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1. Introduction

Since the very beginning of solid state physics the question why some materials
are insulating whereas others are conductors lies at the very heart of solid state
theory. A first explanation was achieved by band theory in the early days
of quantum mechanics [23, 44]. The ions of the solid give rise to a periodic
potential, which the electrons are exposed to. A consequence is the formation
of energy bands, and the filling of the bands determines whether the material
is a conductor or not. In many experiments, it was observed that solids can
undergo a transition from an insulating state to a conducting state, if external
parameters like temperature or pressure are changed [151, 206]. Such transitions
are called metal-insulator transitions. A central purpose of solid state theory is
to gain a comprehensive understanding of the underlying mechanisms of these
macroscopic phenomena [120, 151, 205].

Two types of metal-insulator transitions are known [120]. Firstly, thermody-
namic phase transitions, which result from the competition between the internal
energy of the system and the entropy [264, 304]. Secondly, quantum phase
transitions due to opposing energy contributions in the system [280]. Concern-
ing the latter, two instances of completely different nature gained outstanding
attention: the Anderson transition [17, 172, 204, 270] occurring in disordered
solids and the Mott transition [151, 206] due to strong correlations between
the electrons. Whereas the prior can be understood in a single-particle theory,
the latter mechanism arises by reason of mutual interactions in the many-body
problem.
Historically, the field of correlation-induced metal-insulator transitions orig-

inates from the experimental observation of insulating materials, which were
in conflict with band theory predictions [79]. Theoretical efforts came to the
conclusion that interactions between the electrons are responsible for the insu-
lating behavior [203, 205, 206, 295]. In the course of the theoretical research,
the famous Hubbard model was introduced as a generic model for electron
correlations in solids [139, 147, 162]. Although the Hubbard model incorporates
strong correlations on the level of pure on-site interactions, an exact solution has
not been achieved up to day, except in one dimension [186]. First, rough approx-
imations far from a realistic picture [147, 149] show that the Hubbard model can
successfully describe the Mott transition. The discovery of high-temperature
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1. Introduction

superconductivity [31] and the evidence for its electronic origin boosted the
interest in the Hubbard model [21]. Subsequently, the discovery of crucial - but
not trivial - simplifications in infinite dimensions [193] paved the way towards
the dynamical mean-field theory [122, 123, 171] in which on-site interactions
are treated non-perturbatively. Within this method, the Mott transition can be
understood to be driven by local quantum fluctuations [55, 57, 121, 236, 305].
On the other hand, disorder in solids - such as impurities or vacancies - was

found to strongly modify band theory predictions, even in absence of many-
particle physics [172, 204, 270]. In 1958, Anderson showed in his analysis of a
disordered tight binding model - the Anderson model - that a sufficient amount
of disorder hinders the diffusion of particles [17]. Coherent backscattering
processes cause a localization of the particle, i.e. it is confined to a finite region
of the lattice. In particular, the localization of states at the Fermi level induces
a metal-insulator transition, the Anderson transition. Although the disorder
physics is described on a single particle-level, the randomness impedes exact
solutions. Therefore, numerical investigations are indispensable.

Albeit each fundamental phenomenon - correlations and disorder - on its own
gives rise to challenges to both experimental and theoretical research and is still
subject of current investigations, the realistic modeling of materials requires the
simultaneous consideration of both effects. This interplay is of central interest
within present day’s solid state physics [32, 174, 182, 196].

Theoretical investigations, e.g. of the Anderson-Hubbard model combining
the Hubbard model and the Anderson model are notoriously difficult. The
most intriguing effects, such as the Mott transition and the Anderson tran-
sition, take place at intermediate interaction and disorder strength requiring
a non-perturbative approach. Extensions of the dynamical mean-field the-
ory to disordered systems are especially promising in this respect, since local
correlations are incorporated non-perturbatively. Such extensions were per-
formed on a level of the coherent potential approximation [275, 279] and on
an effective level of typical medium theory incorporating localization effects
[5, 58, 60–62, 82]. Both approaches neglect disorder-induced fluctuations. Do-
brosavljević and Kotliar extended the dynamical mean-field theory to include
disorder fluctuations on a fully stochastic level, which is referred to as statistical
dynamical mean-field theory [85, 86]. This theory is capable of describing
Mott and Anderson-Mott transitions non-perturbatively and on equal footing.
However, the theory is numerically very demanding, which might explain the
lack of comprehensive statistical dynamical mean-field theory studies on the
Anderson-Hubbard model to date.

From the solid state point of view, precise experimental investigations are
difficult, since the disorder is hard to control, both in its nature and intensity. It
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is also not possible to tune the interaction strength in a precise and controlled
way and in particular, it is not possible to isolate one single effect. Here,
the recently developed experiments with ultracold atoms in optical lattices
[45, 183, 202] are very promising to overcome these problems.
Experiments with ultracold atoms were enabled by the invention of laser

cooling [24, 71, 225, 298, 299] and further developments in that field which
allowed for the realization of quantum degenerate Bose, Fermi and Bose-Fermi
gases [16, 78, 81]. Interestingly, it is possible to load these degenerate quantum
gases into optical lattices [45, 132, 138, 159, 166, 220, 229], systems to be used
as quantum simulators for quantum many-body models [108, 145, 154, 155, 183].
Bosons in an optical lattice, for example, constitute a realization of the Bose-
Hubbard model up to a very high degree of accuracy [154] which was first
achieved by Greiner et al. in 2002 [132]. Characteristic for these experiments
is the possibility to tune the experimental parameters, like the interaction
strength very precisely and independently [45]. Remarkably from the solid state
point of view, the fermionic Hubbard model was also realized [166] and the
fermionic Mott insulator has been observed recently [160, 242]. Furthermore,
ultracold atoms were exposed to disordered potentials within different setups
[25, 199, 239]. For instance, a speckle disorder can be created by scattering a
coherent laser beam from a diffusor plate leading to a random intensity field
for the atoms through the AC Stark effect [39, 73, 191]. Such random speckle
patterns were successfully superimposed onto optical lattices [223, 293] realizing
a disordered periodic potential for the atoms. In a further approach, laser beams
with incommensurate frequencies are superimposed, resulting in a quasi-periodic
potential [76, 101, 235]. Remarkably, clear observation of localized matter waves
was achieved recently within both approaches [39, 233]. In a further approach,
it is also aimed to realize binary disorder in optical lattices. Here, the strategy
is to load two species of atoms into an optical lattices, of which one is immobile
on the relevant time scale. Consequently, the mobile species is exposed to
a impurity disorder potential mediated by the interspecies interaction. First
experiments in that direction have been performed [138, 220].
These new experimental developments enable the quantum simulation of

strongly correlated systems in disordered potentials [25, 199, 239]. In particular,
it is possible to investigate the Anderson-Hubbard model with unprecedented
experimental control. The prospect to tune the disorder, as well as the inter-
particle interaction strength over several orders of magnitude is especially
appealing.

The theoretical investigation of degenerate ultracold quantum gases in disor-
dered optical lattices is subject of this thesis. The main focus lies on the study
of fermionic quantum gases within the statistical dynamical mean-field theory.
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1. Introduction

1.1. Outline of the thesis

As starting point the Hubbard model and the notion of many-particle Green’s
functions are introduced, followed by the derivation of dynamical mean-field
theory and discussion of the Mott insulator transition in chapter 2. In chapter
3, non-interacting, disordered systems are considered with an emphasis on
localization signatures within the Green’s function formalism. The findings
are numerically checked with the local distribution method [2, 13, 14], the
discussion of which facilitates the subsequent introduction of the statistical
dynamical mean-field theory. This in turn is carried out in detail within chapter
4, which is dedicated to strongly-correlated fermions in disordered lattices and
the various extensions of dynamical mean-field theory to disordered systems.
Hereafter in chapter 5, a brief overview on ultracold atoms in optical lattices
is presented, with a special emphasis on the disordered case. After having set
the stage, the statistical dynamical mean-field theory is established for the
Anderson-Hubbard model by application to the commonly used box disorder
distribution in chapter 6.

Subsequently, two disorder types are investigated for fermionic systems, which
are of fundamental interest regarding experiments with ultracold atoms. As a
first instance, the binary distribution of on-site energies is considered in chapter
7. This type of disorder cannot only be realized in optical lattices, but it is
also of fundamental interest in solid state physics, where it serves as primary
model of alloys or doped semiconductors. The purpose of the investigation is
to significantly extend the theoretical picture achieved so far. Interestingly, a
novel Mott transition at non-integer filling has been predicted recently [59],
but localization effects have not been incorporated. It is our goal to complete
the picture by describing correlation-induced and localization-induced metal-
insulator transitions on equal footing within the statistical dynamical mean-field
theory. The underlying intention of the investigation is to test whether the
mentioned novel kind of Mott transition persists in presence of disorder.

Chapter 8 is dedicated to the investigation of fermions in speckle disordered
optical lattices. This type of disorder is specific to ultracold atoms. A fundamen-
tal difference to disorder prototypes in solid state theory is that the distribution
function of the on-site energies for speckle disorder is unbounded. An accurate
description is accomplished by considering realistic parameter regimes close to
experimental realizations. Therefore, an extension of the statistical dynamical
mean-field theory is developed to include off-diagonal disorder which allows for
additionally taking probability distribution functions for the hopping amplitude
into account. The major goal is to determine the paramagnetic ground state
phase diagram for the first time. The question of the consequences arising
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1.1. Outline of the thesis

from the specific nature of speckle disorder is addressed, which is of particular
interest in the context of simulating disordered solids state systems with cold
atoms.
Finally, Bose-Fermi mixtures in disordered optical lattices are studied in

chapter 9. Based on the recently developed generalized dynamical mean-field
theory [272, 273], the typical medium theory is extended to incorporate local-
ization effects for the bosons. This allows for a non-perturbative investigation
of the disordered system with mixed quantum statistics. In particular, two
kinds of Bose-Fermi mixtures are considered. On the one hand, mixtures of
bosons and spin-polarized fermions, on the other hand mixtures of bosons and
two-component fermions. The competition of correlation-induced and disorder-
induced localized phases is of interest. Furthermore, the purpose is to gain a
fundamental insight into the intricate interplay between the bosonic and the
fermionic subsystem.

9





2. Strongly correlated fermions in
high dimensions

Solid state theory classifies metals and insulators as distinct and separate
states of matter. Electrons in a crystal are exposed to the periodic potential
which gives rise to a band structure (cf. appendix A). In band theory metals
exhibit partially filled bands, whereas for insulators the highest occupied band
is completely filled. Accordingly, insulators are characterized by a Fermi level
that lies in a band gap.

However, some elements and compounds such as NiO do not obey this basic
band theory, as first pointed out by de Boer and Verwey [79]. Although some
compounds are predicted to be metals by band theory, experiments show them
to be insulators. Shortly after these observations Wigner [295] argued that the
Coulomb interaction between the electrons might be the origin of the insulating
behavior. Thereby, the research field of strong correlations1 was opened.

During the following decades, significant progress was achieved and many more
physical behaviors have been explained through strong correlations [151, 206]. In
particular, it was Mott who gave first explanations2 how interactions between the
electrons might give rise to insulating behavior [203, 205, 206]. By considering
single orbitals on each lattice site, which can be doubly occupied by electrons
with opposite spin, he argued that the repulsion between electrons gives rise to
a the formation of an upper band. Hence, if the Fermi level lies between the
two states an insulator is obtained.
Further progress was obtained by the introduction of the Hubbard model

[139, 147, 162] which describes electrons in a lattice in a simple fashion by the
hopping from one site to adjacent lattice sites and by a purely local repulsive
interaction. This plain model is able to capture a metal insulator phase transition
already on a level of basic approximations [149]. However, except the one-
1The notion of strong correlations in many-particle systems refers to the fact, that correlation
functions like density-density correlations in general can not be factorized into a simple
product of the single expectation values due to interactions between the particles. Nowadays
the notion is acclimated as a synonym of non-trivial effects in strongly interacting many-
particle systems.

2Therefore, the metal-insulator transition due to interaction is commonly known as Mott
transition.
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2. Strongly correlated fermions in high dimensions

dimensional case [186] no explicit analytical solutions have been obtained for
higher dimensions so far. In 1986, after the discovery of high-temperature
superconductivity [31] the Hubbard model attracted even greater attention as
experimental data indicated an electronic nature behind the basic mechanism,
and Anderson argued that the Hubbard model should constitute an appropriate
model to explain its behavior [21].
Due to the lack of explicit solutions, theoretical investigations have been

restricted to weak-coupling or strong-coupling perturbative approaches in higher
dimensions. In order to explain the most intriguing phenomena like the Mott
transition, which take place at intermediate couplings [151], non-perturbative
methods were much-needed. Besides other approximative treatments3 the limit
of infinite dimensions turned out to become especially useful [193, 210], as the
theory becomes significantly simplified by a local self-energy. This observation
cleared the way towards the development of the so-called dynamical mean-field
theory (DMFT) [122, 123, 170, 171], which is non-perturbative in the interaction
strength and features a well-defined limit of infinite dimensions.

2.1. Hubbard model

One of the most successful models of strongly correlated fermions was introduced
independently by Hubbard [147], Kanamori [162] and Gutzwiller [139] in 1963.
Nowadays, this model is commonly known as the Hubbard model, since Hubbard
published several important works consecutively [148, 149]. In principle, the
model consists of a hopping contribution and a simple on-site interaction
between two fermions, which is motivated by the screening of the charge for
large distances. In general, the model is suitable for materials with narrow energy
bands. It is widely used in the theory of high-temperature superconductivity,
band magnetism, metal-insulator transitions as well as for the description
of transition metals. Due to its structural simplicity and its wide range of
applications, it nowadays represents the standard model of strong correlations.
In second quantization (see e.g. [215]) the single-orbital Hubbard model reads
in the Wannier representation (see appendix A)

H =
∑
ijσ

tijc
†
iσcjσ − µ

∑
iσ

c†iσciσ + U
∑
i

ni↑ni↓ , (2.1)

where c†iσ (ciσ) denotes fermionic creation (annihilation) operators at a lattice site
i with spin σ = ±1/2. The fermionic number operator is given by niσ = c†iσciσ.
3For a comprehensive review see e.g. [120, 151].
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2.1. Hubbard model

Figure 2.1.: Illustration of the Hubbard model on the square lattice. Particles are
hopping with amplitude t between nearest neighboring sites. If on a
lattice site both spin components are present, they interact repulsively
with strength U . Under time evolution the state on a single site might
change from unoccupied, singly occupied to doubly occupied.

The hopping amplitude between the sites i and j is denoted by tij , the local
interaction amplitude is represented by U , and the chemical potential is given
by µ. In the simplest case, just nearest neighbor hopping is considered, i.e.
tij = −t for site i and site j nearest neighbors and zero otherwise.
The Hubbard model is given on a lattice of dimensionality d and number of

nearest neighbors z. An illustration of the Hubbard model on the square lattice
is given in figure 2.1.

Of course, the goal of all theoretical investigations is to estimate the eigenval-
ues of physical observables A, their expectation values 〈A〉 or the correlation
functions between two observables 〈AB〉. If it would be possible to solve the
many-body system (2.1) analytically, all physical quantities of interest – e.g.
density of states, conductivity or the responses to the change of external pa-
rameters – would be accessible. Despite its structural simplicity, the Hubbard
model is notoriously hard to solve and many important questions about its

13



2. Strongly correlated fermions in high dimensions

physics are unknown up to day. This can easily be seen from the fact, that
while the interaction part is diagonal in real space, the hopping part is not and
vice versa in momentum space.

In the limit U = 0 the Hubbard model describes Bloch electrons, which are
extended and give rise to a finite conductivity. Hence this limit describes a
metal. In the limit of zero hopping, the so-called atomic limit, the Hamiltonian
is decomposed to the direct sum of local operators, whose highly degenerate
eigenfunctions are direct products of atomic states on each lattice site [148]. In
this limit, the system describes an insulating state.
A third limit is given by U � t, the limit of strong interactions. Here,

the system evolves exclusively in the subsystem of lowest possible number of
double occupancies [120] and a first order perturbation approach in the hopping
amplitude is well suited and usually termed the Nagaoka problem. Although this
problem still cannot be solved in general, some parameter configurations allow
for an explicit solution, as for example, a single hole in arbitrary dimensions
[212], which was shown to feature a ferromagnetic ground state. Furthermore,
the case of half-filling, i.e. number of electrons equal to number of lattice sites,
is special in the large U limit, as the Hubbard model can be mapped onto the
anti-ferromagnetic Heisenberg model [18]. Hence, at half filling the Hubbard
model on a bipartite lattice4 possesses an anti-ferromagnetic insulator as a
ground state.
From the above limits, we can already conclude that the Hubbard model

exhibits a quantum phase transition5 from a metal to an insulator. In particular,
the well-known Fermi-liquid theory [180, 217], which substitutes the interacting
fermions by non-interacting quasi-particles as elementary excitations does not
give a comprehensive picture as it is not able to describe incoherent excitations,
which drive the metal-insulator transition as it is known nowadays.

As unfortunately no analytical solution exists at the time of writing, except
in one dimension for zero temperature [186], investigations of the Hubbard
model rely on numerical solutions or approximation schemes. The development
of a very powerful method – the DMFT – was triggered by the observation,
that the self-energy becomes local in infinite dimensions, which was shown in
a ground breaking paper by Metzner and Vollhardt [193]. The assumption of
a local self-energy is known to be a good approximation for high dimensional
lattices such as three-dimensional lattices [123], on which this work focuses on.
The DMFT will be introduced in detail in section 2.3 after the introduction of
4A lattice is called bipartite, if the lattice can be divided into two sublattices A and B, so
that all nearest neighbors of a member site of sublattice A are part of the sublattice B
and vice versa.

5For a review see e.g. [280].
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2.2. Green’s functions of many-particle systems

the appropriate theoretical terminology for many particle systems in section
2.2.

2.2. Green’s functions of many-particle systems

The introduction of Green’s function is useful for theoretical investigations of
many-particle systems. Given two operators A(t) and B(t) in the Heisenberg
picture the retarded, advanced and the causal two-time Green’s functions are
defined as [309]:

Gr
AB(t,t′) ≡ 〈〈A(t);B(t′)〉〉r := −iθ(t− t′)〈[A(t),B(t′)]−ε〉 (2.2)

Ga
AB(t,t′) ≡ 〈〈A(t);B(t′)〉〉a := iθ(t′ − t)〈[A(t),B(t′)]−ε〉 (2.3)

Gc
AB(t,t′) ≡ 〈〈A(t);B(t′)〉〉c := −i〈Tε(A(t)B(t′))〉 . (2.4)

Here, the expression [..,..]−ε denotes the commutator [..]− for ε = + and the
anticommutator [..]+ for ε = − and θ(x) denotes the Heaviside function. It is
customary to use the commutator for bosonic operators and the anticommutator
for fermionic, although this choice is not mandatory. The Wick time ordering
operator is defined as

Tε(A(t)B(t′)) := θ(t− t′)A(t)B(t′) + εθ(t′ − t)B(t′)A(t) . (2.5)

The brackets 〈..〉 denote the grand canonical thermal average

〈X〉 = 1
Z
Tr(Xe−β(H−µN)) (2.6)

of the quantity X at finite temperature, where β = 1/kBT the inverse temper-
ature and the grand canonical partition function Z := Tr exp(−β(H − µN)).
For zero temperature the brackets denote the expectation value of the quantity
X in the ground state |gs〉:

〈X〉 = 〈gs|X|gs〉 . (2.7)

The retarded and the advanced Green’s function can be continued analytically
in the upper and lower complex half-plane respectively [309], which is not true
for the causal Green’s function. Therefore, in practical calculations one usually
deals with only the retarded Green’s function or the advanced Green’s function.
The retarded and the advanced Green’s functions are closely connected to one
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2. Strongly correlated fermions in high dimensions

another. From the definitions given above, we can derive the relation

Gr
AB(t,t′) = εGa

BA(t′,t) . (2.8)

Furthermore, the real part and the imaginary part of the Green’s functions are
not independent, but connected via the Kramers-Kronig relations [215].

Henceforth we will focus on the retarded two-time Green’s function and
suppress the index r. By differentiating the Green’s function with respect to t
we obtain

i
d

dt
GAB(t,t′) = dθ(t− t′)

dt
〈[A(t),B(t′)]−ε〉+ 〈〈dA(t)

dt
;B(t′)〉〉 (2.9)

= δ(t− t′)〈[A(t),B(t′)]−ε〉+ 〈〈[A(t),H];B(t′)〉〉 , (2.10)

in which the Heisenberg equation of motion was used and we set ~ = 1 as used
throughout the entirety of this work. Equation (2.10) represents an equation of
motion for the Green’s function, which allows the determination of the two-time
Green’s function in principle. However, we note the occurrence of a higher-oder
Green’s function on the right hand side of equation (2.10). An analogous
equation of motion can be constructed for this higher-order Green’s function,
which will again result in general in the occurrence of another higher-order
Green’s function. Hence, the equation of motion leads to an infinite hierarchy of
coupled differential equations, which necessitates a truncation so that a solution
may be found.

If the Hamilton operator does not explicitly depend on time, i.e. ∂H/∂t = 0,
which is true in general for all subsequent considerations in this work, the
two-time Green’s function depends only on the difference of times

GAB(t,t′) = GAB(t− t′) . (2.11)

In order to obtain an algebraic set of equations one performs a Fourier transfor-
mation

GAB(ω) ≡ 〈〈A(t);B(t′)〉〉ω := 1
2π

∫
d(t− t′)GAB(t− t′)eiω(t−t′) (2.12)

so that the equation of motion (2.10) becomes

ω〈〈A;B〉〉ω = 〈[A,B]−ε〉+ 〈〈[A,H];B〉〉ω . (2.13)

The Green’s functions is conveniently expressed in the spectral representation.
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2.2. Green’s functions of many-particle systems

For this purpose one defines the spectral function as

SAB(t,t′) := 1
2π 〈[A(t),B(t′)]−ε〉 . (2.14)

By substitution of the complete basis set of eigenfunctions |En〉 of the grand
canonical Hamiltonian H = H − µN and subsequent Fourier transformation,
the spectral representation

SAB(ω) = 1
Z

∑
n,m

〈En|B|Em〉〈Em|A|En〉e−βEn(eβ(En−Em)−ε)δ(ω−(En−Em))

(2.15)

is obtained. The connection between the retarded Green’s function and the
spectral function reads

GAB(ω) =
∫
dε

SAB(ε)
ω − ε+ iη

(2.16)

and by inserting (2.15) the spectral representation of the retarded Green’s
function is derived

GAB(ω) = 1
Z

∑
n,m

〈En|B|Em〉〈Em|A|En〉e−βEn
eβ(En−Em) − ε

ω − (En − Em) + iη
, (2.17)

from which we conclude that the Green’s function has poles at the excitation
energies of the interacting system and moreover the relation

SAB(ω) = − 1
π
ImGAB(ω) , (2.18)

to which we will refer many times during this work. An analogous consideration
for the advanced Green’s function gives the remarkable relation

SAB(ω) = i

2π (Gr
AB(ω + iη)−Ga

AB(ω − iη)) , (2.19)

which states that the spectral density results from a discontinuity of the advanced
and retarded Green’s function in the limit η → 0.

Regarding the Hubbard model 2.1 an important quantity of interest is the
retarded single-particle Green’s function, defined as

Gijσ(t) ≡ G
ciσ(t)c†

jσ(0)(t) = −iθ(t)〈[ciσ(t),c†jσ(0)]+〉 , (2.20)
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2. Strongly correlated fermions in high dimensions

By knowing the single-particle Green’s function of an interacting many-body
problem, all single-particle physical observables are accessible. In particular,
the spectral function of the site-diagonal single-particle Green’s function

ρi(ω) ≡ S
ciσc

†
iσ

(ω) := − 1
π
ImGiiσ(ω) (2.21)

gives the local density of states (LDOS).

Consider the Hubbard model in Bloch representation (see appendix A)

H =
∑
k,σ

(εk − µ)c†kσckσ + U

N

∑
k1k2q

c†k1↑ck1+q↑c
†
k2↓ck2−q↓ , (2.22)

where the dispersion relation

εk = 1
N

∑
ij

tije
−ik(Ri−Rj) (2.23)

contains the lattice structure. The Green’s function in Bloch representation
reads

G
ckσc

†
kσ

(ω) ≡ Gkσ(ω) = 〈〈ckσ; c†kσ〉〉ω . (2.24)

The non-trivial part in the equation of motion for the single-particle Green’s
function (2.13) involves the commutator [ckσ,H] which we split into two parts
by defining H0 by the single-particle part of the Hubbard model. We evaluate
the commutator

[ckσ,H0]− = [ckσ,
∑
k1,σ

(εk1 − µ)c†k1σ
ck1σ]− (2.25)

= (εk − µ)ckσ . (2.26)

We require the commutator

[ckσ, c
†
k1↑ck1+q↑c

†
k2↓ck2−q↓]− = δk,k1δσ,↑ck1+q↑c

†
k2↓ck2−q↓

+δk,k2δσ,↓c
†
k1↑ck1+q↑ck2−q↓ (2.27)

from which we find

[ckσ,H −H0] = U

N

∑
k1,k2,q

(δk,k1δσ,↑c
†
k2↓ck2−q↓ck1+q↑

+δk,k2δσ,↓c
†
k1↑ck1+q↑ck2−q↓) (2.28)

18



2.3. Dynamical mean-field theory

[ckσ,H −H0] = U

N

∑
k1,q

(δσ,↑c†k1↓ck1−q↓ck+q↑ + δσ,↓c
†
k1↑ck1+q↑ck−q↓)

(2.29)

= U

N

∑
k1,q

(c†k1σ
ck1+qσck−qσ) . (2.30)

Here, σ refers to the opposite spin of σ. When these expressions are substituted
into the equation of motion (2.13) we obtain

(ω + µ− εk)Gkσ(ω) = 1 + U

N

∑
k1,q
〈〈c†k1σ

ck1+qσck−qσ; c†kσ〉〉ω , (2.31)

where we note the previously mentioned occurrence of higher order Green’s
functions. By postulating the decomposition

〈〈[ckσ,H −H0]; c†kσ〉〉ω = U

N

∑
k1,q
〈〈c†k1σ

ck1+qσck−qσ; c†kσ〉〉ω (2.32)

=: Σkσ(ω)Gkσ(ω) (2.33)

we introduce the self-energy, Σkσ(ω). Therefore the solution of the equation of
motion for the single-particle Green’s function is formally given by

Gkσ(ω) = (ω + µ− εk − Σkσ(ω))−1 . (2.34)

Remarkably, the influence of the particle interactions is contained solely in the
self-energy. The real part of the self-energy corresponds to the energy of the
system’s quasi-particles, and their lifetime is given by the imaginary part [215].

2.3. Dynamical mean-field theory

A theoretical breakthrough in understanding the physics of the Hubbard model
was achieved with the development of the DMFT [123, 171]. The theory was
pioneered by the work of Metzner and Vollhardt, who showed that the self-
energy becomes local in infinite dimensions [193]. Further progress was achieved
by – among others – the remarkable works of Müller-Hartmann [209, 210],
Brandt and Mielsch [49–51], Janis [157], Jarrell [158], and Georges and Kotliar
[122]. A detailed and comprehensive review is given by Georges et al. [123]. In
this section we will briefly outline the main ideas of the method and derive the
self-consistent equations within the framework of the cavity method [123].

A convenient starting point of the calculation is the grand canonical partition
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2. Strongly correlated fermions in high dimensions

function of the fermionic Hubbard model, given as a functional integral over
Grassmann variables [214]. From statistical mechanics we know that the
partition function reads,

Z = Tr(e−βH) = lim
n→∞

Tr((1− βH
n

)n) (2.35)

One proceeds by inserting n unity identities constituted by the completeness of
the coherent states in Fock space [214]. Subsequently, the eigenvalue equation
of the annihilation operator acting on coherent states and its conjugate equation
for the creation operator are used for the second-quantized, normal-ordered
Hamiltonian, such that the Hamiltonian becomes a function of the grassmann
variables. Finally, a Wick rotation is performed such that t = iτ , where the
imaginary time τ = βl/n with l = 1, . . . ,n is introduced. The limit n→∞ is
taken, resulting in the partition function [214]

Z =
∫ ∏

i

Dc†iσDciσe
−S , (2.36)

with the action S given by

S =
β∫

0

dτ
(∑
iσ

c†iσ(τ)(∂τ−µ)ciσ(τ)−
∑
〈i,j〉σ

tijc
†
iσ(τ)cjσ(τ)+U

∑
i

ni↑(τ)ni↓(τ)
)
.

(2.37)

In a manner analogous to static mean field theories, an effective action is
formally defined by focusing on one single site i = 0 and tracing out all other
degrees of freedom of the system:

1
Zeff

e−Seff := 1
Z

∫ ∏
i 6=0,σ

Dc†iσDciσe
−S . (2.38)

In order to proceed, the action is split into three parts, the pure local contribution
S0 of site i = 0, the contribution ∆S corresponding to the coupling from site
i = 0 to the other lattice degrees of freedom and the cavity action S(0), so that

S = S0 + ∆S + S(0) (2.39)
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2.3. Dynamical mean-field theory

with the definitions

S0 =
β∫

0

dτ(
∑
σ

c†0σ(τ)(∂τ − µ)c0σ(τ) + Un0↑(τ)n0↓(τ)) (2.40)

∆S = −
β∫

0

dτ
∑
iσ

ti0(c†iσ(τ)c0σ(τ) + c†0σ(τ)ciσ(τ)) . (2.41)

With these definitions the partition function reads

Z =
∫
Dc†0σDc0σe

−S0

∫ ∏
i 6=0

Dc†iσDciσ exp

−S(0) −
β∫

0

dτ∆S(τ)

 , (2.42)

with ∆S =
β∫
0
dτ∆S(τ). Expanding (2.42) results in

Z =
∫
Dc†0σDc0σe

−S0

∫ ∏
i 6=0

Dc†iσDciσe
−S(0)

×

1−
β∫

0

dτ∆S(τ) + 1
2

β∫
0

dτ1

β∫
0

dτ2Tτ∆S(τ1)∆S(τ2) + . . .

 .
(2.43)

By noting that expectation values of the cavity system,

〈A〉(0) = 1
Z(0)

∫ ∏
i 6=0

Dc†iσDciσ Ae
−S(0) (2.44)

occur in (2.43), we obtain

Z =
∫
Dc†0σDc0σ e

−S0Z(0)(1− β∫
0

dτ〈∆S(τ)〉(0)

+1
2

β∫
0

dτ1

β∫
0

dτ2〈Tτ∆S(τ1)∆S(τ2)〉(0) + . . .
)
, (2.45)

where Tτ is the imaginary time ordering operator. In case of fermions, which we
consider here, the odd terms of the expansion vanish, which however is not true
for bosons [65, 150]. Therefore, by substituting definition (2.41) the leading
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2. Strongly correlated fermions in high dimensions

order contribution is given by

1
2

β∫
0

dτ1

β∫
0

dτ2
∑
σ

c†0σ(τ1)
∑
ij

ti0t0j〈Tτ ciσ(τ1)c†jσ(τ2)〉(0)c0σ(τ2)

= −1
2

β∫
0

dτ1

β∫
0

dτ2
∑
σ

c†0σ(τ1)
∑
ij

ti0t0jG
(0)
ij (τ1 − τ2)c0σ(τ2) (2.46)

in which the cavity Green’s function G(0)
ij (τ1− τ2) is identified. The higher order

contributions consist of n-particle cavity Green’s functions where, according to
the linked cluster theorem, all unconnected Green’s functions can be written as
a sum of only connected Green’s functions. Returning back to the definition of
the effective action (2.38) we find

Seff = lnZ − lnZeff − ln

∫ ∏
i 6=0,σ

Dc†iσDciσe
−S


= const + S0 +

∞∑
n=1

∑
i1,··· ,jn

∫
dτi1 . . . dτjnc

†
0σ(τi1) . . . c†0σ(τin)

G
(0)
i1···jn(τi1 . . . τjn)c0σ(τj1) . . . c0σ(τjn) . (2.47)

This expression simplifies considerably in the limit of infinite dimensions, as
will be shown in the subsequent discussion.

To obtain a meaningful limit in infinite dimensions, the kinetic energy must
remain of the same order of magnitude as the interaction energy. For zero
temperature, the kinetic energy is given as

Ekin = −t
∑
ij,σ

〈c†iσcjσ〉 , (2.48)

where the square of the element 〈c†iσcjσ〉 of single-particle density matrix can
be interpreted as the probability for a particle to hope from lattice site j to
lattice site i. For nearest neighbors we conclude that the probability scales
accordingly to |〈c†iσcjσ〉|2 ∼ 1/z ∼ 1/d [193]. Hence, 〈c†iσcjσ〉 ∼ 1/

√
z ∼ 1/

√
d

and the single-particle Green’s function scales in the same manner. Therefore
the hopping amplitude must be scaled as [193]

t = t∗√
z

(2.49)
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2.3. Dynamical mean-field theory

with dimension independent t∗ in order to keep the kinetic energy finite in the
limit of infinite dimensions. For general sites i and j the single-particle Green’s
function scales as [88, 193]

Gij,σ ∼ d−
1
2 ||Ri−Rj|| . (2.50)

Due to this property, all connected irreducible diagrams of a diagrammatic
perturbation theory in the local interaction U collapse to their local contributions
in position space [193]. In particular, the self-energy becomes local

Σij,σ(ω)→ δi,jΣi(ω) . (2.51)

In order to evaluate the summation involving the connected n-particle cavity
Green’s functions in equation (2.47), we have to determine the overall scaling
factor of each term in the order n contribution. For the single-particle term
we find a contribution d2 from the summation over i and j, a contribution of
d−1 from both the factor t2 as well as from Gij , resulting in a net constant
scaling factor. The second term is composed of a contribution d4 from the
summation over i1,i2,j1 and j2, a contribution d−2 from the hopping amplitude
to the forth power and a contribution of d−3 from Gi1,i2,j1,j2 if i1,i2,j1 and j2
are all different, giving a total scaling 1/d [123]. If the summation indices take
the same value then a total scaling 1/d is also obtained [123]. Therefore, it can
be seen that all higher order terms vanish if the dimension is scaled to infinity
[123] and we finally obtain the effective action

Seff = −
β∫

0

dτ1

β∫
0

dτ2 c
†
0σ(τ1)G−1

0 (τ1−τ2)c0σ(τ2)+U
β∫

0

dτ n0↑(τ)n0↓(τ) (2.52)

where G0 denotes the so-called Weiss function. The Fourier transformed Weiss
function is given as

G−1
0 (iωn) = iωn + µ− Γ(iωn) (2.53)

with Matsubara frequencies ωn = (2n+1)π/β [215]. The so-called hybridization
function

Γ(iωn) =
∑
i,j

t0it0jG
(0)
ij (iωn) , (2.54)

where j,k are summed over nearest neighbors, relates the Weiss function to
the cavity Greens function G(0)

ij . The cavity Greens function in turn can be
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2. Strongly correlated fermions in high dimensions

expressed through the Greens function of the original lattice [149]

G
(0)
ij = Gij −

Gi0G0j
G00

, (2.55)

enabling the construction of a self-consistent closed set of equations. The
effective action (2.52) is exact in infinite dimensions under appropriate scaling
(2.49) of the hopping amplitude. In finite dimensions the effective action
corresponds to an approximate action with small control parameter 1/z.

By using the Fourier transform of the Greens function Gij(iωn)

Gij(iωn) =
∑

k
eik·(Ri−Rj)Gk(iωn) , (2.56)

we find that∑
i,j

t0it0jGij(iωn) =
∑
i,j

t0it0j
∑

k
eik·(Ri−Rj)Gk(iωn)

=
∑
i,j

∑
k
t0it0je

ik·(Ri−Rj) 1
iωn + µ− Σ(iωn)− εk

(2.57)

under the assumption of a local self-energy [193]. We can identify the sum∑
i t0i exp (ik ·Ri) gives the dispersion relation εk and therefore the hybridiza-

tion can be written as

Γ(iωn) = I2 −
(I1)2

I0
, (2.58)

where

I0(ξ) :=
∞∫
−∞

dε ρlat(ε) 1
ξ − ε

(2.59)

I1(ξ) :=
∞∫
−∞

dε ρlat(ε) ε

ξ − ε
(2.60)

I2(ξ) :=
∞∫
−∞

dε ρlat(ε) ε2

ξ − ε
. (2.61)

Here, ρlat(ε) is the non-interacting density of states of the original lattice and
ξ := iωn + µ− Σ(iωn).
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2.3. Dynamical mean-field theory

From equations (2.59 - 2.61) we can identify the relations I1 = −1 + ξI0 and
I2 = ξI1, from which equation (2.54) may be reduced to a simpler form:

Γ(iωn) = ξI1 −
(−1 + ξI0)2

I0
= ξ(−1 + ξI0)− I−1

0 + 2ξ − ξ2I0

= ξ − 1
I0
. (2.62)

Hence, the Weiss function finally reads

G−1
0 (iωn) = Σ(iωn) +

 ∞∫
−∞

dε ρ(ε) 1
ξ − ε

−1

= Σ(iωn) +G−1
00 (iωn) . (2.63)

Here in the second step, the k-summed Dyson equation

Gii(iωn) =
∑

k
G(k,iωn) (2.64)

=
∑

k

1
iωn + µ− εk − Σ(iω) (2.65)

=
∫
dε

ρ(ε)
iωn + µ− Σ(iωn)− ε (2.66)

was used, which presumes a local self-energy. In equation (2.65) we exploit
the fact, that in infinite dimensions, the momentum dependence of the Green’s
function is only present in the dispersion [210]. By using the short-hand notation
G00 ≡ G we arrive at the Dyson equation

G−1 = G−1
0 − Σ . (2.67)

To summarize, by focusing on a single lattice site, integrating out the degrees
of freedom of the remaining lattice and taking the limit of infinite dimensions
we have obtained a set of self-consistent equations

Seff = −
β∫

0

dτ1

β∫
0

dτ2 c
†
0σ(τ1)G−1

0 (τ1 − τ2)c0σ(τ2) + U

β∫
0

dτ n0↑(τ)n0↓(τ)

(2.68)

G(iωn) =
∫
dε

ρlat(ε)
iωn + µ− Σ(iωn)− ε (2.69)
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2. Strongly correlated fermions in high dimensions

Figure 2.2.: Illustration of the Bethe lattice with coordination number z = 4 and
accordingly connectivity K = 3.

