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Abstract

In this thesis | useféective models to investigate the properties of QCD-like
theories at nonzero temperature and baryon chemical paitent

First | construct a PNJL model using a lattice spin model wiglarest-
neighbor interactions for the gauge sector and four-femnmberactions for
the quarks in (pseudo)real representations of the gaugggi@alculating
the phase diagram in the plane of temperature and quark chkpoten-
tial in QCD with adjoint quarks, it is qualitatively confirrdehat the critical
temperature of the chiral phase transition is much highan tihhe decon-
finement transition temperature. At a chemical potentiabétp half of the
diquark mass in the vacuum, a diquark Bose—Einstein comatiens BEC)
phase transition occurs. In the two-color case, a Ginzliagdau expan-
sion is used to study the tetracritical behavior around niter$ection point
of the deconfinement and BEC transition lines which are bbdecond or-
der. A compact expression for the expectation value of thgaRov loop in
an arbitrary representation of the gauge group is obtaimealfy number of
colors, which allows us to study Casimir scaling at both msazemperature
and chemical potential.

Subsequently | study the thermodynamics of two-color QCOAD) at
high temperature aor density using ZQCD, a dimensionally reduced su-
perrenormalizableféective theory, formulated in terms of a coarse grained
Wilson line. In the absence of quarks, the theory is requivedspect the Z
center symmetry, while theffects of quarks of arbitrary masses and chem-
ical potentials are introduced via soft Breaking operators. Perturbative
matching of the ffective theory parameters to the full theory is carried out
explicitly, and it is argued how the new theory can be usedfioee the
phase diagram of two-color QCD.






Zusammenfassung

Seit mehr als der Halfte des Jahrhunderts ist die QCD wegen velen
interessanten Eigenschaften attraktiv. Anders als Pleatonder QED tra-
gen die Gluonen in der QCD, welche eine Nicht-Abelsche Eebtie ist,
nichtverschwindene Eichladungen. Deswegen kdonnen dier@lu unter
sich wechselwirken. Dies fuhrt zu eigenartigen Eigendeimafwie z.B.
asymptotischer Freiheit und Farbeinschluf3.

Wahrend viele stérungstheoretische Berechnungen fiir adtevKop-
plung durchgefiihrt werden, sind sie bei den niedrigen Heskglen nicht
anwendbar. Das Verhalten der QCD bei starken Kopplungerot nicht
voll verstanden.

Weitere Inspirationen kdnnen moglicherweise aus der QGPrimdlicher
Temperatur und Dichte bekommen werden. Mit steigender &eatpr und
Dichte werden neue Phasen in QCD-Materie auftreten. Dik&tier QCD-
Kopplung und die Vakuumstruktur werden durch Viel-Korjigfekte veran-
dert. In den neuen Phasen sind die Farbladungen nicht mejesaihlossen.
Das Vakuum wird durch die Restaurierung der chiralen Symmeean-
dert. Phasenibergange kénnen daher auftreten. Es gibtibgoee, die
diese Voraussage verfolgen, wie z.B. bei RHIC, LHC und FAM QCD
bei endlicher Temperatur kann auch numerisch auf dem Gitteuliert
werden. Obwohl Experimente keine eindeutige Informatibarimégliche
Phasenubergénge geliefert haben, wird diese Idee von deiissen der
Gitter-QCD unterstltzt. Die Schwierigkeit der Gitter-QGE&gt wegen des
Vorzeichenproblems daran, dass die gangigen Monte-Cailddchnike-
nendlicher Dichte nicht mehr benutzt werden kénnen.

QCD-ahnliche Theorien kdnnen uns beim Verstehen der QCi2rhel
Obwohl sie nicht die wahren Theorien sind, die unser Univar$esch-
reiben, kann durch diese einfachen Modelle ein tiefer ktklh die un-
geldsten Probleme gewonnen werden. AufRerdem kénnen diesmién
auf dem Gitter simuliert werden. Die numerischen Ergelendes Gitter-
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Rechnungen kénnen dann zur Bestatigung der Schlussfoigenuaus den
theoretischen Herleitungen benutzt werden. In dieseriAvierden QCD-
ahnliche Theorien bei endlicher Temperatur und Dichtersatéht. Beson-
dere Schwerpunkte sind der Phasentbergang des Farb-Dexoafit und
die Restaurierung der chiralen Symmetrie.

In dieser Arbeit untersuche ich QCD-ahnliche Theorien vgm MTund
[I, ndmlich mit Quarks in der realen und pseudorealen Dbwsig der Eich-
gruppe. Sie haben sehr verschiedene Phasendiagramme gheitierzu
QCD. Hier nehme ich Zweifarb-QCD (QO) und Dreifarb-Adjoint-QCD
(aQCD) als Beispiele und untersuche ihre Phasendiagramd@as Casimir-
Skalierungsverhalten.

Um den Eichsektor zu gestalten, wird ein einfaches Giten-$odell
mit den Wechselwirkungen zwischen Nachsten-Nachbarnvesmyget, in-
spiriert vom Starken Kopplungs-Limes. Dies ist dann an Kantm-Quarks
gekoppelt, in einer Art &hnlich wie dem Polyakov-loop NJN@2) Modell.
Die Wirkung des Eichsektors ist gegeben durch

SelL] = -N2e™™ " te(@) i + ).
z,Y
wobei x die Gitterlange und; der Abstand zwischen den Nachbarn sind.
() = ic Tr Le(x) ist die Spur der Polyakov-Schleife in der fundamentalen
Darstellung.

Der Quarksektor ist mit Vier-Fermionen-Wechselwirkungenstruiert.
Im Nambu-Formalismus ist die Lagrange-Dichte

1
¥ + H.c.

_ 1 —
Locp-ike = VIDY - Emo‘I’C
+1 O

Diese Wechselwirkung bezieht sich auf die FlavoursymmaéirQCD-ahn-
lichen Theorien, die sogenannte SU{@NDas Quarkfeld ist dann an den
Eichsektor durch die kovariante Ableitun@,y = (9, — igTaA})y, gekop-
pelt.
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Die Parameter im PNJL-Modell kbnnen getrennt fiir den Eicla-Quark-
sektor bestimmt werden. Danach kann das Phasendiagramrittiar®f-
Feld-N&herung berechnet werden. Abbildung 0.1 zeigt dasétidiagramm
von aQCDD mit einer Quarksorte, in der Darstellung Temperatur gegen
chemisches Potential der Quarks. Der Deconfinement-Ubgygarbunden
mit der Brechung der zentralen,Zist durch die schwarze durchgezogene
Linie gekennzeichnet, wahrend die rote gestrichelte Litie BEC Uber-
gang andeutet, bei dem die Baryonzahl |(@gbrochen ist. Aul3er diesen
zwei scharfen Phasenlibergangen gibt es einen Crossovenitdier Auflo-
sung des chiralen Kondensats verbunden ist. Dies trittiher @emperatur
auf, die viel hoher als die des Deconfinement-Ubergangs ist.
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Abbildung 0.1: Phasendiagramm der Zweifarb-QCD mit
einer Sorte von Adjoint-Quarks.

Die Temperatur des Deconfinement-Ubergangs hangt extremast
vom chemischen Potential ab. Der Grund liefeasichtlich daran, dass
die Adjoint-Quarks neutral bezlglich der zentralen Synmmiaetind. Das
Verhalten der Ubergangslinien in der Nahe ihrer Kreuzungied in dieser
Arbeit detailliert analysiert. Zum Schluss tritt der NOkmperatur BEC-
Ubergang beji: = 92 MeV auf, welches mit der Tatsache tibereinstimmt,
dass, unter unserer Parametrisierung, die Masse defORjoark-Multiplets
im Vakuum gleichm, = 184 MeV ist.

Das Phasendiagramm von aQCD wird im Rahmen unseres PNJEelldod
auch in dieser Arbeit berechnet. Wahrend das Phasendiagearhgrol3en
Skalen wie das von aQO aussieht, gibt es einen betrachtlichen Unter-
schied in der Topologie, wenn eine Vergré3erung in der Né&nd&deuzung
von Deconfinement- und BEC-Ubergangslinien vorgenommed. wiveil
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der Deconfinement-Ubergang jetzt von erster Ordnung istglies kritis-
che Linie fur BEC gebrochen und fiiti die Deconfinement-Linie an zwei
dreifachen kritischen Punkten. Deswegen existiert eimsdér Bereich in
den chemischen Potentialen, wo das Diquark-KondensatémePhasenuber-
gang erster Ordnung ungewdhnlich verschwindet, wenn drg&eatur steigt.

Die Casimir-Skalierungshypothese behauptet, dass dbsJtaglet-Po-
tential zwischen statischem Quark und Antiquark in einerttlenen Ab-
stand proportional zur quadratischen Casimir Invaria@GR), ist, wobei
R die Darstellung der Quarks bedeutet. Das kann eine Gelegenim
Verstehen des nichtperturbativen Verhaltens der QCDiélient Theorien
schdfen, und sollte solche ein notwendiger Bestandteil jedesdiiodein
soll, das versucht, die QCD-(Thermo)Dynamik nachzuahmen.
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Abbildung 0.2: Erwartungswerte der Polyakov-Schleifen.

Abbildung 0.2 zeigt die Erwartungswerte der Polyakov-8italin den
gewahlten Darstellungen gegen die in der fundamentalest€&amg. Durch
Vergleich zwischen dem linken und dem rechten Bild, die dtbtiskalierten
und skalierten Polyakov-Schleifen zeigen, sieht man, des€asimir-Ska-
lierung sehr gut reproduziert ist, wenn sich der Wert ded&mentalen
Schleife gegen Eins néhert, welches hohen Temperaturspratit. Es
wird schlechter bei niederigen Temperaturen, wo das MaliIMechsel-
wirkungen zwischen den nachsten Nachbarn zu einfach ist.

EQCD, eine dimensional reduziert@aktive Theorie fir QCD, kann die
Dynamik der QCD fur grof3en Abstéanden und bei sehr hohen Teatyen



gut reproduzieren. Aber es gibt Zeichen dafir, dass EQCRt maer Lage

ist, die korrekten Resultate bis zu Temperaturen von wenigezu pro-
duzieren, wobeT die kritische Temperatur des Deconfinement-Ubergangs
ist. EQCD zu maodifizieren und eine neuidektive Theorie zu entwickeln,
die sich auf die zentrale Symmetrie bezieht, ist ein moglidheg, um das
Problem zu tberwinden. Die neue Theorie, ZQCD genanntirsdér Lage
sein, die Ergebnisse von QCD oder EQCD bei asymptotischrhdben-
peraturen zu reproduzieren und sich auch auf die zentralertgyrie zu
beziehen, damit sie bis zu TemperaturenTygultig bleibt.

Die Lagrange-Dichte von ZQCD ist gegeben durch

11

L=2 [E TrFS +Tr(DiZ'DIZ) + V(Z)] :
3

wobei gz die Eichkopplung der féektiven Theorie istD; = d; — i[A, -],

Fij = 0iA; — 0;A - I[A;, Aj] und das PotentiaV (Z) ist

V(Z) = TH(ZTZ) + ha(Tr Z7Z)%+
2[S1p2 , 2 /52y2 4, g3, S
+gg[2H + 4(1'[) + S22 + 22 + 221‘[ .

Z ist hier das Matrixfeld und kann wie folgt parametrisiertrden:

Z-= %(211 +ifl- @),
wobeill als die Nullmode der elektrischen Gluonen identifiziertdyivVe-

gen des Fermion{Eekts brechen die letzten zwei Terme des oben erwah-
nten dfektiven Potentials die zentrale Symmetrig I&icht. Wenns,s zu

Null geht, wird die Situation auf den Yang-Mills-Fall reded, in dem die
zentrale Symmetrie eine exakte Symmetrie ist.

DasZX-Feld wird ein nichtverschwindenes Kondensat{i= vy = 2T
haben, welches zur spontanen Brechung der S§B)2) Symmetrie in
der Lagrange-Dichte fiihrt. Das Higgs-Feld bekommt eingehidliasse und
entkoppelt von der weichen Energieskala. Das Feld kanmtaggiert wer-
den, nachdem die Entwicklung defektiven Potentials um das Minimum
vorgenommen wird. Das resultierende Potential stimmt daitrdem von



EQCD uber und die Parameter kbnnen auf diesem Wege bestirardew.
Die Bestimmung der Parameter in der fihrunden Ordnungtergib

3 2T T
51— 4SV5 — SSVo + SV = 5 — —
3y 2% 2 Ky

26, + 854 ot B _< K
2Ot o T W T 32T | 12T

wobei die Konstante; mit den Btekten der Quarks verbunden sind.

Die Parametes, s kdnnen nicht durch Vergleich zwischen ZQCD und
EQCD bestimmt werden, weil sie die globale Information venBrechung
der zentralen Symmetrie tragen. Sie werden durch VerglgchEnergie-
und Masseaufspaltung bei den Minima der ZQCD zu denen in Q&b b
timmt. Die Details findet man in dieser Arbeit.

Nachdem die Parameter zur fiihrunden Ordnung bestimmtlsimehen
die Profile der freien Ergie als eine Anwendung der ZQCD baretwer-
den. Esist die Domanenwand in der Yang-Mills-Theorie usd@dmanen-
blase mit dynamischen Quarks. Die Domé&nenwand ohne Quardszw
o = 0.91o0yy vorhergesagt. Man erhalt auch den Radius einer statischen
DomanenblaseR = 2go/(6T3).
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“The most incomprehensible thing about
the world is that it is comprehensible.”

— Albert Einstein






Chapter 1.

Introduction

The exploration of the building blocks of our universe haganestopped since the electron was
first discovered in 1897. More and more elementary partiie® discovered successively,
including three generations of quarks and leptons, andegaogons which act as carriers of
the fundamental force's.Besides the elementary ones, many composite particlesadiswe
been found in experiments, including a large number of hadpecies. In order to explain all
the experimental results, theorists dedicated tens ofya&fagtort to build theoretical frame-
works for the interactions between particles. The endefwally led to the unification of
electromagnetic and weak interactions in 1960s and theledtement of quantum chromody-
namics (QCD) by early 1970s. These theories are alreadgatdmaterial in textbooks of
guantum field theory for many years.

For more than half a century, QCD keeps attracting a lot efaithn due to its various and
interesting properties. It consists only of quarks in a lizea color gauge group and gluons
as the mediator. However, the world of QCD is far more congpéichan its basic ingredients
may appear. Unlike the abelian gauge theory quantum etbateomics (QED) where pho-
tons have no electric charge, the gluons in QCD, whichnsm@abeliangauge theory, carry
nonzero color charges. Therefore, gluons can interactdmtuwhemselves, leading to distinc-
tive consequences. For example, the color interactiondmivgquarks becomes not stronger
but weaker at smaller distance, which is knowraagmptotic freedonThis is a consequence
of the non-abelian nature of gluon dynamics, with or withquerks. This “running” behavior

There may be another species, an elementary boson, the lbtiggs, which is a hypothetical massive elemen-
tary particle introduced in the Standard Model to explairywther particles have mass. As of the writing
of this thesis (December of 2011) there have been searchdéisefGtandard Model Higgs boson with the
ATLAS and CMS experiments, and candidate events are ob$anaeind 125 GeV. However, a definitive
statement on the existence or non-existence of the Higgwtée made before more data is collected, most
likely not before the end of 2012.



4 Introduction

of the QCD coupling strength is measured in experimentd)@ssin Figure 1.1as becomes
smaller when measured at higher energy scales.

0.5
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Figure 1.1.: The measurements af; as a function of the energy scalz The curves are QCD pre-
dictions given the value afs(Mz0) as shown in the figure. The empty, full and crossed
symbols are extracted values from experiments and latéiloeli@tions. Plot is taken from
Ref. [1].

While a perturbative treatment is applicable in the wealtptiog regime, it fails to be
practical at low energy scales, where the coupling is nodosgnall as seen in Figure 1.1.
It is exactly at such scales where a large amount of hadrorsga® and their properties
need to be explained. The behavior of QCD at strong coup$ingpt fully understood yet.
Amazing puzzles are left unsolved, including the structfr@adrons, the phenomenon of
color confinement, and the structure of the QCD vacuum. leigebed that the solutions are
closely related to the non-abelian properties of Yang-4viiieories which are the simplest
non-abelian theories with only gluoAs.

More inspiration may be obtained from QCD at nonzero tentpezaand density. With
increasing temperature and density, new phases will emer@€D matter under extreme

2The understanding of Yang-Mills theories is selected asubiee seven Millennium Prize Problems.
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conditions, where the strength of the QCD coupling and itaivan structure will be changed
by many-body #&ects. In the new phases the color charges are no more confireedac-
uum is changed due to the restoration of chiral symmetry,thus phase transitions can be
expected. There are experiments pursuing this goal, suattlas Relativistic Heavy-lon Col-
lider (RHIC) at Brookhaven National Laboratory (BNL), tharige Hadron Collider (LHC) at
the European Organization for Nuclear Research (CERN){tanBacility for Antiproton and
lon Research (FAIR) under construction at GSI Helmholthzen fir Schwerionenforschung
(GSI). QCD at nonzero temperature can also be numericaflylsied on discrete spacetime
lattices, which is known as lattice QCD. Although the expemts have not given definite
information about phase transitions, this idea is suppdotethe results from lattice QCD.
The problem of lattice QCD is that, due to the sign probleamagard Monte-Carlo techniques
based on importance sampling cannot be used at nonzerdydensi

QCD-like theoried can shed light on our understanding of QCD. They are not ibgor
that describe our universe, but can be simpler models toepgiet insight into our unsolved
problems. Furthermore, some of them can be simulated acdathe results from which can
be used to confirm the conclusion from a theoretical deovatin this thesis | will study QCD-
like theories at nonzero temperature and density, espedausing on the deconfinement
phase transition and the restoration of chiral symmetry.

The thesis is organized as follows. In Chapter 2 | will prégba concepts of QCD, its
symmetries and the phase diagram. The philosophffec&ve theories will also be discussed.
At the end of Chapter 2 | will introduce QCD-like theories fge in the following chapters.
Then in Chapter 3 | will exploit the Polyakov-loop Nambu—ddrasinio (PNJL) model to
study the phase transitions of QCD-like theories at low teratpure and density, where the
gauge coupling is large and perturbative methods cannatdx Wfter that in Chapter 4 | will
turn to the other direction.e., approaching the phase transition region from high tentpess.
There a three-dimensionatftective theory will be built to describe the physics from high
temperatures down to the critical temperature. Unlike #e=of low temperature and density,
perturbation theory can be applied at high temperature siedpected to work also near the
critical temperature. Finally, Chapter 5 gives the conollus. Some technical details are
delegated to the appendices.

3There are several fierent kinds of QCD-like theories, such as QCD with an imagithemical potential, at
nonzero isospin density, and QCD with quarks inf#edent representation of the color group other than the
fundamental one. In this thesis, the term “QCD-like” ref@rshe last case.



6 Introduction

Throughout the thesis, | use natural units in which Planakd Boltzmann’s constants as
well as the speed of light are equal to one,, 7 = kg = ¢ = 1. The metric tensor in the
Minkowski space ig),, = ¢ = diag(1 -1,-1,-1).



