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Kurzfassung

Die Nanotechnologie ist ein sich rasch entwickelndes Wissenschaftszweig, der sich auf

die Untersuchung von Phänomenen auf der Nanometerskala fokussiert, insbesondere

in Bezug auf die Möglichkeiten der Materiemanipulation im Nanobereich. Eines

der wichtigsten Ziele der Nanotechnologie ist die Entwicklung der kontrollierten,

reproduzierbaren und industriell transportierbaren Techniken zur Herstellung von

nanostrukturierten Materialien.

Die konventionelle Dünnschichtwachstumstechnik durch die Deposition von Ato-

men [1, 2], kleinen atomaren Clustern [2, 3] und Molekülen [1, 4, 5] auf Oberflächen

ist die allgemeine Methode, die oft in der Nanotechnologie für die Herstellung neuer

Materialien verwendet wird. Jüngste Experimente zeigen, dass sich Muster mit

unterschiedlicher Morphologie im Verlauf des Nanopartikeldepositionsprozesses auf

einer Oberfläche gebildet werden können [2, 3, 6]. Die Voraussage der endgültigen

Architektur der wachsenden Materialien ist in diesem Zusammenhang ein grund-

sätzliches Problem, das einer tieferen Studie wert ist.

Ein weiterer Faktor, der eine wichtige Rolle in der industriellen Anwendung

neuer Materialien spielt, ist die Frage nach der Stabilität der resultierenden Struk-

turen nach dem Depositionswachstum. Das Verständnis der Postwachstumsrelax-

ationsprozesse würde eine Möglichkeit geben, die Lebensdauer der durch Deposition

gewonnener Materialen, abhängig von den Herstellungsbedingungen, abzuschätzen.

Steuerbare Postwachstumsmanipulationen der hinterlegten Strukturen eröffnen neue

Wege für die Konstruktion von nanostrukturierten Materialien.

Die Aufgabe dieser Arbeit ist es, Mechanismen der Bildung und der Postwach-

stumsentwicklung von nanostrukturierten Materialien, die durch die Methode der

Deposition atomarer Cluster auf einer Oberfläche hergestellt werden, zu verstehen.

Um die Aufgabe dieser Arbeit zu bewältigen, werden folgende Hauptprobleme ange-

sprochen:

1. Die Eigenschaften von isolierten Clustern können sich erheblich von denen
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ähnlicher Cluster, die aber auf einer festen Oberfläche auftreten, unterschei-

den [2, 3, 7]. Der Unterschied erklärt sich durch die Interaktion zwischen dem

Cluster und der Unterlage. Deshalb ist das Verständnis der strukturellen und

dynamischen Eigenschaften eines atomaren Cluster auf einer Oberfläche ein

Thema von großem Interesse, sowohl aus wissenschaftlicher, als auch aus tech-

nologischer Sicht [2,8]. In dieser Arbeit sind Stabilität, Energie und Geometrie

eines atomaren Clusters auf einer festen Oberfläche mit Hilfe eines Flüssigkeit-

stropfenansatzes unter der Berücksichtigung der Cluster-Festkörper Wechsel-

wirkungen untersucht worden. Die Geometrie der abgelagerten Cluster wurde

mit der Geometrie der isolierten Cluster verglichen, die Unterschiede wurde

diskutiert.

2. Die Szenarien der Strukturbildung auf einer Unterlage hängen im Laufe des

Depositionsprozesses eines Clusters stark von der Dynamik der zur Deposition

stehender Clustern. Deshalb ist das Studium der Dynamik einzelnes Clus-

ters auf der Oberfläche, ein wichtiger Schritt auf dem Weg zur Vorhersage der

Strukturmorphologie. Zur Untersuchung der Dynamik wurde in dieser Arbeit

der Clusterdiffusionsprozess auf einer Oberfläche mit der klassischen Technik

der Molekulardynamik für ein einzieges Cluster modelliert. Die Diffusionsko-

effizienten für Silber-Nanocluster wurden aus der Analyse der Clustertrajek-

torien erhalten. Es wurde bestimmt, wie die Diffusionskoeffizienten von der

Systemtemperatur und der Wechselwirkung zwischen dem Cluster und der

Unterlage abhängen. Die Ergebnisse der Simulation sind mit den verfügbaren

experimentellen Ergebnissen für die Diffusionskoeffizienten von Silber-Clustern

auf Graphit-Oberfläche verglichen.

3. Die Methoden der klassischen Molekulardynamik können nicht für die Mod-

ellierung der Selbstorganizationsprozesse mehrerer atomarer Cluster auf einer

Oberfläche verwendet werden, denn diese Prozesse ereignen sich auf einer Zeit-

skala im Minutenbereich, was eine immense Computerrechenleistung für die

Simulation mehrerer Cluster erfordern würde. Um die Dynamik der Selbstor-

ganisation mehrerer Cluster auf einer Oberfläche zu beschreiben, wurde ein

probabilistischer Ansatz, der auf dem Monte-Carlo Prinzip basiert, entwickelt.

Der Monte-Carlo Ansatz basiert auf den Ergebnissen von Molekulardynamik-

simulationen für einen einzelnen Cluster auf einer Oberfläche. Diese Methode

ist anwendbar für die freie Nanopartikeldiffusion auf einer Oberfläche, die Ag-
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gregation der Nanopartikel zu Inseln und die Verdampfung der Nanopartikel

von diesen Inseln. Die entwickelte Methode ist benutzbar für das Studium der

Musterbildung von Strukturen bis zu Tausenden nm, sowie für das Studium

der Stabilität dieser Strukturen. Die entwickelte Methode wurde implemen-

tiert im MBN Explorer Softwarepaket.

4. Der Prozess der Strukturbildung auf einer Unterlage wurde untersucht für

verschiedene Szenarien. Basierend auf der Analyse der Simulationsergebnisse

wurden einige Musterunterscheidungskriterien vorgeschlagen. Diese Kriterien

verwendet man zum Unterscheiden zwischen verschiedenen Mustern auf der

Oberfläche, zum Beispiel zum Unterscheiden zwischen Fraktalen oder kom-

pakten Inseln. Diese Kriterien lassen sich zur Vorhersage der endgültigen

Morphologie der wachsenden Struktur verwenden.

5. Die Postwachstumsevolution der Strukturen auf einer Oberfläche wurde eben-

falls untersucht. Besondere Aufmerksamkeit legt diese Arbeit auf eine system-

atische theoretische Analyse der Postwachstumsvorgänge der Nanofraktale auf

einer Oberfläche. Die zeitliche Entwicklung der fraktalen Morphologie im Zuge

der Postwachstumsrelaxation wurde analysiert. Die Ergebnisse dieser Berech-

nungen wurden mit den experimentellen Daten der Postwachstumsrelaxation

von Silber-Clusterfraktalen auf einer Graphitunterlage verglichen.

Alle genannten Probleme sind im Detail in der Arbeit diskutiert.





Abstract

Nanotechnology is a rapidly developing branch of science, which is focused on the

study of phenomena at the nanometer scale, in particular related to the possibilities

of matter manipulation. One of the main goals of nanotechnology is the development

of controlled, reproducible, and industrially transposable nanostructured materials.

The conventional technique of thin-film growth by deposition of atoms [1, 2],

small atomic clusters [2, 3] and molecules [1,4,5] on surfaces is the general method,

which is often used in nanotechnology for production of new materials. Recent

experiments show, that patterns with different morphology can be formed in the

course of nanoparticles deposition process on a surface [2, 3, 6]. In this context,

predicting of the final architecture of the growing materials is a fundamental problem

worth studying.

Another factor, which plays an important role in industrial applications of new

materials, is the question of post-growth stability of deposited structures. The un-

derstanding of the post-growth relaxation processes would give a possibility to es-

timate the lifetime of the deposited material depending on the conditions at which

the material was fabricated. Controllable post-growth manipulations with the ar-

chitecture of deposited structures opens new path for engineering of nanostructured

materials.

The task of this thesis is to advance understanding mechanisms of formation

and post-growth evolution of nanostructured materials fabricated by atomic clusters

deposition on a surface. In order to achieve this goal the following main problems

were addressed:

1. The properties of isolated clusters can significantly differ from those of anal-

ogous clusters occurring on a solid surface [2, 3, 7]. The difference is caused

by the interaction between the cluster and the solid. Therefore, the under-

standing of structural and dynamical properties of a an atomic cluster on a

surface is a topic of intense interest from the scientific and technological point
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of view [2,8]. In the thesis, stability, energy, and geometry of an atomic cluster

on a solid surface were studied using a liquid drop approach which takes into

account the cluster-solid interaction. Geometries of the deposited clusters are

compared with those of isolated clusters and the differences are discussed.

2. The formation scenarios of patterns on a surface in the course of the process

of cluster deposition depends strongly on the dynamics of deposited clusters.

Therefore, an important step towards predicting pattern morphology is to

study dynamics of a single cluster on a surface. The process of cluster diffu-

sion on a surface was modeled with the use of classical molecular dynamics

technique, and the diffusion coefficients for the silver nanoclusters were ob-

tained from the analysis of trajectories of the clusters. The dependence of the

diffusion coefficient on the system’s temperature and cluster-surface interac-

tion was established. The results of the calculations are compared with the

available experimental results for the diffusion coefficient of silver clusters on

graphite surface.

3. The methods of classical molecular dynamics can not be used for modeling the

self-assembly processes of atomic clusters on a surface, because these processes

occur on the minutes timescale, what would require an unachievable computer

resource for the simulation. Based on the results of molecular dynamics sim-

ulations for a single cluster on a surface a Monte-Carlo based approach has

been developed to describe the dynamics of the self-assembly of nanoparticles

on a surface. This method accounts for the free particle diffusion on a surface,

aggregation into islands and detachment from these islands. The developed

method is allowed to study pattern formation of structures up to thousands

nm, as well as the stability of these structures. Developed method was imple-

mented in MBN Explorer computer package.

4. The process of the pattern formation on a surface was modeled for several dif-

ferent scenarios. Based on the analysis of results of simulations was suggested

a criterion, which can be used to distinguish between different patterns formed

on a surface, for example: between fractals or compact islands. This criteria

can be used to predict the final morphology of a growing structure.

5. The post-growth evolution of patterns on a surface was also analyzed. In par-

ticular, attention in the thesis is payed to a systematical theoretical analysis
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of the post-growth processes occurring in nanofractals on a surface. The time

evolution of fractal morphology in the course of the post-growth relaxation

was analyzed, the results of these calculations were compared with experimen-

tal data available for the post-growth relaxation of silver cluster fractals on

graphite substrate.

All the aforementioned problems are discussed in details in the thesis.





Zusammenfassung
Die Herstellung neuer Nanomaterialien ist ein wichtiger Zweig auf dem Entwick-

lungsgebiet der Nanowissenschaften [2, 4, 8]. Die Größenreduzierung eröffnet den

Zugang zur einer ganzen Reihe von neuen physikalischen und chemischen Eigen-

schaften und einer Fülle von möglichen Einsatzmöglichkeiten. Der Zugang zu diesen

neuen Möglichkeiten erfordert die Entwicklung geeigneter Methoden für die Herstel-

lung von Nanomaterialien. Die Bildung von nanostrukturierten Materialien wird vor

allem durch Selbstorganisationsprozesse geregelt. Das Streben nach Verständnis der

Selbstorganisationsmechanismen im Nanometerbereich ist eine der grundlegenden

Motivationen in der Nanotechnologie.

Für den industriellen Einsatz von Nanomaterialien ist es sehr wichtig, eine Tech-

nologie mit der Möglichkeit der Kontrolle der resultierenden Architektur des Ma-

terials noch im Laufe des Wachstumsprozesses zu schaffen. Der andere wichtige

Aspekt ist die Stabilität der neuen Materialien. Die Lebensdauer des neuen Materi-

als spielt eine entscheidende Rolle für die potenzielle Nutzbarkeit dieses Materials.

In diesem Zusammenhang ist es sehr wichtig, die Mechanismen der Bildung und der

Postwachstumevolution von nanostrukturierten Materialien zu verstehen.

Es wurden verschiedene Techniken entwickelt, um die Nanomaterialien zu bauen

[2, 4, 8]: Deposition der Atome und atomarer Cluster [2, 3, 6, 9, 10], mechanische

Mallung [8,11], chemische Methoden [2,12], Gas-Aggregationstechniken [4,8] und so

weiter.

Die Aufgabe dieser Arbeit ist es, die Mechanismen der Bildung und die Post-

wachstumsevolution von nanostrukturierten Materialien, die durch atomare Clus-

terdeposition auf einer Oberfläche hergestellt wurden, zu verstehen.

Atomare Clusterdeposition auf einer Oberfläche ist eine Methode, die in der

Nanotechnologie für die Herstellung neuer Materialien oft verwendet wird. Jüng-

ste Experimente zeigen, dass Muster mit unterschiedlicher Morphologie im Laufe

der Clusterdeposition auf einer Oberfläche gebildet werden können [2, 3, 6]. Unter

allen möglichen Formen wurden auch tropfenförmige Gebilde und fraktale Inseln in

verschiedenen Systemen beobachtet [2, 3, 6]. Es konnte gezeigt werden, dass die In-
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sel Morphologie von verschiedenen Faktoren, wie der Temperatur [2, 3, 9, 10, 13],

der Nanopartikelgröße [14], der Partikeldepositionsrate [13, 15, 16], der Unterla-

genrauigkeit [17, 18], der Konzentration der Verunreinigungen im System [2, 9, 19]

und den interpartikulären Wechselwirkungsenergien [2, 13] abhängt. Obwohl es

viele Beispiele für Selbstorganisation in den Nanosystemen gibt, werden doch oft

die Mechanismen und die treibenden Kräfte dieser Verfahren nicht gut verstanden

[2, 8, 20, 21]. Häufig führen kleine Änderungen in der Struktur oder an der Zusam-

mensetzung der konstituierenden Nanopartikel oder des Substrats zu einer drama-

tischen Veränderung der Eigenschaften des gesamten Systems, das im Zuge der

Selbstorganisationsprozesse erstellt wird.

In diesem Zusammenhang ist die Voraussage der endgültigen Architektur der

wachsenden Materialien eines der grundlegenden Probleme. Sobald die Mechanis-

men des Wachstums und der Selbstorganisation vollständig verstanden sind, können

die Wachstumsprozesse genau gesteuert werden, wodurch eine breite Palette von

Nanostrukturen auf Oberflächen und neuartige Materialien mit maßgeschneiderten

Eigenschaften erstellt werden können [20–23]. Diese Kenntnisse sollten eine enorme

Bedeutung in den praktischen und industriellen Anwendungen haben. Die Kennt-

nisse sind letztlich maßgeblich für die effiziente Entwicklung und die kostengünstige

Herstellung von den neuartigen funktionellen nanostrukturierten Oberflächen und

Beschichtungen mit maßgeschneiderten chemischen, elektromagnetischen, optischen

und mechanischen Eigenschaften. Diese neuartigen Nanomaterialien können als

Komponenten (und/oder ganze Systeme) in kleinen elektronischen Geräten (Mikro-

chips, Informationsspeichergeräte, Laser) [2, 24, 25], fortschrittlichen chemischen

(Katalysatoren, Sensoren), medizinischen (biokompatible Beschichtungen) [26, 27]

und technischen (neue Beschichtungen und Materialien) [2, 12] Anwendungen ver-

wendet werden.

Um ein Studium einer Menge von Clustern auf einer Unterlage betreiben zu

können, wurde in vorliegender Arbeit ein Schritt-für-Schritt-Ansatz verwendet. Ges-

tartet wird mit der theoretischen Analyse des Verhaltens eines einzelnen atomaren

Cluster auf einer Unterlage. Eigenschaften eines atomaren Cluster auf einer Un-

terlage können wesentlich von den Eigenschaften eines isolierten Clusters abwe-

ichen [2, 3, 7]. Der Unterschied erklärt sich durch die Interaktion zwischen dem

Cluster und der Unterlage. In dieser Arbeit wurden die Stabilität, die Energie und

die Geometrie eines atomaren Clusters auf einer festen Oberfläche mit der auf dem

Tropfenmodell basierenden Methode studiert. Das Tropfenmodell beachtet die In-
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teraktion zwischen dem Cluster und der festen Unterlage und berücksichtigt die

Korrekturen im Zusammenhang mit der Deformation des Clusters an der festen Un-

terlage. Die Berechnungsergebnisse, die mit dem Tropfenmodell erhalten wurden,

zeigen, dass die Clusterdeformation, verursacht durch die Interaktion zwischen dem

Cluster und der Unterlage, einen bestimmenden Faktor für die Form und Stabilität

eines Clusters auf der Unterlage darstellt. Das Tropfenmodell kann als eine Vorher-

sagemethodik für die Beschreibung der Form und der Energetik eines Clusters auf

einer Unterlage verwendet werden.

Die Mobilität eines einzelnen Nanopartikels spielt eine wichtige Rolle in der Dy-

namik einer Partikelansammlung auf einer Unterlage. In dieser Arbeit wurde die

Clusterdiffusion auf einer Unterlage mit den Methoden der klassischen Molekular-

dynamik modelliert. Einfluss der verschiedenen wesentlichen Diffusionsparameter

eines Clusters auf einer Unterlage wurden für ein konkretes System untersucht (Sil-

bernanopartikel auf einer Graphitoberfläche). Insbesondere solche Parameter, wie

die Clustergröße, die Bindungsenergie zwischen Silber- und Kohlenstoffatomen und

die Temperatur wurden betrachtet.

Die Ergebnisse der molekulardynamischen Simulationen für Silbercluster auf

einer Graphitoberfläche zeigen, dass die Cluster als Ganzes über die Unterlage

mit einer hohen Diffusivität diffundieren. Dieses Simulationsergebnis steht in einer

guten Übereinstimmung mit den experimentellen Beobachtungsergebnissen, die in

der Gruppe von Prof. C. Bréchignac gewonnen wurden [9, 10, 17]. Basierend auf

diesen Fakten und auf dem kinetischen Monte-Carlo-Ansatz wurde eine Methode

zur Beschreibung des Verhaltens von Partikelgruppen auf einer Unterlage entwick-

elt. Diese Methode berücksichtigt die freie Partikeldiffusion auf einer Oberfläche,

die Aggregation zu Inseln und die Partikelverdampfung von diesen Inseln.

Die Grundidee des Verfahrens ist nachfolgend beschrieben. Dafür betrachten

wir ein molekulares System, gebildet aus einer gewissen Anzahl von Nanopartikeln.

Zu jedem Partikel im System wird zunächst eine Anzahl der möglichen Diffusion-

srichtungen vorgegeben. Dabei kann ein Partikel entweder frei oder entlang der

Peripherie der bereits vorgeformten Struktur, wie in Fig. 1 abgebildet, diffundieren.

Eine Diffusionsrichtung für ein Partikel wird nach dem Zufallsprinzip in einer solchen

Weise gewählt, dass alle möglichen Diffusionsrichtungen gleichwahrscheinlich sind.

Alle Diffusionsprozesse im System treten mit bestimmten kinetischen Raten (Wahr-

scheinlichkeiten) auf. Die Raten stellen die Modelleingaben dar. Die kinetischen

Raten sind materialabhängige Parameter, die von der atomaren Komposition der



xvi Zusammenfassung

Figure 1: Anordnung der deposierten Nanopartikel auf einer Oberfläche. Die wichtigsten
Prozesse, die Musterbildung auf einer Oberfläche bestimmen, sind durch Pfeile angedeutet:
F ist die Partikeldepositionsrate, Γ ist die Diffusionsrate eines freien Nanopartikels, Γd

ist die Diffusionsrate eines Nanopartikels entlang der Peripherie einer Insel, und Γe ist
die Verdampfungsrate eines Nanopartikels von der Insel.

Nanopartikel, dem Substratmaterial und den interpartikulären Wechselwirkungen

bestimmt werden. Die Modellparameter können theoretisch für jeden Einzelfall auf

der Grundlage des atomistischen Ansatzes berechnet oder einem Experiment ent-

nommen werden. Die Wahl der Parameterwerte ist in dieser Arbeit für ein konkretes

System, Silbercluster auf einer Graphitoberfläche, diskutiert.

In dieser Arbeit ist nachgewiesen, dass unterschiedliche kinetische Prozesse im

Laufe der Nanostrukturbildung und Postwachstumsfragmentierung die Form der

Inseln auf einer Oberfläche bestimmen. Die Ergebnisse der Anwendung des kinetis-

chen Modells, das zum Studium der Bildung und Fragmentierung von Fraktalen auf

einer Oberfläche durch Partikeldisposition verwendet wurde, werden ausführlich in

Kapitel 5 diskutiert.

Der Prozess der Musterbildung auf einer Oberfläche wurde für verschiedene

Szenarien simuliert. Basierend auf der Ergebnissanalyse der Simulationen wurden

Musterunterscheidungskriterien vorgeschlagen. Diese Kriterien werden verwendet,

um zwischen verschiedenen Mustern auf einer Oberfläche unterscheiden zu können,
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Figure 2: Morphologie verschiedener Muster, beobachtet nach der Selbstorganisation der
Nanopartikel auf einer Oberfläche (a) Kompakte nanoinseln werden gebildet, wenn die Um-
lagerungszeit der Partikel kleiner ist als die Keimbildungszeit, (b)Nanofraktale mit dicken
Ästen werden gebildet, wenn einige periphere Partikel genügend Zeit zur Neuanordnung
haben, es wird eine kompaktere Struktur gebildet, (c) Nanofraktale mit dünnen Ästen wer-
den gebildet, wenn die innere Dynamik von Partikeln im Fraktal fast eingefroren ist.

zum Beispiel zwischen Nanofraktalen oder kompakten Nanoinseln. In dieser Arbeit

wird gezeigt, dass die Morphologie der Inseln auf einer Oberfläche hauptsächlich

durch die Nukleations- und die Umlagerungszeit bestimmt wird. Die Nukleationszeit

(Keimbildungszeit) ist die charakteristische Zeit bis ein neuausgesetztes Partikel die

Wachstumsregion erreicht. Die Umlagerungszeit ist die charakteristische Zeit bis

ein neues Partikel eine optimale Position innerhalb einer Insel findet. In Fig. 2 sind

als Beispiel unterschiedliche Strukturen, die durch die Variation der Beziehungen

zwischen der Keimbildungs- und der Umlagerungszeiten gebildet werden können,

dargestellt.

Diese Dissertation präsentiert eine systematische theoretische Analyse der Post-

wachstumsprozesse in Nanofraktalen auf einer Oberfläche. Die Simulationen haben

gezeigt, dass die Form und die Anzahl der Inseln, die auf einer Oberfläche im Laufe

der Postwachstumsrelaxation geschaffen werden, von der Partikeldiffusionsrate ent-

lang der fraktalen Peripherie und einer Partikelverdampfungsrate abhängen. In

dieser Arbeit werden die Analyse der fraktalen Dynamik auf einer Oberfläche und

die wichtigsten Szenarien der Fragmentierung des Systems vorgestellt. Die Simula-

tionen der fraktalen Dynamik wurden mit einer weiten Variation des Wertebereichs

der Modellparameterwerte durchgeführt. Die Vorhersagen der entwickelten Meth-

ode wurden mit den experimentell beobachteten Ergebnissen der Fragmentierung
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von Silbernanofraktalen auf einer Graphitoberfläche verglichen. Das vorgeschlagene

Modell ist in der Lage die experimentelle Inselgrößenstreuungen, die für verschiedene

Szenarien der fraktalen Fragmentierung berechnet wurden, zu reproduzieren. Die

gute übereinstimmung der Ergebnisse der Berechnungen, die unter der Verwendung

des entwickelten Verfahrens durchgeführt wurden, mit den Ergebnissen von experi-

mentellen Messungen zeigt, dass dieses Verfahren für die Modellierung und Analyse

der Dynamik der nanostrukturierten Materialien auf einer Oberfläche eingesetzt

werden kann.

Zusammenfassend stellt die vorliegende Arbeit den theoretischen Ansatz vor, mit

dem man das Verhalten einer Partikelansammlung auf einer Oberfläche beschreiben

kann. Der präsentierter Formalismus ist allgemein und bietet die Möglichkeit der

zukünftigen Anwendung in einer Vielzahl von Systemen und Prozessen. Zum Beispiel

kann dieses Verfahren für die Untersuchung der Eiskristallbildung im Weltraum

eingesetzt werden. Die Vorhersage der Existenz einer spezifischen Objektform im

Raum ist eine der grundlegenden Aufgaben der Physik.
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Chapter 1

Introduction

Construction of new nanomaterials is an important branch in the developing field

of nanoscience [2, 4, 8]. Size reduction opens to a whole range of new physical and

chemical properties and an abundance of potential applications. Access to these

new possibilities requires the developing of suitable methods for the fabrication of

nanomaterials. Formation of nanostructured materials is often governed by self-

organization processes. Therefore, the quest to understand mechanisms of self-

organization is one of the fundamental motivations in the nanotechnology.

For the industrial application of nanomaterials is very important to create a

technology, which will give a possibility to control the architecture of the material in

the course of the growing process. The other important aspect is the stability of new

materials. The life-time of a nanomaterial is the decisive factor, which is specified

its practicability. In this context, it is very important to understand mechanisms of

formation and post-growth evolution of nanostructured materials.

1.1 Nanomaterials: synthesis and application

Fabrication of new nanomaterials with the predefined unique properties is most

active research direction of the nanotechnology [2, 4, 8]. Different techniques were

developed to build up the nanomaterials [2, 4, 8]: atoms, molecules and atomic

clusters deposition [2,3,6,9,10], mechanical milling [8,11], chemical methods [2,12],

gas-aggregation techniques [4, 8] and so on.

In the thesis, there was done a step towards the understanding of the mechanisms

of formation and post-growth evolution of nanostructured materials fabricated by

atomic clusters deposition on a surface.
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Atomic clusters deposition on a surface is the method, which is often used in

nanotechnology for production of new materials. This method allows to construct

materials with predefined properties [1,2,4,12]. Recent experiments show that pat-

terns with different morphology can be formed in the course of clusters deposition

process on a surface [2, 3, 6]. Among other possible shapes, droplet-like and fractal

islands have been observed in various systems [2, 3, 6]. It was shown that the is-

land morphology depends on various factors, such as the temperature [2,3,9,10,13],

particle size [14], particle deposition rate [13, 15, 16], substrate roughness [17, 18],

concentration of impurities in the system [2, 9, 19] and interparticle interaction en-

ergies [2, 13]. It was also demonstrated that the patterns on a surface strongly

depend on the type of the substrate (see Fig. 1.1a-b). For example, experimen-

tal studies of silver clusters deposited on silicon at room temperature showed that

droplet-like islands are formed [28], while in [9, 10, 19] it was demonstrated that

dendritic shapes emerge on graphite. Although, there are many examples of self-

organization in nanoscale systems, often the mechanisms and driving forces of these

processes are not well understood [2, 8, 20, 21]. Frequently a small change in the

structure or composition of constituent nanoparticles or in the substrate results in

a dramatic change in the properties of the entire system created in the course of

the self-organization processes. In this context, predicting of the final architecture

of the growing materials is one of the fundamental problems.

Once the mechanisms of growth and self-organization are fully understood, the

growth processes can be precisely controlled, allowing to create a wide range of

surface nanostructures and novel materials with tailored properties [20–23]. Such

knowledge should have tremendous practical and industrial applications. It is ulti-

mately required for the efficient development and low-cost production of novel func-

tional nanostructured surfaces and coatings with tailored chemical, electromagnetic,

optical and mechanical properties which can be utilized as components (and/or en-

tire systems) in small electronic devices (microchips, information storage devices,

lasers) [2, 24, 25], advanced chemical (catalysts, sensors), medical (biocompatible

coatings) [26, 27] and engineering (new coatings and materials) [2, 12] applications.

