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Periodic structure in nuclear matter 
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The properties of nuclear matter are studied in the framework of quantum hadrodynamics. Assuming 
an o-meson field, periodic in space, a self-consistent set of equations is derived in the mean-field approxi- 
mation for the description of nucleons interacting via U-meson and w-meson fields. Solutions of these 
self-consistent equations have been found: The baryon density is constant in space, however, the baryon 
current density is periodic. This high density phase of nuclear matter can be produced by anisotropic 
external pressure, occurring, e.g., in relativistic heavy ion reactions. The self-consistent fields developing 
beyond the instability limit have a special screw symmetry. In the presence of such an o field, the energy 
spectrum of the relativistic nucleons exhibits allowed and forbidden bands, similar to the energy spec- 
trum of the electrons in solids. 

PACS number(s): 21.65. + f 

I. INTRODUCTION 

In  a great number of physical Systems, the homogene- 
ous, isotropic distribution of matter looses its stability 
and at  some specific values of the physical Parameters a 
periodic structure is formed spontaneously [I]. In nu- 
clear physics the pion condensation [2] may serve as a 
typical example for such a phenomenon. In the last few 
years, the instabilities of homogeneous nuclear matter 
leading to the formation of a periodic meson field have 
been discussed in a number of papers [3-61. 

The possibility of a periodic structure associated with a 
periodic w field is expected for the following reason. The 
periodic structure corresponds to a specific combination 
of particle-hole excitations of the nucleons, which re- 
quires some excitation energy. The w field, which medi- 
ates a repulsive interaction in the particle-particle chan- 
nel, gives rise to an attraction in the particle-hole chan- 
nel. If the energy gain due to this attractive particle-hole 
interaction overcompensates the energy loss needed to ex- 
cite the particle-hole configuration, the formation of a 
periodic structure is favored. A similar phenomenon can 
be observed in electron plasma [7,8]. 

In  this Paper, working in the framework of quantum 
hadrodynamics (QHD) [9], a periodic w field is assumed 
and a set of self-consistent equations is derived in the rel- 
ativistic mean-field approximation. In this way the 
periodic structure can be studied also beyond the instabil- 
ity point of the homogeneous System. 

I t  has to be noted that, for the moment, the reliability 
of the mean-field approximation is not yet clarified. 

Studying the possibility of periodic structures, Friman 
and Henning [4] have investigated the condition of the in- 
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stability. They have found the limits of the instability in 
the mean-field approximation. The instability, however, 
disappears when the quantum corrections in the one-loop 
approximation are included. From this observation they 
have arrived at  the conclusion that the instability against 
the formation of a periodic structure found in the mean- 
field approximation is a spurious, nonphysical effect. At 
the same time, another type of instability has been found 
by Furnstahl and Horowitz [5] calculating the meson 
propagators at  the one-loop level. Using the random- 
phase approximation, Price, Shepard, and McNeil have 
shown the possibility of a periodic structure which can be 
associated with alpha-particle clustering 161. The prob- 
lem seems to be even more involved if we take into ac- 
Count the results of Ref. [10] where it was proved that the 
perturbative corrections to the mean-field approximation 
in terms of one-loop, two-loop, etc., contributions d o  not 
form a convergent series. From these studies it follows 
that the results obtained in the mean-field approximation 
must be checked and corrected by nonperturbative 
methods [ l l ] ,  e.g., by lattice Q H D  calculations [12]. 

11. MODEL 

The field equations for the nucleon field $ (X )  and for 
the U -  and w-meson fields are given in the standard nota- 
tion as follows: 

For the sake of the flexibility of the model here, we have 
introduced a self-interacting U field with the potential 
U (  o ) given by 
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The parameters of this potential (b,c)  together with the 
masses ( m , m „  rn, ) and coupling constants (g„g, ) are 
given in Table I. 

In the spirit of the mean-field approximation, we as- 
sume that the meson-field operators can be replaced by 
their expectation values considered as classical fields. 
The density operators of the nucleon field, i.e., the source 
terms of the meson fields in Eqs. (2) and (3), are also re- 
placed by their expectation values. More specifically, we 
introduce the following Ansätze: 

u ( x ) +  ( u ( x ) )  =ü , (5) 

wO(x)-(w0(x))=i50,  (6) 

The field tensor, defined as 

FPV= ~ V ~ P  - a w w v  (1 8) 

has only two nonvanishing elements: 

F ' ~ = w ~  sinkz -H2 , (19) 

FZ3=i5k coskz - -H' . (20) 

This "magnetic" field is perpendicular to the z axis, and it 
rotates in the X-y plane as one goes along the z axis. 