Chapter 2.

QCD and dfective models

This chapter is for pedagogical purpose. | will first predetsymmetries in QCD, including
the center symmetry and chiral symmetry, and the putaties@ldiagram of QCD. Then |
introduce QCD-like theories and discuss some of their ptagse After that the notion of
effective theories is explained, followed by the PNJL model BQELCD which will be used in

later chapters.

2.1. QCD and its symmetries

2.1.1. Color symmetry

The Lagrangian of QCD in Minkowski spacetime is given by

1 _
L=-ZFLF% +y(iD-my, (2.1)

whereF3, = §,A2-0,A%+gf®*°APA¢ is the gluon field strength tensor with the QCD coupling
constantg and the structure constanté™ of the color SU(3) groupDb, = 8, - igATte is
the gauge covariant derivative with the color generatgrandm is the mass matrix of the
quark fieldy. The first term in Eq.(2.1) is the Lagrangian of SU(3) Yandisftiheory. The
generatorg? in D should be in the same representation of SU(3) as the quanksich, in
QCD, is the fundamental representation.
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Under a color SU(3) transformatio¥(x) = "™ the fields transform as

v(x) = () = V().

(2.2)
AR > AZOIER = V() (AR +ig7a,) V(%)

The QCD Lagrangian (2.1) is invariant under this local gatgesformation.

Since | will study QCD matter in equilibrium statistical nieamics using the imaginary-
time formalism, the fields depends on spacetime coordirfate3, where the imaginary time
T corresponds td in Minkowski spacetime. At nonzero temperatiirghe range ot is [0, 5],
wheres = T2, and the fields obey the boundary conditions

o(x,7=p) o(x, 7 =0) periodic for boson fields

Y(x, 7 = p)

(2.3)

—yY(x,7=0) anti-periodic for fermion fields

Thus there exist such constrains for the local gauge tramstfiion that the boundary condi-
tions (2.3) should be preserved. A trivial choice is theciriperiodic transformation as

V(x,7=8)=V(x,7r=0). (2.4)

It is easy to see that the transformed fieldaand A’ in Eq.(2.2) are still (anti)periodic under
the transformation (2.4), provided that the condition8)2old before such a transformation.

Is there any nontrivial transformation other than the H{rigeriodic one (2.4) which also
preserves the boundary condition (2.3)? The answer is ygsui@ gluo-dynamics without
quarks,.e., Yang-Mills theory. If there exist quarks in the system, #mswer depends on the
color representation of the quarks. The following subse&ds dedicated to this question.

2.1.2. Center symmetry

The nontrivial transformations proposed above, whichgmesthe periodic boundary condi-
tion (2.3), are found to e

- 2 4
Vo= Vo, 0efo 5L @5)

1Since there is no confusion in this subsectiens not written explicitly.
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i.e., the group element for = B is the same as that far = 0 up to a overall factor. It is
obvious that the strictly periodic transformation (2.4drse of the three pieces in Eq.(2.5).

Given the periodic gluon fieldi(r = g) = Al(r = 0), theA’ in Eq.(2.2) transformed under
Eq.(2.5) obeyA’(r = B) = Aj(r = 0) because the phase anglé @mmmutates with the
generators and thus cancels. However, such a cancellatemnbt mean that the anglean
be any real number. Becaugg, andV,_; are both SU(3) elements, the pha¥eshould also
be an SU(3) element. From group theory we know that everyméhas a normal subgroup
Z(G), all elements of which commute with any elemenigbfThis subgrougZ(G) is called
thecenterof G. ThusZ(G) is an abelian group and its elements are always propottiotiae
unit matrix in any irreducible representation®f The center of the SU(N) group in a faithful
representation i@iz"”/'\ﬂk =0,---,N- 1}. The three factors in Eq.(2.5) constitute exactly the
center of SU(3) in the fundamental representation.

Since both the Lagrangian of Yang-Mills theory and the pddoundary conditions
(2.3) are invariant under the twisted transformation (28 say that Yang-Mills theory has
acenter symmetryy/and gluons carry no center charge. It is required that thetewa local
color transformatiorV(z, 7) is still continuous in spacetime. Thus the phasaust be the
same for all spatial coordinates i.e., the center symmetry is a global one.

Now what happens to quarks ididirent. Since the quark field transforms/ds= Vy, the
anti-periodic condition (2.3) before the transformatiars) implies thaty’(r = 8) = €%/ (r =
0), i.e., the breaking of the anti-periodic condition. This is a @mqsence of the fact that in
QCD quarks are in the fundamental representation, whiclasheul representation of SU(3)
resulting in a nontrivial center group. Although the Laggem (2.1) is still invariant under
the twisted local color transformation (2.5), we say that phesence of fundamental quark
breaks the center symmetry because the boundary condstimmoken, and that quarks carry
nonzero center charge. We will see somethirfiedent in QCD-like theories in Section 2.3,
namely that not all quarks break the center symmetry.

It turns out that the center symmetry is closely related éqathenomenon of color confine-
ment. In the following subsection | will study this phenorarand its relation to the center
symmetry.
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2.1.3. Color confinement

Color confinement is an experimental fact: color-chargetigdas are not observed in isola-
tions in the final states of experiments; color charges avaya confined inside hadrons. This
is equivalent to requiring that all hadrons which can bedatiyeobserved should be singlets of
the color SU(3) group,e., invariant under color transformations. Such requirengeobnsis-
tent with the fact that among the many low-lying configurai@f quarks onlygg, gqg, and
gqq states, which generate singlets of color SU(3), are verifinal hadrons.

Although the dynamical mechanism of color confinement i§rstit completely clear, it
is widely accepted that the color charges will be liberatedusficiently high temperatures
and that there exists a deconfined phase[2, 3, 4]. The egest@nsuch a transition is also
suggested by lattice-QCD calculations: as the temperatareases, thermodynamic quan-
tities, such as pressure, energy density, and entropytgerepidly rise at a certain critical
temperature, indicating that many degrees of freedom wdmeltonfined at low temperatures
are released when heated. This phenomenon appears bothgrAviills theory [5] and with
guarks [6], therefore it may be related to the fact that thegpting constant becomes small at
high temperatures.

Considering the free energy is helpful for our understagdinis shown that the dlierence
in free energy when we put a static quark-atnd a static antiquark &b into the system can
be expressed as

ePFRR = (C(m1) i (w2)) (2.6)

whereg = T-1is the inverse temperaturg, z is the free energy above the vacuum with a
quark in the color representatighand an antiquark iR, sitting atz;, andx,, respectively.
Here(- - - ) means the ensemble average, and the traced Polyakov Idupguark’s represen-
tation is defined as

1

Trlg(z) = —— TrPexp(igde Ag(w,r)t;) , (2.7)
0

tr(®) = dimR

1
dimR
where the trace is in color space and the path-ordered altsgalong the imaginary time line
for a given spatial point. Here the Polyakov loopg(x) is a matrix in the representatighof
the SU(3) color group. The behavior of the free energy aelaligtance is further constrained
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by the cluster property as

|z1—ax2|—00

(Cr(@1) ) (T2)) ————— (Lr(@1)XC(x2)) = [(ER(ONI, (2.8)

which means

|1 —a2|—>00
Fﬂﬁ(wl - :I:z) _— 2F7{ . (29)

If F diverges, then it requires infinite energy to separate akgalatiquark pair, which means
the color charge is confined in such a case. This correspordg)t= 0. Thus the vanishing
average value of Polyakov loop is a test of confinement.

The relation to the center symmetry can be seen when we @niid transformation
of the Polyakov loop under the center symmetry. Here we danghe Polyakov loop in
a faithful representatio®, for example, the fundamental one. For an arbitrary locédrco
transformatiorV(x), the Polyakov loop changes as

Lr(z) = Viplr(z)VL, . (2.10)
Under the center symmetry (2.5), the traced loop changes as
lr(x) — %x(x), (2.11)
and its average value transforms in the same way
(Lr) — €'(Lr). (2.12)

When the vacuum is an eigenstate of the center transforméfig) should also be invariant,
thus the only possibility is a vanishing average value ottheed Polyakov loop, which in turn
corresponds to an infinite enery: and the color confined phase. Oppositely, if a nonzero
value of{fg) is found, then the vacuum is no longer an eigenstate of thecgansformation,
i.e,, the center symmetry is spontaneously broken, correspgrtdia finiteFz and a color
deconfined phase. Therefore, the deconfining of the colagekas indeed related to the
breaking of the center symmetry.
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The center symmetry is well-defined when there are only glilothe system.If we cou-
ple fundamental quarks with finite mass to gluons, the cesyimetry is explicitly broken.
The center symmetry is an approximate symmetry in this caddhe order parameter is not
necessarily zero even in the confined phase. This can smothtbsharp phase transition and
leads to a crossover from the confined phase to the deconfireeset pThe presence of quarks
also introduces another complexiig., the chiral symmetry.

2.1.4. Chiral symmetry

The QCD Lagrangian (2.1) has global symmetries for massjeask fields in flavor space.
Taking two flavors of quarks as an example, the transformatioe defined as

isospin W — eIy J/lf _ %’;ﬁk%l’
chiral — @103 I = Uy verK
v | v 5 = Yrvsty (2.13)
baryonic W — ey Jo= vy
axial Wy — ey Jg, = '7;7;175'7[’

wherer® (k = 1, 2, 3) are Pauli matrices in flavor space. According to Noethtbesrem, con-
served charges can be defined from continuous symmetries.JHge the Noether currents
of the corresponding symmetries, and conserved chargdsecdefined af = fd3:p Jo.

The baryon charge is strictly conserved in QCD. The isospmrsetry is well-defined
as long as the mass parameters for two flavors, conventyomadindd-quark, are the same.
It is also conserved in QCD. Unlike the isospin which transi® the left- and right-quark
exactly the same way in flavor space, the chiral symmetrystomms them in an opposite
direction. It is spontaneously broken in the ground stiage,the physical vacuum is not an
eigenstate under the chiral transformation, resultinguesal Nambu—Goldstone bosons. The
axial symmetry is in fact absent in QCD because it is broketherquantum level due to the
instanton &ects® Therefore, generalizing to an arbitraxy, the flavor symmetry of QCD is
in fact a global SU{¢), x SU(N¢)g x U(1)s group.

2Static quarks are not dynamic particles. They can be urmstsis fermions which are first coupled to the
Yang-Mills theory and mass are then sen&toln such a way we can study th&ects of static quarks in any
color representation, such as the free energy and the jaiteetween them.

3This is calledU(1), anomaly It is related to the topological configurations of the glifimids. In fact the
chiral symmetry is also broken by an anomaly due to electabvirgteraction but we do not consider this in
QCD. For details see Chapter 19 of Ref. [7].
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The light mesons, such as pion and kaon, observed in expasnaee identified as the
Nambu—Goldstone bosons coming from the spontaneous hreakichiral symmetry. They
are massive because in QCD quarks have small masses, thaisitdlesymmetry is an ap-
proximate one and these mesons obtain light masses, wraddtitifar less than the typical
mass of hadrons{(1 GeV). Since in the low-energy region quarks and gluonsanéireed in
hadrons, the lightest degrees of freedom are these Goklbtisons, therefore physics on this
energy scale is dominated by the spontaneous breakingrai slgmmetry and its Goldstone
bosons.

The mechanism of the spontaneous breaking of chiral symgyneatn be understood as
follows. Since quarks have small masses and strong aveaictieractions, it does not cost
much energy to create an extra quark-antiquark pair. Thei @D vacuum has a structure
containing a condensate of quark-antiquark pairs. Thaseidae pairs must have zero total
momentum and angular momentum, which implies that lefdledrquarks and the antiparti-
cles of right-handed quarks condense in the pairing protiesghe condensate in the vacuum
that breaks the chiral symmetry. The vacuum with a quarkgmaidensate can be expressed
as

W) = (YR + UrUL) » (2.14)

which is not invariant under a chiral transformation. Adityd is the same operator as in
the quark mass term. When this condensate is nonzero, tte¢ sjimmetry is broken, which
mixes the two quark helicities and gives quarks fiaaive mass even though the quarks may
appear massless on the Lagrangian level.

It is expected that at high temperature and density, thetapenus breaking of chiral sym-
metry will be reduced and finally disappear due to the thefltoatuations and diminishing
coupling strength. Such restoration of chiral symmetry p@yeen in experiments from the
signal that the masses of mesons which are connected by itla tchnsformation become
degenerate. To detect chiral symmetry restoration is otteeafajor goals of ultrarelativistic
heavy-ion experiments. The interplay between chiral sytnymestoration and deconfinement
is still not clear.
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2.2. QCD phase diagram

TheT — u phase diagram of QCD matter is summarized in Figure 2.1.lldedcribe it from

left to right, i.e., from the lower to the higher density region.

T A

Quark-Gluon Plasma

(€) # 0

Critical Point

Crossover

Quarkyonic
Matter

Hadronic Phase

<1Ew> 3& 0 Liquid-Gas / Color Superconductors

(W) £0
N

-
y

UB

Figure 2.1.: TheT — ug phase diagram of QCD.

At very low baryon chemical potentiadl < T, the system is in the hadronic phase at
low temperatures and is a quark-gluon plasma at high terygesa There is a crossover re-
gion above which the chiral symmetry is restored and colargés are deconfined, around
150 MeV - 200 MeV. If it were SU(3) Yang-Mills theory withoutigrks, the well-defined cen-
ter symmetry will break around 270 MeV, according to resafttattice QCD. The presence
of quarks spoils the sharp transition of center symmetnalirg, and lowers its transition

temperature.

In the region with largep, there is no reliable information from first-principle lat QCD
calculations. Nevertheless, most of the chiral models ssighat there is a QCD critical point
located at the end of a first-order phase transition linerchézg for this critical point is of
great experimental interest.
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At low temperatureT ~ 0, a non-vanishing baryon density of nuclear mattises at
un =924 MeV. At the thresholg = uy the density jumps from zero to normal nuclear density
0.17fm3. Above it the nuclear matter is a nuclear superfluid. This-brsler phase transition
is called the liquid-gas transition of nuclear matter. Itakens as temperature grows and
finally ends in a second-order critical pointlat15 MeV — 20 MeV.

If 1 is asymptotically largei.e., u > Aqcp, the ground state of QCD matter can be ana-
lyzed with weak-coupling methods. It turns out that at [owguarks will form Cooper pairs
and condense in the vacuum state. This phenomenon is call@dsaperconductivity.

| will study the phase diagram of QCD-like theories in Chaewhich is very diferent
from that of QCD. In the following section | will give a briefifroduction to QCD-like theories
and the motivation to study them.

2.3. QCD-like theories

Studying QCD-like theories may provide us with clues abaw o solve the problems in
QCD. In QCD, the color group is SU(3) and the quarks are initglamental representation.
QCD-like theories can be created by changing the color gamgfor the quarks’ representa-
tion. In this thesis | focus on two types of QCD-like theories

Type |: quarks in astrictly real representation of the gauge group,

Type II: quarks in gpseudoreatepresentation of the gauge group.
The typical examples of type-I theories include QCD withoadj quarks of two (aQé&D)
or three (aQCD) colors. Type-Il theories include two-ca@ED with fundamental quarks

(QCD).

The first advantage of type-1 and type-ll QCD-like theorigghat they are free of the
fermion sign problem [8, 9, 10, 11, 12, 13, 14]. The sign peabl[15] is an obstacle for
numerical simulations of QCD with nonzero baryon chemiadkptialu. In lattice QCD the

4The nucleon mass is about 939 MeV. The binding energy in isespmmetric nuclear matter is around
16 MeV.

SConsider a compact Lie group. ®al representatiofR is equivalent to its conjugate representatnThe
similarity transformation matrix,J, is a unitary matrixU can be either symmetric or antisymmetricUlfis
symmetricR is calledstrictly real, otherwise it igpseudoreal



16 QCD and dfective models

partition function of QCD in Euclidean spacetime is writgsn
Z= f DAy, y] e ] S(La®m@w) f DIA] detM(A) gSalAl | (2.15)

where quantities with subscript “gl” are for the pure gluenter. Without the baryon chemical
potentialu, we always have défi(A) > O for any configuration of the gluon field. Thus,
this determinant can be used for importance sampling in Bt@drlo calculations. When
u > 0, def, M(A) is generally complex and its real part can be negative, ithcannot be
interpreted as a probability distribution. Even after riéwg det, M(A) = |de;, M(A)| €’, the
averaging of the phagkstill causes problems. However, it can be shown that witlzaoo,
this determinant in type-| theories is always non-negadive in type-Il is at least real. Thus
these theories can be simulated numerically on the lattideding density fects®

The second motivation to study QCD-like theories is thafigneor symmetry of quarks is
very different to that in QCD. WithN; massless quark flavors, the global flavor symmetry is
SU(2\¢) rather than the usual chiral group SY{, x SUN¢)g X U(1)s. The reason is that
the charge-conjugatéguark field (/)¢ which is a left-handed spinor transforms in the same
way as the left-handed quatk under both color and Lorentz transformations, so it is al-
lowed to transform them into each other while keeping therc®ymmetry intact. This means
that the multiplets of states in the spectrum will containdem of diterent baryon number.

In particular, apart from the pions the Nambu—Goldstone R&ons of the spontaneously
broken flavor symmetry will also include diquarks. Thesétidiquarks are colorless bosons
carrying baryon charge, and hence at low temperature affidisatly high chemical poten-
tial, they will undergo Bose—Einstein condensation (BERIis feature is very dierent from
QCD, leading to a dierent topology of the phase diagram, as will be shown in Gt

Besides the advantages mentioned above, in type-| theibiees,, center symmetry re-
mains intact in the presence of dynamical quarks. This l¢adswell-defined deconfine-
ment phase transition, accompanied by spontaneous cemtenetry breaking, instead of a
crossover as in QCD [16]. The associated order parametéeigxpectation value of the
Polyakov loop. For the two- and three-color cases invetgdm this thesis, the deconfine-
ment transition is of second and of first order, respectively

In Chapter 3 | will study the phase diagrams of ag@QGand aQCD, both belonging to
type I, using the Polyakov-loop Nambu—Jona-Lasinio (PNdbylel and in Chapter 4 | study

8In type-Il theories, we need an even number of flavors foralteck simulations to be feasible.
"The charge-conjugated quark field is defineg/@s- Cy/" with the charge conjugation matr&
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QC,D, belonging to type Il, using dimensionally reduceteetive theory. Now it is time to
introduce theseftective theories for use in the following chapters.

2.4. Hfective theories

2.4.1. General philosophy of EFT

Because the coupling constant of QCD becomes larger whesnétrgy scale decreases, per-
turbative methods become more and more imprecise for phgsaund and below the scale
of Aqcp. Finally they fail to be applicable for calculations at thenergy scales. In such a
situation, €ective field theories (EFT) are not only convenient but alstessary to overcome
this problem.

An effective field theor§ includes appropriate degrees of freedom to describe the phe
nomena occurring below a certain energy scale;alled thecutgf. The high-energy Hilbert
states in the underlying fundamental theory do not appeecttly in the low-energy phenom-
ena, but they still influence the low-energy physics as a dpacknd of virtual fluctuations
excited and annihilated in the vacuum. The beautyfigotive theories is that thes&ects on
the low-energy physics can be reproduced to any desiredsmeaising a finite number of
interactions and tuning their parameters.

