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Abstract
The research performed in the DeepThought
project (http://www.project-deepthought.net)
aims at demonstrating the potential of deep
linguistic processing if added to existing shal-
low methods that ensure robustness. Classical
information retrieval is extended by high preci-
sion concept indexing and relation detection.
We use this approach to demonstrate the fea-
sibility of three ambitious applications, one of
which is a tool for creativity support in docu-
ment production and collective brainstorming1.
This application is described in detail in this
paper. Common to all three applications, and
the basis for their development is a platform for
integrated linguistic processing. This platform
is based on a generic software architecture that
combines multiple NLP components and on
robust minimal recursive semantics (RMRS)
as a uniform representation language.

1 Introduction
The challenges of the knowledge society can-
not be met without getting at the contents of the
vast volume of digital information. The con-
cept of a semantic web is a viable vision; hop-
ing, however, that the semantic structuring of
such large volumes of unstructured information

1The two other applications investigated within the
project are: precise information extraction for business
intelligence and email response management for cus-
tomer relationship management.

can be achieved by human authors or editors, is
rather naive. It is therefore necessary to find
solutions for natural language processing that
on the one hand, output precise and informa-
tive semantic information and are, on the other
hand, robust and efficient.

Deep NLP systems try to apply as much lin-
guistic knowledge as possible during the anal-
ysis of sentences and result in a uniformly rep-
resented collection of the knowledge that con-
tributed to the analysis. The result often con-
sists of many possible analyses per sentence re-
flecting the uncertainty which of the possible
readings was intended – or no answer at all if
the linguistic knowledge was contradictory or
insufficient with respect to the input sentence.

Shallow NLP systems do not attempt to
achieve such an exhaustive linguistic analy-
sis. They are designed for specific tasks ignor-
ing many details in input and linguistic frame-
work. Utilizing rule-based (e.g., finite-state) or
statistics-based approaches, they are in general
much faster and more robust than deep NLP
systems.

As the project aims at evaluating the idea of
combining different types of linguistic process-
ing modules by three different applications, the
commonly used core system must be efficient,
robust and flexible.

The idea of DeepThought is to preserve the
advantages of shallow processing, i.e., robust-
ness and efficiency, while adding more accu-
racy and depth in a controlled fashion at places



where the application has a real demand for
such increase in semantic analysis (Uszkoreit,
2002). The goal is to provide a system that
combines different types of linguistic process-
ing and that can be used for various types of
applications in a flexible way. One of these is
the novel type of application described in this
paper. This application supports creative docu-
ment production. To this end it combines func-
tionality for document production and editing
with advanced semantic information retrieval
and question answering. We have designed and
implemented a fully functional prototype. In
this paper we describe the prototype and the
methodology developed for combining the re-
spective virtues of different processing meth-
ods. Using some examples we will illustrate the
collaboration of NLP components in the new
architecture.

2 Creative Authoring Support
When new ideas are produced, discussed, and
presented, a large proportion of the effort goes
into looking up and combining existing pieces
of information. The reasons for this are simple:
(i) the completely new ideas and facts only con-
stitute a tiny fraction of the total content and (ii)
we cannot keep all the cited facts and sources in
our memory.

If the lookup of facts, sources, references,
pictures can be performed with greater ease and
speed, the creative process gains immensely in
efficiency. If the authors are not constantly
interrupted by searches and if they can spend
more time on the truly creative portions of the
task, the quality of the results will also consid-
erably improve.

Everyone who has ever authored a document
remembers the numerous disruptions in situa-
tions when information is missing and it has to
be looked up. Only a few years ago, one had to
consult books, journals, and archives to find the
required data. Today, much of the lookup can
be done on the Internet or on other electroni-
cally accessible repositories. Nevertheless, any
lookup is disruptive. Experienced writers do
not stop the creative process each time some
piece of information is missing, but rather in-
sert a note for later lookup. Our basic idea

is that this lookup can be performed automati-
cally. This can happen while the author contin-
ues to write, or even after hours. While search
and presentation are automated, the selection
and the actual creative tasks are left to the hu-
man author.

