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Abstract

Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for
ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on
acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived
food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and
behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas
one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of
the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack
of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host
sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which
parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive
behavior of non-sibling P. gracilis workers — regardless of the route to achieve this social structure — enables this species
to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus
monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight
the necessity for using several methods in combination to fully understand how differing life history strategies affect social
organization in ants.
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Introduction

Ant-plant protection mutualisms are excellent models to study

ecology and evolution of mutualisms [1] as they often involve

several partners on both sides of the interaction [2]. Even

interactions among closely related species can differ in their

degree of specificity and in the net fitness outcomes for the

partners involved [3,4]. Ant-plants (myrmecophytes) provide

nesting space and/or food to defending ants [5–7]. In return,

mutualistic ants aggressively protect their hosts from herbivores,

pathogens and competing plants [8]. However, these interactions

can be exploited by non-reciprocating ant species, which take

advantage of the resources that are provided by the host plant

without rendering any protective service [9–13].

In Mexico and Central America, several ant species of the genus

Pseudomyrmex live in an obligate mutualism with acacia ant-plants.

Both partners are highly adapted to this mutualism [12,14–16].

The myrmecophytic acacias form hollow swollen thorns that serve

as nesting space for the ants. Additionally, the plants provide

nourishment in the form of extrafloral nectar as a food source for

ant workers, and protein and lipid rich food (Beltian) bodies as

nutrition for developing larvae. The mutualistic plant-ants are

never found nesting apart from their hosts. They constantly patrol

the plant surfaces and are extremely aggressive towards the plants’

enemies. Equipped with a painful sting, the ants represent an

effective indirect plant defense against a broad range of attackers

[7,8]. Myrmecophytes can be exploited by parasitic non-defending

ant species that make use of plant-derived food resources and

occupy nesting space but do not protect the plant. Acacias

inhabited by such parasites suffer from severe herbivory resulting

in loss of leaf area, dead shoot tips and retarded growth [12]. The

parasitic species Pseudomyrmex gracilis, Pseudomyrmex nigropilosus and

Camponotus planatus often occur sympatrically with mutualistic

plant-ants [11,12,17].
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Recent studies demonstrate that the ant mutualists in the

acacia-Pseudomyrmex system have reduced digestive capacities and

thus seem to depend completely on their plant hosts [14,16–19].

Parasites inhabit acacia myrmecophytes and exploit plant-derived

resources, but additionally use non-acacia food sources [16] as

shown by stable isotope analyses [12]. These species reproduce at

smaller colony sizes than the mutualists, a strategy that makes

them even less dependent on the plants [11].

The ant association of acacia myrmecophytes and their ants

inhabitants is a particularly well studied system, e.g., [19] and

references therein. Despite the intensive research on this system,

neither genetic factors nor behavior-mediating chemical factors

(such as cuticular hydrocarbons) of the ant partners have been

thoroughly analyzed. This is surprising since in-depth knowledge

of these factors is essential to understand whether mutualism or

parasitism is characterized by the evolution of specific traits (or

combinations of traits) such as the genetic colony structure and

chemically-mediated recognition of nestmates. In the present

study, we applied a comparative approach integrating genetic

microsatellite analyses, observations of behavior, and chemical

analyses of cuticular hydrocarbon profiles.

In addition to affecting genetic characteristics of colony

composition, the different strategies of mutualists and parasites

have apparent implications for ant communication and behavior.

The cues used by social insects to distinguish nestmates from

foreign individuals are low-volatile chemicals present on the cuticle

(usually hydrocarbons) [20,21]. Colony members share a common

chemical signature that is created by the admixture of individual

profiles through allogrooming (i.e., social cleaning), trophallaxis

(i.e., mouth to mouth feeding), and physical contact [22].

Individuals whose chemical signature deviates from the template

are recognized as foreign and often attacked. Aggression between

colonies is generally negatively correlated with overall hydrocar-

bon similarity, e.g., [23,24]. Besides their function in nestmate

recognition, cuticular hydrocarbon profiles are also species and

caste specific [21]. Thus, a combination of chemical analyses of

hydrocarbon profiles and behavioral experiments can provide

important information on the social association among plant-ants

that colonize a given host plant.

However, the cuticular hydrocarbon profile — and potentially

the corresponding behavior — can be shaped by endogenous,

genetic factors as well as exogenous, environmental factors e.g.,

[20,25]. We combined behavioral and chemical data with genetic

analyses of two sympatric ant species (a mutualist and parasite)

that colonized ant-acacia species. This integrative study provides a

robust approach for detecting colony boundaries while at the same

time allows for evaluating the reliability of the different methods to

investigate social organization in insect colonies. This is the first

study to integrate these three approaches in two competing species

of congeneric mutualistic and parasitic acacia-ants. Our findings

highlight the necessity for combining these methods to fully

understand how differing life history strategies shape genetic

structure and communications of parasitic and mutualistic acacia-

ants.