1.2 Self-organization of nanostructured materials

Self-organization processes are common processes in nature, many systems in nature

show organization e.g. galaxies, planets, compounds, cells, organisms, societies,
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particles on a surfaces and so on. The essence of self-organization is that system

structure (at least in part) appears without explicit pressure or constraints from

outside the system. The organization can evolve either in time or space, can maintain

a stable form or can show transient phenomena.

Figure 1.1: Examples of self-organization in nanoscale systems. Scanning electron mi-
croscopy (SEM) images show the morphologies of silver thin films growing by silver cluster
deposition on a surface: (a) fractals formed on a graphite surface [9] (b) compact is-
lands formed on a silicon substrate [28]; Atomic force microscopy (AFM) images show
the morphologies of (c) C58 − and (d) C60 − films on a highly ordered pyrolytic graphite
surface [29].

Many examples of self-organization in nanoscale systems are observed, some of

these are shown in Fig. 1.1. Formation of the dendritic structures (fractals) in course

of thin films growth is one common example of self-organization in nanoscale (see

Fig. 1.1).
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The investigation of the dendritic structures (fractals) has attracted consider-

able attention [6,9,10,19,30–34]. The formation of such systems provides a natural

framework for studying disordered structures on a surface because fractals are gen-

erally observed in far-from-equilibrium growth regime. During the last years fractal

shape have been observed for a variety of systems. For example, fractals consisting

of Ag (see Fig. 1.1a) [9, 10, 19], Au [35], Fe-N [33] clusters and C58, C60 molecules

(see Fig. 1.1c-d) [29, 36, 37] have been fabricated on different surfaces with the use

of the cluster deposition technique [1, 4] .

The processes of self-organization dramatically influence on the scenarios of the

post-growth relaxation of a nanopattern on a surface. The post-growth transforma-

tion of silver cluster fractals to compact droplets on graphite surface was experi-

mentally studied in [9, 10, 19]. It was demonstrated that depending on the experi-

mental conditions the shape and the size of the stable silver droplets changes signifi-

cantly [19]. In [9,10,19] it was shown that oxidizing of silver clusters results in rapid

fragmentation of a fractal, leading to the formation of several compact droplets.

An important characteristic, which determines fractal formation and post-growth

relaxation dynamics, is the mobility of a cluster on the substrate, which in turn is

temperature dependent. Fractals of gold clusters, grown at room temperature on

ruthenium substrate undergo a transformation into compact droplets after anneal-

ing at 650 K [38]. Thermal relaxation of silver cluster fractals was experimentally

studied in [9, 19].

The understanding of the post-growth relaxation processes would allow to control

the self-organization processes of particles on a surface for the purpose of obtaining

patterns with predictable properties. An illustrative example of post-growth pattern

manipulation was given in [39]. In that work, morphologies of preformed C60 thin

films were changed by adding metal impurity into the system. Thin films with

triangular and dendritic single-crystal grains were detected by changing the thickness

of the pristine fullerene film and the concentration of Ag impurities.

The self-organization of nanoparticles plays an important role in the processes of

the formation and post-growth evolution of the nanostructures on a surface [2,7,13].

The understanding of the mechanisms of self-organization on the nanoscale is very

important because this may provide essential tool for the control and manipulation

of nanoparticle’s dynamics on a surface which will allow efficient obtaining of the

desirable patterns of deposited material.
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1.3 Thesis overview

The thesis is organized as follows.

In Chapter 2, the computational methodology used for modeling of a single

cluster structure and dynamics on a surface is described. Specifically, the molecular

dynamics methods, and the empirical potentials used in modeling of interparticle’s

interactions are discussed. The methods of classical molecular dynamics can not be

used for modeling the self-assembly processes of atomic clusters on a surface, because

these processes occur on the minutes timescale, what would require an unachievable

computer resource for the simulation. Kinetic Monte Carlo attempts to overcome

this limitation of molecular dynamics approach by exploiting the fact that the long-

time dynamics of this kind of system typically consist of diffusive jumps from state

to state. In section 2.4 the basic idea of kinetic Monte Carlo method is discussed.

In Chapter 3, the results of modeling of structure and dynamics of a single

nanoparticle on a surface are discussed. In section 3.1, stability, energy, and geome-

try of an atomic cluster on a solid surface are studied using a liquid drop approach

which takes into account the cluster-solid interaction. In section 3.2, the process of

cluster diffusion on a surface is modeled with the use of classical molecular dynamics

technique, and the diffusion coefficients for the silver nanoclusters are obtained from

the analysis of trajectories of the clusters. The results of the calculations are com-

pared with the available experimental results for the diffusion coefficient of silver

clusters on graphite surface.

In Chapter 4, the model, which was developed to describe the dynamics of an

assembly of particles on a surface, is discussed. This method describes the dynamics

of particles deposited on a surface, which accounts for the particle diffusion on a

surface, agglomeration into islands and detachment from these islands. One of the

possible implementations of the developed model, which is based on the modified

version of the conventional kinetic Monte Carlo method, is shown in subsection 4.2.

In Chapter 5, the results of modeling of the pattern formation and post-growth

relaxation on a surface are presented. Process of the pattern formation on a surface

are studied for several different scenarios. Based on the analysis of the simulation

results is suggested a criterion, which can be used to distinguish between different

patterns on a surface in course of the pattern formation (see section 5.1). The sys-

tematical theoretical analysis of the post-growth processes occurring in nanofractals

on a surface is presented in sec. 5.2. The time evolution of fractal morphology in the
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course of the post-growth relaxation is analyzed, the results of these calculations are

compared with experimental data available for the post-growth relaxation of silver

cluster fractals on graphite substrate.

The thesis is summarized in chapter 6.

The present thesis is based on the original results, published in international

journals (see a list of publication) and presented on international conferences (see

list of conference proceedings).



Chapter 2

Theoretical Methods

The task of this thesis is to understand mechanisms of formation and post-growth

evolution of nanostructured materials fabricated by atomic clusters deposition on a

surface. Specifics in the behavior of a single cluster on a surface can strongly influ-

ence pattern morphology, which is formed in course of clusters deposition. Therefore,

the studying of structural and dynamical properties of an atomic cluster on a surface

is the first important step to the achievement the main goal of the work. In this

work, the method of classical molecular dynamics (MD) has been used for studying

the structures and dynamics of an atomic clusters on a surface.

The method of classical molecular dynamics calculates the time dependent be-

havior of a molecular system. In section 2.1, the foundations of molecular dynamics

are presented. This is followed by a discussion of the empirical potentials used in

this work, namely the pair potentials, in section 2.2; and many - body potentials, in

section 2.3.

The efficiency of the molecular dynamics depends on large number of factors,

such as a computer performance, effective implementation of optimal algorithms

and so on. The molecular dynamics simulation is computationally expensive when

considering problems where there are a large number of atoms, or when one requires

long simulations. The methods of classical molecular dynamics can not be used for

modeling the self-assembly process of atomic clusters on a surface, because these

processes occur on the minutes timescale, what would require an unachievable com-

puter resource for the simulation. Kinetic Monte Carlo attempts to overcome this

limitation of molecular dynamics approach by exploiting the fact that the long-time

dynamics of this kind of system typically consist of diffusive jumps from state to

state. In section 2.4 the motivation to use and basic idea of the kinetic Monte Carlo
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method are discussed.

2.1 Methods of molecular dynamics

Molecular dynamics (MD) is the simultaneous motion of a number of atomic nuclei

and electrons forming a molecular system. Complete description of such a system

requires solving the full time-dependent Schrödinger equation including both elec-

tronic and nuclear degrees of freedom [40]. However, is a formidable computational

task which is in fact altogether unfeasible for systems consisting of more than three

atoms and more than one electronic state. In order to study the dynamics of the

molecular systems several approximations have been imposed.

Firstly, it is assumed in MD that the motions of slow and fast degrees of freedom

are separable (adiabatic or Born-Oppenheimer approximation). In the molecular

context this means that the electron cloud adjusts instantly to changes in the nuclear

configuration. As a consequence, nuclear motion evolves on a single potential energy

surface (PES), associated with a single electronic quantum state, which is obtained

by solving the time-independent Schrödinger equation for a series of fixed nuclear

geometries. In practice, most MD simulations are performed on a ground state PES.

Moreover, in addition to making the Born-Oppenheimer approximation, MD

treats the atomic nuclei as classical particles whose trajectories are computed by

integrating Newtons equations of motion.

MD has been applied with great success to study a wide range of systems from

biomolecules to condensed phases. Its underlying approximations, on the other hand

break down in many important physical situations and extensions of the method are

needed for those scenarios. An accurate description of hydrogen motion, for instance,

requires quantum mechanical treatment. Processes such as charge-transfer reactions

and photochemistry are inherently nonadiabatic, i.e., they involve (avoided) cross-

ings of different electronic states rendering the Born-Oppenheimer approximation

invalid.

2.1.1 Born-Oppenheimer approximation

For exact description of the electronic and ionic structure of a multi atomic system

one has to solve the Schrödinger equation for all particles in the system.

The Schrödinger equation describes the wavefunction of the system (see e.g. [40]):
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ĤΨ(r⃗el, r⃗, t) = i
∂Ψ(r⃗el, r⃗, t)

∂t
, (2.1)

where Ĥ is the Hamilton operator, Ψ(r⃗el, r⃗, t) is the wavefunction of the system,

which depends on the coordinates of the electrons r⃗el and the nuclei r⃗ within the

system, and time t. In this section the atomic system of units is used, ~ = me =

|e| = 1 unless other units are not indicated.

The Hamiltonian is a sum of kinetic, T̂ , and potential, V̂ , energy terms:

Ĥ = T̂ + V̂ . (2.2)

If V̂ is not a function of time, the Schrödinger equation can be simplified using the

mathematical technique known as separation of variables. The wavefunction can be

presented as the product of a spatial function and a time function

Ψ(r⃗el, r⃗, t) = ψ(r⃗el, r⃗)τ(t). (2.3)

Substituting these new functions into equation (2.1), two equations is obtained, one

of which depends on the position of the particle independent of time and the other of

which is a function of time alone. The time-independent Scrödinger equation reads

as

ĤΨ(r⃗el, r⃗) = EΨ(r⃗el, r⃗), (2.4)

where E is the energy of the system.

If the nuclei move slowly with respect to the electrons, then it is possible to sim-

plify the general molecular problem by separating nuclear and electronic motions.

This approximation is reasonable since the mass of a typical nucleus is thousands

of times greater than that of an electron and the electrons react essentially instan-

taneously to changes in nuclear position.Thus, the electron distribution within a

molecular system depends on the position of the nuclei, and not their velocities.

This approximation is called the Born-Oppenheimer approximation. The full

Hamiltonian for the molecular system can be written as

Ĥ = T̂ elec(r⃗el) + T̂ nucl(r⃗) + V̂ nucl−elec(r⃗, r⃗el) + V̂ elec(r⃗el) + V̂ nucl(r⃗), (2.5)
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where T̂ elec(r⃗el) is the electron kinetic energy, T̂ nucl(r⃗) is the nucleon kinetic energy,

V̂ nucl−elec(r⃗, r⃗el) is the nucleon-electron interaction, V̂ elec(r⃗el) describes the electron-

electron interaction and V̂ nucl(e⃗) is the nucleon-nucleon interaction. The Born-

Oppenheimer approximation allows to separate the electronic and ionic subsystems,

and constructs an electronic Hamiltonian which neglects the kinetic energy term for

the nuclei (see e.g. [40]). This Hamiltonian describes the motion of electrons in the

field of fixed nuclei

Ĥelecψelec(r⃗el, r⃗) = Eeff (r⃗)ψelec(r⃗el, r⃗) (2.6)

The solution of equation (2.6) for the electronic wavefunction produces the effective

nuclear potential function Eeff . It depends on the nuclear coordinates and describes

the potential energy surface for the system.

Accordingly, Eeff is also used as the effective potential for the nuclear Hamilto-

nian:

Ĥnucl = T̂ nucl(r⃗) + Eeff (r⃗) (2.7)

This Hamiltonian is used in the Schrödinger equation for nuclear motion, describ-

ing the vibrational, rotational, and translational states of the ionic subsystem. In

principle, Eq. 2.6 could be solved for Eeff (r⃗), and than Eq. 2.7 could be solved for

the nuclear motion. But solution of Eq. 2.6 requires a large amount of computation,

usually an empirical fit to Eeff (r⃗), which is called force field, is used. When the

quantum mechanical effects are insignificant equation 2.7 can be replaced with the

Newton’s equation of motion

−dEeff (r⃗)

dr⃗i
= mi

d2r⃗i
dt2

(2.8)

2.1.2 Formalism of classical molecular dynamics

The Newtonian equations describe the motion of atoms. In this case each atom has

three degrees of freedom which are controlled through three equations of motion.

In the following let us consider a molecular system, which consist of N atoms.The

Newton’s second law of motion can be written for each atom with three degrees of

freedom. Consider an arbitrary atom with the index i. The equation of motion for

this atom reads as:
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mia⃗i = mi
d2r⃗i
dt2

= F⃗i, for all i = 1 . . . N. (2.9)

Here mi is the mass of an atom, a⃗i is its acceleration and F⃗i is the force that acts

on the i-th atom in the system from the site of all other atoms in the system.

The forces F⃗i are determined by the interatomic potentials. These forces may

be pairwise, or many-body in nature. The interatomic potentials (and thereby the

forces) used in this work are extensively discussed in sections 2.2 and 2.3. Equa-

tion (2.9) can be written for each particle and is the second-order differential equa-

tion. To solve it numerically one needs to provide the initial conditions, i.e. the

information about the system at the beginning of the simulation. The necessary

initial conditions are the positions of particles at t = 0 and their initial velocities.

Verlet integration

The Verlet integration was implemented in MBN Explore computer package, which

was used for the simulations performed in the presented work. Verlet integration

is a numerical method often used to integrate Newton equation of atom’s motion.

It is used to calculate trajectories of particles in molecular dynamics simulations.

The Verlet integrator offers greater stability than the much simpler Euler method,

as well as other properties that are important in physical systems such as time-

reversibility and area preserving properties. The method was used by Carl Størmer

to compute the trajectories of particles moving in a magnetic field (hence it is also

called Størmer’s method) and was popularized in molecular dynamics by French

physicist Loup Verlet in 1967 [41,42].

Let us consider the motion of an atom in the system and write out the steps of

the numerical velocity Verlet algorithms. As described in the previous section, the

motion of an atom with three degrees of freedom is described through Eq. (2.9).

Let r⃗i(t), v⃗i(t), a⃗i(t) be the coordinates, velocity components and acceleration com-

ponents of the i-th particle at time t. The standard implementation scheme of the

velocity Verlet algorithm is:

1. Calculate velocities of atoms at the middle of the time step

v⃗i

(
t+

∆t

2

)
= v⃗i(t) + a⃗i(t)

∆t

2
. (2.10)
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2. Calculate new positions of the atoms

r⃗i (t+∆t) = r⃗i(t) + v⃗i

(
t+

∆t

2

)
∆t =

= r⃗i(t) + v⃗i(t)∆t+ a⃗i(t)
∆t2

2
. (2.11)

3. Displace atoms in the system to their new positions.

4. For the system with displaced atoms calculate the new forces acting on the

atoms, i.e. F⃗i(t+∆t) in Eq. (2.9).

5. Calculate new accelerations of atoms in the system

a⃗i (t+∆t) = F⃗i(t+∆t)/mi. (2.12)

6. Calculate new velocities of atoms in the system

v⃗i (t+∆t) = v⃗i

(
t+

∆t

2

)
+ a⃗i(t+∆t)

∆t

2
. (2.13)

Finally the calculated r⃗i(t+∆t), v⃗i(t+∆t), a⃗i(t+∆t) are used as initial coordi-

nates, velocities and accelerations for the next step of the simulation. The procedure

is continued for Nsteps = τ/∆t steps, where τ is the desired simulation time.

Due to numerical errors, the total energy of the system in molecular dynamics

simulation is never perfectly constant, and fluctuates. The degree of these fluctua-

tions determine the precision of the calculation. The parameter, which governs the

accuracy of the calculation is the time step of the simulation: decreasing its value

results in more accurate calculation, but on the other hand leads to the increase of

the simulation time.

2.1.3 Energy and temperature control of a system in molec-
ular dynamics simulation

If a system is thermally and mechanically isolated, the total energy is constant in

time according to the fundamental law about conservation of energy. However, in

some simulations the energy or the temperature should be changed over the time,

or should be kept as a constant. In physical experiments, the temperature is kept

constant by letting the considered exchange heat with a significantly large system,

the so-called heat bath or thermostat. The temperature of the heat bath is therefore
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assumed to be constant, i.e., it is equal to a given value. In the course of time the

smaller system adopts the temperature of the heat bath. To obtain the same effect

in a simulation the system has to gain or lose energy in an appropriate way until

the desired temperature is reach. The temperature control in molecular dynamics

simulation is initiated by setting the thermostat.

Following the equipartition theorem [43], every degree of freedom in the system,

f has the same kinetic energy, given by ⟨K⟩f = 1
2
kBT . The effective temperature

of the system is therefore given by the ensemble average of its kinetic energy.

T =
2

gkB

⟨
g∑

f=1

Kf

⟩
=

1

3NkB

⟨
N∑
i=1

miv⃗
2
i

⟩
. (2.14)

Here Kf is the instantaneous kinetic energy of a degree of freedom f , g is the

number of degrees of freedom, where N is the number of atoms having three degrees

of freedom.

It is almost always desirable that a simulation is conducted so that the temper-

ature is a supplied parameter rather than the kinetic energy. This requires some

mechanism to fix the average kinetic energy at thermal equilibrium. The initial ki-

netic energy may be set approximately by choosing random velocities at the desired

temperature, or specified through the velocities explicitly. But because the initial

configuration is usually far from equilibrium it will have too much potential energy.

As the simulation run progresses the potential energy will be converted into kinetic

energy, raising the temperature above the desired value. It is therefore necessary

to have some mechanism for removing excess kinetic energy in the course of the

simulation.

Several mechanisms to control the temperature is known. In the present work two

mechanisms to control system temperature are considered. The common technique

of velocity scaling - Berendsen thermostat and the Nosé-Hoover method couples the

system to a heat bath using a fictional dynamical variable.

Velocity scaling (Berendsen thermostat)

A popular velocity scaling thermostat is that of Berendsen [44]. At periodic intervals

linear and angular velocities are multiplied by a factor of

λ =

√
1 +

∆t

τT

(
T

T0
− 1

)
. (2.15)
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Here, T0 is the setpoint temperature, ∆t is the integration time step, and τT is a

constant called the “rise time” of the thermostat. It describes the strength of the

coupling of the system to a hypothetical heat bath. The larger τT , the weaker the

coupling; in other words, the larger τT , the longer it takes to achieve a given T0 after

an instantaneous change from some previous T .

By repeatedly setting the “instantaneous” temperature to a given value during

the simulation, the average kinetic energy is made to approach a constant value.

Nose-Hover thermostat

A coupling with to a heat bath can be achieved by an additional friction term in

the equation of motion, then Newton’s equations has a form

mia⃗i = F⃗i − ξmiv⃗i, for all i = 1, ...N. (2.16)

The additional force −ξmiv⃗i acting on atom i is proportional to the velocity of the

particle. Here, the function ξ = ξ(t) depends on time. It is positive if energy has

to be removed from the system and negative if the energy has to be added to the

system.

In the so-called Nosé-Hoover thermostat [45–47], the heat bath is considered as

an integral part of the simulated system and directly enters the computations. The

heat bath is represented by additional degree of freedom that also determines the

degree of coupling of the molecular system to the heat bath. The evolution of the

function ξ over time, which determines the strength of the function, is described in

this approach by the ordinary differential equation

dξ

dt
=

(
N∑
i=1

miv⃗
2
i − 3NkBT

D

)
/M, (2.17)

where TD is the equilibrating temperature, M determines the coupling to the heat

bath. A large value of M leads to a weak coupling. The value of this parameter

must be set carefully, because if it is chosen to be too small the phase space of the

system will not be canonical [47], and it is chosen to be too large the temperature

control will not be efficient.

The friction term ξ one has to integrate in addition to the equation of motion

(2.16).
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2.2 Interatomic potentials: pairwise potentials

This section discusses the pairwise potentials which were used in calculations. In

the case of the pairwise potentials, the total energy of the system consisting of N

particles (atoms) can be calculated as:

Utot =
N∑
i=1

N∑
j<i

U(rij). (2.18)

Here U(rij) is the pairwise interaction energy of atoms with indices i and j, and

rij = |r⃗j − r⃗i| =
√

(rjx − rix)2 + (rjy − riy)2 + (rjz − riz)2 (2.19)

is the distance between atoms with indices i and j. According to the definition,

Eq. (2.18), the force acting on the i-th particle is equal to the negative gradient of

the potential taken in respect to the coordinate of the i-th atom:

F⃗i = −
∂

∂r⃗i
Utot = −

∂

∂r⃗i

N∑
j=1
j ̸=i

U(rij). (2.20)

The parameters for pair-potentials which were used in calculations are listed

in A.1.

2.2.1 Lennard-Jones potential

Form of the potential

Figure 2.1: Lennard-Jones potential.

At a simple level, two neutral atoms

or molecules are subjected by two op-

posing forces: firstly, they are weakly

attracted by van der Waals forces; sec-

ondly they are repelled by Pauli re-

pulsion. The energy of interaction be-

tween two neutral atoms or molecules

as a function of the distance between

their centers can be approximated by a

Lennard-Jones (LJ) potential. A form of the (LJ) potential was first proposed in

1924 by John Lennard-Jones [48]. The Lennard-Jones potential can be expressed in

various forms. In the present work the following form is used
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U(rij) = ϵ

[(
rmin

rij

)12

− 2

(
rmin

rij

)6
]
. (2.21)

The force acting on the i-th atom in the system is then calculated according to

Eq. 2.20 as

F⃗i = −
12ϵ

r2min

N∑
j=1
j ̸=i

[(
rmin

rij

)14

−
(
rmin

rij

)8
]
r⃗ij. (2.22)

Parameters of the potential

Lennard-Jones potential specification requires two parameters: ϵ is measured in eV,

and rmin is measured in Å. The parameter rmin is the distance at the minimum

of the potential and ϵ is the depth of the potential energy well and thereby the

strength of the repulsive and attractive force. Materials of different strength can be

simulated with the Lennard-Jones potential. Increasing ϵ leads to stronger bonds

and therefore harder materials. The parameters for Lennard-Jones potential, which

were used in calculations are listed in A.1.

2.2.2 Morse potential

Figure 2.2: Morse potential.

Form of the potential

The Morse potential is another pairwise

potential which also used in the present

work. The Morse potential, named after

the physicist Philip M. Morse, is a con-

venient model for the potential energy

of a diatomic molecule [49]. The Morse

potential in its most general form

U(rij) = ϵ [exp (−nβ(rij − r0))− n exp (−β(rij − r0))] . (2.23)

The force acting on the i-th atom in the system is then calculated, according to

Eq. 2.20, as
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F⃗i = −ϵβn
N∑
j=1
j ̸=i

[exp (−nβ(rij − r0))− exp (−β(rij − r0))]
r⃗ij
rij
. (2.24)

Parameters of the potential

The Morse potential specification requires four parameters ϵ is measured in eV, r0

is measured in Å, β is measured in Å−1, and n is dimensionless. The parameter

r0 is the distance which corresponds to the minimum of the potential and ϵ(n− 1)

is the energy of the potential in its minimum. The parameters β and n define the

steepness of the potential. The parameters for Morse potential, which were used in

calculations are listed in A.1.

2.3 Interatomic potentials: many-body potentials

This section discusses the many-body potentials which were used in the present

work.

In the case of a many-body potential, the total potential energy of the system

consisting of N particles (atoms) is calculated as:

Utot =
N∑
i=1

Ui({r⃗i}). (2.25)

Here Ui({ri}) is the energy term, describing the interaction of the i-th atom with all

other particles in the system. In the most general case it depends on the position of

all atoms in the system, i.e. {r⃗i}.
According to the general definition the force acting on the α-th atom is equal to

the negative gradient of the total potential energy taken in respect to the coordinate

of this atom:

F⃗α = − ∂

∂r⃗α
Utot = −

∂

∂r⃗α

N∑
i=1

Ui({r⃗i}). (2.26)

The parameters of all implemented many-body potentials which were used in

calculations are listed in A.2.
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2.3.1 Sutton-Chen potential

Form of the potential

The Sutton-Chen potential is often employed for the description of the interaction

between metallic atoms, e.g. inside a metallic cluster or a nanoparticle [50]. The

potential energy of N atoms calculated with the Sutton-Chen potential reads as

Utot = ϵ

[
1

2

N∑
j ̸=i

v(rij)− c
N∑
i=1

√
ρ(ri)

]
. (2.27)

Here ϵ and c are parameters of the potential, v(rij) is the pairwise part of the

potential, defined as

v(rij) =

(
a

rij

)n

, (2.28)

with a and n being two further parameters of the potential. The second term in the

brackets in Eq. (2.27) describes the nonlocal effects of the interatomic interaction.

The function ρ(ri) is given by

ρ(ri) =
N∑
j=1
j ̸=i

(
a

rij

)m

, (2.29)

with m being a parameter.

To calculate the forces acting on the particles in the system let us split the total

energy Utot in two parts

Utot = U (R) + U (A), (2.30)

where

U (R) =
ϵ

2

N∑
j ̸=i

v(rij) (2.31)

U (A) = −cϵ
N∑
i=1

√
ρ(ri) (2.32)

are the repulsive and the attractive energy terms of the potential respectively. Ac-

cording to Eq. (2.30) the force acting on the i-th atom in the system may be sub-

divided into attractive and repulsive terms. The repulsive force acting on the i-th

atom reads as
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F⃗
(R)
i = − ∂

∂r⃗i
U (R) =

N∑
j=1
j ̸=i

nϵ

2

an

rn+2
ij

r⃗ij (2.33)

The attractive force acting on the i-th atom in the system can be written as

F⃗
(A)
i = − ∂

∂r⃗i
U (A) =

cϵ

2

1√
ρ(ri)

 ∂

∂r⃗i

N∑
j=1
j ̸=i

(
a

rij

)m

 =

=
cϵ

2

1√
ρ(ri)

N∑
j=1
j ̸=i

mam

rm+2
ij

r⃗ij. (2.34)

The total force acting on the i-th atom in the system is a sum of repulsive (Eq. (2.33))

and attractive (Eq. (2.34)) force terms, than the total force can be written as:

F⃗i =
ϵ

2

N∑
j=1
j ̸=i

[
nan

rn+2
ij

+
c√
ρ(ri)

mam

rm+2
ij

]
r⃗ij. (2.35)

Parameters of the potential

The Sutton-Chen potential specification requires five parameters: ϵ is measured in

eV, a is measured in Å; parameters c, n, m are dimensionless. The parameters of

the Sutton-Chen potential have a complicated physical meaning. Thus, for example,

ϵ does not correspond to the minimal energy value of the potential. The physical

meaning of all parameters is discussed in the original paper [50], and in those papers

where the Sutton-Chen potential was extensively used [51, 52]. The parameters for

Sutton-Chen potentials which were used in calculations are listed in A.2.

