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Abstract

In an ongoing clinical phase I/II study, 16 pediatric patients suffering from high risk leukemia/tumors received highly
purified donor natural killer (NK) cell immunotherapy (NK-DLI) at day (+3) +40 and +100 post haploidentical stem cell
transplantation. However, literature about the influence of NK-DLI on recipient’s immune system is scarce. Here we present
concomitant results of a noninvasive in vivo monitoring approach of recipient’s peripheral blood (PB) cells after transfer of
either unstimulated (NK-DLI(unstim)) or IL-2 (1000 U/ml, 9–14 days) activated NK cells (NK-DLI(IL-2 stim)) along with their ex vivo
secreted cytokine/chemokines. We performed phenotypical and functional characterizations of the NK-DLIs, detailed flow
cytometric analyses of various PB cells and comprehensive cytokine/chemokine arrays before and after NK-DLI. Patients of
both groups were comparable with regard to remission status, immune reconstitution, donor chimerism, KIR mismatching,
stem cell and NK-DLI dose. Only after NK-DLI(IL-2 stim) was a rapid, almost complete loss of CD56(bright)CD16(dim/2) immune
regulatory and CD56(dim)CD16(+) cytotoxic NK cells, monocytes, dendritic cells and eosinophils from PB circulation seen
10 min after infusion, while neutrophils significantly increased. The reduction of NK cells was due to both, a decrease in
patients’ own CD69(2) NCR(low)CD62L(+) NK cells as well as to a diminishing of the transferred cells from the NK-DLI(IL-2 stim)

with the CD56(bright)CD16(+/2)CD69(+)NCR(high)CD62L(2) phenotype. All cell counts recovered within the next 24 h. Transfer
of NK-DLI(IL-2 stim) translated into significantly increased levels of various cytokines/chemokines (i.e. IFN-c, IL-6, MIP-1b) in
patients’ PB. Those remained stable for at least 1 h, presumably leading to endothelial activation, leukocyte adhesion and/or
extravasation. In contrast, NK-DLI(unstim) did not cause any of the observed effects. In conclusion, we assume that the
adoptive transfer of NK-DLI(IL-2 stim) under the influence of ex vivo and in vivo secreted cytokines/chemokines may promote
NK cell trafficking and therefore might enhance efficacy of immunotherapy.
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Introduction

Advanced cell therapy trials with donor natural killer (NK) cells

post haploidentical stem cell transplantation (haplo-SCT) provide

a promising treatment option for patients with high risk leukemia

and tumors. While the established T cell therapies are associated

with the risk of graft-versus-host disease (GvHD), NK cells may

mediate graft-versus-leukemia/tumor (GvL/T) effects without

induction of GvHD. Therefore, immunotherapy with highly

purified NK cell donor lymphocyte infusions (NK-DLI) in

recipients of haplo-SCT could serve as an attractive alternative

cell therapy [1–3].

NK cells are key players of the innate immune system, able to

distinguish between healthy and malignant cells. NK cell

cytotoxicity is mediated by a balance of activating and inhibitory

signals [4]. Activating receptors like the natural cytotoxicity

receptors (NCR) NKp30, NKp44, and NKp46 and the NK group

2D (NKG2D) receptor trigger cytotoxicity against malignant cells

[5]. In contrast, the predominance of inhibitory signals is mediated

by killer immunoglobulin-like receptors (KIR) [6–8]. Human

CD56+CD32 NK cells in the peripheral blood (PB) can be

subdivided into a major CD56dimCD16+ population which

is highly cytotoxic and a smaller immune regulatory

CD56brightCD16dim/2 population with a potent cytokine produc-

ing capacity [9]. In the early phase of reconstitution post SCT, an

unusually high percentage of CD56brightCD16dim/2 NK cells can

be determined, which gradually declines in the post-transplant

period [10]. A part of these emerging cells are immature with

impaired cytotoxic function [11], which makes adoptive donor

NK cell immunotherapy post SCT needful to enhance GvL/T
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effects. To date, first trials and ongoing clinical phase I/II studies

show the feasibility of using freshly purified or interleukin-2 (IL-2)

activated NK-DLIs for the treatment of high risk patients suffering

from leukemia or tumors in both, non-transplant settings and after

haplo-SCT as an additional immunotherapy [1–3,12–16]. These

first immunotherapy trials show that NK-DLIs are infused without

immediate adverse events. Moreover, a clinical benefit was

reported by Rubnitz et al. showing a 2-year event-free survival of

100% for ten children with favorable- and intermediate-risk acute

myeloid leukemia (AML) in first complete remission post

haploidentical NK cell immunotherapy [3].

However, to date there is a lack of literature concerning studies

investigating the influence of allogeneic NK-DLIs on the immune

system of the host. Here, we present concomitant data about the

noninvasive approach of an in vivo monitoring of recipient’s cells of

the innate and adaptive immune system following treatment with

unstimulated in comparison to IL-2 activated NK cells post haplo-

SCT. Quantification of various leukocyte subsets together with

analysis of cytokine/chemokine plasma levels before and after

NK-DLI applications revealed novel information on the immune

status of patients undergoing adaptive NK cell therapies.

Materials and Methods

Ethics Statement
The study was approved by the Medical Ethics Committee of

the Frankfurt University Hospital in 2003 (Ref. number 262/03).

Written informed consent was obtained from all children and

parents/legal guardians of the children.

Study design of phase I/II NK cell immunotherapy
Between 2003 and 2011, 16 pediatric patients suffering from

high risk leukemia or tumors underwent haplo-SCT and

additionally received NK cells from their respective donor (Clin

Gov No. NCT 01386619, Table 1+2). For haplo-SCT, peripheral

blood stem cells (PBSC) were purified immunomagnetically either

by CD34-selection or CD3/CD19-depletion (Clin Gov No. NCT

00945126) as described previously [16,17]. After haplo-SCT,

highly purified donor NK cells were transfused around (+d 3), +d

40 and +d 100 as we described earlier (Fig. S1A+B) [1,12,18]. So

far, nine patients received highly purified, freshly isolated

unstimulated NK cells (NK-DLIunstim, group I) and nine patients

were treated with further ex vivo IL-2 activated NK cells along with

their corresponding ex vivo secreted cytokines/chemokines (NK-

DLIIL-2 stim, group II). In two patients both, NK-DLIunstim and

NK-DLIIL-2 stim were administered (No. 8 and 9). In summary, 29

NK-DLIs were transfused (n = 15 NK-DLIIL-2 stim and n = 14 NK-

DLIunstim); of those 14 freshly and 15 following cryopreservation

(Table 2 and Fig. S1A+B). According to the study protocol,

cryopreservation was an option to verify two to three NK cell

applications and reduce the physical loading of repeating

leukapheresis for the donors. Targeted cell doses were $16107/

kg BW CD56+CD32 NK cells, with ,16105/kg BW contami-

nating CD3+ T cells. Defined study exclusion criteria prior to NK-

DLI were graft failure or patients with persisting acute or chronic

GvHD. Study discontinuation criteria were severe GvHD ($grade

III) or other toxicities.

