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Abstract

The apolipoprotein E4 (ApoE4) is an established risk factor for Alzheimer’s disease (AD). Previous work has shown that this
allele is associated with functional (fMRI) changes as well structural grey matter (GM) changes in healthy young, middle-
aged and older subjects. Here, we assess the diffusion characteristics and the white matter (WM) tracts of healthy young
(20–38 years) ApoE4 carriers and non-carriers. No significant differences in diffusion indices were found between young
carriers (ApoE4+) and non-carriers (ApoE42). There were also no significant differences between the groups in terms of
normalised GM or WM volume. A feature selection algorithm (ReliefF) was used to select the most salient voxels from the
diffusion data for subsequent classification with support vector machines (SVMs). SVMs were capable of classifying ApoE4
carrier and non-carrier groups with an extremely high level of accuracy. The top 500 voxels selected by ReliefF were then
used as seeds for tractography which identified a WM network that included regions of the parietal lobe, the cingulum
bundle and the dorsolateral frontal lobe. There was a non-significant decrease in volume of this WM network in the ApoE4
carrier group. Our results indicate that there are subtle WM differences between healthy young ApoE4 carriers and non-
carriers and that the WM network identified may be particularly vulnerable to further degeneration in ApoE4 carriers as they
enter middle and old age.
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Introduction

Apolipoprotein E (ApoE) regulates the metabolism of lipids by

coordinating their transport and redistribution from one cell type

to another via ApoE receptors and proteins associated with lipid

transfer and lipolysis [1]. ApoE is thought to play a key role in

neuronal development and brain plasticity [2]. There are three

allelic variants of the ApoE gene in humans (E2, E3, E4) [3].

Although the frequency of the ApoE4 allele is low in humans,

primate studies suggest that it is the ancestral allele and it has been

hypothesized that the mutation leading to ApoE3 may have been

selected for during the evolution of the unique role of grand-

mothering in early humans which led to the spread of the E3 allele

[3].

The E4 allele has been shown to confer a higher risk of

developing both early onset and late onset AD [4,5]. Brain

structure and function have been found to be altered in ApoE4

carriers, both in AD patients [6–9] and in healthy subjects [10–

14]. Studies have found greater rates of temporal lobe atrophy in

AD patients with greater load of E4 allele [6,15–17] and reduced

medial temporal lobe volumes in healthy ApoE4 carriers across

the age spectrum [14,18–21]. However, a number of studies have

also failed to replicate these findings [22–24]. A mixed picture is

also found in terms of functional studies, with both increased

[6,9,25] and decreased [26,27] task-related BOLD signals

reported in carrier groups relative to non-carriers.

As the E4 allele has been related to several deleterious biological

effects, the question arises as to why it has persisted. Recent work

has suggested that the ApoE4 genotype might exert an

antagonistic pleiotropic effect [28] whereby carriers have con-

trasting effects across the lifespan, with significant negative effects

occurring in middle to old age, but with specific advantages noted

in healthy young carriers. This pleiotrophic effect of E4 may

account for some of the discrepancies noted in the studies above.

E4 has also been associated with higher IQ [29], a higher

education level [30], reduced cardiovascular response to experi-

mentally induced stress [31], a protective effect against spontane-

ous abortion during embryogenesis [32], and against perinatal

death [33]. Additionally, hippocampal LTP was enhanced at a

young age in knock-in mice expressing human APOE4 [34].

While the majority of studies to date have focussed on GM

changes, few studies have investigated the WM characteristics of
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ApoE4 carriers and non-carriers. As the ApoE gene is involved in

the transport of lipids which in turn are used for the construction

of myelin sheaths [35,36], the role of WM development in ApoE4

carriers and non-carriers will clearly be of great importance. In

Alzheimer disease (AD) WM pathology has been shown to

correlate with disease severity [37–39]. WM changes may also be a

key indicator of early pathology [40] and WM damage in AD has

been highlighted both in postmortem studies [41] as well as in in

vivo MRI studies [42–44]. Degradation of WM microstructure can

occur secondary to grey matter (GM) pathology via an

accumulation of aggregated hyperphosphorylated tau protein

and the deposition of Ab [45]. There is also evidence for direct

WM damage occurring as a result of oligodendrocyte death and

reactive gliosis [46].

To date two previous DTI studies in healthy older people found

subtle but significant decreases in FA in the parahippocampal

gyrus [47] and in the splenium of the corpus callosum [48] in

ApoE4 carriers. A recent whole brain tract based spatial statistics

(TBSS) study found widespread significant differences between

healthy young carriers and non-carriers [49]. Therefore, the few

studies that exist indicate the possibility that ApoE4 carriers

exhibit WM damage in early adulthood.

The aim of the current study was to investigate the effect of

APOE genotype on WM structure in healthy young people.

