
A Termination Proof of Reduction in a Simply
Typed Calculus with Constructors

Manfred Schmidt-Schauß and David Sabel

Institut für Informatik
Johann Wolfgang Goethe-Universität

Postfach 11 19 32
D-60054 Frankfurt, Germany

{schauss,sabel}@ki.informatik.uni-frankfurt.de

Technical Report Frank-42

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

October 11, 2010

Abstract. The well-known proof of termination of reduction in simply
typed calculi is adapted to a monomorphically typed lambda-calculus
with case and constructors and recursive data types. The proof differs at
several places from the standard proof. Perhaps it is useful and can be
extended also to more complex calculi

1 Introduction

It is well-known that beta-reduction in the simply typed lambda calculus termi-
nates. The goal is to provide a simple proof that this can be extended to lambda
calculi with case and constructors. The original proof is by Tait [Tai71], see also
[Ste72]. There are proofs of strong termination also for different extensions of the
simply typed lambda calculus. Nevertheless, we think it is worthwhile to have
a proof pattern for the case-constructor-extension, since we are not aware of an
easily accessible strong normalization proof.

2 The Calculus

We define the syntax and reduction of a simply-typed lambda calculus extended
with case, constructors, and recursive data types and its call-by-name reduction
rules. We also use structured types to support inductive arguments.

2 M. Schmidt-Schauss, D. Sabel

Let K be a finite set of type constructors, where every type constructor K comes
with an arity ar(K).
Types T are defined by the grammar T ::= (T1 → T2) | K(T1, . . . , Tar(K)), where
T, Ti stand for types, and K ∈ K is a type constructor. As usual we assume
function types to be right-associative, i.e. T1 → T2 → T3 means T1 → (T2 → T3).
Types of the form T1 → T2 are called function types and types of the form
K(T1, . . . , Tar(K)) are called constructed types.
Let D be a finite set of data constructors. For every K ∈ K there is a finite set
∅ 6= DK ⊆ D of data constructors cK,i where cK,i ∈ DK comes with a fixed arity
ar(cK,i). For different K1, K2 ∈ K it holds DK1 ∩DK2 = ∅ and D =

⋃
K∈K DK .

We assume that there is a strict and total partial order < on K.

Definition 2.1. The calculus is called well-structured, iff the following restric-
tions hold:
The polymorphic type of a data constructor c ∈ DK are of the form
T1 → . . . → Tar(c) → K(X1, . . . , Xm) where Ti may be of one of the following
forms:

– Xi

– S1 → . . . → Sk → Sk+1, where Si is either a type variable or a 0-ary type
constructor K ′ with K ′ < K.

– K(X1, . . . , Xm).

Note that generalizations are possible, but we use a simplified version that applies
to the usual data structures like lists, Booleans and Peano-numbers.

2.1 Syntax of Expressions

The (type-free) syntax of expressions Expr is as follows, where c, ci are data
constructors, where every data constructor c has a fixed arity ar(c), x, xi are
variables of some infinite set of variables, and Alt is a case-alternative:

s, si, t ∈ Expr ::= x | (s t) | λx.s | (ci s1 . . . sar(ci))
| (case s Alt1 . . .Altn)

Alt i ::= ((ci x1 . . . xar(ci)) -> si)

Note that data constructors can only be used with all their arguments present.
We assume the variables in a pattern have to be distinct. The scoping rules in
expressions are as usual. We assume that expressions satisfy the distinct variable
convention before reduction is applied, which can be achieved by a renaming of
bound variables.
For an expression t the set of free variables of t is denoted as FV (t). An expression
t is called closed iff FV (t) = ∅, and otherwise called open.

2.2 Typing of Expressions

Expressions are monomorphically typed, i.e., the types have no occurrences of
type variables. It is no restriction to assume that every variable is labeled with its

Termination in a Simply Typed Calculus 3

(beta) ((λx.s) t) → s[t/x]

(case) (case (c s1 . . . sn) . . . ((c y1 . . . yn) -> s) . . .)
→ s[s1/y1, . . . , sn/yn]

Fig. 1. Call-by-name reduction rules

type. Every subexpression is annotated with a type, and every subexpression is
monomorphically (i.e. simply) typed. The difference w.r.t. a simply typed lambda
calculus are as follows. Constructor expressions are typed like an application.
Case-expressions (case s (c1 x1,1 . . . x1,n1) -> r1, . . . , (ck xk,1 . . . xk,n1) -> rk) are
typed, such that the types of s and the patterns (c1 xi,1 . . . xi,ni

) must be the
same. Also the types of the following expressions are equal: ri, s and the case-
expression.