G−1
0 (iωn) = G−1(iωn) + Σ(iωn) . (2.70)

These equations define a single-site quantum impurity system embedded in
an effective medium, which has to be determined self-consistently and can be
interpreted as a mean-field theory in the sense that spatial fluctuations are
frozen. However, quantum fluctuations are still present, which can be seen
from the energy dependence of the self-consistency equations. The impurity
quantum state will fluctuate in time, driven by the bath Weiss function G0, which
represents the influence of the remaining lattice6, and the local interaction.

Equation (2.69) is simplified enormously if the Bethe lattice [90, 123, 168] is
considered. The Bethe lattice is not a Bravais lattice – as it does not possess the
usual point symmetry – but a tree-like, loop-free Graph (as depicted in figure 2.2)
6In particular, the Weiss function should not be mistaken as the non-interacting lattice
Green’s function.
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2.4. Impurity model mean-field picture of DMFT

with fixed coordination number z, related to the connectivity K via K = z − 1.
It exhibits a semi-elliptical density of states and is bipartite. For a finite lattice,
the number of sites increases exponentially with the distances to the central site,
such that the number of boundary sites is as numerous as the number of sites
in the bulk. Nevertheless, it often gives valuable insight into statistical physics
and condensed matter problems, since these problems often become simpler
and may be even able to be solved analytically (e.g. in case of Ising physics
[146], percolation physics [99] or disorder physics [2, 100]). In the context of
DMFT and the limit of infinite dimensions it becomes especially valuable, as
the density of states of a hypercubic lattice is given by a Gaussian [193], which
is well approximated by the semi-elliptical density of states of the Bethe lattice
[283]. Furthermore, it is interesting to note that the influence of the lattice
structure is only present in the calculations due to the corresponding density
of states in equation (2.69). A detailed comparison between the hypercubic
lattice and the Bethe lattice with respect to the Mott transition is given e.g. in
[55] and remarkable agreement was found. The Hilbert transform appearing
in equation (2.69) can be performed explicitly in case of the Bethe lattice, i.e.
the semi-elliptical density of states together with the Dyson equation produce a
simple self-consistency relation of the form

G−1
0 (iωn) = iωn + µ− t2G(iωn) . (2.71)

2.4. Impurity model mean-field picture of DMFT

Georges and Kotliar [122] described a mean-field picture, which has become
very convenient to use in practical calculations. They related the effective action
(2.68) to the action given by the single impurity Anderson Hamiltonian [19]

HAIM =
∑
kσ
ςka
†
kσakσ +

∑
kσ

(Vka
†
kσcσ + V ∗k c

†
σakσ)− µ

∑
σ

c†σcσ + Un↑n↓ ,

(2.72)

where a†kσ is the fermionic creation operator of a conduction electron, c†σ is the
fermionic impurity creation operator, nσ = c†σcσ is the impurity number operator,
ςk the bath band energies and coupling constants Vk. The corresponding action
is quadratic in the corresponding conduction band Grassmann variables akσ.
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2. Strongly correlated fermions in high dimensions

Thus, these can be integrated out, giving rise to the action

SAIM = −
β∫

0

dτ1

β∫
0

dτ2 c
†
σ(τ1)G−1

AIM(τ1 − τ2)cσ(τ2) + U

β∫
0

dτ n↑(τ)n↓(τ) ,

(2.73)

where G AIM after Fourier transformation is given as

G−1
AIM(iωn) = iωn + µ−

∞∫
−∞

dω
γ(ω)

iωn − ω
(2.74)

and

γ(ω) =
∑

k
|Vk|2δ(ω − ςk) . (2.75)

By comparison to equation (2.54) we find that, if

Γ(iωn) =
∞∫
−∞

dω
γ(ω)

iωn − ω
, (2.76)

then the Anderson impurity Hamiltonian (2.72) constitutes a Hamiltonian
representation of the effective action given in equation (2.52). For a given
hybridization function Γ there are many possible sets of Anderson impurity
model parameters Vk and ςk. The connection of the single-site quantum impurity
system embedded in an effective medium to that of the Anderson impurity
problem is finally made by requiring that the impurity self-energy corresponds
to the local self-energy of the lattice problem in high dimensions [122], i.e.

Σimp(iωn) ≡ Σ(iωn) . (2.77)

We have finally derived a practical and convenient self-consistent calculation
scheme7, which is depicted in figure 2.3. The scheme is begun by assuming
a particular hybridization function or likewise a Weiss function GAIM, which
constitutes the impurity problem. Afterwards the impurity problem (2.72) has
to be solved, which results in an impurity self-energy Σimp. Then the local
lattice self-energy is identified as the impurity self-energy and the lattice Green’s
function is obtained by the Hilbert transform (2.69). Subsequent application of
7It should be mentioned that there exist more than one way of implementing a self-consistent
DMFT calculation scheme.
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Solve impurity 
problem

Dyson equation Determine lattice 
Green's function

MPT, NRG, ED ...

Figure 2.3.: Illustration of the DMFT self-consistent calculation scheme.

the Dyson equation (2.70) yields a new hybridization function. The scheme is
iterated until self-consistency is obtained.
The difficult step in the self-consistency loop is the solution of the single-

impurity Anderson model. However, during the last four decades a number
of different solution or approximative solution methods have been established.
In the next section the impurity solver that is used later in this work will be
introduced. A literature review of various impurity solvers, as well as a brief
introduction to their use can be found e.g. in [123].

2.5. Iterated and modified perturbation theory

In order to realize a DMFT computation we have to solve the single impurity
Anderson model (2.72), a non-trivial many-body problem. A method that
determines the self-energy for a given hybridization is called impurity solver. In
the following we will shortly introduce the impurity solver, which will be used
in the following chapters of this thesis.
An approximate analytical solution of the Anderson impurity problem can
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2. Strongly correlated fermions in high dimensions

Figure 2.4.: Second order contribution to the self-energy in perturbation theory.

be obtained by perturbation theory (see e.g. [301]) in the interaction strength
U . The self-energy is given by series expansion

Σ(ω) = Σ(1)(ω) + Σ(2)(ω) +O(U3) , (2.78)

where the constant first order contribution, also called the Hartree-Fock contri-
bution is Σ(1)(ω) = U〈n〉, where n denotes the number operator. The second
order contribution (see figure 2.4) is given by a three-fold integrals

Σ(2)(ω) = U2
0∫

−∞

dε1

∞∫
0

dε2

∞∫
0

dε3
ρ(0)(ε1)ρ(0)(ε2)ρ(0)(ε3)
ω + ε1 − ε2 − ε3 + iη

+U2
∞∫
0

dε1

0∫
−∞

dε2

0∫
−∞

dε3
ρ(0)(ε1)ρ(0)(ε2)ρ(0)(ε3)
ω + ε1 − ε2 − ε3 + iη

. (2.79)

Here, ρ(0) denotes the Hartree-Fock spectral function

ρ(0)(ω) := − 1
π
Im
( 1
ω + µ̃− ε− U〈n〉 − Γ(ω) + iη

)
(2.80)

with the parameter µ̃, which will be fixed later. This means, that the per-
turbation theory chosen here is performed with respect to the Hartree-Fock
solution. Besides other applications the expansion was used to investigate the
periodic Anderson model [245, 246, 302], where it is usually termed second
order perturbation theory. In context of DMFT, it is usually called iterated
perturbation theory (IPT), as the solution has to be determined self-consistently
[121–123, 237, 247, 305].

Of course, a three-fold integral is numerically expensive to evaluate. In order
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to reduce the effort, the identity

−i
∞∫
0

dt eit(z+ε1−ε2−ε3) = 1
z + ε1 − ε2 − ε3

(2.81)

is used, which is valid for a complex z with a small positive imaginary part.
After performing the Fourier transforms

ρ̃±(t) =
∞∫
0

dω e−iωtρ(0)(±ω) (2.82)

the second contribution to the self-energy becomes

Σ(2)(ω) = U2

i

∞∫
0

dt eiωt
(
ρ̃−(t)ρ̃+(t)ρ̃+(t) + ρ̃+(−t)ρ̃−(−t)ρ̃−(−t)

)
. (2.83)

Hence, the original three-fold integral has been substituted by simple single
integrals, which can be numerically implemented efficiently by the fast Fourier
transform algorithm.

One may be tempted to ask, how a perturbation theory would be a useful
impurity solver within a DMFT scheme at all, as the most intriguing feature of
DMFT is that it treats local correlations non-perturbatively. However, it turns
out, that the second order perturbation theory reproduces the atomic limit in
the half-filled case [305] and combined with the intrinsic good description at
weak interactions, IPT represents a reliable interpolation scheme between the
weakly and the strongly interacting limits. Comparison to exact diagonalization
and quantum Monte-Carlo calculations showed convincing agreement in the
paramagnetic case [121].

The original formulation of the IPT was restricted to the half-filled case.
Later the method was extended to work with densities away from half-filling
and this extension is commonly referred to as modified perturbation theory
(MPT) [161, 228]. The self-energy within MPT is given by a interpolation
formula [161]

Σ(ω) = Un+ aΣ(2)(ω)
1− bΣ(2)(ω)

. (2.84)

Therefore three parameters, namely a, b and µ̃ have to be fixed. For a = 1 and
b = 0, IPT is reproduced.
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2. Strongly correlated fermions in high dimensions

Kajueter and Kotliar used a 1/ω expansion of the self-energy and chose a such
that the high-energy behavior is reproduced exactly for the first two coefficients
of the expansion [161], giving

a = 〈n〉(1− 〈n〉)
〈n〉(0)(1− 〈n〉(0))

, (2.85)

with 〈n〉(0) being the occupation corresponding to the Hartree-Fock solution.
Afterwards, the parameter b was fixed to reproduce the atomic limit. Potthoff
et al. [228] improved the ansatz by fixing the first three (m = 0,1,2,3) spectral
moments resulting from a equation of motion analysis,

M (m) =
∞∫
−∞

dωρ(ω)ωm , (2.86)

as performed in the spectral density approach (SDA) [216], which constitutes
a strong coupling approach to the Hubbard model, by assuming a two-pole
structure of the Green’s function. For the parameter b it has been shown [228]
that the choice

b = B −B(0) − µ+ µ̃+ U(1− 2〈n〉)
U2 n(0)(1− 〈n〉(0))

, (2.87)

ensures the correct high-energy behavior of the spectral function up to m = 3,
with higher order correlation function B(0) and B. Furthermore, this choice
delivers the correct behavior in the atomic limit. Both higher order correlation
functions are determined self-consistently,

B(0) = ε+ 1− 2〈n〉(0)

π〈n〉(0)(1− 〈n〉(0))
Im

0∫
−∞

dω Γ(ω)G(0)(ω) .

The correlation function B is given by

B = ε− 1
π〈n〉(1− 〈n〉) Im

0∫
−∞

dω Γ(ω)
( 2
U

Σ(ω)− 1
)
G(ω) . (2.88)

Finally, the parameter µ̃ has to be fixed. According to Ref. [228] there are three
approaches for fixing µ̃. The first is to require µ = µ̃. Secondly, one imposes
the Friedel sum rule to ensure the low energy Fermi liquid behavior as done by
Kajueter and Kotliar [161]. The last possibility requires that n(0) = n. All three
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2.6. Mott metal-insulator transition

possibilities do not affect the validity of the MPT in the weakly interacting
limit as all methods guarantee that µ̃ → µU=0 as U → 0 [228]. Furthermore,
all three approaches have been compared carefully and checked against exact
diagonalization (ED) calculations [228]. In conclusion, the second and the third
approach show very good agreement whereas the first one differs considerably
from ED results. In the work presented here we choose the third possibility.

In summary, the MPT self-energy shows by construction the correct behavior
in the weakly interacting regime and by fixing the first three spectral moments
also incorporates the correct high-energy behavior as given by the strong
coupling SDA. Moreover, as it is also exact in the atomic limit, it represents
a reliable interpolation scheme between the weakly and strongly interacting
regimes.

2.6. Mott metal-insulator transition

An insulator is conventionally defined by a vanishing static electrical con-
ductivity at zero temperature [120]. The conductivity in turn is given as
current-current correlation function and therefore describes the propagation of
a particle-hole pair. Hence, for a finite conductivity there exists a requirement
that states of particle-hole excitation must be available at energies immediately
above the Fermi-level and these states must be delocalized, so that they can
contribute to transport over a macroscopic sample size.

This basic definition results in the gap criterion if the motion of the particle
and the hole are uncorrelated. Since in this case the particle-hole motion can be
decomposed into the superposition of two individual single-particle excitations
and the conductivity is directly related to the single-particle excitation spectrum;
then the single-particle spectral function in the insulating phase exhibits a gap.
In contrast, the relation between the single-particle spectral function and

the conductivity is invalid if, for example, the electrons form bound states as
in case of superconductivity. However, throughout this work, we will use the
zero-temperature gap of single-particle excitations to macroscopically extended
states as definition of an insulator.

In figure 2.5 the spectral functions resulting from a DMFT calculation using
MPT as an impurity solver are compared between the Bethe lattice and the
cubic lattice for increasing on-site interaction strength U at half-filling. We
note the formation of the two Hubbard subbands, constituting incoherent single-
particle excitations. Furthermore, coherent excitations are present for weak and
intermediate interaction strength. As soon as the critical interaction strength
Uc is reached, the system becomes a Mott insulator as is signaled by the opening
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2. Strongly correlated fermions in high dimensions

Figure 2.5.: Evolution of the spectral function with increasing interaction strength
U obtained within a DMFT+MPT calculation for the Bethe lattice and
the cubic lattice at half-filling. In units of the non-interacting bandwidth
W0.

of the gap in the single-particle excitation spectrum. Here, we see explicitly
one of the breakthroughs of DMFT mentioned previously, as it is capable of
describing the Mott transition in the Hubbard model. Detailed DMFT studies
of the Mott metal-insulator transition can be found in [55, 57, 121, 236, 305].
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3. Localization in disordered lattices

A further route to the understanding of a different class of metal-insulator
transitions was triggered by electron spin resonance experiments [104, 105].
Extraordinary large relaxation times of impurity spins in doped silicon were
found in comparison to Golden Rule predictions. These results were interpreted
as the absence of spin diffusion [20, 106].
In 1958, Anderson examined quantum transport in random lattices to give

an explanation, and thereby set up the research field of disordered materials
[17]. By investigating the diffusion process of a single particle in a random
potential he showed that the particle localizes, if the disorder strength exceeds
a critical value. In the first place, localization was understood as the ’absence of
diffusion’. That is, the localization manifests itself in a finite return probability
to the lattice site of the infinite system where the particle was initially located.
Later, the equivalent, well-known interpretation was elaborated that a localized
particle is exponentially localized in space [47, 204, 207].
Anderson’s findings stimulated extensive theoretical and experimental re-

search1. Mott gave reasoning for the existence of a sharp transition in the
spectrum from extended states in the interior of the band to localized states
in the outer parts [204]. Such energies are commonly referred to as mobility
edges [93]. The early considerations cumulated in the picture that under an
increase of the disorder strength, the mobility edges move from the band tails
to the band center [93]. As soon as the band center is reached, all states are
localized which is named Anderson transition [92, 185, 204, 307]. To be more
precise, the Anderson transition is characterized by a change of the states at
the Fermi level from being macroscopically extended to exponentially localized,
thus giving rise to a metal-insulator transition.
Valuable progress has been achieved by the single-parameter scaling theory

[3, 289], from which it is concluded that an arbitrarily small amount of disorder
excludes extended states in one dimension2 and two dimensions. In contrast, an
Anderson transition takes place in three dimensions. The analysis showed that
1Comprehensive reviews on disorder physics are e.g. given by Elliot, Krumhansl and Leath
[96], Thouless [270], Lee and Ramakrishnan [182], Phillips [224] or Kramer and MacKinnon
[172].

2For one dimension this result was already obtained earlier by Mott and Twose [207].
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3. Localization in disordered lattices

the dimension two is marginal, which was taken as starting point by Schäfer
and Wegner [241, 290] for further analysis. They performed a dimensional
expansion around the marginal dimension and constructed by the non-linear
sigma model an effective field-theoretical approach for weak disorder. Although
being inherently phenomenological, the scaling theory received wide theoretical
confirmation, besides others by the weak-disorder diagrammatic self-consistent
theory [284–286] or by numerical studies (e.g. [259]).
The theory of weak localization was established in the course of investi-

gating effects due to the presence of weak disorder in the metallic regime
[3, 33, 128, 181, 182, 284, 285]. It is basically understood as coherent backscat-
tering processes [181] and self-interference of a propagating quantum particle.
Thereby, corrections to transport properties arise, such as the famous logarith-
mic correction to the temperature dependence of the conductivity [128]. Weak
localization is often considered as a precursor to the Anderson localization3 and
the theoretical predictions were extensively tested within experiments on thin
metal films [33].
However, all analytic investigations involve in one or more aspects approxi-

mations or inhere limitations, such as describing only weak disorder. Therefore,
numerical methods serve as veritable tools for testing predictions of the analytic
statements and for quantitative calculations of the critical disorder strength,
the mobility edges, or the critical exponents. Commonly used methods are, for
example, the transfer matrix method [192, 260], the kernel polynomial method
[291] or the local distribution approach [2, 13–15]. The latter is of special
interest within this work as it corresponds to the non-interacting limit of the
statistical DMFT, which in turn is a generalization of DMFT to disordered
systems and is discussed in section 4.4.

Nowadays, it is known that localization effects are not restricted to solids but
a common phenomenon in wave physics [179, 294]. In this work, we focus on
matter waves, in particular on cold atoms in optical lattices. These experimental
setups are introduced in chapter 5.

3.1. Anderson Hamiltonian and localization

Anderson introduced a minimal tight binding Hamiltonian

H =
∑
iσ

εic
†
iσciσ +

∑
〈i,j〉σ

tijc
†
iσcjσ , (3.1)

3In order to distinguish clearly between weak localization and Anderson localization, the
latter is also referred to as strong localization.
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3.1. Anderson Hamiltonian and localization

known as the Anderson model. It consists of the tight-binding hopping term
already introduced in the Hubbard model 2.1 and random on-site energies
εi. In general, the correlated probability distribution function (PDF) of all
on-site energies p{ε}(ε1, . . . ,εN ) has to be considered, but typically uncorrelated
disorder is assumed given by4

p{ε}(ε1, . . . ,εN ) =
N∏
i=1

pε(ε) . (3.2)

Therein the on-site energies εi are random quantities distributed identically
and independently by a PDF pε(ε). Its strength is subsequently denoted
by a capital ∆, which is proportional to the standard deviation of the PDF.
Moreover, one often requires that the PDF is time independent, termed quenched
disorder, which should be distinguished from thermally fluctuating disorder
called annealed.
A first rough grasp of the physics of the Anderson model can be gained by

looking at two limits. First, considering the strong disorder limit and treating
the hopping as perturbation. It becomes apparent, that in zeroth order we will
have disconnected lattice sites and the eigenstates are bound states. Moreover,
a small perturbation is unlikely to give extended states over the entire lattice,
as orbitals which are nearby in space will in general differ energetically strongly
[17]. On the other hand, for zero disorder we are left with a tight-binding
hopping Hamiltonian giving rise to extended Bloch waves as eigenstates. This
heuristic reasoning indicates a transition from extended to localized states
triggered by an increase of the ratio of disorder strength to the homogeneous,
non-interacting bandwidth ∆/W0, where W0 is given as function of the hopping
amplitude.
To gain more insight into the phenomenon of localization and to obtain

a criterion of localization at hand for our latter investigations, we consider
a particle initially given at site 0. Under time evolution, the particle starts
propagating through the infinite disordered lattice (cf. figure 3.1). The simple
question, that Anderson brought forward is whether the particle is confined to
a finite region of the lattice, i.e. it is localized or not. A natural and intuitive
definition of being localized or extended is given via the return probability to
the initial lattice site p0→0(t) for time t goes to infinity. If the return probability
is finite, the particle is said to be localized. On the other hand, if the return

4This is quite often a reasonable assumption as e.g. within the theoretical description of
doped semiconductors.
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3. Localization in disordered lattices

Figure 3.1.: Illustration of a particle diffusing from an initial lattice site.

probability is zero, the particle’s wave function is extended:

lim
t→∞

p0→0(t)
{
> 0 localized
= 0 extended . (3.3)

In the following, our aim is to infer analytical properties of the local Green’s
function Gii(ω) from this definition of localization. The local Green’s function
is given as matrix element of the resolvent operator

G(z) = 1
z −H

, (3.4)

in Wannier basis. For z = ω ± iη the greater and lesser Green’s function is
obtained, corresponding to the retarded and advanced single-particle Green’s
function for non-interacting particles respectively [91]. The aimed connection is
established below and follows the lines given by Thouless [269], Economou and
Cohen [92] and Licciardello and Economou [185].

Returning to our particle initially in the Wannier state |0〉, the state at later
times can be expanded in Wannier states

|Ψ(t)〉 =
∑
n

cn(t)|n〉 . (3.5)

As already explained, the quantity of interest is the return probability to site
zero [189, 270]

p0→0(t) := |c0(t)|2 = |G00(t)|2 (3.6)
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3.1. Anderson Hamiltonian and localization

as time t goes to infinity. Applying the final value theorem of the Laplace
transform limt→∞ f(t) = limu→0 uF (u) with the Laplace transform

F (u) =
∞∫
0

dte−utf(t) , (3.7)

we obtain

lim
t→∞

p0→0(t) = lim
u→0

u

∞∫
0

dt|G00(t)|2e−ut . (3.8)

By inserting the Fourier transforms of the time-dependent Green’s functions,
performing the integral over t and finally using the Dirac identity, the return
probability reads [92, 185, 270]

p0→0(t→∞) = lim
u→0+

u

π

∞∫
−∞

dωG00(ω + iu)G00(ω − iu) . (3.9)

Similar, the probability of our particle to be on lattice site n is found to be

p0→n(t→∞) = lim
u→0+

u

π

∞∫
−∞

dωG0n(ω + iu)Gn0(ω − iu) (3.10)

and it can be shown that the sum of all probabilities p0→n(t → ∞) over all
lattice sites equals one [92], as it should. Analogously to interacting many-body
problems a ’self-energy’5 Γ0(ω) can be defined for the disorder problem [91, 92]
(for more details see appendix B)

G00(z) = 1
z − ε0 − Γ0(z) . (3.11)

leading to [92]

p0→0(t→∞) = lim
u→0+

u

π

∞∫
−∞

dω
ImG00(ω − iu)

2iu− (Γ0(ω + iu)− Γ0(ω − iu)) . (3.12)

5The terminus self-energy will be used only throughout this section for historical reasons,
but should not be confused with the correlation-induced self-energy defined in section 2.2.
Later, we refer to it as hybridization function (cf. sections 2.3 and 2.4).
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3. Localization in disordered lattices

From equation (3.9), we can already see that the question, if a state is localized
or not, is directly related to the analytic structure of the Green’s function.
A branch cut of the Green’s function on the real ω-axis will not give any
contribution to the returning probability, as the limit u→ 0 gives well-defined
finite values and the factor u will lead to a total zero. Hence, branch cuts do
not correspond to localized states but to extended states [91, 92]. On the other
hand localized states are characterized by the non-existence of the limits u→ 0
and thus by poles on the real axis [92, 269]. By inserting the complete set of the
eigenfunctions of the system |ψn〉 into equation (3.4), we find the local Green’s
function

G00(ω) =
∑
n

fn
ω − En

. (3.13)

with the overlap fn = 〈0|ψn〉〈ψn|0〉 of the eigenstate n with the Wannier function
on site 0 and the return probability is given by p0→0(t → ∞) = ∑

n f
2
n [185].

An analogue expression can be found for the ’self-energy’, except that here the
poles correspond to the eigenenergies of the lattice with site 0 removed [92].
Random on-site energies lead to random eigenenergies En and random residues
fn. Consequently, the local Green’s function and the ’self-energy’ are random
variables as well. A random variable is generally described via a PDF, and
the significance of studying PDFs was emphasized by Anderson from the very
beginning [17].

In case of an extended eigenstate, the residue fn is proportional to the inverse
number of lattice sites N−1 and the return probability approaches zero in
the limit of an infinite system. In contrast, for a localized state there is a
distribution of poles in the allowed energy interval on the real ω-axis. The
distribution becomes dense in the limit N →∞ and the residues approach finite
values. Since the residues are given by the overlap of the localized eigenstate
with a single Wannier state, some residues will dominate the sum in equation
(3.13). If the residues were sorted by value, their contribution would decrease
exponentially for spatially localized states. In particular, if we consider a contour
which encloses a small energy interval δE, then the most probable value of the
sum of the residues of poles enclosed by the contour is of the order exp(−∆/δE).
Accordingly, at a small distance η from the real axis, the most probable value of
the imaginary part of the Green’s function is proportional to η [269]. Hence,
the local spectrum will be highly fragmented in case of localized eigenstates,
characterized by dominating well-separated resonances. This fragmentation is
impressively visualized, in a recent scanning tunneling microscope experiment
[232]. In contrast, the averaged spectral function, i.e. the density of states of
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3.1. Anderson Hamiltonian and localization

the system, does not show these high fragmentation, since the spectral weight
must be located somewhere in the lattice for each energy. We will use these
specific analytic characteristics of the local Green’s function throughout this
work to study localization effects. How this is accomplished is explained in
section 3.3.
In order to gain consolidated findings about the disorder physics, the ’self-

energy’ Γ0(ω) has to be calculated at least in an approximative fashion. For that
purpose the renormalized perturbation expansion [91] was used to a great deal
[2, 17, 53, 92, 185]. The renormalized perturbation expansion (see appendix
B) is based on ordinary perturbation expansion in the hopping, but only self-
avoiding paths are summed up, which are decorated by factors accounting
for the omitted loops. Within this approach the ’self-energy’ reads [185] (see
appendix B for the derivation)

Γ0(ω) =
∑
n6=0

t0n
1

ω − εn − Γ(0)
n

tn0

+
∑

n6=0;n′ 6=n,0
t0n′

1
ω − εn′ − Γ(0,n)

n′

tn′n
1

ω − εn − Γ(0)
n

tn0 + . . .

(3.14)

with Γ(a,b,...)
k the ’self-energy’ at site k of a lattice with sites a,b, . . . removed.

The appearing ’self-energies’ can be expressed in a similar way and reinserting
gives a continued-fraction expression for Γ0, which terminates for a finite system.
This expression in turn can be rewritten as a series [185]. In the infinite system
the convergence of the series corresponds to a localized state, which was basically
used by Anderson to study the diffusion process. He concentrated on the first
term appearing in (3.14) and studied the convergence of the PDF of Γ0 in
the infinite system. By showing that higher order terms do not change the
probabilistic convergence, he finally succeeded to show the existence of a critical
disorder strength above which the series converges accounting for a localized
state. For our purposes it is furthermore interesting to note that Abou-Chacra
et al. [2] also took the first term into account, but solved the iterative procedure
necessary for the continued-fraction expression self-consistently. This procedure
paved the way to the method nowadays named local distribution approach.
The to date cumulated picture of localization in high-dimensional systems

may be summarized roughly as follows [96, 172, 182, 224, 270]: The presence
of disorder causes repeating scattering processes, leading to interference of the
particle with itself. At weak disorder these processes give rise to corrections to
transport properties of the system, known as weak localization. If the disorder
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3. Localization in disordered lattices

strength is high enough, the scattering processes finally lead to exponential
localization [47, 204, 207] of the state with energy ω and the particle is con-
fined to a finite region of the infinite lattice. The lattice Green’s function is
characterized by branch cuts and dense distributions of poles on the real axis,
corresponding to an extended and localized spectrum respectively. Intermixing
of extended states and localized states at the same energy is not possible, since
the energetic degeneracy would delocalize the latter by hybridization. Thus,
localized and extended states are well separated energetically [204]. One refers
to these separation energies as mobility edges. In the spectrum, band tails
emerge at the band edges due to the disorder, which fall off in an exponential
manner [187]. With an increase of the disorder strength, the band tails extend
and the states within localize first. A further increase causes the mobility
edges to move to the core of the band until a critical strength is exceeded,
corresponding to the localization of all states. Localized states have been shown
to be not able to contribute to DC conductivity [118, 204, 205]. In fact, Mott
originally defined localized states as states, which do not contribute to the DC
conductivity [205, 208], which is equivalent to absence of diffusion in infinite
systems [118]. This means that as soon as all states near the Fermi level become
localized, a metal-insulator transition occurs at zero temperature known as
Anderson transition.

3.2. Criteria of Localization
Besides the above discussed absence of diffusion, which might be judged by the
finite return probability, several other quantities are used to define localization.
In this section we will shortly introduce the most frequently used.
Of course, one way to distinguish extended states from localized states is

given by direct calculation of the wave function in real space. The absolute
value of the wave function of a localized state is characterized by a spatially
exponentially declining envelope [47, 204, 207]

|Ψ(r)| ∼ e−
r
λ (3.15)

where λ denotes the localization length. However, the explicit calculation of
the wave function is a difficult task, since in general disorder models are hard
to solve exactly. Strongly connected to the wave function, the participation
ratio [270]

p :=
( ∑

i |Ψ(Ri)|4
(∑i |Ψ(Ri)|2)2

)−1

(3.16)
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and its inverse, the inverse participation ratio [287], represent further quantities,
which allow for the distinction between localized and extended states. A localized
state exhibits a ratio of order unity, whereas the inverse participation ratio scales
like L−d for an extended state, where d denotes the dimension of the system
and Ld the volume of the system. These quantities are often used in numerical
investigations on finite lattices and a proper finite size scaling is necessary to
allow for a distinction between extended and localized states. Within finite-size
scaling approaches, it is further possible to distinguish between the localized
and extended regime by the level statistics on both sides of the metal-insulator
transition [12, 143, 197, 254]. In the extended regime the distribution of the
energy level spacing P (s) corresponds to a Gaussian orthogonal ensemble,
whereas a Poisson ensemble is given in the localized phase.

In finite systems, it can also be investigated, how the energy eigenvalues change
when the boundary conditions are switched from periodic to anti-periodic [94].
While the eigenvalues of localized states are clearly unaffected, the eigenvalues
of extended states are shifted by a value much larger than the typical energy
spacing.
As we will see in detail in the next section 3.3, the analytic properties of

the Green’s function, which are strongly connected to the return probability as
discussed above, can be used as a criterion for localization. Similar properties
are of course also present in the analytic structure of the ’self-energy’ Γ, which
might be used to characterize localized states as well [185]. Remarkably, this
criterion has been recently generalized to many-body localization for finite
temperatures [29].

3.3. Local distribution method
From the discussion above, we already understand the validity of Anderson’s
early point of view [17], that the investigation of disordered system should
naturally focus on PDFs and the use of averaged quantities is in general not
sufficient. In Anderson’s words [20]:

“No real atom is an average atom, nor is an experiment ever done
on an ensemble of samples.”

The local distribution approach represents a self-consistent computational
scheme for determining the PDF of the local single-particle Green’s functions,
i.e. p [Giiσ(ω)]. It was invented and analytically used by Abou-Chacra, Anderson
and Thouless [2] and recently implemented numerically [13–15].
In the absence of interactions the renormalized perturbation expansion [91]

shows that the local Green’s function can always be expressed as [91, 92] (see
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3. Localization in disordered lattices

also appendix B)

Gii(ω) = 1
ω + µ− εi − Γi(ω) + iη

, (3.17)

where the hybridization function Γi(ω) – which we named in the discussion
above as ’self-energy’ for historical reasons – describes all effects of the coupling
of site i with other nearest neighbor lattice sites. The chemical potential is
given by µ. In order to study localization effects, the limit η → 0 has to be
performed as we will understand later in detail. Physically, the broadening η
represents a small coupling to a dissipative bath.

The hybridization function Γi(ω) can be expressed by an infinite, renormalized
series of the form (see appendix B)

Γi(ω) =
∑
j 6=i

tijG
(i)
jj (ω)tji +

∑
j 6=i;k 6=j,i

tijG
(i)
jj (ω)tjkG(j,i)

kk (ω)tki + . . . , (3.18)

where G(n,m,...)
qq (ω) is the diagonal cavity Green’s function of the system when

the sites n,m, . . . are removed. The corresponding diagonal cavity Green’s
functions are determined by similar series on cavity lattices and a hierarchy of
equations is obtained.

On the Bethe lattice with connectivity K = z − 1 this series is exactly
truncated after the first term (see appendix B) and the hybridization functions
are exactly given by [2, 90, 168]

Γi(ω) =
∑

n N.N. of i

tin
1

z − εn − Γ(i)
n (ω)

tni (3.19)

Γ(i)
n (ω) =

∑
m N.N. of n

tnm
1

z − εm − Γ(i,n)
m (ω)

tmn (3.20)

Γ(i,n)
m (ω) =

∑
o N.N. of m

tmo
1

z − εo − Γ(i,n,m)
o (ω)

tom (3.21)
. . .

Additionally we use the fact, that the cavity hybridization functions of lattices
with several sites removed are also simplified due to the absence of loops on the
Bethe lattice. The corresponding equations reproduce their structure from the
second equation on (see appendix B) and therefore there are only two classes of
hybridization functions - and corresponding Green’s functions - governed by
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the equations

Γi(ω) =
z∑

n=1
t2inG

(i)
nn(ω) (3.22)

Γ(i)
n (ω) =

K∑
m=1

t2mnG
(n)
mm(ω) . (3.23)

Here, both sums extend over the nearest neighbors and the second one is defined
on the cavity lattice.
Next, we will include the further approximation that was introduced and

successfully used by Abou-Chacra et al. [1, 2]. Therein, the structural differences
in the equations (3.22) and (3.23) are neglected and replaced by a single equation

Γi(ω) =
K∑
j=1

t2ijGjj(ω) . (3.24)

This basically means, that the cavity hybridization function is approximated by
the hybridization function. Surely, the approximation gets better the higher
the connectivity is, since then the difference between z and K becomes smaller.
Furthermore, we note that all equations in the hierarchy incorporate the sum
over K diagonal Green’s Functions except the first. Even on a real Bravais
lattice restricted to the leading contribution, the first equation would extend
over z neighbors, but all subsequent equations would incorporate z − 1 or less
summands. Thus, K can be considered as a typical number of summands in
the equations of the hierarchy [2].
Equation 3.24 is of central significance for the local distribution method

and our later implementation of the statistical DMFT in chapter 4.4. It is
interpreted as a self-consistent stochastic equation for the hybridization function
Γ. K random variables εj and K random hybridization functions are generating
a PDF for the hybridization function Γi, which is required to be identical to
the PDF of the Γj [2]. The last-mentioned defines the self-consistency. We
note, that in contrast to the self-consistency on a level of a function discussed
in the framework of DMFT (cf. section 2.3) we are considering here a self-
consistency on a level of PDFs, appropriate for disordered systems. Moreover,
equation 3.24 enables an efficient numerical sampling procedure, called the local
distribution approach [13–15] for the solution of the self-consistent problem,
which is described in the following.

The numerical implementation of the local distribution method simulates the
PDF of the local single-particle Green’s functions p [Giiσ(ω)] by an ensemble
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3. Localization in disordered lattices

of single-particle Green’s functions of size N . Of course, high values of the
ensemble size N are desired, as it determines the accuracy of the simulation and
the resolution of the later described distinction between localized and extended
states.

Given an initial PDF p [Gii(ω)] the computational scheme of the local distri-
bution method is the following:

1. For each ensemble member we draw a random on-site energy εi out of the
PDF pε(εi).

2. The hybridization function Γi(ω) is determined via Eq. (3.24), in which the
nearest neighbor cavity Green’s functions G(i)

jj (ω) are randomly sampled
from the PDF p [Gii(ω)].

3. The local single-particle Green’s function Gii(ω) is calculated using
Eq. (3.17).

4. Having calculated all new Gii(ω) a new PDF p [Gii(ω)] is obtained and
we return to step 1.

The algorithm is repeated until self-consistency for p [Gii(ω)] is achieved. We
note that this method incorporates spatial fluctuations, i.e. quantum interference
effects, caused by the disorder via equation 3.24. For the non-interacting
disordered systems considered in this chapter, ensemble sizes up to N = 105

with complete frequency resolution are computationally feasible. As the single
frequencies decouple without interactions single frequencies can be investigated.
In this case, even ensemble sizes up to N = 108 can be used.
The above described approximations that lead from equations (3.22) and

(3.23) to equation (3.24) can be relaxed, if both the PDF of the full and
the PDF of the cavity Green’s function are calculated. Then the procedure
would be exact up to numerical restrictions on the Bethe lattice. On the other
hand, significant differences in the results are not expected and the numerical
procedure becomes much more involved. Hence, in this work we will always
incorporate the approximation of equation 3.24.