Whole brain TBSS was applied to detect significant differences

that may be present between the groups. Diffusion data derived

from TBSS was also run through a feature selection algorithm

(ReliefF) [50] which identified the most salient voxels for group

classification that were subsequently employed in the training of a

support vector machine (SVM) classifier. The SVM was then used

to classify the two groups. The voxels selected by the ReliefF

algorithm were also used as seeds for probabilistic tractography.

We hypothesized that tractography initiated from seed voxels

selected by ReliefF would identify a WM network that may be

structurally different between carrier and non-carrier groups. We

also hypothesized that the SVM would be able to classify the two

groups using diffusion information from voxels selected by the

ReliefF algorithm.

Methods

Ethics Statement
The study was approved by the Ethics Committee of Goethe

University and was in accordance with the Declaration of

Helsinki. All participants provided informed written consent.

Participants
44 cognitively intact persons between 20 and 38 years of age, all

without any history of neurological or psychiatric disease were

assessed in the current study. These 44 subjects were drawn from a

larger cohort of 96 subjects. All of the 44 selected subjects were

right-handed, as assessed with the Edinburgh Handedness

Inventory [51] and provided written informed consent. Ethics

approval was obtained from the local ethics committee of JWG

University Frankfurt. All subjects underwent neuropsychological

assessment. Verbal learning and memory was assessed using the

German Version of the California Verbal Learning Test (CVLT)

[52,53], visual memory was tested with the Brief Visual Memory

Test - R (BVMT R) [54]. Additionally, measures of working

memory and attention were obtained using the Letter Number

Sequencing (LNS) [55], Spatial Span of the Wechsler Memory

Scale 3 (WMS SS) [56] and Trail Making Test A (TMT). The

verbal IQ was tested with a German verbal intelligence test

(Mehrfachwahl-Wortschatz-Test B; MWTB), in which subjects

had to indicate real words within lists of pseudo-words [57].

Depressive Symptoms were measured with the German Version of

the Beck Depression Inventory (BDI 2) [58,59].

All participants from the larger cohort (n = 96) underwent

APOE genotyping using PCR and sequencing. For the current

analysis, 21 subjects who were heterozygote for ApoE4 (e3/e4)

and one subject who was homozygote for ApoE4 were included

into the e4+ group. 22 subjects, matched for age, gender and

education who were e4 negative (e3/e3) were included into the e4

group. Group characteristics are summarized in Table 1.

ApoE4 Genotyping
APOE genotyping of the two determinating variants rs7412 and

rs429358 was analyzed using pre-designed TaqMan SNP

Genotyping assays (Applied Biosystems, Foster City, CA). Briefly

for each SNP 20 ml reaction mix contained 15 ng genomic DNA,

unlabeled PCR primers, MGB labeled probes (VIC, 6FAM), 10 ml

of 26 TaqMan universal PCR Master Mix (Applied Biosystems,

Foster City, CA). PCR was performed on an ABI 7000 instrument

(Applied Biosystems, Foster City, CA) with the following cycling

programm: 95uC for 15 s, 40 cycles of 95uC for 15 s and 60uC for

60 s. The ABI 7000 genotyping software was used for allelic

discrimination.

Imaging Methods
All MR images were acquired using a Trio 3-T scanner

(Siemens, Erlangen, Germany) with a standard head coil for

radiofrequency transmission and signal reception. Participants

were outfitted with protective earplugs to reduce scanner noise and

a hand-held response device. For T1 weighted structural brain

imaging, an optimized 3D modified driven equilibrium Fourier

transform (3D MDEFT) sequence was used with the following

Table 1. Demographic and cognitive characteristics of the
sample groups.

APOE4 non-
carriers APOE4 carriers

Variable Mean SD Mean SD T-value P-value

n = 22 n = 22

Age (years) 26.7 4.0 26.9 5.3 5.28 0.92

Gender (m/f) 13/9 13/9 0.76

Education (years) 16.8 4.5 17.0 4.3 20.15 0.88

MWTB 29.7 3.6 30.3 4.3 20.46 0.65

MWTB IQ 106.7 23.6 114.7 15.3 21.28 0.21

TMT (sec) 22.0 5.8 19.3 3.9 1.81 0.08

WMS SS 19.1 2.0 19.4 2.8 20.31 0.76

LNS 18.7 3.2 17.8 2.7 1.07 0.29

BVMT R 32.7 3.5 32.0 3.6 0.62 0.54

BDI 2 3.2 3.6 2.4 2.9 0.83 0.41

CVLT 66.8 8.0 64.5 9.1 0.90 0.37

Values are mean 6 standard deviation. Significance was set at p,0.05; thus no
significant differences were found between the groups. Values denote mean
and standard deviation or number of subjects. P-values refer to t-tests
(parametric tests) and chi-square tests (for categorial data). Abbreviations:
MWTB: Mehrfachwahl-Wortschatz-Test B, a German Verbal intelligence test;
TMT: trail making test; WMS SS: Spatial Span of the Wechsler Memory Scale;
LNS: Letter Number Sequencing; BVMT R: Brief Visual Memory Test R; BDI 2:
Beck Depression Inventory 2; CVLT: California Verbal Learning Test.
doi:10.1371/journal.pone.0036024.t001
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parameters: acquisition matrix = 2566256, repetition time

(TR) = 7.92 ms, echo time (TE) = 2.48 ms, field of

view = 256 mm, 176 slices, 1.0 mm slice thickness.

