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Abstract

The phase structure of the scalar field theory with arbitrary powers of the
gradient operator and a local non-analytic potential is investigated by the help
of the RG in Euclidean space. The RG equation for the generating function
of the derivative part of the action is derived. Infinitely many non-trivial fixed
points of the RG transformations are found. The corresponding effective actions
are unbounded from below and do probably not exhibit any particle content.
Therefore they do not provide physically sensible theories.

1 Introduction

As the self-interacting scalar field with some continuous internal symmetry is a
basic ingredient of the Standard Model and of GUT’s, the phase structure of
the one-component scalar field has also been of a permanent interest, in spite
of the fact that it is only a toy model. It is well-known that scalar field theory
exhibits a Gaussian fixed point [1]. For polynomial potentials that is a trivial
IR fixed point corresponding to a free scalar field. The search for non-trivial
fixed points in dimension d = 4 gave negative results (see [2] and the literature
cited there). Perturbative renormalisability of scalar field theory was proven by
means of the RG using the scaling property of the operators at the Gaussian
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fixed point [3, 4, 5]. A non-trivial fixed point was found in dimensions 2 < d < 4,
that however does not occur in dimension 4 [6]. A very interesting result has
been obtained recently. Namely, there are relevant directions at the Gaussian
fixed point for analytic potentials [7]. The existence of such relevant directions
rises the question what is the low energy behaviour of the theories defined at
high-energy scale by one of the relevant potentials in the neighbourhood of the
Gaussian fixed point. Therefore a renewed search for non-trivial fixed points has
acquired actuality once again.

More recently it was argued in [8] that the non-trivial directions were found in
[7] as a consequence of the local potential approximation. As far as one is looking
for the RG flow in the coarse-graining direction, any approximation neglecting
irrelevant terms is justified and does not spoil the search for the IR fixed point
along a given RG trajectory. Just the opposite is true if one tries to find UV fixed
points with the help of the RG equations. Irrelevant terms negligible at a given
scale become more and more important in the UV regime and reject the RG
trajectory from the UV fixed point. Therefore tracing back a RG trajectory to
the UV fixed point is practically impossible. How can one interpret the situation
that a fixed point has a relevant direction and the model defined at some UV
momentum scale lies close to this fixed point in this direction? Although it is
not reasonable to ask for the UV fixed point, one can ask what is the IR effective
theory for such a model. That is what we are doing in the present paper without
making use of the local potential approximation.

In the present paper we show that the one-component scalar field theory has
infinitely many non-trivial fixed points in any dimension d > 2 and determine
the fixed point actions and the scaling operators in the neighbourhood of the
non-trivial fixed points. It is crucial for finding the non-trivial fixed points the
enlargement of the space of the scale dependent actions (Hamiltonians) consid-
ered by (a) including terms with arbitrary powers of the gradient operator, and
(b) local but non-analytic potentials and wave function renormalization. Ear-
lier investigations of the phase structure of the scalar field theory used more
restricted parameter space. The models considered did not contain terms with
higher than the second power of the gradient operator [6, 7], [11]-[23]. Below we
show that the non-trivial fixed point actions contain high powers of the gradient
operator. This may be the reason that they have been overseen before.

The phase structure of the scalar field theory is investigated with the help of
the Wegner-Houghton equation [9]. As it is well-known, the approach of Wegner
and Houghton enables one to carry out renormalization by integrating out the
high-frequency modes Φq of the field Φ(x) step by step in infinitesimally thin
momentum shells, (k−δk, k). Making a quite general Ansatz with infinitely many
terms for the action Sk at arbitrary scale k, the effect of the high frequency modes
can be incorporated into the change of its couplings completely [9, 10, 24, 25].
In this procedure the contribution of each momentum shell to the action can be
calculated exactly by making use of the small parameter δk/k. With the help
of the Wegner-Houghton equation one can follow the evolution of the irrelevant
coupling constants with the scale k, too. In the usual perturbative RG approach
one only keeps track the evolution of the very limited number of terms included
in the bare action and cannot notice if some of the irrelevant terms not included
become relevant with decreasing scale k.
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2 RG Equations

The action at the momentum scale k is assumed to have the form:

Sk =

∫

ddx
{

Gk(Φ,−∂
2)Φ + Uk(Φ)

}

, (1)

where Gk(Φ,−∂
2) is a local functional of the field Φ(x) and an analytic function

of the derivatives:

Gk(Φ,−∂
2) =

∞
∑

n=1

∞
∑

r=0

gnr(k)Φ
r+1(x)(−∂)2n. (2)

Assuming that the system is enclosed in the finite volume Vd, we rewrite the bare
potential,

U ≡

∫

ddxUk(Φ) =
∞
∑

r=2

ur(k)V
−r
d

≤k
∑

q1,...,qr

Φq1
· · ·ΦqrVdδq1+...+qr (3)

and the derivative part,

G ≡

∫

ddxGk(Φ,−∂
2)Φ(x)

= V
−(r+2)
d

∞
∑

n=1

∞
∑

r=0

gnr(k)
≤k
∑

q1,...,qr+2

(

q21

)n
Φq1

· · ·Φqr+2
δq1+...+qr+2

. (4)

The Wegner-Houghton equation can be written as [9, 6, 24]:

k∂kSk =
k

2δk

∑

p

′
FpK

−1
p,−pF−p − h̄

k

2δk

∑

p

′

(

ln
Kp,p′

Kp,−p|Φ=Φc

)

p,−p

, (5)

where Φc is either the vacuum expectation value Φ0, or any constant field con-
figuration, the sum

∑

p
′ is taken over the momentum shell of the thickness δk at

p2 = k2, i.e. (1/Vd)
∑′

p . . . = δk kd−1
∫

dω(2π)−d . . . in the infinite volume limit,
(with the infinitesimal solid angle dω in the d dimensional momentum space) and
Fp = (δSk/δΦp)Φp=0, Kp,p′ =

(

δ2Sk/δΦpδΦp′
)

Φp=0, where the subscript denotes

that the Fourier amplitudes of the modes in the momentum shell at k have to be
set to zero. The first term on the r.h.s. of Eq. (5) is the tree level contribution
occurring if Fp 6= 0. The second term on the r.h.s. of Eq. (5) is the one-loop
contribution. The denominator in the argument of the logarithm on the r.h.s. of
Eq. (5) ensures that the effective action Sk takes vanishing value for Φ ≡ Φc for
all values of k. Further on we shall work in the units h̄ = 1.

The action considered has the general structure Sk(Φq) = Vdσk(φq) in terms
of φq = Φq/Vd and Eq. (5) takes the form:

k∂kσk(φq) =
kd

2(2π)d

∫

dω



Vd fpk
−1
p,−pf−p −

(

ln
kp,p′

kp,−p|φ=φc

)

p,−p



 (6)

with fp = ∂σk/∂φp|φp=0, and kp,p′ = ∂2σk/∂φp∂φp′
∣

∣

φp=0.
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Our procedure of looking for the solutions of Eq. (6) is the following: we
introduce the generating functions for the derivative part and the potential, and
derive partial differential equations for them by an appropriate projection of the
original equation (6) and its second functional derivative:

k∂k
∂2σk

∂φQ∂φ−Q

=
kd

2(2π)d

∫

dω
∂2

∂φQ∂φ−Q



Vd fpk
−1
p,−pf−p −

(

ln
kp,p′

kp,−p|φ=φc

)

p,−p



 (7)

with Q 6= p. The projector P we use was introduced in [6] by the definition

PF =

(

exp

{

x
∂

∂φ0

}

F

)

φ≡0

(8)

with the arbitrary functional F of the field. As shown in [6] the projection
of any product of functionals equals to the product of the projections of those
functionals.

Let us define now the generating function for the potential,

V (x; k) =
∞
∑

r=2

ur(k)x
r, (9)

and that for the derivative part of the action Sk,

G(Q2, x, k) = 2
∞
∑

n=1

Q2n
∞
∑

r=0

gnr(k)x
r. (10)

Here V (x, k) is the generating function introduced in [6].
Let us apply the projector P to both sides of Eqs. (6) and (7). Making

use of the various steps of the projection described in the Appendix, we find the
following coupled set of partial differential equations for the generating functions:

k∂kV (x, k) = −kdα ln
∂xG(k2, x, k) + ∂2

xV (x, k)

[∂xG(k2, x, k) + ∂2
xV (x, k)]x=xc

, (11)

k∂k∂xG(Q2, x, k)

= −kdα

{

∂3
xG(k2, x, k)

∂xG(k2, x, k) + ∂2
xV (x, k)

−
∂2

xG(Q2, x, k)
[

∂2
xG(k2, x, k) + ∂3

xV (x, k)
]

+
[

1
2∂

2
xG(Q2, x, k)

]2

[∂xG(k2, x, k) + ∂2
xV (x, k)]2











.