An effective field theory can be intuitively constructed by exglicintegrating out the
heavy modes abova in the underlying theory. This is known as the Wilsonian agh.
If we denote the light modes @g, the heavy ones agy, the actions of the underlying and
effective theory asS[¢, , 4] and Serr[ @1 ] respectively, then in terms of a path integral it can
be expressed as

Z= fD[¢L,¢H] g SloLonl — fD[¢L] g Sertlol (2.16)

After integrating out the high-energy staigg, the Lagrangian of thefiective theory,Lerr,
contains all possible interactions that are allowed by ymersetry of the theory and the regu-

8This topic can be found in many textbooks and the literateug Refs. [7, 17, 18, 19, 20, 21].
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larization. It can be expressed as
Lerr = Z AiO;
i

which is an infinite sum over local operatdy®;, composed of fields and their derivativés.
The derivative in a term simply means that this type of inteoa depends on external mo-
menta. The coupling constanti, are called Wilson cd&cients.

A specific dfective theory should include a method to organize the temdsasystematic
scheme of power counting to assess the importance of Feydragrams generated by the
interaction terms. Generally speaking, the termscan beredby the mass dimension of the
operatorsd; = [O;], which is possible because there are only a finite numbenmtefactions
with the same dimensiod,. This order is equivalent to the order of their importancéhi®
low-energy physics. The reason will be shown below.

Because there are infinitely many termsJg:r, it is impossible to calculate all of them. In
fact this is also not necessary, thanks to the nontriviarmftion provided by a dimensional
analysis. Every term;O; in the Lagrangian must have the same energy dimertsasspace-
time, which implies that the coupling;, must have J;] = d — d;. Because the operators come
from integrating out the heavy states, the most naturalggnecales on which the Wilson
codficients depend are the heavy mass$éga.. Since their values are controlled beyond the
cutdf, A, we can express the contribution from the high energy sestor

gi(A)

0= paa

Oi,
whereg;(A) are dimensionless cfiients!-1? At a given energy scalé much lower thamn\,

. . . di-d . . .
the contribution of;0; is suppressed b&%) . This behavior ensures that up to a desired
precision, only a finite number of interactions are requiedalculate observables provided

®Thenonlocaloperators obtained from the functional integration cardpaaded into a series tifcal operators
aslong a€ <« A.

0The operators);, also contain the quark mass matrix in chiral perturbatimoty, because it is treated as a
small expansion parameter in the scheme of power countintgédow-energy regime.

The codficientsg; can contain factors from group theory, combinational fesstand phase-space factors. If
the size ofy; is unnaturally large or small, an explanation is requireat.dxample a smafl may come from
a weak breaking of some symmetry, otherwgsevould vanish without this breaking.

12The codficientsg;(A) are functions of the cufbA because renormalization group theory tells us that therlowe
the energy scales we integrate out, the more states wiltibate to the coupling constants. However the
low-energy physics is uiiected because the change of thefioents compensates the change in theftuto
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the energ)E is fixed. The higher the desired precision, the more higivaedsional operators
are required.

It is a convention to classify the operators according tar ttienension, or equivalently
by their importance. The contribution from terms widh < d are the most important and
are calledrelevantinteractions. The terms witi = d, which are callednarginalinterac-
tions, give contributions of order one. The interactionthwlj > d are calledrrelevantand
their contribution is suppressed by the power:(%))‘. The irrelevant operators are also the
non-renormalizable ones, but they cause no trouble hermubedhe fective theory is not
supposed to be applicable at arbitrarily high energy sdalesnly at scales below.

Although the Wilson cogicients can in principle be calculated perturbatively ugimg
Wilsonian approach to integrate out all heavy modes al¥guéis procedure is cumbersome
beyond the leading order. There is a more practical and rmgie method to construct an
effective model from the underlying theory. To implement thisthod several steps should
be followed. First, the low-energy degrees of freedom sthdnal identified for the féective
theory, which should include at least the physical paidbserved in experiments. Then
one constructs the most general low-energy Lagrangiarnstenswith the symmetries of the
underlying theory and the regularization, starting with tblevant interactions and adding the
ones with higher dimension order by order. After that, inesrtb determine the cdécients,
one matches the low-energy results of tlkeeive theory to the results of the full theory
which are expanded around the low-energy limit. Finallg $llution to the renormalization
group equations can be used to improve theffaments, which is equivalent to resumming
logarithmic contributions. In Chapter 4 | will follow thisrpcedure to match céécients of
ZQCD, a dimensionally reducedfective theory of QCD with £ symmetry, at the leading
order.

The cutdf A is the energy scale below which the physics can be well destrby the
effective theory. When the underlying theory is already knaiva,cutdt A is easy to define.
For example we can set it equal to the mass of a heavy partleat about when we do
not know the fundamental theory? In such a case we canfisetiee theory to predict at
which energy new physics will emergee., we can extract\ from experimental data. In
order to see this, let us imagine that experiments are daoué at an energy scate. Here
E may be the energy in the center-of-mass frame. A field thedriglwhasA = «~ and
contains only renormalizable interactions is built to explthe data. The parameters are fitted
by computing several observables tdfsient order of the perturbative expansion in some
small expansion parameters and matching the results toeatiae & the data not used in the
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fit can be explained by the theory, we accept the theory asdidate for describing nature.
Now we keepE unchanged and improve the precision of the experiment. Tweenepeat
the process of fitting parameters and explaining unused datihwe arrive at a new level of
precision where some calculation cannot explain the daga g\the perturbative calculation
is made to high enough order in the small expansion parametgrthis point the only way
out is adding new interactions of first order in Iﬂ{e) expansion, which are also the possible
non-renormalizable terms with the lowest dimension. Sihe# contributions can be used
to explain the discrepancy in the latest experiment, ther((r%l)di_d of the new interactions
should be the same as the precision of the data. Hence we tanratesthe order ofA for
the new physics. By adding a finite number of new terms andhtuttie existing and newly
added cofficients, the new data can be explained to the new precidi@n the other hand,

if we increase the enerdy instead of keeping it unchanged, the contribution of o(@?i_d
becomes larger such that a low precision experiment can Badphysics. However, more
interaction terms may be necessary in order to achieve the gaecision as at a lowdt,
again because tl*(ﬁ) expansion converges less well. WhErapproaches\, the dfective
theory turns out to be useless because(ﬁjeexpansion no longer converges. In such a case
the energies are so high that the hidden heavy degrees dbfreare about to be excited,
which should also be contained in thigeetive theory.

In fact it is the nature of fective theories that makes our physics research possibe. T
universe has a vast hierarchy of scales, from the cosmiardistto the tiniest particles. It
will be impossible to do anything if all levels of scales aafen into account. In fact we
always start with ignoring the short-range structure arai$ing on the relevant scale of a
particular problem, as the “leading order” of thifeetive theory. Then with more precise
experiments we include thefects of short-range structures as higher-order corrextiéw
the same time more fundamental theories are proposed todege the co@cients and used
to derive the interactions in thefective theory. Finally most of these theories are ruled gut b
new experimental data and only one survives, which is in tstipn of an &ective theory
for the next scale. Then history repeats itself with the neyhgsics.

13Because a number of non-renormalizable interactions atedadhe calculation should be regulated by the
value ofA estimated for th@ewphysics.
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2.4.2. NJL model

The Nambu—Jona-Lasinio (NJL) model was first used to stueyrtteraction between nucle-
ons before quarks were known [22]. Now it is widely used as féecéve model for QCD
below the energy scale dfqcp [23, 24, 25]. The biggest advantage of the NJL model is that
it inherits all the symmetries of QCD, as a result it is sustisin describing the physics
related to the flavor symmetries, such as the spontaneoakibgeof chiral symmetry, its
restoration at nonzero temperature and density, and tipegres of Goldstone bosons. Again
takingN¢ = 2 as an example, the Lagrangian of the NJL model, which presehe flavor
SUN¢),. X SUN¢)g x U(1)s symmetry, reads

Lo = 9(id - my + G () + WiysTy)?] - (2.17)

The interaction between quarks in the NJL model is a fourfen interaction which can be
understood as integrating out gluons as shown in Figure 2.2.

Figure 2.2.: Four-fermion interaction in the NJL model.

The parameters in the NJL model include the mass paramdtggcksm, the coupling
constantG, and the regularization parameters, for example theftaton momentum loop
integrals. They are usually fixed by calculating physicamfities afT = 4 = 0, such as the
mass of piorm,, the pion-decay constarit, and the quark condensate density). After
fixing the parameters, the NJL model can be used to calcliatsgontaneous breaking of
chiral symmetry. In mean-field approximation (MFA), theibdlar operatogy can be written
as

W = () + 6, (2.18)
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whered = gy — (ya). Substituting this approximation back into the Lagrangiad ignoring
the 52 term, the approximation becomes

Wy)” = 2y = ). (2.19)
Thus the Lagrangian again becomes a free theory for quasidges with défective mass
m" = m- 2Gy), (2.20)

wherem is the mass parameter in the NJL Lagrangian. The condetgajecan in turn be
expressed as a loop integral of a quasi-fermion wiative massn*. Then finally Eq. (2.20)
becomes a self-consistency equationrfor which is called thegap equation It can be ex-
pressed using Feynman diagrams as shown in Figure 2.3.

Figure 2.3.: The Feynman diagrams for the gap equation using the MFA ilNthemodel. A single
line is the propagator of a free quark and a double line is tfia quasi-fermion with
effective massn'.

The solution of the gap equation in the NJL model verifies thigeebthat the condensate
Yy becomes smalli.e., chiral symmetry is restored, at high temperature and hiaytydn
chemical potential. Because gluons are absent in the NJlelnloolwever, it cannot correctly
describe the color confinement on its accessible energgscal

2.4.3. PNJL model

In order to include the missing gluon sector and the confimérfeature in NJL the model,
the Polyakov-loop Nambu—Jona-Lasinio (PNJL) model wap@sed [26, 27, 28, 29, 30]. In
the PNJL model anfeective potential for the Polyakov loop is added to the thetymamic
potential of the NJL model, and the Polyakov loop is couptegiuarks by a constant temporal
background gluon field in the covariant derivative. It is egsed as

Lono = Y(iD — M)y + G| (yy)” + (wiysTy)’| - UE €, T). (2:21)
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whereD, = g, — iA, and the gauge coupling is absorbed into Mdield, U is the dfective
potential of traced Polyakov loop§,is the temperature.

The parameters in the PNJL model include the old ones of tlhenhabdel and new ones
in the gauge sector. The old ones are still fixed by the sambadeis in the NJL model,
because at = 0 the contribution from the gauge sector vanishes, thus liH_FPeduces to
the NJL model. To fix the new parameters in the gauge sectagime we send the quark
mass to infinity to decouple quarks from our model. Then tleentodynamic quantities of
the pure gauge sector can be calculated to match known sdsuth lattice calculation of
the corresponding Yang-Mills theory, for example the terapee of the center symmetry
transition, the pressure, entropy density, and energyitgens

After fixing the old and new parameters separately, prezhstcan be made and compared
to results of lattice QCD. The successful qualitative repition of the coincidence of the
deconfinement and the chiral restoration temperatUigandT,, in QCD is one of the great
virtues of the PNJL model. However, as | will show in ChapteQ&D-like theories with
adjoint quarks are very fierent with respect to this feature. Fir§y < T,, resulting in a
broad range of temperatures exhibiting deconfined, buickirally broken matter [31, 32, 33].
SecondT4 does not change much compared to the pure gauge theory wags@uie coupled
in, because adjoint quarks carry zero center charge.

2.4.4. Dimensional reduction and EQCD

In the imaginary time formalism the fields in the partitiom&tion Z fulfill periodic boundary
conditions (here is used for both the gluon fiel&; and the quark fielg))

o(x,7=0)=x¢(x, 7= ). (2.22)

They can be decomposed into Fourier modes ite.,
o(x, 1) = \/'TZ e (x), (2.23)

with Matsubara frequenciaes, = 2naT for bosons and, = (2n + 1)aT for fermions. The
Matsubara frequencies act as a mass fomttie componentp, (), which can be seen from
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the bosonic propagator

1
Do(wn, P) = P2+ @2+ )
and the fermionic one
p+m
,Vo(wn,p) =

P>+ (Vi+n¥)

Now let us consider a theory in which the bosons have vargsimass terms. It is easy to
see that the zeroth componen{x) of the boson fields remains almost massless and all other
components obtain masses of at leask 2The fermions always have nonzero masses larger
than or equal taT for all the Fourier components, no matter whether the fennsiomass term
vanishes or not.

In such a case, the lightest low-energy excitation in therhes the zeroth component of
the boson field. This provides an opportunity to integrateatiilneavy modes abovg, i.e., all
nonzero bosonic modes and all fermionic modes, to buildffatve theory containing only
the bosonic zero modgy(x). This dfective theory lives in three-dimensional space and can
be used to reproduce the static correlation functions aj thstance®k > 1/T because the
contribution from the exchange of any massive mode withdeagyw, is exponentially sup-
pressedf at largeR, with the exception of the zero mode. This process is callggensional
reduction[34].

Before we start to construct théective theory for the bosonic zero mode, it is necessary
to have a closer look at the existing energy scales. TheHatthe only dimensional quantity
in the theory is the temperatuiedoes not imply that the only energy scale in the system is
of the typical kinetic energy of the particles, T. In fact, the screeningfiect in the heat
bath generates a nonzero mass for the boson fields, whichads lower thanT. This scale
corresponds to the screening of the long-range force at & honger distance thah~1. For
example in masslesky* theory this scale is of orde#/AT, in QED it is of ordereT, and in
QCD it is of ordergT. Moreover, in nonabelian gauge theories exists anothehrawer
scale [35]. In QCD it is of ordeg?T due to the screening of the chromomagnetic force at a

14This behavior can be intuitively seen from the bosonic pgapar

d3p eip'w 3 e—|wn\R
(2n)2 p?+ w2 4R’

(en()p-n(0)) =

whereR = |z|.
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distance ¢°T)~%, in addition to the scalgT due to the screening of the chromoelectric force
at distancedT)~1. Thus we can construct affective theory in three space dimensions for
the scalegT for QCD, which is called electrostatic QCD (EQCD) [36]. Itgsll possible

to build another fective theory for the lower scalg?T, based on EQCD, which is called
magnetostatic QCD (MQCD). In this thesis | only discuss ttedeg T, i.e., EQCD.

In EQCD the degrees of freedom are the electrostatic ghf¢s) and the magnetostatic
gluon A*(x) with the space index = 1,2,3 and the color indexa = 1,---,8. They are
the zero modes of the gluon fielfi(x, 7). The magnetostatic gluon now inherits the color
gauge symmetry while the electrostatic gluon is in the adjmpresentation of this residual
symmetry. Thus it is not hard to write down the relevant andgmnal operators for EQCD,

1 1 1 1
Leqep = ZGﬁ G + E(DiAo)a(DiAo)a + EméAgAg + é/lE (ASAR)” + 6 Leacos (2.24)

whereG;”} = aiA‘]?‘ - 0iA* + gEfabCAibA‘J? is the magnetostatic field strength with coupling con-
stantge. The termdéLeqcp contains all other local gauge-invariant operators of disnen 3
and higher. The parametegg, mg, 1g, and the parameters 1 egqcp are functions of the
QCD couplingg, the temperaturé&, and the ultraviolet regulataxg of EQCD. The scal&g
plays the role to separate the scalérom the scalegT. Another parametefg, which is the

codficient of the unit operator omitted in Eq.(2.24), is neededefwroduce the free energy
density of thermal QCD. It can be defined using the partitiorction of QCD as

Zqcp = f DA, gl &5 = gV e f DIA(w), A(x)] & [FxLeeco (2.25)

This fe can be understood as the contribution to free energy fronmdingero modes above
T. It also depends og, T, andAg. The static correlation functions and the free energy of
QCD can be reproduced by tuning the parametet8gtp, includingge, me, g, andfe. The
dependence ahg in these EQCD parameters will finally be cancelled by the lombggrals
and cutdt-independent observables can be reproduced.
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Chapter 3.

QCD-like theories at nonzeroT and u: a
PNJL model study

In this chapter | will focus on type-I and type-1l QCD-likedbries, namely, those with quarks
in astrictly real andpseudoreatepresentation of the gauge group, respectively. As dsstlis
in Section 2.3, they have veryftkrent phase diagrams compared to QCD. Here | will take
two-color (QGD) and three-color adjoint QCD (aQCD) for examples and stihéyr phase
diagrams and the behavior of Casimir scaling.

To model the gauge sector, | will use a simple lattice spin eh@dth nearest-neighbor
interaction, inspired by the strong-coupling expansiof, 26, 37, 38, 39, 40]. This is then
coupled to continuum quarks in a fashion similar to the Padyaoop NJL (PNJL) model [26,
27, 28, 29, 30]. The successful qualitative reproductiothefcoincidence of the deconfine-
ment and chiral restoration temperaturésandT,, in QCD is then one of the great virtues
of the PNJL model. On the other hand, aQCD is veffedent. First,Ty < T,, resulting in a
broad range of temperatures exhibiting deconfined, blitkiially broken matter [31, 32, 33]
(see also Refs. [41, 42] for related theories with periodaridary conditions for quarks). Sec-
ond, T4 does not change much compared to the pure gauge theory whetsare coupled
in, because adjoint quarks carry zero center charge. | wilfiom these features.

This chapter is organized as follows. In Sec. 3.1 | will inlwoe the model, working out
separately the actions in the gauge and quark sectors. Tuge gart is well known from
literature, and | therefore just elaborate on the Weiss nfieéhapproximation. In the quark
part | deal with the task to construct an interaction Lagramgvith SU(2\;) flavor symmetry.
While this was previously achieved for Q@ and actually applies equally well to all type-II
theories, here | construct analogously a model Lagrangiatype-I theories. Section 3.2 is
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devoted to two-color QCD. | study the phase diagram of g@@&nd derive the Ginzburg—
Landau (GL) theory that governs the behavior of the systean tine tetracritical point. | will
show a simpleclosedanalytic expression for the expectation values of the Ralydoop in
all representations, valid in pure gauge theory as well #sdyinamical quarks in an arbitrary
representation. In Sec. 3.3 | will show analogous resutta@CD!?

3.1. Model setup

In this section | discuss the model that | later on use for misaecomputations. In the
gauge sector | employ a simple lattice-inspired model, tvican in principle be used for any
number of colors. The quark NJL Lagrangian derived aftetd&as applicable to all QCD-like
theories with quarks in a real representation. This is ataine Lagrangian is based almost
exclusively on the flavor symmetry and is therefore validdararbitrary number of colors.
The numerical values of the parameters in the model will bedfix the following sections
when | come to the discussion of concrete results.