One relevant physical observable is the LDOS ρi(ω), defined in (2.21), which
is a random quantity in disordered systems. The corresponding distribution
p[ρi(ω)] is obtained by counting all values of the LDOS for each frequency and
constructing a histogram. The construction of the histogram incorporates a
logarithmic discretization of the ρ axis. Therewith, several orders of magnitude
of the LDOS are accessible, which is essential for the discussion of localization
physics as we will see below. In this work typically a range 10−12 < ρ < 103
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3.3. Local distribution method

is considered and a typical resolution is given by 60 bins per decade. In order
to minimize the statistical fluctuations, we artificially increase the size of our
ensemble after having reached the self-consistency. This is done by constructing
the histogram on basis of typically 50− 100 successional update iterations.
From the calculated PDF we can extract all moments of the PDF, here e.g.

for the PDF of the LDOS

M
(k)
ρ(ω) :=

∞∫
0

dρ′ p[ρ′(ω)]ρ′k (3.25)

In particular, the first (k = 1) moment corresponds to the arithmetic average
of the LDOS. Later, we will also consider the cumulative PDFs

P [ρ(ω)] =
ρ(ω)∫
0

p[ρ′(ω)] dρ′(ω) (3.26)

which turned out to be useful to characterize the disordered system.
In order to see how localization effects can be studied within the local

distribution method, the procedure is now applied to the Anderson model (3.1).
Parts of this section have been published [249]. The gained insights will be
useful for the later generalization to strongly correlated systems. For the PDF
of the on-site energies we consider the box distribution (cf. illustration in figure
3.2)

pε(εi) = 1
∆Θ

(∆
2 − |εi|

)
, (3.27)

which is used widely in theoretical investigations. The expectation value is
given by 〈ε〉 =

∫
dε pε(ε)ε = 0 and the expectation value of the on-site energy

squared is given as

〈ε2〉 =
∫
dε pε(ε)ε2 = 1

12∆2 , (3.28)

from which the standard deviation follows to equal 1
2
√

3∆.
We work in energy units of the non-interacting bandwidth W0 = 1 in the

following. In figure 3.3 two resulting local spectra of one random sample out of
the ensemble resulting from the local distribution method are displayed. Panel
(a) shows a typical spectrum for small disorder strengths, namely ∆ = 1. The
spectrum is smooth and furthermore broadened in comparison to W0 due to
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3. Localization in disordered lattices

Figure 3.2.: Illustration of the probability distribution function of the on-site energies
in case of box disorder. ∆ denotes the disorder strength.

the disorder. In contrast, the spectrum at higher disorder strength ∆ = 6 in
panel (b) is highly fragmented and consists of various delta peaks, which are
broadened by the artificial value η. This can be seen more clearly in the inset.
In fact, this is exactly what we expect from the analytical considerations in
section 3.1: Extended states of the system are characterized by a branch cut on
the real axis of the local Green’s function, whereas localized states are given by
poles.

Figure 3.3.: Local density of states ρ(ω) of one random sample out of the ensemble
for two different box disorder strengths ∆: (a) ∆ = 1 and (b) ∆ = 6.
The broadening η = 10−4, connectivity K = 6 and W0 = 1
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So far, the spectrum of a single sample was considered and we face the
question how the overall PDF of the LDOS is affected by disorder. In figure
3.4 the PDF of the LDOS at the Fermi level is displayed for several disorder
strengths. The initial delta function for the homogeneous system located at
ρ = 1.265 (not displayed) is broadened by a small amount of disorder (∆ = 0.5)
due to the disorder-induced fluctuations. By increasing the disorder strength
the PDF spreads more and more, long tails develop and more weight is shifted
to smaller values. This becomes evident, if we focus on the most probable value
of the PDF, also called the typical value, which approaches zero with increasing
disorder strength.

Figure 3.4.: Evolution of the probability distribution function p[ρ(ω)] obtained within
the local distribution method with increasing disorder strength ∆ for
frequency ω = 0 in case of box disorder. The dashed lines correspond
to least square fits with log-normal distributions. The ensemble size is
given by N = 106, the broadening by η = 10−6, connectivity K = 6 and
W0 = 1. No averaging over successional iterations was used to minimize
the statistical fluctuations.

In fact, regarding the explicit shape of the PDF of the LDOS, it is analytically
predicted [197, 198] that the PDF close to the transition corresponds to a log-
normal distribution

pln[ρi(ω)] = 1√
2πσ2ρi(ω)

exp
(
− ln ρi(ω)− µ

2σ2
)
. (3.29)
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Recently, this analytic prediction has been inspected numerically in detail for
two-dimensional and three-dimensional systems and various lattice types by
the kernel polynomial method [243]. Log-normal PDFs have been found to a
high degree of accuracy, as well as a present Anderson transition in various
three-dimensional systems and the localization of all states at arbitrary disorder
strength in two dimensions. In figure 3.4 least square fits with log-normal
distributions to the numerically obtained PDFs. We note that the data is only
roughly approximated by log-normal distribution function for small disorder
strengths. However, the agreement gets better the stronger the disorder is.
Please note, that for ∆ = 3 a logarithmic grid was used for the LDOS to obtain
a reasonable resolution for the relevant small values of the LDOS. From now on
the use of a logarithmic grid is the standard choice.

In the localized phase the Green’s function is given by a distribution of poles.
Hence, an arbitrarily chosen frequency ω lies with probability one between
the poles resulting in a value of the LDOS equal to zero. If it hits exactly
a δ-peak, the resulting value would be infinity. However, the probability for
this event is zero. The artificially introduced coupling to a dissipative bath
via the small factor η broadens the δ-peaks to Lorentzians with width η and
generates a finite probability to obtain a finite value of the LDOS. Moreover, let
us consider an energy in the vicinity of a pole present in the considered sample.
The corresponding value of the LDOS is proportional to η, since the LDOS is
given by the imaginary part of the single-particle Green’s function. Now the
observed features of the PDF can be understood: In the localized phase most
ensemble samples will exhibit a nearly zero (∼ η) value of the LDOS states for
a given frequency ω. On the other hand, a small fraction will contribute high
values of the LDOS, corresponding to the broadened δ-peaks.

This enables a numerical distinction between localized and extended states.
Clearly, the PDF of the LDOS of an extended state will not be affected upon
lowering of η from some value of η on. In contrast, in the localized phase, the
PDF will be affected dramatically: With decreasing broadening η an increasing
amount of the PDF’s weight is shifted to smaller values, the tail of the PDF
will extend to higher values and the most probable value will shift to zero.
Figure 3.5 displays the evolution of the PDF of the LDOS at frequency ω = 0
on a log-log scale when the broadening is decreased. In panel (a) the disorder
strength ∆ is equal to one and the PDF is found to saturate. We conclude
that the state is extended. For ∆ = 6 in panel (b) the PDF exhibits the above
described behavior. We conclude that the state is localized.
When the analysis is performed with a complete frequency resolution, the

mobility edges of the system can be identified. For example this is done in figure
3.6, where the natural logarithm of the PDF p[ρ(ω)] is plotted color coded for
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3.3. Local distribution method

Figure 3.5.: Evolution of the probability distribution function p[ρ(ω)] obtained within
the local distribution method with decreasing broadening η for frequency
ω = 0 and two different disorder strengths ∆: (a) ∆ = 1 and (b) ∆ = 6.
The ensemble size is given by N = 5 × 104, connectivity K = 6 and
W0 = 1.

fixed disorder strength ∆ = 4 in the ω-ρ-plane. The broadening factor η is
lowered from 10−3 in panel (a) to 10−6 in panel (d). When the broadening is
decreased, we notice clearly a low-energy core of the band, where the PDFs are
unaffected under further lowering of the broadening. On the other hand, outside
of the core the PDF show the explained behavior for localized states. The
separating energy represents the mobility edge we look for. It is important to
note, that the resolution of this procedure is determined by the lowest possible
value of η, which is basically determined by the finite bath size. In any case,
the procedure will give the lower bound of the critical disorder strength for the
transition from extended to localized states, since an extended state will never
be mistaken as a localized state. This resolution issue was examined in more
detail in [13].
When the mobility edges cross the Fermi level in the band center all states

become localized corresponding to the Anderson insulator. Since localized
states do not contribute to the DC conductivity, a metal-insulator transition is
obtained, caused by the disorder. For the determination of the transition, we
can apply the extended gap criterion as discussed in section 2.6. The gap might
be defined as energy necessary to create a macroscopically extended charge
excitation. If the spectrum exhibits such a gap, it is in the insulating state.
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3. Localization in disordered lattices

Figure 3.6.: Natural logarithm of the probability distribution function p[ρ(ω)] ob-
tained within the local distribution method for fixed box disorder strength
∆ = 4 and several broadenings η: (a) η = 10−3, (b) η = 10−4, (c)
η = 10−5 and (d) η = 10−6. The ensemble size is given by N = 104, the
connectivity by K = 6 and W0 = 1

The extended gap criterion can be used for correlation and disorder-induced
metal insulator transitions at the same time and therefore it paves the way to a
simultaneous description of Mott- and Anderson-Mott transitions in strongly
correlated, disordered systems.
Comprehensive results for the Anderson model (3.1) obtained by means of

the local distribution approach are given in the works by Alvermann and Fehske
in case of box disorder [14] and in case of binary disorder [13]. Both disorder
types are investigated for strongly correlated systems in chapter 6 and chapter
7 respectively.
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4. Strongly correlated fermions in
disordered lattices

So far the discussion focused on strongly correlated systems on the one hand, and
on single particle disorder physics on the other hand. Although both phenomena
are still subject to current investigations, the fundamental mechanisms are well-
understood. However, both phenomena play a key role in the description and
physics of real materials. To gain a fundamental understanding of the interplay
between these two phenomena is of crucial significance in today’s research on
solid states. Major progress in understanding systems that combine both effects
has been achieved in the past [32, 174, 182], but many central questions are left
to be answered and these systems are far from being completely understood
[32, 174, 182, 221].
From the solid state point of view, this can be partially traced back to the

missing possibility of fine tuning the strength of the interaction and disorder
strength in real materials, nor is it possible to isolate one effect in a clear fashion.
This handicaps the interplay between theory and experiment that is useful to
verify the validity of the indispensable theoretical approximations. These are
necessary, since even the most rudimentary theoretical models of disordered
and interacting systems cannot be solved exactly in general. Therefore, there is
a huge need for further effort on both the experimental side as well as on the
theoretical side in order to gain a better understanding.

Theoretical approaches were initially developed in the regime of weak disorder
[182], by e.g. extending the Fermi liquid theory to disordered systems [10,
112, 113]. A further approach consisted of mapping the problem onto a field-
theoretical model which was then investigated by a renormalization group
technique [66, 109, 110]. This approach can also be understood as an effective
Fermi liquid description [67]. The Fermi liquid parameters evolve under an
increase of the disorder strength and their instability signals a metal-insulator
transition.

These works focus on perturbative corrections to the Fermi liquid theory and
are consequently inappropriate in the regime of strong correlations. Moreover,
disorder is incorporated perturbatively, for which reason these approaches fail to
give a comprehensive picture. In particular, diverging magnetic susceptibilities

53



4. Strongly correlated fermions in disordered lattices

and specific heat coefficients in the metallic phase of doped semiconductors could
not be explained within the effective Fermi liquid picture1 [37, 84, 221]. The
discovery of a metal-insulator transition in two-dimensional electron gases, e.g.
in a silicon MOSFET [173–175], caused enhanced interest in strong correlation
effects within disordered solids, since this observation is not in agreement with
scaling theory.

Such experimental findings strongly motivated the need for further theoretical
models and understanding of strongly correlated, disordered systems. Such
a theory must be non-perturbative in both, the interaction and the disorder.
As DMFT (described in section 2.3) already treats local correlations non-
perturbatively, the extension of DMFT to disordered systems is a promising
approach in this regard. Three different extensions were found to give much
insight into the interplay. One extension was performed in analogy to the
well-known coherent potential approximation (CPA) [275, 279], and another
extension is given as a fully stochastic approach to contain effects of Anderson
localization, called statistical DMFT [85, 86, 196]. If one treats correlation effects
on a rigorous level within statistical DMFT and keeps sufficiently large ensembles
of disorder realizations, this approach is computationally very expensive. For
this reason, the typical medium theory (TMT) was developed [87], which is
computational less demanding and superior to CPA. Therein, the geometrically
averaged LDOS is used as an order parameter for Anderson localization [87].
The TMT was recently successfully applied to strongly correlated systems with
disorder [5, 58, 60–62, 82].

In this chapter we will introduce the ’Drosophila model’ of disordered, strongly
correlated systems, the Anderson-Hubbard model. Afterwards, we will turn to
the various extensions of DMFT to disordered systems by shortly introducing
the CPA extension in section 4.2. As this extension is not capable of describing
localization physics, we will proceed by introducing the TMT which overcomes
this shortcoming (see section 4.3). Finally, we will introduce the statistical
DMFT in section 4.4 which enables the self-consistent calculation of PDFs of
local single-particle observables. Since the statistical DMFT contains both
disorder fluctuations, as well as treating local correlations non-perturbatively, it
is superior to many other theoretical approaches and the method of choice for
the investigation of high-dimensional strongly-correlated, disordered systems.

1Such properties are generally referred to as non-Fermi liquid behavior, for a review see [196].
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4.1. Anderson-Hubbard Hamiltonian and many-body localization

4.1. Anderson-Hubbard Hamiltonian and
many-body localization

Strongly correlated fermions in disordered lattices are well described by the
Anderson-Hubbard Hamiltonian

H = −
∑
ijσ

tijc
†
iσcjσ −

∑
iσ

(µ− εi)c†iσciσ + U
∑
i

ni↑ni↓ , (4.1)

which conatins the strong correlations physics of the Hubbard model (2.1) and
the disorder effects of the Anderson model (3.1).
From a first naive consideration one might expect that the localization

tendencies due to both correlations and disorder are enhanced when both are
present, leading to an insulator transition at smaller values of the disorder
strength and the interaction strength. However, this is incorrect and more
careful considerations are necessary. For instance, the on-site interaction gives
rise to incoherent excitations in the single-particle spectrum, which increase the
effective bandwidth. Due to the enlarged bandwidth, the Anderson transition is
shifted to higher values of the disorder strength, since the transition is triggered
by the ratio of disorder strength to bandwidth. On the other hand, if the
system is Mott insulating and characterized by an energy gap in the excitation
spectrum, the additional disorder generally redistributes states into the gap,
eventually closing it. Therefore, additional disorder drives the system into the
metallic phase. From this basic reasoning, we see that the presence of both
phenomena gives rise to delocalization effects. It was also shown that two
particles in a random potential can propagate coherently through the lattice
due to their repulsive interaction [251]. Another aspect arises in solids from
the well known fact, that for finite temperatures the coupling to phonons gives
rise to a phenomenon called hopping conductivity [205]: electrons can hop
from a localized state to another localized stated due to the interaction with
phonons, which leads to a finite DC conductivity. The obvious question arises
if interactions among the electrons lead to a similar effect [112, 213].

Basko et al. [29] recently addressed this question and worked out that inelastic
electron-electron interactions alone cannot produce a finite DC conductivity
for small enough temperatures. Consequently, the DC conductivity is exactly
zero below some critical temperature in the absence of extended single-particle
states. Already on the level of the above simple considerations and these recent
results, we can conclude that the interplay of interactions and disorder is quite
involved and subtle.
In a first step we have to define what is understood by localization in
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interacting many-particle systems. Many different criteria of localization have
already been introduced for the non-interacting disordered systems (see section
3.1) and it is not to be expected that the situation is less complex in the presence
of many-particle correlations. In case of interacting systems, one speaks of
many-body localization and there is no consensus on its exact definition so
far. Unfortunately, a rigorous connection between the different definitions of
many-body localization has also not been established either.

Localization is in first place a pure single-particle phenomenon and therefore
its description bases on single-particle properties only, whereas the extension to
many-particle systems is not unique and clear. There is no natural approach
given for defining localization in a many-particle system. Typically, one considers
many-body localization as localization of excitations. But here also a variety of
possibilities exists and single-particle excitations or many-particle excitations
may be considered. There is no fundamental connection of these concepts so far.
A useful definition of many-body localization requires the following properties:
it should be well-defined for any many-particle state, be reducible to a definition
of single-particle localization in the non-interacting limit and fulfill the physical
picture of all single particle states being localized.
Most approaches and investigations use the localization of single-particle

excitations as definition for many-body localization (see e.g. [29, 97, 258, 281,
282]). Instead of an exponential decaying envelope of single-particle wave
functions in real space, the single-particle density matrix or the single-particle
Green’s function in coordinate representation Gij are used. In case of localized
single-particle excitations, these quantities approach zero in the limit of large
|Ri −Rj |.
A generalization of the localization criterion given by the analytic structure

of the Green’s function as discussed for the non-interacting system (see section
3.1) is self-evident. Here, many-body localization is understood within the
singular analytic properties of the single-particle Green’s function of the many-
body system, which corresponds to localized single-particle excitations. This is
exactly what we will employ throughout the following chapters.
The analytic structure of the single-particle self-energy, the imaginary part

of which represents the single-particle quasi-particle relaxation is a closely
connected concept. The quasi-particles are defined to be localized if the quasi-
particle relaxation is given by an infinite number of narrow δ-peaks [29]. This
is contrasted by the single-particle quasi-particle relaxation, given as a smooth
function of the energy in the metallic phase [29]. The question of localization
can be determined from the full PDF of the random single-particle quasi-particle
relaxation, similar to the discussion of the PDF of the LDOS in section 3.3.
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The recently considered generalized inverse participation ratio [211, 258]

I2(ω) =
∑
i(ρi(ω))2

(∑i ρi(ω))2 (4.2)

reduces to the inverse participation ratio in absence of interactions, and was
shown to reproduce established results in this case [211]. Furthermore, the
generalized single-particle return probability [97, 281, 282]

R(ω) = 1
N

∑
i

lim
s→0

s

π
Gii(ω + is)Gii(ω − is) (4.3)

has been discussed, which reduces to the averaged inverse of the participation
ratio in the non-interacting limit [282].

An useful definition of many-body localization was introduced by the concept
of Fock space localization for finite lattices [11]. The distance of two Fock
states is defined as the number of positions in which the occupation of the
single-particle states differ. This concept was first used to connect the lifetime of
quasi-particles to an Anderson localization problem on an abstract Bethe lattice.
The sites of the abstract Bethe lattice correspond to all possible many-particle
states connected to each other by the two-particle interaction term. The notion
of Fock space localization is a general concept for Hamiltonians consisting of
single-particle and two-particle contributions. A picture similar to the spatial
localization of non-interacting particles is obtained when the Fock space states
are given in the basis of single-particle states in coordinate representation. In
this context, a typical measure of localization is the inverse of the Fock-space
participation number [34, 282]

p−1
F (ν) =

∑
α

|〈α|ν〉|4 . (4.4)

Here, |ν〉 denotes a Fock state and {|α〉} is a basis set of the complete Fock
space. A completely localized state results in pF = 1 and an extended state
corresponds to pF > 1 [282]. Also the level spacing statistics (cf. section 3.1)
have been discussed as distinguishing mark for Fock space localization [34].

From a experimental point of view, the most convenient quantity to measure
is the conductivity. This quantity is related to two-particle observables, like
the density-density correlation functions. From a physical educated guess, one
might expect that localized single-particle excitations at the Fermi level may
induce a vanishing DC conductivity, as in the non-interacting case. However,
such a statement has not been rigorously proven and is a topic of current debate
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[29, 129, 218]. In particular, Basko et al. [29] predicted that the DC conductivity
identically vanishes in absence of extended single-particle states and of any
external continuous bath, like given by a coupling to phonons. This even holds
for sufficiently low, but finite temperatures. Their prediction is based on the
concept of Fock-space localization and on an effective low-energy Hamiltonian
for weak local interactions. Furthermore, it was shown that the quasi-particle
relaxation – that means localization on the single-particle excitation level – is
closely connected to Fock space localization in infinite systems [29]. This is
attributed to the two-particle interaction coupling the single-particle excitation
with three-particle excitations, these in turn with five-particle excitations and so
on. The single-particle excitation may thus decay into all possible many-body
states. In terms of Fock-space localization, this means that the many-body
eigenstate becomes Fock delocalized. If, on the other hand, the quasi-particles
do not decay the single-particle excitation is localized in Fock space [29].

If we assume this correspondence between localized single-particle excitations
and a vanishing DC conductivity – which is assumed or suggested in most
works to date – a metal-insulator transition is obtained in analogy to the non-
interacting case as soon as the single-particle excitations at the Fermi level are
localized. This transition is usually referred to as Anderson-Mott transition.

4.2. Coherent potential approximation extension of
DMFT

The first route to an extension of DMFT to disordered systems was given
by an approach analogous to the CPA [96, 263] of non-interacting systems.
Focusing on the limit of large coordination numbers, a self-consistent theory was
formulated [84, 156, 275, 279], that maps the Anderson-Hubbard Hamiltonian
(4.1) onto an ensemble of Anderson impurity problems, supplemented by a
self-consistency relation. The theory treats interactions on a DMFT level, where
local correlations are treated exactly, and the disorder is included on a CPA
level.
By means of the cavity method, as performed in the homogeneous case (cf.

section 2.3), a local effective action [84]

Seff,εi = −
β∫

0

dτ

β∫
0

dτ ′c†iσ(τ)G−1
0,εi(τ,τ

′)cjσ(τ ′) +
β∫

0

dτUn↑n↓ (4.5)

is derived in the limit of infinite dimensions. Here, the Weiss function takes on
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the form

G−1
0,εi(τ,τ

′) = −(∂τ − µ+ εi)δ(τ − τ ′)− Γi(τ,τ ′) . (4.6)

As already discussed in the homogeneous case, the effective action (4.5) cor-
responds to a single impurity Anderson model for each lattice site. In case
of disorder, each lattice site will have a different, independent random on-site
energy, effectively giving rise to an ensemble of impurity models. The hybridiza-
tion function is site-dependent and given as an intricate functional of the Green’s
function Gjk(ω) [86], incorporating local and non-local terms. Within the CPA
approximation, one assumes a dynamical coherent potential, manifesting itself
in a site-independent hybridization function, as will be explained in the follow-
ing. Consequently, one deals with an ensemble of impurity problems with a
parametric dependence on the on-site energy ε, distributed according to the
PDF pε(ε).
Changing to the real frequency representation, the calculation starts with

a given dynamical coherent potential Γ(ω). In combination with the on-site
energies, an ensemble of impurity models is obtained. Their solution results in
an on-site dependent Green’s function Gε(ω) for each member in the ensemble.
By calculating the arithmetical disorder average over the Green’s functions

〈G(ω)〉dis =
∞∫
−∞

dε pε(ε)Gε(ω) (4.7)

the Green’s function within CPA approximation is obtained. The averaging
restores the translational invariance. In order to perform the disorder average,
we have to integrate over the product of the PDF pε(ε) and the on-site energy
dependent Green’s function. In practice, this can be done exactly for discrete
disorder, but for the case of continuous disorder, we have to discretize the
PDF. Assuming a local self-energy in the DMFT spirit, the self-energy can be
extracted by using the the Dyson equation

〈G(ω)〉−1
dis = ω + µ− Σ(ω)− Γ(ω) . (4.8)

Now, one is able to calculate the Green’s function for the given lattice with the
non-interaction density of states ρ(0)(ω) via the Hilbert transform

G(ω) =
∫
dε

ρ(0)(ε)
ω + µ− Σ(ω)− ε. (4.9)

Finally, by reapplying the Dyson-equation for the lattice Green’s function, a new
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hybridization function is obtained, which corresponds to the updated dynamical
coherent potential. In combination with the possible realizations of the on-site
energies, a new ensemble of impurity problems is defined. The procedure is
repeated until self-consistency for the lattice Green’s function is obtained.
The approach is unable to describe spatial fluctuation effects associated

with Anderson localization. Therefore it is not able to describe Anderson
localization like it is known for CPA in the non-interacting case [189, 270, 288].
However, several nontrivial disorder-induced effects can be described, as for
example the metal-insulator transitions due to disorder-induced band splitting
[59, 178]. Moreover, CPA combined with DMFT is exact in infinite dimensions
[84, 275, 279]. For these reasons, it provides a valuable method to investigate
strongly correlated fermions in high-dimensional disordered lattices despite its
shortcomings.

4.3. Typical medium theory
As already pointed out in the previous chapter 3, an investigation of localization
effects in disordered systems should incorporate full distributions of physical
observables. Such approaches provide the most natural description of local-
ization physics. Nevertheless, due to the complexity of systems that are both
disordered and strongly correlated, such theoretical investigations require the
use of perturbative approaches, rough approximations or an infeasible amount
of numerical effort. Therefore, it is desirable, to develop a simpler theory that
is superior to CPA in the sense that it is sensitive towards localization. The
recently developed TMT [60–62, 82, 87] represents such a theory. The general
idea of the TMT is to avoid the laborious explicit calculation of the full PDFs,
but to consider specific single moments of the PDFs instead, that are informative
regarding the localization of particles.
Adopting Anderson’s local point of view once again, we are interested in

the diffusive rate of a particle from a given lattice site. According to Fermi’s
golden rule, the escape rate τ−1

esc is proportional to the LDOS of its immediate
neighborhood

τ−1
esc ∼ t2ρ . (4.10)

In the considered case of disordered systems, the escape rate is distributed by
a PDF which is directly connected to the PDF of the observable LDOS. A
natural question is thus, if there is a single moment of the PDF of the LDOS
that might be informative regarding localization phenomena.
The crucial value determining the escape rate of our particle is the typical,
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i.e the most probable value. In figure 4.1 the PDFs of the LDOS at the Fermi
level are given for (a) ∆ = 1.0 and (b) ∆ = 6.0 calculated by means of the local
distribution method for the non-interacting, box-disordered system. As the
disorder strength increases, the PDF of the LDOS at a given frequency p[ρ(ω)]
transforms from a δ-peak distribution into a log-normal distribution [198, 243].
As described in section 3.3 we note that in case of a localized state the typical
value of the LDOS, is close to zero. That the typical value is non-zero is due to
the finite broadening. Of course, without knowledge of the full PDF, we are
not able to determine the most probable value. But our original question can
now be reformulated as: does a moment of the PDF exist, that approximates
the typical value?

Figure 4.1.: Probability distribution function p[ρ(ω)] at ω = 0.0 for two different
box disorder strengths ∆: (a) ∆ = 1.0 and (b) ∆ = 6.0. The arith-
metic average, geometric average and the typical value of the probability
distribution are marked. The PDFs were calculated within the local
distribution method and parameters are K = 6 and η = 10−5.

In figure 4.1 the arithmetic average, as well as the geometric average of the
PDFs are marked. The geometric average of the PDF of the LDOS is defined
as

〈ρ(ω)〉geo := exp
∫
dρ′(ω) p[ρ′(ω)] ln ρ′(ω) . (4.11)

It can be seen that the arithmetic average is well separated from the typical
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4. Strongly correlated fermions in disordered lattices

value. From here we conclude, that the arithmetic average is not an useful
quantity to indicate localization. Hence, the LDOS in disordered systems is
not a self-averaging quantity2. However, the geometric average can serve as an
crude approximation of the typical value. Most importantly, if the typical value
of a log-normal distribution declines to zero for increasing disorder strength,
the geometric average follows in a similar fashion, which is not true for the
arithmetic average.

To substantiate the reasoning, numerical data obtained by the local distribu-
tion approach is given in figure 4.2. The geometric and the arithmetic average
of the PDF of the LDOS, as well as the typical values of the PDFs are plotted
as a function of the disorder strength. For weak disorder, all quantities are
approximately equal. We note that the typical value does not exactly reproduce
the arithmetic average in homogeneous case. This discrepancy is due to the
binning procedure necessary for the construction of the PDF as a histogram.
The typical value does exactly correspond to one bin, whereas the calculation of
the averages incorporates the information of the whole histogram. All quantities
decay to zero for increasing disorder strength, but in very different fashions.
This is clearly recognized if the logarithmic scale on the y-axis is taken into
account. Of course, the arithmetic average also declines due to the disorder
induced broadening of the bandwidth. The spectral weight is distributed over a
larger energy interval, but it is of order O(10−1) even for strong disorder of five
times the homogeneous non-interacting bandwidth. In contrast, the geometric
average declines much faster, following the typical value of the PDFs. The
observed behavior is in agreement with our above expectation.
Returning to the question of localization we summarize: as the typical

value of the LDOS, which can be approximated by the geometric average
vanishes the escape rate also vanishes and the corresponding state is said to
be localized. Therefore, by incorporating the typical value of the LDOS in
the DMFT calculation scheme, a description of particle localization is possible
[60, 62, 82, 87].

Technically, this is achieved by considering an ensemble of impurity problems
as in the CPA, but using the geometric average instead of the arithmetic average
in equation (4.7). Since our physical reasoning was based on the typical value
of the LDOS, the geometric disorder average of the LDOS,

〈ρ(ω)〉geo-dis = exp〈ln ρ(ω)〉dis = exp
( ∞∫
−∞

dε pε(ε) ln(ρε(ω))
)

(4.12)

2A random variable X with a PDF P(X) is defined to be self-averaging if the relative variance
RX := (〈X2〉 − 〈X〉2)/(〈X〉2) vanishes when the system size goes to infinity [300].
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4.3. Typical medium theory

Figure 4.2.: The arithmetic average, geometric average and the typical value of the
PDF p[ρ(ω = 0.0)] for the Anderson model with box disorder as a function
of the disorder strength. The PDFs were calculated within the local
distribution method and parameters are K = 6, W0 = 1.0 and η = 10−6.

is used. This is not to be mistaken for the geometric average of equation (4.11),
which requires the knowledge of the full PDF. Here, the on-site energy dependent
LDOS ρε(ω) = −ImGε(ω)/π corresponds to one impurity problem out of the
ensemble. The full Green’s function is obtained by analytic continuation via
the Hilbert transform

〈G(ω)〉geo-dis =
∞∫
−∞

dz
〈ρ(z)〉geo-dis
ω − z

. (4.13)

A local self-energy can be extracted like in the CPA by using the Dyson equation

〈G(ω)〉−1
geo-dis = ω + µ− Σ(ω)− Γ(ω) . (4.14)

and the subsequent steps are identical to those used in CPA. Finally, a typical
hybridization function Γtyp(ω) is obtained, which together with the PDF of
the on-site energies defines a new set of impurity problems and closes the
self-consistent loop.
Like in the CPA extension, taking the average restores translational invari-

ance, which means that the hybridization function becomes site-independent.
However, using the geometric average accounts for localization effects and the
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4. Strongly correlated fermions in disordered lattices

hybridization function can thus be regarded as a typical dynamical coherent po-
tential. In particular, it was shown, that the geometrically averaged LDOS can
serve as an order parameter for the Anderson transition in the non-interacting
case [87], as well as in the interacting case [60]. The TMT treats disorder and
interaction on equal footing, in the whole range from weak to strong interac-
tions and also incorporates localization effects. It can be regarded as a minimal
extension of DMFT to disordered systems, which accounts for localization in
the thermodynamic limit.

The TMT was successfully used to determine the paramagnetic ground state
phase diagram [60] consisting of the disordered metallic, the Mott insulating, and
the Anderson-Mott insulating phases. Recently, it was successfully employed to
study the critical behavior of the Anderson-Mott transition. It was found that
the Anderson-Mott transition is driven by a formation of two fluids [4, 5, 82]. A
fraction of the particles form localized magnetic moments, whereas the remaining
system is described by coherent quasi-particle excitations which are Anderson
localized. On physical grounds, this corresponds to a spatially inhomogeneous
system consisting of regions of Mott droplets and regions of Anderson localized
quasi-particles. Furthermore, TMT was also used to study the magnetic ground
state phase diagram of the Anderson-Hubbard model [61], where, in particular,
the existence of an antiferromagnetic metal has been predicted. It becomes
apparent by the above reasoning and mentioned results, that the TMT has been
proven to be a powerful and valuable tool for investigating strongly correlated,
disordered systems [62, 82].

A word of caution should be mentioned at this point: it was shown that the
decline of the geometric average to zero cannot uniquely be attributed to the
Anderson localization, nor is it independent of the energy discretization [256].
Also the translational invariant hybridization function restricts the analysis of
the localization effects to quite an extent, as it does not account for spatial
fluctuations. We conclude that an approach focusing on PDFs of physical
observables is desirable and such an approach will be discussed in the next
section. Furthermore, it is interesting to note that, although most studies so
far made use of the geometric average, there is no principle stating that the
geometric mean is the most suitable and most informative. In fact, the more
general mean, called the Hölder mean

Mq(x) =
(

1
n

n∑
i=1

xqi

)1/q

(4.15)

has been suggested and applied to the Anderson-Falicov-Kimball model [58, 262].
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Besides other means, the geometric average (q → 0) and arithmetic average
(q → 1) are contained as special cases. It was shown, that for q < 0.5, the mean
is critical towards localization and also that the extent of the metallic phase in
the phase diagram depends on the mean used within TMT.
In this work, we will use a generalized version of the TMT to investigate

Bose-Fermi mixtures in disordered optical lattices in chapter 9.

4.4. Statistical dynamical mean-field theory

The statistical DMFT [85, 86] represents a theoretical description of interacting
fermions in high-dimensional, disordered lattices, which permits the explicit
calculation of the full PDFs of local observables. The method is based on a purely
local point of view and, therefore, disorder-induced localization is investigated in
a natural and adequate manner, as has been discussed in the preceding chapter
3 and preceding section 4.3. In combination with the unmatched properties of
the DMFT to study local correlations, it constitutes a state-of-the-art tool for
strongly correlated, disordered fermionic systems.

Starting with the general effective action already given in (4.5) with the Weiss
field for the disordered case (4.6), the site-dependent hybridization function
becomes

Γi(ω) =
∑
j,k

tijtikG
(i)
jk (ω) . (4.16)

This is given in the real-frequency representation, where j and k denote sum-
mation indices for nearest neighboring sites. G(0)

jk represents the cavity Green’s
function, we already know from the discussion of the homogeneous DMFT.
These cavity Green’s functions are connected to the lattice Green’s functions
by the relation [149]

G
(i)
jk = Gjk −

GjiGik
Gii

, (4.17)

which is also used in the DMFT for homogeneous systems. For general lattices
the hybridization function will therefore be an intricate functional of the Green’s
function

Γi = Γi[Gjk] (4.18)

depending on diagonal (j = k) and off-diagonal (j 6= k) terms. Instead of
performing the limit of infinite coordination number as in the homogeneous
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4. Strongly correlated fermions in disordered lattices

case, a finite coordination number is considered in the statistical DMFT, which
leads to an approximative effective action, since only the quadratic terms are
kept. That means also that it becomes exact in infinite dimensions, but since
the sum (4.16) extend over an infinite number of terms, CPA would be recovered
[83, 84] and localization effects are missed in that case. Hence, the inclusion of
a finite coordination number is essential.

In the following, a fixed disorder realization in a finite lattice with a finite
coordination number is considered. We already know that the effective action
corresponds to an Anderson impurity model, specified by the hybridization. Its
solution gives a self-energy, which is identified as the local self-energy of the
lattice Σij → δijΣi in the DMFT spirit. Dobrosavljević and Kotliar proposed
an exact eigenstate technique [86]

Gij = G0
ij [εi → εi + Σi] , (4.19)

where G0
ij corresponds to the Green’s function for the same disorder realization

in the non-interacting case. When Gij is calculated, a new hybridization function
is obtained via (4.17) and the self-consistency circle is closed. This theory lay
the foundations, for the subsequently developed real-space DMFT [142, 255], an
extension of DMFT to finite, inhomogeneous lattices. However, Dobrosavljević
and Kotliar concentrated on the Bethe lattice, which substantially simplifies
the problem as presented in the following.

One of the extraordinary properties of the Bethe lattice is that it is loop-free,
which allows for an easy estimation of the hybridization function [2, 14, 85, 86,
90, 168] (see appendix B)

Γi(ω) =
z∑

n=1
t2inG

(i)
nn(ω) (4.20)

Γ(i)
n (ω) =

K∑
m=1

t2nmG
(n)
mm(ω) . (4.21)

We note, that the hybridization function is expressed in terms of local Green’s
functions only. Following the exact eigenstate concept by Dobrosavljevic and
Kotliar [86] and assuming a local self-energy, the local Green’ function reads

Gii(ω) = 1
ω + µ− εi − Σi(ω)− Γi(ω) + iη

. (4.22)

Now this equation can be interpreted in a fully stochastic manner, as was
first suggested by Abou-Chacra et al. [2]. In a disordered system the local
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Green’s function Gii(ω) is a random quantity with its distribution described
by a PDF. Equations (4.22) and (4.20) state, that this quantity is determined
by the random on-site energy εi and z random cavity Green’s functions. As
discussed in detail within the local distribution method (see section 3.3), the
equations (4.20) and (4.21) are approximated by the equation [2]

Γi(ω) = t2
K∑
j=1

Gjj . (4.23)

These hybridization functions define an impurity Anderson model for every site
i. The solution of each yields the local self-energy Σi, identified as the local
lattice self-energy. In this sense, the statistical DMFT maps the original lattice
model onto an ensemble of Anderson impurities, coupled to a stochastic bath
of Green’s functions (as schematically shown in Fig. 4.3), whose PDF has to be
determined self-consistently.