2.3 Reduction

Reduction of expressions is by an application of one of the two rules (beta)
and (case) in Fig. 1, where reduction is allowed in any context, i.e., there is
no strategy. When we speak of reductions in the following, we mean reduction
sequences of case- and beta-reduction in any context.
Note that reductions do not change the types of expressions.
Note that this reduction model also allows stuck closed expressions like
case c (d -> d), since this cannot be further reduced.
For an expression t let the set MC(t) of maximal critical abstractions be recur-
sively defined as:

– If t = (c t1 . . . tn), then MC(t) :=
⋃

i=1,...,n MC(ti).
– If t is an abstraction, then MC(t) := {t}.
– Otherwise MC(t) := ∅.

Lemma 2.2. Let t be an expression of type T = K(T1, . . . , Tn). Let s ∈ MC(t)
be of type S = S1 → . . . → Sm → Sm+1, where Sm+1 is not a function type.
Then for all i: |Si| < |T | or Si is a type constructor with Si < K.

Proof. By induction on the size of types and then on expression size.
If t = c t1 . . . tn′ then the type of tj may be in {T1, . . . , Tn}, which is strictly
smaller than T ; The type of tj may be K(T1, . . . , Tn) and we can use induction
on the term structure; the type may be S1 → . . . → Sm → Sm+1, where all Si

are strictly smaller in size than K(T1, . . . , Tn), or Si < K.

Before we start with the termination proof, we present a counter example to
strong termination of reduction if the conditions are not satisfied.

Example 2.3. Let the type and function definitions be

data T = T
data U = Fold (U -> T)

4 M. Schmidt-Schauss, D. Sabel

unfold :: U -> U -> T
unfold = \x -> case x of (Fold y) -> y
yy = ff (Fold ff)
ff = (\x -> (unfold x x))

The example is monomorphically typed. Reducing yy results in
yy → (ff (Fold ff)) → (unfold (Fold ff) (Fold ff))
→ (ff (Fold ff)) → . . .
which is the start of a non-terminating reduction. This is even a non-terminating
normal-order reduction.
Note that this example does not satisfy the well-structured condition.

3 Termination of Reduction in Well-Structured
Monomorphic Lambda-Calculi with Case and
Constructors

In this section we look for the termination of the monomorphic calculus with
beta- and case-reductions if the calculus is well-structured.
The proof is an adaptation of well-known termination proofs of reduction of
the simply-typed lambda-calculus, but adapted to the extended syntax and the
extended set of rules. There are two differences: Our types have type constructors
other than function types, and there are constructors and a case-construct.
The idea is to define a particular set of strongly computable (SC) expressions
and analyzing their properties. First it is shown that SC expressions are strongly
normalizable (SN), and then it is shown in a series of lemmas that all expressions
are SC, which finally implies that all expressions are SN.

Definition 3.1. An expression t is called strongly normalizing (SN) iff every
reduction sequence of t terminates.

Definition 3.2. An expression t is called strongly computable (SC) iff the fol-
lowing holds (inductively):

– if t is of base type, then t is SN and when t
∗−→ t′, then every expression in

MC(t′) is SC.
– If t is of function type, then for all appropriately typed SC-expressions si: if

t s1 . . . sn is of constructed type, then it is SN and for t s1 . . . sn
∗−→ t′, also

every expressions in MC(t′) is SC.

This inductive definition is based on a well-founded measure due to Lemma 2.2,
which is only valid under the well-structured assumption.
Obviously the following holds:

Lemma 3.3. Let t be SN. Then every subexpression of t is SN.

Lemma 3.4. If s, t are SC of appropriate type, then (s t) is SC.

Termination in a Simply Typed Calculus 5

Proof. Let s1, . . . , sn be SC-expressions such that s t s1 . . . sn is of base type.
Since s, t are SC-expressions, the expression s t s1 . . . sn is SN, by definition of
SC. Since s is SC, by Definition 3.2, whenever s t s1 . . . sn

∗−→ t′ then also the
expressions in MC(t′) are SC. Hence (s t) is also SC.

Lemma 3.5. Every reduct of an SC-expression t is also SC.

Proof. Let t → t′. If t is of base type, then also t′ is SN. If t′
∗−→ t′′, then also

t
∗−→ t′′, hence the SC-condition holds. If t is of functional type, and si are SC,

then t s1 . . . sn → t′ s1 . . . sn, and t′ s1 . . . sn is SN and also if t′ s1 . . . sn
∗−→ t′′,

then also t′ s1 . . . sn
∗−→ t′′, and the SC-condition holds.