DTI was acquired using an echo planar imaging (EPI) sequence

with the following pulse sequence: TR = 8760 ms; TE = 100 ms;

acquisition voxel size = 26262 mm3; 60 axial adjacent slices; slice

thickness = 2 mm (no gap); FOV = 192 mm6192 mm6120 mm;

acquisition matrix = 96696; 10 images without diffusion weighting

and 60 diffusion-encoding gradients applied in 60 noncollinear

directions; b-value = 1000 s/mm2; both the b0 and the 60

diffusion weighted images were averaged three times, band-

width = 1302 Hz/pixel; total acquisition time = 10 min 31 sec.

This sequence was acquired using generalised auto-calibrating

parallel acquisitions (GRAPPA; Griswold et al., 2002) with an

acceleration factor of 2.

For each subject a total of three consecutive DTI scans were

acquired. An average of these three scans was then created for use

in subsequent DTI processing.

A T2-weighted fluid attenuation inversion recovery (FLAIR)

sequence was also acquired to ensure that vascular pathology was

not significant. For all 44 subjects selected from the larger cohort,

no hyperintense white matter lesions were seen in the FLAIR

scans.

High Resolution T1W Structural Image Processing
Images were skull stripped with the Brain Extraction Tool

(BET) from the FSL library [60]. Brain tissue volume, normalized

for subject head size, was estimated with SIENAX [61,62], which

is part of the FSL library. SIENAX starts by extracting brain and

skull images from the single whole-head input data. The brain

image is then affine-registered to MNI152 space [63,64] (using the

skull image to determine the registration scaling); this is primarily

in order to obtain the volumetric scaling factor, to be used as a

normalization for head size. Next, tissue-type segmentation with

partial volume estimation is carried out [65] in order to calculate

total volume of brain tissue including separate estimates of

volumes of WM and GM.

DTI Processing
DTI analysis was performed using TBSS [66]. Images were

skull stripped with the Brain Extraction Tool (BET) from the FSL

library [60]. Raw DTI images were first corrected for motion and

eddy current effects. The diffusion tensor was then calculated with

the DTIFIT program for whole brain volumes and the resulting

FA maps, together with the DA (l1) and DR ((l2+l3)/2) and MD

((l1+l2+l3)/3) maps, were used in subsequent TBSS analysis.

TBSS performs a non-linear registration that aligns each FA

image to every other one and calculates the amount of warping

needed for the images to be aligned. The most representative

image is determined as the one needing the least warping for all

other images to align to it. The FSL library also provides a 1 mm

isotropic FA target image (FMRIB58_FA) in standard space,

which is sometimes used instead of the most representative image

from the study cohort. This can be problematic as the target image

is based on a young healthy brain. Using the method of ‘‘all

subject to all subject’’ registration is more computationally

intensively, but highly desirable when dealing with populations

other than young healthy controls. After this registration step,

warped versions of each subject’s FA image were generated which

were then averaged and a white matter ‘‘skeleton’’ was then

created suppressing all non-maximum FA values in each voxel’s

local-perpendicular direction and subsequently comparing all

remaining non-zero voxels with their nearest neighbours, thus

searching for the centre of fibre bundles. The skeleton was then

thresholded at an FA value of 0.2 which limits the effects of poor

alignment across subjects and ensures that GM and CSF voxels

are excluded from the skeleton. The resulting skeleton contained

WM tracts common to all subjects. A ‘‘distance map’’ is then

created which is used to project each FA image onto the mean FA

skeleton that is common to all subjects [66]. The same non-linear

transformations derived for the FA maps were applied to the DA,

DR and MD maps.

Following TBSS processing, a global region of interest was

created using the white matter skeleton that is common to all

subjects. Mean values of FA, DA, DR and MD were extracted

from each subject using this global ROI.

For statistical analysis, the images were analyzed using the

‘‘randomise’’ tool from FSL using a standard GLM design which

controlled for the effect of age and gender. Randomise computes

permutation tests on the assumption that the null hypothesis

implies complete exchangeability of the observations [67]. Using

this setup voxelwise differences between groups were then assessed,

setting the number of permutations at 5000 permutations.

Significance was tested at p,0.05 levels, corrected for multiple

comparisons using the ‘‘2D’’ parameter settings with threshold-

free cluster enhancement (TFCE), a method which avoids using an

arbitrary threshold for the initial cluster-formation [68].