The stochastic equation for the local Green’s function is solved by a stochastic
sampling method very similar to the local distribution approach (see section
3.3). In practice, the PDF of the Green’s function is sampled by an ensemble
of N single-particle Green’s functions. The starting point is an initial PDF
p [Gii(ω)] and the calculation is performed using the following algorithm:

1. For each sample a random on-site energy εi is drawn from the PDF pε(εi).

2. The hybridization function Γi(ω) is determined via equation (4.23) for
each sample. The local single-particle Green’s function Gjj(ω) of the
nearest neighbors are randomly sampled from the PDF p [Gii(ω)].

3. The local self-energy Σi(ω) is calculated from the solution of the local
impurity problem by using an impurity solver.

4. The local single-particle Green’s function Gii(ω) is calculated using equa-
tion (4.22).

5. Having calculated a completely new ensemble {Gii(ω)}, a new PDF
p [Gii(ω)] is obtained by construction of a histogram.

Returning to the first step closes the self-consistency circle. The algorithm
is repeated until self-consistency for p [Gii(ω)] is achieved. Like the local
distribution method, the statistical DMFT incorporates spatial fluctuations
caused by disorder via step 2.

As statistical DMFT describes a fully interacting problem, different frequen-
cies ω do not decouple in the self-consistency relations. This is differnet to the
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4. Strongly correlated fermions in disordered lattices

Figure 4.3.: Illustration of the statistical DMFT applied in this work. The many-body
problem with disorder is mapped onto an ensemble of single impurities,
coupled to an ensemble of stochastic Green’s functions, which is deter-
mined self-consistently. Gn represents the n-th sample from the ensemble
of Green’s functions.

non-interacting case, that is investigated by means of the local distribution
approach (see section 3.3), where the self-consistency equations can be solved
for each frequency separately. In order to keep the computation time feasible,
we need to use a fast impurity solver for determining the self-energy Σ(ω).
By using MPT as impurity solver and parallelizing the code, ensembles of the
order 103 samples are numerically feasible. The estimation of the PDF typically
involves ∼ 105 samples if the histogram is constructed on the basis of ∼ 102

successional update iterations, after self-consistency is obtained. The statistical
DMFT reduces to the local distribution method without interaction and to the
homogeneous DMFT the absence of disorder.
The statistical DMFT was first developed for application to the Anderson-

Hubbard model [85, 86], where a slave-boson approach [123, 169] was used as
an impurity solver. In particular, the PDFs of the quasi-particle weight and
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4.4. Statistical dynamical mean-field theory

density have been calculated. Although the slave boson approach accurately
describes the Fermi liquid regime, it fails to capture high energy features and
therewith cannot be used for an accurate estimation of the phase diagram.
In addition, the statistical DMFT was used to investigate models of heavy

fermion compounds, like Anderson lattices [6, 195, 196]. These works established
the existence of a Griffiths phase [136] as a precursor to the Mott-Anderson
transition. Moreover, the statistical DMFT has been applied to the Falicov-
Kimball model [274], for which the paramagnetic ground state phase diagram has
been mapped out. There have been several studies on the Anderson-Hubbard
model in the finite lattice version (which we refer to as real-space DMFT) by
using the Hubbard-I approximation [257, 258]. This restricts the investigation
to certain parameter regimes and is known to give qualitatively incorrect results.
Interestingly, it was also applied to disordered electron-phonon systems [52],
which demonstrates the wide range of possible applications.

In this work, we will establish the statistical DMFT in its fully stochastic
implementation on the infinite Bethe lattice as a suitable method for a compre-
hensive investigation of disorder and correlation effects on equal footing. For
this purpose, we apply the statistical DMFT to the box disordered Anderson-
Hubbard Hamiltonian (see chapter 6). In particular, we use the statistical
DMFT to investigate disorder models of specific interest for experiments with
ultracold atoms: (i) the binary disorder in chapter 7 and (ii) the speckle disorder
in chapter 8. Both disorder models will be introduced in detail in the next
chapter 5.

4.4.1. Off-diagonal disorder within statistical DMFT

In general, the hopping amplitude t between two lattice sites may depend on
the disorder potential. The hopping amplitude becomes a random variable
[22, 83, 153, 261, 308] distributed by a PDF pt(t). This type of disorder, also
termed off-diagonal disorder, can be incorporated in the statistical DMFT. In
detail, equation (4.16) reads

Γi(ω) =
K∑
j=1

t2ijGjj , (4.24)

where the hopping amplitude tij takes on one possible value of the PDF pt(t).
It is reasonable to assume that the PDF is correlated with the difference of the
corresponding on-site energies ∆ε = |εi− εj |. Theoretically this is accounted for
by a joint PDF pt,∆ε(t,∆ε). We will return to this issue in chapter 8, but restrict
ourselves to a PDF pt(t) for the time being. The stochastic self-consistent
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calculation scheme is modified to:

1. For each sample, a random on-site energy εi is drawn from the PDF pε(εi).

2. For each sample i, random hopping amplitudes tij are drawn from the
PDF pt(t).

3. The hybridization function Γi(ω) is determined via equation. (4.24) for
each sample. The local single-particle Green’s function Gjj(ω) of the
nearest neighbors are randomly sampled from the PDF p [Gii(ω)].

4. The local self-energy Σi(ω) is calculated from the solution of the local
impurity problem by using an impurity solver.

5. The local single-particle Green’s function Gii(ω) is calculated using equa-
tion (4.22)

6. Having calculated a completely new ensemble {Gii(ω)}, a new PDF
p [Gii(ω)] is obtained by construction of a histogram.

The inclusion of hopping disorder allows for a more realistic modeling of disorder
problems, and is especially important for our later investigation of speckle
disordered lattices.

Although the random hopping physics has first been assumed to be equivalent
to the physics of pure diagonal disorder types, soon ’unusual’ localization effects
have been discovered. This effects are referred to as ’unusual’ since the behavior
of underlying quantities is different from the case of pure diagonal disorder. For
instance, it was found that the states at the band center are always extended
in case of pure off-diagonal disorder [22, 261], whereas it becomes localized
for some particular disorder strength in the case of diagonal disorder. Even
more interesting phenomena have been found within systems governed by the
interplay between interaction and off-diagonal disorder in infinite dimensions,
which were shown to exhibit a diverging specific heat within the metallic phase
for example [83]. Such interesting results stimulated recent work on the interplay
of interaction and off-diagonal disorder, with the conclusion that correlations
are necessary to destabilize the metallic phase [116, 117].

4.5. Compendium: Phases of strongly correlated
fermions in disordered lattices

In conclusion, we have seen that describing the physics of strongly correlated
fermions in a disordered lattice first requires proper a definition of the arising
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phases3. We first discussed the Mott insulator as a correlation-induced insulating
phase, which is incompressible and features a gapped spectrum. The excitation
gap is proportional to the interaction strength U . Secondly, we discussed
the Anderson insulator in the absence of interactions as a disorder-induced,
insulating phase. We will characterize it by an extended gap criterion, which
is defined as the required energy to create a macroscopically extended charge
excitation. A state is localized and consequently not macroscopically extended
if its spectrum is point-like. For finite interactions, a pure Anderson insulator
is no longer defined, and we will define a many-body state to be many-body
localized, if the corresponding single-particle excitation spectrum is point-like.
The corresponding phase, defined by the presence of an excitation gap to
macroscopically extended single-particle excitations, is called Anderson-Mott
insulator. However, no rigorous statement exists so far, that such a point-like
spectrum induces insulating behavior, i.e. vanishing DC conductivity. Finally,
the paramagnetic disordered metal is compressible and exhibits no gap.

3Throughout this work, magnetic phases are not considered.
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lattices

The invention of laser cooling [24, 71, 225, 298, 299] paved the way to the
experimental research field of ultracold atoms. Temperatures lower than µK
became accessible and a route to quantum degenerated gases was provided. A
break through was achieved by the realization of the Bose-Einstein condensate
[16, 78] and afterwards quantum degeneracy was also achieved for fermions
[81]. Later, the experimental technique of loading ultracold atoms into optical
lattices [159, 229], acting as artificial crystals for atoms, lead to a new branch
of experiments [45, 183, 202]. In a seminal paper, Jaksch et al. [154] proposed
to simulate the Bose-Hubbard model with ultracold atoms in an optical lattice
and predicted a quantum phase transition from a superfluid to a Mott insulator
when varying the lattice depth. This was indeed experimentally observed in a
optical lattice by Greiner et al. in 2002[132].
Thereby, a quantum simulator as proposed by Feynman [108] was achieved

to study strongly correlated quantum systems. In general, experiments with
ultracold atoms in optical lattices are distinguished by their high control and
tunability of the experimental parameters. Hence, theoretical models, which are
essential for the understanding of solids are implemented and can be studied
with a high accuracy and nearly no approximations.

Nowadays, the diversity of models that can be simulated ranges from Hubbard-
type models [155], various spin models [89, 194], to Tonks-Girardeau gases [222].
In particular, the fermionic Hubbard model (2.1) has been realized [166] and
the fermionic Mott insulator has been observed [160, 242]. Moreover, ultracold
atoms have been successfully exposed to disorder potentials in absence of or in
combination with an optical lattices [25, 199, 239]. Within these experiments a
milestone was achieved by the observation of localized matter waves [39, 233].
This development is very promising towards gaining a deeper insight in the open
issue of the interplay of strong correlations and disorder. An inherent advantage
of these experiments is the perfect realization of e.g. the Anderson-Hubbard
Hamiltonian1 among other disorder models. Therefore, they allow a quantitative
1Recently, the bosonic Anderson-Hubbard Hamiltonian has been studied experimentally
[223, 293]. Comparable experiments for fermions are still missing.
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comparison of theoretical predictions and experimental observations.
In this chapter we will first shortly review the realization of the Hubbard

model in ultracold atoms in optical lattices and focus on how disorder can be
added to optical lattices. The chapter concludes with a short discussion of
experimental probes.

5.1. Simulating the Hubbard model
Alkali atoms2, such as e.g. 6Li, 7Li, 40K, or 87Rb, interact with an laser field via
the AC Stark effect. The electromagnetic field induces an electric dipole moment,
given by d = α(ω)E with α being the frequency dependent polarizability of the
atom. The corresponding dipole potential is given by [137]

Vdip = −1
2〈dE〉t, (5.1)

where 〈. . . 〉t denotes the time average, which is used as the frequency of the
electromagnetic field is much higher than the inverse timescale of the center-of-
mass motion of the atom. Thus, the light induced potential is proportional to
the time averaged intensity I(x) of the laser field.
Typically, the polarizability of the atom is determined by considering a two-

level system with transition frequency ω0 exposed to a classical electromagnetic
field. Application of time-dependent perturbation theory to first order, and
further using of the rotating wave approximation and considering the finite life
time of the excited state3 yields [137]

Vdip(x) = 3πc2

2ω3
0

Γe
δ
I(x) , (5.2)

with the detuning δ = ω − ω0 and the decay rate Γe of the excited state. The
structure of equation 5.2 reveals that the induced potential is attractive for
red-detuned (δ < 0) and repulsive for blue detuned (δ > 0) light. Specifically
for alkali atoms the relevant transition corresponds to the D-line excitation
nS1/2 →nP1/2,

nP3/2.
Next we will consider optical lattices. If two counter-propagating laser beams

with equal frequency are superimposed, a periodic interference pattern, i.e. a
standing wave is realized. Atoms exposed to the beams experience a periodic
2In experiments usually alkali atoms are used, as they feature a transition spectrum with
isolated resonances lying in an experimentally convenient optical range.

3Thereby the polarizability becomes a complex number and the dipole potential is given by
Vdip = − 1

2Re(α)I.
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dipole potential Vlat,1d(z) = sL sin2(πz/d) with period d equal to half of the
wavelength of the laser light [137], a lattice depth sL which is typically measured
in units of the recoil energy ER = ~k2

L/2m, and where kL is the wave vector of
the optical lattice and m is the atomic mass. By using two counter-propagating
beams in x direction or additionally also in y and z direction square and cubic
lattices

Vlat,1D(x,y,z) = sL,x sin2(πx
d

) + sL,y sin2(πy
d

) + sL,z sin2(πz
d

) , (5.3)

can be realized. An illustration is given in figure 5.1. Different geometries are
possible by superimposing laser beams by an angle other than 180° or tuning
the polarizations. In particular, triangular optical lattices have been realized
recently [30].

Figure 5.1.: Illustration of an optical lattice created by superposition of laser beams.

So far we have discussed single atoms exposed to an external light potential.
However, by considering quantum gases, we are faced with a true many-body
problem, as the particles are interacting. The physical origin of the interactions
between the neutral atoms is given by the short-range van der Waals force,
featuring a rapid 1/r6 decay at large distances. For dilute gases, two-particle
collisions are dominant, which can be theoretically understood by a single-
channel scattering process within a first approximation. An expansion in partial
waves [238] shows that at sufficiently low temperatures and low energies, the
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scattering into higher angular momentum states l = 1,2,.. is suppressed due to
the centrifugal barrier. Therefore, the scattering process from l = 0 into l = 0
states, the so-called s-wave scattering dominates4, which is accurately described
by a single length scale the so called s-wave scattering length a [45, 125, 238].
Since the s-wave state is spatially symmetric, only fermions in different spin
states can interact in that regime as a consequence of their antisymmetric
two-particle state. Typically, the scattering length is two orders of magnitude
larger than the size of the atoms.

The s-wave scattering length is defined by the low-energy limit of an expansion
of the cotangent of the s-wave phase shift δ0 at zero distance [238]

lim
k→0

k cot(δ0) = −1
a
. (5.4)

It is determined theoretically by considering simple model potentials like a hard
core potential plus an asymptotic van der Waals decline at long distances or
hard-core plus square well potentials [135]. Since the scattering physics only
depends on the scattering length, it is convenient to model the interactions via
a pseudo potential [125]

V (r− r′) = 2πa
mr

δ(r− r′) , (5.5)

which reproduces the correct low energy scattering length. Here, mr denotes
the reduced mass of the two particles.

Remarkably, the scattering length, and therewith the strength of the particle
interactions, can be tuned [48, 103, 152, 167, 201, 268, 271] via a Feshbach
resonance [102, 107]. A more appropriate theoretical investigation of the
scattering process accounts for the internal degrees of freedom of the alkali
atoms, like the hyperfine structure, thus including multi-channel scattering.
The different channels are coupled by the hyperfine interaction. A Feshbach
resonance occurs in two-particle collisions, when a diatomic bound state of the
two-body system becomes resonant or close to resonant to an open channel,
i.e. the continuum threshold of the system. The two atoms form temporarily a
bound state, which subsequently decays to an open channel. A multi-channel
analysis shows that the resulting scattering length depends on the energies of
the various channels (cf. e.g. [267]). These in turn differ in their energy due
to different Zeeman shifts corresponding to their spin configurations. Hence,
adjusting the magnetic field leads to channel-dependent shifts of the channels’
4In fact, the ultracold regime of quantum gases is widely defined by the dominating s-wave
scattering.
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Figure 5.2.: Measurement of the s-wave scattering length in units of Bohr radii as
a function of magnetic field B in a mixture of fermionic 40K atoms in
hyperfine states |f = 9/2,mf = −9/2〉 and |f = 9/2,mf = −5/2〉. A
Feshbach resonance exists at B0 = 224.36G. The solid line corresponds
to a fit function of form (5.6). Reprinted from reference [230]

energies and therefore the scattering length is varied. Typically, the relation
between the s-wave scattering length and the magnetic field can be approximated
by [201]

a(B) = abg
(
1− ∆B

B −B0

)
, (5.6)

with abg denoting the background scattering length, ∆B the width and B0 the
magnetic field strength of the resonance. Thereby, it is possible to tune the
interaction strength between the particles by changing the external parameter
magnetic field. In figure 5.2 the measured s-wave scattering length in a mixture
of fermionic |f = 9/2,mf = −9/2〉 and |f = 9/2,mf = −5/2〉 40K atoms is
plotted as a function of the magnetic field (measurement by Regal et al. [230]).
Strong repulsive interactions corresponding to large positive scattering lengths
are obtained, as well as strong attractive interactions corresponding to negative
scattering lengths, by tuning the magnetic field across the Feshbach resonance
at B0 = 224.36G [230]. In the experiment, however, fluctuations of the magnetic
field hinder an arbitrary adjustment of the scattering length.
Combining the single-particle parts, i.e. the kinetic energy and the external

potential, and the two-particle interaction, a two-component mixture of fermions
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in an optical lattice is described by the Hamiltonian

H =
∑
σ

∫
dxΨ †σ(x)

(
− ∇

2

2mσ
+ Vext,σ(x)

)
Ψσ(x)

+
∫
dx
∫
dx′ Ψ †↑(x)Ψ †↓(x

′)V (x− x′)Ψ↓(x′)Ψ↑(x) . (5.7)

In general, the external potential consists of the lattice potential Vlat,σ and the
trapping potential Vtrap,σ. Subsequently, the trapping potential is neglected.
In experiments the trapping potential can be compensated by an additional
blue-detuned laser (see for example reference [297]). As we considering two
hyperfine states, the masses are equal for both components. Moreover, as the
AC Stark effect is not sensitive towards the hyperfine state, both components are
exposed to the same lattice potential. The fermionic field operator, expanded
in the Wannier basis, is given by

Ψ †σ(x) =
∑
i,ν

w∗ν,σ(x−Ri)c†i,ν,σ , (5.8)

where ν denotes the band index and ci,ν,σ denotes the annihilation operator of
the corresponding Wannier state. Within this expansion and under consideration
of the pseudo-potential (5.5), the Hamiltonian reads

H = −
∑
νσ

∑
ij

tνσij c
†
iνσcjνσ +

∑
ijkl

∑
ν1ν2ν3ν4

Uν1ν2ν3ν4
ijkl c†iν1↑cjν2↑c

†
kν3↓clν4↓ (5.9)

with

tνσij =
∫
dxw∗iνσ(x)

(
− ∇

2

2m + Vlat(x)
)
wjνσ(x) (5.10)

Uν1ν2ν3ν4
ijkl = 4πa

m

∫
dxw∗iν1↑(x)wjν2↑(x)w∗kν3↓(x)wlν4↓(x) (5.11)

and the short-hand notation wiνσ(x) = wνσ(x − Ri). At sufficiently low
filling, low temperature, low lattice depth and weak interactions higher bands
can be safely neglected, as they will not be populated. This is commonly
referred to as single-band approximation5. Furthermore, for sufficiently deep
lattices the Wannier functions are well localized and all hopping except nearest-
neighbor hopping and all interactions except local interactions can be neglected.
Thus, the Hubbard model (2.1) is obtained, with local interaction strength
U ≡ U1111

0000 , in which the amplitudes t and U can be evaluated numerically for

5For a detailed discussion of the validity see e.g. [292].
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5.1. Simulating the Hubbard model

Figure 5.3.: Local interaction strength U and hopping amplitude t as a function
of lattice depth sL in units of the recoil energy, resulting from band
structure calculations performed by Greiner [130]. Here, bosonic 87Rb
atoms in a optical lattice with wavelength λ = 852nm were considered.

a given optical lattice of strength sL. An analytic expressions for U is obtained
by approximating the potential at each lattice site as a harmonic potential
[8, 154, 310]. Consequently, the Wannier function takes on the Gaussian ground
state wave function of the harmonic potential and the on-site interaction is
given by

U =
√

8
π
akL

(
sL
ER

)3/4
ER . (5.12)

An analytic approximation for the hopping amplitude

t = 4√
π

(
sL
ER

)3/4
e
−2( sL

ER
)1/2

ER (5.13)

can be obtained from the solution of the 1d Mathieu equation [45, 310]. However,
especially for comparisons with experimental data, it is necessary to calculate
the amplitudes from an exact band structure calculation [130], which involves
the numerical solution of a single-particle Schrödinger equation. The resulting
parameter of such a evaluation are plotted in figure 5.3. By tuning the lattice
potential, the on-site interaction strength U and the hopping parameter t are
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5. Ultracold atoms in optical lattices

Figure 5.4.: Illustration of the probability distribution function of the on-site energies
in case of speckle disorder. The standard deviation and the expectation
value are given by the disorder strength parameter ∆.

simultaneously changed, but in different fashions. Hence, almost arbitrary ratios
U/t can be adjusted.

5.2. Adding disorder to optical lattices

Disorder in ultracold gases can be added in different ways: (i) by using an
optical speckle laser [39, 223, 293], (ii) by loading two atomic species, where only
one is mobile, into an optical lattice [119, 138, 220]. or (iii) by superimposing
two laser beams with incommensurate frequencies [101, 233]. All approaches
are briefly introduced in the following.

5.2.1. Speckle disordered lattices

The speckle disorder potential is created by a coherent laser beam that is
scattered by a diffusor plate [39, 73, 191, 223, 293]. A statistical analysis of the
light scattering process [126, 127] shows that the PDF of the resulting light
intensity pattern obeys pI(I) = Θ(I) exp(−I/〈I〉)/〈I〉, where 〈I〉 is the averaged
light intensity and Θ(x) denotes the Heaviside function. By superimposing the
speckle light pattern on the optical lattice, the atoms are subjected to a random
optical dipole potential VD(r) ∝ I(r) [73] as already discussed for the lattice
potentials in the preceding section. The potential is attractive for red-detuned
laser light or repulsive for blue-detuned laser light. Here and later in chapter
8, we consider the latter, i.e. the repulsive potential. In the tight binding
model this random potential gives rise to diagonal disorder, i.e. random on-site
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5.2. Adding disorder to optical lattices

Figure 5.5.: One-dimensional illustration of the disordered lattice problem. The
speckle field induces random on-site energies given by the PDF pε(ε).
Hopping amplitudes tij are random variables, which manifests itself in
the PDF p∆ε,t(∆ε,t). The local interaction strength Ui depends on the
extension of the respective Wannier function, which results in a further
PDF pε,U (ε,U).

energies εi, which are drawn from a PDF pε(εi) given by

pε(ε) = 1
∆ exp(− ε

∆)Θ(ε) , (5.14)

where ∆ denotes the disorder strength. The expectation value 〈ε〉 =
∫
dεpε(ε)ε

is equal to the disorder strength parameter ∆ and the expectation value of the
on-site energy squared is estimated as

〈ε2〉 =
∫
dεpε(ε)ε2 = ∆2Γ(3) = 2∆2 . (5.15)

Hence, the standard deviation is given by ∆.
We note that this PDF of the on-site energies is unbounded from above,

in contrast to other typically used distributions, such as box or binary disor-
der. Furthermore, we assume that the on-site energies of all lattice sites are
independently and identically distributed. This is valid, if the autocorrelation
length of the speckle pattern is smaller than the lattice spacing and was well
accomplished in the recent experiments within the DeMarco group [293, 306].
Furthermore, in a tight binding model, the speckle disorder potential leads to a
off-diagonal disorder [293, 306]. I.e. disorder in the hopping parameter tij , also
referred to as hopping disorder [22, 42, 83, 153, 261, 308]. For a given disorder
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5. Ultracold atoms in optical lattices

distribution, inducing fluctuations in both the hopping and on-site energies,
the hopping coefficient tij at neighboring pair of sites is correlated with the
difference in on-site energies ∆ε = εi − εj and a realistic description requires
the modeling using a joint PDF [306]

p∆ε,t(∆ε,t) 6= p∆ε(∆ε) · pt(t) . (5.16)

Furthermore, for a short-range interaction between particles, the local interaction
potential is proportional to the integral over the fourth power of the Wannier
function (cf. equation (5.11)), which in turn depends on the random lattice
potential. Hence, the on-site interaction potential U is a random variable as
well. The joint PDF pε,U (ε,U) of the on-site interaction strength and the on-site
energy also needs to be accounted for. A one-dimensional cartoon illustration
of the disordered lattice problem is shown in Fig. 5.5.
Fermionic ultracold atoms in a speckle disordered optical lattice are investi-

gated in chapter 8 by means of the statistical DMFT.

5.2.2. Binary disorder

In systems of cold atoms in optical lattices binary disorder can be prepared by
adding an additional immobile species of atoms [119, 278]. The atoms of the
mobile species experience an on-site energy shift proportional to the interaction
strength due to the randomly distributed immobile species. Just two on-site
energies are therefore realized, corresponding to either an immobile impurity
atom bing present or not at a given lattice site. Hence, the PDF of the on-site

Figure 5.6.: Illustration of the probability distribution function of the on-site energies
in case of binary disorder. x denotes the impurity concentration and ∆
the on-site energy splitting.
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energies is given by the bimodal function

pε(εi) = x δ(εi + ∆
2 ) + (1− x)δ(εi −

∆
2 ), (5.17)

where x and 1− x are the fractions6 of lattice sites with energies εi = −∆
2 and

εi = ∆
2 respectively. The expectation value of the on-site energy takes on the

value 〈ε〉 =
∫
dεpε(ε)ε = ∆(1/2 − x) and the expectation value of the on-site

energy squared is given by

〈ε2〉 =
∫
dεpε(ε)ε2 = ∆2x(1− x) . (5.18)

Consequently, the standard deviation is given by ∆
√
x(1− x).

Here ∆ describes the on-site energy splitting, which is proportional to the
interspecies interaction strength in the weakly interacting, linear regime. The
PDF is illustrated in figure 5.6 In general, ∆ and x are independent parameters.
However, the cases x = 0 or 1 correspond to non-disordered systems with
on-site energy shift ±∆/2. Therefore, a natural parameter for measuring the
disorder strength in binary alloy systems is δ ≡ x(1−x)∆ [303], which is closely
connected to the standard deviation. An Illustration of the physical situation is
schematically presented in figure 5.7.
It is noticeable, that in contrast to the disorder types discussed so far, the

PDF for binary disorder is not continuous, but discrete. A very important
difference between the discrete binary-alloy disorder and continuous disorder
types, is that in the former case the Bloch band is split if ∆ > W0 in non-
interacting systems and in arbitrary lattices [59, 164]. In this limit two alloy
subbands are formed and the system is a band insulator if ν = 2x or ν = 2,
where ν is the number of fermions per site. At other fillings it is a metal. In
the presence of interaction a Mott insulator at fractional particle filling ν = x
or ν = 1 + x is in principle possible [59, 64]. In chapter 7, it is investigated
how Anderson localization modifies these predictions by means of the statistical
DMFT.
First experimental attempts to realize binary disorder have been performed

[138, 220]. However, in such a system care has to be taken that the positions of
the immobile atoms are random stationary, i.e. the disorder must be quenched.
One possibility to randomly trap the impurity species is to rapidly quench the
system from the delocalized state to a localized state, like the Mott insulating
state. Also this approach is problematic, since phenomena like collapse and

6In the context of impurities in solids, x corresponds to the impurity concentration.
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Figure 5.7.: Illustration of a given realization of binary disorder in optical lattices.
Two atomic species (indicated as green and blue spheres) are loaded
into an optical lattice. The hopping amplitude of one species (blue) is
strongly suppressed and they are approximated to be immobile. Due
to the interatomic interaction, the second species experiences a binary
disordered lattice potential, depending on the presence of an atom of
the immobile species on the same lattice site, i.e. if there is a blue atom
present the on-site energy is εi = +∆/2 otherwise εi = −∆/2.

revival may arise [133].

5.2.3. Quasi-periodic lattices

A further approach is based on the superposition of laser beams with incom-
mensurable frequencies [76, 235] that are superimposed on the regular lattice.
The resulting potential of two superimposed beams with wave vectors k1 and
k2 reads [76]

V (r) = Vlat(r) + V1(cos2(k1r) + cos2(k2r)) . (5.19)

In fact, the resulting potential does not represent a true random potential but a
quasi-crystal potential [200] and are accurately described by the Harper model
[140] or Aubry-André model [26] in one dimension. Within this system the
on-site energies are strongly correlated. Nevertheless, it gives rise to similar
physics as random potentials as was shown e.g. by theoretical comparisons to
speckle disordered potentials [76]. In particular, the system features a sharp
transition from extended to localized states [26, 235], hence allowing for glass
phases like the Bose glass phase. Since the ratio of k1/k2 can not be realized as
a true irrational number [200], the transition becomes a smooth crossover in
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real experiments. On the other hand typical features of disordered systems like
Lifshitz tails or mobility edges are missing [200]. The latter are present in the
system, if long-range tunneling is taken into account [38, 46]. The distribution
of the on-site energies was shown to be well approximated by the shifted β
distribution [165].
Experimentally, Bose-Einstein condensates in such quasi-periodic potentials

have been studied and their excitation spectrum has been measured [101]. In
one dimension, localization of non-interacting particles by quasi-disorder has
been clearly verified [233].

5.2.4. Further approaches

In the context of immobile impurity atoms it was also discussed to tune the
interspecies on-site interaction randomly [124]. For this purpose, the strong
dependence of the s-wave scattering length on the magnetic field strength near
a Feshbach resonance is utilized. Inhomogeneities in the magnetic field tune
the interspecies interaction strength locally and these inhomogeneous magnetic
fields can be created by the rough surfaces of atom chips [296].

5.3. Experimental probing techniques
In this section a brief overview on experimental probing techniques is given.
The time-of-flight measurement has established itself as the most important

and common method in the cold atom community [45, 131]. The first step
of a time-of-flight measurement is given by suddenly turning-off all trapping
potentials, which allows the atoms to expand freely, neglecting the short-range
interactions due to their short-range character. The expansion of a Bloch state
is governed by its momentum distribution as a superposition of plane waves.
After some expansion time the atoms are imaged with a resonant probing laser
and a CCD camera. Due to the expansion of time TToF, the time-of-flight
imaged density n(x,TToF) is directly proportional to the momentum distribution
of the atoms, trapped in the lattice, times the quasi-momentum distribution
n(k) = ∑

σ〈c
†
kσckσ〉 [45]. Therefore it gives direct access to first order coherence.

This technique is especially useful for bosons, since in case of condensed bosons
the lowest Bloch state is populated macroscopically, which results in well defined
interference maxima in the time-of-flight image. A further technique, called
band mapping is closely connected [45, 166]. If the lattice is ramped down
adiabatically, the quasi-momentum of the Bloch state is preserved and finally
mapped on to a free particle momentum, which allows the pictorial detection
of Brillouin zones [131, 166].
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However, in the many particle system nontrivial correlations exist, and it
was shown that these correlations are present in the time-of-flight pictures as
spatial noise correlations [9]. It has been discussed that signatures of fermionic
superfluids, Mott insulating states show up in the noise correlations as well as
spin-spin correlations in multi-component systems [9]. Experimentally, such
quantum correlations have been probed shortly later in a bosonic system in the
Mott insulating phase [114] and in ultracold molecules [134].
For fermions the measurement of double occupancies has been used success-

fully to obtain signatures of the Mott insulator [160]. The depth of the lattice
is rapidly increased to large values, suppressing inter-site tunneling. Afterwards
the energy of doubly occupied states is shifted by means of a Feshbach res-
onance. Thereby only the hyperfine component of the single occupied state
can be addressed selectively with a resonant radio frequency pulse to transfer
these atoms to a third previously unoccupied hyperfine component. From the
time of flight image, where the different components are spatially separated
by a magnetic field gradient, the fraction of doubly occupied states can be
determined.
Recently, single-site imaging has been established as in-situ technique [27,

28] also with single-atom resolution [252] for two-dimensional optical lattices.
Within these experiments, a single two-dimensional optical lattice is prepared
and after some time evolution, the lattice is ramped-up suddenly to such high
values that the many-particle wave function is projected onto the single-site
number states. By turning on an optical molasses system, the atoms are
illuminated and time laser cooled at the same. The resulting fluorescent light is
collected with a high-resolution optical setup. Besides other results, the shell-
structure of a bosonic Mott insulator in a trap was clearly observed [28, 252] and
claimed to be expendable in order to investigate quantum critical phenomena
that are not accessible within solid state experiments like [252].

In solid state physics, spectroscopic methods such as the angle-resolved photo
emission spectroscopy [75] have become established techniques, enabling access
to a big variety of relevant information, as for instance the single-particle
excitation spectrum. Remarkably, analogous methods giving access to the
single-particle excitation spectrum have been developed for experiments with
cold atoms. One prominent example is Raman spectroscopy, which enables
the probing of the single-particle spectral function, the Fermi surface and the
quasi-particle structure of strongly correlated ultracold atoms [77]. In Raman
spectroscopy atoms are transferred from a given hyperfine and spatial state
into a different hyperfine state via a two-photon process, gaining a momentum
transfer q, depending on the setup of the two Raman laser beams. Afterwards,
the spectral function can be extracted from the Raman signal by counting the
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number of transfered atoms [43, 77]. It was shown that signatures of strongly
correlated phases, in particular the Mott insulating phase, are encoded in the
Raman signal [35]. Bragg spectroscopy is a very closely related technique [265],
which also makes use of a two-photon induced transition but not to a different
internal state. Here, the fraction of transferred atoms is determined from the
time-of-flight images. Experimentally, it has been successfully applied to bosonic
ultracold atoms confined to optical lattices to probe the excitation spectra of
the superfluid state [72, 98]. Interestingly, signatures of the glass phases have
been recently discussed in the Bragg response in absence of an optical lattice
[74].

A further promising spectroscopic technique is the momentum-resolved radio
frequency spectroscopy [266], which has been developed in analogy to the angle-
resolved photo emission spectroscopy. In the recent experiment [266], a radio
frequency field of frequency ΩRF was applied to a two-component mixture of
fermionic 40K atoms in hyperfine states |1〉 and |2〉 in order to excite the atoms
of hyperfine state |2〉 to hyperfine state |3〉. Subsequently, the trap is turned
off and by counting the number of atoms in state |3〉 (N3), the dispersion εk is
obtained [266]. The radio frequency current, defined by I = 〈Ṅ3〉 is calculated
within the linear response theory [141]

I(k, δν) = |Tk|2

2π ρ(k,ω)f(ω)|ω=ξk−δν (5.20)

for homogeneous systems. Tk denotes the transition matrix, δν is the RF
detuning and ξk is equal to k2/2m− µ, assuming that hyperfine state |3〉 is not
occupied. The photo current within angle-resolved photo emission spectroscopy
is given by [75]

Iph(k,ω) = M(k,Ω)ρ(k,ω)f(ω) . (5.21)

Comparing this to equation (5.20) reveals the connection between angle-resolved
photo emission spectroscopy and momentum-resolved radio frequency spec-
troscopy for homogeneous systems. In inhomogeneous systems, such as trapped
and/or disordered systems, final state effects have to be taken into account,
which can be described by using density functional theory within a local density
approximation [69].
Summing up, many powerful probing techniques have been realized or pro-

posed, which allow for a identification on both the experimental and theoretical
side to clearly distinguish strongly correlated many-body phases and the inves-
tigation of their physical properties. As discussed above, also disorder induced
effects and quantum phases are observable within today’s available probing tech-
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niques. However, further research is required to obtain a clear signature of the
fermionic Anderson and Anderson-Mott insulator7, as so far only compressibility
measurements may reveal their existence [80].

7The measurement of exponential decay of the macroscopically occupied wave-function as
done e.g. in [39] is not possible in case of fermionic systems.
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6. Anderson-Hubbard model with
box disorder

Among the investigations of the box disordered Anderson-Hubbard model in
d > 1 dimensions which are non-perturbative and incorporate localization
effects the TMT was used in the most comprehensive way [5, 60–62, 82]. Within
these works the ground state phase diagram has been determined for half-filling
[5, 60] and the physical two fluid picture of the Anderson-Mott transition has
been developed [5, 82]. The statistical DMFT has also been used to study
the Anderson-Hubbard model with box disorder [85, 86, 257, 258]. On the
one hand, the Anderson-Mott transition has been characterized in detail by
an accurate treatment of the low energy excitations [85, 86]. Remarkably, two
critical disorder strengths have been found, one corresponding to the entering of
a non-Fermi liquid phase and a second one corresponding to the Anderson-Mott
transition. On the other hand, a special focus was laid on the zero-bias anomaly
[10, 95] in two dimensions [257, 258]. However, partially due to the immense
numerical effort and partially due to the restrictions of the used impurity solvers
– the slave-boson approach [123, 169] and the Hubbard I approximation [147] –
the ground state phase diagram was not determined.

In this chapter we show what kind of knowledge is accessible within statistical
DMFT and how this knowledge is gained by revisiting the box disordered (3.27)
Anderson-Hubbard model (4.1). Here, the statistical DMFT is consolidated as
an appropriate method to investigate the Anderson-Hubbard model in the whole
range of disorder and interaction strength. In particular, we are interested in the
interplay of both phenomena. We discuss disorder-induced as well as correlation-
induced metal insulator transitions and identify two delocalization processes.
By studying the PDF of the LDOS, we find that it strongly deviates in the
metallic phase from a log-normal distribution as found for the non-interacting
case (cf. section 3.3). Moreover, using MPT as impurity solver allows for the
determination of the complete paramagnetic ground state phase diagram for the
first time by means of the statistical DMFT. Our results are critically discussed
with respect to established results obtained within the TMT earlier [60, 82].

We investigate the half-filled system, which is accomplished by µ = U/2 for
the box disorder distribution of the on-site energies. Throughout this chapter
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Figure 6.1.: Evolution of the arithmetically and geometrically averaged spectral
function of the non-interacting system with increasing disorder strength
∆. Parameters are η = 10−3, µ = U/2 and K = 6.

we will measure energies in units of the non-interacting bandwidth of the
homogeneous system W0 = 1. Parts of this chapter have been published [249].