(12)

with α = 1
2 (2π)−dΩd (Ωd the entire solid angle in the d dimensional momentum

space). Due to the particular choice of the action the tree level terms do not
occur in these equations. Therefore Eqs. (11) and (12) are safe in the limit
Vd → ∞.
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3 Equations for the Dimensionless Coupling

Constants

The equations for the dimensionless quantities can be obtained by rescaling the
fields and the variable x as Φ̃q = k(d+2)/2Φq, and x̃ = k−(d−2)/2x that corresponds
to x̃µ = kxµ and Ṽd = kdVd in coordinate space and leaves the dimensionless
expression Φq/(Vdx) unchanged. After this rescaling we obtain

V (x, k) = kdṼ (x̃, k), ∂2
xV (x, k) = kdk−(d−2)∂2

x̃Ṽ (x̃, k), (13)

Requiring that G were dimensionless, we are lead to g10 = g̃10 and

G(Q2, x, k) = 2k2
∞
∑

n=1

Q̃2n
∞
∑

r=0

g̃nrx̃
r+1 = k2G̃(Q̃2, x̃, k). (14)

The RG equations for the dimensionless generating functions take then the
following form:

(

k∂k −
d− 2

2
x̃∂x̃ + d

)

Ṽ (x̃, k) = −α ln
∂x̃G̃(1, x̃, k) + ∂2

x̃Ṽ (x̃, k)
[

∂x̃G̃(1, x̃, k) + ∂2
x̃Ṽ (x̃, k)

]

x̃c

,

(15)

(

k∂k − 2Q̃2∂Q̃2 −
d− 2

2
x̃∂x̃ + 2

)

∂x̃G̃(Q̃2, x̃, k)

= −α

{

∂3
x̃G̃(Q̃2, x̃, k)

∂x̃G̃(1, x̃, k) + ∂2
x̃Ṽ (x̃, k)

−
∂2

x̃G̃(Q̃2, x̃, k)
[

∂2
x̃G̃(1, x̃, k) + ∂3

x̃Ṽ (x̃, k)
]

+
[

1
2∂

2
x̃G̃(Q̃2, x̃, k)

]2

[

∂x̃G̃(1, x̃, k) + ∂2
x̃Ṽ (x̃, k)

]2











.

(16)

Now we generalize Eqs. (15) and (16) in two respects.

1. The above equations are valid, strictly speaking, only if the vacuum expec-
tation value of the field is φ0 = 0. In the more general case φ0 6= 0 we have
to take into account that the generating functions V , and G depend on
rather x−x0 than on x, and x0 has the dimensional scaling of x. Therefore
the equations (15) and (16) must be modified replacing x̃ by z = x̃ − x̃0,
and xc = x0 can be chosen.

Due to the quadratic approximation of the action used by deriving the
Wegner-Houghton equation [9], the minimum x0 6= 0 of the action must be
sufficiently close to zero, otherwise the equation itself looses its validity.

2. Furthermore we assume the validity of Eqs. (15) and (16) also for generating
functions V and G non-analytic in the variable z. In the case of potentials
having a singularity at their (absolute) minimum at zc = 0, we cannot
keep the potential at a fixed value in its minimum. Therefore we choose an
arbitrary point zc 6= 0 for this purpose.

All over this paper we shall only deal with dimensions d > 2.
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4 Fixed Point Solutions

The equations for the fixed points are obtained by setting zero the derivatives of
the generating functions with respect of the scale k in Eqs. (15), (16). We shall
seek the fixed point solutions V ∗(z), G∗(Q̃2, z) by making the Ansatz that the
field dependent wave function renormalization can be separated in the derivative
part, i.e. ∂zG

∗(Q̃2, z) = H∗(Q̃2)h∗(z).

4.1 Gaussian fixed point

Assuming V ∗ = const. and h∗ ≡ 1, one easily finds the fixed point solution
H∗(Q2) = H∗

0Q
2, i.e. G∗(Q2, z) = H∗

0Q
2z and the corresponding fixed point

action

S∗ = −
1

2
H∗

0

∫

ddxφ(x)∂2
xφ(x). (17)

The choice H∗
0 = 1 can be made without loss of generality (rescaling of the field).