3.1.1. Gauge sector

The starting point for the pure gauge sector isfé@ative theory for the Polyakov loop inspired
by the lattice strong-coupling expansion. | closely folltwe notation and line of argument of
Ref. [26]. The action of the model is given by

SelL] = -N2e™™ " te(@) i + ). (3.1)
z,Y
wherex are the lattice sites angl are the neighboring sites. (Boldface is used to indicate
spatial vectors.) The only adjustable parametes related to the string tension and can be
extracted from numerical simulations of the full (pure) gauheory. Furthermorég(x) =
Nic Tr Le(x) is the traced Polyakov loop in the fundamental represemtain the full gauge
theory, the Polyakov loop in a given representaibis defined as

1T

Le(z) = P exp[i dr Ad(a, ) T » (3.2)
0

1This chapter is based on the publication Ref. [43].
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whereT 4z are the gauge generators in this representation.

In the so-called Polyakov gauge where temporal gluon fields ltonstant values, this
simplifies to

Lr(z) = exp[iAg(x) Tar/T] . (3.3)

Moreover, only the components 8§ corresponding to generators that form the Cartan sub-
algebra of the gauge group are nonzero. Let these compoben{s. (There areN. — 1
independent ones; the conventional factomakes the variableg dimensionless.) Each
representation of the gauge group is characterized by & segights,w,,, that represent the
eigenvalues of the generators of the Cartan subalgebrairefiresentation; the indexabels

the different eigenvectors of the Cartan subalgebra. The tracgdliol loop in representation

R then reads

1 o (o
(@) = Z dh@wa (3.4)

In the fundamental representation, the Polyakov loop @Rblyakov gauge) is usually repre-
sented as diag(s, ..., €M1 e (r+0n-1)) This corresponds to the choice of tNgweights
of the fundamental representationas = di, fora = 1,...,N; — 1, andwiy, = —1 for all i.
Equivalently, it can be written by definirgy, = —(61 + - - - + 6n.-1) UP tO an integer multiple
of 2r.

In the Weiss mean-field approximation, the nearest-neigimberaction is linearized and
the action (3.1) is replaced with the actiSps(a, 5), depending on two mean fields,?

Sui(@.p) = -Ne ) [a Rele(z) + i Im e(w)] (3.5)

The dynamical variables of the model (3.1) are the (untrp&edlyakov loops.(x) and its
partition function is therefore obtained & = exp(-Qy/T) = fﬂw dL(x) expSg[L]),
where d is the group-invariant (Haar) measure of the HL)(gauge group. For the sake of
future reference, let us add that in terms of the phéasélse Haar measure can be written as

Ne—1 Nc
du=[ [da ] [ie"-ep, (3.6)
i=1

i<j

°Here, | adhere to the notation introduced in Ref. [26]. Thelsyl 8 is not to be confused with the inverse
temperature.
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The integration over the variablésis performed over the range,[®r]. More details of the
Haar measure can be found in Appendix A.

The thermodynamic potential can now be rewritten by subtrg@and adding the mean-
field action, resulting in the expression

Q
?g = —log(e Sa=Sm)y Iogflj dL(x) e . (3.7)

Here and in the following{-)ns is the average with respect to the distribution defined by the
mean-field action. For a given (not necessarily local) fiomcO[L] of the Polyakov loop, it
reads

f ]_[ dL(z) O[L]e S

f ]_[ dL(z) &S

Note that when the functio@ is local and does not depend explicitly on the coordinate, th
product over lattice sites can be dropped.

<O>mf =

(3.8)

Equation (3.7) is still exact; no approximation has beenersmifar. By the same token,
the thermodynamic potenti&ly is independent of the arbitrary variabless. In the Weiss
mean-field approximation, one replaggs©s=sm) . with e Sa=Smim [26]. The mean fields
are then determined selfconsistently from the statiopaondition. In fact, as long g8 = 0
so that the averaging is done with a real mean-field actioa,cam use Jensen’s inequality
to show that this approximation provides a strict upper lobfan the exact free energy. Its
optimum estimate is then obtained by minimizing with respec.

The final formula for the Weiss mean-field gauge thermodynaruiential reads
W
9

TV

Fo

N .
=- 2(d - 1)N§e_a/T<€F>mf<€;>mf + ?[(a +IB)<€F>mf + (a _:8)<€|:>mf]_

_ |ogde eNc(a/ Rete+iBIm ¢g) .

(3.9)

3Jensen’s inequality states rather generally that for aay genvex functionf, f((x)) < (f(x)), where the
averaging involves either a (weighted) arithmetic meahédiscrete version of the inequality, or an integral
average over a given probability distribution in the contios version.
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Here as denotes the lattice spacing and the faadtV is just the inverse of the number of
lattice sites;d stands for the dimensionality of spacetime so that-2(l) is the number of
nearest neighbors on a cubic lattice.

3.1.2. Quark sector

The Lagrangian of the quark sector cannot be derived fronutiterlying gauge theory di-

rectly. However, it is strongly constrained by the requiesithat it inherits all the symmetries
of the QCD-like theory. As already stressed above, in tlesosiithN; massless quark flavors
in a (pseudo)real representation of the gauge group, thed akral symmetry is promoted to
SU(2N¢). In order to see how this comes about, let us start from tlygdrayian of the quark

sector, including a common massg for all quark flavors,

Locpike = YiDy — Moy, (3.10)

whereD,yr = (9, — 1gTAY)y is the gauge-covariant derivative. Indices are suppresséuat
this formula holds for quarks in any representation of theggegroup.

The fact that the quark representation is (pseudo)real snian there is a unitary matrix
% in color space such th@y has the same transformation properties under the gaugp grou
asy.* Itis then advantageous to trade the Dirac spinor, congisfithe left- and right-handed
components, for the purely left-hnanded Nambu spinor,

W
PyS

P = . (3.11)

A crucial fact known from the theory of Lie algebras is thais either symmetric or anti-
symmetric according to whether the quark representatiosalsor pseudoreal [44]. Writing
collectively T = +# and using Py<)¢ = Py, We can introduce the charge-conjugated
Nambu spinor,

PyC
YR

ue
(PyC)°

ge = p . (3.12)

4Since® is a matrix in color space, it commutes with the charge caatjog matrixC which is a matrix in the
Dirac space. In QgD, P can be set te,, i.e.,, the second Pauli matrix in color space. In aQ@x;an be set
to 1.
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The Dirac conjugate of bot and ¥¢ is defined naturally by conjugating the individual
components. The Lagrangian (3.10) then becomes, in the Néonimalism,

1
¥ + H.c.
+1 O

_ 1
Lacp-ike = VIDY - Emo‘I’C : (3.13)

First of all, we can see that in the chiral limit, the Lagraamgpf a QCD-like theory indeed
has an SU(R;) symmetry. Note that baryon number is already incorporatetiis simple
group, for it is represented by the block mat%idiag(]l, —1) in Nambu space. The change
of the overall phase of the Nambu spinor corresponds to tted dxl), symmetry which is
broken at the quantum level by instantdieets. Since the mass term has the same structure
as the chiral condensate, we can also immediately inferftinaype-I (type-Il) theories the
order parameter for flavor symmetry breaking transforms(a¥ @nti)symmetric rank-two
tensor of SU(Rl¢). Therefore, the two classes of theories hagedent symmetry-breaking
patterns and subsequently als@elient low-energy spectra. The symmetry-breaking patterns
in the vacuum are SU{%) — SO(2N;) and SU(N;) — Sp(2\¢) for type | and type II,
respectively [11].

The task to construct an NJL-type interaction compatiblégnwhe SU(2;) symmetry is
most easily accomplished using the Nambu notation (3.11 useful to stress right at the
outset that as long as only color-singlet channels are deresil, each of the Lagrangians
to be constructed below applies to the whole class of QCBAileories (type-I or type-Il),
regardless of the detailed structure of the gauge groupearubrk representation. In fact, NJL
Lagrangians for type-Il theories with two quark flavors waleady constructed in Ref. [45].
Here | follow the same line of argument with the necessaryifitadions for the type-I case.

One property that further distinguishes type-I and typidalbries is the severity of the sign
problem. While | remarked before that all QCD-like theormesisidered here are free from
the sign problem, one should be a bit careful with type-Ibtiees. There, the determinant of
the Dirac operator is in general real, but needs not be pesith order that there be no sign
problem, one therefore has to consider an even number of$la@n the other hand, type-I
theories have no sign problem for any number of flavors [8]aAgarm-up exercise, we thus
start with the simplest case of one flavor.

In the following, the Pauli matricesq 123 = {1, 01,02, 03} are used to denote the block
matrices in Nambu space, angh »3 = {1, 71, 72, T3} are used to denote the flavor generators
for Ny = 2. The symmetric rank-two tensor representation of the fI&#(2) ~ SO(3) group
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is real and three-dimensional. Using the basis of symmatmodular unitary matrices as
¥ = {1,io, ic3}, two four-fermion interaction terms can be immediatelystoncted,

Lisue) = G|@§‘P|2 = Gl(yw)? + (wiysw)? + WCyspl? + WCyl?] ,

Gr gesy? TN (1 2., 17¢C 2 G2 (3.14)
Lussup = 5| (PE¥)" + Hc| = ~GlWy)* - Wivsy)® + WCysyl” - WCyf].

While the former preserves the axial U(1}he latter breaks it explicitly. It is easy to verify
that L5 su() is the 't Hooft determinant term, i.e.

Lirsup = 2G(det¥C¥, + H.c.). (3.15)

For two flavors, the ten basis matrices of the symmetric tarktensor representation of
the flavor SU(4) group are chosen as the symmetric Kroneckelugts ofo- andr, i.e.

2= {Usym ® Tsym, T antisym® Tantisym} . (3-16)

Since the 10-dimensional representation of SU(4) is coxplely one of the above two pos-
sibilities to construct an invariant interaction term rensa

Lotuay = G|@f‘1’|2
= G|()? + WiysTy)® + Wiysy)? + Ww)* + D WCrsyl® + > WCystsyl?|,
S S
(3.17)

which preserves U(})automatically. (Herers denotes the set of symmetric Pauli matri-
ces,ts = {1,71,73}.) A U(1)a breaking interaction can again be introduced by the 't Hooft
determinant term, but such a term will be an eight-fermiontact interaction which is not
considered here in the model.

3.1.3. Mean-field approximation

| will employ the usual mean-field approximation, introdugthe collective bosonic fields via
the Hubbard—-Stratonovich transformation and subsequeplacing them with their vacuum
expectation values. To that end, however, one first needadssgwhich condensates (order
parameters) will appear in the phase diagram. The case efltyjpeories with two quark
flavors was worked out in Ref. [45]: as long as just the barymnucal potential is considered,
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one only needs the chiral condensate= —2G(yy), and the scalar diquark condensate,
A = 2iG{y"CysP1oy). Since the diquark wave function is antisymmetric in colomeaell as
spin indices, it must, by means of the Pauli principle, alsabhtisymmetric with respect to
flavor. The (spin-zero) diquark in type-Il theories therefaixes quarks of dierent flavors.
Consequently, in the presence of an isospin chemical patém¢ diquark pairing feels stress
and eventually diminishes via a first-order phase transitioth a narrow window of chemical
potentials featuring inhomogeneous pairing [45, 46].

In type-I theories the scalar order parameters are symgnetcolor and antisymmetric in
spin indices, hence they must be symmetric in flavor. This sccordance with the fact that
for two flavors, there are altogether nine NG bosons of thedy83(0(4) coset, the isospin
triplet of pions and the isospin triplet of (complex) digksr At zero isospin chemical poten-
tial, the isospin multiplets are strictly degenerate. Irtipalar alluu, dd, andud+ dudiquarks
can condense when the baryon chemical potential exceedsdn@mon mass. Moreover, for
arbitrarily small isospin chemical potential, the diquaflairmed from quarks of the same fla-
vor will be favored. Such single-flavor condensates do nek $&ress at nonzero chemical
potential, and the phase diagram of type-I theories willdfa@e not contain inhomogeneous
phases, as observed in Ref. [47].

With the above argument in mind, we can restrict the attentiosingle-flavor conden-
sates. The fact that the two-flavor four-fermion interact{(8.17) automatically preserves
U(1)» means that the condensatefeating just by opposite parity will be degenerate. How-
ever, we know from the Vafa—Witten theorem that in the vacypamity is not spontaneously
broken [48]. The degeneracy will be eventually lifted bytargon éfects, manifested in the
eight-quark ‘t Hooft interaction term. Within the presenoael, | will simply ignore the
negative-parity channels.

As long as we only deal with one-flavor condensates, we cate wawn the contribution
to the thermodynamic potential from a single quark flavorisTéguals the thermodynamic
potential of free fermionic quasiparticles. In presence gfairing gapA, their dispersion
relation readsES = ,/(£%)2+ A2, whereéS = ¢, + eu, e = =, ande, = VkZ+ MZ M =
My + o is the constituent quark mass aimthe quark chemical potential. The gauge and quark
sectors are coupled in the PNJL spirit [27]. In the Polyakauge the temporal component
of the gauge field is constant. The individual quark colotestan a given representation
will then have, in the presence of the background gauge feflidctive chemical potentials
iT > 6w,. Since the quasiparticle spectrum discussed above is the f&a all color states
in the representation (this is because all condensatebresinglets!), the thermodynamic
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potential of one quark flavor will simply be

.Q.q :0'2 + AZ B Z d3k' %
VN; 4G (2n)3
e (3.18)

x {Eg dimR + 2T log([ | [1 + 2 cosbw,)e 5/ + e 257 ).
The power of 12 in the second line compensates the doubling of the numbeegrees of
freedom in the Nambu formalism.

The group average must be performed once the quarks areeckigpthe Polyakov loop.
Note that | do not average the full quark thermodynamic piaerbut only the argument
of the logarithm. This replacement was introduced in Eq) @f3Ref. [26] as a convenient
approximation tdQq)m:. However, in Appendix C | present a heuristic argument shgwhat
the prescription (3.18) is actually superior to the full @ge(Qy)m:. While with fundamental
guarks considered in Ref. [26] the numericdfelience between the two ways of evaluating
the quark sector thermodynamic potential is negligiblas ipointed out that with adjoint
quarks, taking the averag®,)ms would lead to unphysical artifacts which are not present in
Eqg. (3.18).

3.1.4. Parameter fixing in the quark sector

The NJL part of the model has three adjustable parameteratlplingG, the current quark
massimy, and the ultraviolet cut® that regulates divergent integrals. (Here | use the three-
momentum regularization scheme.) These need to be fixedibgfib three selected observ-
ables. A conventional, and convenient, choice are the latmradensate, pion mass, and pion
decay constant in the vacuum. While the pion mass is moresiéee parameter that can be
easily modified in lattice simulations by tuning the quarkssydhe remaining two parameters
depend on the single physical scale of the underlying themy cannot therefore be adjusted
at will.

In three-color QCD with fundamental quarks, one can diyegsle experimental observ-
ables. In QGD, the input parameters were determined in Ref. [49] fronir ttieee-color
counterparts byN.-rescaling. Unfortunately, we are not aware of suitablédatdata that
would allow us to fix the parameters directly in the case of BQMOd aQGD. We therefore
use the following indirect argument. Suppose that therghgary with both fundamental and
adjoint quarks. Gauge invariance can then only be mairdaiiesn the coupling of quarks to
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gluons is the same in both representations. Sinceffeet&re meson-channel Lagrangians of
the NJL type can be derived from a one-gluon-exchange+iedjmteraction, this allows us to
fix the ratio of the &ective couplings in the fundamental and adjoint quarksosect

Concretely, assume the current—current interaction

Line = —9WY" Tagth)® . (3.19)

The couplingg can be directly related to the microscopic QCD coupling dredcreening
mass of the gluon in the one-gluon-exchange approximaWéncan therefore assume that it
is the same for fundamental and adjoint quarks. PerfornmiegHierz transformation to the
meson channel yields thefective NJL couplingGe = g(N2 — 1)/(2N2N¢) for fundamental
quarks [25]. For adjoint quarks we analogously obtajin= gN./[(N2 — 1)N¢]. This results
in the ratio
% - Z—NE (3.20)
G (N2-1)2 '
The derivation of this relation is sketched in Appendix Bthe following sections, | will use
it to infer the value of the coupling for adjoint quarks frohat for the fundamental ones and
will not refer to the original current—current interactianymore.

Equation (3.20) would at first glance suggest that the caggbr adjoint quarks is weaker
than for the fundamental ones (with the exceptign= 2). One may then wonder why the
chiral restoration temperature is much higher for adjourrgs. The reason for this is that
in the gap equation, the coupling is multiplied by the numitiequark degrees of freedom
coming from the quark loop. Theffective coupling ratio for adjoint versus fundamental
quarks therefore isi?/(N2 — 1) which is always larger than two.

3.2. Two colors

For two colors, the group integration is easily done and passible to find closed ana-
lytic expressions for all general formulas derived abovestFthere is just one independent
phased, associated with the only diagonal generator of the SU(Bygaroup. The (R+ 1)-
dimensional spin-representation then has weight®jé, - - - , +2]6, and one immediately ob-
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tains

1 sin[(2j + 1)6]

= = -
7 2j+1  sing

(3.21)
The Haar measure (3.6) reduces tod 7—1rsin29d9, normalized so that the group volume is
unity.

Since all traced Polyakov loops of SU(2) are real, only onamigeld o is needed in
Eqg. (3.5). Using the definition of the modified Bessel functid integer order,

In(x):}f dg €°°% cosng, (3.22)
T Jo

and the recurrence relatiof 1(X) — I;1(X) = %In(x), one derives the expectation value of the
Polyakov loops [50],

[2j4+1(2a)

<€j>mf = W (3.23)
The gauge part of the thermodynamic potential (3.9) in twtomes
Qy 11(2
Tg = bT [-24e¥T(Le)2 + 2a(Lr)ms — lOQ 1(a“) : (3.24)

whereb = a;® and can be compared with the “standard” PNJL model [26, 48& Weights of

the adjoint representation ar, 0, 2 and the group average in the quark sector is also easily
evaluated. The result is most conveniently written in teohghe expectation value of the
adjoint Polyakov loop,

Qq 0-2 + AZ dek e

= -~ —— [3ES + 2T log(1 + € 5=/T)+
VN 4G Ze: (2n) |35 o« ) (3.25)
+2T log(1 - e /T + e®5/T + 3 5/ T(La)y) |-

This is the formula that is used for the analysis of the phasgrdm.

3.2.1. Phase diagram

The first thing that needs to be done is to fix the parametefrseahibdel. There are altogether
five of them: the coupling, current quark mass, and futothe quark sector, ana b in the
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gauge sector. The method to estimate the NJL input parasnetes explained in Sec. 3.1.4,
so | simply use the parameter set for {DCestablished in Ref. [49] and rescale the coupling
according to Eqg. (3.20). Also, we introduce an additionatdaof two to account for the fact
that there is only one quark flavor here. As to the gauge sdatse the samphysicalinput

as in Ref. [49], that is, the critical temperature in the pyaage theor)Tc? =270 MeV and the
string tensionrs = (425 MeVY. These values were obtained from the three-color pure gauge
theory using their scaling properties in the limit of a largenber of colors, so quantitatively
they do not precisely agree with those one would obtain tyrémm the two-color lattice
gauge theory. However, this does not matter since we do nibtefiparameters in the quark
sector to lattice data. | merely wish to demonstrate the ig¢trends as the number of colors
or the quark representation are varied.