Support Vector Machines Analysis
Classification of individual subjects was undertaken using the

freely available WEKA software package (http://www.cs.waikato.

ac.nz/ml/weka, Version 3.6.4) [69,70]. Following TBSS analysis,

the skeletonised FA, DA, DR and MD data was analysed in

Matlab (program written by FL and available on request), which

extracted the diffusion values from the WM skeleton. There were

132,208 voxels in the WM skeleton and diffusion values for all

indices of diffusion were extracted from each voxel in the WM

skeleton. Classification between carrier and non-carrier groups

was undertaken using each index of diffusion separately in order to

determine the most efficient index for classification.

The first step of the WEKA analysis was to reduce the number

of voxels to those that are most relevant for classification. This step

eliminates non-discriminative voxels which would reduce classifi-

cation accuracy. The feature selection algorithm ‘‘ReliefF’’ was

used to extract the most important voxels [50]. For each

classification group and also for each index of diffusion, eight

reduced datasets were created as follows:

1. 250 voxel dataset

2. 500 voxel dataset

3. 750 voxel dataset

4. 1000 voxel dataset

5. 2000 voxel dataset

6. 3000 voxel dataset

7. 4000 voxel dataset

8. 5000 voxel dataset

Therefore in total, 32 reduced datasets were created; i.e. 8

reduced datasets for each index of diffusion (FA, MD, DR and

DA). The choice of identifying these 8 datasets is based on

previous studies that have shown that this is an optimum range of

data reduction for successful classification [71–74].

The aim of the ReliefF algorithm is to estimate the quality of

voxels according to how well the value of a voxel distinguishes

between instances that are near to each other. The central idea of

ReliefF is to estimate the quality of voxels according to how well

their values distinguish between instances that are near to each

Tractography in ApoE+ and ApoE- Subjects

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e36024



other [50,75]. Given a randomly selected instance Insm from class

L, ReliefF searches for K of its nearest neighbours from the same

class called nearest hits H, and also K of its nearest neighours from

each of the different classes, called nearest misses M. It then

updates the quality estimate Wi for voxel i based on the values for

Insm, H and M. If instance Insm and those in H have different values

for voxel i, then the quality estimation Wi is decreased.

Alternatively, if instance Insm and those in M have different values

on the voxel i, then Wi is increased [50,75].

After reducing the data into the three datasets of differing sizes,

classification was then performed using the SVM algorithm

‘‘sequential minimal optimization’’ (SMO) [76] with a radial basis

function (RBF) kernel [77]. SVMs are algorithms that learn how to

assign labels to objects [78]. They use linear models to implement

nonlinear class boundaries by transforming the input into a new

higher dimensional space. In this way, a straight line in the new

space can be curved or non-linear when transformed back to the

original lower-dimensional space. Following transformation, a

linear model called the maximum margin hyperplane is created.

To visualise this, imagine a dataset with two-classes that are

linearly separable. The maximum margin hyperplane is the one

that gives the greatest separation between the classes. The

hyperplane describes a straight line in a high-dimensional space,

and therefore a separating hyperplane is a line that separates the

classes. The instances that are closest to the maximum margin

hyperplane are called support vectors. A unique set of support

vectors defines the maximum margin hyperplane for the learning

problem. Once the support vectors for the two classes are

established, a maximum margin hyperplane can be constructed.

The projection of the data from low dimensional space to higher

dimensional space is achieved with a kernel function. The optimal

kernel function is usually found by trial and error [78]. In the

current study a radial basis function (RBF) kernel was used to

nonlinearly map samples into a higher dimensional space. RBF

kernels use two parameters: C and GAMMA. GAMMA represents

the width of the radial basis function, and C represents the error/

trade-off parameter that adjusts the importance of the separation

error in the creation of the separation surface [79]. C was fixed to

1 and GAMMA was fixed to 0.01. During each trial, tenfold cross

validation was used for classification. This involves dividing the

data into 10 parts. Nine parts were used for training and one part

for testing. This was repeated 10 times, resulting in the learning

algorithm being implemented 100 times on datasets that are all

nine-tenths the size of the original [69,70]. This is a standard

procedure in machine learning which reduces the variation related

to data selection and allows results to be averaged to yield robust

calculations of the performance of the SVM. During each of the

ten repetitions within a given trial, the same values of C and

GAMMA are retained for each repetition.

For the analysis of results, measures of sensitivity, specificity and

an F-measure were used. An F-measure is used to give a single

measure that can characterise overall performance [70]. An F-

measure is the harmonic mean of Precision and Recall.

A workflow, outlining the creation of the WM skeleton, the

extraction of diffusion values from each point on the WM skeleton,

the reduction of the data using ReliefF and the application of the

SVM is shown Fig. 1.

