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We calculate the spin polarization of lsu vacancies and emitted 6 electrons induced by the strong magnetic field 
(IB„,I- 1016G) in collisions of very heavy ions ( Z , + Z , =  178). The electron excitations are determined by the 
solution of coupled-channel equations within the quasimolecular basis states including the vector potential. The 
formulation is extended to the many-electron case. Spin polarizations of the order of 5-10 % for impact energies 
below the Coulomb bamer are predicted. 

I. INTRODUCTION 

During the last years more and more interest 
has focused on the behavior of electrons moving 
in strong magnetic fields.Several years ago J .  
Rafelski and B. Müller pointed out1 that the streng- 
es t  magnetic fields on a microscopic scale acces- 
sible to experimental observations are  created in 
collisions of very heavy ions with ( 2 ,  + Z2) (Y> 1. 
Their magnitude can simply be estimated by con- 
sidering the magnetic field strength produced by 
a circular current along the symmetry axis. It 
follows from Biot-Savart's law that 

where R denotes the radius of the current loop 
and r the distance from its center. The heavy 
ion current I is given by I= (2, +G) e v„,/27r~. 
Assuming Z1 +Z,= 178, v„,=O. l c ,  and R =  15 fm, 
the maximum magnetic field strength (Y = 0) gets 
15- 1 = 4 X loi5 G. In superheavy quasimolecules 
the l s u  electron moves almost adiabatically 
close to the nuclei and is highly localized. Hence 
i t  may serve as test particle for the high - 5 
gmi t  of quantumelectrod~namics. For r » R,  
B is of the dipole-type I @Y) I - Y - ~ .  The lsu-  
Bohr orbit is gcated at about r - 100 fm where 
we still find [@Y= 100 fm) I= 1013G. 

The electric and magnetic field strength as  
well as  the corresponding density distributions 
for two colliding heavy ions moving on straight 
lines with classical impact parameter b can be 
found in Ref. 2. In preceding Papers, the Zeeman 
splittingl of innermost bound electrons and spin 
polarizations3 due to dynamical excitations in 
superheavy quasimolecules have been calculated 
using first-order perturbation theory. In this 
paper we present a treatment of the dynamical 
behavior of electron configurations under the 
action of time-varying Coulomb and magnetic 

fields . Within the adiabatic, quasimolecular pic- 
ture we solve for the first  time the coupled- 
channel equations for the electron-occupation 
amplitudes with inclusion of the scalar and 
vector potentials in the transverse Coulomb gauge. 
Retardation and electron-screening effects are  
neglected in our calculations. The first  i s  justi- 
fied as  long as  the heavy ions are  not relativistic. 
Electron Screening will probably only change 
the magnitude of ionization, but should have very 
small effect on the polarization. With an extended 
version of the developed Computer code, in prin- 
ciple, it is possible to predict ionization proba- 
bilities and 6-electron distributions for the next 
heavy ion accelerator generation up to E„,= 500 
MeV/u. Different te~hni4ue.s~'~ must be applied 
for the theoretical description of ionization phen- 
omena in relativistic heavy ion collision. 

This paper is organiaed a s  follows. The single- 
electron-coupled channel equations for adiabatic 
basis states a r e  presented in the next section. 
In Sec. III the vector potential in the Coulomb a s  
well a s  in the Lorentz gauge is derived and a 
multipole expansion is performed. Section IV 
is devoted to the calculation of the basis states 
for electron wave functions and to the evaluation 
of matrix elements of the magnetic interaction. 
In Sec. V the many-electron formalism is dis- 
cussed and expressions for the polarizations of 
particles and holes a r e  derived. Our numerical 
results for the system Z,+ Z, = 178 (Pb+ Cm) 
a r e  exhibited in Sec. VI. We have chosen this 
particular quasimolecular system because cur- 
rently it is the heaviest system where the lsa 
ionization probability has already been measured7 
a t  GSI. 

11. DYNAMICS OF A SINGLE ELECTRON 
IN THE FIELD OF TWO COLLIDING 

H E A W  IONS 
In this chapter we present the basic formalism 

for single-electron exeitations in collisions of 
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very heavy ions. Starting from an adiabatic 
basis set we calculate the occupation amplitudes 
a„(t) of an electron moving in the combined elec- 
t r ic  and magnetic field of both scattering ions. 
Our considerations a r e  based on the notations 
and results of Refs. 8 and 9. The dynamical 
behavior of the electron Q l i  is described by the 
time-dependent Schrödinger equation ( E  = C = 1 )  

where H  is the Hamiltonian, which is specified 
below. 