4.2 Non-trivial fixed points

We recognize that the fixed point equation obtained from Eq. (15) has the
solution V ∗ = 1

2CV ln z2 + V ∗
0 , h∗(z) = z−2 with CV = 2α/d and

V ∗
0 = (α/d2)

(

d− 2 − d ln z2
c

)

. The logarithm on the r.h.s. of Eq. (15) is only
well-defined for b ≡ H∗(1) − CV 6= 0. Then we obtain a non-linear ordinary
differential equation for the function H∗(Q̃2):

Q̃2 dH
∗(Q̃2)

dQ̃2
= κH∗(Q̃2) − ν

[

H∗(Q̃2)
]2

(18)

with

κ =
1

2

(

d+
2α

b

)

, ν =
α

2b2
. (19)

It has the analytic solution:

H∗(Q̃2) =
κ

ν
Q̃2κ

[

C + Q̃2κ
]−1

(20)

with

κ

ν
= 2CV

2κ

d

[

2κ

d
− 1

]−2

, C =

(

3 −
2κ

d

)(

2κ

d
− 1

)−1

(21)

for positive integer κ 6= d/2, 3d/2. The non-trivial fixed point solution is then
given by

G̃∗(Q̃2, z) = −2CV

(

1 −
d

2κ

)−1

z−1Q̃2κ
[

3 −
2κ

d
+

(

2κ

d
− 1

)

Q̃2κ
]−1

,

V ∗(z) =
1

2
CV ln z2 + V ∗

0 . (22)
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The powers κ = d/2 and 3d/2 must be excluded due to H∗(1) → ∞. An-
alyticity and H∗(0) = 0 are only satisfied for 0 < κ integers. Therefore there
are infinitely many non-trivial fixed points characterized by the positive integers
κ 6= d/2, 3d/2. Eq. (20) is non-linear, therefore the linear combinations of the
solutions corresponding to various values of κ are not solutions.

It is worthwhile noticing that ∂zG̃
∗ = Q̃2 solves Eq. (16) trivially. Then Eq.

(15) leads to the fixed point equation found in [6]. As discussed there and also
in [14] (for d = 3), a non-trivial IR fixed point solution of Eq. (15) exists for
2 < d < 4 and, very probably, this fixed point does not occur for dimension d = 4.
It is the constancy of the wave function renormalization the basic assumption
for obtaining such a solution.

5 Linearized RG Transformation

As to the next we investigate the linearized RG transformations in the neigh-
bourhood of the fixed points in order to determine the scaling operators. Let us
write for the generating functions V (z, k) = V ∗(z) + δV (z, k), and G(Q̃2, z, k) =
G∗(Q̃2, z)+ δG(Q̃2, z, k) in the neighbourhood of a given fixed point. In order to
find the scaling operators at each of the fixed points we shall seek the eigensolu-
tions of the operator k∂k with the eigenvalues −λ satisfying Eqs. (15) and (16)
in their linearized form. We make the separation Ansatz for the solution:

δV (z, k) = (k/Λ)−λ ϕ(z), ∂zδG(Q2, z, k) = (k/Λ)−λ φ(Q2)ψ(z) (23)

with φ(0) = 0. The positive, vanishing and negative eigenvalues λ correspond
to relevant, marginal, and irrelevant directions, respectively, at the given fixed
point in the parameter space.

5.1 Linearized RG equations at the Gaussian fixed

point

The linearized version of Eq. (15) at the Gaussian fixed point is given by:

(

k∂k −
d− 2

2
z∂z + d

)

δV (z, k)

= −α
[

δ∂zG(1, z, k) − δ∂zG(1, 0, k) + ∂2
z δV (z, k) − ∂2

z δV (z, k)
∣

∣

∣

z=0

]

, (24)

(

k∂k + α∂2
z −

d− 2

2
z∂z − 2Q̃2∂Q̃2 + 2

)

∂zδG(Q̃2, z, k) = 0. (25)

For the eigensolutions (23) we obtain the following equations from Eq. (25)

(

α∂2
z −

d− 2

2
z∂z − λ+ 2 − C

)

ψ(z) = 0, (26)

(

2Q̃2∂Q̃2 − C
)

φ(Q̃2) = 0 (27)

7



with the constant C. For C = 2n with n = 1, 2, . . . we obtain a complete set of
analytic solutions of Eq. (27) satisfying φ(0) = 0:

φ = φ0(Q̃
2)n (28)

with the constant φ0. Let us write ψ(z) = γZ(y), z = βy and define the constants
β and γ as γ = 4/(d − 2), β2 = αγ. Then we obtain the following ordinary
differential equation of second order for the function Z(y) from Eq. (26):

[

∂2
y − 2y∂y + (2 − λ− 2n)γ

]

Z(y) = 0. (29)

There is a complete set of analytic solutions characterized by (2−λ−2n)γ = 2n′

with n′ = 1, 2, . . ., namely the Hermite polynomials Z(y) = Hn′(y). Thus we
find that the eigenvalues

λnn′ = 2 − 2n − n′
d− 2

2
(30)

are given by the integers n and n′ and the corresponding eigensolutions are:

∂zδG =

(

k

Λ

)−λnn′ 4

d− 2
φ0(Q̃

2)nHn′(z/β). (31)

Inserting the solution (31) in Eq. (24) and introducing ϕ̄(z) = ϕ(z) − C2 =
γf(y) with C2 = C1(d− λnn′)−1, and C1 = α

[

φ0γHn′(0) + ∂2
zϕ
∣

∣

z=0

]

, we find

[

∂2
y − 2y∂y + (d− λnn′)γ

]

f(y) = −αφ0γHn′(y). (32)

By making use of the differential equation of the Hermite polynomials we find
the solution f(y) = f0Hn′(y) with the constant f0 determined via

d− 2 + 2n = −
αφ0

f0
. (33)

The constant C2 takes the value C2 = −γf0Hn′(0). Then we can write the
eigensolutions corresponding to the eigenvalue λnn′ with n, n′ = 1, 2, . . . as

δV =

(

k

Λ

)−λnn′

f0
4

d− 2
[Hn′(z/β) −Hn′(0)] , (34)

∂zδG =

(

k

Λ

)−λnn′ −4f0

α

(

1 +
2n

d− 2

)

(Q̃2)nHn′(z/β). (35)

All these eigensolutions are irrelevant as λnn′ < 0 for the values taken by n and
n′.

It must be considered separately the case of the field independent wave func-
tion renormalization ψ(z) = const., corresponding formally to n′ = 0. There is
no need then to introduce the constant C. We can write ψ(z) ≡ 1 without loss
of generality. The equations (24) and (25) decouple and the eigensolutions for
the kinetic part and for the potential are completely independent. We find the
complete set of solutions ∂zδG = (k/Λ)−λnφ0(Q̃

2)n belonging to the eigenvalues
λn = 2 − 2n. The solution n = 1 is marginal, the higher order derivative terms

8



with n > 1 are irrelevant. By introducing ϕ̄ = ϕ−C0/(d−λ) with C0 = α ∂2
zϕ
∣

∣

z=0
and writing ϕ̄(z) = γf(y) with z = βy, we obtain the following equation for the
potential:

[

∂2
y − 2y∂y + (d− λ)γ

]

f(y) = 0. (36)

Let us now introduce the new variable u = y2 and define f̄(u) = f(y), then we
find the confluent hypergeometric equation for the function f̄(u):

[

u∂2
u +

(

1

2
− u

)

∂u − (a− 1)

]

f̄(u) = 0 (37)

with a− 1 = 1
4 (λ− d)γ.

It has two independent solutions that can be chosen as

f̄1 = G

(

a− 1,
1

2
, u

)

, f̄2 = euG

(

3

2
− a,

1

2
,−u

)

; (38)

or

f̄ ′1 = F

(

a− 1,
1

2
, u

)

, f̄ ′2 = u1/2F

(

a−
1

2
,
3

2
, u

)

(39)

with the confluent hypergeometric (Kummer) function F (a, b, x) and the function

G(a, b, x) = Γ(1−b)
Γ(a−b+1)F (a, b, x)+ Γ(b−1)

Γ(a) x1−bF (a−b+1, 2−b, x). For a = 1−(K/2)

with K = 1, 2, . . . the solutions f̄1 are the Hermite polynomials as found in [6]:
f(y) = 2−KHK(y) corresponding to the eigenvalues λK = d− (K/2)(d − 2). So
we recover the well-known classification of the polynomial interactions ϕ(z) ∼
[HK(z/β) −HK(0)] at the Gaussian fixed point. The quadratic potential (K =
2) is relevant. The quartic potential (K = 4) is relevant, marginal, and irrelevant
for 2 < d < 4, d = 4, and d > 4, resp., higher order terms in the potential are
irrelevant for d = 4. It was shown in Ref. [6] that the non-linear terms of the RG
equation for the potential render the quartic potential also irrelevant for d = 4.