Tractography
Seeds were created from the significant clusters created from the

ReliefF algorithm, and these seeds were used for probabilistic

tractography [80]. In order to perform the probabilistic tracto-

graphy in standard space for each subject, we fed both warpfields

generated with FNIRT when registering individual subjects to

standard space, and their corresponding inversed warpfields into

the tractographic algorithm. A multi-fibre model was fit to

diffusion data at each voxel which allows tracing of fibres through

regions of fibre crossing and complexity [81]. At each voxel, a

probability distribution function (pdf) is estimated on each fibre

direction. Tractography then proceeds by drawing multiple (in this

case 5,000) streamline samples through these pdfs from each seed

voxel to create an estimate of the distribution of connections from

each seed voxel. When these streamlines reach a voxel in which

more than one direction is estimated they follow the direction that

is closest to parallel with the direction at which the streamline

arrives. Generated pathways are volumes in which values at each

voxel represent the number of samples passing through that voxel

and, therefore, the probability of connection to the seed voxel. To

remove spurious connections, pathways in individual subjects were

thresholded to include only voxels which had at least 250 samples

passing through them (out of 5,000) generated from each seed

voxel. These pathways were then binarised and overlaid to create

population probability maps in which voxel values represent the

number of subjects in whom a pathway is present. As is noted in

the Results and Discussion sections, tractography was performed

using the seed points from the FA dataset because this diffusion

index produced the greatest classification accuracy.

Results

Demographic and Cognitive Characteristics
There were no significant differences between the groups in

terms of any of the demographic or psychological measures taken

(Table 1).

Normalised Grey Matter and White Matter Volumes
Normalised Grey Matter and White Matter Volumes were not

significantly different between groups (p.0.05) (Fig. 2).

Differences in Multiple Indices of Diffusion between
ApoE4 Carriers and Non-Carriers

After correcting for multiple comparisons no significant

voxelwise differences were found between the two groups using

randomise permutation testing of the TBSS images. Global

boxplots for the four indices of diffusion can be seen in Figure 3.

The diffusion values in these boxplots are taken from the entire

white matter skeleton.

SVM Classification of ApoE4 Carrier and Non-Carrier
The ReliefF algorithm was used to reduce the FA, DA, DR and

MD datasets to datasets that contain the most salient voxels for

group classification. Figure 4(a) presents a graphical depiction of

the reduction of the FA dataset by ReliefF to the 500 most import

voxels as judged by the weighting procedure described in the

methods. The volume of clusters is noted on the y-axis. Figure 4(b)

depicts the anatomical location of some of the voxels selected by

ReliefF following the reduction of the FA dataset. The largest

cluster of voxels is also indicated in the figure. The same process

was followed when reducing the FA data to 250, 750, 1000, 2000,

3000, 4000 and 5000 voxel datasets. The entire procedure was

repeated for the DR, MD and DA datasets.

The reduced datasets were then used by the SVM for training

and subsequent classification of ApoE4 carriers and non-carriers.

An SVM analysis was performed separately using FA, DA, DR

and MD datasets. The results from these four different SVM

analyses are shown in Figure 5. The FA data produced the best

overall performance, with sensitivity and specificity ranging from

93 to 100%. For the DA, DR and MD indices of diffusion,

Tractography in ApoE+ and ApoE- Subjects
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classification performance was slightly lower, with sensitivity and

specificity in the range of 86–100% (Fig. 5).

Tractography
As the voxels selected by ReliefF from the FA dataset produced

the best overall performance in terms of group classification, the

top 500 voxels from the FA data were used as seed points for

tractography. Thus, tracts were initiated from all 500 of these

voxels using probabilistic tractography in each ApoE4 carrier and

non-carrier subject.These tracts (binarised at a threshold of 250

out of 5000 streamlines) are overlaid to create population

probability heatmaps in which each voxel value represents the

number of subjects in whom a pathway is present (Fig. 6). These

population probability heatmaps highlight the WM network that is

initiated from the 500 voxel seed created with the ReliefF

Figure 1. Workflow for the processing of white matter diffusion information. (1) Following TBSS processing a white matter skeleton is
created which is common to all subjects. Diffusion values are then extracted from every voxel in the white matter skeleton using a custom made
matlab script. Data is then labelled as either ApoE4 carrier or non-carrier. (2) Following preparation of the data into a WEKA compatible format the
data is reduced using a feature selection algorithm, ReliefF. This algorithm selects the most salient voxels for group classification. These voxels are
then used for training a support vector machine (SVM) classifier and subsequently the classification is performed with this classifier. The lowermost
figure shows a readout of top 500 voxels selected from the full FA dataset. The y-axis represents the volume of particular clusters and the location of
the largest cluster is shown circled in white in the anatomical images.
doi:10.1371/journal.pone.0036024.g001

Figure 2. Normalised WM (left) and GM (right) volumes for
healthy young ApoE4 carrier and non-carrier groups. No
significant differences were found between the groups for either WM
or GM volumes.
doi:10.1371/journal.pone.0036024.g002

