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Vacuum-polarization contribution to the hyperfine-structure splitting of hydrogenlike atoms 
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A calculation of the vacuum-polarization contribution to the hyperfine splitting for hydrogenlike 
atoms is presented. The extended nuclear charge distribution is taken into account. For the experimen- 
tally interesting case 209Bi82+ we predict a Ah= - 1.6 nm shift for the transition wavelength of the 
ground-state hyperfine splitting. 

PACS numberk): 3 1.30.G~ 

INTRODUCTION hyperfine structure of hydrogenlike atoms. Here, we 
focus our attention on the vacuum-polarization contribu- 

The ground-state hyperfine splitting of hydrogen, the tion. An accurate evaluation of the self-energy level shift 
well-known 21-cm radiation, has been measured with a is in Progress. 
relative accuracy up to 10-12 [I]. However, the accuracy 
of the theoretically predicted value of the transition 
wavelength is about six orders of magnitude lower [I]. 
There are various corrections to the first-order perturba- 
tion theory calculation of the hyperfine splitting: radia- 
tive corrections, recoil and radiative recoil corrections, 
and nuclear structure corrections. The latter can be di- 
vided into polarizability corrections and modifications 
due to the extended nuclear charge-current distribution 
which has been computed by Zemach [2] in the nonrecoil 
limit, i.e., m N +  m.  For heavy nuclei the finite-nuclear- 
size contribution will dominate, whereas recoil correc- 
tions are assumed to be relatively negligible. QED 
corrections become more and more important for heavy 
elements because of the large effective coupling constant 
Z a  to the electrostatic field of the nucleus. 

Experimental as well as theoretical data on the 
hyperfine structure of hydrogenlike high-Z atoms were 
not available up to now. Precision calculations of this lev- 
el splitting have been motivated by recent experiments 
with hydrogenlike high-Z atoms, e.g., in Ref. [3], where 
209~i82 '  is under examination [3]. From the first success- 
ful experiment of Klaft et al. one deduced a ground-state 
transition wavelength of AL„„=243.87(4) nm [4]. For 
the next experimental generation one is aiming at an ac- 
curacy of about 1oP6 [ 5 ] ,  which represents a severe chal- 
lenge for the theoretical description. 

Recently, two groups presented a first-order perturba- 
tion theory calculation of the hyperfine structure of hy- 
drogenlike 2 0 9 ~ i  [6,7]. The authors concentrated on the 
effects of the extended nuclear charge-current distribu- 
tion. The modification according to the finite nuclear 
charge distribution is known as the Breit-Schawlow effect 
while the correction due to the extended magnetization 
distribution is the Bohr-Weisskopf effect [8]. 

Our paper represents the first Part of a detailed 
analysis of the first-order radiative corrections to the 

THE HYPERFINE-STRUCTURE SPLITTING 

First we summarize briefly the results of the first-order 
calculation for the most interesting case 'O9~iS2". In 
first-order perturbation theory the hyperfine-structure 
splitting follows from [9] 

X 2 J  f f i ~ ( r  , (1) I ( F ,  ) - ( F 2 )  

where I and j are the total spin of the nucleus and the 
electron, respectively, and F designates the total spin of 
the electron-nucleus System. g N  is the anomalous magnet- 
ic moment and pN denotes the nuclear magneton. For 
209~ i82+ ,  the angular momentum quantum numbers are 
I =; and j =3, resulting in the two values F ,  = 5  and 
F,=4.  K signifies the Dirac angular-momentum quan- 
tum number and k = l  for K > O  or k = l + l  for K<O, 
where 1 is the orbital angular-momentum quantum num- 
ber of the electron. The magnetic moment of bismuth is 
taken to be pBi=4.  1 106pN [10]. Furthermore, G ( r )  and 
F ( r ) are the relativistic radial wave functions, satisfying 
the radial Dirac equations 

The electrostatic potential V ( r )  is generated by the 
spherical symmetric nuclear charge distribution. 