Purification of CD56+CD32 NK cells, ex vivo activation
and quality control

NK cells were collected from two unstimulated leukapheresis

products, without G-CSF stimulation, from healthy haploidentical

donors. The two-step purification procedure (CliniMACSs cell

selection system; Miltenyi Biotec, Bergisch Gladbach, Germany)

included first a CD3+ T cell depletion step with an ensuing CD56+

NK cell selection from the CD32 fraction, obeying good

manufacturing practice (GMP) as we described previously

[1,18]. In case of group I patients receiving NK-DLIunstim, the

leukapheresis was performed at day 210 prior and +40 post SCT

(Fig. S1A). At day +40, NK-DLIunstim was split while one part was

applied freshly directly at the end of the purification process, and

the other part was cryopreserved for the day +100 application.

The processed NK-DLIunstim from day 210 was also split and

cryopreserved for the NK cell applications on day +3 and +100.

For cryopreservation, NK cell products were concentrated and

resuspended in X-VIVO 10 media diluted 1:2 with 20% dimethyl

sulfoxide (DMSO).

In case of group II patients receiving NK-DLIIL-2 stim, two

leukapheresis products collected on day +29 and +30 post SCT

were pooled for the NK cell purification process (Fig. S1B).

Following the two-step CD3-depletion/CD56-selection purifica-

tion procedure, NK cells were further expanded and activated

using 1000 U/mL rhIL-2 (ProleukinH Novartis Pharma GmbH,

Nürnberg, Germany) for 10 (9 to 14) days obeying GMP. NK cells

were cultured in X-VIVO 10 media in VueLifeTM cell culture

bags (CellGenix Technology, Freiburg, Germany), supplemented

with 5% heat-inactivated human fresh frozen plasma (Red Cross

Blood Donor Service, Baden-Württemberg-Hessen, Frankfurt,

Germany) at 37uC and 5% CO2. Fresh media and IL-2 were

added every three days. Following the ex vivo stimulation, the NK

cell product was split up, while one half was infused freshly at day

+40 and the other was cryopreserved and applied at day +100 post

SCT (Fig. S1B).

For quality control, analyses of purity of NK cells, residual T

cells, cell viability, NK cell receptor repertoire (NCRs, NKG2D)

and cytotoxic activity against K562 cells were performed [16,19].

Sample collection and preparation
Immune reconstitution of various leukocyte subsets in the PB of

all patients was monitored regularly; within the first three months

post SCT weekly, from month four to six twice a month, followed

by a period of monthly analyses. For our concomitant in vivo

monitoring during NK-DLI, PB samples were collected before

(pre), 10 min, 1 h, 4 h and 24 h after the end of NK cell infusion

(Fig. S1C). Flow cytometric analyses were performed within 4 h.

For cytokine/chemokine analyses, plasma of PB samples collected

during in vivo monitoring and supernatants of NK-DLIIL-2 stim

collected immediately prior to infusion, were stored at 280uC
until analysis.

Flow cytometric analysis for quantification of leukocyte
subsets and cytotoxicity assay

Flow cytometric analyses were performed to determine (i)

quality control of the administered NK-DLI, (ii) the specific

influence of NK-DLI on the patient’s immune system and (iii) the

overall cellular immune reconstitution post SCT in all 16 patients.

Monoclonal antibodies (mAB) conjugated with fluorescein-isothio-

cyanate (FITC), phycoerythrin (PE), phycoerythrin-Texas RedH
tandem (ECD), phycoerythrin-cyanine-5 (PC-5) and phycoery-

thrin-cyanine-7 (PC-7) were used against following antigens

(clones): CD3 (UCHT1) and (SK7)#, CD4 (13B8.2), CD4

(SFCI12T4D11), CD8 (SFCI21Thy2D3(T8)), CD14 (RMO52)2,

CD14+CD16 (RMO522+3G8), CD16 (3G8), CD19 (J3-119),

CD33 (D3HL60.251), CD45 (B3821F4A)1, CD45 (J.33), CD56

(N901) and (NCAM16.2)1#, CD62L (DREG56), CD69

(TP1.55.3)1, CD85k/ILT-3 (ZM3.8), CD123 (107D2), CD336/

NKp44 (Z231), (1IgG2b, 2IgG2a, all other IgG1 isotypes) (#BD

Biosciences, Heidelberg, Germany, all other Beckman Coulter,

Influence of NK-DLI(IL-2 Stim) on PB Cells
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Marseille, France). For assessment of viability 7-Amino-Actino-

mycin D (7-AAD) was used. An automated lyse/no-wash

procedure was used with a fixation step on a TQ-PrepTM

Workstation (Beckman Coulter, Krefeld, Germany). Absolute

lymphocyte subset counts were calculated via leukocyte counts

measured by CoulterH Ac.T diffTMCounter (Beckman Coulter,

Krefeld, Germany). Measurements of myeloid DC, plasmacytoid

DC and NK cells were carried out in a single-platform approach

Table 2. NK cell applications phase I/II study: NK-DLI post haplo-SCT.

No.

Day of
NK-DLI
post SCT

fresh (f)
cryo (c) Volume

CD56+

CD32

CD56+

CD3+
CD562

CD3+
total
CD3+

1. KIR MM
(GvL/T)

2. KIR MM
(GvL/T)

1. KIR MM
(HvG)

2. KIR MM
(HvG)

[ml] [106/BW] [103/BW] [103/BW] [103/BW] (excluding A3/A11 mismatch)