Tractography in ApoE+ and ApoE- Subjects
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algorithm. As these tracts were initiated from seed points that were

chosen by ReliefF as being the most useful for locating differences

between the groups, these heatmaps give an indication of tracts

that may be susceptible to micro and macrostructural damage in

ApoE4 carriers. The WM network implicated in both carrier and

non-carrier groups extends into much of the parietal lobe,

including the posterior cingulum and precuneus. The forceps

major, forceps minor, superior longitudinal fasciculus, as well as

the uncinate fasciculus and large portions of the prefrontal cortex

are also implicated. Finally, an analysis of the total volume of tracts

created from this 500 voxel seed is shown in Figure 7. ApoE4

carriers exhibited a non-significant (p = 0.45, t = 0.76) decrease in

tract volume relative to non-carriers (Fig. 7). Mean tract volume

was 190311.3 (SD 13151.6) mm3 for ApoE4 carriers and 193441.9

(SD 14105.5) mm3 for ApoE4 non-carriers.

Discussion

The current results show that it is possible to classify healthy

young ApoE4 carriers and non-carriers using an automated

Figure 3. Boxplots showing the distribution of diffusion tensor MRI indices for the global WM skeleton in ApoE4 carriers (red) and
non-carriers (white). The boxplots represent the interquartile ranges, which contain 50% of individual subjects’ values. The whiskers are lines that
extend from the box to the highest and lowest values. No significant differences were found between the groups.
doi:10.1371/journal.pone.0036024.g003

Figure 4. Voxels selected by the ReliefF algorithm as the most salient for group classification. (a) A graph of the most significant clusters
of voxels selected by the ReliefF algorithm. This graph shows the cluster label on the x-axis and the volume of the contiguous clusters on the y-axis.
(b) A selection of the top 500 voxels identified by the ReliefF algorithm. The white circles highlight the location of the largest cluster as identified by
the previous graph. Note that this figure highlights the reduction of the entire FA dataset to the top 500 voxels. This process is followed for the top
250, 500, 750, 1000, 2000, 3000, 4000 and 5000 voxels of the FA dataset. This entire procedure is also repeated for DA, MD and DR datasets. The
coordinates shown for each slice are MNI coordinates in millimetres. The labels L and R indicate left and right respectively. The middle panel (x = 40)
indicates a sagittal slice in the right hemisphere.
doi:10.1371/journal.pone.0036024.g004
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procedure based on structural WM differences between the two

groups. Previous work has distinguished between healthy older

subjects and subjects with mild cognitive impairment (MCI) using

a combination of DTI and SVMs [74] but to the best of our

knowledge no machine learning paradigm has attempted to

classify healthy young ApoE4 carriers and non-carriers. Using

diffusion data in combination with an SVM, our machine learning

approach was able to classify ApoE4 carrier and non-carrier

groups with an extremely high degree of accuracy.

Of note is the fact that the FA index produced the best

classification performance. This is in line with a previous SVM

classification study which also found that FA gave the greatest

accuracy for the classification of healthy control and MCI subjects

[74]. The reduced FA dataset was studied in further detail to assess

the locations of the voxels selected by the ReliefF algorithm. This

feature selection algorithm is able to effectively provide quality

estimates for each voxel in the white matter skeleton. It has

previously been used successfully in a number of different domains

including genetics [82] and proteomics [83], and has recently

begun to be used in MRI [74]. In the current study we see that it

filters out irrelevant voxels and selects the most useful voxels which

can be used by an SVM for training and classification. The largest

cluster identified by ReliefF from the FA dataset was found in the

right anterior parietal region. Interestingly, this region has been

shown to demonstrate increased BOLD response in older ApoE4

carriers relative to non-carriers during picture learning [13].

It has been suggested, on the basis of functional changes in

ApoE4 carriers, that the E4 allele modulates neuronal activity

decades before any expression of disease [8,84]. A significant

interaction between age and E4 status has also been noted in the

frontal lobe and other areas, such that aging was associated with

decreased activity in E4 carriers and increased activity in non-

carriers [85]. Therefore the ApoE genotype determines age-

related changes in brain function that may reflect the increased

vulnerability to cognitive decline in later life. Our finding of a

subtle reduction in tract volumes in carriers may also be an

indicator of an increased vulnerability of ApoE4 carriers in the

tracts identified by tractography.

Also of note is the fact that 63% of the voxels (315 out of 500

voxels) selected by ReliefF were located in the right hemisphere.