The w field has a special symmetry. Namely, the o 
field is invariant against a screw transformation which is 
the combination of a translation along the z axis, 

w2(x)- (w2(x))=-Zsinkz , (8) and a simultaneous rotation around the z axis, 

$rY-(lJI-$) . (10) \ coska - sinka 0 1 
Here z denotes the X component of the X four-vector and 
k ( = k 3 )  is the only nonvanishing component of the 0 1 

wave-number four-vector for the w field. 
- 

where the angle of rotation is proportional with the 
By substituting these Ansätze into the field equations, translation. 

we arrive at  the following set of equations: Furthermore, there exists a discrete translational sym- 

-0 0 
metry due to the periodic behavior of the w field. Conse- 

[iYPap-g,w Y quently, the solutions of the Dirac equation are Bloch 

+g,i5(y1coskz-y2sinkz)-m +g,ü]$(x)=O , (11) waves: 

\Vi(p,x)=e-'Px@i(p,z) , (22) 
(12) 

where the function @; must be periodic with the "lattice 
(13) spacing" 277/k: 

(14) Qi(p ,z  ) = Q i ( p , z  + 2 a / k  ) . 

- ( k 2 + m ~ ) i 5 s i n k z = g , ( $ y 2 ~ )  , (15) The quasinucleon states described by Eqs. (22) and (23) 
are plane waves modulated by the periodic w field. At a 

O=g, ( G3$) . (16) fixed value of the momentum p, the function Qi (p , z )  is 
written in the form of a Fourier series: 

These equations determine the Parameters of the assumed N 

mean fields, i.e., the values of ü, ?G0, and 3. @ , ( p , z ) =  lim 2 ui(p,n)e-inkz . 
N - m  n = - , ~  

(24) 

In the Ansätze given by Eqs. (5)-(9), we have assumed 
that an o field periodic in space can be developed. I t  is The bispinor u i (p ,n  ) together with the energy eigenval- 
easy to see that the w field satisfies the following ues E i ( p )  can be obtained by the diagonalization 
"Lorentz" condition: of the Hamiltonian 

TABLE I. Parameters of the mesonic fields. 

U ( U potential Coupling constants Particle masses (fm-'1 
parameters 

b C go g, m m o m U 

"Soft" nuclear -0.734 6.856 3.512 3.874 
mattera 

4.570 2.788 3.953 
"StifT" nuclear 0.0 0.0 9.573 11.67 
matterb 

"Lovas, Nemeth, and Sailer [13]. 
bWalecka [9]. 
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FIG. 1. Lowest positive energy levels E =  E -goOO plotted against momentum component p, for a nucleon moving in a periodic o 
field(k=4.0,px=p,=2.0). Leftside,Z=O.l;rightside,Z=O.O. 

where 

~ „ ~ = ~ ~ ( ~ ~ ~ + ~ ~ n k + m * + ~ ~ ~ ~ ~ ~ ) ~ „ ~  

and 

According to this Set of equations, we have to diago- 
nalize the Hamiltonian (26) in a 4( 2N + I )-dimensional 
space. However, when we need only the energy eigenval- 
ues, we can solve the equivalent eigenvalue problem given 
in the Appendix, which leads to a diagonalization in a 
2(2N + 1 )-dimensional space. 

The energy spectrum E i ( p )  is somewhat similar to the 
spectrum of crystalline solids having allowed and forbid- 
den bands. 

At every given value of p, there exist two different 
states associated with the two spin degrees of freedom. 
These states are degenerate when the amplitude of the 
periodic field 3 vanishes, as can be Seen on the right-hand 
side of Fig. 1. When the amplitude of the periodic field W 
is nonzero, the spin degeneracy is resolved. Allowed and 
forbidden energy bands are formed, as shown in Fig. 1. 
The splitting of the degeneracy can be seen in Fig. 2 when 
the G-field amplitude is growing from Zero to a finite 
value. 

The expectation values of the source terms of the field 
equations ( 12) - (1 6) can be expressed as follows: 

The Fermi-Dirac distribution function 9 at a fixed tem- 
perature T and baryon chemical potential ,p is given by 

The integration on the first Brillouin Zone from - k /2  to + k /2 together with the summation on the complete set 
of states labeled by the index i is equivalent with the in- 
tegration on the full momentum space in the case of non- 
periodic Systems. 

The three-dimensional integration was performed by 
Gauss quadrature. 

The calculations were carried out by truncating the 
Hilbert space at  N = 3. The results calculated at  T = 20 
MeV are shown in Figs. 3-8. 

At a few values of the Parameters, we checked the rapi- 
dity of the convergence of the Fourier expansion. The 
calculations have been performed truncating the Hilbert 
space at  N = 1, 3, and 5. 