Group I: Patients receiving NK-DLIunstim

1 +2 c 261 24.7 n.s. n.s. 53.4 2DL1/C2 3DL1/Bw4 2DL1/C2 –

2 +3 c 499 13.5 n.s. n.s. 4.5 2DL1/C2 – 3DL1/Bw4 –

3 +2 c 168 32.3 n.s. n.s. 1.8 2DL1/C2 – 2DL1/C2 –

+54 f 77 15.5 n.s. n.s. 8.2

4 +2 c 154 6.6 n.s. n.s. 0.8 – – 2DL1/C2 –

+49 f 143 12.7 n.s. n.s. 8.1

+103 c 75 3.2 n.s. n.s. 0.4

5 +3 c 198 9.9 n.s. n.s. 0.6 2DL1/C2 – – –

+42 f 115 7.7 n.s. n.s. 4.1

6 +2 c 152 6.9 n.s. n.s. 4.8 – – 2DL2/C1 –

7 +42 f 92 38.3 n.s. n.s. 2.3 – – 2DL2/3/C1 –

+92 c 60 12.5 n.s. n.s. 0.8

8* +50 f 129 8.7 15.8 ,0.6# 15.8 3DL1/Bw4 – – –

9* +47 f 210 30.0 37.6 10.4 48.0 2DL3/C1 3DL1/Bw4 – –

Median (total) 14 148 13.1 n.s. n.s. 4.311 6/9 6/9

Median (fresh) 6 122 14.1 n.s. n.s. 8.21

Mean (fresh) 128 18.8 n.s. n.s. 14.4

Group II: Patients receiving NK-DLIIL-2 stim

8* +70 c 183 20.6 81.0 17.3 98.3 3DL1/Bw4 – – –

+116 c 187 8.4 31.3 12.4 43.7

* +101 f 1155 30.6 18.5 16.1 34.6 2DL3/C1 3DL1/Bw4 – –

10 +40 f 1000 45.1 50.0 7.5 57.5 2DL1/C2 3DL1/Bw4 –

+126 c 376 41.4 43.0 6.9 49.9

11 +35 f 288 7.8 6.0 7.3 13.3 2DL1/C2 – 2DL1/C2 3DL1/Bw4

+109 c 306 13.5 9.6 13.0 22.6

12 +39 f 800 19.1 39.5 8.1 47.6 2DL1/C2 – 2DL1/C2 –

+96 c 148 6.0 22.3 15.3 37.6

13 +41 f 2296 15.0 29.3 2.4 31.7 2DL2/L3/C1 – – –

14 +54 f 319 6.6 8.8 0.3 9.1 – – 2DL2/3/C1 –

+96 c 240 6.1 7.3 8.2 15.5

15 +54 f 684 14.6 11.3 4.1 15.4 2DL1/C2 – 2DL1/C2 –

+98 c 210 7.3 5.7 2.0 7.7

16 +11 f 55 14.9 20.9 31.6 52.5 2DL1/C2 – 2DL1/C2 –

Median (total) 15 306 14.6 18.5 8.1 34.611 8/9 6/9

Median (fresh) 8 742 15.0 14.9 7.4 33.21

Mean (fresh) 825 19.2 20.2 9.7 32.7

BW: kg/body weight, cryo (c): cryopreserved, fresh (f): freshly applied, f: female, GvL/T: graft-versus-leukemia/tumor, haplo-SCT: haploidentical stem cell transplantation,
HvG: host-versus-graft, KIR: killer cell immunoglobulin-like receptor, m: male, MM: mismatch, No.: number, n.s.: not specified, NK-DLI: NK cell donor lymphocyte infusion,
SCT: stem cell transplantation,
*patients received both NK-DLIunstim and NK-DLIIL-2 stim,
#under detection limit,
1difference statistically not significant,
11difference statistically significant.
doi:10.1371/journal.pone.0027351.t002
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using Flow-CountTM fluorospheres (Beckman Coulter, Marseille,

France) [17,20]. On both, CD56dimCD16+ and CD56bright

CD16dim/2 NK cells, surface expression of NKp44, CD69

activation and the lymph node homing molecule CD62L were

investigated. NK cell cytotoxicity of NK-DLIIL-2 stim and NK-

DLIunstim was tested against the MHC class I negative cell line

K562 at the ratios 1:1 and 10:1 based on a 5-color flow cytometric

single platform assay (Fig. S2A) [19]. Cytotoxicity was defined as

the loss of viable target cells in relation to the mono-cultured

control. All analyses were performed on a 4- or 5-color flow

cytometer, respectively (EPICSH LTMand FC500, Beckman

Coulter, Krefeld, Germany) and data were further analyzed using

CXP v2.2 software (Beckman Coulter, Krefeld, Germany).

Cytokine and chemokine analysis
Cytokines and chemokines in the plasma of PB samples

obtained during in vivo monitoring and supernatants of the 9–14

days stimulated NK-DLIIL-2 stim were measured using BDTM

Cytometric Bead Array (CBA) in combination with the BD

FACSArrayTM bioanalyzer (BD Biosciences, Heidelberg, Ger-

many). The human Flex Set was used to detect the secretion of

interleukin (IL) -1b, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12p70,

IL-12/IL-23p40, IL-13, tumor necrosis factor-a (TNF-a), TNF-b,

interferon-c (IFN-c) IFN-c-inducible protein (IP-10), monocyte

chemotactic protein-1 (MCP-1), macrophage inflammatory pro-

tein-a (MIP-1-a), MIP-1b, regulated on activation, normal T cell

expressed and secreted (RANTES), Fas ligand (FasL), granulocyte

colony-stimulating factor (G-CSF), granulocyte macrophage

colony-stimulating factor GM-CSF. In short, 50 ml of the provided

standards or plasma samples were mixed with capture beads

specific for one cytokine and PE detection, and processed

according manufacturer’s instructions. The assay lower detection

limit ranged from 0.2 to 14.7 pg/ml.

KIR and HLA genotyping and chimerism analysis
Typing of KIR genes in PB of both, donors and patients was

performed by PCR-sequence-specific primers and was used to

detect the presence or absence of 19 KIR genes (2DL1-5B, 3DL1-

3, 2DS1-5, 3DS1, 2DP1, 3DP1) as described previously [21]. HLA

were typed using sequence-specific probes and sequence-based

typing (SBT) analysis. KIR/HLA-ligand matching or mismatching

in donor-recipient pairs was evaluated using the KIR receptor –

HLA-ligand mismatch model (‘‘missing KIR ligand model’’). For

quantitation of donor chimerism in the PB and bone marrow

(BM), a semi-quantitative PCR assay based on the amplification of

short tandem repeat (STR) markers was used [22].

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 5.03

(GraphPad Software, San Diego, USA). Biological data were

compared by paired Student t test, Wilcoxon matched-pairs signed

rank test and Mann-Whitney-test depending on paired or

unpaired and Gaussian or non-Gaussian distribution of values.

Differences were considered as significant for p,0.05, p,0.01,

and p,0.001 indicated as *, **, and ***, respectively.

Results

Comparison of NK-DLIunstim and NK-DLIIL-2 stim

In a clinical phase I/II study, 16 pediatric patients received

either freshly isolated, unstimulated NK-DLIs (NK-DLIunstim;

group I) or ex vivo IL-2 stimulated NK-DLIs (NK-DLIIL-2 stim;

group II) from their respective donors, from one up to three times

post haplo-SCT (Table 2). According to the study protocol, the

median application date post SCT was day +2 (range 2–3), +42

(range 11–54) and +101 (range 70–126). After processing, the

median purity of the CD56+CD32 NK cell product was 95%

(range 84.4–98.6). The majority of the concomitant cells were

antigen presenting cells like monocytes and dendritic cells (mDC,

pDC) as we could show previously [23]. The overall median yield

during processing procedure was 54% (range 38.7–84.1). Patients

of both groups received similar NK cell doses in the DLI:

14.66106/kg BW (range 6.0–45.1) and 13.16106/kg BW (range

3.2–38.3) for NK-DLIIL-2 stim and NK-DLIunstim with no

differences between freshly and cryopreserved DLIs. Concomitant

CD3+ T cells in the NK-DLI were higher in group II with a

median of 34.66103/kg BW (range 7.7–98.3) compared to

4.36103/kg BW (range 0.4–53.4) in group I patients. Concerning

fresh NK-DLIs this difference was not statistically significant, thus

a statistical difference was seen in regard to all NK-DLI

applications. Of note, of these overall CD3+ cells, in group II

approximately two-thirds belonged to the CD56+CD3+ NK-like T

cells and one-third to CD562CD3+ T cells, only. Median NK cell

cytotoxicity against MHC class I negative K562 cells in the

effector:target ratios 1:1 and 10:1 was 67% and 88% for NK-

DLIIL-2 stim compared to 30% and 75% for NK-DLIunstim (Fig.

S2A). The improved cytotoxicity of NK-DLIIL-2 stim was related to

a high up-regulation of the activating receptors NKp30, NKp44,

NKp46 and NKG2D. The CD69 activation marker expression

was strongly enhanced as well, whereas the lymph node homing

molecule CD62L was significantly down-regulated upon IL-2

stimulation as we showed previously [16]. Freshly administered

NK-DLIunstim showed a high viability (median 93%) compared to

NK-DLIIL-2 stim which showed a decrease in vital NK cell count to

30–70% during the first three days, followed by a period of

enhanced growth and increasing viability during 9–14 days of IL-2

expansion [16,18].