2.3.2 Brenner potential

The bond-order Brenner [53] empirical potential was developed to model a covalent

bonding in carbon-based materials. The Brenner potential for every atom in the

system depends on the nearest neighbors for this atom. The total potential energy

of the system, interacting via the Brenner potential is written as

Utot =
1

2

N∑
i=1

N∑
j=1
j ̸=i

Uij =
1

2

∑
i

∑
i̸=j

fcut(rij)
[
U (R)(rij)−BijU

(A)(rij)
]
, (2.36)



20 Theoretical Methods

where fcut(rij) is the cut-off function which limits the interaction of an atom to its

nearest neighbors, defined as:

fcut(rij) =


1, rij ≤ R1

1

2

[
1 + cos

(
rij −R1

R2 −R1

π

)]
, R1 < rij ≤ R2,

0, rij > R2

(2.37)

with R1 and R2 being parameters which determine the range of the potential. The

functions U (R)(rij) and U
(A)(rij) in Eq. (2.36) are the repulsive and the attractive en-

ergy terms of the potential respectively. The Brenner potential implies the following

parametrization for U (R)(rij) and U
(A)(rij):

U (R)(rij) =
De

S − 1
exp

[
−
√
2Sβ(rij −R0)

]
(2.38)

U (A)(rij) =
DeS

S − 1
exp

[
−
√

2

S
β(rij −R0)

]
, (2.39)

where De, S, β and R0 are parameters. The factor Bij in Eq. (2.36) is the so-called

bond order term, which is defined as follows:

Bij =

[
1 +

∑
k ̸=i,j

fcut(rik)G(θijk)

]−δ

= [1 + ζij]
−δ . (2.40)

Here, fcut(rik) is the cut-off function introduced in Eq. (2.37). The function G(θijk)

is defined as:

G(θijk) = a0

[
1 +

c20
d20
− c20
d20 + (1 + cos θijk)2

]
, (2.41)

where θijk is the angle between bonds formed by pairs of atoms (i, j) and (i, k),

defined as

cos(θijk) =
r⃗ij · r⃗ik
rijrik

. (2.42)

Let us consider an atom with index α and calculate the force which acts on it

from the site of other atoms. According to the general definition given in Eq. (2.26)

F⃗α = −1

2

N∑
i,j

∂

∂r⃗α
Uij, (2.43)
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where Uij = fcut(rij)
[
U (R)(rij)−BijU

(A)(rij)
]
is defined in Eq. (2.36). The calcula-

tion of the gradient in Eq. (2.43) is not that straightforward, as for the Sutton-Chen

potentials. To calculate the forces acting between atoms we therefore first introduce

several supplementary functions, which are used in further derivations. In particular,

f ′ =
∂

∂x
f(x) (2.44)

∂

∂r⃗i
f(rij) = f ′ ∂

∂r⃗i
rij (2.45)

represent a derivative of a function f with respect to its argument x, and the gradient

of this function taken with respect to r⃗i. Performing elementary differentiation one

obtains

∂

∂r⃗i
rij = − r⃗ij

rij
(2.46)

∂

∂r⃗j
rij =

r⃗ij
rij
. (2.47)

Additionally

∂

∂r⃗α
rij =

r⃗ij
rij

(δαj − δαi) , (2.48)

where α is an arbitrary index of an atom and δαi is the Kroniker delta function:

δij =

 0, i ̸= j

1, i = j
. (2.49)

Equations (2.38) and (2.39) can be unified as

U (x) = A(x) exp
[
−B(x)(rij −R0)

]
, (2.50)

where the symbol (x) = (A) or (R), representing either the attractive or repulsive

terms. The derivative of U (x) with respect to rij then reads as

(
U (x)

) ′
(rij) = −A(x)B(x) exp

[
−B(x)(rij −R0)

]
. (2.51)

Finally, the derivative of the cutoff function, Eq. (2.37), with respect to rij is given

by
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f ′
cut(rij) =


0, rij ≤ R1

− π

2(R2 −R1)
sin

(
rij −R1

R2 −R1

π

)
, R1 < rij ≤ R2

0, rij > R2,

. (2.52)

According to Eq. (2.43) the force acting on the atom with the index α reads as

F⃗α = −1

2

N∑
i,j

[(
∂

∂r⃗α
fcut(rij)

)
U (R)(rij) + fcut(rij)

(
∂

∂r⃗α
U (R)(rij)

)
−(

∂

∂r⃗α
fcut(rij)

)
U (A)(rij)Bij − fcut(rij)

(
∂

∂r⃗α
U (A)(rij)

)
Bij −

fcut(rij)U
(A)(rij)

(
∂

∂r⃗α
Bij

)]
= −1

2

N∑
i,j

[
F⃗

(1)
ij − F⃗

(2)
ij

]
. (2.53)

The term F⃗
(1)
ij corresponds to the first four summands in the square brackets, i.e.

this term does not include the gradient of Bij. The term F⃗
(2)
ij corresponds to the

last summand in Eq. (2.53) and is governed by the gradient of Bij. Thus, using the

notations introduced in Eqs. (2.44)-(2.52) one obtains

F⃗
(1)
ij =

∂

∂r⃗α
fcut(rij)

[
U (R)(rij)−BijU

(A)(rij)
]
+

fcut(rij)

[
∂

∂r⃗i
U (R)(rij)−Bij

∂

∂r⃗i
U (A)(rij)

]
=

= f ′
cut(rij)

[
U (R)(rij)−BijU

(A)(rij)
] r⃗ij
rij

(δαj − δαi) +

fcut(rij)
[
(U (R)) ′(rij)−Bij(U

(A)) ′(rij)
] r⃗ij
rij

(δαj − δαi). (2.54)

The next step is to calculate the gradient of Bij in F⃗
(2)
ij with respect to r⃗α. Let us

consider the gradient of Bij independently before substituting it into F⃗
(2)
ij :

∂

∂r⃗α
Bij =

∂

∂r⃗α
[1 + ζij]

−δ = − δ

[1 + ζij]
δ+1

(
∂

∂r⃗α
ζij

)
. (2.55)

Substituting Eq. (2.40) into Eq. (2.55) one obtains
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∂

∂r⃗α
Bij = − δ

[1 + ζij]
δ+1

∑
k ̸=i,j

[(
∂

∂r⃗α
fcut(rik)

)
G(cos(θijk))+

fcut(rik)G
′(cos(θijk))

(
∂

∂r⃗α
cos(θijk)

)]
, (2.56)

where

G ′(cos(θijk)) =
2ac20(1 + cos(θijk))

[d20 + (1 + cos(θijk))2]
2 . (2.57)

Using Eq. (2.48), the gradients in Eq. (2.56) can be calculated as follows

∂

∂r⃗α
fcut(rik) = f ′

cut(rij)
r⃗ik
rik

(δαk − δαi) (2.58)

and

∂

∂r⃗α
cos(θijk) =

r⃗ik(δαj − δαi) + r⃗ij(δαk − δαi)
rijrik

−

− cos(θijk)

[
r⃗ij
r2ij

(δαj − δαi) +
r⃗ik
r2ik

(δαk − δαi)
]
. (2.59)

Substituting Eqs. (2.57)-(2.59) back into Eq. (2.56) one obtains the gradient of Bij

with respect to r⃗α. Substituting then Eq. (2.56) into Eq. (2.53) one obtains the

expression for F⃗
(2)
ij , which allows to calculate the force acting on the atom α, i.e.

F⃗α.

Parameters of the potential

The Brenner potential specification requires ten parameters: De is measured in eV;

β is measured in Å−1; S, δ, a0, c0, and d0 are dimensionless; R0, R1, R2 are measured

in Å. The parameters of the Brenner potential have a complicated physical meaning,

which is discussed in original paper [53]. The parameters for Brenner potential which

were used in calculations are listed in A.2.

2.4 Kinetic Monte - Carlo method

2.4.1 The motivation to use kMC

The time evolution of a system of interacting atoms in classical molecular dynamics

simulation is determined by the integration of the Newtonian equations of atom’s
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motion. In numerical time integration, the solution of the considered equations is

only computed at a number of discrete points in time. In other words, when we

know the structure of atomic system at time moment t1, we can find the structure

at the next time moment t2 using the integration method of the equations of motion

with time starting from moment t1. The process of integrating the equations of

motion can be achieved by several kinds of algorithms. The commonly important

concept in the various algorithms is the time step ∆t. If a big time step is used,

the motion of atoms becomes unstable due to the very big error occurring in the

integration. Reversely, if a very small value of time step is used, it will not be

efficient due to a very long calculation time. Therefore, the selection of the time

step is very important. The time step should be chosen to be at least one order of

magnitude smaller than the length of the time corresponding to the fastest motion

in a system. Depending on the type of the system the time step can be between

0.5 fs −10 fs (1 fs = 10−15 s) [54]. Thus, for the 1 s of the molecular dynamic

simulation is needed to perform approximately 1015 time steps.

At each step of the MD simulation, the forces on the individual particles and

their new positions and velocities are computed in an inner loop over all particles.

There areN2 interactions between particles in a system which consists ofN particles.

If self-interactions are excluded, this number is reduced by N. In total we obtain

(N2 − N)/2 actions between particles that have to be determined to compute the

force between all particles. Therefore, this naive approach needs O(N2) operations

for system of N particles in each time step. Thus, if the number of particles is

doubled, the number of operations is quadruples. It is possible to reduce number of

operations per time step at least of order of O(N). To reach this reduction, it is very

important to find an optimal algorithm and also implement them. The design of a

suitable algorithm necessarily has to be adapted to the kind of interactions modeled

and to other parameters. It is clear that algorithms, which are optimal for some

forms of interaction potentials, may not be suitable for other forms of potentials.

This can be demonstrated most easily by the difference between a potential that

decay quickly and one that decay slowly. For a fast decaying potential, a particle act

a significant force to another particle if the distance between two particles is small.

The force calculation can then be implemented in O(N) operations by introducing

a distance cutoff, which gives a possibility to consider particles only in close vicinity

of a particle contribute significantly to the force acting on it. The long-range forces

such as Coloumb forces decays very slowly. Their effects can not be neglected for
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particles are far apart.

In the present work, it was studied the formation and post-growth evolution

of the nanofractals on a surface. The size of the nanofractals, which is grown by

cluster deposition on a surface, depends on many factors, such us the deposition

rate [15, 16], temperature [2], size and type of the deposited cluster [14], number

of structure defects on a surface [55], and so on. In the present work, the silver

fractal formation and fragmentation on graphite surface are discussed. The results

of calculations are compared with the experimental observations of silver fractal

formation and fragmentation, which are performed by C. Bréchignac and co-workers

[9, 10, 14, 17–19, 55]. The typical diameter of the silver fractal on graphite surface

in experimental observation is around 500 − 1500 nm [9, 10, 19]. The typical silver

fractal [9,10,19] of the diameter 500 nm is roughly consists on ∼ 5000 silver clusters

Ag500. It means, that the MD simulation should be performed for 2.5× 106 atoms.

That corresponds to 2.5×106 operations per one MD step. The typical experimental

time scale of silver fractals fragmentation by thermal annealing at the 1000 K in

experiment is around 15 minutes. Approximately 1015 time steps are needed to

perform for one second of the MD modeling of an evolution of one nanofractal,

it is corresponded to 1022 operations. The real-time performance for the modern

computer is 10−9 s pro basic operation [56]. In this naive approach the computational

time of one second of a nanofractal fragmentation is equal to 3200 years. It shows,

that the classical molecular dynamics method is hardly applicable for the modeling

of silver fractal formation and fragmentation on a surface.

The kinetic Monte Carlo attempts to overcome these limitations of molecular dy-

namics approach by exploiting the fact that the long-time dynamics of a nanopattern

on a surface typically consist of diffusive jumps of a single nanoparticle from state

to state. In this type of modeling the long-time scale processes or effects, which are

most important in the formation and post-growth evolution of a nanopattern on a

surface, are considered.

2.4.2 Formalism of kinetic Monte Carlo method

The kinetic Monte - Carlo method (kMC) is based on the Monte - Carlo algorithm

and is widely used for the study of time evolution of various processes occurring in

different physical systems [57–59], such as surface diffusion of particles [60], vacancy

diffusion in alloys [61], damage accumulation and amorphization [62] and many
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others.

In the kinetic Monte Carlo method only most important processes or effects

are considered. For example, in case of the nanostructure formation on a surface,

deposition, diffusion and aggregation of nanoparticles on a surface are most impor-

tant processes, which can be taken into account in kMC. The kinetic Monte Carlo

coarse - grains the details of the behavior of a nanoparticle, but retains much of the

microscopic morphological information. The principal drawback of the kMC is that

mechanistic information must be added externally through the selection of suitable

processes. The processes in kMC method always occur with certain predefined rates.

Note that these rates are input in the kMC algorithm and the method itself cannot

predict them. The calculation of the kinetic rates for different processes is usually

a nontrivial problem. The kinetic rates are material-based parameters of the kMC

method, which in the case of particle diffusion on surface are determined by the

atomic composition of particles, substrate material and interparticle interactions.

Therefore, by varying the values of the kinetic rates the kMC method can be used

to study dynamical behavior of various molecular systems.

The idea of the kMC method is as follows. The time-evolution of a molecular

system is modeled stepwise in time. With a certain probability, at each step of the

simulation, the system undergoes a structural transformation. The new configura-

tion of the system is then used as the starting point for the next simulation step.

The transformation of the system is governed by the kinetic rates, input into the

kMC method. Note, that at each simulation step the system can be transformed

into one of several states. Thus, in the kMC method, the probability for the system

to attain a certain configuration is proportional to the corresponding kinetic rate.

In the conventional kMC method at each simulation step, all possible events

are grouped into different types according to their rates. Each rate can to include

multiple (different) events that possess with the same rate, thereby reducing the

number of unique event types in the simulation. The list of all possible event is

shown in Fig. 2.3. The sum P of all the rates of the events that are possible at any

given time is defined as:

P =
k∑

i=1

niΓi, (2.60)

where ni is the number of events with the rate Γi, k is the number of unique event

types. When the list of all possible events are created, first the event type randomly

pick up from the list of the events. For it, a random number ρ ∈ (0, 1] selects a
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1. Pick a type of the event

2. Pick an event

Figure 2.3: Schematic representation of the main procedure for picking the pathway to
advance the system to the next state in the standard kinetic Monte-Carlo method.

event type as

j−1∑
i=1

niΓi < ρP ≤
j∑

i=1

niΓi. (2.61)

Once the rate type is selected, a particular event of the selected type is randomly

chosen. When the selected event is executed and the local configuration of the

system is changed, the new list of the possible events is created. Update of the

simulation type related to the rate of the event as

t = t+∆t, where ∆t =
1

P
ln(ρ−1), (2.62)

where ρ is another uniform random value, ρ ∈ (0, 1].

In the practical implementation of kMC algorithms, there are two main concerns

that affect the computational efficiency. First, the selection of a suitable algorithm

depends on the question how many process types are typically active at each moment

in time. The second concern is to find an efficient scheme of representing and

updating the data. A complete re-build of the list of possible events after each

simulation step would be too time-consuming.

The kinetic Monte carlo method is ideal for studying system evolution, when the

details of the individual kinetic processes of a system are not important, and can be

described as jumps from one state to another.
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Chapter 3

Cluster on a surface

Different morphologies of nanostructured pattern can built by depositing preformed

cluster on a surface: separated (and hopefully ordered) nanoislands, thin films or

cluster-assembled structures. The main advantage of cluster deposition technique is

that one can control initial properties of a cluster (for example the size of a cluster)

and characterize the growth mechanisms and properties of thin films [2, 3, 6, 63].

Atomic clusters have been extensively studied in recent decades. Much attention

has been devoted to the physical and chemical properties of free clusters (see, e.g.

[64–67] and references therein). However, properties of an atomic cluster on a surface

can be significantly differ from the properties of an analogous free cluster [2,3,7]. The

difference is caused by the interaction between the cluster and the solid. Therefore,

the understanding of structural and dynamical properties of an atomic cluster on a

surface is a topic of intense interest from the scientific and technological points of

view [2,8].

In this chapter, several aspects of a cluster behavior on a surface are discussed.

In section 3.1 stability, energy, and geometry of an atomic cluster on a solid surface

are studied. In the present study, the droplet model was used to describe the

interaction of incompressible atomic cluster with a solid surface. For this purpose,

the model equation was supplemented with a term describing the interaction between

the cluster and the solid and took into account geometric corrections describing

deformation of the cluster shape. As an example, the model was used to consider

interaction between an argon cluster with N = 1 − 150 and a (001) surface of

graphite. The proposed model describes with good accuracy the geometry, stability,

and energy characteristics of inert gas clusters interacting with the solid surface.

But the droplet model can be generalized to the case of cluster with various types
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of chemical bonds between atoms. In particular, the structure of metal clusters can

be described within the framework of droplet model [68, 69]. In presented thesis,

it was used to describe structure deformation and energetic of a silver cluster on a

solid graphite surface.

Diffusion is an important factor in the fabrication of thin films and self-organized

structures by deposition of atomic clusters on a surface [18, 19, 70]. It has been

demonstrated experimentally that many metallic clusters diffuse on graphite sur-

face at room temperature with a high rate, the diffusion coefficient of a cluster is

comparable to that of a single adatom [15, 19, 71]. In the present work, diffusion

process of a cluster on a surface was studied theoretically. One of the main methods

used for modeling the diffusion of a cluster over a surface is the numerical simulation

based on the molecular dynamics approach. In section 3.2, the results of modeling

silver cluster diffusion on a solid graphite with the MD technique are presented. The

values of diffusion coefficients are obtained from the analysis of trajectories of the

clusters. The influence of various essential parameters of the system on the diffusion

of clusters was studied. In particular, the following parameters was considered: the

cluster size, the binding energy between silver and carbon atoms in the system and

the temperature. The results of the calculations are compared with the available

experimental results for the diffusion coefficient of silver clusters on graphite surface.

3.1 Liquid drop model of a cluster on a surface

The aim of this study was to develop a simple method for the description of the

geometry (shape), stability, and energy characteristics of an atomic cluster of arbi-

trary size on a solid surface. The proposed method is based on a droplet model,

which was originally formulated by Rayleigh in 1879 for the description of a drop

of incompressible liquid [72]. The first variant of a droplet model of the atomic

nucleus was proposed in 1928 by Gamow [73]. Later, the droplet model was suc-

cessfully applied by Bohr and Wheeler [74] to the description of stability and fission

of atomic nuclei. This model was previously employed for the description of fission

of atomic clusters (see, e.g., [75–78] and references therein) and successfully used it

to explain the growth of the total binding energy of the free clusters of inert gases

(Ne,Ar,Kr,Xe) with increasing size of the system [75].

In the present study, the droplet model is used to describe the interaction of

an incompressible atomic cluster with a solid surface. For this purpose, the model
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equation is supplemented with a term describing the interaction between the cluster

and the solid and took into account geometric corrections describing deformation

of the cluster shape. As an example, the proposed model is used to consider the

interaction between an argon cluster with N = 4 − 150 and a (001) surface of

graphite.

3.1.1 Droplet model of a free cluster

The structures and energy characteristics of most stable free clusters with the van

der Waals type of interatomic bonds have been studied in much detail [75, 79, 80].

The problem of determining the structure of a cluster with the minimum total

energy (i.e., of the most stable cluster) is closely related to searching for the global

minimum of the function of potential energy in a multidimensional space. Various

methods and algorithms of global optimization have been developed for solving such

problems [81]. An effective method for calculating optimized structures of atomic

clusters is offered by the dynamic search for the most stable isomers in the course

of cluster growth, that is, by the (cluster fussion algorithm, CFA) [80,82–84].

The interaction between atoms of inert gases (Ne,Ar,Kr,Xe) can be described

using various pairwise potentials [65]. In this study, we use the Lennard-Jones (LJ)

potential, which provides description of the structure, magic numbers, and energy

characteristics of inert gas clusters with sufficiently high accuracy [79, 80]. More

information about the LJ potential you can find in section 2.2.1. The values of LJ

parameters for various types of interacting particles are given in monograph [85].

For a cluster of particles featuring pairwise interaction (2.21), the coordinates and

total energy can be scaled so as to eliminate the need for repeated optimization

of the cluster structure upon variation of the values. In particular, the optimized

structures and binding energies of clusters for the LJ potential with rmin = 1 and

ϵ = 1 were calculated earlier in [80,82]. For argon clusters, the optimum bond length

and potential depth values are rmin = 3.8 Åand ϵ = 0.0123 eV respectively.

Fig. 3.1 (points) presents a plot of the binding energy Eb (normalized to the

number N of particles) for free clusters of argon, defined as
Eb

N
= −EN

N
, (3.1)

where EN is the total energy of a cluster consisting of N atoms. The plot of Eb/N

was constructed by scaling the results of numerical calculations performed previously

[75, 80] for the LJ potential with r0 = ϵ = 1. As can be seen from Fig. 3.1, the
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Figure 3.1: A plot of the binding energy Eb (normalized to the total number N of par-
ticles) versus N . Points present the results of numerical calculations employing the CFA;
solid curve shows the results of calculations using the droplet model [75].

binding energy of a cluster almost monotonically increases with the number N of

particles. Small deviations from the strictly monotonic behavior of the Eb/N versus

N curve correspond to the most stable clusters (Ar13, Ar55, Ar135), which have closed

geometric shells and form regular icosahedrons [75]. It was shown [75, 80] that the

binding energy of a free cluster of argon can be calculated within the framework of

the droplet model with an accuracy on the order of 1%. According to this model,

the cluster represents an incompressible drop of spherical shape. The radius R of a

cluster consisting of N particles is defined a R = rsN
1/3, where rs is the Wigner-

Seitz cell radius. For argon atoms, rs = 1.8 Å [85]. The total energy of a free

cluster within the framework of the droplet model can be represented as the sum of

contributions due to the volume energy (EV ), surface energy (ES), and curvature

energy (ER):

ELDM = EV + ES + ER ≡ λV V + λSS + λR

∫
S

HdS, (3.2)

where V is the cluster volume, S is the cluster surface area, H is the average cur-

vature at a point on the cluster surface [86], and λV , λS, and λR are universal

parameters of the model. It should be noted that the third term in Eq. (3.2) is a
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correction to the energy of a cluster surface that takes into account its curvature.

Indeed, an atom occurring on a convex surface effectively interacts with a smaller

number of neighbors than does an atom on a concave surface. An analogous method

of taking into account the surface curvature was proposed by Strutinsky [87] for de-

termining the influence of deformation of a nucleus in the process of fission [87].

For a spherical cluster, the volume, surface, and integral curvature are given by the

following formulas:

V =
4

3
πR3 =

4

3
πr3sN, (3.3)

S = 4πR2 = 4πr2sN
2/3, (3.4)

∫
S

HdS =

∫
S

1

R
dS = 4πr2sN

1/3, (3.5)

Using these expressions, the total energy of a free clusters of the spherical shape can

be written as

ELDM
sphere = λ′VN + λ′SN

2/3 + λ′RN
1/3, (3.6)

where λ′V = 4/3πr3sλV , λ
′
S = 4πr2sλS, λ

′
R = 4πrsλR. The first and second terms

in Eq. (3.6) correspond to the volume energy (EV ) and the surface energy (ES),

which are proportional to the number of particles in the bulk and on the surface,

respectively. The third term in Eq. (3.6) is determined by the curvature of the

cluster surface. The values of parameters λ′V , λ
′
S, and λ

′
R can be refined by fitting

to the total energy calculated with allowance for the exact positions of atoms in

the system [75, 80]. Figure 3.1 (solid curve) shows the binding energy per particle,

which was calculated as a function of their number N within the framework of the

droplet model with the following coefficients: λ′V = −0.11 eV, λ′S = +0.19 eV, and

λ′R = −0.08 eV. Note that the contributions due the volume and surface energies

have opposite signs. This implies that, at a fixed volume, it is energetically favorable

for a free cluster to have a minimum surface area. The sign of λ′R is determined

by the deviation of a real cluster shape from spherical, and this parameter can take

both positive and negative values. As can be seen from Fig. 3.1, the droplet model

is capable of describing the binding energy of a free cluster of an inert gas with quite

high accuracy.
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3.1.2 Droplet model of an atomic cluster on a solid surface

Spherical clusters

For a spherical cluster on the surface of a solid, the total energy of the system is the

sum of the energy of this solid (Ebulk), the energy of a free cluster (ELDM
sphere), and the

energy of interaction (Eint) between the cluster and the solid:

E = Ebulk + ELDM
sphere + Eint, (3.7)

Figure 3.2: The potential of interaction between an atom and a solid surface as a function
of the distance z: (1) for an Ar atom interacting with the surface of graphite as described
by formula (3.9); (2) for an Ar atom interacting with a graphite fragment (30 × 30 × 2
unit cells) as described by formula (3.8); (3) for an Ar atom interacting with the surface
of graphite, as calculated with allowance for the short-range-order effects in a cylindrical
region with a radius of Rcyl = 8 Åand a height of Hcyl = 3.3 Å.

In the present study, the effects related to deformation of the solid surface is

ignored. This situation corresponds to the case of a cluster interacting with the

surface of a hard solid. In particular, this approximation is valid for the interaction

of an inert gas cluster with the surface of graphite. In such cases, the value of

Ebulk remains unchanged when a cluster occurs on the surface and, hence, this term

can be excluded from consideration. Let us consider the interaction of an argon

cluster and a (001) graphite surface. The solid is modeled by a fragment of graphite

structure with finite dimensions (30 × 30 × 2 unit cells). The characteristic size of

this fragment is significantly greater than the size of Ar clusters under consideration,
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thus eliminating the edge effects. The interaction between argon and carbon atoms

is described by the LJ potential (2.21) with the parameters r0 = 3.84 Åand ϵ =

4.98× 10−3 eV [88,89].

The potential of interaction between an atom and a solid, Uatom−bulk, can be

determined by summing expression 2.21 over all atoms of the solid:

Uatom−bulk(r⃗) =
bulk∑
j

ULJ(rj). (3.8)

Here, r⃗ is the radius vector determining the position of the given atom with respect

to the solid surface and rj is the distance from the given atom (occurring on the

surface) to the j-th atom of the solid.

Assuming that the solid medium is amorphous and ignoring the short-range order

of the interaction, we can replace the sum over atoms by the integral over the volume

of the solid. In this case, the interaction potential depends only on the distance z

from the given atom to the solid surface:

U ′
atom−bulk(z) =

1

V bulk
1

ϵr60π

(
r60

45z9
− 1

3z3

)
, (3.9)

where r0 and ϵ are parameters of the LJ potential (2.21) and V bulk
1 is the volume

per particle of the solid.

Figure 3.2 shows the potential of interaction between an Ar atom and a graphite

surface as a function of the distance z, where curve 1 represents the U ′
atom−bulk(z)

potential calculated using Eq. (3.9) and curve 2 corresponds to the Uatom−bulk(z)

potential calculated via Eq. (3.8) by directly summing the pairwise potential over

all atoms of the solid. The Ar atom occurred on an axis perpendicular to the solid

surface and passing through the center of a hexagonal carbon ring situated on this

surface.

As can be seen from Fig. 3.2, at small distances from the surface (z < 8 Å), the

interaction potential 3.2 for an Ar atom on the graphite surface is overstated as

compared to the potential of interaction of an Ar atom with a finite fragment of

graphite. This difference is explained by the need for exactly taking into account

the graphite structure at short distances. Indeed, the graphite structure comprises

sequential layers, which are parallel to the base plane and are composed of carbon

atoms bound in hexagonal rings. Therefore, the assumptions concerning the amor-

phous character of the solid and the absence of short-range-order effects, which were
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made in deriving Eq. (3.9), are not valid for z values comparable with the crystal

lattice parameters of the solid. At a sufficiently large distance from the surface,

features of the crystal structure do not influence the interaction potential. As can

be seen from Fig. 3.2, curves 1 and 2 asymptotically coincide for z > 10 Å. It should

also be noted that, at distances from the surface equal to or greater than the equi-

librium value z0 = 3.5 Å, the interaction potential weakly depends on the x and y

coordinates. This circumstance significantly simplifies subsequent calculations.

Figure 3.3: Undeformed Ar13, Ar26, Ar38, Ar55, Ar56, and Ar98 clusters on the graphite
surface (side view).