Since | use a dierent potential for the Polyakov loop than in Ref. [49], tlaegmeters, b
will actually take diferent values despite the same inputT@rando-s. The deconfinement
transition in the pure gauge theory is of second order wiih ¢olors, hence we can expand
the thermodynamic potential (3.24) to second order,in

Q\é\/ 2 1 T 4
— =bTa?|= -6e¥T|+0(?). (3.26)
Vv 2

From here one concludes that= T{log12. The lattice spacings, hence the parametér
is then determined from the strong-coupling relatios osas. The numerical values of all
parameters are summarized in Tab. 3.1.

a[MeV] b'®*[MeV] A[MeV] G[GeV? my[MeV]
6709 2692 657 2571 54

Table 3.1.: Model parameters for two-color QCD with adjoint quarks.

The Weiss mean-field approximation employed hefteds from the mean-field approxi-
mation used in Ref. [49], which | will henceforth refer to asive” for reasons explained in
Appendix C. In the latter, the gauge sector potential candpeessed solely in terms of the
fundamental Polyakov loop and it reads,

naive

3/ = —bT[24e®T¢2 + log(1- £2)]., (3.27)
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cf. Eqg. (3.24). It is therefore mandatory to compare theltesabtained with the two ap-
proaches. | do so within the pure gauge theory. The expentatlues of the fundamental
Polyakov loop and the mean fieddare shown in Fig. 3.2.It is obvious that the results for the
Polyakov loop are not sensitive to the particular impleragah of the gauge sector as long as
the parameters are adjusted to reproduce the same phyisseai/ables.

10

10 x <€F>mf~,
W

T/T]

Figure 3.1.: Comparison of the expectation values of the mean fie{dashed) and the fundamental
Polyakov loop (solid) in the naive (thin black lines) and ¥¢efthick red lines) mean-field
approximations to the pure gauge theory.
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Figure 3.2.: Phase diagram of two-color QCD with one flavor of adjoint gsarBlack solid line:
deconfinement transition. Red dashed line: BEC transitiBfue dotted line: chiral
crossover. The right panel zooms in the temperature scathasdhe cusp in the de-
confinement critical line is visible.

Figure 3.2 shows the phase diagram of aQ@ith one quark flavor in the plane of temper-
ature and quark chemical potential. The deconfinementitramsssociated with the break-

SNote that there is na in the naive mean-field approximation. The values plotteféign 3.1 were obtained by
inverting the relation (3.23).
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ing of the centef, is denoted by the black solid line, while the BEC transitibmvaich the
baryon number U(})is broken is indicated by the red dashed line. In additiorh&sé two
sharp phase transitions, there is a smooth crossover as=evith the melting of the chiral
condensate. Its position, shown in the left panel of Fig.i.2he blue dotted line, is defined
here by the maximum temperature gradient-ofn the chiral limit, this also becomes a sharp
second-order phase transition. As expected, it does appademperature much higher than
that of the deconfining transitioif4 = 270 MeV, whileT, = 780 MeV so thall, /T4 = 2.89).
However, the precise value of this temperature as detethiipeur model is stronglyféected
by the cutdt, as is discussed in more detail in Sec. 3.3.1.

The temperature of the deconfining transition depends ochtemical potential extremely
weakly, even less than in QD [49]. The reason apparently is that the adjoint quarks are
neutral with respect to the center symmetry. The behavitrefransition lines in the vicinity
of their “intersection” will be analyzed in detail in the foling subsection. Finally, the BEC
transition at zero temperature occurgiat 92 MeV, which is in a good agreement with the
fact that the mass of the pighquark multiplet in the vacuum isy, = 184 MeV within our
parameter set.
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Figure 3.3.: Condensates in aQD atu = 100 MeV as a function of temperature. The chiral con-
densater (black solid line), diquark condensate(red dashed line), and the fundamental
Polyakov loop (blue dotted line) are shown.

As an illustration of the solution of the gap equations, ItjoFig. 3.3 the condensates at
u = 100 MeV as a function of temperature. One can clearly seeftaetef the suppression
of thermal quark fluctuations in the confined phase: the cosates are nearly constant for

T<Td.
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3.2.2. Tetracritical point

Since the BEC and deconfinement phase transitions are bdithletmed, being associated
with exact symmetries even in the presence of massive dyahiopiarks, aQg¢b exhibits a
rather unusual critical behavior in the vicinity of the gadritical point where the two second-
order transition lines cross each other [51]. This is un(tkeee-color) aQCD in which the
deconfinement transition is of first order. There, the seaudér BEC critical line is inter-
rupted around the deconfinement transition, meeting therdiement line at two tricritical
points. This general expectation is confirmed by our expincidel calculation here and in the
following sections.

Here | will analyze the details of the phase transitions m \fcinity of the tetracritical
point using the GL theory. The thermodynamic potential deisen three mean fields, o, A.
Only two of them,a andA, comprise order parameters for spontaneous symmetryibgeak
of an exact symmetry (unless we consider the chiral limit)oider to construct the GL free
energy, one therefore needs to eliminaten favor of a, A by means of its gap equation.
Around the tetracritical point, we can then perform a doufdglor expansion of the total
thermodynamic potentiaf) = Q‘é" + Qq. Thanks to thez, and U(1y symmetries, it depends
just on the squares of the mean fields,

Q(a?, A? 1
% = bya® + byA” + 3 | 200 (@®)? + 22,00202 + 200 (A2)?]. (3.28)
The dfective quartic couplings are determined by the sedotal derivatives of the thermo-

dynamic potential,

1 d’Q 1 d’Q 1 d’Q

aa:vm’ /laA:vm, AAAZVW, (329)

evaluated atr = A = 0. These total derivatives are in turn given in terms of thaiga
derivatives of the thermodynamic potential as a functioalbthree mean fields,

(3.30)

2O Q. P2Q (520\ 820
002

dvidy;  Oxidy; Oxioo oo dy;’
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wherey; stands fow?, A%. In order to evaluate the GL quartic couplings, we need taksic
second partial derivatives of the thermodynamic potential

0a202Q 1 T fd3k cosh§;/T)
Sy =Tt =) e NT Z‘ (27)° [2cosh€s/T) — 12~
02222 d3k sinh¢;/T) 1
V :Nf Z f(zﬂ):g e e _ 2
& [2cosh§;/T) - 1]

D220 Br 1 ﬁ 3¢k l
Y, 4 Zf (2r)3 (56)3[ 2T cosH(3¢8/2T) |

0ya2Q dc°k 1 smh(g—“,‘i/T)
=2MNs Z f (27 & [2c0sh€e/T) — 1P’

R _ ¢k 1 % 3¢5 l
Vo Zf (2n)® k(fe)zl Mot 2T costf(3¢g/2T) |’

8.0 N ek L[ 36 3¢, l
M2Ns - .
V. 26 |V| +3 Z f (27)3 € l 2T 2T cosH(3¢8/2T)

(3.31)

A2 >0 A2 <0

bl bl

(h1), (d2) (¢2) (01), (¢2) (h2)

Figure 3.4.: Schematic phase diagram of the Ginzburg—Landau theory twithorder parameters.
Thick lines denote second-order phase transitions. Theddabdicate which order pa-
rameters take nonzero values in a given phase.

In order to see how the two condensaté&s@ each other close to the tetracritical point,
consider the general GL functional with two order paranstes and assume it is constrained



QCD-like theories at nonzeroT and u: a PNJL model study 43

to have the form

Q(¢1, ¢2)

1
v = Digi o+ Dogs + S (A + 20126765 + A2265) (3.32)

[In our case, all other terms are prohibited by theand U(1} symmetries.] The phase dia-
gram of such a model is depicted in Fig. 3.4. If only one cosdémnwere present, the position
of the phase transition would be determined by the point eliee respectivé coeficient
changes sign. However, when both condensates are prdseintansition lines shift. This is
most easily seen from the expression for the nontrivialtsmiuito the gap equations with both
order parameters being nonzero,

—A2201 + 2120, o A1y — A1l

, = : (3.33)
/111/122 - /liz 2 /111/122 - /liz

¢1 =
We can therefore see that the size of the region with bothexmsates depends on the sign and
magnitude of the fddiagonal couplingls».

The description of the phase transitions based on the Glnthisaniversal and model
independent as long as it captures the correct degreeseafoine and symmetries. A non-
trivial task in general is to find the mapping of th®,(b,) plane displayed in Fig. 3.4 to the
physical observables, in our case the temperature and cakepatential. Even though this
is in principle possible with our PNJL model, here | perfodrjast a basic compatibility
check. Evaluating the GL cfi&ients for our parameter set using Eq. (3.31), one finds that
doe ® 23 % 107°3A% A,a = 5.7 x 1077A?, and sy = 9.7 x 10°. The dfdiagonal coupling
is positive which means that the two condensates “repelh edloer as in the left panel of
Fig. 3.4. However, since the GL couplings are numerically@mall, the angles between the
critical lines hardly change at the tetracritical pointe®tight deflection of the BEC transition
line is visible in the left panel of Fig. 3.2. That the same s to the deconfinement line is
made manifest by the detail of the critical line shown in tigltr panel of Fig. 3.2.

3.2.3. Casimir scaling

The Casimir scaling hypothesis [50, 52] states that theredtaylet potential between a static
guark and antiquark at intermediate distance is propatimthe quadratic Casimir invariant,
C,(R), of the representatiof® of the quarks. This statement is exact at two-loop order in
perturbation theory [53] and receives corrections onlyhege¢-loop order [54]. At the same
time, there is compelling evidence from lattice simulasitimat it holds to a high accuracy even
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in the nonperturbative regime [40, 55, 56, 57]. It may thus/mte a handle to understand the
nonperturbative behavior of QCD-like theories, and as sinduld be a necessary ingredient
in any model attempting to mimic QCD (thermo)dynamics [58].

In the PNJL model, one cannot directly access the confiningrnpial feature of QCD.
However, the scaling of the static potential implies an agalis property of the expecta-
tion values of the Polyakov loops [40, 59]: the quantify)Y/“2*® should be independent of
the representatiof®. This can be easily obtained from the relationship betweenquark-
antiquark potential and the Polyakov loop in 2.1.3. Sincehaxe the analytic formula (3.23)
for the expectation values of all Polyakov loops in two-ca@CD, where one has simply
Cx(j) = j(j + 1), we can easily check to what extent Casimir scaling is&ati by our model.

1.0 1.0

0.8 | 0.8 | .
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S e 5
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Figure 3.5.: Expectation values of the Polyakov loops in various repredimns as a function of the
fundamental Polyakov loop in the case of two colors. Boldfacmbers indicate the
“spin” j of the representation. Left panel: unscaled Polyakov loBjight panel: Casimir-
scaled Polyakov loops. For convenience, we taked(€)/C,(R) power of the expecta-
tion values of the Polyakov loops so that the fundamentad lsdeft intact.

Note that the expectation values of all Polyakov loops apessed in terms of the mean
field «, which can in turn be traded for the fundamental loop. In Bi§.| therefore plot the
expectation values of the Polyakov loops in selected reptations against that in the funda-
mental representation [40, 60]. Comparing the left andtnogimels that display the unscaled
and scaled Polyakov loops, we can see that the Casimir gaaluery well reproduced as the
value of the fundamental loop approaches one, which carretgpto high temperatures. It
becomes worse at low temperatures where the nearest-oeigidraction model (3.1) over-
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simplifies the physics. Lattice data that hint at almost egaaling even at low temperatures
can be reproduced more satisfactorily once we add more faotusling higher representation
Polyakov loops in Eq. (3.1) [40].

Within our model, we can check even analytically how well iBasscaling is satisfied
at high temperatures, and hence, at high valuas. o€arrying out the Taylor expansion of
Eq. (3.23) around = +o0, one finds

1 1 PP+j-3
1, P+i-g

¢ j(i+1) _ -
e 402 T T 1203

+ o(i). (3.34)

CY4
We can see that Casimir scaling is only violated at the foortier of the expansion.

One important observation regarding the results in FigiSthat they are based just on
the group average (3.8) and do not make any reference to & gector of the model.
Therefore, they apply equally well to two-color QCD with gksin any representation as
well as to the pure gauge theory. In particular, the samessumeld even for nonzero chemical
potential, which provides us with a unique opportunity todst Casimir scaling at nonzero
baryon density. The quark sector will judtect the dependence of the mean fieldn the
temperature and chemical potential, and therefore thedsgteghich the curves are traversed
asT andu vary.

3.3. Three colors

For three colors, the group integration is performed withitieasure

do1d6,

dL =
672

[SiN@1 — 6,) — SIN(W; + 62) + sinEr + 26,)]°. (3.35)

Three-color QCD with fundamental quarks has a charge catijuginvariance, which is im-
plemented in the PNJL model by a simultaneous cha&nge —6;, u — —u. Therefore, at any
fixed nonzero chemical potential this charge conjugatieariance is explicitly broken. As a
result, the expectation values) and(¢;) split. At the same time, the mean-figddbecomes

nonzero [26].

On the other hand, the situation in aQCD iffelient. Thanks to the reality of the gauge
group representation, the nonzero weights appear in painsopposite sign. Consequently,
the theory is invariant undeseparatecharge conjugation in the quark and gluon sectors. The
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charge conjugation invariance in the gauge sector guasithat the Polyakov loop in a given
(e.g. fundamental) representation and its complex cotgugjevays have the same expectation
value. We may therefore dispense with the mean feldhich greatly simplifies the group
integration. In the gauge sector one can still obtain anyainaxpression for the thermody-
namic potential, albeit in the form of an infinite series [39ne defines a function

Fla) = i detlmi_i(@), (3.36)

where the determinant is taken with respect to the indicesOne then finds the following
expression for the thermodynamic potential,

* . F@
“F@

and the expectation value of the fundamental Polyakov loop,

F'(a)
F(a)

= —6e T [

—logF(a), (3.37)

1 F'(a)

(CF)mt = N F@)

(3.38)
The derivation of this formula is deferred to Appendix D wéémwill be generalized and used
to write analytic expressions for the expectation valuealld®olyakov loops.

The eigenvalues of the Polyakov loop in the adjoint repriedem are 1 [N, — 1)-times
degenerate] ane®-%) for all pairsi # j. The logarithmic term in Eq. (3.18) becomes

Ne
2 Iog<(1 + )N [[2+ 2xcos6 - 6)) + x2]> , (3.39)
i<] mf
where | abbreviated = e %/T. Specifically for three colors this is equal to

2 Iog{(l + X)2[1 + 2x%w1 + X2(3 + dwy) + 43 (w1 + 2w3) + XH(3 + dwy) + 2Xwy + x6]} .
(3.40)
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Group integration reduces to evaluation of three averages,

w1 =(C0SP1 — 6,) + cosP, — 63) + COSO3 — 01))ms
wy =(C0SP — 6,) CoSPs — 01) + c0SP; — 63) COSP, — o) + COSP3 — 61) COSP2 — O3))mi

w3 =(C0SP1 — 65) COSP, — 63) COSP3 — 01))ms -
(3.41)

These can be performed independently of the valug, oo the evaluation of the quark
thermodynamic potential factorizes into a one-dimendiomamentum integral and a two-
dimensional group integration. The latter can be perforeigger numerically or even analyt-
ically in a fashion similar to Eq. (3.36), as sketched in Apqli D.

3.3.1. Phase diagram

Again, we fix the parameters for the subsequent numericapatations first. The parameter
a is determined by the deconfinement temperafiffén the pure gauge theory. With the
thermodynamic potential (3.37), this corresponde®’d = 0.13427. Demandingy =
270 MeV, this yieldsa = 5421 MeV. The parametds is in turn obtained from the physical
string tensionos = (425 MeVY, as in the two-color case. In the NJL sector, we use the
parameters of the two-flavor model with fundamental quakks,651 MeV,G = 5.04 GeV?,
my = 5.5 MeV, fitted to reproduce the pion mass and decay constartharahiral condensate
in the vacuum (see, for instance, Ref. [28]). The couplingscaled by the factor 232 in
accord with Eq. (3.20), and an additional factor of two tocact for the fact that we have
only one flavor here. The values of all parameters used inagulations are summarized in
Tab. 3.2.

a[MeV] b'®*[MeV] A[MeV] G[GeV? my[MeV]
5421 3332 651 851 55

Table 3.2.: Model parameters for three-color QCD with adjoint quarks.

As a basic cross-check | again evaluated first the deconfimeara chiral restoration
temperatures (in the chiral limit) at zero chemical po&ntThe values’y = 270 MeV and
T, = 663 MeV yield the ratidl, /T4 = 2.46. This is quite far from the value 8 measured on
the lattice [32, 33]. (Note that in Ref. [41] the lattice valof this ratio was achieved by tuning
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the parameters of the model.) However, one should keep id thet we made just a rough
estimate of the NJL couplin@ and cutdt A, on which the chiral restoration temperature
depends very sensitively. In principle, one could use thteeéavalue for the ratidl, /Ty as
an input in the model. Nevertheless, one cannot really hogescribe the chiral restoration
in a quantitatively satisfactory manner within our modeheTirst reason is that at such high
temperatures, the calculation of the thermodynamic piatieist plagued by cutd artifacts.
(We regulate the whole quark contribution to the thermodyiegotential, including its finite
thermal part.) The second reason is that the PNJL model €¢ase physically appropriate
at temperatures about two to three tinigqd30], since it does not capture the correct gauge
degrees of freedom, that is, the deconfined transversefripetl gluons. We are therefore
just content with demonstrating that QCD with adjoint quardeed features a large splitting
of the deconfinement and chiral restoration temperatures.

269.361
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Figure 3.6.: Phase diagram of three-color QCD with one flavor of adjoirdrgs. Black solid line:
deconfinement transition. Red dashed line: BEC transitiBfue dotted line: chiral
crossover. The right panel zooms in the chemical potentidl tamperature scales so
that the two tricritical points are discernible.

The phase diagram of aQCD determined within our PNJL modshgvn in Fig. 3.6.
While on the large scale it looks the same as the phase diagiraQGD in Fig. 3.2, there
is a marked dference in the topology as one zooms in the neighborhood dirttezsection”
of the deconfinement and BEC transition lines. Since therf@eament transition is now first
order, the BEC critical line is broken, meeting the decomfiaet line at two tricritical points.
Thus, there is a narrow range of chemical potentials in whashhe temperature is increased,
the diquark condensate rather unusually disappears int-®fasr phase transition.
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3.3.2. Casimir scaling
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Figure 3.7.: Expectation values of the Polyakov loops in various repredimns as a function of
the fundamental Polyakov loop in the case of three colorsldfBee numbers indicate
the dimension (and possibly the symmetry) of the repretientaleft panel: unscaled
Polyakov loops. Right panel: Casimir-scaled Polyakov fodpor convenience, we take
theC,(F)/C2(R) = 1/dg power of the expectation values of the Polyakov loops scthigat
fundamental loop is left intact. For the sake of clarity, ldigels are not shown in the right
panel. The color assignment of the lines is the same as irthpdnel.

Any irreducible representation of SU(3) can be uniquelyrabierized by a pair of pos-
itive integers p, q) that determine the highest weight of the representatiothénbasis of
the fundamental weights. The triplet representation tlarsesponds to (D) and its com-
plex conjugate to (A1). The dimension of a general irreducible representasahim(p, q) =
%(p +1)(q+ 1)(p + g + 2) and the value of the quadratic Casimir invariant (up to @mmn
prefactor) isC,(p, q) = 3(p? + pq+ o?) + p + q [61]. Following Refs. [26, 56], the expecta-
tion values of the Polyakov loops in the lowest few represgms, satisfyingp + q < 4, are
calculated and are shown in Fig. 3.7.