The differences between the numerical values of the 
physical quantities calculated a t  N = 1 and 3 are not 
negligible. However, the differences between N = 3 and 5 
are already insignificant. 

We have found by direct calculation that the 
coefficients of e -"" -n''kz in ' the source terms on the 
right-hand side of (12) and (13) were more than five or- 
ders of magnitude smaller in the case n ' f  n than those 
with n l = n .  At  the same time, in the source terms in (14) 
and (13,  the only nonvanishing terms are n ' = n  f 1. That 
is, the solutions obtained with the Ansätze (5)-(9) and 



FIG. 2. Splitting of the energy levels E = E  -goOO in the 
presence of a ~er iod ic  o field ( k  = 6 . 0 ,  p, =p,=0.0,  ~ ~ ~ 2 . 5 )  
(inside the first Brillouin zone). 

(22)-(24) are self-consistent with a high accuracy. This 
means that the eCinkZ  ( n  =1,2, . . . , N )  type modulations 
of the plane-wave states are not present in the nucleon 
current ( qy!-'~ ) except for the components p = 1 and 2, 
which are modulated only by coskz and - sinkz, respec- 
tively. In other words, there are no higher-order har- 

monics in the nucleon current. 
To facilitate the physical interpretation of the self- 

consistent solution, we reformulate the whole problem in 
the language of statistical physics in the next section. 

111. EXTREMUM 
OF THE THERMODYNAMICAL POTENTIAL 

Let us introduce the thermodynamical potential R of 
the system using the standard definition 

where the grand canonical partition function Z is defined 
as usual: 

where the Hamiltonian of the system and the Operator of 
the baryon number are denoted by H a n d  B, respectively. 

In this model it is assumed that the nucleons interact 
only via the mesonic mean fields; consequently, the sys- 
tem can be considered as a system of noninteracting 
quasinucleons occupying the single-particle states defined 
by E ~ s .  (22)-(24). 

The thermodynamical potential R can be given explic- 
itly in terms of the energy eigenvalues E , ( p )  of the 
quasinucleons and the parameters of the meson fields as 
follows: 

0.00 0 05 0.10 0.15 0 20 0 25 0 30 - 
W 

FIG. 4. Field amplitude 55 as the function of the nucleon den- 
FIG. 3. Anisotropy A defined in (38) as the function of the sity p /po  at various k values. po=O. 193 fm-' is the density of 

field amplitude C at various k values. Dotted lines, unstable normal nuclear matter. Dotted lines, unstable solutions; dashed 
solutions; dashed lines, stable solutions. lines, stable solutions. 
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FIG. 5. Relation between the wave number k and Fermi 
momentum kF at which stable periodic solutions appear. 

where the volume of the system is denoted by V. 
A t  a fixed value of p, T, and V, the necessary condi- 

tions of the thermodynamical equilibrium can be ex- 
pressed by the following requirements: 

-- a n - o ,  -- a n - , ,  -- = = O .  an (32) 
aa aoO a w  

From the numerical studies it turned out that these equa- 
tions can be satisfied simultaneously only if 

This means that thermodynamical equilibrium can be ob- 
tained only if the w field is constant in space and then the 
parameter k is irrelevant. Let us drop the requirement 

Then the Set of equations, 

FIG. 6. Field amplitude ü plotted against nucleon density 
p/po Solid line shows the normal phase solutions. Dotted and 
dashed lines show the periodic phase unstable and stable solu- 
tions, respectively. 

does have a solution, which is identical with the solution 
of the self-consistent set of the equations given by Eqs. 
(1 1)-(16). This means that if the "wave number" k of the 
w field is considered as a parameter defined by the exter- 
nal conditions and it is fixed, then a self-consistent 
periodic w field with a nonvanishing amplitude G# 0 can 
be formed. 

Let us investigate the stability of the self-consistent 
solution. For this purpose we calculate numerically the 
second derivatives of the thermodynamical potential. 
The solutions can be classified into two groups. In a 
number of cases, 

and so there is a minimum in the thermodynamical po- 
tential; in other words, the equilibrium is stable. Howev- 
er, in other cases where 

aa2 
a2n < o ,  *>O but - aw2 

which corresponds to a saddle point of Cl, the equilibrium 
is not stable. 

To  clarify the situation, we calculate the anisotropy 
[14] of the system defined by the help of the pressure ten- 
sor components in the following form: 

where the pressure parallel and perpendicular compared 
with k are denoted by P and P„ respectively. 

