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The angular distribution of electrons and positrons emitted in internal pair conversion is calculat- 
ed. Coulomb-distorted waves are used as electron wave functions. Nuclear transitions of various 
multipolarities L > 0  and of magnetic ( M L )  and of electric ( E L )  type are considered as well as E 0  
conversion. Analytical expressions for the angular correlation are derived, which are evaluated nu- 
merically assuming a finite extension of the nucleus and, for the EL and ML conversion, also in the 
point-nucleus approximation. The calculated angular correlations are compared with results ob- 
tained within the Born approximation and, for the E0 case, with experimental data. 

I. INTRODUCTION 

First calculations of the angular correlation in internal 
pair conversion (IPC) were performed by Rose for the 
multipolarity L > 0 of the nuclear transition' and by Op- 
penheimer for the electric monopole c o n ~ e r s i o n . ~  Both 
calculations utilize second-order perturbation theory 
with ordinary plane waves as lepton wave functions, i.e., 
Born approximation is employed. For the decay of states 
close to threshold in heavy nuclei one clearly should take 
into account that electrons and positrons are created in 
the Coulomb potential of the nucleus. As a consequence, 
the lepton wave functions will be strongly deformed by 
this potential which is characterized by the coupling con- 
stant Z a .  The representation of electrons and positrons 
by ordinary plane waves implies the neglect of any 
Coulomb distortion (Za=O ). 

For a nuclear charge number Z=40, we have 
Za=O. 3. In this domain plane waves can be replaced by 
Sommerfeld-Maue wave functions3 which have been em- 
ployed, e.g., by Bethe and Maximon4 in the calculation of 
angular correlation in bremsstrahlung and pair produc- 
tion. But let us consider a uranium nucleus which has a 
charge number of Z=92 corresponding to Za-0.7, or 
even higher nuclear charges being generated for a short 
period of time in heavy-ion collisions that lead to a cou- 
pling constant Z a  > 1. In these strong fields it is obvious 
that a perturbation expansion in Z a  underlying the 
Sommerfeld-Maue wave functions is expected to fail. 

In this Paper, we completely account for the Coulomb 
deformation of the wave functions by utilizing exact 
scattering wave functions for electrons and positrons, i.e., 
Coulomb-distorted plane waves. Asympotically they 
represent plane waves, which are eigenfunctions of the 
momentum Operator. This choice of eigenfunctions al- 

lows to discuss dependencies on directions and opening 
angles. The Coulomb-distorted wave functions are dis- 
cussed in more detail in Sec. 11. A theoretical description 
of the transition amplitude has been presented in Ref. 5. 
For the Sake of completeness and in order to introduce 
our notations a brief Summary is given in Sec. 11. 

For nuclear transitions of angular momentum L > 0 we 
neglect any penetration effects which would otherwise re- 
quire assumptions about a specific nuclear m 0 d e 1 . ~ ' ~  
These assumptions would drastically complicate the cal- 
culations, and furthermore, would contain uncertainties 
on the same scale as this "no penetration" approxima- 
tion. Our numerical results are obtained assuming a 
finite extension of the nucleus as well as a pointlike nu- 
cleus. 

A major motivation for our theoretical investigations 
results from attempts to explain the narrow line struc- 
tures in coincident electron and positron spectra7 which 
have been observed by several collaborations in heavy-ion 
collisions below the Coulomb barrier at the UNILAC ac- 
celerator of the Gesellschaft für Schwerionenforschung in 
Darmstadt, Germany. The origin of these line structures 
is yet unknown, although many explanations were sug- 
gested.8 Nuclear effects seemed to be ruled out.9 Delta- 
electron distributions as well as photon spectra have been 
measured simultaneously to the positron spectra. Inter- 
nal conversion processes would reflect themselves in all 
these channels with relative intensities being determined 
by the associated conversion coefficients. However, it 
could be demonstrated experimentally that the observed 
narrow positron lines are not accompanied by corre- 
sponding peaks in delta-electron or photon distributions. 
The recent experimental setups are improved to detect 
electrons and positrons coincidentally with respect to 
their opening angle.10 In this connection it is important 
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to know precisely the angular correlation of the various 
e + e  - pair-creating processes. A major contribution be- 
sides the dynamically created electrons and 
stems from internal pair conversion.I2 