As before, these results are largely independent of thekgquaatent of the theory. The only
assumption made is that the mean figls zero so that there is a one-to-one correspondence
between the mean field and the expectation value of the fundamental Polyakov |dbjis,
the plots in Fig. 3.7 apply to three-color QCD modeled by theoa (3.1) with quarks in
anyrepresentation at zero chemical potential. Once the qegesentation is (pseudo)real,
the same results are valid even at nonzero chemical pdteAsacompared to the two-color
case shown in Fig. 3.5, the scaling violation seems to befgigntly smaller for three colors.
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However, this observation is somewhat misleading since #ve unscaled Polyakov loops
show smaller depletion compared to the fundamental loopéritiree-color case.



Chapter 4.

Dimensional reduction for two-color QCD

EQCD, a dimensionally reducedrective theory for QCD, was introduced in Section 2.4.4.
It contains the degrees of freedom at the soft saile which are the electrostatic and mag-
netostatic gluons. In order to be applicable, EQCD requinas there exists a clear scale
hierarchy betweei andgT. This means that the running coupligghould be small enough,
or equivalently the temperature should be asymptoticadjit. EQCD can well reproduce the
long distance dynamics of QCD at very high temperatures. é¥ewthis requirement is not
always fulfilled and there are evidences that EQCD fails tmlpce correct results down to
temperatures about a few tim€&s whereT, is the critical temperature of the deconfinement
transition [62, 63]. This failure has a reason, which is & that EQCD breaks th& cen-
ter symmetry explicitly, even in the absence of quarks. d&ling-order Lagrangian can be
obtained by expanding the one-looffeetive potential of the Wilson line around one of its
three degenerate minimd; = 0 [64]. Since the center symmetry is so important to obtagn th
correct physics arounti, its missing in EQCD invalidates its usage closd o

To modify EQCD and build a newfkective theory is a possible way to conquer this prob-
lem. The new one should be able to reproduce results of QCDRQ@Eat asymptotically
high temperatures and respect the center symmetry in arder valid down to around,. In
this chapter | will construct a dimensionally reduceteetive theory with center symmetry,
which is called ZQCD.

In order to simplify the consideration, the SU(2) gauge griswsed here instead of SU(3),
i.e., a two-color QCD-like theory and the,£enter symmetry is considered. | will construct
the theory directly with the quarkfiects which explicitly break the center symmetry. There-
fore the Yang-Mills theory with vanishing,dreaking co#ficients can be studied as a special
case throughout this chapter.

51
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This chapter is organized as follows. In section 4.1, | wihstruct center-symmetric
effective theories with Zbreaking operators that emerge upon inclusion of fundaahésmt
mions in the case of two colors. In section 4.2, | will ideptihe degrees of freedom of
the dfective theory and explain how they are related to those of EQ@hile in section 4.3,
the detailed matching of the ZQCD parameters to the fullhéocarried out. Section 4.4
contains the first predictions of the new thearg,, the solution of static field configurations
for the domain wall and stable bubiie.

4.1. Model setup of ZQCD

The first step to formulate the desireffestive theory is to introduce the proper degrees of
freedom. The minimal set of degrees of freedom fop &¥ariant theory should be the mag-
netostatic gluom\(x) and the Polyakov loop(x). But becausé(x) is unitary, a theory with
polynomial interactions will not be perturbatively renaimable. This is in principle not a
problem for an &ective theory with a UV cutf, but it brings complexity to the practical
matching to the underlying theory and to lattice simulasiomherefore, we substitute a spa-
tially coarse-grained Wilson line operat@i(x) for the Polyakov loop. The coarse-grained
matrix is defined via the block transformation as

T

(@) = g [ YU pLwU.a). (4.1)
Block JV

where the integration goes over the arbitr@ —3) volume of a block antll (y, «) is a Wilson

line from the point &, 7 = 0) to (y, r = 0) with a path at constant time= 0.

As discussed at length in Ref. [66], a unique feature of theggagroup SU(2) is that
the coarse graining procedure almost preserves the grapgemy of the Wilson line, as an
arbitrary sum of SU(2) matrices is itself an SU(2) matrix opat multiplicative real factor.
This implies that we may parameterize the figddn the form

Z= %(zn +ill - &), (4.2)

1This chapter is based on the publication Ref. [65].
2Since there is no confusion in this chapter, | use the syr#iolr the matrix field but not the partition function.
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wherell - @ = 1202, ¥ andIl, with a = 1, 2, 3 are real scalar fields, and, are the three
Pauli matrices. Out of these four degrees of freedom we éxpese to correspond to the
light adjoint Higgs fields of EQCD, while one should be an uygbal auxiliary field that
effectively decouples from the dynamics of the light fields aad & mass of the order of the
cutadf scale of the ffective theory £ T), corresponding to the inverse length scale introduced
by the coarse graining. While the heavy auxiliary field dgdes from the dynamics in the
infrared, its fluctuations in the ultraviolet render thedahesuperrenormalizable, providing
important technical simplifications.

ZQCD should inherit the gauge and center symmetry from thedmental theory. The
gauge transformation acts on the fields as

Z(z) » ) Z(x)s(x)’,  A(z) - s(@)[Az) +iV]s(z)', (4.3)
wheres(x) € SU(2), while the 4 transformation acts on thg field as
Z(x) —» €™M Z(x) = +Z(x). (4.4)

The relation of the latter transformation to the SU(2) gaunyariance of the full theory is
explained in detail in Appendix F.

To obtain the Lagrangian of théfective theory, we collect all superrenormalizable oper-
ators up to fourth order in the fields that respect three-dsimmal gauge invariance This
leads to the expression

L= é E Tr Fizj + Tr(DiZT DiZ) + V(Z)] , (4.5)
3

wheregs is the dfective theory gauge couplin®; = 0, —i[A;, -1, Fij = iA; —9;A —i[AL A]],
and the potentidV () reads

V(Z) = 0122 + boIl? + &= + co(112)? + 52212 + dh=° + dpxI12. (4.6)

Here, all terms with the exception of the last two operatoithe potential respect the Zen-
ter symmetry, and were present in the model constructedum U(2) Yang-Mills theory

3While in a three-dimensional theory operators of order fivihe fields are in principle still relevant and those
of order six marginal, we exclude them from our considergtas their contributions to physical quantities
are less important compared to the leading terms. This iausecthe higher order terms are suppressed by
(large) positive powers of the ratio of th&ective and full theory energy scales.
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in Ref. [66]; the Z violating operators then clearly result from the preserfoguarks. It is

a straightforward exercise to verify that Eq. (4.5) reafifhe most general Lagrangian com-
patible with the required symmetries: simple redefinitiohshe fields allow us to combine
independent kinetic terms farandIi and remove a Zbreaking term linear i&x, while a term
cubic inTi is forbidden by the vanishing of the symmetric structurestantd,,. in SU(2).

Next, we can redefine the cieients as

1 1
by = Ehl, by = E(hl + 05S1),
1 1 1
= htds G=;(t+Es).  G=sh (4.7)
4 4 2
1 1
di = 59554, dy = 59?,55,

and split the #ective theory potential into ‘hard’ and ‘soft’ parts, paretnized by theD(g°)
constantd; ands, respectively. This results in the alternative expression

V(Z) = THZZ) + hy(Tr Z72)% + &2 %ﬁz + %(ﬁz)2 + 52t + %23 + %zﬁZ , (4.8)
where we have assumed thglfeaking couplingsl; to be of the soft type. The kinetic terms
as well as the hard part of the potential possess an exteghtdxh() SU(2xSU(2) invariance,

Z-0Z0, Qi eSUR) (4.9)

which will later be seen to translate to a shift invariancehef light physical fields of ZQCD
upon integrating out the heavy one. As a consequence, tleplatr of the potential is min-
imized by all matrices that are special unitary up to a comneah factor. It is only the soft
terms that provide th€(g?) structure inside this “valley”, necessary to match tifective
theory potential to that of the full theory Wilson line, cigHE.1).

4.2. ldentification of the fields

It is well known that at high temperatures, where the rentimed gauge coupling becomes
small, the Wilson line fectively freezes to the global minimum of its perturbativieetive
potential [64, 67, 68], and to correctly describe its longtahce dynamics it is $licient to
consider only its small fluctuations around it. It is thusumal to require that the predictions
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of our efective theory reduce to those of EQCD in the same limit, ag #iggangian of EQCD
can be obtained from an expansion of the Wilson line potkimtigowers (and derivatives) of
the temporal component of the gauge fiedd, This property can be most straightforwardly
ensured by explicitly integrating out the heavy degree @édiom in the vicinity of one of the
minima of the ZQCD #&ective potential, and by matching the resulting non-cesyenmetric
(even in the absence of fermions) theory to EQCD. Throughghocedure, the light field of
ZQCD becomes associated with the adjoint Higg®f EQCD, and we automatically obtain
the values of several of thefective theory parameters.

In this and the following section, we will explicitly perfiorthe high-temperature matching
of ZQCD to EQCD, and find the values of tisg i.e. the soft parameters of ZQCD. We begin
this by parameterizing the field as in Eq. (26) of Ref. [66],

Z= ‘—2’11+%(¢1+i)2.&), (4.10)
which amounts to the redefinitidh= v + gz¢ andIi = 0s¥, Wherev is a real positive number,
chosen so thatZ) = (v/2)1. Clearly, the precise choice of the parametrizatioriZzotan
have no &ect on the physics, as long as it contains the correct degifegsedom: once
the dfective theory is matched to the full theory properly, it vailitomatically reproduce the
correct long-distance physics. One should neverthelgssthat, had we chosen to use a non-
linear field parametrization, we would have had to considerJacobian associated with the
change of variables in the defining path integral of the theor

Upon rewriting Eq. (4.10) ag = %[1 +i(gs/V)¥ - @] + O(g?) and comparing with the
full theory Polyakov loop,

Q(x) = Pexp igfdeAo(T, ZE)] =1+ igdeAo(T, x) + 0(g°), (4.11)

we identify the real scalar field as the auxiliary heavy degree of freedom of thikeetive
theory (to leading order). Subsequently, we associatedltyfi with the light, physical field
that corresponds to the adjoint scafgrof EQCD, which, together with the identification of
the dfective theory gauge coupling = g?T + O(g*), fixes the leading order value of the
parametew,

v =2T + O(d). (4.12)
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Beyond the field identifications, the matching of ZQCD to thktheory is performed by
demanding that the long-distance behavior of static gluooirelators is correctly reproduced
by the dfective theory, order by order in a weak-coupling expansiksithe dfects of the soft
couplingss are suppressed by a factgrin comparison with the hard ons one-loop graphs
with only hard vertices enter théfective theory calculation with the same powegghs tree
graphs containing one soft vertex. This implies that to iobilae correlators in a consistent
manner, we need to determine the one-lofipative potential of ZQCD. This function can
be read & from Eq. (18) of Ref. [66] for the case of pure SU(2) Yang-Mlitheory, and it
has been generalized to include thi#eets of fermionic operators in Appendix G. Inspecting
the result reveals the anticipatefiiext that the degeneracy of the two minima present in the
center symmetric case is broken by the nonzero valuagsofWithout loss of generality, we
may chooses; < 0 so that the ground state expectation valug &f positive. Solving for the
minimum of the potential iteratively, we then find= vy + g§v2 + .-+, where

hy 1 3 3
Vo= 4/—— Vo = _Z_hz (453V0 + 534) + r v2h,. (4.13)

Comparing this to the identification made in Eq. (4.12), wierifrom here the first nontrivial
relation among ourféective theory parameters,

hy + 4T2h, = 0. (4.14)

4.3. Matching of the soft parameters

In this section, | will perturbatively determine the valugfsthe soft ZQCD parameters.

| begin this in section 4.3.1 by integrating out the heavydfiglfrom the dfective theory,
requiring that the resulting Lagrangian f@ragrees with that of EQCD. After this, | will

in section 4.3.2 match the remaining softieetive theory parameters by demanding that the
global structure of the one-loojffective potential of ZQCD agrees with that of the full theory.

4.3.1. Perturbative matching of the Lagrangians

Ouir first goal will be to explicitly integrate out the heavyxdiary field ¢ in order to obtain
an dfective potential foi only, to be compared with theffective potential of thé, field in
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EQCD. At the level of the quantum (Wilsonianffective action, integrating out a given field
amounts to eliminating it using its equation of motion omieglently, adding to the action of
the other fields altree-levelFeynman graphs containing this field in the internal lines alh
other fields as external legs.

At this point, the SU(2xSU(2) invariance of the hard part of the Lagrangian (4.5yeso
its utility. The fieldsy can namely be identified as the Nambu-Goldstone bosons stgmm
from the spontaneous breaking of this extended symmetripéynbnzero expectation value
(Z). As a consequence, any contribution to the static cornedatiyy must come with at least
one factor ofs, and in particular, the one-loop part of thfeetive potential of ZQCD —
the second line of Eq. (G.3) — need not be taken into accomrdddition, the gauge-fixing
dependent part of thdfective potential matches automatically to EQCD.

Keeping only terms up to fourth order ihand rescaling the spatial gluon field to achieve
canonical normalization of its kinetic term, we arrive atagkangian for this field that has the
exact same form as that of EQCD,

1 1, ., 1., 2,
Ligne = 5 Tr &+ E(Di)()2 + Emﬁxz *3 P (4.15)

with the mass parameter and quartic coupling reading

3
ne = g%(si — ASeVg — 5 SaVo + SSVO),
) s s (4.16)
A:Zgg(sg+4sg+———),

When expressed in terms of Feynman diagrams, the quartfingul consists of two con-
tributions, one from a soft operator of thg?j? type, and another from a soft, SU(ZU(2)
breaking mass correction tasgpropagator connecting two hard culgig? vertices.*

41t should be noted that the same diagram with two cubic vestleads to the generation of kinetic terms of
the type(Dix)? and § - Di)? with couplings of orde(g3), which enter the EQCD Lagrangian only at
orderO(g‘g‘). Such terms can in principle be cancelled by adding sinfitan-renormalizable) operators to
the dfective theory Lagrangian of Eq. (4.5).
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Finally, the expressions in Eq. (4.16) can be equated wéh EBQCD counterparts, given
in Eq. (E.4). This gives us two new matching conditions,

3 oT Tx;
51— 4SV5 — 5 SVo + SsVo = — — —5
2 S (4.17)
3y 2% 2 Ky '

26, + 85 b S _ £ o
2Ot o T T 32T | 12007

where the constanis, parametrizing theféects of the quarks, are defined in Eq. (E.6).

4.3.2. The % breaking parameters

The matching conditions of Eq. (4.17) should be viewed asdixhe values of two linear
combinations ok, ; 3 — an interpretation that becomes trivial in the limit of uoken center
symmetry. In contrast, a third, independent linear comimneof these parameters does not
affect the physics of the soft scale at the leading order atradlcan thus take any value. This
is because in the nonlinear version of our theory, where #a@ymode has been integrated
out in a center-symmetric fashion, the three operatorsiphyiltg the codficientss, 3 are
not independent, but there is a linear relation betwgeri?, and (i2)2. As the linear and
nonlinear models describe the same long-distance physmgmustbe one combination of
s123 that is left undetermined by the leading-order matchindneflinear theory, and can only
be found through a higher-order computation. The inseuitsitdf the long-distance physics
to this linear combination will be further demonstratedéctson 4.4, where the domain-wall
solution of the field equations of motion is discussed.

As EQCD violates the center symmetry explicitly, it is clézait the parameteis s, which
facilitate the soft breaking of this symmetry in the preseont fermions, cannot be found
by matching to EQCD. To determine their values, we insteack lia consider the global
structure of the ZQCDf&ective potential, which we do by applying the Nielsen theo{69]
and concentrating on the second stationary point (localmim) of the éfective potential that
provides additional gauge-invariant observables. A méhtoreasure of the center symmetry
breaking is the energy-densityfidirence of the absolute and metastable minima, which on the
full theory side is represented by the paramétetefined in Eq. (E.7). In thefiective theory,
the stable and metastable minima are to leading order lbea® = +v, (andIl, = 0). A
comparison of the values of the potentials gives then themirag conditions,viT = —6T*



Dimensional reduction for two-color QCD 59

which, using Eq. (4.12), leads to the identification

0 1
Sy = —é = F(K_z - Ktz). (418)

The last parameter to be fixed;, does not contribute to the energyftdrence of the
two vacua, but doesfizct the shape of thetective potential. One simple and gauge invari-
ant (although by no means unique) quantity sensitivests the diference of the squared
mass parameters at the two minima,, nﬁ of EQ. (4.16) and the analogous parameter at the
metastable minimum. The corresponding quantities areséitaghtforward to evaluate in the
full theory, see Appendix E, yielding the last perturbatwatching condition,

1
28— 3 = ﬁ(KS - Ka) (419)

It is interesting to note that the right-hand side of thisaeun is proportional to the second
derivative of the parameteérwith respect to the chemical potential(sg., the diference of
the quark number susceptibilities in the stable and mdikstacua of the theory.

4.4. Extended field configurations

Having now finished the leading-order matching of ZQCD tofililetheory, it is important
to test its predictions in particular for quantities thag @ensitive to the center symmetry.
Perhaps the most straightforward such test is to study é&tegauge-field configurations
which probe the global structure of th&ective potential. In the absence of fermions, and
thus 2% breaking operators, we can construct a stable domain walhgpthe two physically
equivalent minima of the theory. With fermions, this is nader possible, as the minima are
not degenerate in energy, but one can still look for a rotatiy invariant three-dimensional
solution that represents a bubble of the stable vacuum intastadle environment. Although
this bubble evolves with time, its growth rate can be estw@uatsing a semiclassicatatic
solution, representing a stationary point of a three-dsi@ral dfective action with suitable
boundary conditions [70].

Consider first a bubble-wall configuration in the full thedrywhich the (static) temporal
gauge fieldA; depends only on the radial coordinatend points in the same direction in color
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space everywhere. It is described by a single scalar fumafi), whose action has the form

~ 00 ) } %2
Seﬁ_ﬁfo dr 4xr lz 0 + V()

where the potential/e; is obtainable from Eq. (E.3). One may then solve the equaifon
motion stemming from this action with the boundary conditageo) = 27T /g, and use it to

: (4.20)

obtain the domain-wall energy density and tension as wel@bubble profile, as has indeed
be done in Refs. [71, 72] (see also Ref. [73] for a recent anaihlculation).

Within the dfective theory, we first note that in order to minimize the ggerost of cre-
ating a bubble, it is clearly optimal to have the fielmsIT minimize the hard part of the
potential (G.3) everywhere in spades., have them satisfg? + [i? = V2. Recalling the iden-
tification of Eq. (4.12), we see that we can express the fieldsrms of one dimensionless
functiona, ranging from 0 to 1, a& = v, cosfra), Il = vo sin(ra). Plugging these formulas
into Eqg. (G.3), we obtain upon a trivial shift the potential

Vo . Vo - Vo, e 3
Verr(@) ==X (51 — 48:V3) Sirf(ma) + —2(sp + 4ss) sin(na) — =2 sin(ra)*+
Vo Vo .
oS [co§’(na) - 1] 5% cosfra) sirf(ra),

using which the bubble profile can again be solved.