6.1. Non-interacting system

Since the statistical DMFT reduces to the local distribution approach in the non-
interacting system, we already know from section 3.3 and the literature [2, 14]
that the Anderson-Hubbard model with box disorder exhibits an Anderson
transition on the Bethe lattice when the disorder strength is increased. The
disorder causes a broadening of the spectrum as can be clearly seen from
figure 6.1, where the geometrically averaged (4.11) and arithmetically averaged
spectral functions (3.25) are plotted for selected values of the disorder strength
and zero interaction. The broadening is naturally accompanied by a drop-off of
the geometric average as well as the arithmetic average. This is because the
spectral weight is distributed over a bigger range of energies with increasing
disorder strength. As an important feature we note the much stronger decline
of the geometric average to zero, as previously described in section 4.3. Since
the arithmetically and geometrically averaged spectral function are plotted as a
function of the energy, we are also able to note that the decline is not uniform,
but rather strongly depends on the energy. For instance, the geometric average
of the LDOS remains clearly finite in the band center for ∆ = 2, whereas it is
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close to zero for the states in the outer parts of the spectrum.

Figure 6.2.: Evolution of the cumulative PDFs at the Fermi level P [ρ(0)] of the non-
interacting system with decreasing η in (a) for K = 2 and (b) for K = 6
at fixed disorder strength ∆ = 4.0. Parameters are U = 0 and µ = 0.

Compared to CPA and TMT, the connectivity K represents an additional free
parameter within statistical DMFT. It is well established that no localization
occurs in the limit of infinite spatial dimensions, or for infinite connectivity,
respectively. On the other hand, it is known from scaling theory that in one
dimension and in two dimensions – i.e. for small connectivities – already arbi-
trarily small disorder suffices to localize all states in the absence of interactions
[3]. Hence, this strong dependence of localization on the connectivity should be
captured by statistical DMFT. We would expect that for higher connectivity
the tendency towards delocalization is enhanced. Let us, for instance, consider
the evolution of the cumulative PDF of the LDOS at the Fermi level defined in
equation (3.26) when the broadening η approaches zero for several parameter
sets as given in figure 6.2. In panel (a) we consider a small disorder strength
∆ = 0.5 for connectivity K = 1, that means a linear chain. We note that the
ω = 0 state is localized according to our discussion in section 3.3. For K = 2
(not displayed) our analysis shows that the state is extended and higher disorder
strengths are needed to localize the state at the Fermi level, as can be seen
for example for ∆ = 4 in panel (b). Finally, in panel (c) we investigate the
connectivity K = 6 for the same disorder strength. In the former case the state
at ω = 0 is localized, whereas in the latter case with a larger connectivity the
state is extended. We see that our expectation is met.
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Figure 6.3.: Evolution of the cumulative PDFs at the Fermi level P [ρ(0)] with de-
creasing η (a) for ∆ = 4 and (b) for ∆ = 10 at fixed interaction strength
U = 0.5. Parameters are K = 3, W0 = 1.0, and µ = U/2.

6.2. Probability distribution of the local density of
states for finite interactions

In this section we will investigate the PDFs of the LDOS for finite interactions.
We will first address the question of disorder-induced localization in presence
of interactions. The evolution of the cumulative PDF of the LDOS with
decreasing broadening is plotted in figure 6.3 for the weakly interacting case
U = 0.5. In panel (a) the disorder strength is given by ∆ = 4 and in panel (b)
∆ = 10, corresponding to the strongly disordered regime. We note that the
PDF saturates for ∆ = 4, when the broadening approaches zero, corresponding
to an extended state. In contrast, for very strong disorder strength ∆ = 10 the
PDF does not saturate. Here, the state is localized within the resolution given
by the size of our stochastic Green’s function bath. By comparison to figure 6.2,
we note that the shape of the PDFs of the interacting system differs from these
given in the non-interacting case. In particular, the slope of the cumulative
PDFs varies with the broadening, which indicates that significant weight of the
PDF is distributed over several orders of magnitude of the LDOS.

The statistical DMFT allows for studying how the PDF of the LDOS evolves,
from the non-interacting case and weakly interacting case to the regime of
strong correlations. In figure 6.4 the PDFs are plotted for several selected values
of the interaction and fixed disorder strength ∆ = 4 and connectivity K = 3. In
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Figure 6.4.: Evolution of the cumulative PDFs at the Fermi level P [ρ(0)] with in-
creasing interaction strength U for fixed disorder strength ∆ = 4. In
panel (a) the PDF of the non-interacting system is compared with the
PDFs of the interacting system from weak interactions (U = 0.5) to
intermediate interactions (U = 1,1.5,2). In panel (b) the interaction
strength U is further increased stepwise to the strongly interacting regime
(U = 3,3.5,4). Parameters are K = 3, η = 10−5, W0 = 1, and µ = U/2.

panel (a) weak interactions (U = 0.5) are introduced and stepwise increased to
the intermediate regime (U = 2.5). In comparison to the non-interacting case
(corresponding to a localized state as we will see clearly in the next section),
we note a striking redistribution already for weak interactions. The PDF is
still extended over many decades of values of the LDOS, but a big fraction
of the PDF is shifted to much higher values of the LDOS compared to the
non-interacting case. We will understand this severe modification later. Further
increase of the interaction strength to U = 1.5 systematically fortifies this
redistribution. More and more sites exhibit comparable values of the LDOS,
as can be seen from the larger slope of the cumulative PDF. This behavior
contradicts a strong fragmentation of the single-particle excitation spectrum.
Moreover, we note that the cumulative PDF gains most of its weight in two
regions of a big slope for U = 1.5 . This feature erodes for bigger interaction
strengths as can be seen from the cumulative PDF for U = 2.5. In panel (b)
the interaction strength is stepwise increased further to U = 4. In contrast to
the behavior found in panel (a) it can be clearly seen that opposite behavior is
obtained in that case. The PDFs shifts again to smaller and smaller values of
the LDOS. Obviously, correlations do not monotonically influence the PDF of
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6. Anderson-Hubbard model with box disorder

Figure 6.5.: Evolution of the PDF of the LDOS at the Fermi level p[ρ(ω = 0)]
for fixed disorder strength ∆ = 2 and increasing interaction strength:
U = 0,0.5,1. The dashed lines correspond to least square fits with a
log-normal function. The inset shows the same data on a linear scale.
Parameters are K = 3, η = 10−3, W0 = 1.0 and µ = U/2.

the LDOS, but rather lead to two different regimes. We expect this behavior to
have a strong influence on the conduction properties of the system, and that it
should also be mirrored in other observables.
To understand this behavior the PDF is compared to least square fits with

log-normal distributions on a log-log scale for ∆ = 2 in figure 6.5. At zero
interaction the log-normal distribution represents a good approximation of the
PDF of the LDOS, but for increasing interaction strengths U = 0.5 and U = 1
strong modifications are observed. The weight of the PDF is shifted to higher
values of the LDOS and an additional interaction-induced peak is observed.
The latter becomes particularly apparent on a linear scale as shown in the inset.
From these results it is obvious that the log-normal distribution is not sufficient
to approximate the PDF of the LDOS in the interacting case. It is interesting
to note that the formation of a second peak is reversed upon further increase of
the interaction strength as we learned from the discussion of figure 6.4.

Next we discuss the evolution of the PDF with increasing disorder and for fixed
interaction strength U = 1 as plotted in figure 6.6. In the homogeneous system
the PDF of the LDOS is given by a delta-function at the value ρ = 1.26, which
corresponds to the value of the non-interacting system due to the Luttinger
theorem. Finite disorder strength (∆ = 1) broadens the PDF similar to the
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Figure 6.6.: Evolution of the PDF of the LDOS at the Fermi level p[ρ(ω = 0)] for
fixed interaction strength U = 1.0 with increasing disorder strength:
∆ = 0,1,2,3,5. The dashed lines correspond to least square fittings of
a log-normal function. Parameters are K = 3, η = 10−3, W0 = 1, and
µ = U/2.

behavior found in the non-interacting case as shown in figure 3.4. However, we
clearly recognize the two-peak structure of the PDF for ∆ = 2 and ∆ = 3. This
structure is also observable for ∆ = 5, but a suitable approximation via the
log-normal distribution is clearly restored in the strongly disordered regime.

6.3. Paramagnetic ground state phase diagram

An important feature of the system considered here is given by the Mott transi-
tion in the homogeneous system as discussed in section 2.6. By construction the
statistical DMFT reduces to DMFT in the homogeneous system and therefore
a Mott transition is contained in the theory for the half-filled homogeneous
system. It is reasonable to expect the Mott transition to be also present in the
disordered case at least for moderate disorder strengths, since the box disorder
exhibits a bounded range of accessible on-site energies. An example of such a
transition is given in figure 6.7, in which the geometrically and arithmetically
averaged spectral functions are displayed for fixed disorder strength ∆ = 3 and
increasing interaction strength. For U = 2 we recognize a spectral function
corresponding to a disordered metal, as at the same time it was checked that
the states at the Fermi level are extended. This means that the system exhibits
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Figure 6.7.: Evolution of the arithmetically and geometrically averaged spectral
function with increasing interaction strength (U = 2,3,4,5) for fixed
disorder strength ∆ = 3. Parameters are η = 10−3, µ = U/2, W0 = 1,
and K = 3.

no excitation gap. When the interaction strength is increased (U = 3), the
spectrum becomes more and more dominated by incoherent excitations. Finally,
the spectra belonging to U = 4 and U = 5 evidently correspond to Mott
insulating states, since 〈ρ(0)〉arith = 0. Obviously, a Mott transition takes place
between U = 3 and U = 4.
It is of fundamental interest, how the Anderson transition of the non-

interacting system is modified in the presence of interactions and how the
Mott transition of the homogeneous system is affected by disorder. The nature
of the Anderson-Mott transition has been investigated in detail within TMT
[4, 5, 82] and within statistical DMFT [85]. In the latter, also a Griffiths phase
was revealed as precursor for the Anderson-Mott transition. However, the extent
of the metallic phase has not been systematically discussed within statistical
DMFT so far, but only within TMT, which neglects spatial fluctuations [5, 60].
We will discuss how the homogeneous system in the Mott insulating state

is affected by disorder and its strength is increased stepwise. In figure 6.8 the
evolution of the geometrically and arithmetically averaged spectral function is
presented at fixed interaction strength U = 3. In the homogeneous system the
corresponding state is Mott insulating. The Mott excitation gap persists for
small disorder strengths. From the spectrum at ∆ = 2 we clearly see that the
Mott gap is reduced by disorder. This can be understood by a redistribution
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Figure 6.8.: Evolution of the arithmetically and geometrically averaged spectral
function with increasing disorder strength ∆ (∆ = 0,2,3,4) for fixed
interaction strength U = 3. Parameters are η = 10−3, µ = U/2, W0 = 1,
and K = 3.

of states into the gap. For ∆ = 3 the gap is completely filled. The geometric
average is finite in the core of the band, but zero in the outer parts of the
spectrum. This suggests that a metallic phase is obtained. This is confirmed by
a proper investigation (which is not shown here) of the evolution of the PDF
of the LDOS in the limit η → 0 to rule out localized states at the Fermi level.
Hence, the increase of the disorder strength causes a delocalization of the local
magnetic moments of the Mott insulator and the system undergoes a transition
from the Mott insulator to a disordered metal. This result is in agreement with
findings obtained by TMT [60]. Moreover, we note that the Kondo resonance
corresponding to coherent quasi-particle excitations is present in the disordered
metal.

The question how the correlation-induced metal-insulator transition is affected
by randomness arises naturally. In previous TMT studies [60] it was observed
that the Luttinger theorem, i.e. the pinning of the LDOS at its non-interacting
value [210], is not fulfilled in the presence of randomness. Moreover, it was
shown that the metallicity, given by the DOS at the Fermi level, grows with
increasing interaction strength so that the Luttinger theorem is nearly fulfilled
again [60]. Sufficiently strong interactions hinder a decay of the quasi-particle
excitations. Further increase of the interaction strength leads to a rather abrupt
transition to the Mott insulating phase. Within statistical DMFT we observe a
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Figure 6.9.: Arithmetically averaged LDOS at the Fermi level 〈ρ(0)〉arith for three
different values of the disorder strength ∆: ∆ = 0.5 (solid squares),
∆ = 2 (open circles) and ∆ = 3 (solid circles) in the upper panel. In the
lower panel the arithmetically averaged LDOS is plotted as a function of
the disorder strength for three different values of the interaction strength
U : U = 1 (solid squares), U = 2 (open circles) and U = 3 (solid circles)
in the upper panel. Parameters are µ = U/2, η = 10−3, W0 = 1, and
K = 3.

similar behavior as given in the upper panel of figure 6.9, where the arithmetic
average of the LDOS at the Fermi level is plotted as a function of the interaction
strength for three different disorder strengths. For U = 0 the arithmetic average
LDOS decreases for higher disorder strengths as expected. As a consequence of
increasing interaction we observe an increase of the metallicity for each value
of the considered disorder strengths in agreement with the TMT results. For
∆ = 0.5 the metallicity increases gradually until it suddenly drops to zero for
Uc = 1.8. This behavior indicates a first order transition in agreement with
the observed hysteresis region within TMT [60]. However, no sudden transition
to the Mott insulator occurs for higher interaction strengths as for example
displayed for U = 2 and U = 3 but a rather smooth decline. Our data does
not allow for answering the question whether the decline corresponds to second
order transition or a crossover, whereas the previous TMT analysis suggests a
crossover [60].
The increase of metallicity is conform with the observed influence of the

interaction strength on the PDF of the LDOS as discussed in context of
figure 6.4 for ∆ = 4. The two regimes of distinct behaviors of the PDF upon
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Figure 6.10.: Evolution of the cumulative PDFs at the Fermi level P [ρ(0)] with
decreasing η for the (a) non-interacting system and (b) in presence of
interactions, U = 3, at fixed disorder strength ∆ = 4. Parameters are
µ = U/2, W0 = 1, and K = 3.

increase of the interaction strength discussed previously are not reflected in the
metallicity. The metallic phase obviously features non-trivial properties, which
might be associated to the non-Fermi liquid phase representing the precursor of
the Anderson-Mott transition [85]. Future research is needed to substantiate
this possibility and the additional determination of the PDF of further local
observables such as the quasi-particle decay rate might be necessary to properly
characterize this phase.
The lower panel of figure 6.9 displays the metallicity as a function of disor-

der strength for three different values of the interaction strength. The finite
metallicity of the homogeneous system found for small interaction remains for
increasing disorder strength, but reduces gradually. Starting within the Mott
insulating phase of the homogeneous system, an increase of the interaction
results in a finite metallicity from some critical value on, which confirms the
the disorder-induced delocalization.

Next we discuss how Anderson localized states are influenced by interactions.
Panel (a) of figure 6.10 shows the evolution of the PDF of the LDOS at the Fermi
level upon η → 0 for the non-interacting system with ∆ = 4 and K = 3. The
state is Anderson insulating. In panel (b) the corresponding evolution is shown
for finite interactions, namely U = 3. Clearly, the PDF saturates corresponding
to an extended state. The interaction obviously causes a transition from the
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6. Anderson-Hubbard model with box disorder

Figure 6.11.: Paramagnetic ground state phase diagram of the half-filled Anderson-
Hubbard model calculated by means of the statistical DMFT in the
∆−U -plane. It consists of Anderson-Mott insulator, Mott insulator and
paramagnetic disordered metal. Parameters are µ = U/2, W0 = 1.0,
and K = 3.

Anderson insulator to the disordered metal. Thus, a second delocalization
transition caused by the increase of the interaction strength is identified, which
is in agreement with the corresponding TMT analysis [60]. Now we are also
able to understand the dramatic effect of the introduced correlations on the
PDF of the LDOS as displayed in panel (a) of figure 6.4, since the system is in
the metallic state already for U = 0.5.

Our systematic analysis results in the paramagnetic phase diagram depicted
in figure 6.11. Both above described delocalization processes are clearly visible,
as can be judged from the extent of the metallic phase. For strong interactions
a Mott insulator occurs, which is continuously connected to the Anderson-
Mott insulator for strong disorder. That means, the Mott insulating state can
be continuously tuned into an Anderson-Mott insulating state by changing
the disorder and the interaction strength. The dashed line corresponds to a
vanishing arithmetic average of the LDOS at the Fermi level, as a reasonable
distinction between the Mott insulator and the Anderson-Mott insulator. Within
TMT studies a distinction was achieved by the criterion of vanishing Hubbard
subbands [60] or whether the quasi-particle weight drops to zero for all on-site
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energies or not [5]. Here, we see that the Anderson-Mott insulator and the Mott
insulator are separated both by the metallic phase and for strong interactions
by a crossover line ∆ ≈ U . Future research is needed to quantify the critical
behavior of the transition from metal to the Mott insulator for higher disorder
strengths. Statistical DMFT investigations in combination with more powerful
and accurate impurity solvers such as the numerical renormalization group
[56, 144, 176] could give valuable insight in this respect.
It is interesting to compare our statistical DMFT phase diagram with the

phase diagram obtained by means of the TMT [5, 60] depicted in figure 6.12.
The overall structure is reproduced. Within both methods one finds a metallic
core for intermediate strengths of both the disorder and the interaction. Also
the shape of the metallic core is in agreement. The two delocalization processes
are obtained within both methods.

Figure 6.12.: Paramagnetic ground state phase diagram of the half-filled Anderson-
Hubbard model calculated by means of TMT in the ∆ − U -plane.
Reprinted from reference [60].

However, on a quantitative level the methods differ substantially. In the
non-interacting system, the TMT predicts the Anderson localization to occur
at a critical disorder strength ∆c ≈ 1.8 [60]. Within statistical DMFT the
transition is found for significant higher disorder strength. For the connectivity
K = 3 the critical disorder strength ∆c ≈ 3.75 results in a discrepancy of a
factor ∼ 2. We remark that within TMT no fluctuations due to disorder are
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incorporated. Furthermore, the choice of the mean, i.e. geometric average,
is arbitrary and has a strong influence on the extent of the metallic phase
[262]. This discrepancy was already discussed by Alvermann and Fehske for
the non-interacting system [13]. Therein it was also shown that TMT misses
the re-entrance behavior of the mobility edge that was found by means of the
local distribution method. Moreover, our discussion above shows that within
statistical DMFT the extent of the metallic phase depends on the connectivity
K. From a physical reasoning this is an expected and a reasonable feature.
For higher connectivities, within the statistical DMFT, this discrepancy to
TMT findings will even be consolidated, since the critical disorder strength for
Anderson or Anderson-Mott localization will be higher. As a consequence, the
crossover line between the metallic phase and the Mott insulating phase exists
for much larger disorder strengths than found within TMT.
On the other hand, it should be mentioned that within the TMT investi-

gation the numerical renormalization group was employed as impurity solver.
Therewith, the Mott transition is determined essentially numerically exactly. In
contrast, within the here presented statistical DMFT approach the approximate
MPT was used, which is known to differ from the most accurate values known
[57].
To sum up the comparison, our findings indicate that the criticisms regard-

ing the detection of localization within TMT [13, 256, 262] is justified on a
quantitative level. However, our investigation supports that the statistical
DMFT and the TMT lead to qualitatively agreeing results in general. In this
sense, the TMT represents a valuable investigation tool for strongly correlated,
disordered systems. An important advantage of the TMT is the considerable
smaller computational effort, which enables the use of more powerful impurity
solvers than it is feasible to date within statistical DMFT.

6.4. Conclusion

The statistical DMFT was applied to the box disordered Anderson-Hubbard
Hamiltonian. We have confirmed, that the statistical DMFT is able to describe
localization transitions in the presence of interactions and disorder. Localization
is judged by the evolution of the PDF of the LDOS in the limit η → 0, which
enables the investigation of the Anderson-Mott transition.
It was found that the presence of interactions in the Anderson insulating

phase causes delocalization for intermediate disorder strengths. On the other
hand, also disorder delocalizes the Mott insulating phase by the redistribution
of states into the Mott gap. However, if the disorder or respectively the
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interaction is strong enough, no metallic phase occurs anymore. Consequently,
the Mott insulator and the Anderson-Mott insulator are continuously connected.
The resulting paramagnetic ground state phase diagram containing all these
results was found to be in qualitative agreement with TMT results. However,
considerable quantitative differences between statistical DMFT and TMT were
found regarding the extent of the metallic phase.

Our analysis of the probability distribution functions of the LDOS in the in-
teracting case revealed a non monotonic dependence on the interaction strength.
The most striking feature is an emerging second peak in the PDF which was
not observed before. In particular, the log-normal distribution does not serve
as a suitable approximation in the interacting case.
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7. Binary disordered fermions

In section 5.2.2 it was discussed how a binary disorder distribution of random
on-site energies can be realized by ultracold atoms in optical lattices. Beside
this interesting realization of quantum simulations of the Anderson-Hubbard
model, the binary disorder model is of general interest in solid state theory,
where it serves as a basic model of alloys, two-species compounds and doped
semiconductors.
Due to its physical significance the binary disorder model was studied since

the early stages of disorder physics [163, 164, 263, 277, 307]. By means of
CPA disorder-induced band splitting was established [164, 277, 307] and exact
diagonalization revealed a rich localization structure as for example bound
states have been identified [163], a phenomenon known from percolation theory
[99]. In fact, for infinite disorder splitting of the two energy levels a percolation
problem is yielded. Recently these rich localization phenomena were confirmed
by a local distribution investigation of the binary model [13].

The binary disorder model combined with local interactions, modeled by the
Anderson-Hubbard Hamiltonian has been addressed within DMFT on a CPA
level to deal with disorder [59, 63, 178, 190, 275]. In particular, it was shown
that new types of alloy-Mott or alloy-charge transfer insulators can appear
and that the Mott metal-insulator transition can occur at non-integer particle
densities [59, 190]. However, CPA is not able to incorporate localization effects
and therefore an essential piece of the picture is missing.

In this chapter the statistical DMFT (see section 4.4) is applied to correlated
fermions on a lattice with binary type of disorder. Thereby, localization effects
are incorporated on the level of full PDFs and it is shown that Anderson
localization significantly extends the picture. In particular, we investigate
how the predictions from the work Byczuk et al. [59] are modified when the
Anderson localization is present.

We consider the Anderson-Hubbard model (4.1), in which the PDF of the
on-site energies pε(ε) is given by the bimodal function (5.17), with disorder
energy splitting ∆ and impurity weight x. In the following we set the impurity
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concentration x and the total particle density

ν = 1
N

∑
i,σ

〈niσ〉 (7.1)

to be equal, i.e. x = ν, by adjusting the chemical potential during the iterative
solution of DMFT equations. This choice enables us to study Mott metal-
insulator transition at non-integer particle densities [59]. For the calculations
presented below, we choose the impurity concentration and the particle density
equal to x = ν = 0.2. Furthermore, we set the coordination number K = 6
shortly above the classical percolation threshold xp = 1/K [231], i.e., extended
states can exist within both upper and lower alloy bands when they are split due
to disorder. We work again in energy units of the non-interacting bandwidth of
the homogeneous system. Parts of this chapter are published [248].

Figure 7.1.: Natural logarithm of the PDFs of the non-interacting system p[ρ] plotted
color coded for fixed broadening η = 10−3 and several disorder parameters
∆: (a) ∆ = 0.0, (b) ∆ = 1.0, (c) ∆ = 2.0, (d) ∆ = 3.0. Parameters are
K = 6, ν = 0.2, W0 = 1.0 and x = 0.2.
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7.1. Anderson transition and localization effects in
the non-interacting case

First we will concentrate on the various localization phenomenon that are
present in the binary disorder model. In particular, it is discussed how to detect
localization effects and how to distinguish between extended and localized states
in the non-interacting limit.

Figure 7.2.: Cumulative PDFs of the non-interacting system P [ρ] plotted color coded
for fixed broadening η = 10−3 and several disorder parameters ∆: (a)
∆ = 0.0, (b) ∆ = 1.0, (c) ∆ = 2.0, (d) ∆ = 3.0. Parameters are K = 6,
ν = 0.2 and x = 0.2.

In figure 7.1 the PDFs are plotted on a logarithmic scale for different increasing
values of the disorder parameter ∆. They are presented as color plot in the
plane spanned by the LDOS in x-direction and frequency in y-direction. In
the homogeneous system all PDFs of course correspond to delta functions. For
finite disorder the PDFs are broadened over many decades of the LDOS. By
comparison with the typical PDFs obtained for box disorder, as for example
given in figure 3.6, we note that the PDFs are not smooth for all frequencies,
but rather given as a aggregation of different steps for some frequencies.

The step structure becomes especially clear by looking on the corresponding
cumulative PDFs P [ρ(ω)] as defined in equation (3.26) for the same parameters
in figure 7.2. Right the PDFs around ω ∼ ∆ exhibit a clear two-step structure.
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Coming from small values of the LDOS, the cumulative PDFs finally add up to
one, as it is expected. It is remarkable that the value of the discussed cumulative
PDFs changes from 0.0 to 0.2 at the first step, which exactly corresponds to
the impurity weight.

Figure 7.3.: Geometrically (dashed red line) and arithmetically averaged (solid black
line) spectral functions of the non-interacting system for fixed broadening
η = 10−3 and several disorder parameters (∆ = 0.0, 1.0, 2.0, 3.0, 4.0).
Parameters are K = 6, ν = 0.2 and x = 0.2.

The most intriguing feature is given by the band splitting into an upper and
a lower alloy band that occurs with increasing disorder strength. The upper
and lower alloy band can be named majority or minority band depending on
the concentration x. The band splitting can be seen unambiguously by plotting
the arithmetically and geometrically averaged density of states as shown in
figure 7.3. With increasing disorder strength the majority band is shifted away
from the Fermi level. Its band center is exactly dislodged by the disorder
parameter ∆. Looking at figure 7.3, we observe a vanishing geometrically
averaged LDOS in the minority band with increasing disorder strength. This
corresponds to disappearing extended states and is used within TMT-DMFT
to identify the Anderson transition [62, 82]. As mentioned before, by using
the statistical DMFT we use a more powerful and general approach to detect
Anderson localization.

Extended states are characterized by a branch cut on the real axis of the
local Green’s function, whereas localized states are characterized by a dense
distribution of poles in the thermodynamic limit (see section 3.1). As explained
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within the local distribution method, this can be used to detect if states are
localized or extended by investigating the behavior of the PDFs of the LDOS
p[ρi(ω)] shown in figure 7.1 when the broadening η tends to 0 [13]. The PDF
of the LDOS for extended states saturates at a finite value for η → 0, whereas
the PDF of the LDOS for localized states decreases to zero for η → 0.

Figure 7.4.: Natural logarithm of the PDFs p[ρ] of the non-interacting system plotted
color coded for fixed disorder parameter ∆ = 3.0 and several broadenings
η: (a) η = 10−2, (b) η = 10−3, (c) η = 10−4, (d) η = 10−5. Parameters
are K = 6, ν = 0.2 and x = 0.2.

As an example, figure 7.4 shows the behavior of the PDF when decreasing
the broadening from η = 10−2 to η = 10−5 for a selected value ∆ = 3.0. A
change is seen for states in the lower alloy band, whereas the PDFs of the
upper alloy band remain almost unchanged in this regime of η. The probability
distributions of the LDOS of the lower alloy band – the minority band – are
presented in detail for ∆ = 1.0 and ∆ = 4.0 in figure 7.5. It is clearly visible
that the PDFs for small ∆ = 1.0, which correspond to the lower alloy band,
become η-independent for η → 0. On the contrary, at large ∆ = 4.0 the PDFs
strongly depend on η.

In addition to Anderson localization effects we also observe that the spectrum
is highly fragmented (cf. figures 7.3 and 7.5), which is due to the presence of
states with different physical properties. These states differ in the behavior
of the PDF of the LDOS for η → 0 (cf. figure 7.5) and are identified either
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Figure 7.5.: Comparison of color coded natural logarithm of PDFs p[ρ(ω)] of the
minority band of the non-interacting system for two different disorder
parameters ∆ = 1.0 (plots on the left side (a)-(d)), ∆ = 4.0 (plots on
the right side (e)-(h)) and for several broadenings η: (a,e) η = 10−3,
(b,f) η = 10−4, (c,g) η = 10−5, (d,h) η = 10−6. Parameters are K = 6,
ν = 0.2 and x = 0.2.
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as cluster resonances [13, 163] or as ’anomalous’ localized states [244]. The
resonance states are similar bound eigenstates but with a finite life-time. They
appear because of special geometrical configurations of the impurity atoms
[13, 163]. The ’anomalous’ localized states are in fact extended states over
the whole lattice but they are insulating and do not contribute to the dc
conductivity [244]. On a bipartite lattice these states have small wave function
amplitudes on one sublattice and large amplitudes on the other sublattice. The
typical η behaviors of the PDFs for given frequencies are shown in figure 7.6.
Panel (a) shows the behavior of an extended state, panel (b) presents the
behavior of an Anderson localized state, and panel (c) shows the behavior of
an ’anomalous’ localized state with its typical bimodal structure [244]. Our
exemplary ’anomalous’ localized state at ω = −0.01 exhibits a LDOS of ∼ 10−4

on one sublattice and a LDOS of ∼ 5× 10−2 on the other sublattice.

Figure 7.6.: Behavior of cumulative PDFs P [ρ(ω)] of the non-interacting system with
decreasing broadening η (a) for an extended state at ∆ = 1.0 and ω = 0.0,
(b) for an Anderson localized state at ∆ = 4.0 and ω = 0.0 and (c) for
an ’anomalous’ localized state at ∆ = 4.0 and ω = −0.01. Parameters
are K = 6, ν = 0.2 and x = 0.2.

The fragmentation of the minority is highlighted by plotting the cumula-
tive PDFs of the minority band only in figure 7.7 for decreasing values of the
broadening. States exist at many discrete energies corresponding to ’anomalous’
localized states and bound states in agreement to previous findings [14, 163].
These states are separated by regions with Anderson localized states. Ac-
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Figure 7.7.: Color-coded cumulative PDFs P [ρ] of the non-interacting system for fixed
disorder parameter ∆ = 4.0 and several broadenings η: (a) η = 10−3, (b)
η = 10−4 and (c) η = 10−5. Parameters are K = 6 and x = 0.2. Here,
the filling ν is not fixed, which explains the offset on the energy axis.

cordingly, many different mobility edges exist. A circumstance that was also
found within percolation physics [68, 244]. It should be emphasized that all
these phenomena are not present in the usual localization picture based on
the continuous box disorder (see section 3.3 and chapter 6). These remarkable
features are directly connected to the discrete character of the binary disorder.
It is interesting to study how the arithmetically averaged spectral function

evolves under changing of the connectivity K as displayed in figure 7.8. For
fixed disorder strength ∆ = 2.0 the coordination number is given by K = 2 in
panel (a) and increased to K = 4 in panel (b) and K = 6 in panel (c). For lower
K resonances corresponding to bound states and ’anomalous localizes states’ are
more pronounced. For K = 2 there are even resonances present in the majority
band. In case of higher K the resonances in the majority band are washed
out and a smooth band is obtained. Upon increasing of the connectivity a
continuous conduction band is formed, where the impurity states are located, as
soon as the percolation threshold is exceeded. For the here investigated impurity
concentration x = 0.2, a connectivity K > 5 is needed, which is confirmed by
the shape of the minority conduction band in panel (c). Panel (d) displays
the result of a CPA calculation. We note that there is no fragmentation left
and no localization effects are present. The increase of K can be associated
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with an increase of the dimensionality and for bigger and bigger K the spectra
converge towards the CPA result. In fact, it is known that CPA is exact in
infinite dimensions [84, 275, 279].

Figure 7.8.: Arithmetically averaged spectral functions of the non-interacting states
for fixed diorder strength ∆ = 2.0 for (a) K = 2, (b) K = 4, (c) K = 2,
and the CPA result. Parameters are ν = 0.2 and x = 0.2.

7.2. Anderson and Mott transitions in the
interacting case

In the interacting limit we restrict our investigation of the η-dependence to
the lower limit η = 10−5, as we use small ensembles due to computational
limitations. We also note that the MPT requires a small finite broadening
in any case. By considering the binary model in the investigated parameter
regime, we also need to distinguish between an Anderson-Mott insulator and
a band insulator. The band insulator is characterized by 〈ρ(ω = 0)〉arith = 0,
but in contrast to the Mott insulator the excitation gap is determined by the
energy distance between the upper edge of the occupied band and the upper
alloy band, which in this case is proportional to ∆.
The phase diagram presented in figure 7.9 is the main result of this chapter.

The phase diagram consists of three different phases: the disordered metal, the
Anderson-Mott insulator and the band insulator. For zero interaction, the above
described involved localization process takes place under increase of the disorder
strength. For ∆ ∼ 1.75 the Anderson insulator is obtained. In the homogeneous
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Figure 7.9.: Paramagnetic ground state Phase diagram for the interacting and dis-
ordered system in ∆ − U -plane, showing of Anderson-Mott insulator,
paramagnetic metal and band insulator. The solid line corresponds to
the transition between insulating phases and the metal, the dotted line
corresponds to a vanishing arithmetic average of the LDOS at the Fermi
level and the dashed region denotes the crossover between Anderson-Mott
insulator and band insulator. Parameters are K = 6, ν = 0.2, x = 0.2.

case the increase of the interaction does not result into a Mott insulator as the
overall filling is not integer, but a paramagnetic metal is obtained for all values
of U .
In presence of both phenomena the scenario is much more interesting. Let

us first consider small disorder strengths. Here, a disordered metallic phase is
obtained for any interaction strength. When the disorder is sufficiently strong
to induce a band splitting (which corresponds to the intermediate regime)
a correlation-induced transition from the disordered metal to a insulator is
obtained at non-integer filling. When the interaction is increased further, the
half-filled lower alloy band exhibits a Mott transition due to alloy band splitting
and the mechanism described earlier in references [59, 64, 190]. However, as
the current results prove, this type of Mott-Hubbard metal-insulator transition
at non-integer particle densities is also possible, if Anderson localization effects
are taken into account.
The CPA phase diagram is depicted in figure 7.10 for comparison. For its

estimation MPT was used as impurity solver. The phase diagram was first
obtained by Byczuk et al. by using numerical renormalization group () as
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7.2. Anderson and Mott transitions in the interacting case

Figure 7.10.: CPA+MPT paramagnetic ground state phase diagram for the interact-
ing and disordered system in ∆−U -plane, consisting of Mott insulator,
paramagnetic metal and band insulator. The solid line corresponds
to the transition between insulating phases and the metal and the
dashed region denotes the crossover between Anderson-Mott insulator
and band insulator. First obtained by K. Byczuk et al. with numerical
renormalization group as impurity solver [59]. Parameters are K = 6,
ν = 0.2 and x = 0.2.

impurity solver, which gives a much more accurate estimation of the Mott
transition line [57]. Furthermore, in the mentioned work also a hysteresis region
was found [59] corresponding to the critical lines Uc1 and Uc2 [123]. In the here
presented work only the Uc2 is determined, since it is the relevant transition line
for zero temperature [123]. A further difference between the phase diagrams
calculated with MPT and with the numerical renormalization group is the
missing band insulator in the latter, due to the poor resolution of NRG at
higher energies.

By comparison to the phase diagram evaluated by statistical DMFT, we note
the missing Anderson localized phase in the CPA phase diagram. In the limit
of large disorder parameter ∆ the metallic phase as well as the Mott-Hubbard
transition is terminated by Anderson localization. The states in the upper part
of the phase diagram in figure 7.9 are localized due to strong disorder.
Spectra corresponding to the Mott-Hubbard transition are displayed in fig-

ure 7.11, where the arithmetically averaged LDOS obtained within statistical
DMFT is compared to that obtained within a CPA type treatment of disorder.

115



7. Binary disordered fermions

Figure 7.11.: Arithmetic average of the LDOS for increasing interaction strength U
(U = 0.0, 0.5, 1.1, 2.0, 2.5) at fixed disorder parameter ∆ = 2.0. The re-
sults from statistical DMFT calculations (solid black line) are compared
to CPA results (dashed red line). The inset shows the arithmetic mean
of the LDOS at the Fermi level with increasing interaction strength.
Parameters are K = 6, ν = 0.2, x = 0.2.

With increasing interaction U at fixed ∆ three peaks emerge because of the
Mott-Hubbard and band splitting transitions. Moreover, we observe additional
spikes in the LDOS similar to those observed for the non-interacting system
[13, 163]. These spikes are not reproduced by a CPA treatment of disorder
and we conclude that they are due to local interference effects on clusters of
impurity atoms. In the inset of figure 7.11, the arithmetic average of the LDOS
at the Fermi level is presented as a function of U . The Mott-Hubbard transition
appears to take place at U = 1.1. However, this is not a true transition point
as it corresponds to the regime within the Anderson-Mott insulator where all
states are already localized, cf. figure 7.9. We also see in figure 7.11 that by
further increasing the interaction to U = 2.0 the upper alloy band and the upper
Hubbard band are merging. This corresponds to the crossover regime between
alloy Anderson-Mott insulator and alloy-charge band insulator indicated by
the dashed area in the phase diagram in figure 7.9 [59]. An additional effect
is observed in figure 7.11, namely, with increasing U the position of the upper
alloy band is shifted with respect to zero on the energy scale, cf. reference [190].