Materials and Methods

Ethics statement
As the ants and acacias used are wild species that are not

protected and because all experiments were conducted on private

grounds (with permission of the owners), no permits were required

to perform the field experiments.

Study Sites
Field studies were conducted in Oaxaca, South Mexico from

August to October 2007. The experiments were carried out at two

study sites about 150 km apart, one near Puerto Escondido

(Pacific coast; ,15u559N and ,097u099W) and the other one near

Matias Romero (Isthmus of Tehuantepec; ,17u069N and

,94u559W). At the Pacific coastal site, we included ant colonies

that inhabited Acacia hindsii while we used colonies residing on

Acacia chiapensis in the Isthmus of Tehuantepec. Plant and ant

species were identified following Janzen [26] and Ward [27],

respectively. Both acacia species are myrmecophytes that provide

hollow swollen thorns as nesting space and food rewards in form of

food bodies and extrafloral nectar. For each ant species, two plots

with eight trees each were investigated. In each plot, we only

included plants from one acacia species. Plots of the mutualist P.

ferrugineus were termed MUTUALIST1 (near Puerto Escondido - all A.

hindsii) and MUTUALIST2 (near Matias Romero - all A. chiapensis),

while the plots of the parasite P. gracilis were PARASITE1 and

PARASITE2 (both near Matias Romero - all A. chiapensis). The eight

individual acacias were designated a to h in each plot. We selected

the eight closest trees that were inhabited by the same ant species.

Foliage of selected trees was not in contact with neighboring

acacias. GPS data for each tree trunk were recorded (Fig. 1; Table

S1) and pairwise distances were calculated with the Coordinate

Distance Calculator (http://boulter.com/gps/distance; Jan-14-

2009). Individual ants were given consecutive numbers for all

individuals derived from the same host tree. For each tree we

sampled ten ant individuals for chemical, six for genetic and five

for behavioral analyses.

Behavioral Trials
In field studies, we tested colony boundaries at the behavioral

level within each plot using individual ants. Before transfer, all ants

collected from one acacia plant were kept together in a 250 ml

plastic cup sealed with fabric (anti-aphid net). Forty workers were

transferred from each host tree as follows: five ants were returned

to the same tree to test whether ants respond aggressively to an

experimentally transferred ant (to serve as control). Another five

individuals were placed on each of the other seven trees of the

same plot inhabited by the same ant species as the transferred

individuals. Ant workers were placed individually onto branches of

the study acacias. Behavior was either classified as ‘aggressive’

when the transferred ant was attacked (e.g., mandible opening,

chasing, pairwise reciprocal stinging, one or both opponents falling

off the tree), or as ‘neutral’ when no attack occurred.

Cuticular Compounds
Cuticular compounds were sampled from individual ants

immediately after collection in the field. Swollen thorns used for

the behavioral trials were collected and placed in ZiplocH bags.

Ants were killed by freezing at 220uC and then individually

placed inside the insert of a GC-vial and washed with 50 ml

dichloromethane for 10 minutes. To obtain cuticular profiles with

distinct mass spectra, we additionally pooled ten individuals for

each ant species in one extract using 200 ml dichloromethane.

Each extract was transferred into glass capillaries (disposable

micropipettes with ring mark; BlaubrandH intraMARK, Budde-

berg GmbH, Mannheim, Germany), and samples were transport-

ed to the laboratory for analysis. We aimed to collect cuticular

hydrocarbons from ten individuals per acacia but a few samples

were lost during transport (22 out of 360; 6.1%).

Identification of cuticular chemicals was conducted using an

Agilent 6890 N gas chromatograph coupled to an Agilent 5973

inert mass selective detector. The GC was equipped with an RH-

Host Plant Use by Coexisting Acacia-Ants
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5 ms+capillary column (30 m60.25 mm i.d.; df = 0.25 mm; J&W

Scientific). The program for separation was 70uC initial temper-

ature (1 min), 30uC?min21 to 180uC, then 5uC?min21 to 310uC.