The applied CD34+ stem cell dose in the graft was similar in

both groups with a 6.2 times higher CD3+ T cell count in grafts of

group II compared to group I patients (13.56103/kg BW vs.

84.56103/kg BW, difference not significant). This was due to a

change in graft purification from CD34-selection to CD3/CD19-

depletion (Table 1). Therefore, patients transplanted with CD3/

CD19 depleted grafts received mycophenolate mofetil (MMF) as

an immunosuppressive therapy to avoid severe GvHD and graft

rejection. Because of a possible negative impact of MMF on NK

cell functionality, the early time point of NK-DLI at day +3 post

SCT has been omitted for these patients. To validate if the

differing graft purifications in group I have any influence of our

presented results, we exemplarily excluded the four patients

receiving CD34 selected grafts from our analyses, whereof only

two fresh NK-DLIunstim were applied (data not shown). Since we

did not see any differences in our results and it confirmed the

overall conclusion, we decided to remain with the total patient

group.

NK-DLI was well tolerated in both groups, besides transient

fever and chills for 24 h in group II patients receiving NK-DLIIL-2

stim. In two patients (No. 9 and 13) steroids were temporarily

administered during NK-DLI because of more adverse effects

(vomiting and blood pressure fluctuation). Patients of group II did

not develop GvHD.grade II in response to NK-DLIIL-2 stim,

independent of the amount of stimulated T cells. In group I,

one patient (No. 1) treated with NK-DLIunstim containing

.50.0006103/kg BW CD3+ cells and the patient with the highest

amount of residual T cells in the graft (No. 5) developed

GvHD.grade II. Following the full myeloablative conditioning

regime, patients were in aplasia until engraftment was seen in both

patients’ subgroups, excluding patient No. 2 and No. 16, on days

Influence of NK-DLI(IL-2 Stim) on PB Cells

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e27351



7, 12 and 14 for platelets (.50.000/ml), leukocytes (.1000/ml) and

neutrophils (.1000/ml), respectively.

Therefore, data of all day +3 NK-DLIunstim applications were

not evaluable, since to that early time point post SCT, patients

were still in aplasia (median cell counts in PB at day +3: leukocytes

120/ml, lymphocyte 0/ml, NK cells 0/ml, monocytes 0/ml).

Because infusion of NK-DLIunstim at day +3 did not lead to any

changes, analyses were not included in any of the following figures.

Specific immune reconstitution of CD56+CD32 NK cells post

haplo-SCT was very similar in both groups (Fig. S2B). Chimerism

analyses of PB and bone marrow beginning between day +11 and

+15 showed complete donor chimerism in 14/16 patients to that

early time point post SCT. Complete chimerism retained in 14/16

patients at day +40 and in 14/15 at day +100 post haplo-SCT

(Table 1). Also subtype chimerism analyses of CD56+ NK cells

were performed in 5/16 patients which reflected results of total PB

and BM chimerism (data not shown). The only patient that did not

reach complete chimerism at day +40 (No. 2) rejected the stem cell

graft and underwent a second SCT. Further, in patient No. 16 no

chimerism analyses could be performed because of failure of

immune reconstitution and early death at day +27.

Overall, 7/9 patients receiving NK-DLIIL-2 stim and 5/9

receiving NK-DLIunstim have not been in remission (NR) or in

partial remission (PR) at the time point of SCT, while all patients

in remission were $second complete remission (CR2). Further-

more, 44% of these high risk patients are alive with regard to both

NK-DLIIL-2 stim and NK-DLIunstim groups with a mean follow up

of 20 and 45 months, respectively. KIR mismatch was seen in 6/9

patients of group I and 8/9 in group II in GvL/T direction and in

6/9 in both groups in HvG direction (Table 2). Nevertheless, in

this heterogeneous patient cohort, no clear influence on survival,

GvHD and rejection with regard to KIR mismatch could be seen.

Of note, effects of NK-DLIIL-2 stim application on PB leukocytes

in patient No. 16 were not evaluable because of failure of immune

reconstitution (Table 1). Further, measurements of the 2nd NK-

DLIIL-2 stim application of patient No. 14 (d +98, cryopreserved)

were excluded, since the DLI has been washed prior to

administration because the patient had shown severe reaction to

DMSO previously.

NK-DLIIL-2 stim but not NK-DLIunstim led to a significant
decrease of CD56+CD32 NK cells in patient’s PB

Monitoring of the leucocyte subsets in patient’s PB before and

10 min, 1 h, 4 h and 24 h after NK-DLI was performed to receive

first insights of the host immune reaction on donor NK cell

immunotherapy (Fig. S1C). We focused our main interest on fresh

NK-DLI applications, because the cryopreservation process (cell

centrifugation, concentration in a smaller volume and dilution in

DMSO) results in cell count and cytokine/chemokine reduction

and could lead to an impairment of NK cell and cytokine

functionality.

All NK cell infusions were associated with a reduction in

circulating NK cells within 10 min of infusion, but this was

significantly greater in patients receiving NK-DLIIL-2 stim (Fig. 1A

fresh NK-DLIs). After a 5.5-fold decrease in absolute NK cell

counts 10 min post infusion of freshly applied NK-DLIIL-2 stim in

contrast to NK-DLIunstim (1.2-fold) (Fig. 1B, left), NK cell counts

recovered within 24 h to prior values. DLI volume did not

artificially lead to the reduced absolute NK cell count, since NK-

DLIIL-2 stim volumes made up around J of patient’s PB volume,

respectively (Fig. 1B, middle). In addition, in both subgroups the

ratio of the administered NK-DLI dose compared to the patient’s

NK cells in the PB newly reconstituted post haplo-SCT was

very similar (Fig. 1B, right). Importantly, the decrease in

CD56+CD32NK cells was not due to a down-regulation or loss

of CD56 expression (Fig. S3B).

Effects of total NK-DLIIL-2 stim applications (fresh and

cryopreserved) were similar, thus NK cell disappearing was

delayed, compared to the fast diminishing after fresh infusions

(compare Fig. 1A and Fig. S4 total NK-DLIs).

Moreover, infusion of NK-DLIIL-2 stim led to a change in the

proportion of CD56brightCD16dim/2 and CD56dimCD16+ NK cell

subpopulations which was due to a more pronounced loss of

CD56brightCD16dim/2 NK cells (Fig. 1C fresh NK-DLIs). Similar

effects were seen after total NK-DLIIL-2 stim applications (Fig. S4

total NK-DLIs). Patients receiving NK-DLIunstim showed no

change in the proportion of NK cell subpopulations.

Of note, NK cells with the characteristics of the ex vivo IL-2

activated phenotype (CD56brightCD16+/2CD69+NCRhighCD62L2)

could not be detected in the PB at any time during in vivo monitoring,

thus not returning post 24 h (Fig. S3A+B). In addition, CD62L+

expressing PB NK cells declined 10 min post NK-DLIIL-2 stim in the

same manner like total NK cells, also recovering within 24 h (Fig.