From computational standpoint, it is expedient to perform direct summation

only for atoms of the solid occurring at small distances from the atom whose inter-

action potential is calculated. For greater distances, the interaction potential can be

determined by integration over the volume of the solid except for a region where the

short-range-order effects have to be taken into account. In Fig. 3.2, curve 3 shows

the interaction potential calculated with allowance for the short-range-order effects

in a cylindrical region with a radius of Rcyl = 8 Åand a height of Hcyl = 3.3 Å, while

the contribution from the volume of solid outside this cylinder was determined by

integration over this region. As can be seen from Fig. 3.2, curves 2 and 3 are very

close to each other, which is evidence for the efficacy of the proposed method even

for a small size of the region in which the short-range-order effects are taken into

account. The energy of the interaction between a cluster and a solid can be deter-

mined by double summation of expression (1) over all atoms of the cluster and the
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solid:

Eint =
clust∑
i

bulk∑
j

ULJ(rij), (3.10)

where and rij is the distance from the ith atom of the cluster to the jth atom of the

solid.

Ignoring the dependence of the interaction potential on the x and y coordinates,

we can replace the sum over atoms by the integral over the volume of the cluster

(Vcl):

E ′
int =

1

V clust
1

∫
Vcl

Uatom−bulk (z) dV, (3.11)

where is the volume per particle in the cluster. This expression can be used to

calculate the energy of interaction between a cluster and a solid. Note that, as

the distance z from atoms in the cluster to the solid surface increases, the potential

Uatom−bulk decreases as 1/z
3. For this reason, it is sufficient to restrict the integration

in Eq. (3.11) to a region of the cluster in the immediate vicinity of the solid surface,

at distances not exceeding a certain effective radius of interaction zeff . This effective

parameter determines the accuracy and efficacy of calculations of the energy of the

cluster - solid interaction. For the interaction of Ar clusters with a graphite surface,

it is sufficient to set zeff = 10 Åto ensure an accuracy of 1− 3%.

Figure 3.3 shows the systems of Ar13, Ar26, Ar38, Ar55, Ar56, and Ar98 clusters on

the graphite surface, which are optimized with respect to the mutual orientation and

the distance from a cluster to the solid surface. The geometry of clusters was fixed

in the state corresponding to the optimum structure of free Ar clusters. Depending

on the cluster shape and size, the optimum distance between the cluster and the

graphite surface varies within small limits (3.45−3.50 Å) and influences the energy

of the cluster - solid interaction hardly at all. For this reason, we can assume that all

clusters, irrespective of their shapes, are situated on the same distance (z0 = 3.5 Å)

from the surface of graphite. In this case, the energy of interaction of a spherical

cluster with a solid surface is described by the following expression:

Esphere
int =

π

V clust
1

∫ min(zeff,z0+2R)

z0

(
R2 − (R + z0 + z)2

)
Uatom−bulk(z)dz, (3.12)

Figure 4a shows a schematic diagram of the undeformed spherical cluster on the

solid surface.
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Figure 3.4: Schematic diagram of clusters on the solid surface: (a) undeformed spherical
cluster; (b) cluster with allowance for deformation in the form of an oblate ellipsoid; (c)
same for a truncated oblate ellipsoid.

Subdividing a cluster interacting with a solid surface into n elementary layers

parallel to the surface, we can approximately represent the cluster - solid interaction

energy by a finite sum

Eint ≈
n∑

i=1

λiVi, (3.13)

where V is the total cluster volume, Vi is the volume of the ith layer,
∑n

i=1 Vi = V ,

and λi are coefficients dependent on the distance from the ith layer to the solid

surface. In cases where the form of the interaction potential between an atom and

the solid is unknown, these coefficients can be determined by fitting to the energy

of interaction of the undeformed cluster calculated using the CFA.

Let us consider the binding energy for Ar clusters interacting with the graphite

surface. Figure 3.5 (points) shows the results of calculations of the binding energy

per atom within the framework of the CFA (i.e., with allowance for the exact atomic

structures of the cluster and solid) for Ar4, Ar6, Ar13, Ar26, Ar38, Ar55, Ar98, Ar135,

and Ar147 clusters interacting with the graphite surface. The solid curve represents

the results of calculations performed within the framework of the droplet model for

the interaction of a spherical cluster with the same surface. As can be seen, the
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Figure 3.5: Binding energy Eb/N (normalized to the number of particles) as a function
of the cluster size N calculated for undeformed Ar clusters on the graphite surface within
the framework of the CFA (points) and the droplet model (solid curve).

binding energy first rapidly decreases with increasing number N of particles in the

range from 1 to 30 and then slowly increases with the further growth in N . The

minimum at N = 30 is determined by the competition between the contributions to

the cluster binding energy due to the surface energy and the cluster - solid interaction

energy.

Figure 3.6 shows variation of the contributions of various components (EV /N ,

ES/N , ER/N , and Eint/N) to the binding energy. As can be seen, the relative

contributions from the cluster surface and the cluster - solid interaction to the total

binding energy Eb/N have opposite signs and both decrease in magnitude with

increasing number of particles in the cluster. The behavior of the total binding

energy with increasing N observed for undeformed Ar cluster shows evidence for the

instability of clusters on the solid surface with respect to fission and/or deformation,

since the total binding energy of the initial cluster is smaller than the sum of energies

of the fragments (Fig. 3.5). Obviously, it is energetically favorable for such a system

to decay into smaller fragments and/or to deform. Figure 3.7 shows the dependence

of the normalized binding energy Eb/N on the cluster radius (up to R = 11 nm,

which corresponds to an Ar cluster consisting of N = 2 ∼ 105 atoms). As can
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Figure 3.6: Contributions of various components to the binding energy (per atom) calcu-
lated within the framework of the CFA for undeformed Ar clusters on the graphite surface:
(1) volume energy EV /N ; (2) surface energy ES/N ; (3) surface curvature energy ER/N ;
(4) cluster - solid interaction energy Eint/N .

Figure 3.7: A plot of the normalized binding energy Eb/N versus radius of an undeformed
Ar cluster on the graphite surface, calculated within the framework of the droplet model.
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be seen, Ar clusters on the graphite surface are unstable with respect to fission

and/or deformation, irrespective of size. It should be noted that the important role

of deformation in determining the stability was also demonstrated for free clusters

[3538, 47].

The various channels of fission for an atomic cluster on the surface of a solid are

analyzed. First, consider the decay of the initial ArN cluster into two fragments,

ArP and ArN−P , with the numbers of particles P and N−P , respectively. Figure 3.8

Figure 3.8: Plots of the energy balance ∆ versus decay channel P for the fission of Ar13,
Ar30, Ar55, and Ar147 clusters into two fragments on the graphite surface.

shows the energy balance ∆ as a function of P for the fission of Ar13, Ar30, Ar55, and

Ar147 clusters into two fragments. The ∆ value is defined as the difference between

the sum of energies of the fragments, EP and EN−P , and the energy of the initial

cluster:

∆ = (Ep + EN−P )− EN . (3.14)

As can be seen from Fig. 3.8, relatively small clusters are unstable with respect to

the two-particle decay for any P, since always takes negative values. For the Ar13

cluster, more energetically favorable is a symmetric decay channel, whereby the

initial cluster splits into two fragments of equal size. This type of decay is favorable
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for the clusters containing 18 or fewer atoms. As the number of atoms (cluster size)

increases, asymmetric decay channels begin to predominate. For N = 34 and above,

Ar clusters become stable with respect to the symmetric decay (for which ∆ > 0),

because this channel implies the consumption of energy. In the presence of the

instability of clusters with respect to decay on the surface of a solid, it is necessary

to take into account the possible deformation of clusters. The deformation leads

to an increase in the volume of that part of the cluster which is involved in the

interaction with the surface, which results in an increase in the binding energy of

the system.

Deformed clusters

In order to take into account the deformation of a cluster interacting with the sur-

face of a solid, let us consider parametrization of the shape of revolution (Fig. 3.4c).

A particular case of such deformation is an untruncated ellipsoid of revolution

(Fig. 3.4b), for which the values of semiaxes Ra and Rc are conveniently expressed

as

Ra =

(
2− δ
2 + δ

)1/3

R, Rc =

(
2 + δ

2− δ

)2/3

R, (3.15)

where R is the radius of an undeformed (spherical) cluster and δ is the deformation

parameter, which varies within ]2, 0] for an oblate ellipsoid of revolution and within

[0, 2[ for an elongated ellipsoid of revolution. An important property of parametriza-

tion 3.15 is that it retains the cluster volume.

Figure 3.9: Schematic diagram of a truncated oblate ellipsoid of revolution.

For neutral clusters on a solid surface, the parametrization in terms of an oblate

ellipsoid of revolution is always energetically more favorable as compared to the
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elongated ellipsoid. Note, however, that the behavior of charged clusters can be

significantly different becauseit will be necessary to take into account the repulsive

Coulomb forces. In the case of a truncated oblate ellipsoid of revolution (Fig. 3.4c),

the values of semiaxes depend on two parameters, the deformation δ and the height

d of the truncated part:

R′
a =

(
2− δ
2 + δ

)1/3

R′(δ, d), R′
c =

(
2 + δ

2− δ

)2/3

R′(δ, d). (3.16)

Here, R′(δ, d) is the radius of a sphere with the volume V ′ = (4/3)πR3(δ, d) equal to

the sum of the initial volume of undeformed cluster (V = (4/3)πR3) and the volume

Vd of the truncated part upon deformation:

V ′ = V + Vd, (3.17)

Vd = π
R′2

a d
2

R′
c

(
1− d

3R′
c

)
. (3.18)

Using these relations, it is possible to determine the radius R′(∆,d) of a sphere

entering into Eqs. 3.16 for the given parameters δ and d by solving the following

cubic equation:

R′(δ, d)
3
+ pR′(δ, d) + q = 0, (3.19)

where

p = −3

4

(
2− δ
2 + δ

)4/3

d2, q =
1

4

(
2− δ
2 + δ

)2

d3 −R3. (3.20)

In order to solve Eq. (3.19), it is convenient to use the Cordano formula [86],

which yields

R′(δ, d) =
3

√
−q
2
−
√(p

3

)3
+
(q
2

)2
+

3

√
−q
2
+

√(p
3

)3
+
(q
2

)2
(3.21)

R′(δ, d) =

 3

√
−q
2
+

√(p
3

)3
+
(q
2

)2
− 3

√
−q
2
−
√(p

3

)3
+
(q
2

)2 (1± i√3)
2

(3.22)

Equation 3.19 always has at least one real positive root. The region of physically

admissible d values is restricted by the condition 2R′
c − d ≥ 2rs. The limiting case

of 2R′
c − d = 2rs corresponds to the maximum deformation at which atoms in the

cluster form two dimensional structure on the solid surface. In the case of δ = 0
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and d = 0, the radius R′(δ, d) of a deformed cluster is equal to the radius R of the

undeformed sphere.

Within the framework of the droplet model, the total energy of a deformed cluster

on the surface of a solid is determined according to the following formula:

E = ELDM + Eint = λ′VV + λ′SS
′ + λ′R

∫
S′
H ′dS′ + ΣiλintiNi, (3.23)

where V and S ′ are the volume and the surface area of the deformed cluster, respec-

tively, and H ′ is the average curvature at a point on the cluster surface [86,87]. For

the parametrization of the cluster shape in terms of a truncated ellipsoid of revolu-

tion, the total energy of the cluster on the solid surface depends on two parameters,

δ and d. Since the main condition of deformation is the constancy of the cluster

volume (which must be the same before and after deformation), a term describing

the volume energy contribution remains unchanged: EV = N = const.

In order to determine the surface energy of a deformed cluster, it is necessary

to calculate its surface area S ′. This value can be determined as a sum of areas of

the upper part (S1) of the truncated ellipsoid of revolution and the contact interface

(S2) between the cluster and the solid surface (Fig. 3.9):

S ′ = S1 + S2. (3.24)

In this case, the surface energy ES also depends on the parameters δ and d. The area

S1 of the upper part of the truncated oblate ellipsoid of revolution can be expressed

as follows [86]:

S1 =
2πR′

a√
2

∫ θ1

0

√
R′2

a +R′2
c + (R′2

a −R′2
c ) cos 2θ sin θdθ, (3.25)

where angle θ1 depends on the height d of the truncated part as

θ1 = arccos
R′

c(d−R′
c)√

R′2
a (2R

′
cd− d2) +R′2

c (d−R′
c)

2
. (3.26)

The area S2 of the contact interface between the cluster and the solid surface is

given by the following formula:

S2 = π
R′2

a

R′2
c

d(2R′
c − d). (3.27)

Note that the energy densities (per unit surface area) on the clustervacuum and

clustersubstrate interfaces must be different. This difference is precisely the man-

ifestation of cluster - solid interaction. In Eqs. (3.7) and (3.23), this interaction
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is represented as the separate term Eint, and the total energy of the system is de-

fined as the total energy of noninteracting subsystems plus the interaction energy.

Therefore, the second term in Eq. (3.23) represents the surface energy of the free

cluster.

Figure 3.10: Contributions of various components to the binding energy (per atom)
calculated for deformed Ar clusters of optimum shape on the graphite surface: (1) volume
energy EV /N ; (2) surface energy ES/N ; (3) surface curvature energy ER/N ; (4) cluster -
solid interaction energy Eint/N .

A change in the cluster energy as a result of deformation is determined by a

change in the geometric characteristics (surface area and curvature) and by the

volume of the interacting part, while being independent of the choice of parameters

ϵV , ϵS, and ϵR. Therefore, the surface energy contribution is as follows:

ES(δ, d) = λS
(S1 + S2)

4πr2s
. (3.28)

In the limiting case of δ = 0 and d = 0, we obtain ES(0, 0) = λ(′)N2/3, which

corresponds to the surface energy of an undeformed cluster.

The contribution to the cluster energy due to the surface curvature is determined

by the average curvature H ′ of the surface of an ellipsoid of revolution [86]:

H ′ =
R′

c[3R
′2
a +R′2

c + (R′2
a −R′2

c ) cos(2θ)]√
2R′

a[R
′2
a +R′2

c + (R′2
a −R′2

c )]
3/2

, (3.29)
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Figure 3.11: Maps of the binding energy Eb/N on the parameters δ and d for Ar13,
Ar55, Ar147, and Ar3000 clusters on a (001) graphite surface. Points indicate the positions
of the maximum binding energy.

where angle θ can vary within [0, θ1]. The contribution due the curvature is calcu-

lated as

ER(δ, d) =
λR
4πrs

∫
S1

H ′dS1. (3.30)

In the limiting case of δ = 0 and d = 0, we obtain ER(0, 0) = N1/3.

Figure 3.10 shows variation of the contributions of various components to the

binding energy per atom as calculated as a function of the cluster size N within

the framework of the droplet model for the deformed clusters of optimum shapes on

the surface of a solid. As can be seen, the cluster - solid interaction energy Eint/N

significantly contributes to the total energy of the system. In order to increase the

interaction energy, it is energetically favorable for the cluster to deform so as to

increase the volume of a part involved in the effective interaction with the solid. On

the other hand, the deformation leads to an increase in the cluster surface area and,

hence, in the contribution due to the surface energy, which leads to a decrease in the
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binding energy. Therefore, the system exhibits a competition of two contributions

related to the interaction energy and the surface energy. By varying the values of

parameters δ and d, it is possible to find the optimum shape of a cluster on the solid

surface.

Figure 3.11 illustrates the dependence of the normalized binding energy Eb/N

on the parameters δ and d for Ar19, Ar55, Ar147, and Ar3000 clusters on a (001)

graphite surface. The black area in the bottom part of these maps corresponds to

a region of physically inaccessible values of parameters δ and d, which do not obey

the condition 2R′ − d ≥ 2rs. As can be seen from Fig. 3.11, the binding energy

Eb/N as function of both parameters for all clusters has a single minimum, which

corresponds to the most stable state of a cluster with the optimum shape. The

optimum shape corresponds to the complete spreading of a cluster over the surface

(perfect wetting).

Figure 3.12: A plot of the normalized binding energy Eb/N for argon clusters on the
graphite surface. Solid curve shows the results of calculations using the droplet model
with allowance for the deformation of clusters; points present the results of numerical
calculations employing the CFA. The inset shows a plot of the binding energy versus cluster
radius calculated within the framework of the droplet model for deformed Ar clusters on
the graphite surface.

The dependence of the normalized binding energy Eb/N on the number of par-

ticles N in a deformed cluster are shown in Fig. 3.12. As can be seen from Fig.3.12,

the Eb/N value monotonically increases with the cluster size N (solid curve). This
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behavior shows evidence for the absence of instability with respect to fission for

clusters on the solid surface and confirms the important role of deformation as a

factor determining the cluster shape. Results obtained within the framework of

the droplet model (solid curve) agree well with the results of numerical calcula-

tions employing the CFA, which takes into account the exact positions of atoms in

the system (points). Within the framework of the CFA, the growth of clusters on

the solid surface was modeled by sequentially adding particles to the system. The

structures with maximum binding energy and some model and those obtained by

CFA is evidence for the applicability of the proposed droplet model to descriptions

of the optimum geometry and stability of clusters on the surface of solids. Small

local maxima in the Eb/N versus N curve calculated by the CFA for Ar clusters

on the graphite surface correspond to the most stable structures possessing closed

geometric shells. The inset in Fig. 3.12 shows a plot of Eb/N versus cluster radius

R (see formula 3.15) up to R = 8 nm for deformed Ar clusters on the graphite

surface. The behavior of this curve confirms the absence of instability with respect

to fission for deformed clusters on the solid surface.

3.1.3 Liquid drop model for a silver cluster on a graphite
surface

In this section, the droplet model is used to describe structure deformation and

energetics of a silver cluster on a solid graphite surface.

In this study interactions in the system were modeled with the potentials known

from the literature. The structure and energy characteristics of the silver cluster

are studied by using Sutton-Chen potential [50]. Parameters of the Sutton-Chen

potential (see section 2.3.1) ϵ, a, c, m and n for silver are defined as follows: ϵ =

1.88 × 10−3 eV, a = 4.04 Å, c = 144.36, m = 6 and n = 12 [51]. Note that these

parameters differ slightly from the original values in [50], which were suggested to

describe the interaction between silver atoms in the bulk. Using parameters were

taken from [51], and were developed to account for the finite size of the interacting

particles.

The interaction between Ag and C atoms is described by Morse pairwise po-

tential (see section 2.2.2). In the present study were considered two sets of Morse

parameters. First set was defined in [90] by using mixing rules. According to [90],

parameters for the silver-carbon interaction can be written as ϵAg−C = 0.29 eV,



3.1 Liquid drop model of a cluster on a surface 49

rAg−C
0 = 2.35 Å, βAg−C = 2.66 Å−1, nAg−C = 3.46. The second set of parameters is

differed from the original set by the value of ϵAg−C parameter, which is equaled to

0.02 eV. Parameter ϵAg−C was varied to show, that a cluster structure on a surface

strongly depend on the cluster - solid interactions.
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Figure 3.13: Binding energy Eb/N (normalized to the total number N of particles) as
function of the cluster size N. (a) Binding energy Eb/N calculated for free Ag cluster:
point present the result of numerical calculation from [91]; solid curve shows the results
of calculations using the droplet model. (b) Binding energy Eb/N calculated for undeformed
Ag clusters on the graphite surface with the MD method (points) and the droplet model
(solid curve). The interaction between cluster and surface was modeled via Morse potential.
Curve (1) and set of points (1) correspond to the situation, when the parameter ϵAg−C for
the Morse potential is equal to 0.29 eV; curve (2) and set of points (2) correspond to the
situation, when ϵAg−C = 0.02 eV

The structure and energy characteristics of most stable free silver clusters have

been studied in much detail in work [91]. In Fig. 3.13a, points show a plot of the

binding energy Eb (normalized to the number of particles) for free cluster of silver

defined according to Eq. (3.1). The plot of Eb/N in Fig. 3.13a was constructed

from numerical calculations performed in work [91]. The binding energy of a free

cluster of silver can be calculated with the droplet model. According this model,

the cluster represents an incompressible drop of spherical shape. The total energy

of a free cluster within the framework of the droplet model can be represented as

the sum of contributions due to the volume energy (EV ), surface energy (ES), and

curvature energy (ER). According to the expressions (3.3) - (3.5), the total energy

of a free cluster of the spherical shape can be written as (see section 3.1.1):
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ELDM
sphere = λ′VN + λ′SN

2/3 + λ′RN
1/3. (3.31)

The values of parameters λ′V , λ
′
S, and λ′R can be refined by fitting to the total

energy calculated with allowance for the exact positions of atoms in the system

[75,80]. Figure 3.13a (solid curve) shows the binding energy per particle, which was

calculated as a function of their numberN within the framework of the droplet model

with the following coefficients: λ′V = −2.14 eV, λ′S = +1.10 eV, and λ′R = +0.62 eV.

As can be seen from Fig. 3.31, the droplet model is capable of describing the binding

energy of a free silver cluster with the quite high accuracy.

Let us to consider a spherical cluster on a solid surface, the total energy of the

system is the sum of the energy of free cluster (ELDM
sphere), and the energy of interaction

(Eint) between the cluster and the solid. In present study the energy of a solid Ebulk is

excluded from the consideration. It is possible to exclude the energy of the solid from

the consideration, because the solid deformations are ignored. Subdividing a cluster

interacting with a solid surface into n elementary layers parallel to the surface, the

cluster - solid interaction energy can approximately represent by a finite sum

Eint ≈
n∑

i=1

λiVi, (3.32)

where V is the total cluster volume, Vi is the volume of the ith layer,
∑n

i=1 Vi = V ,

and λi are coefficients dependent on the distance from the ith layer to the solid

surface. These coefficients were determined for the silver - graphite interaction by

fitting to the energy of interaction of the undeformed cluster calculated using the

molecular dynamics technique. Figure 3.13b (points) shows the results of calcula-

tions of the binding energy per atom with the molecular dynamics method for Ag3,

Ag6, Ag13, Ag43, Ag135 and Ag488 clusters interacting with the graphite surface. Set

of points (1) corresponds to situations, when the interaction energy between cluster

and surface are modeled via Morse potential with the parameter ϵAg−C = 0.29 eV.

Set of points (2) shows the results of simulations performed with the same potential,

but with the ϵAg−C is equal to 0.02 eV. The solid curves (1) and (2) represent the

results of calculations performed in framework of the droplet model for the spheri-

cal cluster on a surface, for different interactions between cluster and solid. As can

be seen, the binding energy for the strong interaction of a spherical cluster with a

surface, see curve (1) in Fig. 3.13b, first rapidly decreases with increasing number

N and then slowly increases with the further growth in N . That behavior of the
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total binding energy with increasing N observed for underformed Ag clusters shows

evidence for the instability of cluster on the solid surface with respect to fission

and/or deformation. In other case, when the interaction between cluster and sur-

face is weak (see curve (2) in Fig. 3.13b), the binding energy almost monotonically

increases with the number of particles N . This observation shows that clusters are

stable on a surface, but the deformation of a cluster is a possible process. The

deformation leads to an increase in the volume of the part of the cluster, which is

involved in the interaction with the surface, it results in an increase in the binding

energy of the system.

In order to take into account the deformation of a cluster interacting with the

surface of a solid, the shape of the deformed cluster was parameterized by a model

of a truncated ellipsoid of revolution (see section 3.1.2). The total energy of the

deformed cluster on the solid surface in such parametrization depends on two pa-

rameters, δ and d. Parameter δ is the deformation parameter and d is the height

of the truncated part of a truncated ellipsoid of revolution. In section 3.1.2, the

relationship of the volume energy (EV ), surface energy (ES), curvature energy (ER)

with the parameters of parametrization d, δ was established and discussed in greater

details. As was shown in section 3.1.2, it is possible to find the optimum shape of a

cluster on a solid surface, by varying the values of parameters δ and d.
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Figure 3.14: Maps of the binding energy Eb/N on the parameters δ and d for Ag500 on
a graphite surface calculated for different cluster - solid interactions. (a) Strong cluster -
solid interaction ϵAg−C = 0.29 eV; (b) weak cluster - solid interaction ϵAg−C = 0.02 eV.
Points indicate the position of the maximum binding energy.
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Figure 3.14 illustrates the dependence of the normalized binding energy Eb/N on

the parameters δ and d for Ag500 cluster on a graphite surface. As can be seen, in

case of strong cluster - solid interaction (see Fig. 3.14a) the cluster Ag500 becomes

flatten, parameter of deformation δ is equal to −1.82 and the height of the truncated

part d is 3.11 × 10−8 Å. The values of semiaxes R′
a and R′

c of a truncated ellipsoid

of revolution can be defined with the equations (3.16), and for Ag500 on a graphite

surface are equaled to 28.67 Å and 1.35 Å, correspondingly. The hight of a cluster

Ag500 after deformation in this case is 2.70 Å, this value corresponds to the hight of

a silver monolayer. In case of weak cluster-solid interaction (see Fig. 3.14a) cluster

Ag500 consist on several atomic monolayers, the hight of the cluster after deformation

is 14.41 Å, this value corresponds to δ = −0.27 and d = 3.47 Å. It is shown, that

droplet model can be used to predict the structure of a cluster depending on the

interaction between cluster and solid.
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Figure 3.15: A plot of the normalized binding energy Eb/N for silver cluster on the
graphite surface calculated with the droplet model for different cluster-solid interactions.
Curve (1) and (2) calculated for different interactions between cluster and solid: (1) weak
cluster-solid interaction ϵAg−C = 0.29 eV; (2) strong cluster-solid interaction ϵAg−C =
0.02 eV.

In Fig. 3.15 shows the dependence of the normalized binding energy Eb/N on the

cluster radius R (see formula (3.15)) up to 10 nm for deformed Ag clusters on the

graphite surface. As can be seen from Fig. 3.15, the Eb/N value monotonically
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increases with the cluster size. This behavior shows evidence for the absence of

instability with respect to fission for clusters on the solid surface and confirms the

important role of deformation as a factor determining the cluster shape.

3.2 Cluster diffusion over a surface

Morphology of a pattern on a surface strongly depends on the mobility of deposited

nanoparticles [18,19,70]. It has been demonstrated experimentally that many metal-

lic clusters diffuse on graphite surface at a high rate of about 10−8 cm2/s at room

temperature [15, 19], which is comparable to the rates of a single atom. This was

also demonstrated theoretically for the Lennard-Jones clusters on a Lennard-Jones

substrates with the molecular-dynamics simulations [6]. In work [6] was shown,

that a cluster diffuses as ”a whole”, and its trajectory of the motion is similar to

a Brownian motion. Similar results were obtained using MD with more elaborated

potentials models, for example in [92] diffusion of 249-atom gold cluster was the-

oretically studied. In work of P. Deltour and co-workers [92] was shown that the

diffusion mechanisms for the large clusters cannot be explained in terms of disloca-

tion migration within the cluster as proposed to explain the diffusion of 2D islands

in [93–95]. The surprising high diffusivity of a large cluster was ascribed with the

the interplay between the vibrations of the substrate and the internal vibrations of

the cluster. These two vibrations create a ”random” force on the cluster center of

mass, and execute a Brownian motion in weak external potential [6, 71,92].

In present chapter MD technique is employed to study structure and dynamics

of silver nanoclusters deposited on a graphite surface. The diffusion coefficient of

the silver nanoclusters is analyzed depending on the particle size, temperature and

cluster-surface interactions.