For comparison the LDOS at a selected U value for different disorder param-
eters ∆ are presented in figure 7.12. As expected, we observe a band splitting
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Figure 7.12.: Arithmetic average of the LDOS with increasing disorder parameter ∆
(∆ = 0.25, 0.75, 1.25, 2.0, 2.5) for fixed interaction strength U = 0.5 and
broadening η = 10−3. Parameters are K = 6, ν = 0.2, x = 0.2.

with increasing ∆ and the formation of an energy gap proportional to ∆ between
the lower and the upper alloy bands. Note that additional peaks appear in the
lower band when the disorder parameter ∆ is increased. These peaks do not
occur in a CPA treatment of disorder.
Finally, in figure 7.13 we show the evolution of the PDFs across the Mott-

Hubbard transitions. The onset of a three peak structure is seen as well as
sharp resonances in the LDOS. These resonances are broadened and washed
out by increasing the interaction strength U .

7.3. Conclusion

In this chapter, we have investigated the binary alloy disordered Anderson-
Hubbard model within statistical DMFT, using MPT as impurity solver. Apply-
ing the statistical DMFT, we were able to compute the full PDF of the LDOS,
and therefore, we were able to study localization effects in a more rigorous way
and in more detail than in TMT. In contrast to continuous disorder types, the
localization process is highly complex. In addition to the Anderson localized
states known from the box disorder distribution, bound states and ’anomalous’
localized states emerge and give rise to sharp resonances in the LDOS. These
resonances are also present in the interacting case, but are broadened due to
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7. Binary disordered fermions

Figure 7.13.: Comparison of the color coded natural logarithm of PDFs p[ρ(ω)] for
disorder parameter ∆ = 2.0 and several interaction strengths U : (a)
U = 0.0, (b) U = 0.25, (c) U = 0.5, (d) U = 0.75. Parameters are
K = 6, ν = 0.2, x = 0.2.

the interaction. Consequently, many mobility edges are present in the binary
disorder model.

As a main result, the paramagnetic ground state phase diagram was obtained.
In comparison to the previous calculated phase diagram by means of CPA, the
additional presence of the Anderson-Mott insulating phase, as well as the band
insulating phase was found. For non-integer particle density n = x a Mott-
Hubbard metal-insulator transition is obtained even when Anderson localization
effects are taken into account. We conclude that this special Mott transition
is accessible within a two-component mixture of ultracold fermions in optical
lattices, if it becomes possible to suppress the hopping of one species.
In future work, it is of interest to calculate the finite temperature phase

diagram. Furthermore, the estimation of the phase diagram in dependence on
the impurity concentration appears useful as this dependence is of relevance
for solid state experiments. From the methodical point of view, it would be
desirable to use impurity solvers that are superior or at least complementary to
MPT.
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8. Fermions in a speckle disordered
optical lattice

Up to know, the most successful realization of disordered potentials for ultracold
atoms is given by speckle disorder [73, 223, 233, 293] (see section 5.2.1). In a
seminal work Roati et al. [233] demonstrated Anderson localization of matter
waves by exposing a 87Rb Bose Einstein condensate to an one-dimensional
speckle pattern. Recently, speckle patterns have been superimposed onto
an optical lattice [223, 293], by which disordered lattices have been realized
for ultracold atoms. Taking care of the experimental geometric setup, the
autocorrelation length of the speckle pattern was nearly reduced down to the
lattice spacing, so that correlations of the random potential on neighboring sites
are negligible [293]. Although so far only bosonic systems have been studied
in the experiment, the route is paved towards a quantum simulator of the
Anderson-Hubbard model (4.1).

A realistic theoretical description of ultracold atoms in a speckle disordered
optical lattice should be capable of describing interaction and disorder on equal
footing, preferably non-perturbatively. As a matter of fact, a careful theoretical
description necessitates also the incorporation of non-diagonal disorder besides
the diagonal disorder[293, 306]. Last but not least the theoretical investigation
should be able to treat other experimentally unavoidable features, such as finite
temperature and the presence of the harmonic trap. In the case of bosons
there have been several theoretical works [41, 177] combining some of these
requirements. So far no comparable works have been performed for fermions.

The aim of this chapter – which is partially published [250] – is to close this
gap and to provide a realistic description of strongly correlated fermions in
an optical lattice. For this purpose, the statistical DMFT (cf. section 4.4) is
employed to solve the Anderson-Hubbard Hamiltonian numerically. The main
finding is that the paramagnetic ground state phase diagram differs strongly
from the phase diagram found for pure diagonal box disorder (cf. section
8.3) The latter has been calculated within TMT [5, 60, 62] or as presented
in chapter 6 also within statistical DMFT. In particular, the Mott insulator
and the Anderson-Mott insulator are not continuously connected in case of
speckle disorder. The results are reappraised in section 8.4 by a complementary
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8. Fermions in a speckle disordered optical lattice

investigation of the two-dimensional square lattice by means of the real-space
DMFT [86, 142, 255]. The influence of temperature on the spectral function
is discussed in section 8.5. Before the results are presented, it is explained in
more detail how the speckle disorder is modeled and how the necessary PDFs
are incorporated.

8.1. Model and joint probability distribution
functions for the Hubbard parameters

The PDF for the on-site energies was already introduced in equation (5.14).
In experimental realizations, the disorder strength ∆ is proportional to the
speckle field strength sD = 〈VD(r)〉 [306] with VD the optical dipole potential
(see section 5.2.1). Hence, the disorder strength can be tuned by the speckle
field strength. The proportionality constant scales monotonically with the ratio
of the speckle field autocorrelation length to the typical spatial extend of the
Wannier function. Thus, the proportionality constant depends in particular on
the experimental optical setup. In the setup of the experiment by White et al.
[293], the relation ∆ = 0.97sD was found [306]. As usually in optical lattice
experiments, the mean value of the interaction strength U can be tuned by
adjusting the s-wave scattering length a between the two fermionic components
by means of the Feshbach resonance or by varying the lattice depth sL, which
in turn also influences the hopping amplitude (cf. section 5.1). Keeping the
lattice depth fixed, the disorder strength and the interaction strength can be
tuned independently by varying the speckle field strength and the magnetic field.
Hence, experimentally full control of the strength of the interaction as well as of
the disorder is given. The relevant energy scale for the lattice depth sL and the
speckle field strength sD is the recoil energy ER. Throughout this chapter we
work in units of the non-interacting bandwidthW0 = 4t

√
K of the homogeneous

system, where the hopping amplitude t can be related to the lattice depth sl by
an exact band structure calculation, as for instance performed by M. Greiner
[130]. The s-wave scattering length a is given in units of the Bohr radius a0.
In our calculations we consider ultracold 40K atoms in two hyperfine states

in an optical lattice generated by a laser with a wavelength λL = 738nm. The
lattice depth is fixed to sL = 10ER. Moreover, we consider the half-filled case,
i.e. the band filling ν = 1

N

∑
iσ〈niσ〉 = 1, which is accomplished by adjusting

the chemical potential µ. The connectivity K = 6 was chosen for the statistical
DMFT calculations.
As already pointed out in section 5.2.1, the realistic description of speckle

disordered lattices necessitates the incorporation of the joint PDFs p∆ε,t(∆ε,t)
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8.1. Model and joint probability distribution functions for the Hubbard parameters

Figure 8.1.: Color coded probability distribution function (histogram) pε,U (ε,U) of
the on-site energies and the on-site interaction for speckle field strength
sD = 0.05ER and s-wave scattering length a = 100a0. The lattice depth
is given by sL = 10ER.

and pε,U (ε,U). This is done on basis of data calculated by Zhou and Ceperley
[306], who calculated the distributions of the Hubbard parameters within an
imaginary time evolution approach for the Wannier functions. The calculations
were performed at fixed disorder strength sD = 1ER and lattice intensity
sL = 14ER. The parameters local interaction strength U , on-site energy ε
and hopping amplitude t were determined for 1222 disorder realizations on a
three dimensional 6× 6× 6 lattice. Based on these data, PDFs for the various
parameters were constructed, inherently containing correlations as for example
shown in figure 8.1. Up to a very good approximation, the on-site energies εi
and tunneling parameters tij are independent. However, there is a significant
correlation between the difference in on-site energies ∆εij = εi − εj and the
tunneling parameter tij , as is shown in figure 8.2.
Although these calculations were originally performed for bosonic 87Rb, the

random parameters εi, Ui, tij depend only on the structure of the single particle
states and can thus also be used for fermionic system after an appropriate
rescaling.
Being bounded from below the most likely value and lower bound for the

on-site energy corresponds to regions of low intensity, where we set ε = 0, thus
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8. Fermions in a speckle disordered optical lattice

Figure 8.2.: Color coded joint probability distribution function (histogram) p∆ε,t(∆ε,t)
of the difference in on-site energies and the respective hopping amplitudes
for a speckle field strength sD = 0.4ER and lattice depth sL = 10ER.
Due to the reflectional symmetry of the disorder-averaged system, the
distribution only depends on |∆ε|.

recovering the usual energy scale in the absence of the disorder speckle laser. It
was found in reference [293], that the disorder strength ∆ (i.e. the standard
deviation of pε(ε)) scales linearly with the speckle intensity sD, as is to be
expected in the perturbative limit. Thus, after an on-site energy is drawn from
the distribution, it is simply scaled by multiplication with the respective sD.
An affine shift is not required due to the bound discussed above.

The on-site energy ε and on-site interaction strength U are sampled from
a two-dimensional joint PDF, which is equivalent to first sampling ε from
the marginal PDF pepsilon(ε) and subsequently U from the conditional PDF
pU (U |ε). The standard deviation of the on-site interaction parameter U (i.e.
the marginal distribution pU (U) ≡

∫
dε pε,U (ε,U)) scales linearly with sD, while

the most probable value of U remains unaffected by a variation in sD up to
a good approximation. Therefore, the variation in U in the two-dimensional
distribution pε,U (ε,U) is scaled by sD while the most likely value is set to
the value of U determined from a band-structure calculation of the Wannier
functions in the pure case without disorder, as performed in reference [130] for
instance.
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8.1. Model and joint probability distribution functions for the Hubbard parameters

In contrast to the local interaction parameter U , the nearest neighbor tun-
neling amplitude tij exhibits only very weak correlation with the respective
on-site energy while the correlation with the energy difference between the two
sites ∆ε ≡ εi − εj is significant. Hence, the distribution for ∆ε and t cannot
be sampled independently (i.e. p∆ε,t(∆ε, t) 6= p∆ε(∆ε) pt(t)) and a conditional
distribution function pt(t|∆ε) for t, given a fixed value of ∆ε, was constructed
from the data in [306]: For 200 discrete values of ∆ε a histogram approximating
pt(t|∆ε) was extracted, approximating the PDF. This PDF is integrated with
respect to t, yielding the conditional PDF Ft(t|∆ε) and subsequently normalized
for each fixed ∆ε, such that limt→∞ Ft(t|∆ε) = 1. To randomly sample values
in a numerically efficient manner from pt(t|∆ε), the conditional cumulative
PDF Ft(t|∆ε) is inverted with respect to t on a linearly interpolated grid on
[0,1], consisting of 800 points. Given a fixed ∆ε, a randomly drawn value of
the inverted cumulative distribution is thus distributed according to the initial
conditional PDF pt(t|∆ε), leading to the sought-after sampling routine. This
routine was implemented by Ulf Bissbort.
As now has become clear the three sets of the parameters for the Hubbard

model underly statistical fluctuations. For the three-dimensional case with
equal laser intensity along each of the three axes, all parameters are unique
functions of sL and sD for a given atomic species, when expressed in units
of ER. However, this is not the case in the two-dimensional lattice, which is
investigated by means of real-space DMFT. Here, the interaction parameter U
depends on the shape and strength of the axial trapping potential, which may
vary significantly in different experiments. In this anisotropic case with fixed
as, the lattice depth sL does not uniquely characterize the point in the phase
diagram and, therefore, we work in units of the non-interacting bandwidth W0
of the homogeneous system.

In order to incorporate the disorder in the on-site interactions, the stochastic
self-consistent calculation scheme presented in section 4.4.1 is modified slightly
by an additional step:

1. For each sample a random on-site energy εi is drawn from the PDF pε(εi)
given in equation (5.14).

2. For each sample a random on-site interaction Ui is drawn from the condi-
tional PDF pU (U |ε).

3. For each sample random hopping amplitudes tij are drawn from the
conditional PDF pt(t|∆ε) depending on the difference ∆ε = εi − εj of the
on-site energies εi and εj of the randomly determined nearest neighbor j.
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8. Fermions in a speckle disordered optical lattice

Figure 8.3.: Comparison of arithmetically (black solid lines) and geometrically
(red dashed lines) averaged spectral functions with increasing speckle
field strength sD (sD = 0.0ER, 0.1ER, 0.2ER,0.3ER,0.4ER) in the non-
interacting limit a = 0. Parameters are ν = 1.0, sL = 10ER, and
η = 10−3.

4. The hybridization function Γi(ω), with the local single-particle Green’s
function Gjj(ω) of the nearest neighbors randomly sampled from the PDF
p [Gii(ω)], is determined via equation (4.24) for each sample.

5. The local self-energy Σi(ω) is calculated from the solution of the local
impurity problem by using an impurity solver.

6. The local single-particle Green’s function Gii(ω) is calculated using equa-
tion (4.22)

7. Having calculated a completely new ensemble {Gii(ω)}, a new PDF
p [Gii(ω)] is obtained by construction of a histogram.

8.2. Anderson localization in the non-interacting
case

The arithmetic and geometric average of the LDOS obtained within statistical
DMFT, which for the non-interacting case reduces to the local distribution
approach [2, 13], exhibit different behavior with increasing disorder strength
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∆. Figure 8.3 displays the evolution of the arithmetically and geometrically
averaged LDOS in the non-interacting case, when the speckle field strength is
increased from 0ER to 0.4ER.
First of all, we note that with an increase in the speckle field strength, the

spectra are broadened and long tails emerge at positive energies. A noticeable
difference between the geometric mean and the arithmetic mean, is that the
geometric mean of the LDOS converges to zero with increasing ∆. This can be
attributed to the transition from extended states to localized states, which is

Figure 8.4.: Color coded natural logarithm of PDF p[ρ] for increasing speckle field
strength sD: (a) sD = 0.0ER, (b) sD = 0.1ER, (c) sD = 0.2ER, and (d)
sD = 0.3ER. Parameters are as = 0, η = 10−3, ν = 1.0, and sL = 10ER.

used within the TMT [5, 60–62, 82, 87]. However, not only averages, but also
the full PDF p[ρ(ω)] is accessible within the statistical DMFT. This enables a
more powerful and clearer distinction between localized states and extended
states as already explained in chapters 6 and 7. The PDFs p[ρ(ω)] associated
with the data shown in figure 8.3, are plotted in figure 8.4. As expected in the
homogeneous case (cf. panel (a)), the PDF for each frequency is given by a
delta function. For finite disorder strength, the PDFs spread out over several
orders of magnitude.

Within the statistical DMFT, extended and localized states are characterized
by different behavior of the PDF p[ρ(ω)] in the limit of vanishing broadening
η → 0 [13]. The PDF of an extended state saturates at a finite value for η → 0,
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8. Fermions in a speckle disordered optical lattice

Figure 8.5.: Color coded natural logarithm of PDFs p[ρ(ω)] for decreasing broadening
η and speckle field strength sD = 0.4ER (panels (a)-(d)) and sD = 0.7ER
(panels (e)-(h)) of non-interacting fermions. Parameters are ν = 1.0 and
sL = 10ER.
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8.2. Anderson localization in the non-interacting case

while more and more weight of the PDF shifts towards zero in the case of
localized states. In figure 8.5 the behavior of the PDFs at two speckle field

Figure 8.6.: Behavior of the cumulative PDFs P [ρ(ω = 0.0)] as the broadening η is
decreased from 10−3 to 10−6 for (a) speckle field strength sD = 0.4ER and
(b) speckle field strength sD = 0.7ER without interaction. Parameters
are a = 0, ν = 1.0, and sL = 10ER.

strengths sD = 0.4ER and sD = 0.7ER are plotted as a series of vanishing
broadening η → 0. The different behavior of the extended and localized states
allows us to distinguish between them and the mobility edges can be identified
as shown in panel (d) for sD = 0.4ER. Here, we find a similar behavior as in the
box disorder case. Mobility edges are identified clearly and the states between
the mobility edges are extended, whereas the states outside are localized. As
soon as the Fermi level is passed, the system becomes Anderson insulating.
We observe that the states at the Fermi level are extended for speckle field
strength sD = 0.4 - therefore it is metallic whereas for speckle field strength
sD = 0.7ER the states at the Fermi level are localized. This can also be seen
from the 2D-plots of the corresponding cumulative PDFs at the Fermi level
for the two speckle field strengths in figure 8.6. These localization phenomena
differ strongly from the involved localization physics investigated in the last
chapter 7.
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8. Fermions in a speckle disordered optical lattice

8.3. Paramagnetic ground state phase diagram of
the interacting system

Now we will discuss the main result of our investigation, i.e. the paramagnetic
ground state phase diagram of interacting fermions exposed to speckle disorder
(in the s-wave scattering length a and speckle field strength sD plane), as
displayed in figure 8.7.

Figure 8.7.: Paramagnetic ground state phase diagram of fermions in a speckle dis-
ordered optical lattice in the sD-a-Plane. Parameters are ν = 1.0 and
sL = 10ER. In the Munich experiment [242] - so far without disorder -
scattering lengths up to a = 300a0 can be achieved.

In the absence of disorder (sD = 0), a Mott metal insulator transition is found
at intermediate interaction strength. For the system considered here, we found
the critical s-wave scattering length for Mott transition ac = 117.5a0. In the
absence of interactions (a = 0), the Anderson transition is found at sD = 0.66.
In a system with both speckle disorder and interactions, three separate phases
exist: Mott insulator, disordered correlated metal, and Anderson-Mott insulator.

In figure 8.8 the arithmetically averaged spectral functions are given for two
different speckle field strengths sD: in panel (a) for sD = 0.05ER and in panel
(b) for sD = 0.1ER. In both cases the interaction strength is increased from the
bottom to the top. Remarkably, the spectral functions evolve very differently for
the two disorder strengths. For speckle field strength sD = 0.05ER a correlation-
induced metal-insulator transition takes place at finite a. For sD = 0.1ER in the
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8.3. Paramagnetic ground state phase diagram of the interacting system

Figure 8.8.: Arithmetically (black solid) and geometrically (red dashed) averaged
spectral function with increasing s-wave scattering length a for speckle
field strength sD = 0.05ER in panel (a) and for speckle field strength
sD = 0.1ER in panel (b). Parameters are ν = 1.0 and sL = 10ER.

investigated regime up to a = 350a0, no metal-insulator transition was found.
Instead, the Kondo peak, i.e. the coherent low-energy excitations, are stabilized
for higher interaction values, whereas the lower Hubbard band is shifted away
from the Fermi level.
This behavior is caused by the redistribution of the states into the Mott-

Hubbard gap due to disorder. For sufficiently strong disorder, the gap is closed.
The unbounded nature of the speckle disorder at any finite ∆ gives rise to
states with very high energies, although their ratio is exponentially suppressed
in ∆−1. This means that the Mott transition at finite disorder strength, which
is described here, might even be an artifact of the finite size N in the stochastic
Green’s function ensemble. If this is the case, it would be an intrinsic feature
of finite size optical lattice as well.

To gain further insight, we plotted the arithmetically averaged LDOS at the
Fermi level as a function of the s-wave scattering length a in figure 8.9 for
three different speckle field strengths. Due to the finite disorder strength, the
arithmetically averaged LDOS at zero interaction is reduced, which means that
the Luttinger theorem is not fulfilled in presence of disorder. By increasing the
interaction strength, the metallicity is improved for all three disorder strengths.
At low disorder strength (sD = 0.05ER), the Luttinger theorem is asymptotically
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Figure 8.9.: Arithmetically averaged local density of states at the Fermi level
〈ρ(0)〉arith for three different values of the speckle field strength sD:
sD = 0.05ER (red solid line), sD = 0.2ER (green dashed line) and
sD = 0.2ER (blue dotted line). For comparison the local density of
states at the Fermi level of the homogeneous, non-interacting system
ρ0(0) = 1.265 is included. Parameters are ν = 1.0 and sL = 10ER.

fulfilled for a ∼ 100a0. This is in agreement with results for the Anderson-
Hubbard model with box disorder [5, 60, 62]. The metallicity is suddenly reduced
for stronger interactions and finally a Mott-Hubbard transition takes place at
ac = 145a0 for sD = 0.05ER. For higher disorder strengths (sD = 0.1ER and
sD = 0.2ER), no Mott transition is found for scattering lengths up to a = 350a0.

It is interesting to compare the qualitative structure of the phase diagram in
Fig. 8.7 with the counterpart of ultracold bosonic atoms in speckle disordered
lattices [41]. In the latter case, an arbitrarily weak speckle field leads to
a vanishing of the excitation gap and the Mott insulator only exists in the
homogeneous system without disorder, in contrast to the fermionic case where a
Mott insulator may exist at ∆ > 0. Furthermore, the results presented here differ
from the results obtained within TMT [5, 60, 62] for fermions with bounded
box disorder. Although a delocalization tendency was found for box disorder,
a correlation-induced metal-insulator transition takes place at intermediate
disorder strengths. The critical interaction strength is shifted to higher values
proportional to the disorder strength. Thus, the Anderson-Mott insulator and
the Mott insulator were found to be continuously connected [60]. All important
differences between the paramagnetic ground state phase diagrams for box
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disorder and speckle disorder can be attributed to the unbounded nature of the
speckle distribution.

8.4. Speckle disordered square lattice
Fermions with a semi-elliptic density of states are assumed to qualitatively
exhibit the same physics as fermions in three-dimensional lattices. It is important
to note, that the physics may differ in a two-dimensional system. For this
reason fermions on a square lattice were investigated within real-space DMFT
[86, 142, 255] in collaboration with Julia Wernsdorfer.
As already indicated in section 4.4 the statistical DMFT [85] was originally

introduced in two implementations, on the infinite Bethe lattice as well as a
computation scheme for finite lattices. A terminological distinction by referring
to the first implementation by statistical DMFT and to the latter as real-
space DMFT is justified and helpful1. Real-space DMFT is applicable to any
lattice structure and incorporates present disorder or inhomogeneities non-
perturbatively. For an initial disorder realization the self-consistency of the
whole system is guaranteed by the converged solution for each local Green’s
function of the coupled sites. It represents a system of self-consistency equations
for each disorder realization and, hence, it is a deterministic approach. In
contrast, statistical DMFT investigates the loop-free Bethe lattice on an infinite
system and the self-consistency is aimed on a level of PDFs for the Green’s
function. The statistical DMFT is a statistical approach from the beginning
and investigates a random disordered system on a fully stochastic level.
In some more detail, within real-space DMFT each lattice site is mapped

onto a single-impurity Anderson Hamiltonian. The hybridization function
has to be determined self-consistently for each lattice site. Starting with an
arbitrary hybridization function, the solution of each impurity problem is
provided by MPT, as in statistical DMFT, and leads to a set of local self-energy
functions Σiδij(iωn). They determine the self-energy matrix in the real-space
representation

(Σ)ij = Σiδij . (8.1)

Following the Dyson equation, the interacting lattice Green’s function is given
by

G(iωn)−1 = G0(iωn)−1 −Σ(iωn) , (8.2)
1In the literature real-space DMFT is also referred to as statistical DMFT at times, e.g. in
[258].
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Figure 8.10.: Arithmetically averaged spectral function with increasing interaction
strength U for fixed speckle field strength sD = 0.05ER obtained via
statistical DMFT with K = 4 (black solid line) and real-space DMFT
(red dashed line). The spin-summed filling is given by ν = 1.0 and the
lattice size within the RDMFT calculations was 24× 24.

where ωn are the Matsubara frequencies. The non-interacting Green’s function
G0(iωn) in real-space representation is given by

G0(iωn)−1 = (µ + iωn)1− t−V , (8.3)

where 1 is the unity matrix, t is the matrix of hopping amplitudes, and
(V)ij = εiδij denotes the matrix of random on-site energies. Together with
equation (4.22) and the diagonal elements from the inverted relation (8.2)
a set of local hybridization functions Γ(i)(ω) is extracted, which closes the
self-consistency loop. Besides describing the Mott-Hubbard metal-insulator
transition and magnetic order, real-space DMFT is capable of treating spatial
inhomogeneities such as disorder. For more details the reader is referred to the
literature [142, 255].

In order to investigate the speckle disordered square lattice and to assess our
results obtained within statistical DMFT for fermions with a semi-elliptical
density of states, Julia Wernsdorfer performed real-space DMFT calculations.
An exemplary comparison of the arithmetically averaged spectral functions
obtained by the two methods for identical parameters is given in figure 8.10. In
these statistical DMFT calculations the connectivity K = 4 is chosen to obtain
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Figure 8.11.: Arithmetically (black solid) and geometrically (red dashed) averaged
spectral function with increasing interaction strength U for speckle
field strength sD = 0.01ER in panel (a) and sD = 0.05ER in panel (b)
obtained by RDMFT on a 24 × 24 square lattice. The spin-summed
filling is given by ν = 1.0.

the same bandwidth.
Both methods lead to qualitatively identical results. The differences in

the spectral functions can be traced back to the differences of the simulated
models. The statistical DMFT is employed for particles with a semi-elliptical
density of states, whereas real-space DMFT was used for particles on the square
lattice. Since the kinetic energy is connected to the lattice structure, the
observed differences are pronounced when the kinetic energy dominates over
the interaction energy. Consequently, deviations in the distributions of the
spectral weights are larger for low and intermediate interaction strengths (figure
8.10 U = 1.0 and U = 2.1). On the other hand, the agreement is good for the
strongly interacting case (figure 8.10 U = 3.3 and U = 4.2).
Interestingly, a pseudo-gap at the Fermi level in the LDOS on the square

lattice is found within real-space DMFT. This pseudo-gap arises for intermediate
and strong interactions in the presence of disorder and is stable under variation
of the system size. The pseudo-gap anomalies, also called zero bias anomalies,
are a common feature in two-dimensional strongly correlated systems with
disorder [10, 95]. A pseudo-gap anomaly was for instance found within a
quantum Monte Carlo investigation of the Anderson-Hubbard Hamiltonian with
box disorder [70, 257]. Our results suggest, that the physics of the pseudo-gap
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8. Fermions in a speckle disordered optical lattice

Figure 8.12.: Color coded local density of states ρi(ω) as a function of frequency ω
and lattice site index i for three different parameter sets: (a) U = 1.0
and sD = 0.01ER, (b) U = 3.1 and sD = 0.01ER and (a) U = 1.0 and
sD = 0.04ER. Parameters are ν = 1.0 and the lattice size was 24× 24.

anomaly could be studied with ultracold atoms in speckle disordered optical
lattices in the future. A detailed theoretical investigation of the pseudo-gap is
under current ongoing research.
Arithmetically and geometrically averaged spectral functions calculated by

real-space DMFT for two different disorder strengths, namely sD = 0.01ER
and sD = 0.05ER, are displayed in figure 8.11. Qualitatively, the spectral
functions show similar behavior as obtained within statistical DMFT, cf. figure
8.8. For weak disorder (sD = 0.01ER), metallic solutions are obtained for
weak interactions. Raising the interaction, a Mott insulating phase is obtained,
analogous to the case of a homogeneous system. On the contrary, for larger
speckle disorder (sD = 0.05ER) the LDOS remains finite at the Fermi level
ω = 0, even at strong interaction U = 4.2.
We note that within real-space DMFT for U = 3.1 and U = 4.2, the lower
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8.4. Speckle disordered square lattice

Figure 8.13.: Evolution of the arithmetically averaged spectral function with increas-
ing temperature for two parameter sets: (a) sD = 0.05ER, a = 150a0
and (b) sD = 0.1ER, a = 150a0. Parameters are ν = 1.0 and
sL = 10ER.

Hubbard-band shows a peaked structure at low disorder. This feature cannot be
exclusively identified with physical properties of the system because of numerical
uncertainties. Within real-space DMFT, a artificial broadening η is applied
to obtain an spectrum comparable to the infinite system. The broadening is
scaled proportionally to the system size, i.e. η ∝ 1/L22. Since the peaks are
not fully recovered for other lattice sizes, we conclude that they are finite size
effects. Nevertheless, despite possible finite size effects within the real-space
DMFT calculations and differences due to different underlying lattice structure
both methods result in qualitatively agreeing results.

The real space resolution of the LDOS gives us insight into localization effects
of the system. In figure 8.12 the LDOS ρi(ω) is plotted for a 24 × 24 lattice
and different interaction strengths, each for a different disorder realization. At
U = 1.0 and weak disorder sD = 0.01ER (figure 8.12 panel (a)) the spectral
weight around the Fermi level ω = 0 remains at each lattice site. The vast
majority of single particle states are extended and the system is in the metallic
phase. At U = 3.1 (figure 8.12 panel (b)) the Hubbard bands are formed and the
2Compared to the values used in statistical DMFT, the broadening is large, which is rather
problematic for the investigation of localization phenomena within real-space DMFT. This
issue was recently addressed in a preprint for the non-interacting case [211]. Moreover, it
is also under current investigation for the interacting case within our group.
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8. Fermions in a speckle disordered optical lattice

Figure 8.14.: Evolution of the arithmetically averaged spectral function with increas-
ing s-wave scattering length (a = 50a0,100a0,150a0,200a0) for two
disorder strengths (a) sD = 0.1ER and (b) sD = 0.2ER. For each
parameter the spectral function is compared at three different tempera-
tures, namely kbT = 0.0 (black solid line), kbT = 0.01 (red dashed line)
and kbT = 0.05 (green dash-dotted line). Parameters are ν = 1.0 and
sL = 10ER.

spectrum exhibits a gap proportional to the interaction strength for all lattice
sites, indicating that the system is in a Mott insulating state. However, as the
speckle field strength is increased to sD = 0.4ER, the states with spectral weight
at the same frequency are separated. In other words, the spectrum is highly
fragmented and each local spectrum consists of isolated delta peaks, consistent
with Anderson localized states in the infinitely large system (cf. figure 8.12
panel (c)).

8.5. Finite temperature effects

Here, we investigated a system of fermions with a semi-elliptic density of states
at finite temperature. The spectral functions are plotted in figure 8.13 for two
parameter sets. Panel (a) displays the arithmetically averaged spectral functions
for speckle disorder strength sD = 0.05 and scattering length a = 150a0 for
various increasing temperatures. At zero temperature, this parameter set would
correspond to the Mott insulator. In figure 8.13 we note that with increasing
temperature, the gap initially grows and the incoherent excitations reveal a
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significant redistribution of the spectral weight, which is shifted away from
the Fermi level. This is not observed in the homogeneous case, where the
spectral transfer is weak. Panel (b) shows the corresponding behavior for
different parameters, namely sD = 0.1 and a = 150a0, which corresponds to
the disordered strongly correlated metal at zero temperature. With increasing
temperature, the low energy excitations are reduced, and for kBT = 0.05 the
system enters a Mott insulating state.
In figure 8.14, the evolution of the arithmetically averaged spectral function

with increasing temperature is displayed for two values of the speckle field
strength (sD = 0.1ER in panel (a) and sD = 0.2ER in panel (b)) and three
different temperatures: kBT = 0, kBT = 0.01 and kBT = 0.05. We note the
reduction of the spectral weight at the Fermi level due to finite temperatures.
This leads to an enlargement of the Mott insulating phase. However, as can be
seen in panel (b) of figure 8.14, a metal without a resonant peak at the Fermi
level is stabilized a higher disorder strength. In this respect, our central finding
at T = 0, that the Mott and the Anderson-Mott insulators are not continuously
connected in presence of the speckle disorder, also holds at finite temperature.

8.6. Conclusion

In this chapter we have investigated a gas of ultracold fermions in optical lattices
subjected to an additional speckle disorder field using statistical DMFT and
real-space DMFT. The presented statistical DMFT schemes include off-diagonal
disorder as described in section 4.4.1. This allows for a systematic inclusion of
joint PDFs for the difference in the on-site energies and the hopping amplitudes
as well as the on-site energies and the local interaction strength, which are
present in experiments and were calculated by Zhou and Ceperley [306].

The complete paramagnetic ground state phase diagram was determined. It
consists of a disordered metallic phase, as well as Mott insulating and Anderson-
Mott insulating phases. A strong suppression of the correlation-induced metal
insulator-transition is observed and a finite metallic phase is found, even in the
strongly interacting regime. Hence, the Mott and the Anderson-Mott insulators
are not continuously connected. This contrasts with predictions for bounded
box disorder by TMT and our investigation within statistical DMFT in chapter
6. This, of course, puts the feasibility of simulating the Anderson-Hubbard
model for relevant disorder types in solids by using the speckle disorder into
question. Obviously, the unbounded nature of speckle disorder on-site energies
is quite specific and in particular not realized in solids. From this point of view,
we can conclude that there is a need for future research to develop ways of
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8. Fermions in a speckle disordered optical lattice

introducing box disorder to optical lattices.
Speckle disordered fermions on a square lattice were also investigated by means

of the real-space DMFT. Our main finding for the case of high-dimensional
systems also holds in the two-dimensional case. A pseudo-gap was found, which
should be investigated in detail in the future. Finally, we investigated the
high-dimensional system at finite temperature, where the Mott insulating region
is enlarged but the separation of the Mott and the Anderson-Mott insulators
persists.
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9. Disordered Bose-Fermi mixtures

In optical lattices systems of mixed quantum statistics, Bose-Fermi mixtures
have been realized [36, 138, 220]. These systems represent first-time realizations
of systems with mixed quantum statistics. Exotic physics have been predicted
to occur, such as the supersolid phase [54, 219, 272, 273], phase separation
[54, 234, 273] or composite fermions [184, 226].
On the other hand, we have already discussed the possibility of introducing

disorder to these systems (cf. section 5.2). Hence, a route to exciting physics is
available by bringing together these two developments, the disordered lattice
with mixed quantum statistics. Such a system may give rise to new effects of the
interplay between interaction and disorder, which is under intense investigation.
Phases which have their origin in the interaction, such as the Mott insulator
[206] or the charge density wave compete with disorder-induced phases, the
Anderson insulator [17, 172] for fermions and the Bose glass phase [111] for
bosons. Theoretically these systems have been studied in the strongly interacting
limit within an effective Hamiltonian approach [7, 240]. It was shown that within
certain parameter regimes the Ising-spin glass model and the Edwards-Anderson
model can be realized [240].
In this chapter, we investigate mixtures of strongly correlated bosons and

spin-polarized fermions non-perturbatively, in the whole regime from weak
interactions to strong interactions. For this purpose, a recently developed
calculation scheme for Bose-Fermi mixtures extended from the DMFT (cf.
section 2.3), called the generalized DMFT [188, 272, 273], is used for solving the
many-body problem numerically. The corresponding impurity problems that
result from the generalized DMFT are solved with the numerical renormalization
group [144, 176]. In previous studies [272, 273] the fermionic subsystem was
considered to be half-filled and also the bosonic subsystem was also considered
to have fixed filling 1/2 and 3/2. Here, we will investigate complementary
systems by allowing for arbitrary bosonic filling and work for fixed bosonic
chemical potential.
The second focus of this chapter is to study, how weak correlated on-site

disorder modifies the behavior in the homogeneous system. This is done by
employing the recently developed TMT (cf. section 4.3) to the Bose-Fermi
system. The TMT allows for the description of disorder-induced and correlation-
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9. Disordered Bose-Fermi mixtures

induced metal-insulator transitions within a unified framework.
In particular, we find that introducing weak diagonal disorder to the system

has a dramatic influence on the ground state phase diagram, in particular a
supersolid is induced already for very small disorder strengths, which is stable
over a relatively large range of values of the bosonic chemical potential.

Finally, we study mixture of two-component fermions and bosons in disordered
lattices. We focus on the evolution of the bosonic ground state phase diagram
when the interspecies interaction strength, as well as the disorder strength, is
varied.

9.1. Disordered Bose-Fermi Hubbard Hamiltonian

Mixtures of spin-polarized fermions and bosons in an optical lattice with diagonal
disorder are well described by the disordered Bose-Fermi Hubbard Hamiltonian

H = Hbf +Hcorr
dis (9.1)

consisting of two parts, the Bose-Fermi Hubbard Hamiltonian [8, 54]

Hbf = −tf
∑
<i,j>

c†icj − tb
∑
<i,j>

b†ibj − µf
∑
i

c†ici − µb
∑
i

b†ibi

+Ub
2
∑

nbi(nbi − 1) + Ufb
∑
i

nbin
f
i (9.2)

and the correlated diagonal disorder part

Hcorr
dis =

∑
i

εi(c†ici + αib
†
ibi) , (9.3)

where c†i and b
†
i denote the fermionic and bosonic creation operator at site i

respectively. The fermionic and bosonic number operator are given by nfi = c†ici
and nbi = b†ibi. The fermionic and bosonic hopping amplitude is denoted by
tf and tb. Ub and Ufb denote boson-boson and fermion-boson interaction
strength and µf and µb stand for the fermionic and bosonic chemical potential.
Summations in the hopping terms are restricted to the z nearest neighbors
indicated by the brackets <· ,·>, all other hopping processes are excluded.
The diagonal disorder manifests itself in the on-site energies εi. We assume

that all on-site energies are identically and independently distributed via the
PDF pε(ε) as already done in the preceding chapters. In the following we will
consider the common box distribution (defined in equation 3.27) with disorder
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strength ∆ for the on-site energies. We only consider correlated disorder with
αi = 1 for all sites i, which is reasonable for 6Li-7Li mixtures. Coincidentally,
this also represents a valid approximation for 40Ka-87Rb mixtures, if a light of
wavelength λ = 1064nm is used to create a random optical dipole potential.