It has been observed more recently [7] that the non-polynomial eigenpoten-
tials

ϕa(z) = γ

[

F

(

a− 1,
1

2
,
z2

β2

)

− 1

]

(40)

corresponding to the solution f̄ ′1 = F (a − 1, 1
2 , y

2) for ac ≡ −2/(d − 2) < a < 0
i.e. λa = 2 + (d − 2)a > 0 have a minimum. These potentials are relevant and
behave asymptotically as z2a−3 exp{β−2z2}.

The various eigenvalues λ correspond to different directions in the parameter
space around the Gaussian fixed point. For k → 0 and λ < 0 the renormalization
trajectory flows in the fixed point, representing a trivial IR fixed point for d = 4.
On the other hand, the trajectories for models with ac < a < 0 move away from
the fixed point. It represents an UV fixed point in this case, the corresponding
models exhibit asymptotic freedom [7], but it is not yet clear how these models
behave in the IR. As the equations for the potential and the derivative part of the
action decouple completely, the couplings of the potential terms are independent
of the couplings of the derivative terms.
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5.2 Linearized RG transformation at the non-trivial

fixed points

As we have shown above, there are infinitely many fixed points characterized by
the positive integer powers κ 6= d/2 of the operator ∂2. Restricting ourselves
to the solutions satisfying δG(0, z, k) = 0, the linearized RG equations take the
following form:

(

k∂k −
d− 2

2
z∂z + d

)

δV (z, k)

= −
α

b

[

z2∂zδG(1, z, k) + z2∂2
z δV (z, k) − z2

c∂zδG(1, zc, k) − z2
c∂

2
z δV (zc, k)

]

,

(41)

(

k∂k − 2Q̃2∂Q̃2 −
d− 2

2
z∂z + 2

)

∂zδG(Q̃2, z.k)

= −
α

b

{[

z2∂2
z + 2z∂z +

1

b
H∗(Q̃2)z∂z

]

∂zδG(Q̃2, z, k)

+
2

b
H∗(Q̃2)

[

1 + z∂z +
1

b
H∗(Q̃2)

]

[

∂zδG(1, z.k) + ∂2
zδV (z.k)

]

}

. (42)

Let us look once again for the eigensolutions corresponding to the eigenvalue −λ
of the operator k∂k in the form given by Eq. (23), assuming φ(0) = 0 and making
the Ansatz

φ(1)ψ(z) = −∂2
zϕ(z). (43)

Then we find the following coupled set of partial differential equations:

(

−
d− 2

2
z∂z − λ+ d

)

ϕ(z) = 0, (44)

(

−2Q̃2∂Q̃2 −
d− 2

2
z∂z − λ+ 2

)

φ(Q̃2)ψ(z)

= −
α

b

[

z2∂2
z + 2z∂z +

1

b
H∗(Q̃2)z∂z

]

φ(Q̃2)ψ(z). (45)

Eq. (44) has the solution:

ϕ(z) = ϕ0z
2s, s =

d− λ

d− 2
. (46)

Then the wave function renormalization ψ(z) is given by

ψ(z) = −
ϕ0

φ(1)
2s(2s − 1)z2s−2. (47)

Finally we obtain from Eq. (45) the equation

Q̃2∂Q̃2 lnφ(Q̃2) = ρ+
α

b2
(s− 1)H∗(Q̃2) (48)
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with

ρ =
1

2

[

α

b
(2s− 2)(2s − 1) −

d− 2

2
(2s − 2) − λ+ 2

]

. (49)

Introducing the new variable ξ = Q̃2κ, one can easily integrate this equation and
find its solution:

φ(Q̃2) ∼ Q̃2ρ
[

1 + C−1Q̃2κ
]CQ

(50)

with CQ = 2κ(2 − λ)/(d − 2). The analytic solutions satisfying φ(0) = 0 are
those with

ρ = CQ

[

2 −
d

2
+

d

2κ

(

CQ
κ− 1

κ
− 1

)]

> 0, (51)

CQ > 0, and both ρ and CQ integers.
One finds for

1. d odd:

CQ = 2κn, n = 1, 2, . . .

