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This paper repozts calculations of the influence of a reaction time T > 1 0 - 2 i  s in deep- 
inelastic Xe-Pb collisions on the energy spectrum of 6 electrons ejected in the same 
collision. It i s  shown that the lifetime of the superheavy composite system causes 
pronounced oscillations of width t = /%/T in the electron distribution, which survive the 
inclusion of multistep excitations and the folding with a lifetime distribution function. 
This effect may serve as an atomic clock for deep-inelastic collisions. 

Deep-inelastic heavy-ion scatteringl has  be- 
come one of the best-studied phenomena in nu- 
c lear  heavy-ion physics. To explain a wide range 
of observations two kinds of models have been 
proposed: microscopic models (shell-model frag- 
mentation t h e ~ r y , ~  time-dependent Hartree-Fock: 
etc.) and statist ical  models (diffusion t h e ~ r y , ~  
etc.). In the diffusion model, the experimentally 
observed widths of the fragment mass ,  charge, 
angular momentum, and energy distributions a r e  
in f i r s t  approximation proportional to the avail- 
able reaction t ime T. The magnitude of this time, 
however, must usually be determined by semi -  
empirical  p r o c e d u r e ~ , l * ~ ~ ~  which yield t imes in 
the range s c T 5 10-'O s. As the basic as- 
sumptions of the various models a r e  not acessible 
to direct  experimental verification, i t  i s  extreme- 
ly difficult to discriminate between the various 
proposed models. It would, therefore,  be of 

great  in teres t  to have an independent clock for 
the t ime scale in deep-inelastic nuclear reactions. 

In the following, we propose a measurement of 
T by means of the kinetic energy distribution of 
ejected 6 electrons. Recent experiments6-B have 
confirmed ea r l i e r  predictionsg that inner-shell  
ionization is highly sensitive to the shor t - t ime 
s t ructure  of the e lect r ic  field generated by the 
two nuclei during a heavy-ion collision. 

Accordingly, the 6-electron distribution may be 
employed1° for the analysis of electronic binding 
energies and the high momentum components of 
bound-state wave functions in the transient united 
atom." The spectrum has  a n  exponential shape, 
the steepness being a function of the combined 
nuclear charge Z = Z,  + 2, and the minimal dis-  
tance of approach of the two nuclei. For a typical 
center-of-mass energy of 3 MeV/u, a minimal 
distance of 15 fm corresponds to  a time scale  of 
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the order  of 10-*l s. Any modification of this 
t ime s t ructure  due to nuclear reactions will pro-  
duce observable changes in the ionization proc-  
ess .  

The simplest  possible modification is a nuclear 
sticking t ime T that separates  the incoming and 
outgoing Coulomb trajectory.  It is easy to s e e  
that this corresponds to  a phase shift between the 
ionization amplitudes f rom the two par t s  of the 
Coulomb orbit, the magnitude of which depends 
on the energy t ransferred to the electron. 

The utilization of atomic ionization measure  - 
ments for  the determination of nuclear reaction 
t imes was f i r s t  suggested by Ciocchetti, Molinari, 
and Malvano.12 Blair  e t  aL.13 recently succeeded 
in measuring the ionization amplitude for the half 
trajectory by investigating a proton resonance in 
j 8 ~ i .  The influence of a t ime delay on the b rems-  
strahlung spectrum was discussed by Eisberg,  
Yennie, and Wilkinson,14 the influence on quasi- 
molecular spectra  and K X r ays  by ~ r o r n l e y l "  
and two of the authors and recently by Anholt,'" 
Röhl, Hoppenau, and Dost and Chemin e t  al.17 
Rafelski, Müller, and Greiner18 proposed that a 
nuclear delay time could increase  spontaneous 
positron production in heavy-ion collisions. In 
this Letter we show that there  is a pronounced 
effect on the electron spectrum. 

We now turn to  the theoretical  concepts for  
inner-shell  ionization. We have to solve the t ime-  
dependent Schrödinger equation it7 aYi/at = H(R(~))$,, 
with the relativistic Dirac Hamiltonian H. Since 
binding energies and wave functions change strong- 
ly a s  function of the internuclear separation R, 
the total wave function p i  is expanded in t e r m s  
of the adiabatic basis  s ta tes  <pj(R(t)) which a r e  
solutions of the stationary two-center Dirac equa- 
tion H p j  = E ,  (R) qj .  We then obtain a se t  of coup- 
led differential equations for the occupation a m -  
plitudes a i j  of s ta te  cp, by electron number i: 

The adiabatic electron energy enters  via the 
phase 

The mechanism by which a nuclear t ime delay in- 
fluences the excitation amplitude becomes most 
transparent in f i rs t -order  perturbation theory, 

where Eq. (1) i s  solved explicitly by 

a, ,( t)  = -  J t  - W dtticii, l ( a / a t r )  V , )  

xexp((i/E)[ xJ (t ' )  - x i ( t t ) 1 } .  (3) 

This perturbative treatment correctly describeslg 
the ionization probability except for  a n  overall  
normalization factor. 