For point-nucleus wave functions the integral in Eq. (1) 
is known analytically, e.g., it reads for the ls,,, state [9] 
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For extended nuclear charge distributions this integral 
has to be determined numerically. For our explicit calcu- 
lations of the general behavior we utilized wave functions 
corresponding to the Coulomb field of a homogeneously 
charged sphere. The root-mean-square radii of the 
different nuclei are tabulated in Ref. [l l] .  For nuclei 
with Z > 30 we found that the difference between results 
for a point nucleus and an extended nucleus may be 
parametrized as 

where A = -6.813 and B =5.5884X 10-~ .  For bismuth 
this implies a 12% modification. In lowest order the 
transition wavelength between the F,=I+T and the 
F2=I -T states of 209~i82f  was computed to be 
hh1=238. 8 nm, employing an experimentally determined 
Fermi distribution [12]. An examination of the Bohr- 
Weisskopf effect yielded a shift of hhBW= f 3 . 5  nm [7]. 
This value was determined within the extreme single- 
particle model and might be still uncertain. For muonic 
atoms Johnson and Sorensen [13] presented an evaluation 
within the configuration mixing model that coincides 
with the experimental value from Rüetschli et al. [14]. 
Within the framework of the single-particle model the 
Bohr-Weisskopf effect is assumed to be underestimated 
because of missing configuration mixing contributions. 
Thus, a more sophisticated calculation of the Bohr- 
Weisskopf effect for the hydrogenlike Bi nucleus seems to 
be vital for a more rigorous theoretical prediction. 

RADIATIVE CORRECTIONS 

The problem of an electron moving in the central field 
of a nucleus belongs to the more general bound-state 
QED. The QED corrections to the hyperfine splitting 
generally are calculated in the nonrecoil limit 
(m,/mN-+O), where the nucleus is reduced to an exter- 
nal electromagnetic field. For hydrogen or very light ele- 
ments the QED corrections to the bound electron, e.g., 
the Lamb shift, traditionally are expanded in the effective 
coupling constant Zu .  In the context of the hyperfine 
structure pioneering investigations were performed by 
Kroll and Pollock [15] and by Karplus and Klein [16], 
who calculated the level splitting in a series expansion to 
order a(Za). This series expansion was later extended 
by Brodsky and Ericson [17] and by Sapirstein [18]. Un- 
fortunately, these extensive calculations are not applica- 
ble to medium-Z or high-Z atoms, since the series expan- 
sion would converge rather slowly when Za approaches 
unity. This behavior was also discovered in the computa- 
tion of the Lamb shift. For that reason, methods-were 
developed to treat the propagator in the spherical sym- 
metric Coulomb field of the nucleus exact to all orders in 
Z u .  

To compute radiative corrections for bound electrons 
within the external field approximation one is led to the 

Furry or bound-state interaction picture, where the exter- 
nal field is included in the electron field Operator as well 
as in the Green function of the Dirac equation. The 
graphical representation of the first-order radiative 
corrections within the Furry picture is shown in Figs. 
l(a)-l(c). The double lines signify wave functions and 
propagators, respectively, that are exact in the elec- 
tromagnetic field of the nucleus. A direct application of 
the methods developed for the evaluation of the Lamb 
shift is not possible because of the nonspherical symmetry 
of the external field. Since the magnetic field of the nu- 
cleus is rather small compared with the electrostatic po- 
tential, it is legitimate to treat it as a perturbation. Thus, 
the vacuum-polarization Part of the QED corrections 
[Fig. l(c)] can be expanded in terms of the magnetic cou- 
pling. In Fig. 2 the diagrammatic depiction of this ex- 
paniion is dkplayed. T ~ O  contributions arise if one re- 
stricts the calculation to a single magnetic coupling: (a) 
the diagram with one loop that couples to the magnetic 
field, which appears due to the expansion of the exact 
propagator, and (b) two diagrams with one magnetic cou- 
pling from the expansion of the exact wave function. In 
Fig. 2 the thick lines symbolize the exact propagator or 
wave function in the Coulomb-like electrostatic field. In 
our approximate numerical elaborations the loop propa- 
gator is taken in first order in the external field. This 
transforms diagram 2a to an Uehling-like contribution, 
which couples to the magnetic field. In Fig. 2(b) the loop 
part of the diagram reduces to the ordinary Uehling part. 
We denote these two energy shifts AEML and AEEL, 
where the suffices ML and EL indicate the magnetic loop 
and the electrostatic loop contribution, respectively. The 
total energy shift is A E " = A E ~ ~  +AEEL. 