The time-dependent wave function @,( t )  is ex- 
panded in terms of the complete adiabatic basis 
states C$, 

with the phase 

The sum in Eq. (2.2) is understood to include an 
integration over continuum states. The basis 
states C$ a r e  determined a s  solutions of the 
stationary two-center Dirac eq~ation'*'~*'' 

The method of solution first  proposed in Ref. 1 
has been extensively discussed in Ref. 12. The 
relativistic Dirac Hamiltonian H, depends on 
time parametrically via the internuclear separa- 
tion R ( t )  entering in the two-center Coulomb po- 
tential v „ ( F , ~ ( t ) ) .  

The total Hamiltonian in (2 .l) is split into 

where H' contains any interaction responsible 
for electron excitations which is not included in 
H,. In the case of magnetic interactions it is 
given by -. - 

H ' = - @  .A -. (2 .6)  

with the vector potential A created by the current 
of both colliding ions. A factor -e  is,included in 
the definition of the potentials V and A .  Inserting 
the ansatz (2.2) into Eq. (2.1) followed by pro- 
jection leads to a set of f irst  order coupled dif- 

ferential equations for the occupation amplitudes 
a i j ( t ) ,  

X exp (& , (2.7) 

with the phases 
X j k  = X j  - X k  . 

As usual, we split the a / a t  operator into its radial 
and rotational coupling components 

The computation of the a / a t  coupling matrix ele- 
ment is described in detail in Ref. 12. We adopt 
the same notation and the results of that article. 

111. THE VECTOR POTENTIAL OF TWO 
COLLIDING NUCLEI 

Starting from elementary classical electro- 
dynamics we first  will derive the vector poten- 
tial in the Coulomb gduge created by the colliding 
nuclei. Except for a gauge function the scalar 
potential V and the vector potential a r e  deter- 
mined by the solutions of the inhomogenous wave 
equations13 ( C  = 1 )  : 

where p and 3 denote the heavy ion charge and 
current density , respectively . Assuming point- 
like nuclei we have 

with being the heavy ion velocity. The trans- 
Verse Coulomb gauge is defined by 

and hence one obtains in this gauge the instantan- 
eous Coulomb potential a s  

With Eq. (3.3) the two-center Coulomb potential 
becomes 
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The vector potential obeys the differential equa- netostatic expression 
tion 

a2 + -. av 
~ ~ Ä ~ - ~ A ~ = e 4 s J + a ~ ~ ( ~ ~ ~ ,  a t  (3.8) 

with the transverse current.13 

Writing 
- . - - C  

J,=J - J ,  

and with the longitudinal current 

one finds with Eq. (3.4)13 

In the Coulomb gauge (3.5) all  magnetic and 
retardation effects a r e  completely contained in 
the vector potential. On the other hand, the 
Lorentz gauge 

leads to the equations 

and 
az 

vzÄz-„ A a = 4 d e  . 
Employing the retarded propagator - - 

6( t t - t+  ~ r - r ' l )  
G(;, t;  F', t') = 

Iit-P'1 , (3.16) 

the solutions can be  expressed as  

In the Same way it results from Eq. (3.8) 

As a basic approximation we neglect now all  
retardation effects (2 - [F-  F' 1 - t ) .  Their influence 
on the scalar potential was estimated14 to be of 
the order of 0.1% for heavy ion velocities below 
the Coulomb barrier.  Thus we employ the mag- 

3 (F' t)  
Äc(c t )=  -eJ* d3/  . 

Inserting now the transverse current (3.12) and 
integrating by parts finally yields for the vector 
potential in the Coulomb gauge13 

The corresponding result in the Lorentz-gauge, 
Az(F, t) follows from (3.18), (3.4), and (3.21) 
neglecting also retardation: 

We investigate now the influence of the vector 
potential (3.21) in the Coulomb-gauge on spin po- 
larizations of K vacancies and 6 electrons. This 
problem has been already studied inconsistently 
in Ref. 3 employing time-dependent perturbation 
theory for the dynamical excitations of electrons. 
The inconsistency came about with the choice of 
the quasimolecular basis states, calculated with 
the scalar potential (3.7) in the Coulomb gauge, 
while the vector potential was treated in the 
Lorentz gauge (3.22). However; we shall See 
that according to the correct results of this art-  
icle, the final conclusions of Ref. 3 remain valid. 