3.2.1 Diffusion coefficient

Diffusion is the process by which matter is transported from one part of the system

to another. To describe diffusion on a surface is possible to adapt the procedures

developed for bulk diffusion [96]. The flux J crossing a line of unit length is given

by Fick’s first law

J = −D∂C
∂x

(3.33)
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where ∂C/∂x is the gradient of the concentration C, and D is called the diffusion

coefficient. In practice is difficult to measure the flux J . Let us to transform

equation 3.33, for it consider two parallel lines on a surface, distance between two

lines ∆x is equal to the particle jump length l executed in diffusion.The flux into

lines is not equal, because diffusing substance accumulate in the region between the

two lines. If the flux is considered per unit length, the

J1 − J2 = ∆x
∂J

∂x
= ∆x

∂C

∂t
. (3.34)

However, from Eq. (3.33) is known that

∂J

∂x
= −

∂(D ∂C
∂x
)

∂x
. (3.35)

If the diffusion coefficient will not be a function of diffusing particles concentration

than
∂C

∂t
= −D∂

2C

∂x2
. (3.36)

Eq. (3.36) is the second Fick’s law, that equation can more directly applicable to

examining surface diffusion. In the present chapter the diffusion of a single atomic

cluster over crystal surface is discussed, in this case the diffusion coefficient D is

not a function of the clusters concentration. Note, that the Eqs. (3.33)-(3.36) are

written only for one-dimensional diffusion, with the flux as well as the gradient along

x−axis. Eq. (3.36) for the the general case can be written as

∂C(r, t)

∂t
= −D∇2C(r, t), (3.37)

In case of the two-dimensions solution of the Eq. (3.37) is

C(r, t) =
1

4πDt
exp

(
−r2

4Dt

)
, (3.38)

That solution gives the probability to find a particle at the instant t being at the

distance [r, r + dr] from its initial position as

ω(r, t)dr = c(r, t)dS, (3.39)

where dS =
∫ 2π

0
rdrdφ = 2πrdr therefore

ω(r, t)dr =
1

2Dt
exp

(
− r2

4Dt

)
rdr. (3.40)
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Using this probability function one derives the mean square displacement of a par-

ticle as [97,98]

(r1 − r0)2 =
∫ ∞

0

ω(r, t)r2dr = 4D(t1 − t2), (3.41)

where r0 and r1 are the distances to a particle from the initial position at two suc-

cessive instances t0 and t1. Equation (3.41) allows to express the diffusion coefficient

as

D =
⟨∆r2⟩
2z∆t

, (3.42)

where ⟨∆r2⟩ is the mean-square displacement of a particle per time ∆t, and z is

defined by the dimensionality of space [97, 98]. In the case of particle diffusion on

surface z = 2 (see Eq. (3.41)).

In other hand, let us to interpret the diffusion coefficient in terms of the particle

jump process. The mean-square displacement proportional to the rate of particle

jumps Γ and the size of the particle hopping length

⟨∆r2⟩ = Γℓ20∆t, (3.43)

Substituting Eq. (3.43) into Eq. (3.42), one obtains

D =
Γℓ20
2z

. (3.44)

The jump rate of a particle can written with the expression available from tran-

sition state theory for the rate of overcoming a potential barrier height Ea [7,97,98],

Γ = ν exp

(
− Ea

kBT

)
, (3.45)

where ν is the attempt frequency, kB is the Boltzmann constant and T is the tem-

perature. Therefore, diffusion coefficient D can be written as

D =
νℓ2

2z
exp

(
− Ea

kBT

)
. (3.46)

That equation demonstrates the relation between the diffusion coefficient and system

temperature.
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3.2.2 Silver cluster diffusion over graphite surface: simula-
tions versus experiment

In this work, the diffusion of silver clusters Ag43, Ag135 and Ag488 on a graphite

surface was models with the classical molecular dynamics technique. The initial

shape of the clusters was approximate spherical. The initial distance between the

nanocluster and and graphite is set to 0.2 nm. The size of the graphite structure de-

pends on the cluster diameter, the width and length of the graphite sheet were taken

in 10 times larger of the diameter of a cluster. In the work, the constant-temperature

molecular dynamic simulations with a time step of ∆t = 1 fs were performed. The

simulation time was 1 ns for the equilibration and 9 ns for the production state.

The temperature control was achieved by means Berendsen thermostat with the

damping constant 100 fs [44].
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Figure 3.16: The form of the pairwise Morse potential for the silver and carbon atoms,
as function of the distance between atoms for different values of the parameter ϵAg−C =
(0.02, 0.03, 0.04, 0.05, 0.29) eV. The direction of growth of the parameters ϵAg−C is shown
in the plot.

The interactions between the atoms are described by using model potentials

known from the literature. The total potential energy of the system can be written
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as

U = UAg−Ag + UC−C + UAg−C (3.47)

where the terms UAg−Ag, UC−C and UAg−C refer to the silver-silver, carbon-carbon

and silver-carbon interaction respectively. To reduce the computation costs, in the

present work only a static (solid) substrate was considered, that corresponds to the

situation when the position of the C atoms are fixed.

The molecular dynamics study of the Ag clusters has been performed using the

Sutton-Chen many-body potential [50] (see also section 3.1.3). The most crucial

potential for the system which consists of a metal nanoparticle and graphite surface

is the potential representing metal-carbon interactions. The interaction between the

metal cluster and graphite surface is mainly dominated by a weak van der Waals

force. In the present work, the interaction between Ag and C atoms is modeled by

Morse pairwise potential (see section 2.2.2). Parameters of the Morse potential can

be determined by fitting the metal-carbon interaction obtained by using ab initio

density functional theory, as was done in work A.G. Lyalin and co-workers [99] for the

Ni−C interactions. In other hand, parameters of the interaction can be obtained by

using mixing rules, which are described in [90]. According to [90], parameters for the

silver-carbon interaction can be written as ϵAg−C = 0.297172 eV, rAg−C
0 = 2.3495 Å,

βAg−C = 2.6617 Å−1, nAg−C = 3.4641. Parameter ϵ and parameter n in Morse

potential defines the energy of the potential in its minimum r0 as ϵ(n−1). According
to this relation the binding energy between the Ag and C is equal to 0.732262 eV.

The structure of the cluster and the diffusion mechanism strongly depend on the

cluster-surface interaction. In the present work, the influence of the binding energy

between silver and carbon on the dynamics of silver nanoparticle on graphite surface

was studied by varying parameter ϵAg−C in Morse potential. The forms of the Morse

potential for different value of the parameter ϵAg−C are shown in Fig. 3.16.

The computations in the present work were performed with the use of the MBN

Explorer computer package, which is developed for structure optimization, simula-

tion of dynamics and growth processes in various nanosystems [100].

In the present work, the trajectories of the deposited on a graphite surface silver

nanoparticles depending on the systems size, temperature and parameter ϵAg−C are

analyzed. The diffusion coefficient of center of mass of a nanoparticle is defined

as [97,98]:
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D =
1

4

∂⟨r2 (t)⟩
∂t

(3.48)

where r2(t) is the mean square displacement of the center mass of a nanoparticle on

a surface as function of time.

⟨r2 (t)⟩ = 1

nt

nt∑
i=1

[R (t0i + t)−R(t0i)] (3.49)

Here R(t) is the radius vector of the particle center of mass at the instant t. This

equation assumes the splitting of the trajectory of a particle in nt segments of equal

duration. This is done in order to improve the statistics when evaluating the mean

square displacement.

Cluster-surface interaction influence on the shape of a nanoparticle

The shape of a cluster on a surface strongly depends on the interaction between

cluster and solid, it was demonstrated in framework of liquid drop model (see sec-

tion 3.1.3). In the present chapter the shape evolution of the silver cluster on a

graphite surface is modeled with the molecular dynamics approach.

dcl

zmax

zmin

zmax

zmin

hcl

(a) (b)

hcl

dcl

Figure 3.17: Schematic diagram of a cluster on a solid surface: (a) undeformed spher-
ical cluster; (b) cluster with allowance for deformation in the form of a truncated oblate
ellipsoid. zmax, zmin are the distances between the solid surface and the minimally and
maximally disposed points of the cluster, correspondingly. hcl and dcl are the height and
width of the cluster.

The schematic diagram of underformed and deformed clusters on the solid surface

are shown in Fig. 3.17. The height of the cluster hcl on a surface is calculated as

hcl = zmax − zmin, (3.50)



3.2 Cluster diffusion over a surface 59

where zmax and zmin are the distances between the surface of substrate and the

minimally and maximally disposed points of the cluster, correspondingly. The width

of the cluster dcl is the maximal diameter of the cluster in the plane which is parallel

to the surface of the solid (see Fig. 3.17).

Figure 3.18: The shape evolution of the cluster Ag43 on a graphite surface. Time evo-
lution of the width dcl and height hcl of a cluster calculated for ϵAg−C = 0.29 eV (a), (c)
and for ϵAg−C = 0.03 eV (b), (d). Trajectories of center of mass of Ag43 cluster on the
graphite surface calculated for ϵAg−C = 0.29 eV (e) , and for ϵAg−C = 0.03 eV (f) . The
corresponding simulating temperature of the system is given in the insets to the plot.

In figure 3.18, the time evolution of the height hcl and width dcl of Ag43 cluster
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on a graphite depending on the interaction between cluster and solid are presented.

In case of the strong interaction between cluster and solid (ϵAg−C = 0.29 eV), the

height hcl of the cluster decrease in course of simulation, at some point the value

of hcl becomes constant and equals to the diameter of a single silver atom (see

Fig. 3.18a,c). Atoms of the Ag43 cluster are formed a monolayer on the surface. As

can be seen from the figure 3.18a,c the speed of the shape transformation of the

cluster depends on the system temperature. At room temperature T = 300 K the

time of the cluster melting is 1.0 ns, at hight temperature T = 1000 K the time

of the cluster “melting“ is 0.16 ns. In opposite case, when the interaction between

cluster and solid is week (ϵAg−C = 0.03 eV), the height of a cluster hch after cluster

transformation is 0.84 nm at room temperature, at the hight temperature 1000 K

the large fluctuations in hcl(t) and dcl(t) dependencies are observed, the height of a

cluster is varied between 0.8 and 1.11 nm (see Fig. 3.18b,d). This transformation of a

cluster shape depending on the cluster-surface interaction stays in good agreement

with the results, which are obtained in framework of the liquid drop model (see

section 3.1.3). LDM predicts the transformation of the cluster to monolayer for

ϵAg−C = 0.29 eV.

Trajectories of the Ag43 center of mass are shown in figure 3.18e,f. The diffusion

of the cluster Ag43 is observed at the temperature 1000 K, when the value of the

parameter ϵAg−C is equal to 0.03 eV.

Temperature effect on the diffusion of a nanoparticle over a surface

The diffusion coefficient of a nanoparticle on a surface can be experimentally mea-

sured. For example, the diffusion coefficient of the cluster Ag500 on graphite surface

at room temperature was measured as 2 · 10−7 cm2/s [19]. Therefore, it is possible

to compare the experimentally measured values of the diffusion coefficients with the

results of the theoretical calculation. In the present work, the diffusion coefficients

of Ag135 and Ag488 on a graphite surface was analyzed depending on the temperature

and the parameter ϵAg−C .

Diffusion coefficients of silver nanoparticles Ag488 and Ag135 on the graphite sur-

face D are evaluated at different temperatures (400, 600, 800 and 1000 K) using the

mean-square displacement as a function of time (see Eqs. 3.48-3.49). These results

are given in Table 3.1 and shown in Fig. 3.19. Points in Fig. 3.19 represent results

of the MD simulations. In Fig. 3.19b the diffusion coefficient of a nanoparticle as
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Figure 3.19: Diffusion coefficient of the silver nanoparticle on the graphite surface de-
pending on the temperature and the value of the parameter ϵAg−C calculated according to
Eq. (3.48). (a) Diffusion coefficient of the nanoparticle as the function of a temperature.
Points are shown the results of MD simulations with the parameter ϵAg−C = 0.02 eV. The
corresponding size of silver cluster are given in the insets to the plot. Lines (1) and (2)
are temperature dependence of the diffusion coefficient of clusters Ag135 and Ag488, corre-
spondingly, calculated by fitting of MD simulation results with the equation (3.46). Line
(3) is the temperature dependence of the diffusion coefficient of cluster Ag500 on graphite
surface from [19]. (b) Diffusion coefficient of the nanoparticle as function of the parameter
ϵAg−C . The corresponding simulating temperature and size of the nanoparticle are given
in the insets to the plot.

a function of parameter ϵAg−C are shown. Temperature dependence of the diffusion

coefficient are presented in Fig. 3.19a. Relation between the diffusion coefficient

Table 3.1: Diffusion coefficients of the nanoparticles Ag135 and Ag488 on the graphite
surface calculated according to Eq. (3.48) for different temperatures and values of the
parameter ϵAg−C .

D, cm2/s

ϵAg−C , eV Ag135 Ag488

1000 K 800 K 600 K 400 K 1000 K 800 K 600 K 400 K

0.02 3.4.× 10−5 1.5× 10−5 1.60× 10−7 3.0× 10−7 2.2.× 10−5 8.4× 10−6 1.0× 10−6 1.7× 10−7

0.03 8.2× 10−6 2.6× 10−6 - - 3.1× 10−6 1.3× 10−6 - -

0.04 3.2× 10−6 1.0× 10−6 - - 1.6× 10−6 5.3× 10−7 - -

0.05 7.4× 10−7 1.6× 10−7 - - 4.8× 10−7 1.2× 10−7 - -
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and system temperature is demonstrate with the Eq. (3.46) in section 3.2.1. The

results of the MD simulation can be fitted with the Eq. (3.46), if the height of the

potential barrier Ea and the attempt frequency ν are assumed to be fixed. The lines

(1) and (2) in Fig. 3.19a show the dependence of the diffusion coefficient on the

system temperature calculated by fitting results of the MD simulations. Line (3) is

the function D(T ) calculated with the Eq. (3.46) for the fixed values of the Ea and ν

experimentally measured in [19,55]. As can been seen from Fig. 3.19a, the values of

the diffusion coefficient calculated with the MD approach at high temperature has a

good agrement with the values obtained with the Eq. (3.46) for the experimentally

measured values of the parameters Ea and ν. At room temperature diffusion coeffi-

cient of the Ag488 predicted with the MD technique is equaled to 2.6×109 cm2/s. It is

smaller than the value of the diffusion coefficient of an Ag500 cluster on the graphite

surface (2× 10−7 cm2/s) experimentally measured in [19]. The height of the poten-

tial energy barrier Ea for the transition of the Ag488 on the graphite substrate from

one position to another calculated in framework of MD approach is 0.35 eV. This

value about two time higher than the potential energy barrier reported in [55]. The

difference between the results of the MD simulation and results of the experimen-

tal observation can be ascribed by several simplifications which were performed to

reduce the computation costs.

The results presented in this section demonstrate the modeling of the diffusion

process of a single nanoparticle on a surface with the molecular dynamics approach.

Note that in the present work a simple velocity scaling thermostat (Berendsen ther-

mostat, see sec. 2.1.3) is used to control temperature of a system. Scaling of the

particle velocities in the system might be considered as an ”unphysical” alteration

of the systems dynamics. However, if the coupling of the thermostat to the sys-

tem is weak (parameter “rise time” τT , see Eq. (2.15) in sec. 2.1.3), i.e. all the

thermodynamic relations are conserved for each small fraction of the system, the

overall influence of the thermostat on the dynamical properties of the cluster can be

neglected. The influence of the thermostat becomes more important if the systems

consists of a small number of particles or if the systems not in the thermodynamic

equilibrium. The molecular dynamics simulations at constant temperature imply

usage of a thermostat. The thermostat adds certain constrains on the system and

influence its dynamical properties. In order to avoid the undesirable influence of

the thermostat on the systems dynamics it is necessary to conduct the molecular

dynamics simulations with a sufficiently weak coupling of the thermostat to the sys-
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tem. The molecular dynamics simulations reported in the present work are believed

to be performed in the regime of the weak thermostat coupling. The accurate anal-

ysis of the influence of the thermostat on systems dynamics is not performed and

the corrections to the diffusion properties of the clusters caused by the Berendsen

and other thermostats are left for further considerations.

It is important to mention that the MD simulations of the clusters are performed

on the static (frozen) substrate. Freesing of the degrees of freedom associated with

the motion of the substrate atoms allowed to substantially reduce the number of

degrees of freedom in the system and considerably extend the simulation timescales.

Accounting for the substrate degrees of freedom may influence the barriers associ-

ated with the transition of the cluster on the substrate from one position to another.

Change of the heights of the potential energy barriers associated with the diffusion

influences the diffusion coefficient. One can assume that accounting for the sub-

strates degrees of freedom should lower the potential energy barriers. Indeed, the

transition from one stable point to another on the multidimensional potential en-

ergy surface of the system occurs along the path with lower energy barriers if one

increases the number of the accessible degrees of freedom in the system. This state-

ment is applicable only for the solid substrates in which the atoms vibrate in the

vicinity of the stable positions. The substantial deformations of the substrate or

its melting can have an opposite effect and lead to the increase of the transition

barriers. The assumption about the rigidity of the substrate is in an agreement with

experimental observations [55] that report the transition barriers about two times

lower than the transition barriers calculated in the thesis. In the present work the

influence of the substrate degrees of freedom on the cluster diffusion properties is

not considered and left for further investigations.
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Chapter 4

Kinetic model for assembly of
nanoparticles on a surface

In pervious chapters (see sections 2.4, 3.1.3 and 3.2) it was shown that methods

of classical molecular dynamics are hardly applicable for modeling behavior of an

assembly of atomic clusters on a surface. Therefore, it is important to find suitable

approaches, which can be used for modeling dynamics of an assembly of nanopar-

ticles on a surface. One of such alternative approaches is the kinetic Monte Carlo

method. In this approach, the evolution of the system governs by several typical

processes, which occur with certain predefined rates.

The results of molecular dynamics simulations for silver clusters on a graphite

surface shown that clusters diffuse over the surface as a whole with a high rate, that

stands in a good agrement with the results of experimental observations performed

in the group of Prof. C. Bréchignac [9, 10, 17]. Based on these facts a Monte-Carlo

based approach has been developed to describe the dynamics of the self-assembly

of nanoparticles on a surface. This method accounts for the nanoparticle diffusion

over a surface, aggregation into islands and detachment from these islands. This pro-

cesses occur in the system with certain kinetic rates which are input into the model.

The kinetic rates are material-based parameters, which in the case of nanoparticle

diffusion on a surface depend on the atomic composition of nanoparticles, substrate

material and interparticle interactions. The main advantage of that method is the

possibility to account for different processes, which influence the system dynamics.

The main idea of the method is discussed in section 4.1. One of the possible

implementations of the kinetic model, which is based on the modified version of the

conventional kMC method is shown in section 4.2. The physical meaning of the
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model parameters are discussed in section 4.3. The values of the model parame-

ters are indicated for the concrete system - silver cluster on graphite surface. In

appendix B, implementation of developed model in MBN Explorer software package

and corresponding logical test are discussed in details.

4.1 Basic principles and assumptions of the ki-

netic model

The main idea of the kinetic model is the following. Consider a molecular system

constituting of a number of rigid particles of equal radii, e.g. silver clusters deposited

on graphite surface [101, 102]. For each particle in the system first the number of

possible diffusion directions are determined. Thereby, a particle can either diffuse

freely, or diffuse along the periphery of the already pre-formed structure as illus-

trated for a chosen example in Fig. 4.1. A diffusion direction for a particle is chosen

randomly in such a manner that all possible diffusion directions are equally prob-

able. For the given diffusion direction the probability for particle diffusion is then

calculated from the predefined physical parameters input into the system, and the

particle is translated with calculated probability in the direction defined earlier.

To speed up the calculation, we simulated particle dynamics on a hexagonal grid,

on which a particle has up to six neighbors in 2D case, as illustrated in Fig. 4.1.

The size of a single grid cell in this case is defined by the particle diameter d0.

To simulate a pattern growth on a surface the following procedure has been

adopted. At every step of the simulation new particles are deposited on the sur-

face according to the deposition rate and occupy some of the free cells in the grid.

Simultaneously, the already deposited particles diffuse on the surface, with the rate

Γ = ν1 exp

[
− Ea

kBT

]
, (4.1)

where Ea is the activation energy, ν1 is the attempt escape rate, T is the temperature

of the system and kB is the Boltzmann constant. The process of particle diffusion

on surface is schematically illustrated in Fig. 4.1.

An important quantity in the kinetic model is the time step, ∆t, which defines

the characteristic time for particle diffusion over a surface as

∆t = 1/Γ. (4.2)
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Figure 4.1: Arrangement of deposited nanoparticles on a surface. The important pro-
cesses which govern pattern formation on a surface are indicated by arrows: F is the
particle deposition rate, Γ is the diffusion rate of a free particle, Γd is the diffusion rate
of a particle along the periphery of an island, and Γe is the detachment rate of a particle
from the island.

The time step ∆t is related to the diffusion coefficient D of a particle diffusion over

a surface arising in the equation of diffusion [97, 98]. The solution of the diffusion

equation in two dimensions gives the probability to find a particle at time t being

at distance [r, r + dr] from its initial position as

ω(r, t)dr =
1

2Dt
exp

(
− r2

4Dt

)
rdr. (4.3)

Using this probability function one derives the mean square displacement of a par-

ticle as [97,98]

(r1 − r0)2 =
∫ ∞

0

ω(r, t)r2dr = 4D(t1 − t2), (4.4)

where r0 and r1 are the distances to a particle from the initial position at two suc-

cessive instances t0 and t1. Equation (4.4) allows to express the diffusion coefficient

as
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D =
⟨∆r2⟩
2z∆t

, (4.5)

where ⟨∆r2⟩ is the mean-square displacement of a particle per time ∆t, and z is

defined by the dimensionality of space [97, 98]. In the case of particle diffusion on

surface z = 2 (see Eq. (4.4)).

On the other hand, the mean-square displacement depends on the diffusion rate

and on the particle hopping length, which in the example considered equal to the

particle diameter d0:

⟨∆r2⟩ = Γd20∆t. (4.6)

Here ∆t has a meaning of a single simulation step defined in Eq. (4.2). Substituting

Eq. (4.6) into Eq. (4.5), one obtains

D =
Γd20
2z

. (4.7)

Equation (4.7) allows to estimate Γ (and therefore ∆t) once the diffusion coefficient

is known:

∆t =
d20
2zD

. (4.8)

For example, the diffusion coefficient of an Ag500 cluster on graphite at room

temperature was measured as 2 × 10−7 cm2/s [19]. Substituting this value into

Eq. (4.8), one obtains ∆t = 78 ns.

Substituting Eq. (4.1) into Eq. (4.7), one relates the diffusion coefficient to the

activation energy and temperature:

D =
d20ν1
2z

exp

[
− Ea

kBT

]
. (4.9)

From Eq. (4.9) follows that the diffusion coefficient decreases as the activation energy

grows. This results in an exponential growth of the time step ∆t with Ea, since

∆t ∼ 1/D (see Eq. (4.8)). Equation (4.8) introduces the optimal time step for the

computations, because it defines the characteristic time at which a freely deposited

particle gets displaced for the distance d0, i.e. to the neighboring lattice cell (see

Fig. 4.1). Note that the diffusion of deposited particles is typically the fastest process

in the system. Therefore, it determines the minimum time step and time scale for

the growth and fragmentation of pattern on surface. It is computationally inefficient
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to perform simulation with a time step less than ∆t, because in this case the particles

will practically not move during t≪ ∆t.

In present method the following procedure to model particle dynamics on surface

was employed: for each step of the simulation all freely deposited particles have

six diffusion possibilities (see Fig. 4.1). The direction of displacement is chosen

randomly and each particle is moved to a neighboring lattice cell in the chosen

direction. Thereby each step of the simulation corresponds to ∆t = 78 ns, as

estimated above. The particles at the islands periphery diffuse slower, and therefore

are displaced less frequently.

The relaxation of the system in such model is driven by diffusion of particles

along the agglomerated islands periphery and particle detachment from the islands.

Both processes are schematically depicted in Fig. 4.1. The diffusion and the detach-

ment rates depend on the activation energy and the particle-particle interaction. In

Arrhenius approximation, the diffusion rate of a particle along the periphery of an

agglomerated island reads as:

Γd(m,n) = ν2 exp

[
−mEb

kBT
− n∆ϵ

kBT
− Ea

kBT

]
, (4.10)

where m is the number of bonds that are broken due to the particle motion, Eb > 0

is the binding energy of two particles, n is the number of maintained neighboring

bonds between two particles and ∆ϵ ≤ Eb is the diffusion energy barrier [10,102], ν2

is the attempt escape rate. Equation (4.10) describes the probability of a particle to

overcome a potential energy barrier, which for a particle diffusing along the island

periphery is parameterized by the energies Eb, ∆ϵ, and Ea. Note that the parameter

Ea, which enters Eq. (4.10), depends on the simulation time step ∆t, as discussed

above. Therefore, only the parameters Eb and ∆ϵ define the potential energy barrier

for particle diffusion along the island periphery, while Ea characterizes the time scale.

Note that Eq. (4.10) does not account for the bonds which may be created in the

system when a particle diffuses. This feature of Eq. (4.10) is easy to understand.

Indeed, in our model the particle diffusion process is considered stepwise, i.e., at

each step of the computation a particle is displaced with a certain probability on

the distance equal to its diameter in a random direction. But prior the particle is

displaced to its new location there is no information about the newly created bonds

in the system (causality principe). Therefore only those bonds which the particle

forms with its neighbors prior the displacement influence the diffusion dynamics in
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the system.

The evaporation (detachment) rate of a particle from the island is given by

Γe(l) = ν3 exp

[
− lEb

kBT
− ∆µ

kBT
− Ea

kBT

]
, (4.11)

where l is the number of bonds broken after particle detachment from the island,

∆µ is the chemical potential of particle detachment [2,10,102,103], ν3 is the attempt

escape rate of a particle from its equilibrium position. Equation (4.11) can be un-

derstood within the framework of the classical nucleation theory [103], which studies

the liquid↔gas transition in droplets. It is written in the Arrhenius approximation,

similarly to Eq. (4.11). For the further description was established that:

ν2 ≃ ν3 = ν. (4.12)

Such situation occurs when the characteristic attempt escape rate of a particle lead-

ing to its diffusion or detachment are close. Equations (4.10)-(4.11) describe the

dependence of the the probability of different essential kinetic processes on the val-

ues of Ea, Eb, ∆ϵ, ∆µ, which below are called the kinetic parameters. For the

convenience, in this text all the kinetic parameters are defined in the units of kBT

(1 kBT = 0.026 eV) at room temperature (300 K).

4.2 Algorithm for the implementation of the ki-

netic model

Kinetic model was implemented in MBN Explorer computer package. In this sec-

tion one possible algorithm of implementation is considered. Implementation of the

kinetic model in MBN Explorer based on the modified version of the conventional

kMC method. In this case, for each particle in the system first the number of possi-

ble diffusion directions are determined. Thereby, a particle can either diffuse freely,

or diffuse along the periphery of the already pre-formed structure as illustrated in

Fig. 4.1. A diffusion direction for a particle is chosen randomly in such a manner

that all possible diffusion directions are equally probable. For the given diffusion

direction the probability for particle diffusion is then calculated from the prede-

fined physical parameters input into the system, and the particle is translated with

calculated probability in the direction defined earlier.
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Figure 4.2: The principal scheme of the kinetic Monte Carlo algorithm, implemented in
MBN Explorer, and used for the simulations of nanofractals formation and fragmentation
on a surface.

The procedures is repeated at each simulation step of the random walk dynamics

algorithm. The schematic representation of the algorithm is illustrated in Fig. 4.2.

The algorithm proceeds as follows:

1. Load of the configuration from the input file (if applicable), code terminates.
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2. Next the simulation time step is increased sequentially. At equal intervals,

determined by the keyword in the task file, new particles are added into the

system. The number of particles added at each step of the simulation is con-

trolled by the relevant keywords in the task file.

3. At each step of the simulation the algorithm constructs a list of moveable

particles in the system. If the particles in agglomerated islands are allowed to

move, then the algorithm considers all particles in the system as potentially

moveable.

4. The list of moveable particles is processed in the random order and all particles

in the list are displaced in a random direction with a certain pre-calculated

probability which is determined by the surrounding of each displaced particle

(see Fig. 4.1).

5. The simulation is stopped once the total number of simulation steps reaches

the maximal value specified in the task file.

To simplify the calculations, the random walk motion of particles is simulated on

a lattice (grid). A lattice in the simulation represents an artificial subdivision of the

entire simulation space into individual unit cells which can accommodate particles

in the system. A particle on the lattice can occupy only a single unit cell and can

move from the occupied cell only to the non-occupied neighboring cell (see Fig. 4.1).