Helium was used as the carrier gas with a constant flow rate of

1 ml min21. A split/splitless injector was used (250uC) with the

purge valve opened after 60 s. The electron impact mass spectra

were recorded with an ionization voltage of 70 eV, a source

temperature of 230uC, and an interface temperature of 315uC. We

used MSD ChemStation Software for Windows (Agilent Tech-

nologies, Palo Alto, CA, USA) for data acquisition. We identified

n-alkanes and alkenes by comparing mass spectra with data from a

commercial MS library, and methyl and dimethyl alkanes by

diagnostic ions and standard MS databases (NIST, Gaithersburg,

MD, USA), and by determining Kovats indices following Carlson

and co-workers [28]. After identification of peaks based on the

mass spectra, we quantified the compounds in each sample using a

different GC-MS system (Trace GC Ultra DSQ; Thermo

Electron, Austin, TX, USA). The program for separation (SLBTM

(5 MS, Supelco, Bellefonte, PA, USA)), 15 m60.25 mm i.d.;

df = 0.25 mm) was used as described above with Helium at a

constant flow of 1.5 ml?min21 as carrier gas. The software

Xcalibur (Thermo Electron) was used for data acquisition. For the

statistical analysis, standardized peak areas were calculated for

each individual. We transformed the data to log contrasts to

compensate for the non-independence of compositional data. The

number of variables was reduced by principal components analysis

(PCA) and the data were analyzed by discriminant analysis (DA)

using the predefined grouping according to ‘host tree’ using

Statistica 6 (statsoft) following Ugelvig and co-workers [29].

Genetic analyses
We sampled individual ant workers collected from each acacia

plant to compare the variation of the cuticular profile and of the

behavioral responses with that of neutral genetic markers. DNA

extraction and microsatellite analysis was conducted for six

workers from each acacia tree (n = 192 workers in total) as

described previously [30]. Primer sequences of twelve primer pairs

for P. ferrugineus were obtained from Kautz and co-workers [31]

and of nine primer pairs for P. gracilis from Schmid and co-workers

[32].

The number of alleles, allele frequencies, expected heterozy-

gosity, and observed heterozygosity at each microsatellite locus for

each plot were calculated using the online version of the GENEPOP

software [33]. We calculated pairwise genetic differentiation

among groups (each group comprising all workers of one

individual host) (FST) in ARLEQUIN ver 3.11 [34] to describe

genetic structure of ants in each plot. The software CONVERT [35]

was used for allelic data conversion to the appropriate software.

To estimate both the number of queens (and queen matings) in

each plot, we conducted parentage analysis and inferred sibling

groups based on maximum likelihood as implemented in COLONY

version 1.2 [36]. This approach uses group likelihood ratios based

on multi-locus genotypes to partition individuals of haplodiploid

species into full-sib and half-sib families. Without prior knowledge

of the rate of allelic dropouts or other sources of typing errors, we

assumed a realistic error rate of 0.01 for all loci [36–38]. First, we

assumed only full-sib families and allowed no half-sib relationships.

This scenario corresponds to singly mated queens (monoandry).

Second, we allowed full-sib families to be nested in half-sib families

Figure 1. Spatial distribution of the acacia plants from which ants were sampled in each plot. Figures are based on GPS data.
doi:10.1371/journal.pone.0037691.g001
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to test for multiply mated queens (polyandry). We estimated

pairwise relatedness of workers collected from one acacia tree

using the program KINSHIP 1.1.2 [39].

Correlations between geography, genetic colony
structure, surface chemistry and behavior

A Mantel test is often used to test for a significant association

between two distance matrices [40]. Here, Mantel tests were used

to test for associations between pairwise geographic, genetic,

chemical and behavioral distances within each experimental plot.

The workers collected from individual acacias represented the

groups in our statistical design. Partial Mantel correlation tests

using distance matrices from geographic (in meters), genetic (as

pairwise FST), chemical (as Mahalanobis distances received from

the discriminant analysis), and behavioral distances (as proportion

of aggressive interactions) were carried out in ARLEQUIN ver 3.11

[34] using 2000 permutations. Two-tailed P-values are reported.

Results

Behavioral Trials
The origin of the transferred ants determined the outcome of

the behavioral trials. When ants were collected from one acacia

and then placed back onto the same tree, the encounter was

neutral in all cases for both species (n = 160 tests with five

replicates per pairwise combination; Fig. 2, diagonals). In the

‘between-tree’ tests (for both species total n = 1120 tests; Fig. 2),

neutral behavior was detected in 10.7% of the pairwise

combinations among all five replicates. In 59.8% of the pairwise

combinations, behavior was aggressive in all five trials. In the

remaining 29.5% of pairwise combinations, behavior of workers

was classified as neutral in some of the five replicates per

combination whereas the other encounters were aggressive (grey

shading in Fig. 2). In both plots, the mutualist P. ferrugineus showed

lower levels of aggression towards conspecifics (59% and 72% of

all encounters in plots MUTUALIST1 and MUTUALIST2, respectively,

were aggressive; n = 320 replicates per plot) than the parasite P.

gracilis (73% and 80% of all encounters in plots PARASITE1 and

PARASITE2 of aggressive nature respectively; n = 320 replicates per

plot). Even though we did not further differentiate behaviors

within the category ‘aggressive’ in our experiments, we observed

differences in the degree of aggressiveness of each species to non-

nestmates. In plot MUTUALIST1, response time of ants was long,

sometimes reaching almost 5 minutes. In the other three plots,

response time was considerably shorter (usually ,30 sec). Aggres-

sion between P. gracilis intruder and resident individuals seemed

more pronounced than in P. ferrugineus pairs as encounters

escalated rapidly and often resulted in the death of at least one

of the ants.