Specializing for the moment to the domain-wall calculaiiothe Z invariant, pure Yang-
Mills case, we observe that the potential of Eq. (4.21) ddpezxactly on the two linear
combinations of, » 3 that were determined in our perturbative matching, cf. Bdlq). We
conclude that the domain-wall tension and profile becomeigerpredictions of theféective
theory. Indeed, from Eq. (4.17) we infer the ressits 4s;v3 = 2T/3 ands, +4s; = 1/(37°T),
using which we straightforwardly obtain for the domain-Wahsion

T3
o ~ 4.899x E ~ 0.910yy, (4.22)

2)3/2 T3

whereovyy = (§ 3 denotes the full theory result [71]. In Figure 4.1, we pla thll and

effective theory domain-wall profiles which we find to agree atssfactory level.

Let us finally return to the three-dimensional bubble solutirelevant when dynamical
quarks are present. Its formation and profile are determiyeal balance between a volume
energy gain, scaling likéR® (with the energy-density ffierences introduced in Eq. (E.7)),
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Figure 4.1.: Free energy profiles of the leading-order domain-wall smutn the center-symmetric
limit as a function of the dimensionless length variakle gTr, with the wall residing
atx = 0. The solid red curve is the prediction of thieetive theory, while the dashed
black one is the full Yang-Mills result. The boundary coratitfor this one-dimensional
solution isa(—c0) = 0 anda(+o) = 1.

and a surface energy cost, scaling likB?, whereR stands for the bubble radius in units of
1/(gT). We will not attempt a full numerical solution of the corpemding equation of mo-
tion, which is straightforward but not particularly illurmating, but instead provide an analytic
approximation valid in the limit of parametrically smallcorresponding to weak,breaking
effects. As we expedR to scale like 16, the explicitr-dependence of the action becomes
then negligible and the bubble-profile calculation reduodke type of domain-wall problem
encountered above. This is usually called the thin-walt@xmation [74].

In the thin-wall approximation, the bubble solution is wemsal in the sense that the bubble
action (and therefore the radius) indeed only depend onuHace tension, obtained from
the one-dimensional domain-wall problem, and the energysity splitting of the two vacua.
The critical radius of the bubble, obtained imaximizinghe action with respect tR, and the
value of the action become
2 o 1l6r o\

==X =, S = —— X|=—] . 4.23

Re 5 % Tog bubble = 3357 X (T3/g) (4.23)
Quantitatively, the applicability of the thin-wall appiriaxation is determined by the condition
that the radius of the bubble is much larger than the widtthefdomain wall, a quantity of

order one in dimensionless units. Using the full-theoryedbr the surface tension, this trans-
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lates tos < 1, which is certainly satisfied for quarks withy > T, i, asé is then exponentially
suppressed.



Chapter 5.

Conclusions

In this thesis | studied the thermodynamics of QCD-like tie=bat nonzero temperature and
baryon chemical potential using the PNJL and ZQCD models.

In the PNJL model constructed in Chapter 3, the gauge sexcwimulated by a lattice-
spin model with nearest-neighbor interactions whose parars are fixed with the help of
the strong-coupling expansion of the full lattice gaugetkheThe quark sector was modeled
using the standard NJL model constructed for both type-itgpe-11 QCD-like theories.

We showed at hand of the example of QCD with adjoint quarks ttia Weiss mean-
field approximation to the lattice-spin model used here [gesor to the naive mean-field
approximation, commonly employed in literature, whichde#o a thermodynamic instability.
The Weiss mean-field approximation also allowed us to ddheeexpectation value of the
Polyakov loop in an arbitrary representation. The resuksgaven in an implicit form appli-
cable at all temperatures and chemical potentials, whielbles us to study Casimir scaling
in hot andor dense matter.

As a concrete example, we studied the phase diagram of QQDawgjoint quarks of two
and three colors. We confirmed that in adjoint QCD the ciiitieaperature for chiral restora-
tion is much higher than that of deconfinement, both beind-dafined phase transitions
associated with spontaneous breakiegtoration of an exact symmetry (the former in the chi-
ral limit). We checked the model-independent predicticat thhe phase diagram of aQI@
features a tetracritical point. On the contrary, in the phdiagram of aQCD the second-order
BEC transition line is interrupted and meets the first-otsronfinement line at two tricritical
points.

63



64 Conclusions

It is worth emphasizing that while fine numerical details of phase diagrams depend on
our guess for the model parameters as well as on the partiwajaquarks are implemented,
their qualitative features are largely based on symmetdytAns model-independent. More-
over, our results for Casimir scaling do not depend on thekgsector, in particular on the
choice of the NJL parameters. They can therefore be unaelsi® a direct test of the lattice
spin model with nearest-neighbor interactions. Once a inodehe quark sector is intro-
duced, they give a prediction for Casimir scaling of Polyakmwop expectation values in the
whole phase diagram.

In Chapter 4 we constructed a dimensionally redudgetave theory for two-color Yang-
Mills theory and generalized it by including in the consatéyn the &ects of fundamental
quarks of in principle arbitrary masses and chemical patnbn the dynamics of the Wilson
line. The dfective theory is formulated in terms of a coarse grained &¥ilkne Z defined
by Eq. (4.2), as well as the Lagrangian of Eqgs. (4.5)—(4.8)e theory has by construction
a notion of the center symmetry of the full theory, and is rasat under it in the absence
of dynamical quarks. The matching of thetive theory to the full one was performed by
requiring that the former reproduce the correct long-distephysics of the latter, a task most
conveniently accomplished by demanding that the theoryaesito EQCD upon integrating
out the momentum scaldl’. This we carried out explicitly in section 4.3, where th@aram-
eters appearing in thetective-theory Lagrangian were determined with the exoepif one,
for which a higher-order computation is needed.

Upon fixing its soft parameters, ouffective theory becomes fully predictive, as the
physics of the distance scale4dT) and larger is to a very good accuracy independent of the
values of the hard parametdrg66]. We reproduced the free-energy profiles of the leading-
order domain-wall solution in the center-symmetric lirmtgoredicted the three-dimensional
bubble solution when dynamical quarks are present. Ouryisommediately amenable to
nonperturbative lattice simulations, with which one maydsttwo-color QCD over an exten-
sive range of temperatures, quark chemical potentialspaasses. It should be recalled that
the only reason we have chosen to study two-color QCD andheopliysical case of three
colors is notational and computational simplicity. If theegictions of the fective theory
turn out to match two-color lattice data well, then the irigetions can be generalized to full
three-color QCD.

Finally, another interesting topic for future work woulatatly be to consider the relation
of our efective theory to the strong-couplingfective actions derived in Refs. [75, 76, 77,
78]. It appears that these two approaches are strongly evngpitary in the sense that they
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approach the deconfinement transition from opposite dinest whether this can be used to
gain more insight into the dynamics of the transition itsethains to be seen.
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Conclusions




Appendix A.

Haar measure of unitary groups

Here | briefly summarize the definition and properties of tle@Hneasure [79] of Lie groups
and give a method to calculate the distribution of eigereslaf UN) and SUN) groups,
which is used in the calculation of the matrix model in Chagte

Let G be a locally compact topological group and@(G) andC} (G) denote the space of
continuous and continuous and non-negative functionS anth a compact support, respec-
tively. A linear formu onCy(G) is called deft Haar measurer aleft Haar integral if
1. itis a positive linear formi,e., u(f) >0, Vf e Cj(G) ,

2. itis left-invarianti.e., u(Lgf) = u(f), whereLyf(x) = f(g'x), xgeG .

Similarly we can define theght Haar measurelt turns out that every locally compact group
has a left Haar measure and any two nonzero left Haar measwstsbe the same up to a
positive constant. This is also true for the right Haar megsalthough the right one is not
necessarily the same as the left one. Actually the existehadeft Haar measure implies the
existence of a right ontandvice versa

By Riesz’ theorem we can represent the Haar integral by aisetibnu(x), for x € G, as

u(f) = fG (Q)du(g) (A1)
The left-invariant feature implies

du(gx) = du(x), (A.2)

ILet i be the left Haar measure @) the new measure defined pyf) = u(f), wheref(x) = f(x), is in fact
the right Haar measure @B.
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for all x,g € G. It is similar for the right Haar measure. Moreover it can hewven using the
modular functiod that every compact group has equal (thus unique up to ap®sitnstant)

left and right Haar measures. Such a Haar measure which lisléivt and right-invariant

is called aninvariant measure It can be shown that every invariant Haar measure is also
invariant under the inversiong., du(g?) = du(g) for g € G. Unitary groups U) and SUQ)

are compact, thus they have all the above properties.

After summarizing the definition and basic properties, wecanfronted with the question
how to calculate the Haar measure of a Lie group. A straigitdod method is using the
definition. We can first parameterize the Lie grdapthus the Haar measure:(ck) can be
written as

HX)AX = p(Xq, -+ -, Xp)dXy - - - Xy, (A.3)
whereX = (Xg,-- - , X,) IS the coordinate ok € G, u(X) is a function of the coordinate, and
dx; - - - dx, is the natural measure @Y. The left-invariance @d(gx) = du(x) tells us that foiX’
of X = gx

’ ’ ’ 6X/
HOOBX = (X)X = () | 5| . (A4)

with an explicit Jacobian determinant inside. Thus we have

p(X) = pu(X')

¥Xx,geG. (A.5)

oxX’
x|
Making use of the fact that the left-hand side is independéanyg € G, the functionu(X)

can be finally determined, up to a positive constant. Sgcan be an arbitrary element of the
group, it can be chosen gs= x 1, which results in the relation to the Haar measure at the unit
element of the group

oxX’

= (A.6)

g=x1

p(X) = 1o

wherepg is the measure evaluated at unity.

2The modular function is a group homomorphism into the mlidtiive group of nonzero real numbers. A
group is unimodular if and only if the modular function is idigally 1, or, equivalently, if the Haar measure
is both left and right invariant. Examples of unimodulargpe are abelian groups, compact groups, discrete
groups (e.g. finite groups), semisimple Lie groups, and eoted nilpotent Lie groups.
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As an example, let us now calculate the Haar measure of Sl (2 a compact Lie group,
thus has an invariant measure. An SU(2) matrix can be paraeets

U =wWL +i(Xox + Yoy + 20),

whereoy,, are Pauli matricesy, x, y, andz are four real numbers. Since SU(2) requires
W2 + X2 + y? + 22 = 1, there only exist three degrees of freedom, which can beerhas
any three out of the four. Here we choose, z. Now consider a left transformation under
g €SU(2) withg = al + i(boy + coy + do,) and agaire® + b? + ¢ + d* = 1. The transformed
one is

QU =U"=W1+i(Xox+Yoy+Zo)

with
W =aw-bx-cy-dz,
X =bw+ ax+ dy- cz,
y =cw—dx+ay+ bz,
Z =dw+ cx- by+ az.
Using
ow __x
X w

and similar fory andz, the Jacobian reads

ox 0z

a(X’ y Z)
N T | A0W oW oW —

bW 4+ a bg—"yv+d b _ ¢
(@ +b*+c+d)(aw-bx-cy-dz w

axy,2) | | o w w
di¥+c d3/-b dff+a
(A.7)
Thus the Haar measure should satisfy
oxX,y,Z) w
XV,2) =uX,y,Z '— =u(X,y,Z)—.
HOY.2) = 1KY 2) |G = iKY 2D
The most convenient (and also unique) choice is
1 1
lu(x’ Y, Z) = - (A8)

W \T-(C+y2+2)
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where we choose the positive square root as required by fhmtide of the Haar measure.

The above parametrization explicitly shows that SU(2) asrierphic toS3. This suggests
to choose the three phases as the degrees of freedom,

W = CO0SH, ,
X = Sin#, cosbs ,
. . (A.9)
y = sIn#; siné, cosbs,
Z = Sinf1Sind sinbs .
It is not difficult to express the Haar measure as
dxdydz . .
du(U) = 2% _ 5ir? 6, sing,d0,d0,d65, (A.10)

which is in fact the product of a part with eigenvalues and with angles only appearing in
the eigenvectors
(|/l]_ - /12|2d91) (Sin92d92d93)

when realizing that the eigenvaluesldfare; , = e and the eigenvectot®nly depend on
023.

As we will see later, the statement that the Haar measure igriduct of two parts can be
generalized to unitary groups, with the first one contairminty eigenvalues af] |4; — 2;/*dg;,
and the second containing all other “angles”. By integgatiat all angles which are not the
eigenvalues, we can get the distribution of eigenvalueslegtén Chapter 3. Formally this
idea can be expressed as

du(U) = p1(Duz(w)didw (A.11)

whereU € U(N), A is the collection of eigenvalues &f, andw is for all other angles. For
all functionsf € Cy(G) which depend only on the eigenvalugsnamely,f(U) = (1), the

3The eigenvectors correspondingtg, = e are

/1¢sinezsin03 siné, sindz + 1 1 y
2 cosf, + i sind, coshs’ '




Haar measure of unitary groups 71

following integral

u(h = [ fmd (A12)
G
is invariant under any left or right transformation
fU) — f(gu) or f(Ug? (A.13)

for anyg € U(N). This is simply because the the integral can be rewrittdh tie explicit
invariant measure (A.11) as

u(f) = %( f f(/l),ul(/l)d/l) ( [ ,Uz(w)dw), (A.14)

where we just put back the integration oueas a constartt Thisc must be positive otherwise
the Haar measure (A.11) would vanish.

Now let us calculate the desired distribution of eigenvalatunitary groups, W). In-
stead of the method demonstrated above, the Haar measuve catained from the invariant
metric tensof. First we can define an inner product of complex matriceQ\B) = Tr(A'B),
which induces the normA||?> = (AJAY, which then induces the distance of two matrices

S(A.B) = A~ Bl = |[Tr[(A-B)'(A- B)]. (A.15)
This distance is invariant under any left and right unitaansformation, namely,
S(UA,UB) = (AU, BU) = (A, B).

It therefore defines an invariant metric when restrictedrtibamy groups. Thus we can calcu-
late the metric tensor from the infinitesimal squared disan

ds® = gup(X)dx*d¥ (A.16)

and then obtain the invariant volume element ilNJ&as

du(x) = y/detg(¥) | [ dx". (A.17)

4] thank Tomas Brauner for providing his notes on this method.
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As mentioned above, we diagonalize any unitary mattiasU = WAW' with diagonal
A and unitaryW. There areN eigenvalues im\, 4; = €%, and (N> — N) other “angles” inw,
denoted asv,, provided that all eigenvaluet are diterent. They together give aN? real
degrees of freedom of the Nj group® An infinitesimal shift dJ inside the group gives the
infinitesimal squared distance

ds® = Tr(du'dU). (A.18)
The shift ofU can be expressed by

dU = WAAW' + dWAW' + WAdW'
= WAAW' + WW dWAW' — WAW'dW W'
= W(dA + [WdW, AW, (A.19)

where we used the unitarity ¥¥ and its constraint
WdW' + dWW' = 0. (A.20)
DenotingW'dW as d?, Eg. (A.18) becomes
ds” = Tr(dAdA) + Tr([dQ, A][dQ, A]) + 2 Re T{dAT[dQ, A]). (A.21)

The last term vanishes since (BA[dQ, A]) = Tr(dQ[A,dA"]), and A, dA'] = 0 because
both are diagonal. Noting that{d A];; = (1; — 4;)d€; , finally we obtain

ds = > doide +2 > |4 - 4;dQ; . (A.22)
i i>]
The last step before identifying the dheients of the above equation witf, in Eq. (A.16) is

to find the relationship between the well-defined coordmale, and the antihermitian shift
dQ = W'(w,)dW. It can be calculated straightforwardly when the matrixiestof W are
given in the explicit form oflW;(w,), for examplew, are chosen as the real and imaginary
parts of the entries iV. It may also be a nontrivial task when another parametéoizas

SW always contains one additional overall phase factor fohediche N eigenvectors of). However, these
phases can be factored out in the form of a diagonal unitatyixnaultiplied to the right of W, which
commutes withA and cancels with the one froWf". Thus they are not degrees of freedontof
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chosen, such as the exponential mapping between the Li@ guudiits Lie algebré.In any
case we can express it aQd= Qap(w)dw,, Where €2, stands collectively for the real and
imaginary parts of ;. It is still good enough to see that detan be formally written as a
product of two factors withl; andw, separately as

detg o (detQ)? | [ 14 - ;1" (A.23)

i>]

up to a numerical prefactor. Finally after integrating dwe &nglesv,, we obtain the distribu-
tion of the eigenvalues on the unitary group

du(e) = [ [|e% - €] [ dar. (A.24)

i>] [
This result is valid for UN). For SUN) we have to add a constrain

Zei =0 mod Zr,

which can be easily implemented using-&unction.

| use the explicit example of SU(2) to end this appendix. Againg 0,, 6, 63) as param-
eters, the SU(2) matri = WAW' has

COSfp—isinfp COSH3  _ COSH—iSin 62 COSH3

eigl V2(1-siné, sinds) V2(1+sinf, siné3)
A= ., W= (A.25)

e—i91
1-sinf, sinf3 1+sin6, sinf3
V 2 V 2
It is straightforward to ggtiQ,|? = %(dezdez + Sir? 6,005d65), thus
2, . .

ds” = dordloy + 7 [ — e[ (d00; + sir? 6,050 (A.26)

which recovers the Haar measure we already obtained piyiouthis appendix.

8]t is proved that every compact Lie group has such an exp@iemapping, namely, every element represented
as a matrix can be expressed as an exponential function ofr&xmvaich is a vector in the Lie algebra. Ob-
viously such mapping cannot be bijective because we knotantbay Lie groups can be locally isomorphic
and share the same Lie algebra.
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Appendix B.

Fierz transformation of the
current—current interaction

Consider a fermionic fielgy transforming in a representatigt of the symmetry group. In
NJL-like models, one deals with contact four-fermion iatgions of the typeza(ﬁl"g“w)z,
wherel'J! is a set of matrices that project out a particular irredwcitdmponentA of the
product representatioR ® R. The Fierz rearrangement of the four-fermion interaction i
equivalent to the group-theoretical identity

Z(F?)ij T = Z Cas Z(Ff)n TE)ki (B.1)
a B b

where the coficientsC4g depend only on the representatigrisB. In order to fix the &ec-
tive coupling in the meson channel, we do not need to evatheatEierz co#icients for all5.
All we need to know is the cdicient for the one-dimensional representat®e 7, which is
always contained in the produgt® R.

Settingl? = 1, the codicient C; is projected out by multiplying Eq. (B.1) b,
which yields

> Ty
-2 B.2
Car (dimR)? (B2)

In particular forA = I this leads toC;; = 1/dim®R. This explains the AN; factor in the
effective NJL couplings derived from the current—currentriatéon (3.19): both the original
interaction as well as the terngyf)? whose cofficient we calculate are in the flavor-singlet
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76 Fierz transformation of the current—current interaction

channel. Likewise, the Fierz transformation from the Lézaerector channel to the Lorentz-
scalar channel has the Fierz @@gent one.