The need for looking up information also oc-
curs when complex charts or other figures are
composed. Only in rare cases does the author
really need to draw the pictorial elements from
scratch. Today, symbols, icons or other graph-
ical elements are readily available in clip art
collections, graphics archives, or on the web.
Again, one can delay the search for missing el-
ements by inserting a dummy shape such as an
empty rectangle or a circle together with a note.

2.1 An example
In a creative meeting, the participants collec-
tively develop a marketing plan for mobile
phones. The moderator stands in front of the
group entering the contributions onto an elec-
tronic flipchart (e.g., a SmartBoard) by means
of electronic pen and microphone. She might
want to insert information about the functional-
ity of a Nokia 8890 and – using her microphone
– dictates the question ‘Does the Nokia 8890
possess Bluetooth?’ to the application and then
pushes the button for ‘search’. While the dis-
cussion continues the system searches for the
answer. Whenever a search is completed, the
question will turn in to green or red, depending
whether an answer has been found or not. If
a green query is clicked, a menu appears that
lists the most highly ranked answer candidates.
The answers contain links to their source, such
that a browser window can be opened that con-
tains more information about the topic (say, in
this case, a web page on the features of Nokia
8890). Next, the moderator may want to in-
sert a picture of the phone set on the flipchart
. In this case, the analysed query is compared
with analyses of natural language descriptions
of pictures (such as ‘this is a picture of the
Nokia 8890’), and the best matches will be in
the menu to choose.

3 Linguistic Challenges
The described application opens up a bag of
challenges to linguistic processing. Answering



questions requires information of varying gran-
ularity. On the one hand, the analysis of query
and possible answers must be robust. It may
contain named entities, which requires more ro-
bust processing than can be provided by deep
parsing. As we also allow speech input, the
processing must be able to deal with spoken
language and recognition errors. On the other
hand, the analysis must be as exact as possi-
ble. We want to be able to account for nega-
tion scope and predicate-argument relations in
more complex queries like “I want a picture
of a Nokia phone, but not the Nokia 8890” or
“show me a picture of the Nokia 8890 and a ta-
ble of the features of the Siemens S55”. Mod-
ification anchors are needed to decide, if in the
case of “I want a large picture of the Nokia
8890” the user wants a large picture or a pic-
ture of the large phone. To account for robust-
ness and exactness of analysis the machinery
that processes queries and answers uses an in-
telligent combination of deep and shallow NLP
processing modules as well as standard web-
based QA systems as a fall-back strategy. Here
we use AnswerBus (Zheng, 2002) for this pur-
pose (http://www.answerbus.com).

The key idea to overcome the outlined prob-
lem is the integrated exploitation of linguistic
components that allow analysis at different lev-
els of granularity. In this way robustness and
efficiency of shallow processing is combined
with the increased accuracy provided by deep
analysis. The integration is facilitated by the
choice of a semantic representation language
that allows flexibility in the level of detail that is
specified. With the choice of robust mininal re-
cursive semantics (RMRS) (Copestake, 2003),
output from various existing modules, ranging
from part-of-speech taggers over modules of
intermediate depth such as RASP (Briscoe and
Carroll, 2002) up to fine-grained syntactic anal-
yses based on HPSG (Pollard and Sag, 1994)
can be mapped into compatible representations.

It is then possible to reassemble partial out-
put from multiple components into one coher-
ent representation, which already means that
the coverage of the integrated system will be
better than for any of its parts.

Components can also be cascaded, so that
entities that are recognized by shallow analysis

(e.g. product names or named entities in gen-
eral) do not need to be decomposed by deeper
components. This increases the robustness of
the system in cases where these entities con-
tain parts that are not covered in the deeper
linguistic specification. Furthermore, cascaded
processing can reduce the amount of ambiguity
the fine-grained analysis has to deal with2. Per-
haps the simplest strategy to combine the com-
ponents is to attempt analysis with the deepest
relevant level, but fall back to a coarser level of
granularity in case of failure.

Once a query has been entered by the user,
it is sent to the linguistic core machine (‘heart
of gold’). From there, the search engine gets
back the RMRS-annotated query. Using the
repository of RMRS annotated texts, pictures
and graphics, it extracts similar annotations and
composes the result for presentation. It then
sends the result to the text and presentation ed-
itor module via the application server.