For simplicity we will restrict  our following 
derivations to symmetric systems with 

and choose our coordinate system according to - + 
R , = - R , = - Z R ,  (3.24) 

i.e., the coordinates are  measured from the 
geometrical center of the colliding system. The 
nuclear trajectories a re  prescribed as Ruther- 
ford hyperbolas in the x=z plane with the Z a ~ i s  
connecting both nuclei. R(t) and v'(2) denote the 
internuclear separation and the relative velocity 
of both nuclei. V can be divided into its radial 
and azimuthal components 

with the radial velocity V ,  = R(t) and the rotational 
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velocity where y denotes the polar angle with respect to 
the z axis. The multipole expansion of the gauge 

(3.27) t e r m ~ z '  is more complicated. According to our 
choice of the coordinate svstem we can write 

-C -. 
R = I R  1, V ,  Iv(t= m) I is the asymptotic heavy ion 
velocity and b denotes the classical impact pa- A r i  = - b2 (- [U,%+ U&+ +R)] P+ +G 
rameter. [r'+$iR13 

Next we aerform a multiaole exaansion of the 
vector potential (3.21). For that purpose we shall 
make use of the following e x p a n s i o n ~ ~ ~ :  

(3.28) and we may decompose this gauge term into 

-. 
+ - .. * A:'= - ~ze2(F,e,+F,e,) . (3.35) 

wi thr(=min( l r I ,  ja]) ,  and r ,=max( l r I ,  l a / ) .  
Also 

Notice that B, and 6, are not orthogonal. With 
z = r  cosy and the expansion (3.29)-(3.32), it 

r2 - a2 
m 

-=- Y' C (*1)'(21+ 1) ?, P,(cosy) , follows that 
licrZ13 z .O a 

(3.29) 

m 
a r r cosy ?J = + 1 )  1 , (3.30) l ~ r a 1 ~  

for Y <  a; and (3.36) 

m 
i a  - r cosy a z - l  

= T  (*l)'lF P,(COSY) . (3.32) CO lirra13 2 51 Y, (21+ 1) 5 ~ , ( c o s y ) t  (3.37) -"" IIO,2 Y> 
for r > U .  With (3.28) we immediately derive for 
the Lorentz term in (3.21) (5 =SR) 

In (3.36) and (3.37) the upper (lower) line is  valid 
22) = I  AL= + + -(uRez+vp,)- -. Ze2 2 -&- Y P , ( c o ~ Y )  for Y < ~ R  (Y>$R). The fictitious divergence in 

Zd,3 V> the U,-terms can be eliminated by combining the 
(3.33) corresponding succeeding terms of the ser ies  

= - i Ze2(G,B,+ GxG,) , expansions. Finally one can make use of the 
relation 

Now the vector potential induced by the heavy ion current is  expressed by the radial coordinate Y and 
the polar angle y. If equation (3.38) is inserted into (3.36) one finds after some elementary transforma- 
tions 

Yl +l 

F , = { ~ V ~ G  2 IP0.2 2 { z ~ l ) ~ z ( c o ~ y ) ~ - ~ a f  Y> z R  1-1,s ~ J ~ ~ ( ( ~ ~ ( ~ ~ ( : ~ ~ ) ) ~ " [ ~ , ~ ( ~ ~ ~ Y ) - Y Z ~ , - I ( ~ ~ ~ Y ) I ~ .  Y>& 

In the same way one obtains for F, 
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IV. ELECTRONIC WAVEFUNCTIONS 
AND MAGNETIC COUPLING MATRIX ELEMENTS 

In order to solve the stationary Dirac equation 
(2.4) with the two-center potential (3.7) and (3.24) 
in the Coulomb gauge, we perform a multipole 
expan~ ion l* '~  of the basis  s tate wavefunction +(F): 

f ,(Y) and g,(r) a r e  small  and large components of 
the radial wavefunction. K i s  connected to the an- 
gular momentum through 

with the total angular momentum j = I K ( - 4. The 
magnetic quantum number denotes the projec- 

tion of the total angular momentum on the axis 
connecting the two nuclei (z axis). With (3.28) 
also the two-center Coulomb potential can be 
expanded into multipoles which yield for  symme- 
t r i c  systems and pointlike nuclei 

with (&=%,=L?) 