The number of possible diffusion directions of a particle depends on the packing of

the lattice and on the number of occupied neighbor cells. MBN Explorer includes

the cubic and the hexagonal types of the lattice packing which are described in

appendix B in greater details.

4.3 Parameters of the kinetic model

Activation energy Ea

The interaction energy between the deposited particles and the substrate is respon-

sible for the particle mobility on surface, as follows from Eq. (4.1). The interaction

energy of Ag500 (EAg
a ), C60 (EC60

a ), and Sb2300, (E
Sb
a ) clusters with graphite surface

at room temperature has been estimated as EAg
a = 6.6 kT [55], EC60

a = 6.9 kT [104]

and E
(Sb)
a = 27.1 kT [15]. The significant spread of the values indicates the essential
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role of interatomic interactions in defining the activation energy. The value of Ea de-

fines the time scale of the islands growth and fragmentation processes, as discussed

in section 4.1. This work focuss on the study of silver cluster fractals, parameter Ea

is assumed to be fixed.

Another important quantity characterizing the particle diffusion on surface is its

attempt escape rate ν (see Eqs. (4.10)-(4.12)), which can be estimated as

ν =
2Dz

d20
exp

[
Ea

kBT

]
. (4.13)

For a silver nanoparticle with d0 = 2.5 nm deposited on graphite the diffusion

coefficient at room temperature D ≃ 2 · 10−7 cm2s−1 [19], resulting in ν = 0.94 ·
1010 s−1.

Binding energy Eb and diffusion energy barrier ∆ϵ

The interaction energy of two particles, Eb, depends on the atomic composition

of the particles and on the presence of impurities in the system [9, 10, 19]. It was

shown that the presence of oxygen impurities in a silver cluster deposited on graphite

leads to the decrease of Eb and consequently to the degradation of island stability.

A systematic study of the afore mentioned factors on the interparticle interaction

energy is beyond the scope of this paper and deserves a separate investigation. Note

that in experiment [9, 19] silver cluster fractals are formed and may decay on the

comparable time scales. This is only possible if Eb is of the same order of magnitude

as Ea. The diffusion barrier energy ∆ϵ depends on the atomic composition of the

cluster and usually amounts 0.05− 0.2 of the bonding energy of two clusters [105].

Chemical potential change

The change in the chemical potential ∆µ arises due to the energy difference caused

by the change of the number of particles in the system. The chemical potential

characterizes the ability of particles to diffuse from regions of high chemical potential

to those of low chemical potential and is virtually defined as the partial derivative [43]

µ =

(
∂U

∂N

)
V,S

, (4.14)

where U and S are the total energy and the entropy of the system, V is its volume

and N is the number of particles in the system. The variation of the chemical
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potential arising due to a structural transformation in the system can be calculated

from the known values of the chemical potential of individual components of the

system before and after the transformation. For example, for the evaporation of a

silver nanoparticle from a agglomerated islands with N particles on graphite surface

Ag(islandN) + C(graphite)→ Ag(islandN−1) + C(graphite) + Ag(particle), (4.15)

the corresponding change of the chemical potential can be calculated as a difference

between the chemical potential of the products and the adducts. With µAg(islandN) ≈
µAg(islandN−1) one obtains

∆µ = µAg(particle). (4.16)

The chemical potential can be measured experimentally [106] and is tabulated for

many substances (see e.g. [107, 108]). It depends on the phase state of the system:

for the gas of silver atoms µ
(gas)
Ag = 2.55 eV, while for the silver in the liquid phase

µ
(liquid)
Ag = 0.8 eV [107]. These values and Eq. (4.16) allow one to suggest that the

change of the chemical potential in the silver islands fragmentation process, at room

temperature lies within the range 30− 100 kT .



Chapter 5

Formation and fragmentation of
nanofractals by nanoparticles
deposited on a surface

In this chapter, the results of investigation of nanopattern formation and post-

growth relaxation on a surface are presented. Particulary, formation and post-

growth evolution of nanofractals were modeled with the kinetic model. Basic prin-

ciples and assumptions of the kinetic model for an assembly of nanoparticles on

a surface were discussed in pervious chapter (see chapter 4). The values of input

model parameters were taken from the estimations performed in chapter 3 and from

available data of experimental measurements (see section 4.3) .

In section 5.1, formation of nanofractals and nanodroplets on a surface, is ex-

plored. Kinetic model for an assembly of particles on a surface was used to simulate

growing of a nanopattern on a surface by atomic cluster deposition. Based on the

analysis of results of simulations, criteria, which can be used to distinguish between

different patterns on a surface in the course of the pattern formation, are suggested,

e.q. between fractals or compact islands. The criteria can be used to predict a

morphology of growing structures on a surface.

In section 5.2, the post-growth evolution of patterns on a surface are analyzed.

In particular, attention in the thesis is payed to a systematical theoretical analysis of

the post-growth processes occurring in nanofractals on a surface. The time evolution

of fractal morphology in the course of the post-growth relaxation was analyzed. The

results of these calculations were compared with experimental data available for the

post-growth relaxation of silver cluster fractals on graphite substrate [9, 10,19].
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5.1 Formation of a nanofractal by nanoparticles

deposited on a surface

The conventional technique of thin-film growth by deposition of atoms [1, 3], small

atomic clusters [2,3] and molecules [1,4,5] on surfaces gives a possibility to construct

materials with pre-defined properties. Recent experiments show that patterns with

different morphology can be formed in the course of clusters deposition process on

a surface [2, 3, 6]. Among other possible shapes, droplet-like and fractal islands

have been observed in various systems [2, 3, 6]. Frequently a small change in the

structure or composition of constituent nanoparticles or in the substrate results in

a dramatic change in the properties of the entire system created in the course of

the self-organization processes. Such factors, that we call critical factors can be the

presence of activator-particles, defects, heterogeneity, the patterning, the roughness

deformations of the supporting surface (substrate), acoustic waves, etc. Changes in

properties can also be a result of variation of some characteristics of the environment

in which the formation or the growth processes occur.

The investigation of the dendritic structures (fractals) has attracted considerable

attention of many scientists [6, 9, 10, 19, 30–34]. The formation of such systems

provides a natural framework for studying disordered structures on a surface because

fractals are generally observed in far-from-equilibrium growth regime. During the

last years fractal shape have been recordered for a variety of systems. For example,

fractals consisting of Ag [9,10,19], Au [35], Fe-N [33] clusters and C60 molecules [36,

37] have been fabricated on different surfaces with the use of the cluster deposition

technique [1, 4].

The growth process of fractals has been extensively studied in experiments

[15–18, 35, 36, 39]. In [15, 16] a quantitative experimental study of spherical anti-

mony cluster diffusion on graphite was performed. It was shown that the size of the

emerging fractals depends on the cluster deposition rate. The influence of cluster

size on fractal morphology was experimentally studied in [14]. In that work an-

timony clusters of different size were subsequently deposited on graphite surface,

and it was demonstrated that the fractal branch width depends on the size of the

deposited clusters. Molecular processes, underlying the C60-fractal formation on

graphite substrate were investigated experimentally by use of the scanning tunnel-

ing microscopy [36]. The self-organization of silver clusters on graphite surfaces

with different crystallographic orientations was experimentally investigated in [17].
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It was shown that the size of the formed fractals depends on the crystallographic

planes of graphite, which influences the cluster mobility on a surface.

5.1.1 Simulation of a nanofractal growth

The self-organization dynamics of particles on a surface was studied theoretically.

An efficient theoretical tools for describing particle dynamics on a surface is the

diffusion limited aggregation (DLA) method [109]. In this method each particle on

a surface moves freely in a random direction until it collides with another particle.

In case of collision, both particles stick together and become immobile. The DLA

model was used for a qualitative description of the process of fractal formation on

a surface [13,15,18,102].

As a first approximation to model the growth of a fractal on a surface the dif-

fusion limited aggregation (DLA) method [109] was used. Using a module of the

MBN Explorer software package [110] the growth process of a fractal by depositing

particles on a surface in the vicinity of the pre-defined growth center was computed.

For the sake of illustration in Fig. 5.1a, fractals of the silver clusters on graphite

surface are shown [9], while the fractal structures obtained from the calculation

are shown in Fig. 5.1b. To compare with the experimental measurements [9, 10, 19]

in our simulations the model parameters consistent with the experiment was used.

Thus, the diameter of a particle has been taken 2.5 nm, which corresponds to the

size of an Ag500 cluster used in Refs. [9, 10, 19]. The deposition flux has been de-

creased from Fstart = 7.2 × 1013 particle/cm2s to Fend = 1.1 × 1011 particle/cm2s

because the area to which the particles are added decreases as the size of the fractal

increases. The used values of the particle deposition flux are chosen higher than

the experimental value reported in Ref. [9, 19], F = 1010 particle/cm2s, in order to

accelerate simulation of the fractal growth.

The important characteristic of a fractal is the fractal dimension df . The Haus-

dorff fractal dimension is defined as [111,112]:

df = lim
l→0

log[N(l)]

log[1/l]
. (5.1)

Here N(l) is the number of self-similar structures of linear size l needed to cover

the whole structure. In practice the fractal dimension is usually calculated by the

box-counting method [113]. Equation (5.1) has been used to calculate the fractal

dimension of the structures shown in Fig. 5.1b. This calculation resulted in dthf =
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Figure 5.1: (a) Structures of the silver cluster fractal grown by clusters deposition tech-
nique on the graphite surface [9]; (b) Fractal structures grown by the DLA method;

1.7±0.05. This value is in a good agrement with experiment for silver cluster fractals

grown on the graphite surface, which gives dexpf = 1.7± 0.1 [9].

As illustrated in Fig. 5.1 the topology of fractals simulated by the DLA method

is very similar to the fractal topology grown in experiment. In both cases the fractals

shown in Fig. 5.1 have several main branches, growing from the center of the fractal.

The branch width of the fractal simulated by the DLA method is ∼ 10 nm, while

the typical experimental width of the branch is 15−30 nm [9]. The difference arises

because the particles in the simulation were deposited on a surface at a higher rate

than those in experiment. In addition, the implemented DLA method does not

allow the deposited particles to be placed atop of a growing fractal. Another factor

affecting this difference is the sticking probability of the deposited particles assumed

to be equal to one, meaning that if a particle meets another particle on a surface

the two particles stick and do not move together. The central simulated fractal

from the Fig. 5.1b have been used as initial structure in the investigation of fractal

fragmentation.

5.1.2 Criteria for nanoscale surface pattern formation

Other task which was considered in the present work, was to understand the self-

organization processes on a surface consider different characteristic time scales for

different kinetic processes occurring with deposited particles on a surface. The im-

portant kinetic processes which govern pattern formation on a surface are illustrated

in Fig. 5.2. The particle deposition time τdep (see Fig. 5.2a) is related to the particle

flux F and the surface area S of the substrate as follows
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τdep =
1

FS
. (5.2)

Figure 5.2: Characteristic times for different kinetic processes occurring with deposited
particles on a surface: (a) particle deposition time τdep; (b) particle diffusion time to-

wards the periphery of a forming island τdif ; (c) peripheral particle diffusion time τ
(1)
rel

without breaking bonds with neighbor particles, and τ
(2)
rel (with breaking bonds with neighbor

particles); (d) detachment time of a particle from an island after breaking one bond τ
(1)
e ,

and after breaking several bonds τ
(2)
e

In the next series of the simulations of the pattern formation on a surface the

substrate size was chosen as 500 × 500 nm2 and the deposition flux as F = 1010

particle/cm2s, corresponding to the experimental value reported in [9, 19]. Thus,

from Eq. 5.2 one obtains τdep = 0.04 s.

The diffusion time of a particle towards the periphery of an emerging island (see

Fig. 5.2b) can be calculated as the time of the first passage of a particle from the

deposition site to the periphery of the agglomerating structure as

τdif = nsteps∆t, (5.3)

where nsteps is the number of ’jumps’ which a particle undertakes in the course

of its random Browian motion before reaching the periphery of an agglomerating
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structure and ∆t is defined in Eq. 4.8 (see chapter 4). For a 500×500 nm2 substrate

nsteps ≤ 100, allowing to estimate τdif ≤ 7.8 × 106 s, i.e. significantly smaller than

τdep.

Particle peripheral diffusion time, or the particle rearrangement time, (see Fig. 5.2c)

is decisive for pattern formation on a surface. Depending on the kinetic processes

which occur on the periphery of an agglomerating structure one can expect various

morphologies to emerge which may be as different as spherical droplets and tree-like

fractal structures. The kinetic processes for a particle on the periphery of an ag-

glomerated structure depend on the number of its neighbors. Figure 5.2c illustrates

two abundant processes of particle peripheral diffusion which occur on characteristic

time scales τ
(1)
rel , and τ

(2)
rel . These processes correspond to a particle diffusion along

the periphery of an island without breaking bonds with the neighbor particles and

with breaking a single bond with a neighbor particle, respectively. Using Eq. 4.10

and Eq. 4.8 (see chapter 4) the particle peripheral diffusion times τ
(1)
rel and τ

(2)
rel can

be related to the diffusion coefficient D of a particle on a surface and the kinetic

parameters ∆ϵ and Eb:

τ
(1)
rel =

d40
4D

exp

(
∆ϵ

kBT

)
(5.4)

τ
(2)
rel =

d40
4D

exp

(
Eb +

∆ϵ

kBT

)
(5.5)

Note that τ
(1)
rel and τ

(2)
rel are the times of particle peripheral diffusion calculated

for the two abundant kinetic processes on the particle periphery. Other kinetic pro-

cesses are significantly less probable and do not play a decisive role in distinguishing

different growth paths of patterns on a surface.

Similar to the particle peripheral diffusion, one should also distinguish times for

particle detachment processes (see Fig. 5.2d). The detachment time of a particle

from an island after breaking one bond τ
(1)
e and after breaking two bonds τ

(2)
e can

thus be written as:

τ (1)e =
d40
4D

exp

(
Eb +

∆µ

kBT

)
(5.6)

τ (2)e =
d40
4D

exp

(
2Eb +

∆µ

kBT

)
(5.7)

which depend on the diffusion coefficient D and the kinetic parameters ∆µ and

Eb. At room temperature, the rate of particle detachment is usually significantly

lower than the rate of particle diffusion [107,108], because the change of the chemical
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potential ∆µ associated with particle detachment is ∆µ > 100kBT [107,108], leading

to a fairly small vales of τ
(1)
e and τ

(2)
e .

Thus, for the studied value of particle deposition flux the morphology of pattern

on a surface is determined by the particle deposition rate, the particle diffusion rate,

and the particle rearrangement rate. The analysis of characteristic times for these

kinetic processes allows to suggest the following conditions to distinguish between

three different morphologies on a surface

τdep + τdif ≫ τ
(2)
rel , (compact droplet)

τ
(1)
rel < τdep + τdif < τ

(2)
rel , (fractal with thick branches)

τdep + τdif ≪ τ
(1)
rel , (fractal with thin branches)

Figure 5.3: Morphology of different patterns observed after self-organization of particles
on a surface at different conditions after 100 s of simulation. (a) Compact droplets are
formed when the rearrangement time of particles is shorter than the nucleation time; (b)
Fractals with thick branches form when some peripheral particles have enough time to
rearrange and form a more compact structure; (c) Fractals with thin branches form when
the inner dynamics of particles in the fractal is almost frozen.

The first inequality describes a situation when the agglomerated particles un-

dergo fast relaxation. In this case the rearrangement time of particles is shorter

than the nucleation time and therefore compact droplets are formed on a surface.

The second condition is an intermediate case, which arises when some peripheral

particles in agglomerated structures have enough time to rearrange and form a more

compact structure. It generally should lead to the formation of fractals with thick

branches. Finally, the third inequality in Eq. (5.8) describes the pattern formation

regime when the inner dynamics of particles in the agglomerated structures is almost
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frozen, and no rearrangement is possible, what leads to the formation of fractals with

thin branches. Figure 5.3 illustrates the morphology of different patterns observed

after self-organization of particles on a surface at different conditions after 100 s of

simulation. The difference in the structure shown in Fig. 3 arises due to the varia-

tion of the kinetic parameters Eb and ∆ϵ in Eqs. (5.4)-(5.5) Thus, for Eb = 6kBT ,

∆ϵ = 2kBT (see Fig. 5.3 a) one obtains τ
(1)
rel = 0.576 µs and τ

(2)
rel = 0.233 ms, sat-

isfying the first inequality in Eq. (5.8). Fractals with thick branches (see Fig. 5.3

b) were obtained for Eb = 30 kBT , ∆ϵ = 10 kBT , which lead τ
(1)
rel = 1.718 ms and

τ
(2)
rel = 1.836 × 1010 s. Increasing the values of the kinetic parameters leads to the

increase of the relaxation times. Thus, for Eb = 60kBT , ∆ϵ = 20 kBT one obtains

τ
(1)
rel = 37.843 s and τ

(1)
rel = 4.322×1027 s, which fulfill the third condition in Eq. (5.8).

As seen in Fig. 5.3 c, in this case the particles selforganize on a surface in a fractal

structures with thin branches, whose width equal to the diameter of a single particle.

Figure 5.3 shows that by varying the kinetic parameters Eb and ∆ϵ one obtains

different pattern on a surface, as predicted by the conditions in Eq. (5.8). Thus,

the conditions in Eq. (5.8), may be used in experiment to estimate the values of the

kinetic parameters, once the morphology of a pattern on a surface is known, and

therefore to provide an important tool for measuring interparticle energies.

5.2 Different paths of nanofractal fragmentation

Figure 5.4: (a) Fractal structure grown by the DLA method; (b) structure of silver cluster
fractal grown by clusters deposition technique on graphite surface [10];
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Several fractal structures which are similar to the silver cluster fractals on graphite

surface reported to be observed in experiment [9,10,19] was obtained using the DLA

method (see section 5.1.1). The fractal structure shown in Fig. 5.4a was chosen

for the further investigation of the post-growth relaxation processes in fractals. The

diameter of the fractal is 550 nm, which is somewhat similar to than the diameter of

experimentally grown structures [9,10,19]. For the sake of illustration in Fig. 5.4b is

shown the experimentally grown silver cluster fractal prior thermal annealing, which

triggers the fractal fragmentation [9,10,19]. As discussed in section 5.1 the topology

of the fractal simulated by the DLA method is close to the fractal topology grown

in experiment.

In this section we perform analysis of the fractal post-growth relaxation using

kinetic model for an assembly of particles on a surface, which is discussed in detail

in chapter 4. According to the estimates performed in Sec. 4.1, a single time step in

calculation is equal to ∆t = 78 ns, which allows one to simulate the process during

the time period

t = Nstep∆t, (5.8)

where Nstep is the number of simulation steps. In the present work several paths of

fractal fragmentation was analized. The rate of fractal decay depends on the inter-

particle interaction, and it defines the morphology of the fragments that are formed

during the process. Snapshots of the structures arising at different stages of the

fragmentation process simulated at different parameters of interparticle interactions

are shown in Fig. 5.5. This example shows how different can be the fragmentation

paths and the fragments morphology.

Figure 5.5 shows that for Eb = 1 kBT , ∆ϵ = 0.2 kBT one observes an entire

defragmentation of a fractal, which is the fastest fragmentation path. In this case

the interaction energy between the particles is relatively weak and the probability

to evaporate a particle from the fractal is much higher than the probability of newly

deposited particles to nucleate. This fragmentation scenario can be realized in ex-

periment if the temperature of the system is rapidly elevated after the fractal was

created.

Figure 5.5 shows that for Eb ≥ 2 kBT the fractal melts in a number of compact

droplets. Depending on the energies of interparticle interactions the shape of the

droplets becomes different. Thus, for Eb = 2 kBT , ∆ϵ = 0.4 kBT three large, almost

spherical, droplets of a similar size are formed. In this case the binding energy Eb



84 Formation and fragmentation of nanofractals on a surface

Figure 5.5: Evolution of fractal structure on a 650 × 750 nm2 substrate with periodic
boundary conditions. The initial fractal structure shown in the middle undergoes fragmen-
tation in different final states depending on the interparticle interactions in the system.
Numbers above the corresponding images indicate the values of Eb and ∆ϵ used in the
simulations (in units of kBT ), ∆µ = 2 kBT in all cases. The simulation time t is given
for each path of the fragmentation.
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between the particles is rather small, allowing relatively easy detachment of parti-

cles, but at the same time it is large enough to make the characteristic particle de-

tachment time comparable with the characteristic particle nucleation time, thereby

preventing the system from entire defragmentation, observed at Eb = 1 kBT . Thus,

the fragmentation path at Eb = 2 kBT goes via the rearrangement of the entire

system, and the formation of large stable droplets.

A further increase of the interparticle interaction energy leads to the change

of the fractal fragmentation pattern. As seen in Fig. 5.5 at Eb = 4 − 6 kBT the

fractal fragments into several compact droplets. The analysis of morphology of

the created patterns leads us to the following main conclusions: (i) the growth of

Eb leads to the increase of the number of droplets on a surface (see Eb = 4 kBT

and Eb = 6 kBT ) and to the decrease of their average size. This happens because

the detachment of particles from the fractal becomes energetically an unfavorable

process, and the fractal fragments mainly due to the peripheral diffusion of particles,

initiated at the peripheral defect sites. (ii) The increase of the peripheral diffusion

barrier energy ∆ϵ suppresses the diffusion of particles, resulting in a slower evolution

and fragmentation of the fractal shape. It is remarkable that at Eb = 6 kBT and

∆ϵ = 1.2 kBT one observes the formation of elongated islands on a surface which

follow the direction of the fractal branches. A further increase of the interparticle

binding energy with the simultaneous lowering the barrier energy for the particle

peripheral diffusion favors the formation of elongated islands on a surface. Figure 5.5

illustrates this for Eb = 12 kBT and ∆ϵ = 1 kBT . In this case the timescale for the

particles to detach from the fractal is significantly larger than that for the peripheral

particle diffusion.

A simultaneous increase of the interparticle binding energy and the barrier energy

for the particle peripheral diffusion leads to the growth of the fractal life time.

Figure 5.5 shows that for Eb = 24 kBT and ∆ϵ = 12 kBT the fractal has no

noticeable changes in its morphology after 4 s of simulation. In the case when the

interparticle energies are large, the fractal fragmentation is expected to occur on a

larger time scale and can be simulated numerically if the value of the simulation

time step is increased.

The important characteristic of the fractal fragmentation is the number of frag-

ments at a given time. The smallest fragment is a single particle. The time evolu-

tion of the number of fragments calculated for different sets of model parameters is

shown in Fig. 5.6a and Fig. 5.6d. Curve 1 in Fig. 5.6a shows the time evolution of
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Figure 5.6: Time evolution of the number of fragments Nfr, ⟨Rmax⟩ introduced in
Eq. (5.9) and of the ⟨S/P ⟩ ratio introduced in Eq. (5.17) calculated for the fractal struc-
ture shown in Fig. 5.5. The fractal fragmentation have been analyzed at ∆µ = 2 kBT for
different values of the binding energy Eb and the barrier energy ∆ϵ. Plots (a), (c), (e) show
the results of calculation obtained for ∆ϵ = 0.2Eb and the different values of the binding
energies between two particles. Lines 1-6 correspond to Eb = (1, 2, 3, 4, 5, 6) kBT ,
respectively. Plots (b), (d), (f) represent the results obtained at Eb = 4 kBT for different
values ∆ϵ = (0, 0.4, 0.8, 1.0, 3.2, 4) kBT . The direction of growth of ∆ϵ is shown in
these plots.
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the number of fractal fragments at Eb = 1 kBT . The number of fragments in this

case rapidly approaches the asymptotic value, approximately equal to the half of

the total number of particles in the fractal. This means that the system dominantly

consists of dimers. With increasing Eb the number of fragments at the equilibrium

decreases, as seen in Fig. 5.6. It is interesting to note that at Eb = 2 kBT there

are three dominating large islands (see Fig. 5.6). The total number of fragments at

the end of the simulation in this case is equal to 100, being much smaller than the

total number of particles in the system. This feature arises in the situation when a

large number of single particles detach from the large droplets but later stick back.

In this case the number of single particles fluctuates rapidly resulting in the large

fluctuations of Nfr(t) dependence shown in Fig. 5.6a by curve 2. These results have

been calculated for a fractal on a 650× 750 nm2 substrate with periodic boundary

conditions.

Figure 5.6b shows that there is no dramatic change in Nfr(t) dependence with

the growth of ∆ϵ at a constant value Eb. This analysis shows also that the growth

of ∆ϵ preventing particles peripheral diffusion hinders the fast transformation of

droplets into compact islands which eventually results in the increase of the number

of fragments on a surface.

As seen in Fig. 5.5, in the course of fractal fragmentation the mobile particles

can coalescence into islands, i.e. groups of particles bound together. The size and

the number of islands on the substrate depend on the binding energy Eb and the

barrier energy ∆ϵ. The important characteristic of the fragmentation pattern on a

surface is the average maximal radius of the created islands which reads as

⟨Rmax⟩ =
1

Nfr

Nfr∑
i=1

R(i)
max, (5.9)

where Nfr is the total number of islands on a surface, R
(i)
max is the maximal radius

of the i-th island. The dependencies of ⟨Rmax⟩(t) calculated at different values of

Eb and ∆ϵ are shown in Fig. 5.6c and Fig. 5.6d. These figures show that in average

⟨Rmax⟩ approaches the equilibrium value at the chosen values of model parameters

except for Eb = 3 kBT , ∆ϵ = 0.6 kBT when the large fluctuations of ⟨Rmax⟩ develop
and grow with time. This happens because at Eb = 3 kBT the rate of single particle

detachment turns out to be so that only several particles are able to overcome the

detachment energy barrier at one simulation step. The escaped particles freely

diffusing over the surface after a short period of time return to the same or some
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Figure 5.7: Dependence of the equilibrium value of Nfr (squares, left scale) and ⟨Rmax⟩
(dots, right scale) on the binding energy Eb calculated for the barrier energy ∆ϵ = 0.2Eb,
corresponding to the dependencies shown in Fig.5.6a and Fig. 5.6a.

other island. Although the number of fluctuating fragments on the surface in this

case is relatively small (see Fig. 5.6a and Fig. 5.7), the fluctuations of ⟨Rmax⟩ become

considerable because at these conditions small islands can be spontaneously created

but most of them disappear just after several simulation time steps. Thus, for

example, for t1 = 3.490 s ⟨Rmax⟩1=14.3 nm, while for t2 = 3.493 s ⟨Rmax⟩2=24.3 nm.

The change of the maximal radius ∆⟨Rmax⟩ in this case is 10 nm within 3 ms time

interval. This happens because for the time frame t1 there are N
(1)
S = 11 single

particles and N
(1)
L = 10 fragments of a larger size with approximately equal diameter

on the surface. For the time frame t2 the number of large fragments is N
(2)
L , still

equal to 10, while there are only N
(2)
S = 2 single particles on the surface. With

R
(1)
L = R

(2)
L = RL being the characteristic radius of the large island, R

(1)
S = R

(2)
S = RS

the radius of a single particle, and N
(1)
L = N

(2)
L = NL, one derives

∆⟨Rmax⟩ =
∆NSNL

N1N2

(RL −RS) , (5.10)

where ∆NS = N
(1)
S − N

(2)
S is the change of the number of single particles, N1 =

NL +N
(1)
S is the total number of particles at instance t1, and N2 = NL +N

(2)
S is the

total number of particles at instance t2. Substituting values for ∆Ns, NL, N1 and
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N2 in Eq. (5.10) for the special case considered one obtains

∆⟨Rmax⟩ =
15

42
(RL −RS) . (5.11)

Substituting RL=28.6 nm and RS = 1.25 nm in Eq. (5.11), one derives ∆⟨Rmax⟩ =
10.7 nm. Equation (5.11) shows that ∆⟨Rmax⟩ increases with RL which grows with

time until it reaches the equilibrium value. Equation (5.10) can also be rewritten as

∆⟨Rmax⟩ =
∆NSNL

N2
1 (1−∆NS/N1)

(RL −RS) , (5.12)

which shows that for ∆NS . N1 the fluctuation of the average radius ∆⟨Rmax⟩
can be several times larger than the the value of the average radius. Note that

although the largest islands are observed for the model parameter Eb = 2 kBT (see

Fig. 5.5), the largest average maximal radius is expected for Eb = 3 kBT as depicted

in Fig. 5.6. This happens because the number of single particles on the surface for

Eb = 3 kBT is about 10, while for Eb = 2 kBT it is exceeding 100.