ρ = κn(4 − d) + nd [2n(κ− 1) − 1] ,

λn = 2 − n(d− 2); (52)

2. d even:

CQ = κn, n = 1, 2, . . .

2ρ = nκ(4 − d) + nd [n(κ− 1) − 1] ,

λn = 20n ((d/2) − 1) . (53)

Correspondingly

1. there are a relevant (n = 1), a marginal (n = 2), and infinitely many
irrelevant (n > 2) scaling operators for dimensions d = 3 and d = 4;

2. there are a marginal (n = 1) and infinitely many irrelevant (n > 1) scaling
operators for d = 6;

3. for all the other dimensions d all scaling operators are irrelevant.

For the dimension d = 4 there are no scaling operators analytic in Q̃2 at the
fixed point with κ = 1. The other fixed points with κ > 1 exhibit a single relevant
scaling operator and can be considered as corresponding to critical theories. To
each of those fixed points belongs a critical surface positioned perpendicularly to
the relevant direction at the given fixed point and the critical surfaces separate
different phases.

Let us make a few important remarks.
(i) The higher order derivative terms lead to non-localized interactions. Causal-
ity is, however, not violated due to the analytic dependence of the Lagrangian
on the gradient operator [31]. Unitarity depends on whether the real energy
eigenvalue states are all of positive norm [32]. It is, however, not a necessary
requirement for an effective theory to be unitary.
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(ii) The fixed point actions belonging to all of the non-trivial fixed points are
unbounded from below due to the logarithmic potential V ∗(z) and rather prob-
ably none of them possesses any particle excitation.
(iii) The sign of the derivative term of the fixed point action depends on κ. Let
us consider the case of dimension d = 4. For κ = 1 and κ > 6 all Fourier modes
give a positive contribution to the derivative part, whereas their contributions
are negative for 2 < κ < 6. The possibility of the existence of such fixed points
has already been argued in [30]. For such fixed point theories the vacuum cor-
responds to a periodic field configuration with the wave length 2π/k, but with
vanishing amplitude due to the logarithmic potential.
(iv) It might happen that the highly non-linear RG equations have other fixed
point solutions, not satisfying the separation Ansatz, but making more physical
sense.

6 Conclusions

We have found infinitely many non-trivial fixed points for the one-component
scalar field theory in the enlarged space of actions including derivative interac-
tions and non-analytic potentials. The fixed point actions found are however
not really physical, they are unbounded from below and do not support particle
excitations. If the RG trajectories starting at the Gaussian fixed point along a
relevant direction flow towards them, the corresponding theories are not sensical.
In that case the only reasonable models are those being trivial.

Appendix: Derivation of the RG Equations

The first and second derivatives of the action defined via Eqs. (1), (2), and (3)
take the form:

∂σk

∂φQ
=

∞
∑

n=1

∞
∑

r=0

gnr

≤k
∑

q1,...,qr−1

[(

Q2
)n

+
(

q21

)n
(r + 1)

]

φq1
· · ·φqr+1

δq1+...+qr+1+Q

+
∞
∑

r=2

ur

≤k
∑

q1,...,qr−1

rφq1
· · ·φqr+1

δq1+...+qr+1+Q, (54)

∂2σk

∂φQ∂φQ′

=
∞
∑

n=1

∞
∑

r=0

gnr

≤k
∑

q1,...,qr

[(

Q2
)n

+
(

(Q′)2
)n

+
(

q21

)n
r
]

(r + 1)φq1
· · ·

· · ·φqrδq1+...+qr+Q+Q′

+
∞
∑

r=2

ur

≤k
∑

q1,...,qr−2

r(r − 1)φq1
· · ·φqr−2

δq1+...+qr−2
. (55)

If we take the momenta Q = p, Q′ = p′ from the momentum shell at |p| = |p′| = k,
we obtain fp and kp,p′ resp. from Eqs. (54) and (55) by excluding the momenta
of the shell from the sums, i.e. by changing the upper limit of the sums over the
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momenta from ≤ k to < k. Furthermore we find

∂kp,p′

∂φQ

=
∞
∑

n=1

∞
∑

r=0

gnr

<k
∑

q1,...,qr−1

[

2k2n +
(

Q2
)n

+
(

q21

)n
(r − 1)

]

r(r + 1)φq1
· · ·

· · ·φqr−1
δq1+...+qr−1+p+p′+Q

+
∞
∑

r=2

ur

<k
∑

q1,...,qr−3

(r − 2)(r − 1)rφq1
· · ·φqr−3

δq1+...+qr−3+p+p′+Q, (56)