The coupled radial equations then read (see, e.g., 
Ref. 12) 

with 

A:u,z,„= (X: Ip1Ix;) 

= (- 1)"-"(I„ $, j „  p-m, m)(l„ a, j „  p-m, m)[(21,+ 1)(21R+ 1)]1/2 I R  
m.*l/2 [ 0 [L . ] . 

For  the nurnerical treatment of eqs. (4.6) it i s  
convenient to transform the radial  differential 
equations to a Iogarithmic scale. Writing F, 
= ~ f , ,  G , =  rgK, and Y= r,ex, i t  follows that 

Extensive numerical studies of the two-center 
Dirac equation for electronic bound states were 
performed by Betz e t  al. for  the syrnmetric 
systems P b + P b  and U+U inRefs.  12 and 17 and 
for  the asymmetric system Pb+ Cm in Ref. 18. 
With the multipole expansion of the vector poten- 
tial (Sec. 111) and the two center wavefunctions 
we a r e  now able to evaluate matr ix  elements of 
the magnetic interaction for bound states 

Using Eqs. (2.6), (3.33), (3.39), and (3.40) one 
can write 

1 

is expressed in the standard representation16 
by 

The angular integration in (4,9) can be performed 
analytically. 

In heavy ion collisions excitations to the con- 
tinuum play a major role for  inner-shell vacancy 
f ~ r m a t i o n ' ~ ~  and can therefore not be neglected. 
However, continuum solutions of the two-center 
Dirac equation a r e  unknown at  present. Therefore 
we a r e  forced to apply the monopole approximation 
of the two-center potential, where only the te rm 
with L = 0 in the expansion (4.4) is retained. This 
monopole approximation was f i r s t  proposed in 
Refs. 19-21. I ts  validity has been investigated 
in Refs. 12 and 22. Then the bas is  s tates simplify 
to wavefunctions with good angular momentumie: 
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with the usual radical equations 

The monopole potential for pointlike nuclei is 
simply12 

For the more realistic case of extended nuclei 
we refer to the discussions of Refs. 12,22,  and 
23. Equations (4 ,13)  have been solved numerical- 

we find after angular i n t e g r a t i ~ n ~ ~ * ~ ~  

ly12 for both bound and continuum states. For 
the calculation of excitations induced by the vector 
potential and of the diagonal interactions leading 
to a Zeeman Splitting of electron states we still 
need the matrix elements (4 .9) .  

Firs t  we consider matrix elements of the type 

with L being even andM = -  1, 0 ,  + l .  Using 

with the abbreviation 

x( l l ,  j ' ,  y ' ;  l , j ,  ,U, ; L , M ) =  ( - l ) " ' - m ( l ' , ~ , j ' ,  P ' - m , ? n ) ( l , i , j ,  P - m , m )  
m = ~ i n  

I 
417 

- y l + m  y - r n  M  [' 0 ' 0 "1 0 ' 
(4.19) 

Here I and j denote the orbital and total angular momentum related to K ,  whereas and j  are  connecter' 
with - K  and can be taken from Eq. (4.3). The selection rules for this matrix element are y' = P + M  and 
I'+ I+ L being even. 

Next we consider the matrix elements 

with 

Here L is odd and a g a i n M = - 1 , 0 , + 1 .  Thus we get 

with the abbreviation 

~ ( l ' ,  j ' ,  y ' ;  1,  j ,  y ;  L , M ) =  sgnrn(-1)""(11, S, j ' ,  ~ ~ - r ) z , m ) ( l , a ,  j ,  P - m ,  m )  
m,ttl2 

+ 1)(21+ 1 ) ( 2 L +  1 )  1 
417 

(4.23) 