If we denote the ionization amplitude a t  the end 
of the incoming Coulomb orbit  by a i j  ' = a i J ( t  = O) ,  
we find that the probability of ionizing a n  electron 
from state i into the continuum sta te  j for  a fixed 
delay t ime T is given by 

dpi (AE, T ) / ~ E ,  

=4~aiJ'/2sin2[(~/2)~~i3+arg(ai,')]. (4) 

Here AEij= E ,  - E,  is the energy difference be- 
tween s ta tes  i and j in the nuclear compound con- 
figuration. Obviously, Pij exhibits regular oscil-  
lations in the 6-electron energy E,  of width € ( T )  
= h/T. The minima go through Zero in this ap- 

FIG. 1. Differential emission probabilitg with re- 
spect to kinetic 6-electron energy. A coincidence with 
created 1 s ~  formation is required. The nuclear delay 
times T = 0, 3 x  10-'' S, and 10-20 s are considered. 
The dash-dotted line represents the total 6-electron 
spectrum (T = 10-20  S) stemming from lso, 2su, and 
3su ionization. 
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proximation. These oscillations became slightly 
damped if higher-order and many-electron ef- 
fects a r e  included in the calculation. To show 
that much of the effect st i l l  survives we have 
solved Eq. (1) by coupled-channels c a l c ~ l a t i o n s ~ ~  
for  the system Xe-Pb (or  ~ i ) .  This system is 
ideal both f rom the nuclear and the atomic physics 
s ides  (i t  is asymmetr ic  enough to allow for  a 
separation of the yuasimolecular 1s o and 2p,/,0 
s ta tes)  and has been widely studied experimental- 

Assuming 7 - ~ e ~ / i i  bombarding energy, grazing 
impact parameter  b = 6.4 fm, and fully occupied 
K, L, and M shells,  we find the electron spectra  
shown in Fig. 1. Without nuclear reaction time 
the spectrum is a smoothly falling function (solid 
line, T = O), while a sticking t ime T = 10-20 s pro- 
duces oscillations with a period of 400 keV and a 
maximum-to-minimum rat io  of Ca. 3.5: 1. This 
ra t io  is considerably increased (to 15: 1) if  one 
observes the lead K vacancy in coincidence. In 
th is  way, one obtains a suppression of the con- 
tributions from a l l  electrons except those origina- 
ting form the l s o  level, i.e., the most deeply 

bound electronic state that i s  a l so  most sensitive 
to nuclear details. 

The range of nuclear delay t imes that lead to 
observable effects i s  limited below by the require-  
ment that a t  least  one oscillation must be ob- 
served. 

The upper limit for T i s  given by the experi-  
mental energy resolution and the variation of the 
electronic transition energy aEi, during the nu- 
c lear  reaction. If we take E = 10 keV as the smal l -  
e s t  detectable period, we obtain a t ime range 
10-21 s < T < 4 X 10-l9 s that is access ible  to obser-  
vation. 

In the following we discuss  the effects that 
could conceivably destroy the oscillatory pattern 
as Seen in Fig. 1: (1) It i s  impossible to se lect  
a unique impact parameter  b in deep-inelastic 
collisions. The main effect of variation of b is 
a change in the phase of ai,' in  Eq. (4) and hence 
of the position of the minima in d ~ / d E .  Figure 
2(a) shows that the oscillations s t i l l  prevail, 
even if we integrate over all impact pa ramete r s  

that lead to a nuclear reaction. The 
~ ~ ~ / ? ~ ~ r a t i o  is virtually unaltered; only the 

FIG. 2. (a) Notation as in Fig. 1. Integration over all impact parameters b b g m Z i n g  that lead to a nuclear re- 
action. (b) The Same as  in Fig. 1 for t~ = 3 fm. In addition, the dash-dotted line represents the 6-electron distri- 
bution under the assumption of a relative laboratory energy loss of 10% on the outgoing path of the trajectory. 
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positions a r e  slightly shifted. (2) Energy dissipa- 
tion destroys the symmetry between the incom- 
ing and outgoing branches of the Coulomb t ra jec-  
tory. We show the effect of this modification in 
Fig. 2(b), where was assumed a relative labora- 
tory energy loss  of 10%, corresponding to 100 
MeV. We find that the spectrum a s  a whole is 
lowered, but the oscillations remain qualitatively 
unchanged. We have a lso  calculated the influence 
of these effects on the total spectrum and find the 
Same results.  (3)  Dissipation of angular momen- , 

For  increasing electron energy, the oscillations 
become more and more damped. Remembering 
that the nth oscillation occurs a t  AE i J  = 2 ; i r z / ~ ~ ,  
the number of observable oscillations i s  limited 
to n < T0/nr. The ra t io  T ~ / T ,  accordingly, l imits 
the range of detectable delay times. It a lso  indi- 
cates that the reaction t ime must be fixed in the 
experiment a s  well a s  possible. If we take f(s) 
= ( l / r )  exp(-T/T), the shape of the spectrum i s  
slightly altered but a l l  oscillations vanish, be- 
cause T = 0 is the most probable delay time. 

We conclude that we have demonstrated the exis- 
tence of a precise  clock which may se rve  to meas-  
u r e  absolute t imes involved in deeply inelastic en- 
counters and other processes.  

This work was supported in par t  by the Bundes- 
ministerium für Forschung und Technologie. 
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