Laterality effects have been noted in a number of ApoE4 studies

and evidence suggests that frontal-executive processes may be

responsible for mediating a right hemisphere compensation in

older age [86] [10] [87]. Bondi and colleagues found that the

anterior cingulate was directly implicated in a right hemisphere

compensatory mechanism response in healthy older ApoeE4

carriers [87]. Laterality effects have also been noted in older

ApoE4 carriers during an object naming task, where carriers were

found to have greater right perisylvian activation [88]. Overall,

Figure 5. Sensitivity, Specificity and F-measure for SVM run on ApoE4+ and ApoE42 subjects. The F-measure is the harmonic mean of
precision and sensitivity and can be used as a single measure of performance of the classification.
doi:10.1371/journal.pone.0036024.g005
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evidence suggests that the right hemisphere may be activated to a

heightened degree in older ApoE4 carriers in order to compensate

for early declines in episodic memory. Although the underlying

reasons for this laterality are not known it is of interest that a

model of aging, termed HAROLD (hemisphere asymmetry

reductions in older adults) [89] posits that there is an age-related

loss of hemispheric asymmetry of task-related activation in the

prefrontal cortex (PFC). While healthy young subjects show

greater activation in left PFC compared with the right PFC during

the execution of a variety of cognitive tasks, many studies indicate

that this laterality is reduced in older subjects [89–93]. This loss of

laterality is frequently related to increased right PFC activation in

older adults which has been suggested to serve as a possible

compensatory mechanism in order to maintain cognitive perfor-

mance in older age. The large number of functional activation

studies showing increased right hemisphere functional activation

in older age [89–93] may serve as indirect evidence for chronically

stressed right hemisphere structures being predilection sites for

structural alterations in neurodegenerative diseases such as AD.

Subjects at genetic risk of AD (e.g. ApoE4 carriers) may display an

increased vulnerability of these same predeliction sites to structural

damage even at younger ages. A number of recent MCI and AD

dementia classification studies have also noted a right-more-than-

left pattern WM damage [94–96]. It is tempting to consider that

ReliefF’s identification of a large number of clusters in the right

hemisphere, may represent key WM nodes in ApoE4 carriers

which may be particularly sensitive to WM damage in later life

when the negative effects of the ApoE4 gene become more

pronounced.

The WM tracts initiated from the 500 voxels selected by ReliefF

include significant portions of the parietal lobe, the cingulum, the

dorsolateral prefrontal cortex, forceps major, forceps minor and

the uncinate fasciculus. It is of interest that the posterior parietal

lobe including the posterior cingulum/precuneus is part of the

network identified, as this is also an important hub which sustains

information transfer between the parahippocampal gyrus and the

prefrontal cortex [94,97]. A number of studies have proposed that

damage to the posterior cingulum/precuneus leads to dysfunction

of a network that is responsible for sustaining memory function

[42,94,97–99]. The precuneus is connected to the temporal lobe

via the retrosplenial cortex, and the hippocampus may not be able

to communicate with the neocortex if it is sufficiently damaged

[94,97,98]. PET studies have also highlighted reduced metabolism

in the posterior cingulum and the prefrontal cortex in both MCI

and AD subjects [100,101].

Analysis of the total volume of tracts initiated from the 500

voxel seed indicates a non-significant decrease in volume in the

ApoE4 carrier group. Overall, these results suggest that there are

subtle structural WM differences between ApoE4 carriers and

non-carriers. When considered together with evidence from

previous studies, it is possible that while the structural differences

are subtle at a young age, the WM network that has been

highlighted by tractography may be more susceptible to further

structural damage in ApoE4 carriers as they progress into middle

and old age.

It is of particular interest that although no significant differences

were found between the groups for any index of diffusion when

inspecting TBSS results that are corrected for multiple compar-

isons, the voxels selected by ReliefF could still be employed by an

SVM for successful classification. The reason for this lies in

methodological differences between the two approaches. For

TBSS, each voxel is assigned a t-value that is corrected for

Figure 6. Tractography using seed points selected by the
ReliefF algorithm for ApoE4 carriers and non-carriers, after
reducing the full FA dataframe. Here we have heatmaps created
from tracts that were thresholded at 250 out of 5,000 streamlines. At
one end of the scale, the bright green (ApoE4 non-carrier) or bright red
(ApoE4 carrier) indicates that tracts were present in all 22 subjects in
each group, whereas at the other end, the dark green or dark blue
indicates that tracts were present in 10 out of the total number of 22
subjects in each group.
doi:10.1371/journal.pone.0036024.g006

Figure 7. Volume of tracts produced using a seed of the top
500 voxels created by the ReliefF algorithm from the full FA
dataset. The tracts were thresholded to include only WM tracts that
contained 250 or more streamlines, out of a total of 5000 streamlines.
ApoE4 carriers exhibited a non-significant (p = 0.45, t = 0.76) decrease in
tract volume relative to non-carriers (Fig. 7). Mean tract volume was
190311.3 (SD 13151.6) mm3 for ApoE4 carriers and 193441.9 (SD
14105.5) mm3 for ApoE4 non-carriers.
doi:10.1371/journal.pone.0036024.g007
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multiple comparisons, taking into account the fact that there are a

total of 132,208 voxels in the entire white matter skeleton. The

level of correction for multiple comparisons is therefore extremely

high due to the large number of total voxels to be considered.