Cuticular Compounds
Gas chromatographic-mass spectrometric (GC-MS) analyses of

cuticular compounds identified a total of 18 cuticular compounds

for Pseudomyrmex ferrugineus and 26 for P. gracilis (Fig. 3 and Table

S2). We did not consider peaks that had a relative abundance

,0.5% in all samples of each species. The compounds varied in

chain length between C27 and C37. Although some n-alkanes and

n-alkenes were present, the majority of the compounds were

mono- and dimethyl-alkanes.

We subjected all 18 hydrocarbons that were regularly observed

in the mutualist P. ferrugineus to a principal component analysis

(PCA). Using eigenvalues greater than one, four principal

components were extracted in plot MUTUALIST1 that together

explained 73% of the total variance. Discriminant analysis (DA)

based on these four principal components and using ‘host tree’ as a

grouping variable showed significant differences of cuticular

profiles between the mutualistic ants captured from different

acacias (Fig. 4; Wilks’ lambda: 0.112; F28,210 = 6.28; P,0.0001) in

plot MUTUALIST1. In 23 of 28 pairwise comparisons (82%)

Mahalanobis distances were significant (Table S3) and 62% of

individuals were correctly assigned to their original host tree

(n = 69; Table S4). In plot MUTUALIST2, four principal components

extracted in a PCA explained 75% of the variance. According to

DA, ants from different individual acacias showed significantly

different cuticular chemical profiles (Fig. 4; Wilks’ lambda:

0.00395; F35,263 = 20.52; P,0.0001), whereas all ants collected

from the same acacia always clustered closely (indicating highly

similar cuticular profiles). All pairwise Mahalanobis distances were

significant (Table S3), and 85% of ant individuals were correctly

assigned to their group (n = 74; Table S4).

In plot PARASITE1, 26 hydrocarbons were subjected to a PCA

and six principal components (explaining 83% of the total

variance) were extracted. A DA using ‘host tree’ as the grouping

variable revealed that the individuals sampled from each acacia

always clustered very closely and that individuals taken from the

same host plant showed cuticular profiles that were characteristic

for that individual acacia tree (Fig. 4; Wilks’ lambda: 0.000661;

F42,308 = 27.63; P,0.0001). Mahalanobis distances were signifi-

cant in 26 of 28 pairwise comparisons (93%), in which all ants

from one host tree functioned as a single group (Table S3).

Altogether, 87% of individuals were correctly assigned to their

original acacia (n = 78; Table S4). In plot PARASITE2, five principal

components extracted explained 82% of the total variance.

Individuals collected from the same tree always clustered very

closely and colonies were distinct (Fig. 4; Wilks’ lambda: 0.000972;

F35,263 = 31.59; P,0.0001). All pairwise Mahalanobis distances

were significant (Table S3). Workers were correctly assigned to

their respective colony in 82% of the cases (n = 74; Table S4).

Genetic diversity and differentiation
All microsatellite loci were polymorphic in every plot. Within

each plot, we found 2–11 alleles per locus for Pseudomyrmex

ferrugineus and 2–19 alleles per locus for P. gracilis (Tables 1 and 2).

Heterozygosity ranged from 0.07–1.00 (mean 0.67) in P. ferrugineus

(mutualist) and from 0.29–0.96 (mean 0.73) in P. gracilis (parasite).

Tests for conformity of genotype proportions to Hardy-Weinberg

expectations revealed that most loci showed significant deviation

(p,0.05, Tables 1 and 2). These deviations can be explained by

the fact that workers inhabiting the same acacia are often related

and, thus, do not represent independent samples. Pairwise genetic

differentiation (FST) results were similar in all four plots. 75% to

89% of FST values showed significant differentiation between pairs

of groups, i.e. 25 of 28 group pairs were genetically significantly

different in plots MUTUALIST1, MUTUALIST2 and PARASITE1, while

FST values of 21 of 28 group pairs were significant in plot

PARASITE2 (Table S3). Significant group pairwise FST values

averaged 0.4060.08 (mean 6 SD, n = 25, range 0.25–0.55) in plot

MUTUALIST1, 0.3360.05 (n = 25, range 0.26–0.41) in plot MUTU-

ALIST2, 0.2560.08 (n = 25, range 0.07–0.39) in plot PARASITE1 and

0.1960.10 (n = 21, range 0.06–0.35) in plot PARASITE2.