Lemma 3.6.

1. All variables are SC.
2. All SC expressions are SN.

Proof. Obvious, since x s1 . . . sn has no top level reduction.

Lemma 3.7. Let si be expressions and c be a constructor such that (c s1 . . . sn)
is typed. Then all si are SC iff (c s1 . . . sn) is SC.

Proof. Let si be SC. The expression is of constructed type, hence we have to
prove that it is SN. Since reductions may only be in the subexpressions si, this
follows from Lemma 3.6. Since every reduct of si is also SC by Lemma 3.5, the
SC-condition holds.
Now assume that (c s1 . . . sn) is SC. Obviously, si are SN. The fact MC(si) ⊆
MC(c s1 . . . sn) shows that si are SC.

Lemma 3.8. If t is SC and for all SC-expressions s, (t[s/x]) is SC, then (λx.t)
is SC.

Proof. Let s, si be SC-expressions such that (t[s/x] s1 . . . sn) is of constructed
type. From the definition of SC and Lemma 3.6, we see that (t[s/x] s1 . . . sn)
is SC, hence also SN. Let us show that (λx.t) is SC. Therefore again let s, si be
any SC-expressions such that (((λx.t) s) s1 . . . sn) is of constructed type.
We have to show that this expression is SN. Consider an infinite reduction se-
quence of (((λx.t) s) s1 . . . sn). We know that t, s, si are all SN. Hence there is
also an infinite reduction sequence of (t[s/x] s1 . . . sn), which is impossible by
assumption and Lemma 3.6.
We also have to show that ((λx.t) s) s1 . . . sn

∗−→ t′ implies that MC(t′) only
contains SC-expressions. It is easy to see that for any reduction sequence
((λx.t) s) s1 . . . sn

∗−→ t′, there is also a reduction (t[s/x]) s1 . . . sn
∗−→ t′, by

rearranging the reduction. Since (t[s/x]) is SC, all the expressions in MC(t′) are
SC.

Lemma 3.9. For l = 1, . . . , k let Alt l = (cl xl,1 . . . xl,ar(cl)) → rl.
If s1, . . . , sar(ci), r1, . . . , rk and (ri[s1/xi,1, . . . , sn/xi,ar(ci)]) are SC, then
(case (ci s1 . . . sar(ci)) Alt1 . . . Altk) is SC.

6 M. Schmidt-Schauss, D. Sabel

Proof. Let ai, i = 1, . . . ,m be arbitrary SC-expressions such that
((ri[s1/xi,1, . . . , sn/xi,ar(ci)] a1) . . . am) is of constructed type. Since
ri[s1/xi,1, . . . , sar(ci)/xi,ar(ci)] is SC it is also SN by Lemma 3.6.
We show that (case (ci s1 . . . sar(ci)) Alt1 . . .Altk) a1 . . . am is SN: Any infinite
reduction will first reduce si, rl, aj to s′i, r

′
l, a

′
j and since these are all SN, a case-

reduction must follow with result (r′i[s
′
1/xi,1, . . . , s

′
ar(ci)

/xi,ar(ci)]) a′1 . . . a′m, and
then perhaps there may be other reductions. It is easy to see, that the expression
(r′i[s

′
1/xi,1, . . . , s

′
ar(ci)

/xi,ar(ci)]) a′1 . . . a′m could be obtained by first performing
the case-reduction with result (ri[s1/xi,1, . . . , sar(ci)/xi,ar(ci)]) a1 . . . am, and
then reducing si, ri, aj to s′i, r

′
i, a

′
j , where the reduction sequences may be neces-

sary multiple times for the different copies of si and aj and reductions for rl with
l 6= i are omitted. Since (ri[s1/xi,1, . . . , sar(ci)/xi,ar(ci)]) is SC by assumption,
this contradicts Lemma 3.6, hence (case (ci s1 . . . sar(ci)) Alt1 . . .Alt l) is SN.
The second part is to show that (case (ci s1 . . . sar(ci)) Alt1 . . .Altk) a1 . . . am

∗−→
t′ implies that all expressions in MC(t′) are SC. It is easy to see that also
(ri[s1/xi,1, . . . , sar(ci)/xi,ar(ci)]) a1 . . . am

∗−→ t′, since the only potential reduc-
tion that does not only reduce within the expressions si, rl, ai is the case-
reduction. Since ri[s1/xi,1, . . . , sar(ci)/xi,ar(ci)]) is SC, it follows that all expres-
sions in MC(t′) are SC.