11. THEORY OF PAIR CONVERSION 

A. Definitions 

In the following we give a brief overview of the quanti- 
ties under discussion. The pair conversion coefficients 
are defined in the case of a nuclear transition with angu- 
lar momentum L > 0 and parity ( - )L (electric or EL con- 
version) and ( - )L (magnetic or ML conversion) as 

i.e., as the ratio of the pair conversion probability to the 
total y-emission probability. For E 0  conversion, in 
which photon emission is forbidden, we use 

i.e., the ratio of the pair conversion probability to the to- 
tal probability of emitting a bound-state K-shell electron. 
The coefficients ß and 7 can be expressed as integrals 
over the differential coefficients with respect to the kinet- 
ic positron energy E ,  

for angular momenta L > 0, or  for E 0  transitions, 

where o is the nuclear transition energy. Denoting the 
angle between electron and positron with 8, we write the 
coefficients dß/dE and d v / d E  as integrals over the angle 
8 and the positron energy E 

We have to evaluate the doubly differential pair conver- 
sion probability d ~ f + ~ - -  / ( d E  d cos8). 

B. The wave functions 

The wave functions which enter into the expression for 
the pair conversion probability are solutions of the Dirac 
equation for a nuclear potential V: 

As nuclear potential V we consider the Coulomb poten- 
tial of a pointlike nucleus 

as well as the more realistic potential of an extended nu- 
cleus, 

- Z a / ( 2 ~ ,  ) [ 3 - ( r 2 / ~ i ) ]  for r 5 R n  

- Z a / r  for r > R n  (9 )  

treated as a homogeneously charged sphere with radius 
R n = 1 . 2 f m  A " ~ .  

In the case of IPC, we are interested in continuum 
solutions of Eq. (7). We can construct various complete 
orthogonal sets of continuum wave functions which satis- 
fy different boundary conditions. Solving Eq. (7) in 
spherical coordinates we obtain the angular momentum 
eigenfunctions xw, in their well-known form 

xKP are the spherical spinors which determine the angular 
dependence of the electron wave functions. In the point- 
nucleus case the radial wave functions g and f are given 
by 

where y = [ K ~ -  ( ~ a  )2]'/2, and y =Za W/p is the Som- W =  -E -m. 7 is part of the phase shift treated later. 
merfeld W denotes the total energy which is Another set of solutions, which are known as 
related for a positive-energy electron to its kinetic energy Coulomb-distorted plane waves, I)%, can be derived by 
E by W = E  + m and for a negative-energy electron to the solving Eq. (7) in parabolic coordinates.I3 These wave 
kinetic energy of the corresponding positron by functions firstly constructed by ~ o t t ' ~  are required for 



the determination of angular correlations since they Coulomb-distorted plane waves can be decomposed into 
represent asymptotically plane waves with definite spherical Dirac waves 
momentum p and polarization h. Calculating the conver- = 2 a,'( n, h )X , (12) 
sion probability with these waves enables us to determine K ,  P 

the angle between electron and positron direction. The with the expansion coefficients 

The coefficients depend on the Dirac quantum number 
K ( ~ ( = j + + )  and spin projection p of the electron, on 
the direction R of its momentum represented by the rota- 
tion matrix D ; ~ ( ~ I , S )  including the Euler angles 19 and 

and on its polarization h. 
The waves $:I' and I&;) differ only in the sign of the 

phase shift 6, in the argument of the exponential function 
which determines the asymptotic behavior. 6, is just the 
difference, 

of the phase shift 6„„,, of a stationary spherical wave 
xWKP without the logarithmic phase shift 6„,= -y ln2pr 
to the phase shift 6,,,, of the corresponding term in the 
partial-wave decomposition of a plane wave. Thus, Eq. 
(15) gives the scattering phase shift of the Coulomb- 
distorted waves. The wave functions are normalized ac- 
cording to the following conditions: 

time being detected at t -+ W .  Its time propagating phase 
factor reads e -jW' ( W > m ) and it consists of converging 
spherical waves corresponding to 4'-' which are propor- 
tional to 

Le - i ( k r +  Wt,  

r 
(18) 

(for sake of lucidity we omit the logarithmic phase shift). 
We may interpret this outgoing positron as an ingoing 
electron with the negative positron energy moving back- 
wards in time. Equation (18) then becomes 

Since the time parameter t decreases, the negative-energy 
electron consists of converging partial waves and is to be 
described by a $'-)-type wave function. Thus, we must 
express both the positive-energy electron and the 
negative-energy electron by $'-' wave functions using the 
expansion coefficients U". [We drop the ( - ) super- 
script from now on.] 