Genetic colony structure and relatedness
We grouped all sampled individuals from one plot into full-sib

(monoandry) and half-sib families using COLONY [36]. For the

mutualist P. ferrugineus, worker genotypes from all but one acacia

could be explained by a single queen that had mated once,

indicating monogyny and monoandry. The exceptions were

acacias 2c and 2e from plot MUTUALIST2 where the worker

Host Plant Use by Coexisting Acacia-Ants

PLoS ONE | www.plosone.org 4 May 2012 | Volume 7 | Issue 5 | e37691



genotypes required the assumption of two matings of one queen.

Six full-sib families were reconstructed in plot MUTUALIST1 and six

full-sib and one half sib families in plot MUTUALIST2 indicating that

in three of 16 cases a single colony inhabited two host trees. On

average, the worker offspring of one Pseudomyrmex ferrugineus queen

inhabited 1.33 acacias in plot MUTUALIST1 and 1.6 acacias in plot

MUTUALIST2.

The family structure of the parasite P. gracilis revealed 15 full-sib

family groups in plot PARASITE1. On average, one acacia housed

the worker offspring of 1.88 P. gracilis queens in plot PARASITE1.

When assuming multiple mating in this plot, seven half-sib family

groups are formed from the 15 full-sib groups. In plot PARASITE2, a

total of 21 full-sib family groups were formed. Correspondingly,

workers inhabiting one tree were offspring of an average of 2.63 P.

gracilis queens. Under the assumption of multiple matings, each

eight half-sib family groups were formed containing a total of 21

full-sib family groups. Based on analysis of twig-nesting popula-

tions of this species, single mating seems to dominate in P. gracilis

(V. Schmid, pers. comm.). Thus, we assume that queens are also

more likely to have mated once in our study. Based on our data,

we cannot draw conclusions on whether several colonies peacefully

shared one acacia or whether P. gracilis can be oligogynous. Most

importantly, our data clearly demonstrate that a single P. ferrugineus

queen produces the entire worker force on an acacia whereas

several queens do so in P. gracilis.

The overall relatedness was estimated among workers derived

from one acacia. For P. ferrugineus from the plot MUTUALIST1,

relatedness ranged from 0.4960.31 (mean 6 SD) to 0.8960.08.

Results were similar in plot MUTUALIST2 with average relatedness

ranging from 0.4460.27 to 0.7760.08 (Table 3). Observed

relatedness among workers of P. gracilis derived from individual

trees in plot PARASITE1 varied between 0.1160.18 and 0.8260.02,

while at plot PARASITE2 we found even lower values of relatedness

among workers derived from single acacias ranging from

0.0060.18 to 0.7460.12 (Table 3). On average, relatedness

among workers sampled from the same acacia was 0.71 in the

mutualist ant species, compared to 0.42 in the parasitic ant species.

Thus, mean relatedness of workers inhabiting the same acacia was

1.69 times higher in the mutualist than in the parasite.

Correlations between geographic, genetic, chemical and
behavioral distances

Partial correlation analyses showed that the genetic and

chemical distances between the colonies were significantly

associated in all four plots (Mantel test; plot MUTUALIST1:

rgen,chem = 0.585, P = 0.0015; plot MUTUALIST2: rgen,chem = 0.384,

P = 0.0070; plot PARASITE1: rgen,chem = 0.613, P,0.0001; plot

PARASITE2: rgen,chem = 0.729, P = 0.0250). The geographic and

genetic distances between the colonies from each plot were only

significantly correlated in plot MUTUALIST2. The chemical

distances between colonies were also only correlated with

geographic or behavioral distances in this plot. The behavioral

distance between workers derived from one acacia was signifi-

cantly correlated with geographic, chemical and genetic distance

in plots MUTUALIST2 and PARASITE1, but not in plots MUTUALIST1

and PARASITE2. For detailed Mantel test results see Figure S1.

Discussion

Our behavioral, chemical, and genetic data suggest that the

offspring of several queens — likely belonging to different colonies

— of the parasite Pseudomyrmex gracilis inhabit a single acacia tree.