However, the SVM approach is underpinned by a different

theoretical framework. First, the most salient voxels are identified

using the ReliefF algorithm. After this data reduction step the

majority of voxels in the WM skeleton are discarded as irrelevant

for subsequent SVM classification. Therefore, the SVM only

considers the voxels identified by ReliefF in its calculation of a

single parameter per subject, and does not run into the problem of

multiple comparison biases [74].

It should be stressed that possession of the ApoE4 allele does not

automatically imply the possibility of cognitive or structural deficits

within the carrier group. A growing body of evidence suggests that

the ApoE4 genotype may confer some beneficial effects at a young

age, while being detrimental in older age [29–34]. Thus, there

may be evolutionary reasons for the retention of the ApoE4

genotype because of its possible beneficial effects at a young age,

which is offset by an increased risk of cognitive deficits in older

age. Results from the current study however suggest that the

ApoE4 gene may have no beneficial effects on WM structure in

healthy young people.

On the basis of the current results, subtle microstructural WM

differences do appear to be present in healthy young carrier

subjects, which can be utilised by SVMs for group classification.

The approach outlined in this study may offer a way to study a

particular WM network longitudinally, based on the hypothesis

that the network identified will be preferentially susceptible to

structural damage in ApoE4 carriers in later life.

Only one previous study has examined structural WM

differences between healthy young carrier and non-carrier groups

[49]. The current results which found no significant corrected

TBSS differences between the groups are at odds with this

previous study which found significant FA decreases in young

carriers relative to non-carriers. In fact, the FA reductions in

young carriers relative to non-carriers found by Heise and

colleagues appeared to be as widespread as the FA reductions

noted previously in Alzheimer’s patients relative to healthy older

controls [42,43,98]. The age, sample size and overall demo-

graphics of the current cohort are comparable to those of Heise

and colleagues; therefore, it might be possible that larger sample

sizes need to be employed in future studies in order to determine

whether or not widespread FA reductions in healthy young

ApoE4 carriers relative to non-carriers can be replicated in the

future.

To the best of our knowledge this is the first attempt to classify

healthy young ApoE4 carrier and non-carrier groups with

machine learning techniques. The use of 10 times 10-fold cross-

validation [70] ensures the robustness and generality of the results

by running the learning algorithm 100 times during each

experiment. This method also reduces the effect of random

variation when different folds are selected [69]. The use of a joint

TBSS/SVM analysis allows information to be used from the entire

brain which is a significant advantage over ROI based approaches

for classification. The current methodology also obviates the need

for the labour intensive selection and creation of ROIs.

Some limitations of the study should be noted. While the TBSS

approach strives to avoid the problems of voxel based morphology

relating to partial voluming, small WM tracts may still be

contaminated with GM if the tract width is smaller than the

original voxel size [66]. However, applying an FA threshold of 0.2

or less to the WM skeleton in the TBSS preprocessing steps is

thought to remove the potential occurrence of GM. It should also

be noted that probabilistic tractography is influenced not only by

the true underlying probability of an anatomical connection, but

also by factors such as the distance from a seed voxel and the

geometry of the pathways being tracked with more tortuous

pathways or pathways involving crossing fibers being more difficult

to track [81]. Probabilistic tractography is also insensitive to the

polarity of axonal projections. However, the probabilistic method

employed in the current study uses multi-fibre tractography which

offers significant advantages over deterministic methods when

tracking difficult white matter tracts such as those that include

crossing fibres [81]. It is important to note that due to the

difficulties of obtaining sufficient numbers of ApoE4 carriers, it has

not been possible to validate the current SVM method in an

independent sample. While 10 times 10-fold cross validation was

used to ensure performance generalisation, validation in an

independent sample will be essential to determine how robust

the current approach is when applied to a fully independent

dataset. Recent work adopting the current pipeline has been

successfully used to classify DTI images from older subjects into

MCI and healthy older categories [72]. While these findings from

an older cohort support the validity of the SVM approach outlined

here, caution should nevertheless be exercised before the method

is validated in an independent sample. This is currently being

pursued as part of the European DTI Study in Dementia (EDSD)

initiative.

Overall, the current study demonstrates the efficacy of using

DTI in conjunction with SVMs to classify ApoE4 carrier and non-

carrier groups. The feature selection algorithm, ReliefF, allowed

us to develop tractography from key seed regions that were

identified as having significantly different diffusion properties

between carrier and non-carrier groups. The current results

suggest that there are very subtle structural differences between

healthy ApoE4 carrier and non-carrier subjects, with carriers of

the ApoE4 allele showing slight reductions in the volume of white

matter tracts initiated from the seed regions identified by ReliefF.

The white matter network developed from these seed regions,

which incorporates the posterior and anterior cingulum, the

precuneous, and the prefrontal cortex, may represent a WM

network that is more susceptible to structural damage over the life

course of ApoE4 carriers. Longitudinal studies would be needed to

assess the diffusion properties and development of these tracts over

the life span of ApoE4 carriers and non-carriers.
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