Let us add some remarks on the phase shift. In the 
point-nucleus approximation the phase shift of the sta- 
tionary waves in Eq. ( 15) reads as 

The Coulomb-distorted waves display the asymptotic be- "Y S„„,,=y ln2pr-argr(y+iy)--+V 
2 

(20) 
havior 

as r -  W .  w, and fr" are four-spinors. We consider the 
pair creation by IPC as a time-dependent process; that 
means we assume that electron and positron are detected 
at a time t --+ co after their creation at t ,  in the nuclear 
potential. Furthermore, we suppose the detectors to be 
constructed to measure the electron's or positron's mo- 
menta. Then the lepton wave functions should be 
represented by plane waves at t -+ co, and consequently, 
we have to describe the electron and positron by the $Lh) 
scattering w a v e ~ . ~  Since we Want to calculate transition 
amplitudes, we must transform the positron wave into a 
wave function which describes a negative-energy elec- 
tron. We consider again a positron moving forward in 

with the Sommerfeld parameter y and 
V=argV'(~- iy /E ) / (  y + iy ). Note that some authors 
use a some kind different phase shift: 

Simultaneously, the normalized factors [in Eq. ( l l ) ]  are 
multiplied with the absolute values of 

In the case of an extended nucleus we have to compute 
the electron wave functions and their phase shifts numer- 
ically. Details of this procedure are given in Appendix 
A. 





The BLM fields follow by replacing the spherical Bessel functions j ,  (or ,  ) by the spherical Hankel functions h t l ' (wrn ). 
The transition amplitude u:Ph now can be split into magnetic matrix elements which describe transitions of parity 

T=(  - 
T electric matrix elements which describe transitions of parity T=(  - ) L ,  and an E0 matrix element. The 

latter has no corresponding y-emission amplitude as mentioned already in the beginning of this section: 

We consider first one of the magnetic parts. It can be written as 

Note that the asterisk used in relation with the fields B" 
means just the complex conjugation of the spherical har- 
monics rather than the complex conjugation of the (com- 
plex) Hankel functions. In the first term, denoted as a 
static part, the nuclear and the electron matrix element 
factorize. The nuclear matrix element exactly coincides 
with the transition amplitude of y emission (Appendix 
B): 

The second and third terms in Eq. (33) describe the 
penetration effect. This expression is referred to as dy- 
namic matrix element. Its calculation requires assump- 
tions about a nuclear model. In Refs. 5 and 6 some 
methods are presented. The simplest model is the point- 

nucleus approximation. The electron integrals of the last 
two terms then vanish and the dynamic matrix element 
becomes Zero. In this article we adopt the "no penetra- 
tion" approximation of ~ o s e , ~  i.e., we evaluate the static 
part assuming an extended nucleus and simply neglect 
the dynamic matrix elements. This approximation will 
simplify the further calculation considerably. After 
squaring the matrix element and dividing by the y -  
emission probability, the pair-conversion coefficient be- 
Comes independent of the unknown nuclear matrix ele- 
ment. If we were to consider strongly deformed nuclei, 
we would have to take the penetration effects into ac- 
count. We point out that an exact treatment of the dy- 
namic matrix element stands out yet. 

Now we turn to the electric matrix element. I t  consists 
of scalar, electric ( e ) ,  and longitudinal ( 1 )  parts and can 
be written, after some transformations, as 

In the first term, again denoted as a static part, nuclear 
and electric matrix elements factorize. The last two U:?="= - a  JOmdrn ~ ~ ~ ~ d ~ ~ ~ ~ ( r ~  )peir, ) 
terms describe the penetration effects. We restrict our- 
selves to the static part. The nuclear factor appears iden- 
tically in the electron y-emission amplitude 

(37) 