Figure 2. Aggressiveness of ants after replacement within plots. Each plot consisted of eight trees. Five ant individuals from one tree (rows)
were individually placed on another tree (columns) and the encounter with an ant individual from the tree it was placed on was observed. Behavior
was either classified as aggressive (black background), neutral (white background) or ambiguous (grey shades with darker shades indicating a higher
proportion of aggressive encounters). Numbers of ants that reacted aggressive or neutral are indicated in the boxes (aggressive/neutral).
doi:10.1371/journal.pone.0037691.g002
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The workers are not aggressive towards each other, possibly

because they share the same cuticular hydrocarbon profile from

living on the same tree. This is in contrast to the mutualist, P.

ferrugineus, in which a single colony inhabits one or more acacia

trees and ants from different colonies are commonly aggressive

towards one another. In P. ferrugineus, the genetic distances were

concordant with behavioral and chemical distances as all

individuals inhabiting the same host plant were full (14 of 16

acacias investigated) or half (two of 16) sisters, showed no

aggression amongst each other, and shared similar hydrocarbon

profiles.

Ants of both species never showed aggressive behavior after

being placed back onto their original host tree (Fig. 2) regardless of

their genetic relatedness, indicating that there was no effect of

experimental ‘treatment’, i.e., of experimentally removing ants

and placing them on their host tree. However, overall aggression

among conspecific ants from different trees was high and intruding

non-nestmates were usually attacked and chased away or killed by

the residents in both species (Fig. 2). Pseudomyrmex gracilis workers

from different host trees reacted particularly aggressive to one

another. Our findings of highly aggressive behavior between ants

from spatially separated host trees are in line with a previous study

on the same ant species by Clement and co-workers [12].

Therefore, it can be ruled out that the lack of aggressive behavior

among ants inhabiting the same tree was caused by a low overall

aggressiveness in these species.

Discrimination of non-nestmates occurs after antennal contact

and is likely to involve olfactory and tactile perception of cuticular

hydrocarbons [20,21]. For both ant species investigated here, our

GC-MS data showed that cuticular hydrocarbon profiles of

workers inhabiting the same tree were very similar, which is in

accordance with our behavioral observations. Ants obtained from

different trees displayed characteristic chemical signatures that

were well separated from most (but not all) other groups (Fig. 4), as

some P. ferrugineus colonies expanded to colonize neighboring host

trees.

Despite many exceptions to the rule, monogyny (one queen per

colony) and monoandry (single mating per queen) are often viewed

as a ‘standard’ in ants [41]. Our genetic analyses showed

relatedness values among workers from P. ferrugineus colonies

around 0.75 and allele counts that indicated monogyny and an

effective mating frequency of 1.09 (one out of eleven queens likely

mated with two males). High relatedness among workers seems to

be common in mutualistic plant-ant systems as described for

Pseudomyrmex peperi, which is an extremely polygynous acacia

mutualist in Central America [30] as well as for the mutualistic

Petalomyrmex phylax, which inhabits Leonardoxa africana in Cameroon

[42]. Some Myrmelachista species have large polygynous colonies

that occupy monospecific patches of understory Duroia and Tococa

ant-plants forming so-called ‘‘devil’s gardens’’ [43]. In contrast to

the mutualistic plant-ants, relatedness among workers of P. gracilis

inhabiting a single acacia was often low and sibship reconstruction

indicated that the offspring of an average of 2.23 queens shared

one host tree. As monogyny and monoandry dominates in other,

twig nesting populations of this species (V. Schmid, pers. comm.),

it is likely that several unrelated colonies shared a single host tree.

Thus, our observations did not necessarily meet our expectations

in that non-aggressive behavior was displayed between genetically

distinct colonies inhabiting the same tree and sharing similar

hydrocarbon profiles.

Figure 3. Representative cuticular hydrocarbon profile of the mutualist Pseudomyrmex ferrugineus (A) and the parasite
Pseudomyrmex gracilis (B). The profile of P. gracilis consisted of 26 hydrocarbons and the profile of P. ferrugineus of 18 hydrocarbons. Peak
numbers correspond to the compounds as indicated in Table S2, ‘imp.’ denotes impurity, ‘ster.’ denotes steroid. Pooled extracts from 10 ant
individuals.
doi:10.1371/journal.pone.0037691.g003
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Figure 4. Discriminant analyses of ant hydrocarbon profiles. Hydrocarbon profiles of all individuals that were collected from the eight acacias
from each plot are plotted according to their distribution along with the first and second root extracted. Percentages on axes indicate the variance
explained by the respective root.
doi:10.1371/journal.pone.0037691.g004

Table 1. Genetic diversity measures within each study plot of
the mutualist Pseudomyrmex ferrugineus in South Mexico as
obtained from female genotypes.

