or ‘best-in-class’ spherical

harmonics methods. To further assess our SpH approach, we

performed a prospective study using SpH in a virtual

screening cascade with the aim to identify new COX

inhibitors.

Prospective virtual screening
Virtual screening. We used a SOM to pre-select potential

COX inhibitors from the screening compound pool. The SOM

(Fig. 6) of COX activity islands contains six neurons with more

than three ligands (neurons (1,16), (1,14), (1,15), (7,18), (18,14),

(10,14) with 49, 25, 15, 14, 12, 11 ligands, respectively). We

selected all compounds from the ChemBridge database contained

in these neurons, 21 950 in total (5% of the pool).

In the second virtual screening step, SpH was used for shape-

based filtering. Two reference molecules (SC-558 and indometh-

acin; Fig. 4) resulted in two ranked lists of the pre-filtered

ChemBridge compounds. 10 duplicates were found among the 50

top-ranking compounds from the two lists (20% overlap). In total,

12 compounds were selected by visual inspection, preferring

potentially new scaffolds (‘cherry-picking’, Fig. 7), and submitted

Figure 7. Compounds selected for the COX inhibition assay.
doi:10.1371/journal.pone.0021554.g007

Spherical Harmonics Descriptor
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for activity determination in a direct enzyme inhibition and a

whole blood assay.

Assay results
We determined the COX-inhibitory activity of 12 compounds

by performing a commercially available competitive COX-

inhibition assay using purified COX-1 (ovine) and COX-2 (human

recombinant) enzymes. Compounds 5 and 9 inhibit COX-1 in a

concentration dependent manner (Fig. 8 and Table 2). At 100mM
compounds 5 and 9 inhibit COX-1 activity to 72% and 89%,

respectively. Both compounds have only marginal effects on

COX-2-activity at concentrations up to 100mM. All other

substances have no effect on COX-1 or COX-2 activity in this

in vitro assay. While this outcome supports our general virtual

screening approach, we failed to retrieve COX-2 inhibitors. This

might be a consequence of using the selective COX-2 inhibitor

SC-558 in combination with the non-selective COX inhibitor

indomethacin as queries for the spherical harmonics shape filter.

Apparently, the COX activity island on the SOM and SpH

consensus filtering eliminated COX-2 specific features. It is also

possible that there were no hitherto unidentified COX-2 ligands in

the compound pool.

In the whole blood assay (Fig. 9, Table 3), compounds 5 and 9
are less effective, with maximum COX-1 inhibition of about 30%
and no COX-2 inhibitory efficacy. Interestingly, in this assay,

compounds 6, 10, 2 and 8 inhibit TXB2 production in a

concentration dependent manner up to 72%, 72% and 61% at

100mM, respectively. Compounds 6 and 10 have only marginal

inhibitory potency on PGE2 production, which points to selective

COX-1 inhibitors in vivo. Compound 2 also inhibits PGE2

production comparable to TXB2, indicating that this compound

is a COX-unselective inhibitor. In contrast, substance 8 increases

the PGE2 amount in a concentration dependent manner, which

argues for an activator of PGE2 production in the cellular context.

All other compounds show only very weak or no effect on PGE2

production.

The inhibitory data obtained from the whole blood assay might be

meaningful for further hit optimization. Compounds that are active

in this assay are not snatched away by binding to serum albumin, but

cross the cell membrane and overcome possible interactions with

cellular substances or enzymes. This could explain why compounds 5
and 9 are active in the enzyme assay, but inactive in the whole blood

assay. In contrast, compounds 6, 10, 2 and 8, which were more active

in the whole blood assay, possibly interact with the arachidonic acid

pathway in other ways than direct inhibition of COX-1 or COX-2.

Also, these compounds might be metabolized by cellular enzymes to

more active derivatives, but this hypothesis needs to be tested by

further experiments. Compound 8 is of special interest, as it induces

PGE2 production up to 322%. This increase could be due to an

activation of enzyme activity, possibly by binding to the ‘‘inactive’’

monomer of the COX-homodimer complex [73,74], or, due to an

enhancement of COX-2 protein, either by transcriptional or post-

transcriptional mechanisms.