Figure 5.6c shows some dependence of ⟨Rmax⟩ on ∆ϵ. The growth of ∆ϵ leads

to the decrease of ⟨Rmax⟩, which is a natural result of a lower peripheral mobility of

particles.

Figure 5.8 shows the distributions of island sizes in the system after 4 s of sim-

ulation. In order to improve the statistics, the distributions shown in Fig. 5.8 have

been averaged over a time interval τ = 0.78 s as follows

Nfr(t) =
1

τ

∫ τ/2

−τ/2

Nfr(t− x)dx. (5.13)

The histograms in Fig. 5.8 have been calculated with different barrier energies. The

maxima in the distributions show the most abundant island sizes. Figure 5.8 shows

that the sizes of the islands created in the fractal post-growth fragmentation process

depend strongly on the binding energy Eb and the barrier energy ∆ϵ. At some values

of Eb and ∆ϵ one can identify two maxima in the island size distributions. Especially

clear this feature manifests itself at ∆ϵ = 0 kT , ∆ϵ = 0.4 kBT and ∆ϵ = 3.2 kBT.

The presence of two maxima in the island size distributions tells that there are two

groups of islands on the surface having different preferential island size.

Let us also analyze the time evolution of the distributions shown in Fig. 5.8.

Figures 5.9 and 5.10 show distributions of the island sizes calculated at different

fragmentation stages for a fixed set of the model parameters. Figure 5.9 illustrates
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Figure 5.8: Distributions of island sizes formed on the substrate after 4 s of simulation.
The distributions were calculated at the fixed values of Eb = 4 kBT, and ∆µ = 2 kBT for
different values of ∆ϵ as indicated.
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Figure 5.9: Size distributions of islands calculated at different stages of the fractal frag-
mentation (see Fig. 5.5) for Eb = 2 kT , ∆ϵ = 0.4 kT and ∆µ = 2 kT . The corresponding
simulation time is given in the insets to the plots.
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the evolution of the island size distribution simulated at Eb = 2 kBT and ∆ϵ =

0.4 kBT . After fast fragmentation of the fractal into a subset of noncompact islands

which occurs on the time scale greater than 0.04 s, the distribution of islands sizes

has a Gaussian-like shape with the maximum centered at 20 nm. In the course of

the fractal fragmentation process the magnitude and the position of the maximum

of the distribution change, because the morphology of the system changes due to the

evaporation of single particles from the islands and the nucleation of single particles.

Figure 5.9 illustrates that small islands nucleate into larger droplets resulting in a

shift of the maximum of the distribution towards larger island sizes. Interesting that

the fragmentation/nucleation dynamics leads in this case of study to the formation

of two maxima which correspond to the presence in the system of the droplets of

different radii.

Figure 5.9 shows the evolution of the fractal fragmentation process. The initial

fragmentation of the fractal is very rapid. It involves the rearrangement of single

particles in the fractal which form the defects at the fractal periphery. The evolution

of the shape of the large droplets slows down with the growth of their size due to

the decrease of the droplets mobility (see Figs. 5.9b-c). At the stage when only a

few large-size droplets remain their dynamics is governed to large extend by the

interchange of peripheral particles from these droplets (see Figs. 5.9d-f). The large

droplets diffuse slowly over a surface and may eventually merge. The characteristic

time scale for diffusion of an entire large droplet is significantly larger than the

characteristic diffusion time of single constituent particle, and therefore practically

can not be resolved within the simulation time limit. However, note that this motion

can also be simulated with a larger time step. The appropriate value of the time

step can be estimated using Eq. (4.8).

Figure 5.10 shows the slower evolution of the island size distribution as compared

to Fig. 5.9. Slowing down of the process is caused by the increase of the binding

energy Eb between particles within the fractal. Figure 5.10 shows that as in Fig. 5.9 a

Gaussian-like distribution of a large number of droplets arises immediately after the

fractal fast fragmentation. The maximum of this distribution slowly drifts towards

the larger droplet sizes as the smaller islands nucleate (see Fig. 5.10b). Remarkably,

that at the later stages (t = 4 s, Fig. 5.10d) two maxima arise in the distribution.

It is worth noting that this feature of the droplet size distribution was also observed

in experiment [114].

Another useful quantity for the characterization of surface structures is the ratio
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Figure 5.10: Similar to Fig. 5.9, size distributions of islands calculated at different stages
of the fractal fragmentation (see Fig. 5.5) for Eb = 4 kBT, ∆ϵ = 0.4 kBT and ∆µ = 2 kBT.
The corresponding simulation time is given in the insets to the plots.

between the area and the perimeter of the structure (S/P ratio) [9]. This ratio

characterizes the island topology. Thus, the S/P ratio for a linear chain of N

spherical particles is equal to

S

P
=
d0
4
, (5.14)

where d0 is the diameter of a particle. Note that the S/P ratio for a linear chain is

always a constant. The S/P ratio for a compact droplet of the radius, Rd, is equal

to

S

P
=
Rd

2
. (5.15)

It can be easily expressed via the number of particles N in the droplet:

S

P
=
d0
4

√
N. (5.16)

In this case the S/P ratio increases as
√
N with the growth of the system size. The
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S/P ratio for a fractal consisting of N particles should be larger than in Eq. (5.14)

and smaller than in Eq. (5.16). Let us now analyze the time evolution of the average

⟨S/P ⟩ ratio of the system during the fractal fragmentation. The ⟨S/P ⟩ ratio for a

system of N islands is defined as

⟨S/P ⟩ = 1

Nfr

Nfr∑
i=1

Si

Pi

, (5.17)

where Si and Pi is the area and the perimeter of i-th island, and Nfr is the number

of islands in the system. The ⟨S/P ⟩ ratio is a useful characteristic for the structures

morphology, often used in experiment [9].

The dependence of the ⟨S/P ⟩ ratio on time calculated for different sets of the

model parameters is shown in Fig. 5.6e and Fig. 5.6f. Curve 1 in Fig. 5.6e shows time

evolution of the ⟨S/P ⟩ ratio during the fractal relaxation in the case of the relatively

small binding energy between the particles being equal to 1 kBT . The ⟨S/P ⟩ ratio
in this case rapidly decreases until it reaches the minimum value 0.78 nm, i.e. the

S/P ratio which is slightly smaller than the value for a dimer of particles with

d0 = 2.5 nm. Figure 5.6 shows that the ⟨S/P ⟩ dependencies to large extend follow

the dependencies calculated for ⟨Rmax⟩.
The performed analysis provides a lot of useful information on the dynamical

evolution of the system during fragmentation. However, its direct comparison with

experimental measurements is rather difficult because the calculated distributions

vary with time, but the experimental measurements are usually performed for sta-

tionary (or quasi-stationary) systems. Nevertheless the comparison with experiment

is possible if the average life-time Tl of the studied configuration is greater than the

characteristic measurement time Tm:

Tl & Tm. (5.18)

Here, Tl is defined as the characteristic time-period at which an observable charac-

teristic, e.g., the number of fragments in the system, changes within the statistical

uncertainty, and Tm is the minimal time-period required to perform an experimental

measurement.

An important characteristic of the system’s stability, is the total number of frag-

ments Nfr in the system. At the equilibrium Nfr fluctuates around the average

constant value. Note, that Nfr may have similar behavior in a so-called kinetically
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trapped state, or a quasi-equilibrium state which is separated from the equilibrium

state by an energy barrier. The energy barrier between the kinetically trapped state

and the equilibrium state may be significantly larger than the thermal vibration

energy, therefore the trapped system may spend a noticeable lifetime in the kineti-

cally trapped state. This life-time can be sufficient for experimental measurements

and for holding Eq. (5.18). This means that the quasi-equilibrium value of Nfr

may come out different for different initial distributions of particles on a surface,

demonstrating that different evolution paths may lead the system to different final

quasi-equilibrium states. Below we analyze two examples supporting this hypothe-

sis.

Figure 5.11: Time evolution of the number of fragments/nucleation islands on a surface,
Nfr, during the fractal fragmentation process (line 1) and during the nucleation process
of randomly distributed particles (line 2). The calculations have been performed for a
650× 750 nm2 square substrate with periodic boundary conditions. Plots (a) and (b) have
been calculated at different values of the model parameters: (a) Eb = 1 kT , ∆ϵ = 0.2 kT ,
∆µ = 2 kT ; (b) Eb = 4 kT , ∆ϵ = 0.4 kT , ∆µ = 2 kT . The insets show the morphology
of the system at the end of the simulation.

Figure 5.11 depicts the time evolution of the number of fragments/nucleation

islands, Nfr, calculated (line 1) for the fractal having the initial shape as plotted

in Fig. 5.4a, and (line 2) during the nucleation process of randomly distributed

particles. The total number of constituent particles in both cases is equal to 5182.
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Figure 5.12: Time evolution of the island size distributions calculated for the nucleation
process of randomly distributed particles (plot a) and for the fractal fragmentation process
(plot b). The distributions have been calculated for the same values of the model parameters
as in Fig. 5.11b. The initial fractal shape has been chosen the same as in Fig. 5.4a.

The size of the substrate used in the simulation is identical in both cases, equal

to 650 × 750 nm2. Figure 5.11 shows that the inter-particle interaction influences

significantly the system dynamics. Thus, in the case of the weak bonding between

particles (i.e. Eb = 1 kBT , ∆ϵ = 0.2 kBT ), see Fig. 5.11a line 1, the fractal fragments

into ∼2320 islands, i.e. most of the particles in the system are bound in a form of

dimers. Remarkably, that at these model parameters particles randomly distributed

over a surface nucleate to approximately the same quasi-equilibrium value Nfr (line

2 in Fig. 5.11a). The insets in Fig. 5.11a illustrate the distribution of particles at

the instant t = 4 s in the case of nucleation and at t = 2.8 s for the fragmentation.

Figure 5.11a shows that the system can evolve from the very different initial states

to the same final state.

The fragments number evolution with time depend on the inter-particle inter-
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action as seen from Fig. 5.11b, obtained at larger Eb, Eb = 4 kBT , ∆ϵ = 0.4 kBT .

The quasi-equilibrium value of Nfr in this case depends on the initial distribution

of particles on a surface. The inset to Fig. 5.11b shows that both systems have

evolved in a group of droplets, whereby the size of the droplets created from the

initial fractal distribution of particles is larger than the size of the droplets created

via the nucleation.

Figure 5.11 shows that for the chosen model parameters the number of fragments

in the system becomes constant or changes slowly with time at sufficiently large t

value. The resulting static or quasi-static distributions of particles can be compared

with experimental observations. In the cases when the initial distribution of particles

on a surface influences the final morphology of the system means the system occupies

one of the kinetically trapped state. Although the quasi-equilibrium kinetically

trapped states do not have the lowest free energy, they may live for sufficiently

long time to perform experimental measurements of the system characteristics. The

asymptotic behavior of the fragments distribution with time is well seen in Fig. 5.12.

Figure 5.12 shows the time evolution of the island size distributions calculated for

the processes depicted in Fig. 5.11b. The island size distribution characterizing the

period 0− 2 s experiences significant variation, while the distribution during 2− 4 s

is almost static, with only a minor change.

5.3 Fragmentation of silver cluster nanofractals:

theory predictions versus experimental obser-

vations

In this section, S/P ratio distributions calculated after the fractal fragmentation

and the corresponding distributions of island sizes are compared with the results of

experimental measurements for silver fractal fragments created via annealing, and

by adding of oxide impurities to silver clusters [9].

Figure 5.13 shows the island size distributions and the corresponding S/P ratio

distributions calculated for the fractal fragmentation on the 650 × 750 nm2 with

periodic boundary conditions. The distributions plotted in Figs. 5.13a-b have been

obtained with the model parameters Eb = 3 kBT , ∆ϵ = 0.6 kBT , ∆µ = 10 kBT

at t = 4 s, i.e. well after the fractal fragmentation when the system evolves in the

almost stationary equilibrium or quasi-equilibrium state. In this case diffusion of
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Figure 5.13: S/P ratio distributions calculated after the fractal fragmentation with dif-

ferent sets of the model parameters and the corresponding distributions of island sizes.

Distributions (a) and (b) are calculated with Eb = 3 kBT , ∆ϵ = 0.6 Eb, ∆µ = 10 kBT ;

(c) and (d) with Eb = 4 kBT , ∆ϵ = 0.4 Eb, ∆µ = 2 kBT . Insets show the results of

experimental measurements for silver fractal fragments created via annealing (a) and (b),

and by adding of oxide impurities to silver clusters (c) and (d) [9].

particles along the fractal periphery is the dominating process. The increased rate

of particle peripheral diffusion leads to the faster island rearrangement, and the for-

mation of islands of different size, as seen in Fig. 5.13b. The insets in Fig. 5.13a-b

show the results of experimental measurements obtained for silver fractals fragmen-

tation via annealing at 600 K. The experimentally measured distribution of the silver

cluster island sizes is rather broad, with the most probable radius of silver islands

∼ 25 nm. A close value of 20 nm follows from the theoretical analysis. The discrep-

ancy may arise due to the thinner branches of the fractal used in the simulations as

compared to the ones analyzed in experiment.

Figures 5.13c-d show the island size distribution and the corresponding S/P ra-

tios distributions calculated with Eb = 4 kT , ∆ϵ = 0.4 kT , ∆µ = 2 kBT . The

results of numerical calculation are compared with the experimental data shown in

the insets to Figs. 5.13c-d on silver fractals grown with the oxidized silver nanopar-
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ticles [9]. In the experiment the most abundant radius of the silver cluster islands

is 18 nm, being in good agreement with the results of our calculations as seen from

Fig. 5.13d.

Note that the width and the position of the maximum in the calculated distribu-

tions shown in Fig. 5.13 are rather close to the experimentally observed ones while

the absolute value of the experimental and theoretical distributions differ quite sig-

nificantly. This happens because we analyze the dynamics of a single fractal, while

the experimental measurements deal with many fractals on a surface.
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Chapter 6

Summary and conclusions

This work is devoted to the theoretical study of the formation and post-growth

evolution of nanostructured materials fabricated by atomic clusters deposition on

a surface. For this study there was developed a method, which is based on the

kinetic Monte Carlo approach, and took into account internal diffusion processes of

an assembly of nanoparticles on a surface. With this approach it was demonstrated,

that the detachment of particles from the preformed island and their diffusion within

the island and over the surface determine the evolution scenarios of the pattern

morphology in course of the formation and post-growth relaxation.

The thesis begins with the theoretical analysis of the behavior of a single atomic

cluster on a surface. Stability, energy, and geometry of an atomic cluster on a solid

surface are studied with the method, which is based on the liquid drop model that

accounts for the interaction between the cluster and the solid, and takes into account

corrections related to deformation of the cluster on the solid surface. In chapter 3

it was shown, that the results of calculations performed within the framework of

the liquid drop model stand in a good agreement with the results of numerical

simulation based on a dynamic search for the most stable isomers in the course of

cluster growth. The results of calculations demonstrate the role of the deformation

as a factor determining the shape and stability of a cluster on the surface. The

proposed liquid drop model can be generalized to arbitrary cluster system with

various interactions between particles.

Mobility of a single nanoparticle, in context of the work - atomic cluster, plays

a key role in dynamics of an assembly of nanoparticles on a surface. In chapter 3

the results of the modeling of a cluster diffusion on a surface with the methods of

classical molecular dynamics are present. Influence of the various essential param-
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eters on diffusion of a cluster on a surface was investigated for concrete system:

silver nanoparticle on graphite surface. In particular, such parameters as the cluster

size, the binding energy between silver and carbon atoms and the temperature, were

considered.

In the present work, a Monte-Carlo based approach was developed to describe

the dynamics of an assembly of nanoparticles on a surface. This method accounts

for the free particle diffusion on a surface, aggregation into islands and detachment

from these islands. The main idea of the method is discussed in the chapter 4. The

suggested method is general and can be used in studies of the formation and relax-

ation processes of different nanoobjects deposited on a surface. The developed model

includes three parameters, which are determined by interatomic interactions in the

system and could in principle be theoretically calculated for each particular case on

the basis of the full atomistic approach for the dynamics of a single nanoparticle

on a surface. The model parameters can also be obtained from experiment and are

specific for different types of substrates and deposited materials. Developed method

was implemented in MBN Explorer computer package. In appendix B, one possible

implementation of developed model and corresponding logical tests, which are used

to validate the correctness of the implemented algorithms, are discussed in details.

In chapter 5, the results of application kinetic model to study formation and

fragmentation of nanofractals by nanoparticle deposited on a surface are discussed.

The process of the pattern formation on a surface was modeled for several different

scenarios. Based on the analysis of the results of simulations, criteria, which can be

used to distinguish between different patterns on a surface, for example: between

fractals or compact islands, were suggested. In this criteria, the morphology of a

pattern on a surface is determined by the particle deposition rate, which is defined

by the deposition flux, and the particle diffusion and rearrangement rates, which

are depended on the interparticle interactions. The suggested criteria can be used

to predict the final morphology of the growing structure.

In the thesis a systematical theoretical analysis of the post-growth processes

occurring in nanofractals on a surface is presented. For this analysis it was used

kinetic model for an assembly of nanoparticles on a surface. The simulations with

the developed method demonstrate, that the shape and number of the nanoislands

created on a surface in course of post-growth relaxation depend on the rate of a par-

ticle diffusion along a fractal periphery and a particle detachment rate. In chapter 5,

analysis of the dynamics of a nanofractal on a surface at various values of the model
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parameters within a wide range of values is presented. It reveals the main frag-

mentation scenarios of the system. The predictions of the developed method were

compared with the results of experimental observation silver fractals fragmentation

on a graphite surface. The suggested model is capable to reproduce the distribu-

tions of island sizes calculated after a fractal fragmentation for different scenarios

of fragmentation. The good agreement of the results of calculations obtained using

the developed method with the results of experimental measurements demonstrates

that it can be used for the modeling and analysis of dynamics of the nanostructured

materials on a surface.

The thesis presents a significant advance in the understanding of paths of the

formation and fragmentation of deposited nanosystems. It opens a broad spectrum

of questions for further investigations. Thus, it is interesting to explore the link of

the model parameters with the structural properties (both electronic and geometri-

cal) of the deposited particles and substrates as well as their thermal, mechanical,

electromagnetic, etc. properties. Thus, for instance introduced model parameters

can be determined from the molecular dynamics simulations of different diffusion

processes occurring on a surface.

In the performed analysis the deposited particles are assumed to be stiff, i.e.

without any internal degrees of freedom. However, the particle diffusion over a

surface may change quite significantly when the particle experiences deformation or

changes its phase state. Accounting for the detail internal structure and dynamics

of particles in the context of their diffusion is one of the next obvious steps towards

the better understanding of the very complex process discussed in this work.

In the present work nanoparticle dynamics in 2D is considered. Another obvious

important extension of the model is to investigate the role of the third dimension

in the process of fractal formation and fragmentation. This is especially interesting

to do, because there are many examples of three dimensional fractal systems in

biology [115,116], where the dendritic shapes are rather common. Understanding of

the growth evolution and fragmentation of such systems is very important and may

have applications in medicine.
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Appendix A

Parameters of the interatomic
interactions

This appendix contains parameters for some interatomic interactions. Some pa-

rameters listed here were used in calculations, which are discussed in this thesis.

Parameters, which were not used in this work also listed in the appendix to demon-

strate, that the same potentials can be applied for different type of materials.

A.1 Pairwise potentials

The simple pairwise potentials limited in their applications. However, noble gases

can be represented well with the Lennard-Jones potential since their atoms are only

attracted to each other by the van der Waals force. In present work, the argon

cluster structures was modeled via the Lennard-Jones potential. The parameters ϵ

and rmin corresponding to the van der Waals interactions between noble gas atoms

can be found, e.g., in Ref. [85] and some of them are compiled in Tab. A.1.

Table A.1: Parameters of the Lennard-Jones potential for different atomic pairs.

atomic pair ϵ (meV) rmin (Å) Ref. atomic pair ϵ (meV) rmin (Å) Ref.

Ar − Ar 12.3 3.80 [85] Ar − C 4.98 3.84 [88]

Kr −Kr 14.4 3.9 [85] Ni− C 23.04 2.85 [117]

Ne− Ar 6.0 3.4 [85] Pt− C 40.92 2.93 [117]
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The interaction between the atomic cluster and graphite surface can be modeled

with the Lennard-Jones potential, in case if they interact via thr weak van der

Waals force. In Tab. A.1 parameters ϵ and rmin corresponding to the van der Waals

interactions between different atomic pairs are presented, the references, which are

noted in the table, correspond to original works, where parameters was defined or

used.

The Morse potential is a simple model pair potential that has parameters β

and n which determine the width of the potential well and allows a wide variety of

materials to be modeled. Morse potential used to model interaction between metal

cluster and graphite surface. In Tab. A.2 parameters of Morse potential for the

different atomic pairs are shown.

Table A.2: Parameters of the Morse potential for different atomic pairs.

atomic pair ϵ (eV) r0 (Å) β (Å−1) n Ref.

Ag − C 0.29 2.35 2.66 3.46 [90]

Ni− C 2.43 1.74 1.87 2 [99]

A.2 Many-body potentials

Interaction between metal atoms are usually modeled via the many-body Sutton-

Chen potential. In Tab. A.3 parameters for several metallic atoms are listed.

Table A.3: Parameters of the Sutton-Chen potential for different metals

atom n m ϵ (eV) c a (Å) Ref.

Ni 9 6 0.015707 39.432 3.52 [50]

Ag(bulk) 12 6 0.002542 144.410 4.09 [50]

Ag(finite) 12 6 0.000188 144.360 4.04 [51]

Pt 10 8 0.019833 34.408 3.92 [50]
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Interaction between carbon atoms can be subdivided in two parts: short-range

and long-range interactions. The short-range interactions are usually modeled via

Brenner or Tersoff potentials. Table A.4 lists two sets of parameters introduced

in Ref. [53]. The long-range interactions arising between carbon atoms consist of

Table A.4: Two sets of parameters for the short-range carbon-carbon interaction modeled
via Brenner potential. The parameters were taken from Refs. [53].

parameter value parameter value

De (eV) 6.325 (6.000) a0 0.01130400 (0.00020813)

β (Å−1) 1.5 (2.1) d0 2.5 (3.5)

R0 (Å) 1.315 (1.390) c0 19 (330)

R1 (Å) 1.7 (1.7) S 1.29 (1.22)

R2 (Å) 2.0 (2.0) δ 0.80469 (0.5000)

Coulomb interactions (if the carbon atoms have partial charges) and van der Waals

interactions. The later are usually described via Lennard-Jones and are dependent

on the chemical surrounding of the interacting atoms.
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Appendix B

Implementation of the kinetic
model in MBN Explorer

Implementation of the kinetic model in MBN Explorer is based on the modified

version of the conventional kMC method. Consider a molecular system constituting

of a number of particles. For each particle in the system the number of possible

diffusion directions to be defined. Thereby, a particle can either diffuse freely, or

diffuse along the periphery of the already pre-formed structure as illustrated in

Fig. 4.1. A diffusion direction for a particle is chosen randomly in such a manner that

all possible diffusion directions are equally probable. For the given diffusion direction

the probability for particle diffusion is then calculated from the predefined physical

parameters input into the system, and the particle is translated with calculated

probability in the direction defined earlier.

The procedures are repeated at each simulation step of the random walk dy-

namics algorithm. The schematic representation of the algorithm is illustrated in

Fig. 4.2 and discussed in greater details in section 4.2.

To simplify the calculations, the random walk motion of particles is simulated on

a lattice (grid). A lattice in the simulation represents an artificial subdivision of the

entire simulation space into individual unit cells which can accommodate particles

in the system. A particle on the lattice can occupy only a single unit cell and can

move from the occupied cell only to the non-occupied neighboring cell (see Fig. 4.1).

The number of possible diffusion directions of a particle depends on the packing of

the lattice and on the number of occupied neighbor cells. MBN Explorer includes

the cubic and the hexagonal types of the lattice packing which are described in

sections B.1 and B.2 in greater details. The packing of particles on the lattice with
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the hexagonal packing of the unit cells in 2D is illustrated in Fig. 4.1.

The random walk task in MBN Explorer allows to model structure formation by

randomly adding particles into the system. The probability of adding a new par-

ticle into the system is manipulated by the keywords: Appearance Probability

and Particle Add Step. The keyword Appearance Probability determines the

maximal number of particles which can be added into the system at every step of

the simulation. The integer part of the specified value is equal to the number of

particles which is added at one step of the simulation. The fractional part of the

specified value defines the probability to add an additional particle. The keyword

Particle Add Step defines the intervals (in simulation steps) between the steps

at which new particles are added into the system. Every new particle added to the

system is placed to a randomly chosen non-occupied lattice cell.

The random walk dynamics algorithm is implemented in MBN Explorer for sev-

eral extensions, which allow to simulate problems of varied degrees of complexity.

Thus, the parameter Surface introduces a surface into the system and instructs

the program to add new particles in the vicinity of this surface. New particles are

added into a cell on the surface. If the cell where a particle is added appears to be

empty, the particle is allowed to move on the surface, otherwise, if the cell appears

occupied, the particle is shifted on the next level in the simulation lattice, thereby

increasing the thickness of the emerging structure on a surface. The algorithm which

is currently implemented in MBN Explorer assumes the surface to be located at the

lower border of the simulation box. The details of the random walk dynamics on a

surface are discussed in Sec. B.3.

Another feature of MBN Explorer is the possibility to control the dynamics of

particles belonging to the agglomerated structures in the system. The keyword

Internal Dynamic specified in the task file instructs the program to either allow

or prohibit the particles in the agglomerated structures to be immobile. If the

internal dynamics of particles in agglomerated structures is not takes into account

then only those particles which do not have any neighbors are allowed to move.

If the parameter Internal Dynamic is set to on, the probability of a particle

random motion inside the agglomerates structures is calculated by using the kinetic

equations, which are discussed in sections B.1 and B.2 in greater details.

Finally, MBN Explorer allows the user to specify the initial configuration of the

system in the input file before new particles are added to the system.
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B.1 Modeling of nanoparticle diffusion processes

on a cubic lattice

In this section, the random motion of a particle on a cubic lattice is discussed.

Cubic lattice is composed of equal cubic cells. Figure B.1 illustrates schematically

the lattice with the cubic packing of the unit cells. The position of a particle on

the lattice is defined by the coordinates of the cell which stores the particle. The

coordinates of a cell in the lattice is given by an unique set of three integer indices

(i, j, k), which represent the the sequence number of the cell in the x-, y-, and z-

directions, correspondingly. The numeration of the unit cells starts from the left

lower corner of the simulation box. Note that in the general case the coordinates

of the unit cell with the indices (0, 0, 0) do not coincide with the origin of the

laboratory coordinate frame. The size of the unit cell in the lattice is equal to the

particle diameter and is defined by the user through the parameter Cell Size in

task file, see Fig. B.1a.

Figure B.1: Schematic representation of the cubic lattice, used for the simulation of
particle motion with the cubic cell packing: (a) side view of the lattice; (b) perspective
view of the lattice.

The position of a particle in space is given by the three coordinates (x, y, z).