The color structure of the current—current interactiod93.is such thatA corresponds
to the adjoint representation, that I8! = T,k are the generators of the color group in
the representatiofR of the quark fields. The Fierz cfiient (B.2) then reduces ©4; =
C,(R)/ dimR. Specifically for the SUY) group, once the generators in the fundamental rep-
resentation are normalized as TgTee) = Z6an, ONe findsCy(F) = (N? — 1)/(2N) for the
fundamental an€,(A) = N for the adjoint representation [7]. This concludes thevddion
of the dfective NJL coupling&r andG, given below Eq. (3.19).



Appendix C.

Gauge group averaging with continuum
guarks

In this appendix we justify our prescription (3.18) for agigliquarks to the lattice model of the
gauge sector. In contrast to Eq. (3.18), the authors of R6f.dalculated the quark thermody-
namic potentiak), in the mean-field NJL model with a constant background gawde &nd
set(Qq)ms as the quark contribution to the thermodynamic potential.

To start, let us emphasize that any attempt at addorginuumquarks to a lattice gauge
model is at best heuristic. For a proper treatment one waegd o discretize the quark action
as well, thereby losing the computational simplicity of thean-field NJL model. With this in
mind, below we provide a qualitative argument why Eqg. (3i14&) reasonable approximation.

Imagine adding quarks to the lattice model (3.1); the futlacthen formally readss =
Sy + YDy, whereD is the Dirac operator including the background gauge fieddgharks
interact with. The full partition function of the system istained as

Z= f dLdy dy e = f dL e detD. (C.1)
Using the same trick of introducing the Weiss mean-fieldoaictis in Sec. 3.1, this leads to
Z-= <e‘(39‘3mf)det1)>mf f dL e Smr (C.2)

This expression is still exact and includes all correlatibetween the gauge and the quark
sectors. However, to evaluate it numerically would be vamdnding. We therefore perform
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a mean-field approximation by setting

<e—(Sg—Smf) detD>mf ~ g SoSmdmt(detD)ms . (C.3)

This is equivalent to the Weiss mean-field approximatioroshiiced in Sec. 3.1 plus ne-
glecting the correlations between the gauge and quarkrséclite full thermodynamic po-
tential is then given by the gauge part (3.9) augmented wilthog(detD),;. One can there-
fore see that averaging the determinant of the Dirac operstoore natural than averaging
its logarithm. However, Eqg. (3.18) commits one more appr@tion: it neglects correlations
between modes of flerent momentum and spin. While the former is naturally ipooated
in EQ. (3.18) by the momentum integral, the latter has to gosed by hand (by adding the
power J/2 to the argument of the logarithm) in presence of a diquankieasate, since this ties
together quarks of opposite spin. Somewhat ambiguoussprbcedure is, it does reproduce
the prescription of Abuki and Fukushima [26] whan= 0, and, unlike other prescriptions, it
leads to a thermodynamically consistent poterfdighs will now be discussed.

Let us start rather generally by addressing the followingstgion: why have we used the
complicated-looking Weiss mean-field approximation iadtef the simple “naive” oné?To
find the answer it is useful to understand the relation betwiee two approximations. Let us
write the Haar measure (3.6) as

dL = H(6) ]—[ a6 . (C.4)

The group integral of a given functiof(6), weighted by the mean-field action, can then be
expressed as

f dL f(9)e™S = f l_[de. f () g Smr+ogH@®) (C.5)

While in the Weiss mean-field approximation this group iné g evaluated exactly, the naive
mean-field approximation can be obtained by picking therdaution of the saddle point of
the “action” Sps — logH(6). Indeed, let the saddle point, dependingaop, beb.s. Then the
above integral is approximated Y6, e Sm@m)+lgHlm)  The average of any function of the

The lack of correlations, in particular the feedback from ttlense quark matter into the gauge sector, makes
the usual PNJL model rather trivial in the region of cold demstter. It would be interesting to see to what
extent these correlations can be taken into account witlg@mptesent model.

2We are indebted to Kenji Fukushima for clarifying this pamthe initial stage of the project.
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Polyakov loop is thus simply

(F(O)mi = f(hmr) - (C.6)

Then, in the gauge thermodynamic potential (3.9), the Waiszn fieldsy, 8 drop out and the
result depends only ofj,

anivea:g

VA —2(d = DNZE T £e(Omr) £ (Ormr) — 109 H (Or) - (C.7)

In some particular cases, it can even be expressed sol@yns tof the traced Polyakov loop.

Let us now for simplicity assume that the chemical poteindiakero so that there is no pair-
ing and the Polyakov loop and its complex conjugate givetagdbe same expectation values.
The quasipatrticle contribution to the quark thermodyngpoiential (3.18) with quarks in the
representatio® of the gauge group then reads

-2 f(gjr—l; [ek dimR + T Trlog(l + LRe‘fk/T)] . (C.8)
The fundamental and adjoint Polyakov loops are related By, T& |TrLe|? — 1, hence the
same relation holds for their expectation values in theeaiean-field approximation. This
means that at low temperature when the fundamental Polylak@wgoes to zero, the adjoint
loop should become negative. Disregarding the obviougdessment of this conclusion with
lattice simulations, it would moreover be a disaster fonttean-field PNJL model. Indeed, at
low temperatures,

Trlog(L + Lge */T) ~ e /T TrLg. (C.9)

A negative value of the Polyakov loop would thus imply tha tjuasiquarks would give a
negative contribution to the pressure, leading to a theymauhic instability. We conclude
that the naive mean-field approximation cannot be appli€d@® with adjoint quarks.

We will now show that a similar, albeit milder, instabilitccurs when one defines the
quark contribution to the thermodynamic potential by taki€2,)m:. For the sake of simplicity
we focus on aQgD at low temperature. The mean fields then strictly zero (deconfinement
is a sharp phase transition for adjoint quarks) and the geeohthe quark thermodynamic
potential is easily evaluated using the integrals (14) df B9]. In accord with the general



80 Gauge group averaging with continuum quarks

expression (3.18) (with swapped logarithm and averagimgaions), one finds
2(log[(1 + X)(1+ 2xcos @ +x°)]) = 2[log(1+X) -, (C.10)

wherex = e %/T. Even though the leading term, linearxrand proportional tqTr La)ms,
now vanishes, the total quasiquark pressure is still negatlhis negative contribution is
numerically small, yet it makes the thermodynamics in ppiecill-defined.

It is easy to see that this problem does not arise when th@greerage is taken inside the
logarithm as in Eq. (3.18). Then at low temperature wéaen0, one gets instead of Eq. (C.10)

21log{(1 + X)(1 + 2xcos D + X))« = 2log[(1 + X)(1 - x+ x°)] = 2log(1+ ).  (C.11)

The pressure is now strictly positive and even looks likessgure of noninteracting fermionic
quasiparticles with energyes.

One comment is appropriate regarding the last claim. In théLPmodel for physical,
three-color QCD with fundamental quarks, one observesdheesdehavior at low tempera-
ture. More precisely, the mean fieldis never strictly zero at any nonzero temperature, so
the quark contribution to the pressure is proportional g{l1e+ 3x{r + 3x2¢: + X3). At low
temperature when the Polyakov loop is suppressed thisesdadog(t- x3), which is usually
interpreted as a manifestation of the fact that one needs tilmarks to create a color-singlet
state. This observation suggests that the PNJL model isuaahdtamework for a descrip-
tion of the quarkyonic phase in cold dense quark matter [8088]. However, as Eq. (C.11)
clearly shows, this is somewhat misleading: the same lomp&gature behavior of the pres-
sure arises itwo-color QCD with adjoint quarks, so it does not directly reflect thentver of
guarks needed to construct a color singlet.

A second attempt at interpreting log{%®) might be that both examples of three-color fun-
damental and two-color adjoint quarks are governed by threedsion of the representation.
However, in two-color QCD it is easy to calculate the samentjiawith quarks in higher
representations, showing that there is no simple gendetlae between the representation
and the form of the low-temperature pressure. For instanc@QCD below the deconfine-
ment temperature, the ddeientsw;,3 take on the values; = -1, w, = 0, w3 = 1/8.
Consequently, the quark pressure is proportional to 2 legf+ x° + x8).



Appendix D.

Group integration for SU(N)

In this appendix we show that some of the group integrals @pdrsformed for arbitrary
N [83, 84]. (For the sake of legibility, we abbrevidilz asN.) Let us define the generating
function

N

67 =([ |ee=") . (0.1)

i=1 mf

In order to calculate it, we write the mean-field action (3ds)one lattice site as
N
S == Y (acosd, +iBsing;). (D.2)
i=1

Furthermore, we use the fact that the Haar measure (3.6) mayriten as a square of a
Vandermonde determinant,

N
dL = [ A6 601+ + On)eiyin &y iy €2 - @OV (D.3)
i=1
The last trick is to express the (periodi&junction in terms of its Fourier series,

1 +00 )
5L+ +6y) = o> Z dmer+-+6n) (D.4)

m=—o0
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The integration over the anglésnow completely factorizes in terms of a single master inte-
gral,

21
Tn(U, V) — % f d@ ein@eucose+ivsin9 , (D.5)
0

For realu and pure imaginary, v = iw, which is the case i8 = 0, the master integral can
again be expressed with the help of the modified Bessel fumcti

Ta(u,iw) = (ﬂ)nln( VU2 +w?) . (D.6)

u? + W2
The final formula for the generating function (D.1) reads
+00
Z detTmii-j(@ +z+ 2B +2-2)

G2 ="—"—— - (D.7)
D detTmij(a.B)

Looking back at Eq. (D.1) one sees that expanding the exp@at&rihe Taylor coficient
of the Z"Z" term resums all eigenvalues of the Polyakov loop in tHe " representation, F
being the fundamental one. That is, one has

m+n

0z"o7

(T Lmgndmt = 63|, - (D.8)

0
z=0
The expectation values of Polyakov loops iniakducible representations can be obtained
from this formula by simply observing that the (traced) Rddgv loop in a direct sum of two
representations is equal to the sum of the loops in thesegseptations.

Let us remark here that the thermodynamic potential of theeticolor pure gauge theory
(3.37) can be derived using the same argument, and the gntegrals involved are special
cases of those considered above. Indeed, the funEtjen(3.36) equals the denominator in
Eq. (D.7) atB = 0 up to a trivial numerical prefactor. Changing this prefagust shifts the
thermodynamic potential by a constant, and noting&{8) = 1, it can be fixed by demanding
thatQy = 0 fora = 0.

A more compact formula can again be obtained for the speas# of two colors. Then,
we can seB = 0 andz = 0. Also, []%, e’ = e20%_ The one-dimensional group integration
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can be performed directly and one finds

lo(2a +22) — 1,20 +22)  a 11(2a +22)
lo(2) — 1,(2a) T a+z 11(22)

G2 = (D.9)

While the latter expression is more compact, the former iseno@nvenient for taking the
derivatives in order to extract the expectation values efRblyakov loops.

Finally, let us show that even the averages (3.41) can besged analytically in terms of
a series of modified Bessel functions [85], and thus speeti@ipumerical evaluation of the
thermodynamic potential. Using trigopnometric identifidteese averages can be written as a
linear combination of terms of the type

Kabd(@) = <ei(a91+b62+093)>mf , (D.10)

wherea, b, ¢ are integers. Using the same trick of rewriting the Haar mesaas a Vander-
monde determinant and introducing the periaghitinction as in Egs. (D.3) and (D.4), this
becomes

Imii-1ra(@)  Thwic2va(@)  Inviczea(@)
1 +00 3

6F(a/) Z Zgijk Im+j—1+b(a) Im+j—2+b(a) |m+j_3+b(a) . (D.11)

Me—oco i, j.k=1

Kabc(@) =

I m+k—1+c(a') I m+k—2+c(a') I m+k—3+c(a)
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Appendix E.

EQCD parameters in the presence of
massive fermions

The one-loop QCD féective potential evaluated in a static backgrodgdield was first de-
termined in Refs. [64, 67, 68]. Rewriting it in a form invartaunderglobal SU(2) symmetry
and parametrizing the gauge field&s= a- &/2, the result becomes

2 2
-t {2828

2nT 2nT
Nt (E.l)
d*k e gla e
—BEjr£1]) —2B(€jpLuj)
- 2T El E f(Zﬂ')?’ log |1 + 27 €ik*Hi cosﬁ+e =R
=1 =

where(-) denotes the fractional part of a real numbe® (= x — | X|), u; the set of (flavor)
quark number chemical potentials, aad = /k?+ mf the dispersion relation of thgh

quark flavor. Also, we used the shorthand notat@n= Va-& Expanding this expression
in powers ofd around zero and subtracting the contribution of the statdes (amounting to
the term cubic ird), one may readily identify the EQCD parameters

29°T? < [k
ne 3 -29 ;fwf (GTTH)

20°T ¢ N dk

32 6 Zi ) (ay

(E.2)

;'l f/”(fjk:,/-lj),

where ﬂx,p) =[f(x+u) + f(x—pw)]/2, the prime denotes fllerentiation with respect tg,
and f(x) = 1/(¢®* + 1) is the Fermi—Dirac distribution function.
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Compact as the above expressions (E.1) and (E.2) are, ofiertiaar evaluate the integrals
over the quark momentum analytically in terms of the modiBedsel function of the second
kind, K,. Expanding the logarithm in powers of fugacity and using sadentities for the
Bessel functions, one obtains the result

-3 28] -85

t— Z mJZZ (=11 Ka(nBm;) cosh@Bu;) cos——

j=1 n=1

3
nga (£3)

21’

where the sum converges as longuas< m; for all quark flavors. Analogously, one derives
by differentiation analytic expressions for the EQCD mass paemaed quartic coupling,

2 2T2 2 N oo
Y= g3 _% mfZ( 1)"Kx(nBm;) cosh@By;),
j=1 n=1 (E 4)
~ 294T g4 N 00 )
1= 3r2  1272T mlzz( 1)nn2K2(n/3mJ)COSh('1ﬁ#J)
=1 n=1

When the quark mass is parametrically larger than both timpéeature and the respective
chemical potential, the infinite series in Eg. (E.4) can Ippaeed by its asymptotic form,

29°T? 212 m\¥2
e ~ =— +2¢°T (—) e ™/T coshBu;),
3 2\ o
. 294"- g4-|- Nt m; 3/2 /T .
A= 37 6 (ZnT) e "’ coshfy;).

j=1

On the other hand, for massless quarks at vanishing chematehtials, the integrals in
eq. (E.2) are readily evaluated analytically and one fimis= (2g°T?/3)[1 + (N;/4)] and
A= (29°T/373)[1 - (N;/8)], in agreement with Ref. [86].

As the above infinite series containing Bessel and hypearlfohctions will appear fre-
guently in our results, it is convenient to introduce a dhentd notation,

N¢ 00
ki =) (Bm)? > (£1)"n'Ko(nsmy) cosh(y;), (E.6)
j=1 n=1
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in terms of which the EQCD parameters (E.4) take the simpimdon = (2g°T?/3)[1 -
(kg /27%)] and = (29°T/372)[1 + (x,/8)].* To introduce one final piece of notation, observe
that in the presence of dynamical quarks, the potential of EG) has only one global min-
imum (up to periodicity) atd = 0, while the pointal = 27T /g corresponds to a mere local
minimum. The most important quantity carrying information the explicit Z(2) breaking
due to dynamical quarks is thus the energy-densitgdince between the two minima. It can
be encoded in a single dimensionless parameter

Ver(gld] = 22T) — Ves(gld = 0) _ 4

Note that at any given time, the infinite sum can be replacetti®ygorresponding integral expression. This is
in particular necessary for reasons of convergence; & y; for some quark flavor.
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Appendix F.

Center symmetry for the SU(2) gauge
group

The zeroth component of the gauge figllr) (the dependence on the spatial coordinates does
not play any role in what follows and is thus suppressed)staams under the local transfor-
mations(r) € SU(2) asho(7) = S(1)Ao(7)s(7)T + igs(r)afs(r)f. Under the same transformation,
the (untraced) Wilson line operator defined in Eq. (4.11ndfarms ax2 = s(8)Qs(0)". Let

us now write the gauge field a(r) = a(r) - /2, and the most general SU(2) gauge trans-
formation ass(r) = explie(7)f(7) - &], wherefi(r) is a unit vector. In this representation, the
gauge field transforms as

a=(-d) + [&- (i - &)] cos 2 — (i x &) sin 2o+

F.1
+é[2ﬁ¢’+ﬁ’sin2np—2(ﬁ>< ) sif? | o

where the prime denotes a derivative with respeet Bemanding that the gauge transforma-
tion preserves the periodicity of the gauge fig() = &(0), leads to the conditions

¢B) =9 +Nr,  ¢'B)=¢'(0),  AE) =n0), AP =m0). (F2)

up to an overall minus sign, which only matters if we require parameterg, ii to change
continuously withr. In either case, the unitary matrr) satisfiess(s) = (—1)Ns(0) for some
integerN, which is precisely a transformation of the Z(2) center &f ¢fauge group.

Let us now specialize to the Polyakov gauge, in whiglis diagonal and independentof
Which gauge transformations from the local SU(2) group gmesthis structure? Obviously,
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i must point in the third direction at all times. Preservatifriime independence @& then
results in the conditiop’ = const, and the admissible gauge transformations take the fo

i = (0,0,1) andy(r) = ¢(0) + Nxr/B. As a consequence, the gauge field transforms by a
mere overall shiftas — as + 2NaT/g. It is worth emphasizing, though, that this conclusion
only holds in the Polyakov gauge, as otherwiseuweetor functiord(r) transforms in a rather
complicated manner. In any case, since the nontrivial cgraasformations correspond to
time-dependeng(r), while there is no time in the three-dimensionéleetive theory, this
effective theory must be augmented with a suital@énitionof the center symmetry.



Appendix G.

One-loop dfective potential of ZQCD

The derivation of the one-loopftective potential of the theory defined by Eq. (4.5) follows
closely Appendix A of Ref. [66], and we will therefore merelyite down the result here. In
practice, we choosH to point in the third color directiorl, = 0|62, relying on the SU(2)
invariance of the theory. Thefective potential in a gener&; renormalizable gauge then
consists of the tree-level contribution, the gluon and ghmsps, the loop in the mixedll;
sector, as well as a separate contribution fromlthgloops,

1
Veff = _2Vtree + VA+gh + VE]'Ig + an,Z’
3

Viree = 0122 + bol1? + €12 + (1172 + 22012 + d 228 + dp2Ii2,

Vaigh = P 2-¢%2 Vsp, =
A+gh—_§( _f )’ s —

1 (G.1)
L for ot

1 ) )
Vi, = _§(2b2 + 4C,IT? + 20332 + 2d,3 + £112)%2,

where

NP =by + by + 66,32 + 6C,I02 + (22 + 112) + (3dy + dp)T+

+ \/ |by = b + 6C1%2 - 6C,I12 + c3(IH2 - £2) + (30 — dz)Z]Z + AT12(2¢,% + db)2.
(G.2)

Using the parametrization of the couplings (4.7) and assgrtiiat the background fiel