9.2. Method

As discussed in detail in chapters 3 and 4 disordered systems are most accurately
investigated by focusing on PDFs of observables. Nevertheless, we already
argued that calculating the full PDFs is laborious and becomes in many cases
numerically infeasible depending on the desired accuracy of the theoretical tool.
This is in particular true for the here considered Bose-Fermi mixtures. For
this reason the investigation based on full distributions is not performed and
instead only single moments of the distributions that are informative regarding
the disorder physics are considered, which is the general spirit of the TMT
(see section 4.3). In this chapter, we will employ the TMT for the disordered
systems. In particular, we will calculate the geometric disorder average of
the fermionic LDOS as defined in equation (4.12) to account for localization
effects. The geometric average is incorporated in the DMFT calculation circle
as described in section 4.3, leading to en ensemble of single-impurity Anderson
models, that has to be solved self-consistently.
However, here we are interested in Bose-Fermi mixtures and considering

single-impurity Anderson models is obviously not sufficient. To accomplish a
TMT for Bose-Fermi mixtures we follow the lines of the recently developed
generalized DMFT [272, 273]. Therein, the bosons are investigated within the
Gutzwiller approximation [253], which is given as a decomposition of the bosonic
hopping operator. The bosonic annihilation operator is written as sum of its
expectation value Ψi = 〈gs|bi|gs〉 representing the superfluid order parameter
and its fluctuating part δbi. Here, |gs〉 is the ground state of the system.
Accordingly, the operators appearing in the hopping term of the Hamiltonian
decouple

b†ibj = (Ψ∗i + δb†i )(Ψj + δbj) (9.4)
= Ψ∗iΨj + Ψ∗i (bj −Ψj) + Ψj(b†i −Ψ∗i ) + δb†iδbj (9.5)
≈ Ψ∗i bj + Ψjb

†
i −Ψ∗iΨj . (9.6)

In the final step, fluctuations in quadratic order have been neglected.
The disorder gives rise to PDFs of the superfluid order parameter pΨ, which

have been investigated by means of the stochastic mean-field theory [40, 41]. In
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9. Disordered Bose-Fermi mixtures

general, it was found that finite disorder strength broadens the PDF, which can
be approximated by a log-normal PDF. At the transition from the superfluid to
the Bose glass phase the typical value of PDF is zero. Similar to the case of the
LDOS, we calculate the geometric average of the superfluid order parameter

〈Ψ〉geo = exp
∞∫
−∞

dε ln Ψ(ε)pε(ε) (9.7)

as approximation for the typical value, which enables accounting for localization
effects for the bosons. In particular, it allows for the description of the Bose
glass phase1.
By applying the generalized DMFT for the disordered system, we are left

with a much simpler problem than the original disordered Bose-Fermi-Hubbard
Hamiltonian, namely an ensemble of generalized Anderson impurity models

Himp,ε = H imp,ε
f +H imp,ε

b +H imp
fb , (9.8)

with

H imp,ε
f = −

∑
(µf − ε)nf +

∑
k

εka
†
kak +

∑
k

Vk(c†ak + h.c.) (9.9)

H imp,ε
b = −ztb(Ψtypb

† + Ψ∗typb) + Ub
2 nb(nb − 1)− (µb − αε)nb (9.10)

H imp
fb = Ufbnfnb . (9.11)

The bath electron annihilation operator is given by ak with energy εk and the
bath couplings by Vk, which are calculated from the hybridization function
[56]. In this work the impurity models are solved by means of the numerical
renormalization group [144, 176], which is a non-perturbative method. The main
idea of this method is to discretize the fermionic bath band logarithmically.
By a unitary transformation the Hamiltonian can be mapped onto a semi-
infinite linear chain, which then can be diagonalized iteratively. The solution of
the impurity models yields the fermionic Green’s function Gimp(ω,ε) and the
superfluid order parameter Ψ(ε) [272].
The ensemble of impurity models is supplemented by the self-consistency

conditions

− Im(Γ(ω)) = πt2f 〈ρimp(ω)〉geo , (9.12)
Ψtyp = 〈Ψ〉geo (9.13)

1U. Bissbort, unpublished.
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for the Bethe lattice, where the necessary Hilbert transform equation (4.9)
simplifies considerably [123]. In the homogeneous system the self-consistency
conditions reduce to Ψ = 〈gs|b|gs〉 and ImΓ(ω) = −πt2fρ(ω).

The fermionic states on the impurity are coupled to a non-interacting fermionic
bath via the hybridization function Γ(ω), whereas the bosonic states are coupled
to a bosonic bath via the geometric disorder average of the superfluid order
parameter 〈Ψ〉geo. This situation is illustrated in figure 9.1. In the homogeneous
system the calculation scheme is exact in infinite dimensions under suitable
scaling of the hopping amplitudes [272] and known to be a good approximation
in three dimensions. Moreover, it captures the physics over the whole range of
interaction strength, from weak to strong interactions, as the local correlations
are calculated without approximations.

Figure 9.1.: Illustration of the impurity problem that is solved for several on-site
energies εi with the help of the Numerical Renormalization group. The
impurity is coupled to a bosonic bath via the geometric average of
the superfluid order parameter 〈Ψ〉geo and to a fermionic bath via the
hybridization function Γ(ω).

The presentation of the obtained results is divided into four sections. In
section 9.3 we begin with results for the homogeneous system of bosons and
spin-polarized fermions which are complementary to the results of references
[272, 273]. We also investigate the system when the fermions are in the atomic
limit to gain a better understanding of the fermionic excitation spectrum (section
9.4). The uniformly disordered system of bosons and spin-polarized fermions
is addressed subsequently in section 9.5. Finally, mixtures of two-component
fermions and bosons in disordered optical lattices are studied in section 9.6.

In general, we observe the following bosonic phases: (i) the superfluid phase
(SF), which is compressible, defined by a non-zero geometric average of the
bosonic superfluid order parameter 〈Ψ〉geo. (ii) The bosonic Mott insulator
(BMI), which is incompressible and 〈Ψ〉geo equal to zero. (iii) The alternating

143



9. Disordered Bose-Fermi mixtures

Mott insulator (AMI), which is also incompressible and has a zero superfluid
order parameter, but is characterized by a charge density wave within the two
sublattices of the investigated bipartite lattice. (iv) The Bose glass phase (BG),
which is also characterized by a zero bosonic superfluid order parameter, but
which is compressible in contrast to the Mott insulator. Finally, (v) we observe a
supersolid phase (SS), defined by a non-zero bosonic superfluid order parameter
and a charge density wave.

As fermionic phases we obtain the following phases: (i) The Fermi liquid (FL)
and disordered Fermi liquid (DFL) which were already discussed extensively.
(ii) The charge density wave (CDW), which is incompressible, i.e. the fermionic
spectral function shows an excitation gap and has alternating spectral weight
on the two sublattices of the bipartite lattice. In our calculations we did not
find the fermionic Anderson insulator due to the investigated parameter regime.
The same is true for the fermionic Mott insulator in section 9.6.

In all calculations presented in the following, the fermionic system will be
half-filled, that is νf ≡ 1

N

∑
i〈n

f
i 〉 = 0.5 for spin-polarized fermions. In this

chapter, we work in units of half of the bandwidth of the non-interacting
fermionic spectral function of the homogeneous system D = 1

2W0 = 1.0.
This work was done in collaboration with Irakli Titvinidze, who in particular

provided the numerical renormalization group routine.

9.3. Mixtures of spin-polarized fermions and bosons:
homogeneous system

In previous studies, the bosonic filling was equal to 1/2 [273] and 3/2 [272]
respectively. Here, we present the results of complementary calculations for
fixed bosonic chemical potential, which later are used as starting point of the
investigation of disorder effects.
In figure 9.2 the obtained ground state phase diagram in the µb-ztb-plane is

shown, where the bosonic interaction strength Ub = 5.0, and the interspecies
interaction strength Ufb = 2.5. We note that bosonic Mott insulator phases and
alternating Mott insulator phases occur in turns while increasing the chemical
potential, i.e. pushing more bosons into the systems for small bosonic hopping
amplitude. The direct transition between the alternating Mott insulator and the
bosonic Mott insulator for small bosonic hopping amplitudes is an artifact of the
limited resolution of our calculation. To be more precise, we consider a transect
in the phase diagram for small bosonic hopping, e.g. ztb = 0.05. Increasing
the bosonic chemical potential to a value bigger than 0.25 the alternating Mott
insulator phase with filling νb ≡ 1

N

∑
i〈nbi〉 = 0.5 is found, which means that
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9.3. Mixtures of spin-polarized fermions and bosons: homogeneous system

Figure 9.2.: Ground state phase diagram of spin-polarized Fermions and Bosons
mixture in the µb-tb-plane. Parameters are Ufb = 2.5,Ub = 5.0 and
νf = 0.5.

on one sublattice of the bipartite lattice the expectation value of the bosonic
number operator 〈nb〉 is equal to 0, whereas on the other sublattice it is equal
to 1. Further increase of the bosonic chemical potential leads subsequently to
the bosonic Mott insulator with filling νb = 1, where we found the expectation
value 〈nb〉 = 1 on both sublattices, followed by the alternating Mott insulator
(νb = 3/2) and finally the bosonic Mott insulator (νb = 2).

At the same time the fermionic spectral function ρ(ω) changes dramatically:
For all bosonic Mott insulating phases with integer filling we find a particle-hole
symmetric Fermi liquid phase, characterized by a finite density of states at the
Fermi level, whereas for all bosonic alternating Mott insulators the spectral
function is gaped. In other words a metal-insulator transition in the fermionic
spectrum is recurrently triggered by the increasing bosonic chemical potential.

In figure 9.3 several characteristic fermionic spectral functions are shown for
a fixed interspecies interaction strength. In panel (a) the spectral functions of
both sublattices are plotted for the bosonic chemical potential µb = 1.0, which
corresponds to a fermionic charge density wave that coincides with a bosonic
alternating Mott insulator. For µb = 3.5 a particle-hole symmetric fermionic
spectral function is obtained, that always occurs together with the bosonic
Mott insulator. Finally, panels (c) and (d) correspond to fermionic spectral
functions that are given when the bosonic system is in the superfluid phase. We
note a characteristic three-peak structure with two incoherent single-particle
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9. Disordered Bose-Fermi mixtures

Figure 9.3.: Fermionic spectral function ρ(ω) for several bosonic chemical potentials
µb: (a) µb = 1.0 (b) µb = 3.5 (c) µb = 5.5 and (d) µb = 10.0 and fixed
bosonic hopping amplitude ztb = 0.3. In panel (a) the spectral functions
for sublattice A and B are plotted. Parameters are Ufb = 2.5,Ub = 5.0,
and νf = 0.5.

excitations in the fermionic spectrum.
To understand the properties of the fermionic single-particle excitation spec-

trum, the development of the fermionic spectral function is investigated for
Ub = 5.0 and µb = 5.5 in two cases in figure 9.4: in panel (a) the bosonic
hopping is fixed to ztb = 0.4 while the interspecies interaction strength Ufb is
increased stepwise from 1.0 to 4.0, whereas in (b) the interspecies interaction
strength Ufb is fixed, while the bosonic hopping is increased. With increasing
Ufb the incoherent excitation peak at positive energy is shifted from the Fermi
level and its maximum position is dislodged approximately by the value of Ufb.

Due to the relatively high bosonic interaction strength Ub the bosonic system
tries to minimize its energy by avoiding as many multiple bosons on-site
occupations as possible. Therefore, in a simple picture the system will exhibit
a localized uniform distributions of bosons with integer filling. The remaining
bosons can be thought of being mobile giving rise to the fermionic excitation
peak at positive frequency, when interacting with a fermion on a site. Increasing
repulsive interspecies interaction strength Ufb leads to an effectively smaller
filling of the bosonic subsystem. Hence, the positive excitation peak loses
spectral weight. Furthermore, we note that the peak position of the negative
energy excitation gap is not affected by increasing interspecies interaction
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Figure 9.4.: Fermionic spectral function ρ(ω) (a) for several interspecies interaction
strengths Ufb and fixed bosonic hopping ztb = 0.4 and (b) for several
bosonic hopping parameters tb and fixed interspecies interaction strength
Ufb. Parameters are µb = 5.5,Ub = 5.0, and νf = 0.5.

strength, but shifts to lower values with increasing bosonic hopping amplitude.
We will gain a more detailed understanding of the excitation spectrum and in
particular of its origin, in the next section, where spin-polarized fermions in the
atomic limit are considered.

9.4. Mixtures of bosons and spin-polarized fermions:
fermionic atomic limit

In order to gain further insight into the physics of the homogeneous system we
have performed self-consistent Gutzwiller calculations for the system, where the
fermions are in the atomic limit, i.e. tf = 0. In this subsection we introduce
the energy τ = 1.0 as an energy unit to allow for an easy comparison with the
results of the full DMFT calculations of the previous section.
We incorporate the Gutzwiller approximation (9.6) and are therefore left

with a local Hamiltonian

Hatom = −µfnf − µbnb − ztbΨ∗b− ztbΨb† + Ub
2 nb(nb − 1) + Ufbnfnb .

(9.14)

Diagonalizing the Hamiltonian given in the Fock space basis spanned by the
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Figure 9.5.: Results of a Gutzwiller mean-field calculation of a mixture of bosons and
spin-polarized fermions in the fermionic atomic limit as a function of
the fermionic chemical potential µf . In panel (a) the six energetically
lowest eigenenergies are plotted, the ground state is given by the black
solid line. The to the Eigenstates corresponding expectation values of
the occupation numbers nf , nb and the bosonic annihilation operator b
are given in panels (b-d). In panel (e) the eigenenergies of the ground
state and the first excited state are plotted for a low and a high initial
superfluid order parameter Ψ. Panel (f) displays the eigenenergies of the
Hamiltonian as a function of Ψ and in the inset the resulting superfluid
order parameter is plotted. Parameters are Ufb = 2.5, Ub = 5.0, µb = 5.5
and ztb = 0.3.

Fock states |n,m〉 with n fermions and m bosons yields the eigenstates and the
eigenenergies. The necessary cutoff in the bosonic number was placed to be
high enough to have no influence on the results. After determining the ground
state, the superfluid order parameter Ψ can be calculated and a self-consistent
calculation cycle is closed by demanding Ψ = 〈gs|b|gs〉.
In figure 9.5 the six lowest eigenenergies are displayed in panel (a) as a

function of µf for Ufb = 2.5, Ub = 5.0, µb = 5.5 and ztb = 0.3. The panels (b),
(c) and (d) display the corresponding expectation values of the fermionic number
operator, the bosonic number operator and the bosonic annihilation parameter,
respectively. For low fermionic chemical potentials the ground state is given
by a fermionic filling exactly equal to zero, i.e. |0〉 = ∑

m bm|0,m〉. Increasing
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the fermionic chemical potential leads to a degeneracy point of the ground
state and the first excited state which in turn is given as |1〉 = ∑

m am|1,m〉.
At this point the fermionic density exhibits a step from one to zero and after
the degeneracy point the fermionic filling of the ground state is equal to one.
We note that in order to fix the fermionic filling νf = 0.5 the system must be
exactly at the degeneracy point in the fermionic atomic limit and the ground
state of the system will be given by the superposition

|gs〉 = 1√
2

(|0〉f |ψ0〉b + |1〉f |ψ1〉b) , (9.15)

with |ψ0〉b and |ψ1〉b being the associated states of the bosonic subsystem.
It is interesting to note that the physics of the bosonic system differs drastically

at both sides of the degeneracy point. In the absence of fermions the bosonic
system behaves as a superfluid (i.e. |ψ0〉b is a coherent superposition of bosonic
Fock states), whereas as soon as one fermion enters the system the bosonic
subsystem experiences a phase transition to a Mott insulator (i.e. |ψ0〉b = |nb =
1〉b, cf. panels (c) and (d)). This fact is attributed to the parameter choice and
depends in particular on the ratio of Ufb/Ub. Our calculations show that an
increasing ratio leads to a system where on both sides of the degeneracy point
the bosonic system is in the superfluid state.

Furthermore, we observe a small kink in the eigenenergies when the fermionic
chemical potential arrives at the value of the degeneracy point. To elucidate this
further we compare the resulting two lowest eigenenergies of two calculations in
panel (e). One is performed with a relatively high initial value of the superfluid
order parameter Ψ in the self-consistent cycle and the second is performed with
a relatively small superfluid order parameter. The figure shows that a region
exists around the degeneracy point, where metastable solutions are present. To
substantiate this result, we plot the ground state energy and the energy of the
first excited state as a function of the superfluid order parameter Ψ in panel
(f) for µf = 3.04. Two minima are observed, one at Ψ = 0, that is global and
corresponds to a bosonic Mott insulator and one at finite Ψ, that is local and
corresponds to a superfluid. The inset shows the corresponding superfluid order
parameter as function of the input superfluid order parameter. The two fix
points are clearly visible.

We have calculated the fermionic single-particle Green’s function in the atomic
limit

G(ω) =
∑
|k〉

( |〈k|c†|gs〉|2
ω + Ek − E0 + iη

+ |〈k|c|gs〉|2
ω − (Ek − E0) + iη

)
, (9.16)
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Figure 9.6.: Fermionic spectral functions in the fermionic atomic limit for (a) a
chemical potential µf = 3.09 slightly after the degeneracy point of the
ground state and the first excited state, for (b) a chemical potential
µf = 2.98 slightly before and (c) at the degeneracy point for fermionic
density nf = 0.5, where a small coupling γ = 0.1 between the Fock states
|nf = 0〉 and |nf = 1〉 has been introduced. The blue dashed line in panel
(b) shows the corresponding spectral function, when also the bosons are
in the atomic limit. Parameters are Ufb = 2.5, Ub = 5.0,µb = 5.5 and
ztb = 0.3. For all spectra a broadening η = 0.05 has been used.

where |k〉 corresponds to the kth eigenstate with eigenenergy Ek.
Panel (a) of figure 9.6 shows the excitation spectrum for a fermionic chemical

potential µf = 3.09 slightly greater than that at the degeneracy point. Since
the fermionic filling is equal to one, only hole excitations are possible. We note
one incoherent peak stemming from the overlap to the eigenstate |0,1〉, where
the fermion is removed. The particle excitation spectra is shown for a fermionic
chemical potential µf = 2.98 at the other side of the degeneracy point in panel
(b). In this case the ground state is a bosonic coherent superposition of states
∼ |nf = 0,nb > as can be seen from figure 9.5. We note two excitation peaks: an
incoherent peak and a nearly coherent peak. The incoherent peak has its origin
in the overlap of adding a fermion to the ground state and eigenstate |3〉 ∼ |1,2〉.
The coherent excitation is created by adding a fermion and at the same time
effectively removing a boson from the ground state. The corresponding overlap
is given to the first excited state. This is an analogous excitation to the well-
known Kondo resonance in two-component fermion systems, where a fermion
with spin σ is exchanged by a fermion with opposite spin σ̄.
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The blue dashed line in panel (b) corresponds to the fermionic spectral
function of the double atomic limit, i.e. with the additional constraint tb = 0.
The nearly coherent excitation peak is absent, which confirms the necessity for
its existence of a ground state being a coherent superposition of bosonic number
states. This is a remarkable feature, since the coherent fermionic excitation
originates from the interaction with a bosonic coherent superfluid state. In
conclusion, the characteristic fermionic three-peak excitation spectrum of the
lattice system can be traced back to excitations already present in the fermionic
atomic limit.

Neither the hole excitation nor the particle excitation spectrum are sufficient
on their own to explain the excitation spectrum of the lattice system for fixed
fermionic filling νf = 0.5. For that purpose we introduce a small coupling γ = 0.1
between the Fock states |0,m〉 and |1,m〉, corresponding to an additional term
γ(c+ c†) in the Hamiltonian (9.14). This effectively smooths the step behavior
of the bosonic and fermionic filling as a function of µf , which allows for the
adjusting of the fermionic filling νf to 0.5. The corresponding single-particle
spectrum is plotted in panel (c). We note the existence of all three described
peaks. However, since the ground state as well as the first excited state are
coherent superpositions of Fock states |nf = 0,m > and |nf = 1,m > in this
case, the coherent peak has a more complex origin. It consists of the processes
as described above and their opposite, i.e. removing a fermion and effectively
adding a boson, as well as coherent processes originating to the significant
overlap with themselves when a fermion is removed or added.

9.5. Mixtures of spin-polarized fermions and bosons:
weakly disordered system

In this section we study how the disorder potential modifies the physics of the
homogeneous system discussed in the two previous sections.
In figure 9.7 the homogeneous, i.e. ∆ = 0, fermionic spectral functions at

bosonic hopping ztb = 0.4 and four different bosonic chemical potentials are
compared to the fermionic spectral functions at two finite disorder strengths
∆ = 0.5 and ∆ = 1.0. At µb = 1.5 we know that for zero disorder the system is
given by a bosonic alternating Mott insulator and a fermionic charge density
wave (cf. panel (a)). By increasing the disorder strength the fermionic spectrum
broadens, but the charge density waves remain stable for small disorder strength.
By increasing the bosonic chemical potential to µb = 3.5 (cf. panel(b)) a bosonic
Mott insulator in combination with a disordered Fermi liquid is obtained. The
fermionic spectrum decreases and becomes broadened with increasing disorder
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Figure 9.7.: Fermionic spectral function ρ(ω) for several bosonic chemical potentials
µb: (a) µb = 1.5 (b) µb = 3.5 (c) µb = 7.0 and (d) µb = 10.0 and fixed
bosonic hopping amplitude ztb = 0.4. The development of the fermionic
spectral function is displayed for three different disorder strengths: The
solid black lines corresponds to the homogeneous case ∆ = 0.0, the blue
dotted line corresponds to ∆ = 0.5 and the red dashed-dotted line to
disorder strength ∆ = 1.0. Parameters are Ufb = 2.5, Ub = 5.0, and
νf = 0.5.

strength, which corresponds to insetting localization effects in TMT [62, 82].
Similar behavior is obtained for the Fermi liquid and superfluid phase at
µb = 10.0 in panel (d). However, a dramatic change of the fermionic spectral
function triggered by the disorder is obtained for µb = 5.5. The Fermi liquid
spectrum of the homogeneous case develops a gap at small disorder strengths,
e.g. ∆ = 0.5. With further increase of the disorder strength the gap is lost
again. In other words a fermionic metal insulator transition is induced by weak
disorder.

To elucidate this phenomenon further, the bosonic density 〈nb〉, the fermionic
density 〈nf 〉 and the superfluid order parameter 〈Ψ〉geo are plotted for the two
sublattices of the bipartite lattice for bosonic hopping amplitude ztb = 0.4 and
disorder strength ∆ = 0.5 in figure 9.8 as a function of the bosonic chemical
potential. Various phases are arising subsequently accounting for the rich
physics of the system. For small chemical potentials a charge density wave
can be clearly identified for both subsystems. The underlying bosonic phase is
either a supersolid or an alternating Mott insulator, depending on whether the
superfluid order parameter 〈Ψ〉geo is finite or zero, respectively. By increasing the
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Figure 9.8.: Evolution of the fermionic density 〈nf 〉, the bosonic density 〈nb〉 and
the superfluid order parameter 〈Ψ〉geo on the sublattices A (solid) and B
(dashed) of the bipartite lattice with increasing bosonic chemical potential
µb. Parameters are Ufb = 2.5,Ub = 5.0, ztb = 0.4, ∆ = 0.5 and νf = 0.5.

bosonic chemical potential the charge density wave dies away and a tiny bosonic
superfluid and disordered Fermi liquid region is entered, followed by a bosonic
Mott insulator combined with a disordered Fermi liquid. Around µb ∼ 4.7
density waves are induced again in both subsystems. However, in contrast to
the charge density waves for smaller chemical potentials, the occurring supersolid
is not intercepted by a bosonic alternating Mott insulator, but is extended over
a relatively large set of values for the chemical potential.
It is interesting to note that this behavior differs strongly from the physics

found for the homogeneous case as discussed in the preceding section. The
disorder-induced supersolid is relatively robust towards fluctuations of the
bosonic filling. Experiments within a optical lattice setup are almost always
realized in presence of a harmonic trap, resulting for example in the famous
wedding cake structure [115] within the Mott insulating regime. Theoretically,
this can be accounted for by a local density approximation, with a radially
decreasing local chemical potential. From our finding that small disorder induces
a supersolid which is extended over a large interval of bosonic chemical potentials
we conclude that the observation of a supersolid in Bose-Fermi mixtures might
be favored by the presence of weak disorder.
The results of our investigation of mixtures of spin-polarized fermions and

bosons in the presence of weak disorder are summed up in the ground state
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Figure 9.9.: Ground state phase diagram of spin-polarized fermions and bosons mix-
ture in the µb-tb-plane at weak disorder strength ∆ = 0.5. Parameters
are Ufb = 2.5, Ub = 5.0 and νf = 0.5.

phase diagram in the µb-ztb plane for disorder strength ∆ = 0.5, which is
displayed in figure 9.9. Checking the phase diagram for weak disorder to the
homogeneous phase diagram in figure 9.2 we note that the overall structure is
reproduced as the disorder energy scale is small compared to the other energy
scales of the system. However, a major difference is given by the the largely
extended supersolid region in presence of weak disorder. We note that the
disorder phase is not extended symmetrically on both sides of the half-filled
case.
In panel (a) of figure 9.10 we consider a different slit in the phase diagram

for fixed bosonic chemical potential µb = 5.5. For small hopping amplitudes the
alternating Mott insulator combined with a fermionic charge density wave is
obtained. Increasing the hopping amplitude induces a transition to a supersolid
phase which can be clearly seen by the finite superfluid order parameter 〈Ψ〉geo,
while the charge density wave is still present in the system. This is recognizable
from the charge density wave order parameters ∆nf ≡ |〈n(A)

f 〉 − 〈n
(B)
f 〉| and

∆nb ≡ |〈n(A)
b 〉−〈n

(B)
b 〉|. Upon further increase of the bosonic hopping amplitude

the charge density wave dies away and a bosonic superfluid combined with a
disordered Fermi liquid is obtained. We also note the extension of the supersolid
phase over a large interval of bosonic hopping amplitudes, which suggest that
the disorder-induced supersolid is present for a big set of field strengths of the
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optical lattice.

Figure 9.10.: Evolution of the fermionic and bosonic charge density wave order
parameter (∆nf , ∆nb) and and the superfluid order parameter 〈Ψ〉geo
on the sublattices A (solid) and B (dashed) of the bipartite lattice with
(a) increasing bosonic hopping tb for ∆ = 0.5 and increasing disorder
strength ∆ for ztb = 0.4. Parameters are Ufb = 2.5, Ub = 5.0 and
νf = 0.5.

In panel (b) we plotted the the superfluid order parameter and the charge
density order parameter as a function of the disorder strength for ztb = 0.4 and
µb = 5.5. The inset shows the data on a logarithmic scale for very weak disorder
strengths. We note that the supersolid order arises already for very weak
disorder strengths and remains stable until intermediate disorder destroys the
long-range order. We conclude that the disorder-induced supersolid is obtained
by a first order transition already at very weak disorder strengths triggered by
metastable states, which are at least present in the fermionic atomic limit. It is
reasonable that a breaking of the translational invariance as given by a finite
disorder benefits the occurring of the supersolid phase which is characterized by
two broken symmetries: the U(1)-symmetry and the translational symmetry.
Furthermore, we obtained strong evidence that the reiteratively occurring

bosonic Mott insulator and alternating Mott insulator lobes are separated by
two different Bose glass phases at small bosonic hopping amplitudes. Both
bosonic glasses exhibit a superfluid order parameter equal to zero, and are
compressible, but one is also characterized by a charge density wave, while the
other does not exhibit long-range order. However, a clear proof of the existence
and a more detailed study of these phases necessitate a higher resolution than
numerical feasible within the here employed TMT. In particular, methods that
give access to the full PDF of the superfluid order parameter might give an
insight into the physics of these phases.
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9.6. Disordered mixtures of two-component
fermions and bosons

Finally, we will consider mixtures of two-component fermions and bosons in an
optical lattice with diagonal disorder. Now the disordered Bose-Fermi Hubbard
Hamiltonian is given by

H = Hbf +Hcorr
dis (9.17)

consisting of two parts, the Bose-Fermi Hubbard Hamiltonian [8, 54]

Hbf = −tf
∑

<i,j>,σ

c†iσcjσ − tb
∑
<i,j>

b†ibj − µf
∑
iσ

c†iσciσ − µb
∑
i

b†ibi

+Ub
2
∑

nbi(nbi − 1) + Uf
∑
i

nfi↑n
f
i↓ + Ufb

∑
iσ

nbin
f
iσ (9.18)

and the correlated diagonal disorder part

Hcorr
dis =

∑
i

εi(c†ici + αib
†
ibi) . (9.19)

The fermionic on-site interaction strength is denoted by Uf . As for the
spin-polarized fermions, we study the half-filled fermionic system, i.e. νf ≡
1
N

∑
iσ〈n

f
iσ〉 = 1.0. Furthermore, the fermionic interaction strength Uf as well

as the bosonic interaction strength Ub are fixed to 1.0. In our calculations
neither the fermionic Anderson insulator nor the fermionic Mott insulator were
observed due to the investigated parameter regime.
In figure 9.11 the bosonic ground state phase diagrams in the µb-ztb-plane

are shown for fixed Bose-Fermi interaction strength Ufb = 0.5 and several
disorder strengths ∆. In subplot (a) the disorder strength amounts to 0.25
and is increased to 0.5 in subplot (b) and 1.0 in subplot (c). For zero disorder
strength the phase diagram consists of bosonic Mott insulator and superfluid
phase only. For finite disorder strength the Bose glass phase appears between
the different Mott lobes for small bosonic hopping tb. With increasing disorder
strength the Bose glass phase grows and finally for ∆ = 1.0 no bosonic Mott
insulating phase is left and the phase diagram is constituted by the Bose glass
phase and for larger hopping amplitudes tb the superfluid phase only. For a more
detailed comparison the superfluid-insulator transition lines are summarized
in the lower right subplot of figure 9.11. Here, the growing of the Bose glass
phase becomes especially apparent, by the modification of the metal-insulator
transition line near µb ∼ 0.5 and µb ∼ 1.5.
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Figure 9.11.: Bosonic phase diagrams in the µb-tb-plane for fixed interspecies interac-
tion strength Ufb = 0.5 and several disorder strengths ∆: (a) ∆ = 0.25,
(b) ∆ = 0.5, (c) ∆ = 1.0. In the lower right subplot the superfluid-
insulator transition lines are summarized for ∆ = 0.0,0.25,0.5,0.75,1.0.
Parameters are νf = 1.0, Uf = 1.0 and Ub = 1.0.

At the same time when the Bose glass phase is growing we also note a drastic
shrinking of the Mott lobes: with increasing disorder strength the transition from
the bosonic Mott insulator to the superfluid phase takes place a smaller values
of tb. We conclude a delocalization tendency with increasing disorder strength
from the correlation-induced insulating phase. A similar behavior is found
for pure fermionic systems [60], where for intermediate repulsive interaction
strengths that result in a fermionic Mott insulator a transition to a metallic
phase, the disordered Fermi liquid, is found with increasing disorder strength.
Similar results are also established for pure bosonic systems [41].
So far we did not comment on the corresponding fermionic phases. For

all investigated parameter regimes the fermions are in the disordered Fermi
liquid phase. Corresponding fermionic spectra are given in figure 9.12 for fixed
bosonic chemical potential µb = 0.8 and bosonic hopping tb = 0.004. In subplot
(a) the development of the geometrically averaged fermionic spectral function
with increasing disorder strength is displayed for Ufb = 0.5. The Kondo peak
broadens and at the same time the spectral weight within the Hubbard subbands
decreases, corresponding to insetting localization effects [62, 82]. Within TMT
Anderson localization of fermionic states is characterized by the decline of the
geometrically averaged LDOS to zero. Therefore, in the investigated parameter
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Figure 9.12.: Geometric averaged fermionic spectral functions for (a) several disorder
strengths (∆ = 0.0,0.25,0.5,0.75,1.0 and Ufb = 0.5) and (b) several
interspecies interaction strengths (Ufb = 0.25,0.5,0.75,1.0 and ∆ = 0.5).
Parameters are νf = 1.0, Uf = 1.0, Ub = 1.0, µb = 0.8 and tb = 0.004.

regime our fermionic system is far from being Anderson localized. In subplot (b)
the disorder strength is fixed to 0.5 and the Bose-Fermi interaction strength Ufb
is increased from 0.25 to 1.0. Clearly, all spectra correspond to the disordered
Fermi liquid phase.

In figure 9.13 the bosonic ground state phase diagrams in the µb-ztb-plane are
shown for fixed disorder strength ∆ = 0.5 and several interspecies interaction
strengths Ufb. In subplot (a) the interspecies interaction strength is zero, i.e.
the fermionic and the bosonic system are decoupled. In this case the displayed
result stems from a standard Gutzwiller calculation, in which the superfluid
order parameter Ψ is averaged geometrically over the disorder. We note a
superfluid-insulator transition line, as well as alternatingly occurring regions
of the bosonic Mott insulator and the Bose glass phase. It is not our aim
to discuss the question, whether a direct transition from the bosonic Mott
insulator to the superfluid phase is present in the pure bosonic case or if always
a transition to the Bose glass phase lies in between. The direct transition
results from the theory we applied. More advanced techniques were applied
for the pure bosonic case [40, 41, 227] tackling the mentioned question. By
now it is established that there is no direct transition from the bosonic Mott
insulator to the superfluid phase, but always intersected by the Bose glass. In
subplot (b) the interspecies interaction is added, Ufb = 0.25, and raised to
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Figure 9.13.: Bosonic phase diagrams in the µb-tb-plane for fixed disorder strength
∆ = 0.5 and several interspecies interaction strengths Ufb: (a) Ufb = 0.0,
(b) Ufb = 0.25, (c) Ufb = 0.5. In case of zero interspecies interaction
strength Ufb the calculation of the bosonic phase diagram reduces to
a Gutzwiller calculation. In the lower right subplot the superfluid-
insulator transition lines are summarized for Ufb = 0.0,0.25,0.5,0.75.
Parameters are νf = 1.0, Uf = 1.0 and Ub = 1.0.

Ufb = 0.5 in subplot (c). For a better comparison of our results, the obtained
superfluid-insulator transition lines are summarized in the lower right subplot.
A main effect of the interspecies interaction strength is obviously an overall shift
of the transition lines. This can be easily explained by a Hartree decoupling
of the Bose-Fermi interaction. Moreover, we note that the Mott lobe shrinks
with increasing interspecies interaction strength. In other words, if the bosonic
hopping amplitude is increased the transition to the superfluid sets in earlier
for higher values of the interspecies interaction strength. Similar results were
obtained within other theoretical investigations [226], but contrasts the findings
of recent experiments [36, 138, 220] without disorder. This discrepancy was
recently shown to be a matter of the used parameters and explained by a
strong dependence on the bosonic density [276]. Furthermore, the summarized
superfluid-insulator transition lines show that also the transition from the Bose
glass phase to the superfluid phase sets in earlier.
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9.7. Conclusion
We have investigated mixtures of bosons and spin-polarized fermions in a
homogeneous optical lattice by generalized DMFT, and the influence of weak
disorder on this system by means of a TMT. We calculated the ground state
phase diagram of the homogeneous system. It consists of lobes of the alternating
Mott insulator with a fermionic charge density wave, lobes of the bosonic Mott
insulator combined with the Fermi liquid, and a superfluid phase combined
with a Fermi liquid. In the latter the fermionic single-particle excitation
spectrum exhibits a characteristic three-peak structure, which can be traced
back to elementary excitations also present in the fermionic atomic limit. The
supersolid turned out to be very sensitive towards fluctuations of the bosonic
filling.

The presence of weak disorder induces a supersolid that is comparably stable
for a large set of bosonic fillings. Therefore, the observation of a supersolid
phase within Bose-Fermi mixtures in optical lattices is favored if weak disorder
is added to the system. Intermediate disorder, however, destroys the long-range
order.
In future, it might be interesting to develop further impurity solvers for the

generalized Anderson impurity problems. Therewith higher energy excitations
might be considered in a more accurate extend than this is possible within
numerical renormalization group. This might complete the results obtained
in this work. Furthermore, fast impurity solvers might pave the way to a
statistical Bose-Fermi dynamical mean-field theory of the disordered mixed
quantum statistics system in which the full distributions of physical observables
are accessible. Such a method would constitute a perfectly suitable method to
study the Bose glass phase in more detail.
Finally, mixtures of two-component fermions and bosons have been investi-

gated. The evolution of the bosonic phase diagram has been studied in detail
in two cases: On the one hand when the interspecies interaction strength and
on the other hand when the disorder strength is varied. Disorder causes the
occurrence of the Bose glass phase and a shrinking of the Mott lobe. The
interspecies interaction strength induces a delocalization tendency, so that the
superfluid phase grows at the expense of the Bose glass phase as well as the
Mott insulator.
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The central subject of investigation in this dissertation is the physics of degen-
erate quantum gases in disordered optical lattices. As the focus of the thesis
lies on strongly correlated fermionic systems, the study of which is notoriously
difficult even in the absence of disorder, a powerful numerical method, namely
the statistical dynamical mean-field theory [85, 86, 196] has been adapted for
this purpose. This method is capable of simultaneously treating disorder as well
as local correlations on a non-perturbative level. The most intriguing feature
of the statistical dynamical mean-field theory is that it gives access to the full
probability distribution function of local observables. Within this approach the
Mott insulator and Anderson-Mott transition are described on equal footing, as
it is intrinsically constructed in terms of the probability distribution function
of the local density of states.