These coordinates are related to the indices (i, j, k) of the unit cell which stores the

particle through the following relations
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x =
d(2i+ 1)

2
+Box Center X−Box Size X/2 (B.1)

y =
d(2j + 1)

2
+Box Center Y−Box Size Y/2 (B.2)

z =
d(2k + 1)

2
+Box Center Z−Box Size Z/2, (B.3)

where d is the particle diameter, defined by the parameter Cell Size. The dimen-

sions of the simulation box in the X, Y and Z directions are specified by the param-

eters Box Size X, Box Size Y and Box Size Z, respectively. Box Center X,

Box Center Y and Box Center Z are the coordinates of the center of the sim-

ulation box. Equations (B.1)-(B.3) allow to obtain the indices of the cell (i, j, k)

which stores a particle with the coordinates (x, y, z) as follows

i =
x+Box Size X/2−Box Center X

d
− 1

2
(B.4)

j =
y +Box Size Y/2−Box Center Y

d
− 1

2
(B.5)

k =
z +Box Size Z/2−Box Center Z

d
− 1

2
. (B.6)

Equations (B.4)-(B.6) are used by MBN Explorer to attribute a certain particle to

a particular cell in the simulation lattice. These equations are especially important

when the program reads the user-specified input configuration of a system from the

input file.

The random walk dynamics algorithm implemented in the current version of MBN

Explorer does not allow a particle on the lattice to move on a distance exceeding

the particle’s diameter. Therefore, a particle on the cubic lattice cannot “jump”

to the diagonal neighboring cells or be translated over two or more cells during

one simulation step (see Fig. B.1). For each particle in the lattice, the algorithm

randomly picks a direction where it can be displaced. A particle on the cubic lattice

in 3D can have up to six equivalent neighbor positions, while in 2D the number

of neighbor positions is restricted to four. For a free particle (i.e. which is not

surrounded by any other particles) occupying a cell with the indices (i, j, k) on the

cubic lattice the list of the possible neighbor positions is
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(i,j,k-1) (i,j-1,k)

↖ ↑

(i-1,j,k) ← (i,j,k) → (i+1,j,k).

↓ ↘

(i,j+1,k) (i,j,k+1)

If a cell which stores a particle has one (or several) neighbor cell being occupied by

other particles, than those occupied cells are defined as excluded, and are not taken

into account during the random motion of the particle.

The probability of a particle diffusion in a certain direction is calculated with the

use of the kinetic equation which is governed by the number of broken bonds due to

the particle’s displacement. Let us assume, that two particles on a cubic lattice as

bound if they occupy two neighbor cells. Note that the cubic lattice imposes certain

conditions on the motion of a particle along the periphery of any agglomerated

structure which may form in the course of the simulation (see Fig. B.1). If a particle

on the border of such an agglomerated island is bound with another (or with several)

particle inside of the island, it does not preserve any of its bonds with the neighbor

particles after it experiences a displacement. The detachment rate of a particle is

then given by

Γe(l) = ν exp

[
− lEb

kBT
− ∆µ

kBT

]
, (B.7)

where l is the number of bonds broken after particle detachment from the island,

Eb is the binding energy of two particles, ∆µ is the chemical potential of a parti-

cle detachment [2, 10, 102, 103], ν is the attempt escape rate of a particle from its

equilibrium position, T is the temperature of the system and kB is the Boltzmann

constant. Note that Eq. (B.7) does not account for the bonds which may be created

in the system when a particle diffuses. The feature of Eq. (B.7) is easy to under-

stand. Indeed, in our model the particle diffusion process is considered stepwise, i.e.,

at each step of the computation a particle is displaced with the certain probability

on the distance equal to its diameter in a random direction. But prior the particle is

displaced to its new location there is no information about the newly created bonds

in the system. Therefore only those bonds which the particle forms with neighbors

prior the displacement influence the diffusion dynamics in the system.
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A free particle (i.e. a particle without any neighbors) moves in a randomly chosen

direction with a unit probability, i.e. it displacement rate is equal to one.

B.2 Modeling of nanoparticle diffusion processes

on a hexagonal lattice

Another type of particle packing, considered in MBN Explorer, is the hexagonal

type of packing. In this case the particle random dynamics is restricted to the

hexagonal lattice. The simplified schematic representation of two sequential layers

of the hexagonal lattice is shown in Figs. B.2-B.3. The indexes of the individual

unit cells in the lattice are indicated. Figures B.2-B.3 show that a particle on the

hexagonal lattice in 3D can have up to twelve equivalent neighbor positions, while

in 2D this number is reduced to six.

Figure B.2: The simplified schematic representation of a layer of cells in the hexagonal
lattice. Plot (a) shows the general structure of the hexagonal lattice with an even z-index;
(b) shows that a cell in the lattice has six equivalent neighbor cells within the same plane;
(c) and (d) illustrate that a cell in the hexagonal lattice has three neighbor cells above and
below itself.

The position of a particle on the hexagonal lattice is defined by the unique

set of three integer indices (i, j, k). The coordinates (x, y, z) of the particle in the

laboratory coordinate frame are related to these indices. MBN Explorer numbers

the unit cells sequentially, starting from the left lower corner of the simulation box.

The coordinates of a particle on the hexagonal lattice are related to the coordinates

of the unit cell as follows
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Figure B.3: Similar to Fig. B.2. The figure illustrates that the unit cells in the next layer
in the hexagonal grid has the same number of neighbor cells as in the case of Fig. B.2.
The figure shows the hexagonal lattice for the case of the odd z-index.

x =


d

(
i+

1

2

)
+Box Center X− Box Size X

2
, j ∈ even

di+Box Center X− Box Size X

2
, j ∈ odd

(B.8)

y =


d (jhy +∆hy) +Box Center Y− Box Size Y

2
, k ∈ even

djhy +Box Center Y− Box Size Y

2
, k ∈ odd

(B.9)

z = dkhz +Box Center Z− Box Size Z

2
. (B.10)

Here hz = 0.816497 d is the distance between two neighbor planes in the hexagonal

lattice along the z-direction, hy = 0.866025 d is the distance between two rows of

unit cells in the y-direction and ∆hy = hy/2 is the shift of a row in the odd plane

relative to the even plane in units of a particle diameter, see Fig. B.4.

Let us to define the list of possible neighbor positions for a particle with the in-

dices (i, j, k) on the hexagonal lattice in the most general case of a three-dimensional

lattice. The indices of the list of possible neighbor positions for the particle depend

on the parity of the indices k and j. Figures B.2-B.3 show schematically the hexag-

onal grid for the even and odd planes respectively. Figure B.2b illustrates how the

indices of the particle neighbor positions depend on the parity of the row index j,

assuming the particle to be located in the plane with an even index k. Figure B.2c

illustrate how the indices of the particle neighbor position change in the planes
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Figure B.4: The important lengths hz, hy and ∆hy used to define the spatial location of
unit cells in the hexagonal lattice.

above and below the plane containing the particle. In this case the indices of the

cells depend on the parity of the index j and the parity of the index k.

Figures B.3b-c illustrate the numbering scheme of the unit cells in the case of k

being odd. Depending on the parity of the indices j and k one should distinguish

between four different cases, which are summarized in the table below

k − even k − even k − odd k − odd

j − even j − odd j − even j − odd

(i+ 1, j, k) (i+ 1, j, k) (i+ 1, j, k) (i+ 1, j, k)

(i− 1, j, k) (i− 1, j, k) (i− 1, j, k) (i− 1, j, k)

(i− 1, j + 1, k) (i, j + 1, k) (i− 1, j + 1, k) (i+ 1, j + 1, k)

(i, j + 1, k) (i+ 1, j + 1, k) (i, j + 1, k) (i, j + 1, k)

(i− 1, j − 1, k) (i, j − 1, k) (i− 1, j − 1, k) (i, j − 1, k)

(i, j − 1, k) (i+ 1, j − 1, k) (i, j − 1, k) (i+ 1, j − 1, k)

(i, j, k − 1) (i, j, k − 1) (i, j, k − 1) (i, j + 1, k − 1)

(i, j − 1, k − 1) (i, j − 1, k − 1) (i, j, k + 1) (i, j + 1, k + 1)

(i− 1, j − 1, k − 1) (i+ 1, j − 1, k − 1) (i− 1, j + 1, k − 1) (i+ 1, j + 1, k − 1)

(i, j + 1, k + 1) (i, j + 1, k + 1) (i− 1, j + 1, k + 1) (i+ 1, j + 1, k + 1)

(i, j − 1, k + 1) (i, j − 1, k + 1) (i, j + 1, k − 1) (i, j, k − 1)

(i− 1, j − 1, k + 1) (i+ 1, j − 1, k + 1) (i, j + 1, k + 1) (i, j, k + 1)

The motion of particles on the hexagonal lattice in MBN Explorer is modeled similar
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to the random walk dynamics of particles on the cubic lattice. However, in the case

of the random dynamics on the hexagonal lattice, a particle can experience diffu-

sion along the periphery of an agglomerated island, thereby maintaining some of its

bonds with the neighbors. Therefore, in the case of a random walk dynamics on the

hexagonal lattice one needs to distinguish between two possibilities: (i) a particle

can diffuse along the periphery of an agglomerated island and maintain some of its

bonds, or (ii) evaporation from an agglomerated island without keeping any bonds.

Thus, the probability of the particle evaporation (detachment) process is given

by:

Γe(l) = ν exp

[
− lEb

kBT
− ∆µ

kBT

]
, (B.11)

where l is the number of bonds broken after particle detachment from the island,Eb

is the binding energy of two particles, ∆µ is the chemical potential of particle detach-

ment [2,10,102,103], ν is the attempt escape rate of a particle from its equilibrium

position, T is the temperature of the system and kB is the Boltzmann constant.

The diffusion rate of a particle along the periphery of an agglomerated island

reads as

Γd(n,m) = ν exp

[
−mEb

kBT
− n∆ϵ

kBT

]
, (B.12)

here m is the number of bonds that are broken due to particle motion, n is the num-

ber of maintained neighboring bonds between two particles and ∆ϵ is the diffusion

energy barrier.

B.3 Modeling of nanoparticle diffusion processes

on a surface

The self-organization of nanoparticles plays an important role in the process of

nanostructure formation on a surface. The understanding of the mechanisms of self-

organization on the nanoscale is very important because this my provide essential

tool for the control and manipulation of nanoparticle’s dynamics on a surface. The

random walk dynamics module in MBN Explorer allows the user to perform sim-

ulations of a nanostructure formation on a surface. Thus, the parameter Surface

introduces a surface into the system and instructs the program to add new particles

in the vicinity of this surface. New particles are added into a randomly chosen cell
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on the surface. If the cell where a particle is to be added appears to be empty,

the particle is allowed to move on the surface, otherwise, if the cell is occupied, the

particle is shifted on the next level in the simulation lattice, thereby increasing the

thickness of the emerging structure on a surface. The algorithm which is currently

implemented in MBN Explorer assumes the surface to be located at the lower border

of the simulation box (see Fig. B.5).

Figure B.5: Spatial organization of a fictitious surface inside the simulation box used in
MBN Explorer.

A particle on the surface diffuses with the rate

Γdiff = ν exp

[
− Ea

kBT

]
, (B.13)

where Ea is the activation energy, ν is the attempt escape rate, T is the temperature

of the system and kb is the Boltzmann constant.

If the particles in the system are simulated in 3D, they are allowed to leave

the surface. The probability of particle evaporation from the surface in the present

model depends on the binding energy between the surface and the particle and is

defined as

Γevap = ν exp

[
−Esub

kBT

]
, (B.14)
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where Esub is the binding energy between a particle and a surface. The process

of particle diffusion on a surface, modeled on a lattice with the hexagonal packing

of unit cells, is schematically illustrated in Fig. B.5 and Fig. 4.1. The relaxation

of the agglomerated islands is driven by the diffusion of particles along the island

periphery and particle detachment from the island. Both processes are schematically

illustrated in Fig. 4.1. The diffusion rate of a particle along the periphery of an island

can happen with or without particle’s evaporation from the substrate. In the case

if a particle does not leave the surface of a substrate due to the diffusion along the

island’s periphery the rate of particle hoping is given by

Γsurf
d (m,n) = ν exp

[
−mEb

kBT
− n∆ϵ

kBT
− Ea

kBT

]
, (B.15)

where m is the number of bonds that are broken due to the particle motion, Eb is

the binding energy of two particles, n is the number of maintained neighbor bonds

between two particles and ∆ϵ is the diffusion energy barrier, ν is the attempt escape

rate. If a particle detaches from the substrate, but still diffuses along the periphery

of the agglomerated structure the diffusion rate is defined as

Γdetach
d (m,n) = ν exp

[
−mEb

kBT
− n∆ϵ

kBT
− Esub

kBT

]
, (B.16)

where Esub is the binding energy between a particle and the surface. The evapora-

tion (detachment) rate of a particle from an island, without evaporating from the

substrate is given by

Γe(l) = ν exp

[
− lEb

kBT
− ∆µ

kBT
− Ea

kBT

]
, (B.17)

where l is the number of bonds broken after particle detachment from the island,

∆µ is the chemical potential of particle detachment, ν is the attempt escape rate of

a particle from its equilibrium position.

The detachment rate of a particle from an island and from the surface is defined

as

Γevap(l) = ν exp

[
− lEb

kBT
− ∆µ

kBT
− Esub

kBT

]
, (B.18)

where Esub is the binding energy between the particle and the substrate. In the

algorithm implemented in MBN Explorer the interaction with the different types of

surfaces can be modeled by varying the parameters Ea and Esub parameters through
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changing the value of theActivation Energy and Surface Binding Energy key-

words in the task file. Parameter Ea is related to the value of the diffusion constant

D of a particle as

D =
d2ν1
2z

exp

[
− Ea

kBT

]
. (B.19)

Here d0 is the diameter of the particle, and z is defined by the dimensionality of

space [97, 98, 101]. In the case of particle diffusion on a surface z = 2, while in the

3D case z = 3.

Equations (B.13)-(B.18) are written in the most general case, and describe the

dynamics of particles on a surface three dimensions. In a two-dimensional case a

particle cannot detach from the surface and therefore the parameter Esub in the

task-file can be omitted. In the case of the simulation an a cubic lattice a particle

can only evaporate from an island. Therefore, in this case, Eqs. (B.17)-(B.18) are

used to calculate the rate of the particle evaporation.

B.4 Computation tests for the nanoparticle diffu-

sion processes

The test examples of random walk dynamics are used to validate the correctness

of the random walk algorithms implemented in MBN Explorer. The random walk

dynamics module of MBN Explorer allows to model different types of self-organized

structures such as fractals or compact islands in 2D or in 3D. The examples of

random walk dynamics are focused on probing various physical properties of the

system’s behavior, which could be alternatively calculated analytically, because it

is impossible to perform an exactly identical random walk dynamics simulations in

alternative programs due to the stochastic nature of particle’s trajectory.

One random walk step for the particles confined on a 2D cubic lattice

In this test 10000 identical particles are positioned on a 2D cubic lattice (see sec-

tion B.1 for more information) which has the dimensions 303 × 303 cells. The

particles are positioned so that the distance between two neighbor particles is equal

to 2 empty cells in each direction. Therefore, at the first step of the random walk

dynamics the motion of each particle is not affected by the interaction with other

particles, i.e. the particles can be considered as moving statistically independent.
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Figure B.6: Position of the
particles on the cubic grid
prior displacement.

In this example after one step of the random walk

dynamics each particle can shift with equal probabil-

ity into positive or negative directions of the horizontal

or vertical axes of the 2D lattice. The test example is

terminated after the first step of the random walk dy-

namics and the number of particles displaced in each

of the four possible directions is calculated.

Let us denote by ρr the fraction of particles that

is moved to the right from their initial position during

the first simulation step. Obviously, ρr → 0.25 if the

number of particles in the system is approaching in-

finity. However, for a limited but large number of particles in the system the values

of ρr should be close to 0.25 with a certain probability. Let us assume that the

distribution of ρr is Poisson. Then, for a given simulation result, the probability

to obtain the value of ρr in the interval (0.25− 3σ . . . 0.25 + 3σ) is equal to 0.996,

where σ is the so-called dispersion of the Poisson distribution. σ is a function of the

number of particles in the system and can be calculated as:

σ =

√
Nρr
N

, (B.20)

where N is the number of particles in the system (104 in the current test example).

Substituting the number of particles N into Eq. (B.20) one obtains σ = 0.005.

Therefore the 3σ-confidence interval for ρr is 0.235 . . . 0.265. The completion of

current test is considered to be successful if the fractions of particles moved in each

of the four possible directions are within the 3σ-confidence interval.

One random walk step for the particles confined on a 3D cubic lattice

In this test example 10000 identical particles are positioned on a 3D cubic lattice

(see section B.1 for more information) which has the dimensions 303× 303× 3 cells.

The particles are positioned so that the distance between two neighbor particles on

the plane is equal to 2 empty cells in each direction (similar to the pervious test

example). Therefore, in the course of the first step of the random walk dynamics

the motion of each particle is not affected by the interaction with other particles,

i.e. the particles can be considered as moving statistically independent.

After one step of the random walk dynamics each particle can shift with equal
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probability into six directions, which correspond to the positive or negative directions

of the axes of the 3D lattice. The current test example is terminated after first step

of the random walk dynamics and the number of particles displaced in each of the

six possible directions is calculated.

The dispersion σ of the Poisson distribution of the number of particles moved

in a certain direction is evaluated using Eq. (B.20) with σ being equal to 0.004.

Therefore, the 3σ-confidence interval for ρr is 0.154 . . . 0.179, since ρr −→ 0.1667 in

the 3D case. The completion of current test example is considered to be successful

if the fractions of particles moved in each of the six possible directions are within

the 3σ-confidence interval.

One random walk step for the particles confined on a 2D hexagonal lattice

Figure B.7: Position of
the particles on the hexagonal
grid prior displacement.

In this test example 10000 identical particles are po-

sitioned on a 2D hexagonal lattice (see section B.2 for

more information) with has the dimensions 306× 306

cells. The particles are positioned so that the distance

between two neighbor particles on the plane is equal

to 2 empty cells in each direction. Therefore, in the

course of the first step of the random walk dynamics

the motion of each particle is not affected by the in-

teraction with other particles, i.e. the particles can be

considered as statistically independent.

After one step of the random walk dynamics each

particle can shift with equal probability in one of the six possible directions, see

section B.2. The current test example is terminated after first step of the random

walk dynamics and the number of particles displaced in each of the six possible

directions is calculated.

The dispersion σ of the Poisson distribution of the number of particles moved in

a certain direction is evaluated using Eq. (B.20) and σ is equal to 0.004. Therefore,

the 3σ-confidence interval for ρr is 0.154 . . . 0.179. The completion of current test

is considered to be successful if the fractions of particles moved in each of the six

possible directions are within the 3σ-confidence interval.
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One random walk step for the particles confined on a 3D hexagonal lattice

In this test example 10000 identical particles are positioned on a 3D hexagonal lattice

(see section B.2 for more information) which has the dimensions 306× 306× 4 cells.

The particles are positioned so that the distance between two neighboring particles

on the plane is equal to 2 empty cells. Therefore, in the course of the first step of the

random walk dynamics the motion of each particle is not affected by the interaction

with other particles, i.e. the particles can be considered as moving statistically

independent.

After one step of the random walk dynamics each particle can shift with equal

probability in one of the twelve possible directions, see section B.2. The current

test example is terminated after the first step of the random walk dynamics and the

number of particles displaced in each of the twelve possible directions is calculated.

The dispersion σ of the Poisson distribution of the number of particles moved

in a certain direction is evaluated using Eq. (B.20) and σ in this example is equal

to 0.0029. Therefore, the 3σ-confidence interval for ρr is 0.075 . . . 0.092. The com-

pletion of the current test is considered to be successful if the fractions of particles

moved in each of the twelve possible directions are within the foregoing 3σ-confidence

interval.

Deposition of particles on the 2D cubic lattice

Figure B.8: Snapshot of the parti-
cles distribution on the cubic lattice.

In this test example identical particles are se-

quentially, one by one, deposited on a 2D square

lattice which has the dimensions 200×200 cells.

After the deposition the particles are not allowed

to move. The coordinates for deposited parti-

cles are determined randomly. Therefore, the

deposited particles should uniformly cover the

surface of the substrate. The position of the

system’s center of mass is calculated after the

deposition of 4000 particles.

The position of the system’s center of mass

can be predicted with a certain accuracy to be

located in the vicinity the geometrical center of the substrate. In the current test

example the coordinate frame origin is located at the geometrical center of the
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substrate. Assuming the normal distribution of particles, the value of the dispersion

of σ is calculated as follows:

σ =

√∑Nd

i=0 (xi − µ)
2

Nd

, (B.21)

where µ = 0 since the coordinate frame origin coincides with the geometrical center

of the substrate, Nd is the width or the length of the substrate along the X and Y

directions. Nd = 200 in the current test example, being the number of cells in X,

and Y directions.

The so-called 3-sigma confidence interval δ for the system’s center of mass posi-

tion can be calculates as

δ =
3σ√
N
, (B.22)

where N is the number of particles in the system (4000 in the current test example),

and σ is the dispersion of the particle’s distribution calculated using Eq. (B.21).

Performing numerical evaluation of the expressions above one obtains the value

δ = 2.75. Therefore, with a probability of 99.2% the center of mass of 4000 randomly

deposited particles should be located within a square of 5.5 × 5.5 cells around the

geometrical center of the substrate. The current test is considered to be completed

successfully if the system’s center of mass is within the afore mentioned square

around the coordinate frame origin.

One random walk step for the particles confined on a 2D hexagonal lattice
with five unmovable neighbors

In the current test example 5625 identical moveable particles are positioned on a 2D

hexagonal lattice (see section B.2 for more information) which has the dimensions

404 × 404 cells. Each moveable particle have 5 unmovable neighbors, see figure to

the right.

Each particle interact with the particles located in the neighbor cells. In the

present example the interaction energy (or the so-called binding energy) between

two particles is equal to 1 kBT , where kB and T are the Boltzmann constant and

the absolute temperature, respectively. In the current test example the diffusion

barrier energy is chosen to be equal to 0.2 kBT . Therefore, the probability of a
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movable particle to change the position during one step of the random walk can be

evaluated using Eq. (B.12) and is equal to 0.033.

Figure B.9: A particle on
the 2D hexagonal grid sur-
rounded with five unmovable
neighbor particles

The average number of particles that have changed

their position after one step of the random walk dy-

namics simulation and the dispersion of this value can

be calculated assuming the Poisson’s statistics as fol-

lows:

λ = np (B.23)

σ =
√
λ, (B.24)

where n is the total number of movable particles (5626 in the current test example)

and p = 0.033 is the probability of a movable particle to change the position during

one step of the random walk dynamics, λ is the expected value of the shifted particles

and σ is the dispersion of λ.

Evaluating the expressions in the Eqs. (B.23)-(B.24) one obtains λ = 185 and

σ = 13.6. Therefore the 3σ-confidence interval for the number of shifted particles

(ns) is [144 . . . 226]. The current test is considered to be accomplished successfully

if the calculated value of the shifted particles is within the afore mentioned 3σ-

confidence interval.

Aggregation of particles on a three-dimensional cubic lattice

This test example illustrate the aggregation of particles on the three-dimensional

cubic lattice with the periodical boundary condition. New particles are added to

the system with the predefined appearance probability.

A parameter which can be checked in this example is the number of particles at

the end of the simulation (i.e. after 1000 simulation steps). The kinetic parameters

Eb and ∆µ are equal to 2.0 kBT . and 3.0 kBT respectively, while the temperature

equals to T = 300K. In this test example new particles appear in the simulation box

after every 20 simulation steps, with appearance probability equal to 2.5. Therefore

the expectation number of particles N that were added into the system after 1000

simulation steps is calculated as
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N =

(
n [pa]

nadd

+ 1

)
+ λ (B.25)

λ =

(
n

nadd

+ 1

)
(pa − [pa]), (B.26)

Figure B.10: Snapshot of
the self-organized particles on
a three-dimensional cubic lat-
tice.

where n is the number of simulation steps, nadd is the

periodicity of adding new particles into the system, pa

is the appearance probability of new particles in the

system, [pa] is the integral part of pa. λ in Eq. (B.25)

is the expected value of the number of particles added

to the system in the course of the entire simulation

if the probability to add a particle on each step is

equal to pa − [pa]. Evaluating the expressions in the

Eqs. (B.23)-(B.24) one obtains σ = 5.0. Therefore

the 3σ-confidence interval for the number of particles

N is [110 . . . 140]. The current test is considered to

be accomplished successfully if the calculated value of

the number of particles at the end of simulation is within the afore mentioned 3σ

interval.

Aggregation of particles on a two-dimensional hexagonal lattice, compact
islands formation

Figure B.11: Snapshot of
the random walk dynamics
simulation on the 2D hexag-
onal grid.

This test example illustrates the aggregation of

particles on the two-dimensional hexagonal lattice with

the periodical boundary condition. New particles are

added to the system with the predefined particle ap-

pearance probability. At the end of the simulation

compact islands are formed. The particles are moved

with the rates which are calculated with the kinetic

equations see section B.2. In this test example the ki-

netic parameters Eb, ∆µ and ∆µ are equal to 3.0 kBT ,

0.1 kBT and 10.0 kBT respectively, while the temper-

ature equals to T = 300 K.
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Aggregation of particles on a two-dimensional hexagonal lattice, fractal
islands formation

Figure B.12: Snapshot of
the random walk dynamics
simulation on the 2D hexag-
onal grid.

This test example illustrates the aggregation of par-

ticles on the two-dimensional hexagonal lattice with

the periodical boundary condition. New particles are

added to the system with the predefined particle ap-

pearance probability. At the end of the simulation

fractal islands are formed. The particles are moved

with the rates which is calculated with the kinetic

equations see section B.2. In this test example the ki-

netic parameters Eb, ∆µ and ∆µ are equal to 30 kBT ,

15 kBT and 100 kBT respectively, while the tempera-

ture equals to T = 300 K.
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M. Schmidt, and C. Bréchignac. 2007. Chemically induced morfology change

in cluster-based nanostructures. Eur. Phys. J. D. 43:151–154.

[20] Whitesides, G. and B. Grzybowski. 2002. Self-assembly at all scales. Science.

295:2418–2421.

[21] Bishop, K., C. Wilmer, S. Soh, and B. Grzybowski. 2009. Nanoscale forces

and their uses in self-assembly. Small. 5:1600–1630.



Bibliography 133

[22] Nykypanchuk, D., M. Maye, D. van der Lelie, and O. Gang. 2008. DNA-

guided crystallization of colloidal nanoparticles. Nature. 451:549–552.

[23] Park, S., A. Lytton-Jean, B. Lee, S. Weigand, G. Schatz, and C. A. Mirkin.

2008. DNA -programmable nanoparticle crystallization. Nature. 451:553–556.

[24] Cui, Y. and C. Lieber. 2001. Functional nanoscale electronic devices assembled

using silicon nanowire building blocks. Science. 291:851–853.

[25] Shevchenko, E., D. Talapin, N. Kotov, S. O’Brien, and C. Murray. 2006. Struc-

tural diversity in binary nanoparticle superlattices. Nature. 439:55–59.

[26] Hyde, G., S. M. Cullen, S. Jeon, S. Stewart, H. Jeon, E. Loboa, and G. Parsons.

2009. Atomic layer deposition and biocompatibility of titanium nitride nano-

coatings on cellulose fiber substrates. Biomed. Mater. 4:025001–(1–10).

[27] Demyashev, G., A. Taube, and E. Siores. 2002. Surface modification of tita-

nium carbide with carbyne-containing nanocoatings. J. Nanosc. Nanotechnol.

2:133–137.

[28] Bhattacharyya, S., T. Chini, D. Datta, R. Hippler, I. Shyjumon, and

B. Smirnov. 2008. Processes involved in the formation of silver clusters on

silicon surface. J. Exp. Theor. Phys. 107:1009–1021.
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