S3B+C). Therefore, reduction in total NK cell count post NK-

DLIIL-2 stim was due to both, a rapid decrease in transferred and

peripheral blood NK cells.

Loss of antigen presenting cells (APCs) in the PB after
infusion of NK-DLIIL-2 stim but not after NK-DLIunstim

Shortly after infusion of NK-DLIIL-2 stim there was a significant

loss of CD14+ monocytes in the PB of all patients (median 15-fold

reduction). After disappearing almost completely, monocyte counts

recovered within 4 to 24 h to normal values like the ones prior to

infusion. This was the case following fresh NK-DLIIL-2 stim as shown

in Fig. 2A, as well as after all NK-DLIIL-2 stim applications in total

(Fig. S4 total NK-DLIs). In contrast, monocyte counts following

NK-DLIunstim remained unaffected. Furthermore, total CD45+

CD142CD162HLA-DR+CD85k+CD33+ myeloid dendritic cell

(mDC) and CD45+CD142CD162HLA-DR+CD85k+CD123+

plasmacytoid dendritic cell (pDC) count also significantly decreased

directly after NK-DLIIL-2 stim, recovering subsequently to normal

values within 24 h to 1 week (Fig. S4). Again, these effects could not

be observed after infusion of NK-DLIunstim. Measurements of DCs

were carried out in a single-platform approach verifying reliable

data even in low cell counts.

Distinct influence of NK-DLIIL-2 stim and NK-DLIunstim on
granulocytes, and T and B cells in the PB

Following all applications of NK-DLIIL-2 stim a significant loss of

eosinophil granulocytes (SSChighCD45brightCD162) combined

with a massive increase in absolute white blood cell (WBC) count

was observed (average 4-fold). This was caused by an intensive

gain of the main CD45+ leukocyte proportion of neutrophil

granulocytes (SSChighCD45lowCD16+) leading to its peak after 4 h

and then returning to normal values prior to infusion (Fig. 2B fresh

NK-DLIs). Similar effects were seen after total NK-DLIIL-2 stim

applications (Fig. S4 total NK-DLIs). In contrast, the distinctly

increased absolute WBC count in the PB of the monitored patients

could not be noted after NK-DLIunstim applications (data not

shown).

According to a delayed immune reconstitution of T and B cells

in the patients’ PB post haplo-SCT compared to an early NK cell

recovery, CD3+ T cell and CD19+ B cell counts at the time point

of NK-DLI at day +40 were relatively low (median 50/ml CD3+,

and 58/ml CD19+). NK-DLIIL-2stim led to a very slight decrease in

absolute T cell count within 4 h post NK-DLIIL-2 stim while B cell

count was not affected (data not shown).

Influence of NK-DLI(IL-2 Stim) on PB Cells
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Only after NK-DLIIL-2 stim a significant increase in
cytokine/chemokine concentration in patients’ PB was
demonstrated, thus varying from levels from the ex vivo
engineered DLI

Ex vivo IL-2 stimulation of highly purified donor NK cells led to

the secretion of high amounts of various chemokines e.g. IL-8,

MIP-1b, MCP-1, IP-10 and RANTES which play crucial roles in

leukocyte activation and chemo-attraction, as well as the

inflammatory cytokine IFN-c (Fig. 3A). In contrast, the median

concentration of the pro-inflammatory cytokine IL-6 was below

10 pg/ml. The indicated IL-2 concentration was due to the

supplementary addition of 1000 U/ml IL-2 during expansion

procedure. Since NK-DLIs have not been washed prior to infusion

according to the study protocol, to avoid loss of NK cells, the total

amount of the indicated cytokines/chemokines was applied during

fresh NK-DLIIL-2 stim.

In vivo analyses of cytokine/chemokine concentration in

patient’s PB post NK-DLIIL-2 stim revealed significant increases

in plasma levels up to 4 h following infusion. The pro-

Figure 1. NK-DLIIL-2 stim but not NK-DLIunstim led to a considerable disappearance of NK cells from PB. A) Absolute number of NK cells in
the PB of the patients was significantly reduced 10 min post NK-DLIIL-2 stim (grey) in contrast to NK-DLIunstim (white), which showed minimal influence
only. 24 h after NK-DLIIL-2 stim absolute number of NK cells recovered to the level before DLI. Only freshly applied NK-DLIs infused around day +40
post SCT are shown and were used for statistical calculations (n = 7 NK-DLIIL-2 stim, n = 6 NK-DLIunstim). Box and whiskers plots show minimum, lower
quartile, median, upper quartile and maximum of all measured data. For the 4 h level post NK-DLIunstim two values were available, only. p,0.05
indicated as *. B) Mean and SEM of all freshly applied NK-DLIIL-2 stim (grey) and NK-DLIunstim (white) applied around day +40 post SCT. Striped bars
indicate estimated patient’s PB volume and peripheral NK cell count at the time point of NK-DLI infusion. Left graph shows a mean 5.5-fold reduction
of absolute NK cell count in the PB as early as 10 min post NK-DLIIL-2 stim compared to a 1.2-fold decrease for NK-DLIunstim. Middle graph shows
relation of NK-DLI volume to total blood volume of patients (NK-DLIIL-2 stim volume: 825 ml6249, compared to PB volume: 3060 ml6789; NK-DLIunstim

volume: 128 ml619, compared to PB volume 3093 ml6749). DLI volume did not artificially lead to the reduced absolute NK cell count, since
NK-DLIIL-2 stim volumes made up maximally around J of patient’s PB volume. Right graph shows mean NK-DLI cell dose 6106/kg BW (NK-DLIIL-2 stim

19.264.5; NK-DLIunstim 18.865.1) in relation to patient’s PB NK cells newly reconstituted post haplo-SCT around d +40 prior to NK-DLI (NK-DLIIL-2 stim

26.068.5; NK-DLIunstim 31.964.0). Applied NK dose compromised about 80% of PB NK cells, illustrating the high dose of administered NK-DLI. C)
Density plots (CD56 vs. CD16) and box and whiskers plots show a significant change in the distribution of the cytotoxic CD56dimCD16+ and immune
regulatory CD56brightCD16dim/2 NK cell subsets. This was due to an absolute reduction of the CD56brightCD16dim/2 NK cell subpopulation in the PB
10 min after freshly applied NK-DLIIL-2 stim applications infused around d +40 (left; n = 7). This could not be shown after NK-DLIunstim (right; n = 6). Plots
are gated on CD56+CD32 NK cells. For the 4 h level post NK-DLIunstim 2 values were available, only. p,0.05 indicated as *.
doi:10.1371/journal.pone.0027351.g001
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inflammatory cytokine IL-6 and IFN-c, as well as the chemokine

IL-8, MCP-1 and MIP-1b plasma concentrations peaked within

10 min to 1 h post NK-DLIIL-2 stim while recovering to their base

level within the next 24 h (Fig. 3B fresh NK-DLIs). In addition,

high plasma levels of the chemokines IP-10 and RANTES, acting

on both leukocyte activation and attraction, were detected but not

varying (data not shown). Similar results post infusions of

cryopreserved NK-DLIIL-2 stim were obtained, but to a slighter

extent, which was probably due to a reduction in cytokine/

chemokine concentration during the cryopreservation process.