This expression shows that the E0 conversion takes place 
~ ~ ) i ~ , ~ ) = ~ ~ d : , j , ( r ~ ) - ~ ~ ~ $ ( o r ~ )  . (36) by penetration effects only: That part of the electron 

0 density which is contained inside the nucleus contributes 
to the integral. Since for EL and ML conversion with 

Finally, the E0 matrix element which includes only sca- L > 0, we deal only with the static matrix elements we are 
lar parts can be cast in simple form" able to write the electric and magnetic amplitudes as a 
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product of the y-emission part and electric matrix ele- R > ( L  ) = ( K +  K ' ) ( R ~ + R ~ )  (43) 
ment, 

u $ ' ( L , M ) = ~ . ~ ~ ~ ~ ~ v ~ ' ( L , M ) M ~ ( L , M )  

where we made use of the Wigner-Eckart theorem. 
V ;  ( L  ) and M T (  L ) are the reduced matrix elements. The 
electron matrix element M T ( L )  can be decomposed into 
an angular and a radial integral 

with 

and the parity selection rules 

h=O for r = e  
1 + l ' + L  +h(.r)=O mod 2 .  . . for T = m  . (41) 

The remaining radial integrals are of the form 

R E K , ( L ) = L ( R l  + R 2 + R 3 - R 4 ) + ( ~ - ~ ' ) ( R 3 + R 4 )  

(42) 

in the case of electric IPC, and 

for magnetic pair conversion. The radial integrals are 
presented as follows: 

R ,  = J m d r  r2gKg:.hL1'ior , 
0 

These have to be evaluated numerically. An extensive 
description of the derivation is given in Ref. 17. 

D. Calculation of the conversion probabilities 

We insert in Eq. (26) the explicit forms of the electron 
wave functions, Eqs. (12) and (141, and get-see Appen- 
dix D for the calculational steps-the doubly differential 
pair-conversion probability as the integrand of 

where we performed the trivial transformation from the 
total energy W to the kinetic energy E. Dividing by the 
total y-emission probability (Appendix B) this yields the 
expression for the angular correlation 

where PI(cos6) are the Legendre polynomials and the 
coefficients a I  read as 

In addition, we have the selection rules 

r '+ l '+Z=O mod 2, r + l + I = O  mod 2 

and the triangle inequalities 

G(r1s'; ), G( j ' l i+  1, G( r s t  1, G( j l t  ) 

After integrating over the remaining angle 0 we identify a o =  fdß /dE  and, finally, get 

For calculating the angular correlation for the E0 conversion we Start with the transition amplitude for E 0  conversion 



and consider the matrix element ~i fL=' '  [Eq. (37)] .  Because of the orthonormality of the spinors 
we are able to perform the angular integration involving the angular parts of the electron wave functions and we are left 
with 

Repeating the steps that were applied to Eq. (23) we get 

Since E 0  conversion is a pure penetration effect, Eq. (52) does not split up into a nuclear and an electric matrix ele- 
ment. In Ref. 19 it is shown that by a skillful approximation a factorization becomes possible. 

Equation (52) contains an integration over those parts of the radial electron wave functions which are inside the nu- 
cleus. In this region the wave functions can be represented by their series expansion (Appendix A). Thus, we get 

with the series coefficients ci and the normalization factors 

Inserting Eqs. (52) and (54) into Eq. (53) leads to 

C,  = 

Here we set M = J " ; d r n p n ( r n  Ir:= ( r i >  assuming that higher moments of the nuclear charge distribution can be 
neglected ( ( rn ) =O for k > 2  ). This restricts us to angular momenta j = f ,  i.e., K =  + 1. Inserting the explicit form of 
the expansion coefficients [Eq. ( 1  3 ) ]  we obtain 

fKf: 
lim T for K>O 
r -0 r  

s,s: 
lim - for K < O .  
T - o  r 2 j - 1  

with A„,: = 6:- 6,- 6;. + 6,,. A straightforward calculation yields 

Again, no direction in space is singled out. This allows 
us to perform the integration over, for instance, the direc- 
tion R and the azimuthal angle 9'. The remaining in- 
tegrand is the doubly differential pair-conversion proba- 
bility 

shell e l e ~ t r o n , ' ~  

we find that the nuclear matrix elements in Eqs. (59) and 
(60) cancel exactly. With differential pair-conversion 
probability for E 0  conversion d T / d ~  = ( C: +C?,  ) /  

1 C, l 2  we finally get 

Dividing by the total probability of the emission of a K-  
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(If the K shell is imbedded into the negative-energy con- 
tinuum as expected for nuclear charge numbers Z L 173 
one may replace CK by CL,  thus normalizing 7 to 
the probability of emitting an L-shell electron.) The 
anisotropy factor is bounded: - 1 I E I 1. Clearly, for 
E = 0 the angular correlation is isotropic. 