M ,  differs from M ,  only by the Signum in the sum and by the exchange of the angular momentum quantum 
numbers 7 and 1. This leads to the modified selection rule: Z1+i+ L is even. 
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Finally it is  necessary to calculate the matrix elements 

with .=k ;I. 
C J  

After angular integration one obtains ( L  i s  odd) 

with 

~ ( l ' , j ' , ~ ' ; l , j , ~ ; L , O ) =  ( - l ) u ' m ( l ' , $ , j ' , ~ ' + m , - n ~ ) ( l , ~ , j , y - r n , m )  
m.1112 

X ( (2z '  
+ 1)(21+ 1 ) ( 2 L  + 1 )  1' 

' [  
I 

471 - 1 ' - m  y - r n  L ] r z L ]  0 0 0 0 ' (4.2'7) 

Obviously this matrix element exists only between states with y l =  p 1 1 .  I'+ T +  L must be even. 
Havingobtained a l l  results  relevant for the generalcase now we focus our attentionto the magnetic coup- 

ling between n s o  states in the monopole approximation (j = 4,  L = 0 ,  T= 1 ) .  Then the angular momentum 
coefficients simplify to 

1 1  1 1  1 1  
~ ( 0 ,  S, F+; I , % ,  d ;  1, o )=  - z ( 1 ,  Z, +T; 0 ,  2, *T;  1 ,  0 )  = F -  - . (4.31) 

J3 G 
' ~ l l  other possible coupling vanish due to the se-  'which i s  the same in the Coulomb a s  well a s  in 
lection rules o r  due to the triangle rule. If we 
insert  the values (4.28)-(4.31) into the corres-  
ponding rhatrix elements we find that all con- 
tributions to couplings between s states with the 
Same magnetic quantum number just cancel in the 
Coulomb gauge: 

( . s ' * ~ / H & „ ~ s I ~ ) = o .  (4.32) 

This i s  different from the Lorentz gauge, where 
we obtain 

(s'*$IHA„„~s I + )  

the Lorentz gauge. Futhermore we note that ac- 
cording to the selection rules in symmetric sys-  
tems, all magnetic mixed couplings between 
s *$ and P,/,  I $  states vanish in the monopole ap- 
proximation. 

For  the magnetic coupling b e t ~ e e n p , ~ ,  s tates 
we found the Same results  a s  for  the s,,, states 
except for an  overall minus sign in Eq. (4.34). 
In just the Same way a s  we treated the magnetic 
interaction i t  is  possible to investigate the in- 
fluence of higher electric multipoles ( I  2 1 )  of 
E q .  (4.4) on n s o  states in the monopole approxi- 

Y mation. In this case we have to compute the 
= - z + i u B ~ m ~ z d ~  1 ~ g '  Y >  -fl,> . (4.33) matrut elements 

However, also in this case  there is no contribution M,= (@',*,~IH, I L) , 
to the Zeeman Splitting: Due to the minus sign 
in the integrand of (4.33) the diagonal matrix ele- with 
ments (s' = s )  vanish. Fo r  the spin-flip transitions 

m 

we find in Summary the simple result  H,=C v p ,  (COSY) . 
1.1 

(s' F $  1 H' IsFS) Using the angular integrals (4.7) we find immedi- 
ately that Me=O for  s ta tes  with K =  -1,  which 

Z e  Y 
=T ivo im rzdr+ V g t +  f 'g )  again underlines the validity of the monopole 

Y >  approximation for the calculation of n s o  ioniza- 

= T  iA$k,** , (4.34) tion. The radial coupling matrix element of Eq. 
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(2.7) and (2.9) a r e  presented inRef. 12. The only 
nonvanishing matrix elements of rotational in- 
teraction involving s states in the monopole ap- 
proximation are  determined byZ5 

( s * $ 1 ~ , I s r ; ) = r h i ,  (4.37) 

with 

W,= bv_/R2 ; 

this leads to 

( s f$ I  - i G z l s r $ ) = r b v , / 2 ~ ~ .  (4.39) 

V. POLARIZATIONS AND MANY-ELECTRON 
ASPECTS 

Before we start  to discuss explicitly polariza- 
tion phenomena, we first  derive some symmetry 
relations for the occupation amplitudes. For this 
purpose we introduce the abbreviation 

where the 'Y " and "-" sign denotes the corres- 
ponding spin projection. The matrix elements of 
magnetic interaction (4.34) obey the following 
relations: 

Aj- ,„=-Aj .k -=-Ak*, -=Ak- , j ,=Aj ,h  . (5.2) 

The coupled channel equations (2.7) then read 

-C at-, „+A„e-'%j , 
T +  

(5.4) 

and 

which have t o b e  solved with the initial conditions 

a i+. j+( t= - *)= 6f+,,+ (5.7) 

o r  

If we neglect the magnetic interaction, the spin- 
flip arnplitudes (5.5) and (5.6) will vanish. 