Nevertheless, analyses of all NK-DLIIL-2 stim in total showed

identical results and did not change the overall conclusion (Fig. S4

total NK-DLIs). In comparison, no increase in plasma concentra-

tion of the indicated cytokines/chemokines following NK-

DLIunstim was detected (Fig. 3B). Besides, TNF-a, TNF-b, GM-

CSF, MIP-1a, FasL, IL-13 were secreted during ex vivo IL-2 NK

cell expansion, but either they could not be detected in patient’s

PB, or NK-DLIIL-2 stim did not lead to any changes in present

plasma concentrations (data not shown). IL-1b, IL-4, IL-7, IL-10,

IL-12p70, IL12/23 and G-CSF were analyzed as well, but were

not detected in NK-DLI and PB.

When focusing on one hand on the ex vivo cytokine/chemokine

levels in the NK-DLIIL-2 stim products and on the other hand on

patients’ PB levels measured directly after infusion, marked

variations occurred. Being aware that besides other factors i.e.

dilution effects need to be considered, IL-2, IL-8, IFN-c and

especially MIP-1b were found in lower concentrations in the PB

than in the NK-DLIIL-2 stim (Fig. 3A+B).

Discussion

Here we present first interesting insights from our clinical NK

cell phase I/II study using allogeneic NK-DLIunstim compared to

NK-DLIIL-2 stim in pediatric patients suffering from high risk

malignancies. Although, we, among others, have shown that the

infusion of unstimulated as well as previously ex vivo IL-2

stimulated allogeneic NK cells post haplo-SCT is well tolerated

without inducing severe GvHD.grade II [2,12,14,16], possible

Figure 2. Influence of NK-DLIs on monocyte and granulocyte distribution in patient’s PB. A) Significant reduction of absolute CD14+

monocyte count could be demonstrated in patient’s PB 10 min after application of fresh NK-DLIIL-2 stim (n = 7), while recovering to normal values
within the next 24 h. This was not seen after NK-DLIunstim (n = 6). Density plots show side scatter (SSC) vs. CD14 gated on CD45+ leukocytes. For the
4 h level post NK-DLIunstim 2 values were available, only. p,0.05 indicated as *. B) We observed a distinct influence of NK-DLIIL-2 stim on neutrophil and
eosinophil granulocyte count. A massive increase of neutrophils (SSChighCD45lowCD16+) with its peak at 4 h was combined with a significant
reduction of eosinophil granulocytes (SSChighCD45brightCD162) in the PB after fresh NK-DLIIL-2 stim (n = 7). This was not observed after unstimulated NK
cell applications (data not shown). p,0.05 indicated as *.
doi:10.1371/journal.pone.0027351.g002
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risks or disadvantages need to be critically discussed. As it stands,

literature is scarce about the fate and behavior of adoptively

transferred allogeneic NK cells in humans and about the potential

distinct influences of unstimulated NK cells in contrast to

previously ex vivo activated NK cells on patient’s adaptive and

innate immune system.

Figure 3. In vivo monitoring of patient’s cytokine/chemokine plasma levels following NK-DLI. A) Box and whiskers plots show the
respective cytokine/chemokine concentration present in the NK-DLIIL-2 stim product (n = 12) immediately prior to infusion. The nine to 14 days ex vivo
IL-2 stimulation of highly purified donor NK cells led to the secretion of high amounts of various chemokines i.e. IL-8 and MIP-1b, as well as the pro-
inflammatory cytokine IFN-c. Whereas, the median concentration of the pro-inflammatory cytokine IL-6 was ,10 pg/ml. The indicated IL-2
concentration was due to addition during expansion procedure (see Material and Methods). Y-axis shows cytokine/chemokine concentration, range
1–1.000.000 pg/ml. B) Cytokine analyses of cryopreserved plasma samples collected before (pre) and 10 min, 1 h, 4 h and 24 h after fresh
NK-DLIIL-2 stim (X, n = 6). Significant increases of in vivo cytokine/chemokine concentration of IL-2, IL-6, IL-8, IFN-c, MCP-1 and MIP-1b in patient’s
plasma following NK-DLIIL-2 stim were observed. Levels peaked after 10 min to 1 h post infusion, remained enhanced over a period of 4 h and
returned to base level within the next 24 h. In contrast, no increase in cytokine/chemokine PB concentration following NK-DLIunstim was seen
(N, n = 2). p,0.05 and ,0.01 indicated as * and **.
doi:10.1371/journal.pone.0027351.g003
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Several studies in animals have addressed the question

concerning the capability to traffic to specific tissues, the regulation

of homing, and the survival of adoptively transferred cells in vivo.

NK cell trafficking to spleen, lymph nodes, lung, liver, gastroin-

testinal tissue and tumor side with a survival up to four weeks

following transfer was observed by a bioluminescence-based

strategy, which correlated with an observed anti-tumor effect

[24–26]. However, to date only one small clinical trial in humans

was performed, where three adult patients with renal cell

carcinoma received stimulated allogeneic NK cells labeled with

the radioactive substance Indium-111 oxine [27]. After an initial

accumulation in the lungs, NK cells redistributed to liver, spleen

and bone marrow as well as in two of four metastases in lung and

liver. Unfortunately, it has been reported as well that Indium

labeling significantly affects the cellular integrity [28]. Even though

it is still of particular interest if adoptively transferred NK cells in

humans actually reach their side of action, clinical trials using NK

cell labeling with potentially harmful substances will not obtain

approval in the treatment of pediatric malignancies. Therefore,

approaches using more noninvasive strategies have to be

considered. Our investigation is based on a comprehensive in vivo

cytokine/chemokine monitoring and on flow cytometric analyses

of quantification, constitution and distribution of various PB

leukocyte subsets before and after NK-DLI application.

In our study we have reported markedly diverse effects between

NK-DLIunstim and NK-DLIIL-2 stim. Shortly after infusion of NK-

DLIIL-2 stim only, a rapid almost complete loss of cells dominantly

from the innate immune system from patient’s PB circulation

appeared which was accompanied by significant increases in

plasma concentration of various cytokines and chemokines.

Whereas neutrophil granulocytes markedly increased within 4 h

post NK-DLIIL-2 stim, monocytes, dendritic cells, eosinophils and

especially NK cells massively decreased as early as 10 min post

infusion, while recovering within the next 24 h.

Moreover, when analyzing NK cells more into detail, we were

able to clearly discriminate between adoptively transferred and

patients’ PB NK cells by a distinct CD69, NCR and CD62L

expression. We have shown previously that ex vivo IL-2 stimulation

leads to a predominantly CD56brightCD16+/2 phenotype with a

strongly enhanced expression of the activation marker CD69,

while CD62L becomes down-regulated. Further, surface receptors

involved in NK cell cytotoxicity become highly up-regulated.

While only one-third of unstimulated NK cells, a median of 95%

of IL-2 stimulated NK cells show expression of NCRs. In detail,

NKp44, NKp30, NKp46 and NKG2D expression significantly

increased 33-fold, 12-fold, 3-fold and 4-fold, respectively [16].

Furthermore, the IL-2 stimulation led to a consistent increase in

NK cell killing activity against a neuroblastoma cell line [16] and

the leukemic cell line K562 (Fig. S2A). In addition, Penack et al.

showed that the CD162 NK cell subset is responsible for anti-

tumor responses [29].