111. DISCUSSION OF THE RESULTS 

In this section we restrict ourselves to the discussion of 
the anisotropy parts of Eqs. (50) and (61) since the angle- 
integrated differential pair-conversion coefficients have 
been treated extensively in Ref. 17. The coefficients are 
also tabulated in Ref. 20. First we present the results for 
E0 conversion. Figure I shows the dependence of the an- 
i s o t r o p ~  factor E on the positron energy for the 0'-0' 
transition in z :~r  with a transition energy wz1760.7 
keV. In addition, the anisotropy factor derived in Born 
approximation is plotted in Fig. 1 (dashed line). In both 
cases E takes its maximum if the nuclear transition is 
shared equally among electron and positron. The angular 
correlation [Eq. (6111 exhibits its maximum at an opening 
angle 6 ~ 0 " .  For strongly asymmetric splitting of the nu- 
clear transition energy the angular distribution becomes 
isotropic. We emphasize the close agreement between 
the results of our calculations with those obtained within 
the Born approximation as it was expected for low nu- 
clear charges and intermediate transition energies. Fig- 
ure 2 shows the anisotropy coefficient computed for a 
uranium-like nucleus and a low nuclear transition energy 
w=1300 keV. One recognizes that the exact anisotropy 
coefficient exceeds the Born approximation result for al- 
most all positron energies. 

In Fig. 3 we plot E versus the positron energy for E0 
conversion in various hypothetical superheavy nuclei at  a 
near-critical nuclear charge number Z = 170 and several 
supercritical charges. The transition energy was assumed 
to be 0=2000 keV. Obviously the anisotropy factor is 
very asymmetric in the critical case. In the supercritical 
case E contains one or  two zeros at  which the differential 
conversion coefficient d q / d E  is strongly peaked (Fig. 
4).21 A brief look at Eq. (61) explains this phenomenon: 

0.0 
0 200 400 600 

E (keV) 
FIG. 1. Anisotropy factor E in dependence on the kinetic 

positron energy E for i n ~ r .  The Oi-O+ transition has an ener- 
gy wE1760.7 keV. The dashed curve represents the result ob- 
tained within the Born approximation. 

FIG. 2. Same as in Fig. 1 but assuming E 0  conversion of a 
uraniumlike nucleus with a transition energy of w =  1300 keV. 
Again the dashed curve belongs to the Born approximation re- 
sult. 

The large values of d ~ / d E  arise from peaks of either 
or C L l ,  compared to which the interference term 

C + ,  C _ ,  entering the anisotropy factor E is suppressed. 
These quantities are related to the electron density at the 
origin. The sudden increase of the electron density is a 
resonance behavior, which occurs when a bound electron 
state dives into the negative-energy c ~ n t i n u u m . ~ ~  At a 
resonance the phase shift of the wave function of the 
negative-energy electron changes rapidly by .n. This 
causes a change of the sign of c o ~ A + ~ - ,  and, therefore, 
the change of the sign of the anisotropy factor E. The 
zeros of E and peaks of d ~ / d E  are located at  the reso- 
nance energies. For Z = 188 both j = i states ( ls, ,, and 
2p„,) are imbedded into the negative-energy continuum. 
Note that the preceding discussion is quite hypothetical 
since it assumes that the supercritical nucleus is stable for 
a time interval larger than the inverse width of the reso- 
nance ( - 10-I9 s). 

Figure 5 displays the angular correlation integrated 
over all positron energies versus the opening angle 9 for 

FIG. 3. Anisotropy factor E plotted versus the kinetic posi- 
tron energy E for the E0 conversion of a hypothetic nucleus 
with a nuclear charge number Z =  170 near the critical one 
( Z  = 173) and for supercritical nuclear charge numbers. The 
zeros occur at the resonance energies in the supercritical cases. 
( ~ = 2 0 0 0  keV.) 