In preparation for the investigation of experimentally relevant disorder types
in optical lattices, the statistical dynamical mean-field theory has been applied
to fermions with box-type disorder [249], which is the most prominent type
of disorder addressed in solid state physics to date. Therein, two localization
mechanisms have been identified, one due to correlations and a second due
to disorder. The complete paramagnetic ground state phase diagram of the
Anderson-Hubbard model has been calculated within statistical dynamical mean-
field theory for the first time. Qualitative agreement with the predictions by
typical medium theory [5, 60] is found. Within both approaches the Anderson-
Mott insulator is found to be continuously connected to the Mott insulator,
enclosing a metallic core. Furthermore, this has allowed for the systematic
investigation of the probability distributions of the local density of states in
explicit form which was implicitly assumed within the construction of typical
medium theory. For the non-interacting case, a detailed numerical investigation
was recently performed [243] and good agreement with the analytical prediction
of a log-normal distribution [197, 198] was found. Here, this finding was
confirmed, but in the interacting case it was found that a log-normal distribution
does not serve as a suitable approximation.
The main part of this work is dedicated to the investigation of ultracold

fermions in disordered optical lattices, where the disorder can be tuned experi-
mentally [25, 199, 239]. These systems have continuously gained significance
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with the experimental progress in recent years. The two experimentally most
relevant cases have been analyzed: firstly, binary disorder [248] and secondly
speckle disorder [250].
The preceding theoretical understanding of strongly interacting systems in

binary disordered lattices [59] has been significantly extended by allowing the
system to enter the Anderson localized phase. As a main result, the paramag-
netic ground state phase diagram was determined and elaborate localization
phenomena have been revealed. The presence of Anderson localized states and
’anomalous’ localized states [243], as well as the appearance of bound states has
been established, not only in the non-interacting [13], but also in the interacting
system. Furthermore, a Mott insulator transition has been found to take place
at non-integer filling, when fluctuations due to disorder are taken into account.
Moreover, these results are of high significance for the solid state community,
since binary disordered fermions serve as a constitutive model system for alloys
and doped semiconductors. Here, it is of great future interest to investigate the
phase diagrams and its dependence on the impurity concentration, as well as to
also consider the generalization to finite temperature.
A further central topic of investigation within this thesis was the behavior

of interacting speckle disordered fermions. For this purpose a method was
constructed, fundamentally relying on the non-separability of the true joint
probability distribution functions for the Hubbard model parameters, as was
calculated by Zhou and Ceperley [306]. Ultracold bosons in such disordered
optical lattices have recently been investigated with great success in experiments
[223, 293].
In the fermionic case, the paramagnetic ground state phase diagram has

been calculated for the first time within this work. The most striking feature
is the strong suppression of the Mott insulator by the unbounded nature of
the probability distribution function of the on-site energies. This result is in
accordance with similar investigations for bosons in speckle disordered optical
lattices [41]. Compared to the phase diagrams for box disorder obtained either
by typical medium theory [60] or statistical dynamical mean-field theory [249], a
crucial difference arises in the topology of the phase diagram: the Anderson-Mott
insulator and the Mott insulator are not continuously connected, but separated
by a metallic phase, both at zero and finite temperature. This important
qualitative difference limits the direct comparability to Anderson-Hubbard
Hamiltonians which commonly appear in the context of solid state physics and
where the distribution of the on-site energies is intrinsically bounded.

As statistical DMFT is known to provide an accurate description in high
dimensions, further focus was cast on the deviations arising from a lower
coordination number. For this purpose, speckle disordered square lattices
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were investigated by means of the real-space dynamical mean-field theory and
the obtained results support the previously found suppression of the Mott
insulator. Remarkably, a zero-bias anomaly [10, 95] was observed, which does
not appear within the statistical dynamical mean-field theory. A detailed
investigation of this physical effect is beyond the scope of this work and should
be conducted in greater detail in future to clarify the exact behavior and also
addressing the aspect of its experimental observability. The incorporation of
the Hubbard parameters with their statistical correlations was achieved within
a generalization of the statistical dynamical mean-field theory to include off-
diagonal disorder. Moreover, it would be interesting to perform an analysis of
the effects arising from pure hopping disorder. It should be verified that the
states at the band center are indeed extended for all disorder strengths [261]
and how this property is modified in presence of interactions. Concerning the
interplay of off-diagonal disorder and interactions, diverging thermodynamic
properties have been predicted [83], but so far only on the level of the coherent
potential approximation.
In this part of the thesis, we studied mixtures of bosons and fermions by a

generalized typical medium theory, where localization effects for fermions are
treated within the framework of a geometrically averaged local density of states
[82, 82, 87]. The geometrically averaged superfluid order parameter, on the
other hand, was determined self-consistently for the bosons. The disordered
Bose-Fermi Hamiltonian is thereby mapped onto an ensemble of generalized
single-impurity Anderson Hamiltonians, which were solved by means of the
numerical renormalization group. The investigation of spin-polarized fermion
and boson mixtures lies at the heart of this chapter. The homogeneous ground
state phase diagram contains both conventional, as well as alternating Mott
insulating lobes in the bosonic chemical potential and hopping parameter plane,
surrounded by a superfluid phase. At small values of the bosonic hopping
amplitude it was shown that the change of the bosonic chemical potential
induces a transition from a Fermi liquid occurring in coexistence with a bosonic
Mott insulator to a fermionic charge density wave characterized by an excitation
gap occurring together with the alternating Mott insulator. The fermionic
spectral function in conjunction with the bosonic superfluid phase exhibits a
characteristic three-peak structure and we clarified the origin of these excitations
in the fermionic atomic limit. In the presence of weak disorder, the phase
diagram is drastically modified: the most prominent feature is the emergence
of a supersolid phase, which is robust for a wide range of bosonic hopping
amplitudes as well as bosonic chemical potentials. This observation indicates
the remarkable fact that the experimental observation of the supersolid phase
is favored by the introduction of a small amount of disorder.
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Moreover, mixtures of bosons and two-component fermions in disordered
optical lattices have been studied with an emphasis on the effects induced by
disorder and the fermions on the bosonic subsystem. With an increase of the
disorder strength we found that the Bose glass phase grows and the Mott lobe
shrinks. Moreover, a delocalization tendency, mediated by the interspecies
interaction strength, was found.
Our investigation of Bose-Fermi mixtures opens up a vast number of inter-

esting branches of future research. One of the most prominent is to study the
influence of bosons on the various fermionic Anderson-Hubbard model phase
diagrams. Furthermore, the investigation of disordered spin-polarized fermion
and boson mixtures was given for the weakly disordered case. A complementary
investigation of the strongly disordered case is needed to gain further insight
into the localization physics of the mixed quantum statistics system. From
the theoretical point of view, it is desirable to go beyond the typical medium
level by employing a statistical theory that gives access to the probability
distribution function of local observables. One way to accomplish this was
recently paved by the development of the bosonic dynamical mean-field theory
[65, 150] and the subsequent generalization to Bose-Fermi mixtures [61]. A
statistical generalization to disordered systems seems to be possible in a fashion
along the lines of the in this thesis established fermionic statistical dynamical
mean-field theory. However, the numerical effort of such a method is enormous
if exact diagonalization is used as a generalized impurity solver, emphasizing
the requirement of a fast impurity solver for Bose-Fermi impurity problems.
The development of a purely bosonic statistical dynamical mean-field theory is
a convenient first step. This theory also allows for a valuable insight into the
physics of quantum magnetism in disordered lattices, in analogy to a recent
investigation of the fermionic pendant [62].
The results of this thesis demonstrate the unrivaled power of the statistical

DMFT allowing for the only detailed investigation of high-dimensional strongly
correlated fermions in disordered lattices to date. On the other hand, from
a methodical point of view, one of the most appealing features of real-space
dynamical mean-field theory is the possibility to easily incorporate any specific
lattice structure. Also in the context of optical lattices, this is particularly
favorable, as it directly allows for the inclusion of a spatial harmonic trapping
potential. However, real-space dynamical mean-field theory is restricted to finite
lattices whereas statistical dynamical mean-field theory naturally recovers the
physical behavior in the thermodynamic limit. Moreover, further theoretical
progress is needed on the question of detecting localization within real-space
dynamical mean-field theory in a finite lattice. It needs to be clarified which
observables are useful to consider and which system sizes are necessary to
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achieve a conclusive finite-size scaling. First studies in that direction were
performed recently [211, 243]. As long as these issues are open, statistical
dynamical mean-field theory remains the only method of choice for investigating
high-dimensional, strongly correlated disordered systems as shown in detail and
studied comprehensively in this thesis.
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11. Zusammenfassung

Seit Anbeginn der Festkörperphysik ist die Frage, warum manche Materialien
metallisch sind, andere dagegen isolierend, von zentraler Bedeutung. Eine erste
Erklärung wurde durch die Bändertheorie [23, 44] gegeben. Die Elektronen
sind dem periodischen Potential der Rumpfatome ausgesetzt, wodurch ein
Energiespektrum bestehend aus Bändern erzeugt wird und die Füllung dieser
Bänder bestimmt die Leitungseigenschaften des Festkörpers.
In Experimenten wurde festgestellt, dass Übergänge zwischen metallischen

und isolierenden Phasen stattfinden, falls externe Parameter wie die Temperatur
oder der Druck geändert werden [151, 206]. Die Modellierung und Erklärung
dieser sogenannten Metall-Isolator-Übergänge sind zentale Forschungsgegen-
stände der Festkörperphysik [120, 151, 205]. Metall-Isolator-Übergänge wer-
den wie alle Phasenübergänge in zwei Klassen unterteilt [120]: Zum einen
thermodynamische Phasenübergänge [264, 304], die aus der Konkurrenz zwis-
chen Entropie und innerer Energie des Systems resultieren; zum anderen
Quantenphasenübergänge [280], die ihren Ursprung in der Konkurrenz ver-
schiedener Beiträge zur inneren Energie des Systems haben. Zwei Quanten-
phasenübergänge von Metallen zu Isolatoren fanden besondere Beachtung: der
Anderson-Übergang aufgrund von Unordnung in Festkörpern [17, 172, 204, 270]
und der Mott-Übergang hervorgerufen durch starke Korrelationen innerhalb
des Vielteilchensystems [151, 206].
Korrelationsinduzierte Phasenübergängen wurden seit der Beobachtung von

Isolatoren, die nicht in Einklang mit der Bändertheorie stehen, zu einem zen-
tralen Forschungsgegenstand [79]. Erste theoretische Untersuchungen kamen
zu dem Schluss, dass das isolierende Verhalten auf die Wechselwirkung zwis-
chen den Elektronen zurückzuführen ist [203, 205, 206, 295]. Im Verlauf der
weiteren Forschung wurde das berühmte Hubbard-Modell zur Standardmodel-
lierung eingeführt [139, 147, 162], indem Elektronen ausschliesslich am selben
Gitterplatz wechselwirken. Trotz dieser fundamentalen Vereinfachung ist das
Hubbard-Modell – abgesehen vom eindimensionalen System [186] – bis heute
nicht exakt gelöst. Erste starke Näherungen zeigten, dass der Mott-Übergang
ein intrinsisches Merkmal des Hubbard-Modells ist [147, 149]. Die Entdeckung
der Hochtemperatursupraleitung im Jahre 1986 [31] und die deutlichen Hinweise
auf einen rein elektronischen Ursprung dieser, rückten das Hubbard-Modell
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abermals in den Fokus der theoretischen Festkörperphysik [21]. Kurz darauf
gelangen entscheidende theoretische Fortschritte im Limes hoher Dimensionen
[193], die schliesslich zur Entwicklung der dynamischen Molekularfeldtheorie
führten [122, 123, 171]. Diese stellt eine nicht-perturbative Beschreibung der
lokalen Wechselwirkung dar und ermöglichte erstmals ein nicht-triviales Ver-
ständnis des Mott-Übergangs, welches auf lokale Quantenfluktuationen beruht
[55, 57, 121, 236, 305].

Parallel zu dem Forschungszweig der korrelationsinduzierten Phasenübergänge
entwickelte sich die Untersuchung von Unordnung, wie Fehlstellen oder Verun-
reinigungen, in Festkörpern [172, 204, 270] zu einem aktiven Forschungsfeld.
Im Jahre 1958 modellierte Anderson die Unordnung durch lokal fluktuierende
Potenialenergien in einem tight-binding-Modell – das Anderson-Modell – und
zeigte, dass eine hinreichend starke Unordnung isolierendes Verhalten hervor-
ruft [17]. Kohärente Streuprozesse führen zu einer räumlichen Lokalisierung
der Elektronen und unterdrücken deren Diffusion. Der Zufallscharakter der
Unordnung benötigt statistische Methoden zur theoretischen Beschreibung
und erschwert exakte Lösungen, wodurch numerische Untersuchungen dieser
Einteilchenprobleme unumgänglich sind.
Sowohl Unordnung als auch starke Korrelationen für sich genommen sind

noch immer Gegenstand aktueller Forschung. Jedoch erfordert die realistis-
che Beschreibung von Materialien die gleichzeitige Inbetrachtnahme beider
Phänomene. Daher ist das gleichzeitige und wechselseitige Wirken beider
Phänomene von zentraler Bedeutung innerhalb der modernen Festkörperphysik
[32, 174, 182, 196]. Die theoretische Beschreibung solcher Systeme, zum Beispiel
durch das Anderson-Hubbard-Modell, ist offenkundig schwierig, da die wichtig-
sten Phänomene auf intermediären Größenordnungen der Wechselwirkungstärke
und Unordnungsstärke stattfinden. Dadurch erlauben störungstheoretische
Methoden nur einen geringfügigen Einblick in die Physik dieser Systeme. Er-
weiterungen der dynamischen Molekularfeldtheorie zur Beschreibung von un-
geordneten Systemen sind hierfür besonders geeignet, da die Wechselwirkung
nicht-perturbativ beschrieben wird. Solche wurden in Analogie zur coherent
potential approximation [275, 279] und auf dem Level eines typischen Mediums
durchgeführt [5, 58, 60–62, 82]. Letzterer Ansatz erlaubt die Beschreibung
von Lokalisierungseffekten, jedoch vernachlässigen beide Methoden räumliche
Fluktuationen, die durch die Unordnung hervorgerufen werden. Die Unord-
nungsphysik wird daher lediglich rudimentär beschrieben. Dobrosavljević und
Kotliar entwickelten mit der statistischen dynamischen Molekularfeltheorie eine
fundamental stochastische Theorie [85, 86], die es ermöglicht unordnungisin-
duzierte Fluktuationen einzubeziehen und sowohl die Wechselwirkung als auch
die Unordnung nicht-perturbativ zu beschreiben. Jedoch erfordert diese Theo-
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rie einen erheblichen numerischen Aufwand, was den Mangel an umfassenden
Untersuchungen des Anderson-Hubbard-Modells mittels dieser Theorie erklären
könnte.

Auf der experimentellen Seite ist die systematische Untersuchung von starkko-
rrelierten und ungeordneten Festkörpern problematisch, da weder die Stärke der
Unordnung noch die Wechselwirkungsstärke wohldefiniert und präzise kontrollier-
bar sind. Insbesondere ist es nicht möglich ein Phänomen zu isolieren. Dadurch
können diese Experimente nur in begrenzten Maßen Aufschluss liefern, inwiefern
theoretische Näherungen berechtigt und zutreffend sind. Diesbezüglich sind die
in jüngster Vergangenheit entwickelten Experimente mit ultrakalten Atomen
in optischen Gittern [45, 183, 202] vielversprechend diese Schwierigkeiten zu
beheben und einen entscheidenden Beitrag zum Verständnis dieser Systeme zu
gewinnen.

Möglich wurden diese Experimente durch die Erfindung der Laserkühlung von
Atomen [24, 71, 225, 298, 299], die es erlaubte quantenentartete Bose-, Fermi-
und Bose-Fermi-Gase zu erzeugen [16, 78, 81]. Darüberhinaus ist es möglich
solche entarteten Quantengase in optische Gitter zu laden [45, 132, 138, 159, 166,
220, 229], wodurch unter anderem Systeme realisiert werden, die sich zur Quan-
tensimulation von Vielteilchenmodellen eignen [108, 145, 154, 155, 183]. Beispiel-
sweise wird das Bose-Hubbard-Modell sehr präzise realisiert [154] und wurde
2002 erstmals erfolgreich im Experiment simuliert [132]. Die experimentelle
Kontrolle über fast alle relevanten Parameter ist charakteristisch für diese
Experimente, insbesondere können Parameter, wie die Wechselwirkungsstärke
zwischen den Teilchen, präzise und weitestgehend unabhängig von anderen Pa-
rametern eingestellt werden. In festkörperrelevanter Hinsicht wurde zudem das
fermionische Hubbard-Modell erfolgreich simuliert [166] und der fermionische
Mott-Isolator experimentell nachgewiesen [160, 242]. Darüberhinaus ist es gelun-
gen ultrakalte Atome mittels verschiedener Methoden ungeordneten Potentialen
auszusetzen [25, 199, 239]. Zum Beispiel werden Speckle-Felder verwendet,
die durch die Streuung eines kohärenten Laserstrahls an einer Difussorplatte
entstehen und durch den AC-Stark-Effekt ein ungeordnetes Potential für die
ultrakalten Atome darstellen [39, 73, 191]. Solche Speckle-Felder wurden zudem
erfolgreich mit optischen Gittern kombiniert [223, 293], so dass ungeordnete
Gitterpotentiale realisiert werden konnten. Ein weiterer Ansatz besteht in der
Überlagerung von zwei Laserstrahlen mit inkommensurabler Frequenz, wodurch
ein quasiperiodisches Potential erzeugt wird, dessen Physik weitreichende Analo-
gien zu ungeordneten Systemen zulässt [76, 101, 235]. Mittels beider Methoden
wurde die Lokalisierung von Materiewellen jüngst nachgewiesen [39, 233]. Eine
weitere Herangehensweise ermöglicht prinzipiell die Realisierung einer binären
Unordnung. Darin werden zwei Arten Atome in das optische Gitter geladen
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und die Mobilität einer Sorte wird derart unterdrückt, dass die Atome auf der
relevanten Zeitskala praktisch eine stationäre Verteilung im Gitter annehmen.
Die Wechselwirkung zwischen den beiden Atomsorten erzeugt ein binäres Unord-
nungspotential für die mobile Atomsorte, je nachdem ob an dem entsprechenden
Gitterplatz ein immobiles Atom anwesend ist. Erste Experimente in dieser
Richtung wurden bereits vollzogen [138, 220].
Zusammenfassend erlauben diese neuen experimentellen Möglichkeiten die

Quantensimulation von starkkorellierten, ungeordneten Systemen. Insbesondere
ist es möglich, das Anderson-Hubbard-Modell mit bisher unübertroffener exper-
imenteller Kontrolle zu untersuchen. Besonders reizvoll und vielversprechend
an diesen Experimenten ist die Möglichkeit, sowohl Unordnungsstärke als
auch Wechselwirkungsstärke präzise innerhalb mehrerer Größenordnungen
einzustellen. Die theoretische Untersuchung dieser Systeme im Falle hoher
Dimensionen ist das zentrale Anliegen der vorliegenden Dissertation. Insbeson-
dere liegt der Fokus dieser Forschungsarbeit auf fermionischen Systemen, zu
deren Beschreibung die statistische Molekularfeldtheorie verwendet wird.

Zunächst werden die notwendigen theoretischen Grundlagen gelegt. In Kapi-
tel 2 werden das Hubbard-Modell, Vielteilchen-Greensche Funktionen und die
dynamische Molekularfeldtheorie eingeführt. Darauffolgend werden in Kapitel
3 nichtwechselwirkende Teilchen in ungeordneten Gitterpotentialen betrachtet.
Ein besonderer Fokus liegt hier auf der Charakterisierung von lokalisierten
Zuständen mittels Greenscher Funktionen. Die Ergebnisse werden mittels
einer numerischen Methode, der lokalen Verteilungsmethode, verdeutlicht. Die
Einführung dieser Methode erleichtert den späteren Zugang zur statistischen
Molekularfeldtheorie, da sie den nichtwechselwirkenden Grenzfall der statis-
tischen dynamischen Molekularfeldtheoreie darstellt. Diese wiederum wird in
Kapitel 4 detailliert als Untersuchungsmethode starkkorrelierter, ungeordeneter,
fermionischer Systeme vorgestellt. Zudem werden die weiteren Erweiterungen
der dynamischen Molekularfeldtheorie auf ungeordnete Systeme sowohl auf dem
Level der coherent potential approximation als auch auf dem Level des typischen
Mediums eingeführt. Anschliessend werden in Kapitel 5 ultrakalte Atome in
optischen Gittern diskutiert, wobei besonderes Augenmerk auf die Realisierung
von ungeordneten Potentialen gelegt wird.

Nachdem alle notwendigen Grundlagen dieser Dissertation erarbeitet sind,
wird in Kapitel 6 die statistische dynamische Molekularfeldtheorie umfassend zur
Untersuchung der Kastenunordnung, welche die Standardunordnungsverteilung
innerhalb der Festkörperphysik darstellt, für das halbgefüllte System angewen-
det [249]. Es wird gezeigt, dass die statistische dynamische Molekularfeldthe-
orie sowohl die Beschreibung des Mott-Übergangs im ungeordneten System,
als auch die Beschreibung des Anderson-Mott-Überganges ermöglicht. Ins-
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besondere werden zwei Delokalisierungsprozesse herausgearbeitet. Zum einen
sind umso größere kritische Wechselwirkungsstärken für den Mott-Übergang
nötig, je grösser die Unordnungsstärke ist; zum anderen tritt ausgehend vom
Anderson-Isolator ein Wiedereintritt in die metallische Phase auf, falls die
Wechselwirkungsstärke stetig erhöht wird und die Unordnung nicht zu stark
ist. Diese Prozesse führen zu einem Phasendiagramm, welches durch ein weit
ausgedehntes, stark-korreliertes Metall charakterisiert ist. Für starke Unord-
nung findet man einen Anderson-Mott-Isolator, der kontinuierlich mit dem
Mott-Isolator für große Wechselwirkungsstärken verbunden ist. Dieses Resultat
stimmt qualitativ mit Ergebnissen aus Untersuchungen mittels der Theorie des
typischen Mediums überein [5, 60]. Quantitativ ergeben sich allerdings bezüglich
der Ausdehnung der metallischen Phase erhebliche Unterschiede, insbesondere
ergeben sich innerhalb der Theorie des typischen Medium geringere kritische
Unordnungsstärken. Dieser Effekt ist bereits aus Vergleichsrechnungen für den
nichtwechselwirkenden Fall bekannt [13].
Der Hauptteil dieser Dissertation widmet sich der Untersuchung zweier

spezieller Unordnungsverteilungen die in Experimenten mit ultrakalten, ferm-
ionischen Atomen realisiert werden können: In Kapitel 7 wird die binäre
Unordnungsverteilung [248] und in Kapitel 8 wird die Speckle-Unordnung [250]
untersucht. Im Falle der binären Unordnung wird das bis dato erarbeitete
theoretische Bild [59] durch die Beschreibung von Lokalisierungsphänomenen
signifikant erweitert. Es wird gezeigt, dass der Lokalsierungsprozess in diesem
System einen komplexen Charakter aufweist und sich erheblich von den üblichen
Lokalisierungphänomenen unterscheidet, die man für kontinuierliche Verteilun-
gen findet. Zusätzlich zu Anderson-lokalisierten Zuständen findet man ’anormal’
lokalisierte Zustände und gebundene Zustände, sowie eine Vielzahl an Mobil-
itätsgrenzen. Es stellt sich heraus, dass das System den unkonventionellen
Mott-Übergang für nichtintegere Füllung auch in Inbetrachtnahme von bisher
vernachlässigten Lokalisierungseffeken aufweist. Das resultiernde paramagnetis-
che Phasendiagramm besteht aus dem Anderson-Mott-Isolator, Band-Isolator
und einer metallischen Phase. Diese Ergebnisse sind von grosser Relevanz für
die Festkörperphysik, in welcher die binäre Unordnungsverteilung als Grundla-
genmodell für Zweikomponentenlegierungen oder dotierte Halbleiter dient.
Zur Untersuchung der Speckle-Unordnung werden gemeinsame Wahrschein-

lichkeitsverteilungen der Hubbardparameter herangezogen, die für Experimente
realistisch sind und kürzlich von Zhou und Ceperley errechnet wurden [306].
Das Hauptresultat ist das erstmalig berechnete Phasendiagramm für speckle-
ungeordnete, fermionische Systeme. Als hervorstechendes Merkmal findet
man die starke Unterdrückung des korrelations-induzierten Metall-Isolator-
Übergangs, welche auf die unbeschränkte Verteilung der Gitterplatzenergien
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zurückzuführen ist. Dadurch sind der Mott-Isolator und der Anderson-Mott-
Isolator im Gegensatz zur Kastenverteilung nicht kontinuierlich verbunden,
sondern durch eine metallische Phase getrennt. Darüberhinaus wurden Fermio-
nen auf dem speckle-ungeordneten Quadratgitter mittels ortsraumaufgelöster
dynamischer Molekularfeldtheorie untersucht. Die Unterdrückung des Mott-
Übergangs wird qualitativ übereinstimmend mit der statistischen dynamischen
Molekularfeldtheorie bestätigt. Zudem wird die Anwesenheit einer Zero-Bias-
Anomalie nachgewiesen, die in Zukunft näher untersucht werden sollte.

In Kapitel 9 werden kastenungeordnete Bose-Fermi-Mischungen mittels der
Theorie des typischen Mediums untersucht. Dazu wird zusätzlich zu der ge-
ometrisch gemittelten fermionischen Zustandsdichte der geometrisch gemittelte
bosonische Superfluidordnungsparameter berechnet, um Lokalsierungseffekte
sowohl für das fermionische als auch das bosonische Untersystem beschreiben zu
können. Zunächst werden Mischungen bestehend aus spin-ploarisierten Fermio-
nen betrachtet. Im homogenen System besteht das berechnete Phasendiagramm
aus sich als Funktion des bosonischen chemischen Potentials abwechselenden
Regionen des bosnische alternierenden und konventionellen Mott-Isolators, die
für größere werdende bosonisches Hüpfamplituden einen Phasenübergang zu
der superfluiden Phase aufweisen. Der bosonische, alternierende Mott-Isolator
geht mit einer fermionsichen Dichtewelle einher, die eine Anregungslücke am
Fermilevel aufweist, während der bosonische Mott-Isolator mit einem Fermiliq-
uid einhergeht. Letztgenanntes trifft auch auf die bosonische Superfluidphase
zu und das entsprechende Fermiliquid ist durch eine charakteristisches Anre-
gungspektrum bestehend aus drei Peaks gekennzeichnet. Der Ursprung dieser
Anregungen wird im fermionischen, atomaren Limes geklärt. Schwache Unord-
nung führt zu erheblichen Konsequenzen für das System. Am auffälligsten ist
das Auftreten einer supersoliden Phase, die für ein großes Werteintervall des
bosonischen chemischen Potentials stabil ist. Daher könnte schwache Unord-
nung einen experimentellen Nachweis der supersoliden Phase in Bose-Fermi-
Mischungen begünstigen. Darüberhinaus werden starke Indizien für die Exis-
tenz von zwei Boseglas-Phasen, von denen eine durch Dichtewellen in beiden
Untersystemen gekennzeichnet ist, gefunden. Eine detaillierte Untersuchung
dieser Phasen erfordert jedoch aufwendigere Untersuchungsmethoden, die dem
statistischen Charakter der Unordnung gerecht werden. Abschliessend werden
Bose-Fermi-Mischungen bestehend aus zwei Spin-Komponenten-Fermionen un-
tersucht. Darin stehen Konsequenzen auf das bosonische Phasendiagramm im
Fokus, die aus dem Variieren der Wechselwirkung zwischen Bosonen und Fermio-
nen und der Unordnungsstärke resultieren. Der Übergang zwischen bosonischem
Mott-Isolator und bosonischem Superfluid findet für immer geringere bosonische
Hüpfamplituden statt je stärker die Unordnung ist. Gleichzeitig entwickelt sich
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eine Boseglass-Phase, die ab einer genügend grossen Unordnungsstärke die einzig
lokalisierte bosonische Phase darstellt. Darüberhinaus zeigt die Untersuchung,
das eine stärkere Wechsewirkung zwischen den Bosonen und den Fermionen
generell zu einer Delokalisierung führt, die sich in geringeren Ausdehnungen
sowohl der Boseglas-Phase als auch des Mott-Isolators äußert.
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A. Particles in a periodic potential
In this appendix, a brief overview on non-interacting particles in a periodic
potential – i.e a system obeying discrete translational invariance – is given,
which applies to e.g. electrons in a crystal as well as ultracold atoms in an
optical lattice. The periodic potential is given by

V (x) =
∑
n

Vatom(x−Rn) , (A.1)

with the atomic potential Vatom and lattice vectors Rn (n ∈ {1, . . . ,N}). The
periodicity is defined by V (x) = V (x + Rn). The Schrödinger equation reads

( p2

2m + V (x))Ψk(x) = εkΨk(x) (A.2)

with the eigenfunction Ψk(x)1, the so-called Bloch function and eigenenergy
εk. The explicit expression depends on the underlying potential structure and
must be calculated numerically. Bloch’s theorem states that the wave function
is given as [23, 44]

Ψk(x + Rn) = eik·RnΨk(x) , (A.3)

which means that the wave function is a periodic function up to a phase. In
general several eigenenergies exist for a given wave vector k, which necessitates
the introduction of the so-called band index n. The set of all εk,n constitutes
the band structure. In the following we suppress the band index and just
consider a single band. The ansatz Ψk(x) = uk(x) exp(ik ·Rn) results in a
periodic amplitude function

uk(x + Rn) = uk(x) . (A.4)

The wave vector k can be restricted to the first Brillouin zone due to the
2π periodicity of the complex exponential function. It is further known that
the Bloch functions constitute a complete orthonormal set of functions. The
creation operator that creates a particle in a Bloch eigenstate is denoted by a†k.
1Spin indices or other internal degrees of freedom are omitted for simplicity reasons.
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A further important basis set in periodic lattices is given by the so-called
Wannier functions. They are defined via the Fourier transform of the Bloch
functions

w(x−Rn) = 1√
N

∑
kin 1.BZ

e−k·RnΨk(x) . (A.5)

The Wannier function are highly localized on a single lattice site. The operator
c†n ≡ c

†
Rn

creates a particle in a Wannier state on lattice site Rn.
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B. Renormalized perturbation
expansion

The renormalized perturbation expansion [17, 91] is an expansion in the hopping
amplitude to calculate the Green’s function of a tight-binding Hamiltonian.
The Hamiltonian is constituted of two parts

H = H0 +H1 (B.1)

one is the atomic orbital term

H0 =
∑
i

εi|i〉〈i| (B.2)

and the second is the hopping term

H1 =
∑
i 6=j

tij |i〉〈j| (B.3)

connecting the sites with each other. H0 is considered as the unperturbed
Hamiltonian and H1 represents a perturbation. The resolvent operator is given
by

G(z) ≡ 1
z −H

= 1
z −H0 −H1

= 1
(z −H0)(1−H1(z −H0)−1) (B.4)

= G0(z)
1−H1G0(z) (B.5)

with G0(z) ≡ (z −H0)−1. Applying the geometric series

1
1− x = 1 + x+ x2 + x3 + . . . (B.6)

we find the expansion

G(z) = G0 +G0H1G0 +G0H1G0H1G0 + . . . (B.7)
= G0 +G0H1G . (B.8)
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The series can be rewritten in terms of matrix elements

〈k|G|l〉 ≡ Gkl (B.9)
= (G0)kl +

∑
nm

(G0)kn(H1)nm(G0)ml

+
∑
nmop

(G0)kn(H1)nm(G0)mo(H1)op(G0)pl + . . . (B.10)

= δk,l
z − εk

+ 1
z − εk

(H1)kl
1

z − εl
+
∑
n

1
z − εk

(H1)kn
1

z − εn
(H1)nl

1
z − εl

+ . . . , (B.11)

where in the last step it was incorporated that G0 is diagonal. To proceed, we
assume that only nearest neighbor hopping is of interest and that each hopping
process is attributed with a factor of t. Obviously, the terms appearing in the
expansion (B.11) can be identified with all possible paths connecting the lattice
sites k and l. Each hopping process contributes a factor of t and at each time,
when a lattice site q is arrived, a factor (z − εq)−1 must be taken into account.
The terms can be resummed in so-called skeleton paths, when each hopping
process is decorated with additional factors. A path represents a skeleton path,
if it is self-avoiding, i.e. that no site of the path is visited twice. The correct
decorations are identified easily: the path k → n→ m→ . . .→ l corresponds
to all terms connecting the sites k and l and all possible loop corrections at
every visited lattice site. The later is given by all intermediate paths starting
at a visited lattice site and returning to it. Let us consider the starting site k.
All loop corrections summed up clearly correspond to the full diagonal Green’s
function Gkk, which represents the right decorating factor. At the next site n,
the same reasoning is true, but all loop corrections visiting site k have to be
omitted as they are already incorporated. Hence, the right decoration consists
of the full diagonal cavity Green’s function G

(k)
nn of the lattice where site k

has been removed. This procedure continues so that the correct decoration
factors are given by multi cavity Green’s functions G(k,n,... )

qq . The full partial
summation leads to [91]

Gkl =
∑

all skeleton paths k→l
GkktknG

(k)
nn tnmG

(k,n)
mm tmo . . . .G

(k,n,m,...)
ll (B.12)

In particular, the diagonal Green’s function is found to be

Gkk = (G0)kk +
∑

all skeleton paths k→k
GkktknG

(k)
nn tnm . . . (G0)kk , (B.13)
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which we can rewrite as

Gkk = (G0)kk +GkkΓk(G0)kk , (B.14)

with the already introduced ’self-energy’ Γk (cf. chapter 3 equation 3.11). The
self-energy is given as

Γk =
∑

all skeleton paths k→k
tknG

(k)
nn tnmG

(k,n)
mm . . . t (B.15)

and the Green’s function reads

Gkk(z) = (G0)kk(z)
1− (G0)kk(z)Γk(z)

= 1
z − εk − Γk(z)

. (B.16)

The above expansion for the Green’s function and the ’self-energy’ over skeleton
paths is called renormalized perturbation expansion. The decorating factors
are given by intricate quantities, namely matrix elements of the cavity Green’s
functions. Clearly, a hierarchy of equations needs to be solved to determine
all lattice Green’s functions and cavity Green’s functions. On a finite lattice
the hierarchy terminates, since there is one finite degree of cavity, when all
sites have been removed. For infinite lattices an hierarchy of infinitely many
equations [185]

Γk(z) =
∑
n6=k

tkn
1

z − εn − Γ(k)
n

tnk

+
∑

n,m 6=k;m 6=n
tk,n

1
z − εn − Γ(k)

n

tnm
1

z − εm − Γ(k,n)
m

tmk + . . .

(B.17)

Γ(k)
n (z) =

∑
m6=k,n

tnm
1

z − εm − Γ(k,n)
m

tmn + . . . (B.18)

Γ(k,n)
m (z) = . . . (B.19)

has to be considered.

However, the renormalized perturbation expansion is used very effectively on
the Bethe lattice due to its special structure. It is loop-free and therefore the
only non-intersecting paths are given by first terms in the above series. The
only path that contributes to Γk, for example, is k → n → k. Hence, on the
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B. Renormalized perturbation expansion

Bethe Lattice, we find [2]

Γk(z) =
∑

n N.N. of k

tkn
1

z − εn − Γ(k)
n

tnk (B.20)

Γ(k)
n (z) =

∑
m N.N. of n

tnm
1

z − εm − Γ(k,n)
m

tmn (B.21)

Γ(k,n)
m (z) =

∑
o N.N. of m

tmo
1

z − εo − Γ(k,n,m)
o

tom (B.22)

. . . (B.23)

which, remarkably, is exact. The second equation is given on the Bethe lattice,
where site k has been remove, the third on the Bethe lattice, where sites k and
n have been removed, and so forth. The cavity Green’s functions of lattices with
several sites removed are also simplified due to the absence of loops on the Bethe
lattice. The equation (B.21) involves Γ(k,n)

m , which for all possible m reduces
to Γ(n)

m , as no path can visit site k. So finally, on the Bethe lattice just two
instances of ’self-energies’ are relevant, namely Γk and Γ(k)

n . Correspondingly
just two Green’s functions Gk and G(k)

n . All higher multi cavity Green’s function
reproduce the structure of the latter. Our hierarchy of equations reduces exactly
to two equations:

Γk =
z∑

n=1
t2knG

(k)
nn (B.24)

Γ(k)
n =

K∑
m=1

t2mnG
(n)
mm . (B.25)

Here, both sums extend over the nearest neighbors. The prior equation is given
on the Bethe lattice, whereas the latter equation is defined on the cavity lattice.
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