The two se ts  of differential equations a re  solved 
consistently if the following symmetry relations 

hold: 

ai+,,+=ai-.T- 
and 

%+,T- = -%-,V+ . (5.10) 

These results imply, that no Spin polarization 
with respect to the quantization axis (the z axis 
connecting both nuclei) can be observed. The 
polarization is expected to be oriented in the 
direction of the magnetic field strength, i.e., 
the y axis orthogonal to the scattering plane. In 
order to calculate the spin polarizations along 
the y axis we have to rotate the coordinate system 
applying the rotational matrixes ~i~(cu, ß, y)24: 

-iam'dj, (~)~-iTm 
f o  ( ~ , ß , y ) = e  m m  Dm m (5.11) 

with 

For this purpose we represent the wavefunction 
by 

@ = C , J ~  + c ~ . . x ; ~ / ~  . (5.13) 

This leads to 

x : / 2 , ~ 1 / 2  112, 1 / Z X : ~ ~ + D Y ~ , ~ / ~ X ; ~ ' ~  

" 1 1 2  
(5.14) 

~ ; ~ ~ = ~ : : P , - i / z x : ~ ~ + ~ ! i : 2 , . 1 1 2 ~ ~  , 
and correspondingly for the amplitudes 

C,,+= I / Z , ~ / Z C ~ ~ + D I / Z , - ~ / Z C ~ -  112 > 

(5.15) 
cy-='!!~2,1/2c~++~t/Sz,-1~2cg- . 

Inserting now the Euler angles cr =$T, ß = Sn, 
Y =  i n  we finally get for the amplitudes with re- 
spect to the spin projection along the y axis 

So far we have described only the fate of a 
single electron influenced by the collision dy- 
namics. Now we s tar t  to discuss some aspects of 
the many electron where we 
follow the lines pointed out in Ref. 8. We expand 
the field operator 4 in terms of the complete 
adiabatic basis states 4,: 

where the subscript '2'' or ' j "  denotes quantiza- 
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tion along the z or y axis, respectively. From Comparing (5 .22)  and ( 5 . 17 )  we a r e  left with 
( 5 . 17 )  we find the operator relation ( q  < F )  

-C*. Z 
A t  d t  =C ( ~ , , y / % , e ) a a , e ,  - Q t Y  ( 5 . 18 )  ' = r + < F  C a r + . ~ * d : + + C  r-<F ar-.q*dr- 

P.< F 

with 
(5 .25)  

+ s + > F  C as+,a*zs++ X a s - , q * i s -  

(@,+,Y I@P+te)= (4 , - ,y  I$q-,e)= - 1 / J Z  (5 .19)  *->F 

The number of created holes q  with positive-spin 
projection ( q +  < F )  along the y axis therefore is  

T +  =(SI l?4+,Ybp-+,Y I + )  
=+(+I~t„,,j+,,I+>++(+ 1::. Zi , - ,Z I+ )  

+ ~i(+ld^:*eb^,-.e l+)-$i(+ j j : - , , $ ,+ ,L /+)  . , 

(5 .21)  
Aiternatively, we may expand 4 in terms of the 
single-particle wave functions @,(t) with definite 
boundary condition at t - -  Oo, already containing 
the dynamical excitations 

This transformation may be employed to evaluate 
the required expectapo_n values of Eq. (5 .21)  
since the operators_d„b, a re  constructed such 
a s  to destroy the Heisenberg ground-state vector 

I + ) ,  i.e.9 

and 

[L, !*I = L,** - 
Ai1 other anticommutators vanish. In particular, 
the additional expectation values of the type 

with the definitions for operators for holes 
Li A 

M ~ = ( + I ~  :*,zie,El+) ( 5 . 29 )  
d,=bf for q < F  (5 .23 )  

which did not appear in Ref. 8 lead to 
and 

Li .. 
d ' ,=  b, for q < F  . (5 .24)  M a =  s C 3 F  aZ+,uias+.q*+ s->F C as*.pras-,q* (5 .30)  