4 Architecture of Creative
Authoring Support Application

The Creative Authoring Support Application
consists of the following main modules:

• An editor for text and graphics input,
request sending functionality and infor-
mation insertion functionality, as well as
speech recognition interaction.

• A server hosting the application logic.

• An information search engine with the
functionality of information extraction
from RMRSs and interaction with the lin-
guistic core machine and the stored anno-
tated texts, graphics and pictures.

• A connection to a speech recognition sys-
tem.

A schematic overview of the overall archi-
tecture is given in Figure 1.

2Robustness can be preserved even in cases where
the shallow analysis contains errors. In a priority-based
chart parser as the one in PET(Callmeier, 2000), an en-
tity recognized by the shallow component can be given
as a “recommendation” to the deep parser with a high
priority, in a way that can still be overridden if it is not
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Figure 1: The Software Architecture for Cre-
ative Authoring.

The application uses a client-server archi-
tecture, where the client, implemented using
Macromedia Flash, is usable in any common
web browser via the network. The applica-
tion server and the search engine have been im-
plemented in Python. We provide two ways
of connecting speech recognition to the sys-
tem. The straightforward setup uses a client-
side recognition engine, e.g. a dictation system
that is installed on the user’s machine. Speech
input without any local installation is possible
using a server-side recognition engine, where
the audio signal is transmitted to the server and
handed to the recognition module, as displayed
in the diagram.

The information search is based on a col-
lection of RMRS-annotated texts, pictures and
graphics. The query is sent to the HoG and re-
turned with RMRS annotation. Based on this
annotation, a search on the RMRS-annotated
text, pictures and graphics is performed, using
information extraction techniques.

compatible with a spanning analysis of the context, cf.
also (Crysmann et al., 2002; Frank et al., 2003).

<rmrs cfrom="0" cto="12">
<label vid="1"/>
<ep>

<label vid="1"/>
<gpred>product_rel</gpred>
<var sort="x" vid="2"/>

</ep>
<rarg>

<label vid="1"/>
<rargname>CARG</rargname>
<constant>Nokia_8890</constant>

</rarg>
</rmrs>

Figure 2: Shallow RMRS for the named entity
“Nokia 8890”.

When a search is initiated in the user in-
terface through marking a text and pushing
a search button, the marked search request
changes colour while the search is in progress,
and again once results are available. The query
is sent to the application logic server, which in
turn interacts with the search engine, and sends
the query to the search engine, accompanied by
query context and requested result types (pic-
tures, texts or links). Search results can be
texts, pictures or documents. They are anno-
tated with a description (string), and a URL.
They are presented to the user for selection in a
pull-down menu.

4.1 Combining RMRS output of different
components

Combining the information computed by the
different components is crucial for the benefit
of HoG-based applications. We give a short
example for the sentence “Where is the Nokia
8890 used?”. The named entity recognition
module gives RMRS output (in XML format in
Figure 2) for the named entity “Nokia 8890”.

The deep processing, using the NE informa-
tion, delivers RMRS output as well (which is
represented in Figure 3 without XML annota-
tion, due to the amount of space).

The relation printed in bold corresponds to
the named entity RMRS gained from the shal-
low module. Different strategies of RMRS
combination can be used, where a simple ap-
proach is to use text span information to in-
tegrate information about words that are un-



h1
int_m_rel(h1,h3)

PSV(h1,x4)
TPC(h1,e5)
ARG1(h1,u19)
ARG2(h1,x4)

prpstn_m_rel(h3,h6)
qeq(h6,h9)

unspec_loc_rel(h9,e5)
ARG1(h9,e2)
ARG2(h9,x10)
ING(h9,h1)

place_rel(h11,x10)
which_q_rel(h12,x10)

RSTR(h12,h13)
BODY(h12,h14)
qeq(h13,h11)

_the_q(h15,x4)
RSTR(h15,h17)
BODY(h15,h16)
qeq(h17,h18)

named_n_rel(h18,x4)
CARG(h18,Nokia_8890)

_use_v_1(h1,e2)
PSV(h1,x4)
TPC(h1,e5)
ARG1(h1,u19)
ARG2(h1,x4)

Figure 3: RMRS for the sentence “where is
the Nokia 8890 used?”, produced by the deep
grammar.

known to one component, but recognized by
another (Nokia 8890 in the example). Subtype
information from the type hierarchy can be ex-
ploited in order to find matching relations. In
the example, product_rel from the shallow
named entity recognition component is a sub-
type of the named_n_rel in the deep RMRS
result.