FIG. 4. Differential pair-conversion coefficient d q / d E  plot- 
ted versus the kinetic positron energy E  for the Same nuclear 
charge numbers as in Fig. 3. At the resonance energies sharp 
maxima of d ~ / d E  can be observed. 

the 0++0+ transition in 1 6 0  ( w = 6  MeV). The result of 
our calculation, plotted as a solid line in Fig. 5, corre- 
sponds to an anisotropy factor E =  1.0 and is in good 
agreement with the experimental r e ~ u l t . ~ ~  At  large angles 
the data show a deviation from our result, which agrees 
fully with the Born approximation (not plotted) in this 
case, the anisotropy factor being 15% smaller than ex- 
pected ( ~ ~ 0 . 8 5 ) .  The origin of this discrepancy is 
presently not understood. 

Having discussed the E0 case the results obtained for 
the electric and magnetic pair conversion are immediate- 
ly understandable. We are able to compute the angular 
correlation for point nuclei and extended nuclei. The 
difference manifests itself in the evaluation of the radial 
integrals, Eq. (44). While the integration in the case of an 
extended nucleus is a purely numeric one (since the wave 
functions are only given n u r n e r i ~ a l l ~ ) , ' ~  the integrals Eq. 
(44), in the point nucleus case can be treated analytically 
to give a recursion formula which then is evaluated nu- 
r n e r i ~ a l l ~ . ~ ~  As a check of our numerical methods we 
have calculated the angular distribution for conversion of 
various multipolarities in the limiting case Z =O.  We 

0.0 ' 
'--.. Ez970.9 keV 

X 
2.0 

0.0 
0 50 100 150 

9 ideg 1 
FIG. 6. Angular correlation computed for an assumed E1 

conversion of uranium with a transition energy w=2046 keV 
and three kinetic positron energies. The dashed curve shows 
the results obtained within the Born approximation. 

-. - 

8 (deg ) 0 50 100 150 
FIG. 5 .  Calculation of the angular correlation integrated 9 (deg 

over all positron energies compared to experimental results for 
the 0+-0' transition in 1 6 0  with w=6 MeV. The dashed FIG. 7. Same as in Fig. 6 for the E 3  transition of ' i f ~ b .  The 
curves is fitted with an anisotropy coefficient ~ = 0 . 8 5  (Ref. 23). transition energy amounts to 0 ~ 2 6 1 5  keV. 
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0 50 100 150 200 

z 
FIG. 8. Anisotropy coefficients U ,  / U ,  plotted in dependence 

on the nuclear charge number for E1 transition energy o=2046 
keV and a kinetic positron energy E =511  keV. The calcula- 
tions are performed assuming a finite extension of the nucleus. 

found deviations less than 0.1% compared to the results 
derived by Rose using the Born approximation (Appen- 
dix C). 

We are able to compute the angular correlation for 
multipolarities L 5 5 and for nuclear charge numbers up 
to Z=200. In the following we pick out two examples. 
The first is the angular correlation assuming an E 1 tran- 
sition of a uraniumlike nucleus for three positron energies 
and a transition energy w=2046 keV compared to the re- 
sults in the Born approximation (Fig. 6). The Born ap- 
proximation is more strongly peaked around an opening 
angle 8=0' in all cases. The angular distribution ob- 
tained from our calculation is more isotropic. 

Next we consider in Fig. 7 a more realistic case, name- 
ly the known E3 transition in 2 g ~ b  with a transition en- 
ergy of ~ ~ 2 6 1 5  keV. Again we plotted the angular dis- 
tribution for three positron energies. In Fig. 8 we plotted 
the dependence of the normalized anisotropy coefficients 
al / U „  I = 1 , .  . . ,5 on the nuclear charge number Z for a 
transition energy w=2046 keV and a kinetic energy of 
the positron E = 5 1 1  keV. The slope of the curves shows 
the deviation from the Z-independent Born approxima- 
tion when the nuclear charge number is increased. In the 
supercritical region one recognizes the Zeros of the curves 
which point to resonant states imbedded into the negative 
energy continuum. Again this is explained by an increase 
of the differential conversion coefficient dß /dE=ao  
which suppresses the anisotropy coefficients a, /ao. In 
contrast to E0 conversion the anisotropy coefficients for 
E L  and ML conversion with L >O do not necessarily 
change their signs at these points because of the great 
number of contributing terms only some of which contain 
the resonant-state wave function. 