Lemma 3.10. Let t be an expression all of whose free variables are in the set
{x1, . . . , xn}. Let si be expressions of the same type as xi for i = 1, . . . , n. If all
si are SC, then with σ := [s1/x1, . . . , sn/xn], the expression σ(t) is also SC.

Proof. This proof is by induction on the expression structure:

– If t is one of the variables xi, then σ(t) = si which is SC by assumption.
– If t is a variable y not in {x1, . . . , xn}, then y is SC by Lemma 3.6.
– If t is of the form (c t1 . . . tm), then every σ(ti) is SC by induction hypothesis.

The expression (c σ(t1) . . . σ(tm)) is SC by Lemma 3.7.
– If t = t1 t2, then σ(t) = σ(t1) σ(t2), and by induction the expressions σ(ti)

are SC, hence by Lemma 3.4 σ(t) = σ(t1) σ(t2) is SC.
– If t = λx.t1, then σ(t) is λx.σ(t1). Let t2 = σ′(t1) where σ′ :=

[r/x, s1/x1, . . . , sn/xn] and where r is any SC-expression. The expression
t2 is SC by the induction hypothesis of our proof, since t1 is strictly smaller
than t. Hence by Lemma 3.8, we obtain that σ(λx.t1) is SC.

– If t is of the form case t1 (c1 y1 . . . ym1) -> r1; alts; (ch y1 . . . ymh
) -> rh, then

t1, σ(t1), ri, and σ(ri) are SC by induction hypothesis. Let a1 . . . ap be SC-
expressions such that (case σ(t1) (c1 y1 . . . ym1) ->σ(r1); alts) a1 . . . ap is
of constructed type. If the reduction is only within σ(t1), σ(rj), σ(ai), then
there can be no infinite reduction and also no reduction to a constructor
expression. The other case is that there is a reduction σ(t1)

∗−→ (cj d1 . . . dk),
and then a case-reduction. Lemma 3.5 shows that (cj d1 . . . dk) is SC, and
hence by Lemma 3.7, the di are SC. Let σ′ := σ ∪ {y1 7→ d1, . . . , ym 7→
dm}. Then σ′(rj) is SC by induction. Using Lemma 3.9, we see that also
(case (cj d1 . . . dk) (c1 y1 . . . ym1) ->σ(r1); alts) a1 . . . ap is SC. Whenever

Termination in a Simply Typed Calculus 7

there is a reduction (case σ(t1) (c1 y1 . . . ym1) ->σ(r1); alts) a1 . . . ap to an
expression (c′e1 . . .), there is also a reduction via an expression of the form
(case (cj d1 . . . dk) (c1 y1 . . . ym1) ->σ(r1); alts) a1 . . . ap, which is SC, hence
ei are SC, and the proof is finished.

Theorem 3.11. Every expression is SC, and hence SN.

Proof. Simply use t[x1/x1, . . . xn/xn] where xi are the free variables of t and
then apply Lemma 3.10 and Lemma 3.6.

Corollary 3.12. If t is a Haskell-expression with case and constructors and
abstractions but seq is disallowed, and the well-structured condition holds for
the data types, and typing uses only polymorphic typing without type classes, and
supercombinator-reduction is not used, then monomorphically typed expressions
have a terminating reduction.

Corollary 3.13. If t is an expression in a functional language with case and
constructors and abstractions and there are polymorphic lists with types of con-
structors Nil :: List(a), Cons :: a → List(a) → List(a), Booleans, and Peano-
numbers, and beta and case are used as reduction rules, then monomorphically
typed expressions have a terminating reduction.

Remark 3.14. As a first application of the claim that the proof can be extended:
The strong termination claim can be extended if the expression syntax allows a
seq in expressions (seq s t). Assume the seq-reduction is as follows:
seq s t → t if s is a constructor application or an abstraction.
Then the following has to be added as a lemma:
If s, t are SC, then (seq s t) is also SC. But this is easy, since (seq s t) s1 . . . sn

for SC-expressions si is SN, provided all si, s, t are SN. If (seq s t) s1 . . . sn
∗−→

c r1 . . . rm), then also t s1 . . . sn
∗−→ (c r1 . . . rm), and all ri are SC.

References

Ste72. Sören Stenlund. Combinators, Lambda Terms, and Proof Theory. D. Reidel,
1972.

Tai71. W.W. Tait. Normal form theorem for barrecursive functions of finite type.
In J.E. Fenstad, editor, Second Scandinavian Logic Symposium, page 353367.
NorthHolland, 1971.

	A Termination Proof of Reduction in a Simply Typed Calculus with Constructors