NK cells with the characteristics of the ex vivo IL-2 stimulated

phenotype (CD56brightCD16+/2CD69+NCRhighCD62L2) were

not detected in patients’ PB at any time point during in vivo

monitoring. Furthermore, we could clearly show that the

significant reduction of CD56+CD32 NK cells from blood

circulation following NK-DLIIL-2 stim was due to both, a decrease

in patients’ own PB CD62L+ NK cells as well as a rapid

diminishing of the transferred, stimulated NK cells from the NK-

DLI with the CD62L2 phenotype.

In contrast, PB cell subpopulations remained constant after NK-

DLIunstim. This effect was not due to NK-DLI dose, a PB dilution

effect after infusion, application date or host’s NK cell immune

reconstitution. All these variables were very similar in both,

patients receiving NK-DLIunstim and those receiving NK-

DLIIL-2 stim. The only difference was the IL-2 for generation of

NK-DLIIL-2 stim and the high amount of cytokines and chemokines

such as IFN-c, IL-8, MCP-1, IP-10, RANTES, MIP-1b secreted

in the course of ex vivo expansion. Those factors were only

transfused to patients treated with NK-DLIIL-2 stim.

In accordance with our results, early studies have reported a

rapid diminishing of various types of PB lymphoid cells, especially

NK cells, 15 min after in vivo bolus single cytokine administration

of very high doses of recombinant IL-2 (up to 16106 U/kg BW).

Similar to our study, cells also recovered within the next 24 h.

Furthermore, IL-2 was rapidly cleared from the plasma with a

half-life of 6.9 min [30,31]. It has been suggested that the IL-2

induced disappearance of NK cells may be related to a massive

adhesion to the activated endothelium [31,32]. Our observed

effects cannot be attributed to one single cytokine/chemokine but

to the whole cytokine ‘‘cocktail’’ applied with the NK-DLIIL-2 stim

product, but the IL-2 dose applied by our NK-DLI study was

extremely lower (,26104 U/kg BW) in comparison to the

discussed data by Lotze et al. (,16106 U/kg BW). Apparently,

much lower concentrations of IL-2 but in combination with our

indicated cytokines/chemokines administered by NK-DLIIL-2 stim

led to a comparable effect to high dose single IL-2 application with

regard to PB leukocyte diminishing.

Measuring cytokine/chemokine production is an integral part of

measuring immune response during immunotherapy. Because

cytokines act in networks and have overlapping functions,

monitoring of a single cytokine may be of limited use [33].

Following NK-DLIIL-2 stim we have shown significant increases in

plasma concentration of several chemotactic and inflammatory

cytokines and chemokines which remained enhanced up to 4 h

post DLI (Fig. 3B). The majority of the analyzed increases were

probably induced by the infusion of high amounts of ex vivo

generated cytokines/chemokines in the NK-DLIIL-2 stim. We

assume that these changes in the natural cytokine milieu of the PB

led to the observed cell migration processes. The massive increase

of blood neutrophils, which represent the major early cell type to

invade inflammatory foci, is likely mediated by the transfer of high

amounts of IL-8 that were produced in the course of ex vivo NK cell

stimulation. Notably, IL-8 has been described to be the major

chemo-attractant for neutrophil granulocytes. Neutrophils are

described to be potent producers of various cytokines (i.e. IL-6, IL-

8, IP-10, MIP-1a/b) which may be in relation to the prolonged

enhanced cytokine/chemokine levels 4 h post NK-DLIIL-2 stim

application [34,35].

Furthermore, the disappearance of various leukocyte subsets

occurring only after NK-DLIIL-2 stim may be mediated by two

alternative or complementary mechanisms: (i) adherence to the

activated endothelium induced by high amounts of co-infused

cytokines/chemokines, (ii) leukocyte migration from the PB into

the extravascular compartment.

Although normal endothelial cells exhibit low affinity for

circulating lymphocytes, the high amount of the cytokines and

chemokines present in the PB (i.e. IFN-c, MIP-1b, IL-8), similar to

those released in the course of inflammation and other immune

reactions, leads to endothelial activation associated with an

increased expression of surface antigens which interact with all

leukocytes [31]. This might result in endothelial adherence and

therefore diminishing of leukocytes from blood circulation.

Further, it is known that soluble cytokines and chemokines bind

endothelial molecules including glycosaminoglycans (GAGs) and

the Duffy antigen/receptor for chemokines (DARC), which are

involved in the trans-endothelial transport of several chemokines,

i.e. MIP-1b, IL-8, RANTES, MCP-1 and IP-10 [36–38].
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Chemokines bound at the luminal endothelial cell surface could

provide a trans-cellular chemotactic gradient guiding leukocyte

extravasation [39]. Therefore, we assume that following the firm

attachment to the activated endothelium, the cells migrate across

the endothelium barrier into the tissue, actually leaving PB blood

circulation. Although 7-AAD analyses revealed no increase in

dead cells over the whole period of in vivo monitoring (data not

shown), a cell reduction in PB circulation due to cell death cannot

be excluded completely.

In addition to the discussed trans-endothelial transport of

cytokines/chemokines, cytokine stability in circulation, renal

clearance as well as dilution effects during infusion must be

regarded as parameters that have likely contributed to the

described discrepancy between high ex vivo levels in the NK-DLI

and much lower in vivo PB levels. In our study we found a

significant reduction of the immune regulatory CD56bright

CD16dim/2 NK cell subpopulations 10 min after NK-

DLIIL-2 stim. An explanation for the overall higher susceptibility

of the CD56brightCD16dim/2 NK cell subpopulation might be the

high expression of various chemokine receptors i.e. the MIP-1b
corresponding CCR5 receptor on the cell surface of the

CD56brightCD16dim/2 subpopulation, only [40].

Finally, IL-6 was the only cytokine which was secreted much

higher in the PB of our patients compared to those during NK cell

expansion, leading us to suspect a secondary production of the

patient’s body in response to NK-DLIIL-2 stim. We speculate that

this could be due to both, the secretion of endothelial cells in

reaction to the changing cytokine milieu, neutrophil granulocytes

and monocytes that transiently adhere to the endothelial surface.

In addition, the increase of IL-6 in patients’ blood plasma as a

response to NK-DLIIL-2 stim correlated with our clinical observa-

tions of transient fever and chills; therefore serving as a surrogate

marker of the biological activity of the ex vivo secreted and co-

infused cytokines and chemokines.

Till now, very little is known about the effects of NK cell

administration post SCT. These concomitant results to a clinical

immunotherapy study provide first insights on the distinct

influence of unstimulated vs. ex vivo IL-2 stimulated NK cell

infusions. Nevertheless, we are fully aware that dissimilarities in

the study design and the heterogeneous small patient cohort may

have a potential effect on the results and that further studies have

to verify the discussed data.