MUTUALIST1 (n = 44) MUTUALIST2 (n = 47)

Locus NA HE HO NA HE HO

Psfe14 5 0.68 0.86* 11 0.88 0.96*

Psfe17 6 0.77 0.57* 10 0.87 0.85*

Psfe20 3 0.25 0.07* 5 0.70 0.47*

Psfe21 5 0.69 0.93* 3 0.46 0.62*

Psfe15 4 0.19 0.20 9 0.81 0.64*

Psfe16 6 0.76 0.73* 8 0.86 1.00*

Psfe18 3 0.19 0.21 9 0.87 1.00*

Psfe19 9 0.74 0.66* 6 0.62 0.64*

Psfe06 4 0.65 0.68* 10 0.86 0.83*

Psfe07 3 0.60 0.49* 8 0.84 1.00*

Psfe08 2 0.50 0.52 8 0.84 0.70*

Psfe13 3 0.65 0.61* 11 0.88 1.00*

Total 53 98

Mean 4.4 0.56 0.54 8.1 0.79 0.81

n denotes the total number of female individuals for each plot; NA denotes
observed number of alleles found at each locus from each plot; HE = expected
heterozygosity; HO = observed heterozygosity;
*significant deviation according to HW-Probability test (P,0.05).
doi:10.1371/journal.pone.0037691.t001

Table 2. Genetic diversity measures within each study plot of
the parasite Pseudomyrmex gracilis in South Mexico as
obtained from female genotypes.

PARASITE1 (n = 48) PARASITE 2 (n = 48)

Locus NA HE HO NA HE HO

Psgr03 8 0.80 0.62* 8 0.82 0.83*

Psgr04 12 0.89 0.94* 11 0.86 0.91

Psgr05 7 0.61 0.54* 5 0.67 0.51*

Psgr06 2 0.43 0.63* 2 0.25 0.29

Psgr07 7 0.81 0.96* 7 0.71 0.80*

Psgr09 4 0.62 0.67* 3 0.66 0.52

Psgr10 13 0.89 0.88* 19 0.91 0.92*

Psgr11 8 0.75 0.83* 9 0.74 0.68

Psgr12 9 0.82 0.85* 13 0.81 0.67*

Total 80 64

Mean 8.9 0.74 0.77 7.1 0.71 0.68

n denotes the total number of female individuals for each plot; NA denotes
observed number of alleles found at each locus from each plot; HE = expected
heterozygosity; HO = observed heterozygosity;
*significant deviation according to HW-Probability test (P,0.05).
doi:10.1371/journal.pone.0037691.t002
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The apparent contradiction between behavior and hydrocarbon

profiles, as well as between hydrocarbons and genetic data, for the

parasite P. gracilis can most likely be explained by the fact that

regardless of the genetic origin, inhabiting the same host plant can

lead to similar hydrocarbon profiles [40]. Debout and co-workers

[44] observed that workers of the plant-ant Cataulacus mckeyi, an

exploiter of African Leonardoxa africana myrmecophytes, start to rub

their antennae on leaves after being experimentally placed onto a

different tree. The authors hypothesized that the ants might use

this behavior to sequester odors to avoid being attacked by resident

ants. We suggest that for the parasite P. gracilis, inhabiting the same

host tree causes changes to their cuticular signature and

consequently their behavior, allowing non-aggressive coexistence

of conspecific ants on the same tree regardless of colony structure

and genetic differences among individuals. Most likely, this

behavior reduces fighting, increases the number of parasitic ants

that inhabit a given host and allows for more efficient defense

against monopolizing mutualists. Extremely high competition for

nesting space has been shown in this system as almost every new

thorn produced during the experimental period was occupied by

one foundress of co-occurring acacia-ants [18,30].

In Pheidole minutula, cooperative colony founding (pleometrosis)

provides a competitive advantage over Crematogaster laevis, which

compete for the same myrmecophyte Maieta guianensis [45]. This has

also been reported for other systems [46,47] and cannot be ruled out

for Pseudomyrmex gracilis. Pleometrosis is common among ants

including territorially-dominant species such as Oecophylla smaragdina

[48]. Several queens might potentially only be present in the very

early stages of colony founding as early workers might admix and

later kill all but one queen [6]. Oligogyny, the presence of few

queens in mature colonies, is another possible strategy that P. gracilis

might use to colonize acacia myrmecophytes. Callow workers often

lack distinct cuticular hydrocarbons before exhibiting a character-

istic gestalt odor, see [49] for an overview. This early ‘cuticular

chemical insignificance’ [50] might facilitate admixing of unrelated

ants and then lead to a common gestalt among these individuals.