IV. RESULTS 

In the framework of quantum hadrodynamics, a 
periodic w field has been found which is associated in a 
self-consistent way with a periodic structure of the nu- 
cleon current while the density of the nuclear matter 
remains constant. This is in contrast with other periodic 
structures discussed in the literature up to now, where 
the periodic structure is also present in the density. 

I t  was found that, in the presence of a self-consistent 
periodic w field, the pressure is anisotropic. With in- 
creasing amplitude W, the anisotropy A increases almost 
linearly up to a maximum, and afterward it decreases 
again almost linearly (Fig. 3). 

The amplitude W is a double-valued function of the an- 
i s o t r o p ~  A for a given k value. Investigating the stability 
of the solutions, a stable minimum in f l  Ras been found 
on the decreasing branch of the A(W) function, while the 
increasing branch corresponds to a saddle point in 0. 
(Dashed lines designate stable periodic solutions and dot- 
ted lines designate unstable ones in the figures.) 

Looking at  the field amplitude G as a function of the 
nucleon density, it is striking that the curve is very steep- 
ly rising as far as the point where stable solutions appear 
(Fig. 4). This means that the density and k are strongly 
correlated. 



FIG. 7. Binding energy per nucleon E / N  plotted against nucleon density p /po  for various k values. Solid lines show the normal 
phase solutions. Dotted and dashed lines show the periodic phase unstable and stable solutions, respectively. 

Let us denote by k, the Fermi momentum defined as 

One can See in Fig. 5 that the wave number k of the o 
field increases almost linearly with the k, values at which 
stable solutions appear. 

Presumably, in a phase transition, the pressure anisot- 
ropy determines the field amplitude 73 and the nucleon 
density determines the "lattice spacing" 27r/k. 

In Figs. 6-8 the periodic phase solutions are compared 
to the normal phase of nuclear matter where 

are constant and W' = u2 = o3 =0. (Solid lines correspond 
to the normal phase in these figures.) 

For every prescribed value of k ( 5 0 1 ,  both the binding 
energy per nucleon, E / N ,  and the average pressure 
P = ( P  + 2 P ,  ) /3  as a function of the nucleon density are 
smaller in the periodic phase. 

It can be Seen that, for higher k values (k = 5  and 61, 
the field amplitude ü and average pressure are double- 
valued functions of the nucleon density for the branch of 
the unstable solutions, but they are single valued in the 
intervals corresponding to stable ones. 

I t  was found that the formation of the periodic struc- 
ture depends on the softness of the nuclear equation of 
state. Using the parameters given by Walecka ( b  = O  and 
C =O) [9], periodic self-consistent solutions are found 
above a critical density. Assuming a self-interacting U 

FIG. 8. Average pressure P = ( P I  +2P, ) /3  plotted against nucleon density p /po  for various k values. Solid lines show the normal 
phase solutions. Dotted and dashed lines show the periodic phase unstable and stable solutions, respectively. 
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field giving rise to a soft equation of state [15], we were 
unable to find any periodic self-consistent solution even at 
much higher densities. The results shown in the figures 
were calculated by using the Walecka parameters. 

For the Sake of simplicity of the presentation, we have 
not mentioned the role of the antinucleons. Their contri- 
bution, however, has been checked and found to be negli- 
gible at low temperatures (below 50 MeV). At higher 
temperatures the contribution of the antinucleons must 
be included. 

ACKNOWLEDGMENTS 

The calculations were carried out on the MicroVAX 
Computer donated by the Alexander von Humboldt 
Foundation. 

APPENDIX 

To calculate the derivatives of the thermodynamical 
potential Cl, the eigenfunctions are not needed. The ener- 
gy eigenvalues can be obtained by solving Klein-Gordon- 
type equations. The procedure is the following. Let us 
write the Dirac equation as 

(yprp-m * )$(x)=O , (Al )  

where 

and 

Multiplying by ( yp.rr, + m * ), we get 

where F„ is the field tensor defined in (18) and 

Writing as given in (22)-(24) and considering the 
Lorentz condition (17), as well as 

kpwp=O, (A6) 

k,kP= -k2  , (A7) 

we get 

k2@:'({>-2ikp 3@:(5) + [plg~-2g,p,wl"+g~wpw~ 

-(m * )2+fg,upv~p,,]@i =O , (A8) 

where 

(=kz 

Taking into account the Ansätze given by (6)-(9), the fol- 
lowing set of equations can be obtained: 

2 A„.ui(p,nl)=Kiui(p,n)  , (Al01 
n ' 

where the matrix tobe diagonalized is given as 

(Al  1) 

(A 12) 

The eigenvalue Ki has the following form: 

From here, the expression for the energy eigenvalue Ei  
can be obtained as follows: 
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