∂2kp,p′

∂φQ∂φQ′

=
∞
∑

n=1

∞
∑

r=0

gnr

<k
∑

q1,...,qr−2

[

2k2n +
(

Q2
)n

+
(

(Q′)2
)n

+
(

q21

)n
(r − 2)

]

·

·(r − 1)r(r + 1)φq1
· · ·φqr−2

δq1+...+qr−2+p+p′+Q+Q′

+
∞
∑

r=2

ur

<k
∑

q1,...,qr−4

(r − 3)(r − 2)(r − 1)rφq1
· · ·φqr−4

δq1+...+qr−4+p+p′+Q+Q′.

(57)

By means of the generating functions (9) and (10) we obtain:

Pσk = V (x; k), (58)

P
∂2σk

∂φQ∂φ−Q
= ∂xG(Q2, x; k) + ∂2

xV (x; k), (59)

Pkp,p′ =
[

∂xG(k2, x; k) + ∂2
xV (x; k)

]

δp+p′ ≡ Aδp+p′, (60)

P
∂kp,p′

∂φQ
=

[

∂2
xG(k2, x; k) +

1

2
∂2

xG(Q2, x; k) + ∂3
xV (x; k)

]

δp+p′+Q

≡ Bδp+p′+Q, (61)

P
∂2kp,p′

∂φQ∂φQ′

=

[

∂3
xG(k2, x; k) +

1

2
∂3

xG(Q2, x; k)

+
1

2
∂3

xG((Q′)2, x; k) + ∂4
xV (x; k)

]

δp+p′+Q+Q′

≡ Cδp+p′+Q+Q′, (62)

P(ln k)p,p′ = δp+p′ ln
[

∂xG(k2, x; k) + ∂2
xV (x; k)

]

(63)

Applying the projector P on the r.h.s. of Eq. (6), the tree level term vanishes
due to Pfp = 0, as observed in [6]. Due to that the projection of the second
derivative of the tree level term in Eq. (7) also takes the simpler form:

P
∂2

∂φQ∂φ−Q

(

fpk
−1
p.p′fp′

)

= P
∂fp

∂φ−Q
Pk−1

p,p′P
∂fp′

∂φQ
+ P

∂fp

∂φQ
Pk−1

p,p′P
∂fp′

∂φ−Q
.

(64)

However we find that P (∂fp/∂φQ) = 0 for any Q 6= −p, and therefore the tree
level term vanishes after acting with the projector P on the r.h.s. of Eq. (7).
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Making use of the matrix identity ∂(kk−1)p,p′/∂φQ = 0, we find

∂k−1
p,p′

∂φQ
= −

(

k−1 ∂k

∂φQ
k−1

)

p,p′

(65)

and

∂2

∂φQ∂φ−Q
(ln k)p,p′ =

1

2

[

k−1 ∂2k

∂φQ∂φ−Q
+

∂2k

∂φQ∂φ−Q
k−1

−k−1 ∂k

∂φ−Q
k−1 ∂k

∂φQ
−

∂k

∂φQ
k−1 ∂k

∂φ−Q
k−1

]

p,p′

(66)

and then obtain

P
∂2

∂φQ∂φ−Q
(ln k)p,p′ =

(

C

A
−

B2

A2

)

δp+p′ . (67)

Let us apply now the projector P on both sides of Eqs. (6) and (7):

k∂kV (x, k) = −αkd ln
A

Axc

, (68)

k∂k

[

∂xG(Q2, x, k) + ∂2
xV (x, k)

]

= −αkd

[

C

A
−

B2

A2

]

. (69)

As far as G(Q2, x, k) is assumed being analytic in the variable Q2, Eqs. (68)
and (69) are consistent if and only if the equation obtained from Eq. (69) by
setting Q2 = 0,

k∂k∂
2
xV = −αkd

[

C

A
−

B2

A2

]

Q2=0

, (70)

is the consequence of Eq. (68). Indeed, Eq. (70) can be obtained from Eq.
(68) by taking the second partial derivative of its both sides with respect of the
variable x.

Subtracting Eq. (70) from Eq. (69) we obtain the coupled set of partial
differential equations (11) and (12) for the generating functions.
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(1983) 209.
[12] K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. 54 (1985) 92.
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