Moreover, an open issue remains the clinical benefit of NK-

DLIIL-2 stim compared to NK-DLIunstim applications. Due to our

heterogeneous patient cohort regarding different high risk diseases,

with multiple and advanced relapses, mostly not in remission (NR),

a clear evidence cannot be made. Anyhow, in the present study we

could show a superior cytotoxicity of ex vivo IL-2 stimulated

compared to unstimulated NK cells against the MHC-I negative

cell line K562 and against a neuroblastoma (NB) cell line as well

[16]. Cautiously it has to be noted, that 78% of the high risk group

II patients treated with NK-DLIIL-2 stim has not been in remission

during haplo-SCT, but reached a survival of 44%. In addition in

this group, two out of four patients suffering from high risk NB

stadium IV with a very poor prognosis are still alive .2 years post

NK-DLIIL-2 stim, which seems promising and is in accordance with

the enhanced lytic activity of IL-2 stimulated NK cells compared

to NK-DLIunstim against NB [16].

Conclusively, we were able to show that the adoptive transfer of

NK-DLIIL-2 stim results in massive cell migrating processes under

the influence of various ex vivo and most likely also in vivo secreted

cytokines and chemokines. Since IL-2 activation leads to an

improved cytotoxic capacity of the adoptively transferred NK

cells, the co-transfused cytokine milieu may promote NK cell

trafficking as well as an enhanced efficacy of NK cell immuno-

therapy.

Supporting Information

Figure S1 Study designs of the clinical phase I/II NK-
DLI and our concomitant in vivo monitoring analyses. A)

In a phase I/II clinical feasibility study starting in the year 2003,

haploidentical donor NK cells were isolated from unstimulated

leukapheresis and purified by a two-step CD3-depletion/CD56-

selection procedure. For haplo-SCT (d 0), peripheral blood stem

cells (PBSC) were purified immunomagnetically either by CD34-

selection or CD3/CD19-depletion. For NK cell collection,

leukapheresis was performed at day 210 prior and +40 post

SCT. At day +40, NK-DLIunstim was applied freshly, directly at

the end of the purification process, while the processed NK-

DLIunstim from day 210 was split and cryopreserved for the NK

cell application on day +3 and +100. B) In an amendment of the

study starting in the year 2005 two leukapheresis products

collected on day +29 and +30 post SCT were pooled for the

CD3-depletion/CD56-selection NK cell purification process.

Following purification, NK cells were further ex vivo expanded

and activated using 1000 U/ml IL-2 for 10 (9 to 14) days obeying

GMP. After ex vivo stimulation, the NK cell product was split up,

while one half was infused freshly at day +40 and the other was

cryopreserved and applied at day +100 post SCT. For haplo-SCT

(d 0), peripheral blood stem cells (PBSC) were purified

immunomagnetically by CD3/CD19-depletion. C) For our

concomitant in vivo monitoring study during NK-DLI, PB samples

were collected at the day of application before (pre), 10 min, 1 h,

4 h and 24 h after the end of NK-DLI application.

(TIF)

Figure S2 A) NK cell cytotoxicity of NK-DLIunstim vs. NK-
DLIIL-2 stim. Cytotoxic activity of donor NK cells against K562

was significantly enhanced by IL-2 stimulation. The killing activity

against the MHC class I negative leukemic cell line K562 of IL-2

stimulated NK-DLIs (grey, n = 9) was significantly greater

compared to unstimulated NK cells (white, n = 9) at both

effector:target ratios 1:1 and 10:1. NK cell cytotoxicity of freshly

isolated unstimulated or IL-2 stimulated products was tested

previously to application to the patients and/or before cryopres-

ervation. Cytotoxicity was analyzed based on a 5-color flow

cytometric single platform assay [19] and defined as the loss of

viable target cells in relation to the mono-cultured control. p,0.01

and ,0.001 indicated as ** and ***. B) In vivo NK cell
immune reconstitution post haplo-SCT. Similar NK cell

immune reconstitution post haplo-SCT in both patients’ groups

receiving NK-DLIIL-2 stim and NK-DLIunstim respectively. Very

similar NK cell immune reconstitution was seen in both patient

subgroups NK-DLIunstim (%, n = 7) and NK-DLIIL-2 stim (m,

n = 6). Immune reconstitution of all patients was monitored

regularly; within the first three months post SCT weekly, from

month four to six twice a month, followed by a period of monthly

analyses. Shown are all measurements and median performed in

each interval which were similar in both groups.

(TIF)

Figure S3 In vivo NK cell phenotype in patients PB
differs from that of ex vivo expanded NK-DLIIL-2 stim.
A) Upon 9–14 days of IL-2 stimulation, CD56, NKp44 and the

activation marker CD69 become highly up-regulated, while the

expression of the lymph node homing molecule CD62L declines.

This figure exemplarily shows the ex vivo IL-2 stimulated NK cell

phenotype present in the fresh NK-DLIIL-2stim. Density plots show

Influence of NK-DLI(IL-2 Stim) on PB Cells
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CD56 vs. CD16 (CD56-PE, gated on lymphocytes excluding

CD3+ T cells and CD19+ B cells), CD56 vs. NKp44, CD56 vs.

CD69 and CD56 vs. CD62L (CD56-PC7, gated on CD56+CD32

NK cells). B) The NK cell phenotype of the NK-DLIIL-2 stim (Fig.

S3A) was not present at any time following NK-DLIIL-2 stim

application in patients’ PB. This was indicated by the red circles.

The blue squares highlight the CD62L expression of PB NK cells

of the patients, illustrating the loss of the CD62L+ expressing PB

NK cell phenotype as early as 10 min post NK-DLIIL-2 stim

infusions, and the recovering after 24 h. In addition, CD56 was

not down-regulated after NK-DLIIL-2 stim application. Density

plots show CD56 vs. CD16 (CD56-PE, gated on lymphocytes

excluding CD3+ T cells and CD19+ B cells), CD56 vs. NKp44,

CD56 vs. CD69 and CD56 vs. CD62L (CD56-PC7, gated on

CD56+CD32 NK cells). C) The decline in CD62L expressing PB

NK cells was further illustrated by a box and whiskers plot. In the

PB nearly all of the minor CD56bright and about 40% of the major

CD56dim NK cell subpopulation are CD62L+. As early as 10 min

post NK-DLIIL-2 stim applications (n = 4) a significant reduction in

CD62L+ expressing PB CD56+CD32 NK cells was seen, while

returning after 24 h. p,0.05 is indicated as *.

(TIF)

Figure S4 Impact of total NK-DLIIL-2 stim applications
on leukocyte subpopulations and cytokine/chemokine
levels. This figure gives an overview of all NK-DLIIL-2 stim

applications, fresh and cryopreserved, in total. All effects of freshly

applied NK-DLIIL-2 stim on leukocyte subpopulations shown in

Fig. 1, 2, 3 were comparable to those presented in the overall of all

NK-DLIIL-2 stim applications (n = 13). Box and whiskers plots show

minimum, lower quartile, median, upper quartile and maximum

of all measured data. Cytokine analyses of PB plasma samples

collected before (pre) and 10 min, 1 h, 4 h and 24 h after fresh

and cryopreserved NK-DLIIL-2 stim in total. Similar significant

increases of in vivo cytokine/chemokine concentration of IL-2, IL-

6, IL-8, IFN-c, MCP-1 and MIP-1b in patient’s plasma compared

to exclusively fresh NK-DLIIL-2 stim applications (Fig. 3) were

observed. Y-axis shows cytokine/chemokine concentration, range

1–1.000.000 pg/ml. p,0.05, p,0.01 and p,0.001 are indicated

as *, ** and ***, respectively.

(TIF)
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