FIG. 1. Graphical representation of radiative corrections to 
the hyperfine structure within the Furry picture. Double lines 
indicate exact wave functions and exact propagators in the 
external electromagnetic field, respectively. (a) is the self- 
energy, (b) is the divergent mass-renormalization diagram, 
which cancels with an identical divergency appearing in (a), and 
(C) represents the vacuum-polarization part. 
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At first we consider the magnetic contribution. In 
momentum space the induced vacuum-polarization po- 
tential A F ( q )  of order a is given by [17] 

where A( q )  = - 2S( q, )i ( q X m )  /q2. Introducing the 
Fourier transform A (X by 

one obtains the magnetic Part of the vacuum-polarization 
potential 

Writing 

and interchanging differentiation and integration, one can 
make use of the integral formula 

The final expression for the vacuum-polarization vector 
potential in position space reads 

Here, the vector field A ( r ) = ( m x r ) / r 3  is the only 
Operator acting on the wave functions. Hence, according 
to the result within the framework of first-order perturba- 
tion theory we deduce that the integral in Eq. (1) has to 
be exchanged with 

in order to derive the corresponding expression for the vacuum-polarization energy shift. If one expands the analytical- 
ly known product GP.".(r)Fp.*.(r) for the 1s wave function into a series in Z a  one obtains (m, = 1 ) 

where all terms are expanded except for the exponential 
e p2Zar.  y ,  =0.577215. . . is Eulers constant. If one 
writes 

G ( r ) F ( r ) r 2 = A , +  A,(ZaI2+ . . . , (14) 

then it is obvious that 

d 
A l  = - 2 ( ~ a ) ~ ( ~ a ) e - ~ ~ ~ ' = % - - ( ~ ~ ( r ) ) ~  , 

dr 

where 

is the 1s Schrödinger wave function. So, in the ( Z a )  ex- 
pansion of the product of the radial Dirac wave func- 
tions, the first term will yield the nonrelativistic formula 
derived by Zwanziger [19]. The second term represents a 
first relativistic correction factor. In Figs. 3(a) and 3(b) 
the magnetic Part of the vacuum-polarization energy 
shift AEML, normalized to AE '( 3 /8 ) a ( Z a  ), is presented 
for different ranges of the nuclear charge number Z. The 
full line signifies the relativistic calculation and the 
dashed line is addressed to the nonrelativistic calculation 
with Schrödinger wave functions. Additionally, the dot- 
ted line corresponds to the series expansion up to the or- 
der a(za)' while the dashed-dotted line indicates the 
computed value incorporating the relativistic correction 
factor deduced from the Dirac wave function expansion. 

FIG. 2. Depiction of the two resulting contributions from the 
expansion of the vacuum-polarization correction [Fig. l(c)] in 
first order in the external magnetic field. Thick lines refer to ex- 
act wave functions or exact propagators in the electrostatic 
field. The magnetic part (a) results from the expansion of the 
propagator and (b) is obtained from an expansion of the wave 
functions. 
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One easily verifies that  all evaluations yield nearly the 
same result for hydrogen and that the relativistic correc- 
tion is not negligible for high-Z nuclei. In contrast t o  the 
result given in the paper by Brodsky and Ericson [17] we 
found that the series expansion of the nonrelativistic 
point nucleus formula for the magnetic energy shift yields 

where A E ~  denotes the nonrelativistic first-order result of 
Fermi [20]. The difference to the expression from Brod- 
sky and Ericson is provided by the factor -+ in front of 
the a(za12 term, which was quoted to  be - 5. 