5 Heart of Gold: A Common
Architecture for Applications

When combining different types of NLP mod-
ules and their information output in a common
architecture, it is useful to provide a common
‘language‘ for the module’s output. The advan-
tage of such an approach is obvious: Modules
can communicate with each other, without the
need for output compilation or matching. A

well defined output (that was at first available
for HPSG processing modules) can be guaran-
teed also for modules of different granularity of
processing.

RMRS (robust minimal recursion semantics;
(Copestake, 2003) has been chosen as the com-
mon interchange format. The basic idea is to
view the information modules, e.g. a PoS tag-
ger, deliver as an underspecified form of the se-
mantics that deep linguistic parsing delivers.

The DeepThought core architecture frame-
work ‘Heart of Gold’ (HoG) (Callmeier et al.,
2004) provides a uniform and flexible infras-
tructure for building applications that use and
combine RMRS-based (and other XML-based)
natural language processing components. The
core architecture is implemented in Java, but
components and applications can be written in
other programming languages and connected
through XML-RPC. The system implemented
so far builds on existing components like PET
(Callmeier, 2000) for highly efficient HPSG
parsing, SProUT (Drożdżyński et al., 2004)
for shallow named entity recognition, RASP
(Briscoe and Carroll, 2002) for statistical pars-
ing, and others.

5.1 The Module Communication Manager
The core architecture framework consists of a
Module Communication Manager (MoCoMan)
which mediates between an application and the
annotation-producing NLP components (Fig-
ure 4). MoCoMan receives a request (text doc-
uments, sentences) from an application, sends
it to the configured components, receives their
analysis results, and returns the results back to
the application. The interface to the HoG al-
lows requests containing the following param-
eters.

1. A language identifier for the language of
the string to be analysed.

2. The text to be analysed. This can include
context surrounding the query.

3. The text span to be analysed. This will
mostly be from start to end.

4. Constraints about time, precision and
number of readings. As queries should be
reasonably short for this application, the
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Figure 4: Core Architecture ‘Heart of Gold’
(HoG)

default constraints will be to get precise
analysis and one (the best) reading.

An RMRS selector and unifier can be used to
combine the results of the components. An op-
tional annotation database supports the persis-
tent storage of computed analyses. MoCoMan
is also responsible for the order in which the
components are triggered. The implemented
default strategy is to let the application spec-
ify the depth of desired analysis with the query,
and trigger all modules starting from the shal-
lowest (e.g. tokenizer) up to the requested
depth, with a fallback to the previous compo-
nent if no result was available from the compo-
nent with the desired depth.

Initially, a DeepThought application starts
an instance of the core architecture MoCoMan
with a configuration setting for the required
components; parts of the module configuration
facility are taken from the Memphis project
(Kasper et al., 2004). MoCoMan then starts (or
remotely connects to) the appropriate compo-
nents, which are typically existing NLP soft-
ware. From the viewpoint of MoCoMan, com-
ponents are modules. I.e., in order to integrate
a new component in the DeepThought architec-
ture, a module subclass must be implemented
and provide an interface to the underlying com-

  Session Annotation 
collection (1 
per input text) 

Standoff annotations (computed by modules/components) 

Figure 5: Session and Annotation Management

ponent. In other words, modules encapsulate
and abstract from the real components. Mod-
ules are also responsible for RMRS translation
of non-RMRS-aware components.

An example for the integration of a compo-
nent in this way is the SProUT module that uses
XSLT transformations of the XML-encoded
typed feature structure output of the named en-
tity grammars along the lines of (Schäfer, 2003)
to generate an XML representation conforming
to the RMRS DTD (Copestake, 2003). MoCo-
Man can act as an XML-RPC server. Non-Java
applications and also non-Java components can
connect via network, and hence easily imple-
ment a distributed architecture.