IV. CONCLUSION AND OUTLOOK 

We have calculated the angular correlation of electrons 
and positrons in second-order perturbation theory using 
the exact scattering wave functions for electrons and pos- 
itrons. With the use of these wave functions the influence 
of the Coulomb potential of the nucleus is taken into ac- 
Count. Thus, we get expressions for the anisotropy fac- 

tors which describe the angular correlation and for the 
differential conversion coefficients which describe the 
spectrum. In contrast to the calculations performed 
within the Born approximation, these coefficients depend 
on the nuclear charge. For high nuclear charges and low 
energies the results of our calculation show considerable 
deviations from the results of the Born approximation. 

For the electric monopole conversion we find that the 
angular distribution obtained with the scattering waves is 
more anisotropic compared to the Born approximation. 
In contrast, in the case of the electric and magnetic pair 
conversion of multipolarity L > 0,  we See that the angular 
correlation function is not as strongly peaked around the 
opening angle 0=0". In both cases the maximum of the 
angular distribution can be shifted from 8=O0 to 8= 180" 
for supercritical nuclear charges Z > 172 which are ex- 
pected to be generated for a short time in heavy-ion col- 
lisions. 

The only experimental result which was available to 
us-the electric monopole transition in 'SO with transi- 
tion energy 0=6  MeV-tends to confirm our result 
which, however, at this low-Z value agrees with the Born 
approximation. It is left to future studies on this subject 
to check the validity of the approximations made in the 
E0 case by taking into account only j = + wave functions. 
In addition, for the EL and ML conversion, the penetra- 
tion effects have to be examined in an exact manner as 
well as the contributions of higher orders in the perturba- 
tion expansion. 

In recent GSI positron experiments the narrow line 
structures in coincident electron and positron spectra are 
measured for several opening angles. Theoretical predic- 
tions are now available for the angular correlation in the 
case of EL, ML, and E0 conversion. With the knowledge 
of the angular correlation of dynamically created elec- 
trons and positrons," the processes which determine 
mainly the background in these measurements are 
known. This represents an important tool which might 
help to enlighten the origin of the peak structures. 
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APPENDIX A: RADIAL ELECTRON WAVE FUNCTIONS 
FOR AN EXTENDED NUCLEUS 

In the case of an  extended nucleus we have to discrim- 
inate between the alternatives (Za )' < K* and ( Z a  1' > K ~ .  

Inside the nucleus in both cases one can use a power 
series a n ~ a t z . * ~  For K= k > 0 we have 

(A l )  

The expansion coefficients obey the following recursion 
formula: 



with the coefficients a - ,  = b =O. ao is determined by 
the normalization. For K = - k < 0 one has to inter- 
change the roles of u 1  and u 2  and to change the signs of 
Wand Z. 

Outside the nucleus the wave functions obey the Dirac 
equation for a Coulomb potential. The radial parts can 
be written asZ2 

The function q5 is given by 

M,,&x ) denotes the Whittaker f u n ~ t i o n . ~ ~  The asymp- 
totic form of this function yields expressions for the nor- 
malization factor N and the phase shift 

where we left out the unphysical logarithmic phase shift. 
7 is obtained from the matching condition at the nuclear 
radius 

( i )  
4 = N x  - 1 / 2 [ c o s 7 7 e 1 a * ~ - ( i y + l / 2 ) , y ( ~  - I -- U 1  ( A 7 )  

u y  * -  U 2  I R  
+ ~ i n ~ e ~ ~ - ~ - ~ , + ~ / ~ , , - , ( x  11 ( A 4 )  

In the case of ( z a I 2  > K~ we have imaginary y and the ra- 
with the factors dial functions read as 

The phase shift now becomes EJ denote the energy of the nucleus in the initial and the 

r ( 2 y + 1 )  final state, respectively, and the y energy w y u s t  equal 
8„„,K=e'9v( -y +iy ) / ( ~ + i y / E )  

r ( y + l - t i y  ) 
the nuclear transition energy. The fields AG ( u r ,  ) are 
those of Eqs. (29)-(30). We introduce the abbreviation 

r ( - 2  + 1 )  
+ e - l n - T i r  v ( y - i y ) / ( ~ + i y / E )  r( :l+iy) 