Finally we obtain for the number of created 
holes N: with Spin projection along the y axis 

The spin polarization of holes q along the y axis is defined by 

This vields - 

where C.C. denotes the complex conjugate. The Same structure as  in ( 5 . 34 )  can be obtained simply by 
taking the U, expectation value of 9,. With 

and 

, 
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it follows that 

which supports the validity of our result (5.33). With the completeness relation8 

the time-reversal-symmetry relation 

and the symmetry relations (5.9) and (5.10), one can rewrite U, and simplify Eq. (5.33). 

In just the Same manner we can also evaluate the number of created particles p (e.g., B-electrons) with 
Spin polarizations along the y-axis. 

N P Y = ( * I ! J , ~ ! ~ , ~ ~ + )  f o r P > F  . (5.40) 

We obtain 
A A i 

N i + =  ~ ( ~ I ~ ~ + , E ~ p + , z I  G) + ~ ( * I ~ ~ - , z ~ p - , e I  $) + i i ( + / & i - , e h + , e l $ )  - %  ( $ / & l + , E j p - , # l  $) . (5.41) 

With 

it follows for the matrix elements of the type 

The number of created particles then yields 

The Spin polarization of particles aiong the y axis is 

Again this may be rewritten as 

2 ~ m ( g ~ a ~ . ~  a v--b- 
5 =  ) 

C '+ C la„,rl ' 
(5.46) 

r-Q r-<F 

Furthermore we note the fact that particles and holes have opposite spin polarizations. Finaily we remark 
that the spin polarization aiong the x axis vanishes as was expected on physical grounds. 

VI. RESULTS AND DISCUSSION '(5.1), the rotational coupling (4.38), and the dia- 
We solved the coupled-channel equations (5.3)- gonal and off-diagonal magnetic interaction (4.34) 

(5.6) for the nsu states by numerical integration. a re  taken into account. Since in the present com- 
In the monopole approximation, the radial coupling putations spin-up and spin-down states have to 
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FIG. 1. Comparison of the radial and magnetic coup- 
ling strength in units of E = m, = c = 1 versus  internuclear 
separation R . We show I D ~ ~ ~ ,  „,/RI [Eq. (5.1)] and sep- 
IAl,-, , +,/v,j [Eq. (4.34)] fo r  n = 2 ,4  and a continuum 
state hith kinetic energy E =500 keV, respectively 
(21 +Z2=178) .  

FIG. 2. Number of created Isu vacancies per 
collision with impact Parameter b .  Two different 
ion energies a r e  considered for the system Z ,+Z2=  178. 

FIG. 3. Differential Cross section for 6-electron 
emission with respect to kinetic electron energy. The 
number of correlated 6 electrons and Isu vacancies a r e  
considered using Eq. (36) of Ref. 8. 

FIG. 4. Differential probability versus  kinetic 
electron energy for emitted 6-electrons correiated with 
lsu vacancies a t  the impact Parameters b= 0 and 20 fm. 
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b = 20 f m  

5.9 MeVlu 

40 60 80 100 
Rifm) 

FIG. 5. Zeeman splitting of the lsu state induced by 
the strong magnetic field in the colliding system Z i + Z 2  
= 178. 

be treated explicitly we had to reduce the number 
of considered basis states slightly compared with 
the calculations of Ref. 8. As bound states we in- 
cluded the I s u  up to the 5su state whereas the 
integration over the positive energy continuum 
between E =mc2 and E = 3mc2 has been performed 
with 13 grid points. The dimension of the re- 
maining system of coupled-channel equations 
therefore is  n = 72 (real and imaginary part treated 
separately). In Fig. 1 the absolute value of the 
radial coupling (5.1) I D„,,„/R I and the magnetic 
coupling (4.34) IAh-o,„o/~m I is compared for  
n = 2 , 4  and for a continuum state with kinetic 
energy E = 500 keV. The off-diagonal magnetic 
coupling strength is found to be typically by an 
order of magnitude smaller than the radial coup- 
ling for the considered two-center distances 
between R = 23 and 200 fm. One should keep in 

- 0.08 - 5.9 MeVlu - 

0 20 40 60 80 100 

bIfm) 
FIG. 6. Spin polarizations of lso vacancies versus 

impact parameter. 