Regardless of the mechanism, the offspring of several unrelated

P. gracilis queens shared an individual host tree, which is likely to

provide an ecological advantage when competing with mutualistic

plant-ants as these reach much larger single colony sizes on

similar-sized plants than the parasites and thus represent

particularly successful competitors of the parasites [12,18]. Our

study further demonstrates that the actual output per P. gracilis

queen is even lower than previously estimated since not all workers

inhabiting the same tree were sisters. Combining results from

Clement et al. [12] with our own findings, we calculate the median

size of P. ferrugineus colonies to be 470 workers (upper quartile 705,

lower quartile 250) compared to only 36 (upper quartile 46, lower

quartile 25) for P. gracilis. Pseudomyrmex ferrugineus is highly adapted

to its lifestyle as an obligate mutualist in terms of social

organization. These ants form large and long-lived colonies, invest

more energy in colony growth than reproduction, and can thereby

defend their host effectively over long periods of time [9,12,51].

Conclusions
Two different colonization strategies used by different acacia-

ant species, a mutualist and a parasite of the mutualism, might be

driven by interspecific competition and can be explained by the

ants’ different life histories. The mutualists establish long-term

associations with their host plants on which they depend

completely. The parasites primarily use the host for nesting space,

establish short-lived colonies, and do not completely depend on

their host plant. However, large numbers of workers are required

to monopolize myrmecophytes as the plants provide numerous

hollow swollen thorns for the resident ants and constantly grow

producing more nesting space. Consequently, various colonies

were found to share a single host in the case of the parasite, P.

gracilis, and workers inhabiting the same host displayed similar

cuticular hydrocarbon profiles. This similarity, which was partly

independent of the genetic relatedness of the ants, allowed the

non-aggressive coexistence of workers which — according to our

microsatellite data — were derived from different queens in most

cases. In contrast, the mutualist achieved its stable association with

its host by a single colony monopolizing the host, and defending it

Table 3. Relatedness (mean 6 SD; R-value) among the
workers sampled from each acacia.

Acacia R-value n

MUTUALIST1

1a 0.8960.08* 6

1b 0.8260.09* 6

1c 0.7660.08 5

1d 0.7660.07 6

1e 0.8260.07* 5

1f 0.4960.31* 5

1g 0.7360.14 5

1h 0.8360.06* 6

MUTUALIST2

2a 0.7760.08 6

2b 0.7360.11 6

2c 0.4660.25* 6

2d 0.7060.13 5

2e 0.4460.27* 6

2f 0.7460.14 6

2g 0.6860.08* 6

2h 0.7660.09 6

PARASITE1

1a 0.8260.09* 6

1b 0.6660.14* 6

1c 0.6760.15* 6

1d 0.6760.13* 6

1e 0.6560.13* 6

1f 0.3960.31* 6

1g 0.2860.23* 6

1h 0.1160.18* 6

PARASITE2

2a 0.3660.16* 6

2b 0.4060.22* 6

2c 0.6260.26* 6

2d 0.7460.12 6

2e 0.1260.20* 6

2f 0.0060.18* 6

2g 0.1460.35* 6

2h 0.1160.21* 6

MUTUALIST refers to Pseudomyrmex ferrugineus, PARASITE to P. gracilis.
‘*’indicates significant deviation from 0.75 (as among full sisters in monogynous
colonies) according to T-test. n denotes number of individuals included from
each acacia.
doi:10.1371/journal.pone.0037691.t003
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from conspecific intruders, ultimately reducing the opportunity for

other ant colonies to become established. In summary, the specific

life history strategy employed by each acacia-ant species shapes the

social organization of the resident ants and contrasting strategies

may allow the two competing species to coexist in geographic

space and evolutionary time.
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Figure S1 Partial correlations between genetic, chemi-
cal, behavioral and geographic distance. Host trees were

used as grouping variable. Correlation coefficients (rx,y) are given
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(PDF)
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individual workers to their group (using the acacia of which the
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hydrocarbon profiles.
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Schöne D, eds. Dipterocarp forest ecosystems: towards sustainable management.
Singapore. New Jersey, London, Hong Kong: World Scientific. pp 102–123.

4. Heil M, McKey D (2003) Protective ant-plant interactions as model systems in
ecological and evolutionary research. Annual Review of Ecology, Evolution, and

Systematics 34: 425–453.

5. Buckley RC (1982) Ant-plant interactions: a world review. In: Buckley RC, ed.

Ant-plant interactions in Australia. The Hague, Boston, London: W. Junk. pp
111–162.

6. Hölldobler B, Wilson EO (1990) The Ants. Berlin, Heidelberg, New York:
Springer. 732 p.

7. Heil M (2008) Indirect defence via tritrophic interactions. New Phytologist 178:
41–61.

8. Janzen DH (1966) Coevolution of mutualism between ants and acacias in
Central America. Evolution 20: 249–275.

9. Bronstein JL (2001) The exploitation of mutualisms. Ecology Letters 4: 277–287.

10. Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends in

Ecology and Evolution 21: 585–592.

11. Janzen DH (1975) Pseudomyrmex nigropilosa: a parasite of a mutualism. Science

188: 936–937.
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