(T)'' V ; ' ( L , M ) =  J d r n j n ( r n ) . ~ „ i o r n )  (B21 
( A 9 )  

(again the logarithmic phase shift is left out). for the nuclear matrix element with r = e , m .  Squaring 
this and summing over the final nuclear states and 

APPENDIX B: y-EMISSION PROBABILITY averaging over the initial ones we get the y-emission 
probability 

The transition amplitude which describes the decay of 
an excited nuclear state by y emission is given by 87raw 

P,,(L,T)=-- I v ~ ( L , M ) *  
2Ji + M , , M ~ , M  

~ ~ ~ = 2 a i e l / a / ~ ~  I d r n  (f j n ( r n  )ii ). A U ( a r n )  
- 8raw -- 

X ~ ( E ~ - E ~ - W )  . ( B  1 )  1 v:"(L ) I Z  . 
25, + 1 

(B3) 

The factor / o / ~ ,  arises from the normalization of the The last equality follows by the use of the Wigner-Eckart 
radiation field A within a sphere with radius R n .  and theorem; V:" ( L ) is the reduced nuclear matrix element. 

I 

APPENDIX C: THE ANGULAR CORRELATION FUNCTIONS IN BORN APPROXIMATION 

With the abbreviation q = p l + p  the expressions for the angular correlation derived in Ref. 1 reads, for the electric 
pair conversion, as 
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and for the magnetic pair conversion 

y,(6) corresponds to the angular correlation function d2ß/(dE d cos6) up to a normalization factor since Rose uses 
the natural unit System f i = c  =rn = 1, where rn is the electron rest mass. Finally, we give the symmetric expression for 
the E0 anisotropy factor which is easy to derive in Born approximation 

APPENDIX D: CALCULATION OF THE ANGULAR CORRELATION 

Here we Want to fill in some steps leading to the angle-dependent pair-conversion coefficient [Eqs. (46) and (47)]. We 
Start with the differential pair-conversio? probability Eq. (261, inserting he explicit expressions of the expansion 
coefficients, Eq. (14), and the abbreviation I =/21 + 1: 

The Sums over the nuclear magnetic quantum numbers Mi and M f  can be carried out by the use of the orthogonality of 
the 3 j  symbols yielding Kronecker deltas which cancel the Sums over L '  and M'. We transform the rotation matrices 
according to 

D'/;",* (q',Zf') =(  - )"'-J.'Dj' 
P -pr-hf ( ~ ' ~ 8 '  1 (D21 

and 

and are now able to combine any two of the rotation matrices with the Same arguments to one rotation matrix and two 
3 j  ~ ~ m b o l s . ' ~  We obtain 



T h e  first row of 3j symbols can  be  written a s  a 6 j  symbol. After renaming the  indices t h e  second and  third row of 3j 
symbols a r e  transformed into 3j  and  6 j  symbols. T h u s  we a re  left with 

Ir1 1' I ]  r 1' i ]  [ r  1 I ]  r 1 I ]  0 0 0 j' s' 0 0 0  j s f  

where we carried out  some summations. T h e  two remaining rotation matrices can  be rewritten a s  a Legendre polyno- 
mial which depends now on  t h e  angle between the  positive-energy a n d  negative-energy electron directions, 

where g is the  angle between t h e  lepton directions. W e  want  t o  introduce t h e  angle between electron and  positron 
direction which is O=T- 8 and,  therefore, P I ( c o s g )  = PI( -COSO)=( - )'P,(cosO). O n e  angular integral in  Eq. (D51 can  
be  carried out  since n o  direction i n  space is singled out ;  a polarization of  the  nucleus is not  considered, we average over 
t h e  nuclear spin projections. T h e  V-dependent part  of t h e  last integral is carried ou t  a s  well. T h e  integrations yield a 
factor of 8 r 2 .  

Inserting the  reduced spherical matrix elements, Eq. (401, we get t h e  expression which is referred t o  a s  doubly 
differential pair-conversion probability [Eq. (45)]: 
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