As one learned from Uehling-shift calculations, the 
finite size of the nucleus modifies the point-nucleus re- 
sults by a significant amount for medium to high-Z 
atoms. Figure 4 presents a comparison between the rela- 
tivistic point-nucleus calculation (dashed line) and the 
relativistic values for extended nuclear charge distribu- 
tions (full line). 

Schrödinger waves 
+ rel. correction 

. -- zZa3 tem - Dirac waves 

'.... 
I I I I I I I I I I I I I C I I I ~ ~ " . ,  

Schrödinger waves 
+ rel. correction 

. . . . . . . . zza3 term 
Dirac waves 

I I I I I I I I  

FIG. 3. The magnetic part of the hyperfine splitting energy 
AEM„ normalized to 4 a(Za)AE ', as a function of the nuclear 
charge number Z. In Fig. 3(a) the full range 1 5 Z 5 100 is con- 
sidered, Fig. 3(b) shows a magnification of the low-Z area 
1 1 2  5 10. The full line represents the relativistic calculation 
while the dashed line corresponds to the Schrödinger wave- 
function calculation. Additionally, we plot the result for the 
series expansion up to order  ZU)^ (dotted line) and the rela- 
tivistically corrected result (dashed-dotted line). All energy 
shifts are derived for point nuclei. 

I m l ' l s l s  -- point nucleus - finite size nucleus 

l I l I l 1 1 1 1 1 1 1 l I I I I I  

FIG. 4. The splitting energy AEML displayed with the same 
normalization as in Fig. 3. The dashed line refers to the relativ- 
istic point nucleus result and should be compared with the full 
line, which indicates the corresponding value for the extended 
nucleus. The full line exhibits some slight structures because of 
the nonanalytical behavior of the nuclear radii. The difference 
between the result for a point nucleus and an extended nuclear 
charge distribution is notable and seems to be even more pro- 
nounced compared with the outcome of the lowest-order calcu- 
lation. 

The influence of the electrostatic vacuum polarization 
on the hyperfine splitting is numerically included by add- 
ing the Uehling potential to the static potential V ( r )  
entering the Dirac equation. The resulting wave func- 
tions are applied to the first-order calculation. The 
difference to the ordinary first-order result yields AEEL. 

In Fig. 5 the total normalized energy shift, summing 
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FIG. 5. The total-energy shift AE"' due to vacuum polariza- 
tion, normalized to 3/4a(Za)AE1, as function of the nuclear 
charge number Z in the range 1 5 Z i 100. The dashed line cor- 
responds to the outcome for a point nucleus and the full line 
signifies the energy shift for an extended nucleus. The evident 
discrepancy between the exact results and the series expansion 
prediction can be traced back to the EL term, in which the ex- 
act propagator in the Coulomb field is taken into account 
effectively by employing the wave functions generated by the 
static potential V ( r )  supplemented by the Uehling potential. 
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up the magnetic and the electric Part of the vacuum- 
polarization part, is plotted for the point-nucleus poten- 
tial (dashed line) as well as for the potential of a finite-size 
nucleus (full line). Here, the difference between these two 
results is most pronounced. 

SUMMARY 

We presented a first calculation of the vacuum- 
polarization contribution to the ground-state hyperfine- 
structure splitting as a function of the nuclear charge 
number Z .  One major uncertainty of our calculation still 
results from electrostatic couplings within the electron- 
positron loop. 

The computation of the self-energy contribution is in 
Progress. A more ambitious evaluation of the influence 
of the extended magnetization distribution might be a 
first essential step in understanding the experimental 
value of Ah=243.87(4) nm for the ground-state 
hyperfine splitting of 2 0 9 ~ i + 8 2 .  
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