I I I t I I I I I 
200 400 600 800 

EikeV)  
FIG. 7. Spin polarizations of emitted 6 electrons 

stemming directly from the 1 su state versus kinetic 
electron energy, using Eq. (5.46). 

mind that these matrix elements enter almost 
quadraticaily in the excitation probabiiity. There- 
fore only a minor contribution to the vacancy 
production probabilities due to the time-varying 
potential can be expected. As a main result we 
found that the additional magnetic interaction does 
not change the total ionization probabilities but 
leads to Spin polarizations of electron states. The 
created polarization is preserved during the 
collision despite the importance of the multi- 
step excitation processes. As dominant effect 
the Zeeman splitting of the l s u  state gives r ise  to 
a stronger ionization of one of the usually degen- 
erated spin states whereas the other becomes less 
ionized. However, the total sum remains almost 
exactly the Same a s  obtained with the radial 
coupling only. The number of created l s u  vacan- 
cies per collision with impact parameter b 

is shown in Fig. 2 for the system Zl+Z,=178 
with E„= 5.9 and 3,6 MeV/u. The Fermi surface 
F, denoting the highest level being occupied at 
the beginning of the collision (t = - m )  was chosen 
to be F = b u .  For central collisions we found 
P„(O) = 0.16 and 0.013, respectively, which is 
about 10% smailer compared with the corres- 
ponding probabilities of Refs. 20 and 21 due to the 
reduction of the number of basis states. The 
6-electron spectrum for the Same system and 
impact energies is displayed in Fig. 3. A coinci- 
dence measurement of F electrons with measured 
l s u  vacancies is  required. For the corresponding 
calculation of the number of correlated particle- 
hole pairs we refer to the formalism of Ref. 8. 
Tlie differential probability for 6-electron emis- 
sion with respect to kinetic electron energy for  
the impact parameters b = 0 and 20 fm can be taken 
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from Fig. 4. Fo r  higher heavy ion energy, the 
6-electron distribution shows a weaker dependence 
on E reflecting the higher Fourier frequencies 
attainable in this collision. 

The Zeeman splitting of the l s u  level as func- 
tion of internuclear separation R is  given in Fig. 
5 for a collision with E„,= 5.9 MeV/u and b = 20 
fm. Using Eq. (4.34) it has been evaluated ac- 
cording to 

rnlso = 2 I A I ~ + ~ ,  1s- / . (6.2) 

At the distance of closest approach it reaches a 
maximum values of A E  (R = 30 fm) = 32 keV. 

The spin polarization V ,  of created l s u  vacan- 
cies has been calculated according to Eq. (5.40). 
Its dependence on impact parameter i s  presented 
in Fig. 6 (q = l su ) .  As can be seen, 7, = 0 for 
head-on collisions since the rotational velocity 
21, from (3.27) i s  Zero in this case. Its maximum 
value i s  obtained for medium impact parameters 
between b = 30 and 80 fm. For  la rger  impact 
parameters (distances) the magnetic field i s  too 
small  in order  to influence ionization processes. 
The calculated spin polarization i s  of the Same 
order  of magnitude as estimated ear l ie r  in Ref. 
3 within time-dependent perturbation theory. This 

theoretical prediction still needs experimental 
verification. The spin polarization 7, of 6 elec- 
trons versus kinetic electron energy E stemming 
directly from ionization of the l s a  state [ ~ q .  
(5.47)] i s  presented in Fig. 7 for b =20  fm. Cor- 
relation effectss a re  not considered in this case. 
Larger polarizations a re  found for increasing 6- 
electron energy. Ionization measurements of 
l s a  electrons, therefore, may yield direct in- 
formation about the behavior of electrons in strong 
magnetic fields. They may also be of some im- 
portance for astrophysical phenomena. In partic- 
u lar  astrophysical p r o c e s ~ e s ~ ~ - ~ ~  in pulsar mag- 
netospheres and neutron s t a r s  a s  well a s  elec- 
tron binding e n e r g i e ~ ~ ~ - ~ '  of atoms in uniform 
external magnetic fields have been the subject of 
widespread theoretical investigations during the 
last  years. 
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