5.2 Session and Annotation Management
MoCoMan provides a session management, so
that different input sessions with multiple input
documents (texts) can be referenced (Figure 5).
MoCoMan manages a collection of sessions for
an application, where a session consists of a
collection of annotations (each collection cor-
responds to one input document), that con-
tain computed standoff annotations. Annota-
tion collections and annotations are referenced
through context-unique IDs. Metadata on date,
time, source, processing parameters, process-
ing options and component-specific configura-
tions of the producing component are stored to-
gether with the created annotations. This al-
lows to precisely reconstruct the environment
under which an annotation was produced.

If a query that has already been computed



(i.e., a known input text with the same query
parameters) is passed to the MoCoMan, then
the pre-computed result is returned. This can
be done on the basis of the data gained dur-
ing a session. Moreover, the DeepThought core
architecture framework can optionally provide
a database for XML annotation storage. The
main purpose is persistent storage of computed
annotations for the automatic creation or en-
richment of linguistic corpora etc.

The annotation database interface uses
XML:DB which is a vendor-independent inter-
face to native XML databases. The current,
experimental implementation uses Apache
Xindice, but other XML databases supporting
XML:DB could be used instead. The underly-
ing generic annotation database interface layer
of MoCoMan can also be used to control other
storage mechanisms, e.g. in connection with a
full-text search engine for the annotations.

5.3 Integrated NLP Components
Various shallow and deep NLP components are
integrated into the core architecture framework.

• JTok (developed at DFKI by Jörg Steffen)
is used for the purpose of tokenization and
sentence boundary recognition (it can be
easily adapted to other languages). JTok is
implemented in Java.

• SProUT (Drożdżyński et al., 2004), a
multilingual, shallow processing compo-
nent that combines finite state and type
feature structure technology and includes
morphologic resources and named entity
grammars for ten languages, is integrated
as well. RMRS output is gained with
XML transformations. SProUT is imple-
mented in Java.

• RASP (Briscoe and Carroll, 2002) is a ro-
bust statistical parser for English, which
is developed in C and LISP on the basis
of ANLT. RASP delivers RMRS output of
medium NLP depth.

• The PoS tagger TnT and the chunker
Chunkie for English and German (Skut
and Brants, 1998) are extended in order to
generate RMRS output.

• PET is a highly efficient deep parser for
HPSG grammars. It is developed in C
and C++ at Saarland University and DFKI
(Callmeier, 2000). Using LKB (Copes-
take, 2002) implementations, PET parsing
delivers RMRS output from HPSG gram-
mars, cf. (Flickinger, 2002) for English;
(Crysmann, 2003), (Frank et al., 2003) for
German.

6 Conclusion
We have presented a new application for cre-
ativity support in document authoring. The user
is assisted in composing a text, possibly en-
riched with pictures taken from a local reposi-
tory or the web. Domain-specific questions and
commands related to the content of the docu-
ment can be answered on the basis of the repos-
itory, thus helping the user to perform the au-
thoring task faster and with fewer disruptions.

The application uses robust semantic repre-
sentation (RMRS) gained from a hybrid com-
bination of deep and shallow NLP components.
The application benefits from robustness and
efficiency of the shallow components, as well
as from increased accuracy provided by the
deep HPSG parser.

The underlying XML-based, network-
enabled architecture is open and generic,
and can be used to integrate additional NLP
components and build the foundation for
various other applications. In combination
with ontologies, the existing framework can
be extended and form the basis for further
challenging applications in the context of
Question Answering and the Semantic Web.

DeepThought is an ongoing project. We
will be able to present additional results and a
demonstrator at the conference.
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Xu. 2004. Shallow processing with uni-
fication and typed feature structures —
foundations and applications. Künstliche In-
telligenz, 1:17–23. http://www.kuenstliche-
intelligenz.de/archiv/2004 1/sprout-
web.pdf.

Dan Flickinger. 2002. On building a more ef-

ficient grammar by exploiting types. In Dan
Flickinger, Stephan Oepen, Hans Uszkoreit,
and Jun-ichi Tsujii, editors, Collaborative
Language Engineering. A Case Study in Ef-
ficient Grammar-based Processing, pages 1–
17. CSLI Publications.

Anette Frank, Markus Becker, Berthold Crys-
mann, Bernd Kiefer, and Ulrich Schäfer.
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