As a preliminary novelty check, similarity searches were

performed using SciFinder Web (2010-10-21) for data retrieval

from the CAS database (Chemical Abstracts Service, Columbus,

Ohio, USA; www.cas.org). For none of the actives any reference to

COX inhibition was found, and only for compound 9 substructure

Figure 8. COX-2 inhibition in vitro assay results. Shown are COX-1 (blue) and COX-2 (red) inhibition. Celecoxib and SC-560 are known inhibitors
selective for COX-2 and COX-1, respectively.
doi:10.1371/journal.pone.0021554.g008
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matches (lacking the meta methyl group) were retrieved with regard

to bioactivities other than COX inhibition. It is therefore

reasonable to conclude that COX inhibition by compounds 5
and 9 represents a novel finding resulting from our study. We did

not perform additional analytical investigations of compound

integrity and purity other than those provided by the compound

supplier. Therefore, we cannot exclude that the activities

measured in the assays might be partially owed to decomposition

or oxidation products. Analog compound design and testing will

be mandatory.

Figure 9. COX-2 inhibition whole blood assay results. Shown are TXB2 (blue, indicative of COX-1 activity) and PGE2 (red, indicative of COX-2
activity) amounts relative to the control (DMSO). Celecoxib and SC-560 are known inhibitors selective for COX-2 and COX-1, respectively.
doi:10.1371/journal.pone.0021554.g009

Table 2. Results of in vitro enzyme inhibition assay tests.

COX-1 [%] COX-2 [%]

ID 1 mM 10 mM 100 mM 1 mM 10 mM 100 mM

1’ 66 2.0 96 4.2 156 1.6 196 2.1 236 12:7{ 176 3.2

2 ? ’ 236 3.5 256 1.0 266 23.5 146 9.7 96 2.2 66 1.6

3 86 1.3 126 3.5 106 5.1 196 0.7 106 1.9 146 0.1

4 66 10.7 266 3.8 226 2.8 36 3.2 36 7.4 216 9.9

5’ 76 3.9 316 3.8 726 4.5 276 8.1 276 1.4 386 3.7

6? 166 4.7 186 9.3 156 1.6 196 68:3{ 06 10.0 126 2.9

7 26 4.5 46 8.4 76 62:6{ 206 9.4 136 8.8 156 0.3

8 ? ’ 26 4.5 296 26.8 166 8.0 146 2.6 86 2.1 116 6.2

9’ 66 16.8 466 6.1 896 1.0 96 0.7 246 7.6 386 3.1

10? 276 1.6 2106 8.5 76 2.8 26 5.5 226 2.7 216 3.7

11 116 12.6 56 0.6 16 1.5 56 2.9 46 4.2 06 1.1

12 186 4.0 86 4.5 146 1.5 156 0.1 156 7.5 196 2.2

Primed (0) compounds are shown in Fig. 8, starred (?) compounds are shown in Fig. 9. Discussed compounds are shown in bold face.
{For these three measurements, high standard deviations were observed. This could be due to solubility problems, impurities, protein degradation, or other unspecific
effects. The corresponding measurements should be treated carefully.

doi:10.1371/journal.pone.0021554.t002
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Conclusions
We presented a favorable retrospective evaluation of the SpH

approach using COX-2 data from the DUD collection, and in a

first prospective application demonstrated the usefulness of the

descriptor in combination with a self-organizing map for retrieving

bioactive ligands from a large compound pool. Although we did

not retrieve a potent COX-2 inhibitor, which is likely owed to the

setup of the virtual screening cascade, two novel COX-1 inhibitors

were discovered. Future research will have to focus on mathe-

matical descriptions of molecular shape that allow for enzyme

subtype-selective ligand screening.

We introduced the magnitude of spherical harmonics coeffi-

cients as a partially rotation-invariant descriptor of molecular

shape. In retrospective validation on the DUD dataset, the

performance (as estimated by ROC AUC) of our shape-only

method was comparable to other shape-based similarity searching

methods. Results show that the magnitude of spherical harmonics

decomposition coefficients can be used to describe molecular

shape in a partially rotation-invariant way, resulting in a notable

enrichment of active compounds in virtual and real screening

studies. The combination of pharmacophore filtering by a self-

organizing map and shape-filtering by spherical harmonics

descriptors might be a useful two-step virtual screening protocol

for hit retrieval from large screening compound collections.
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