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1 Department of Environmental Sciences, University of Helsinki, Helsinki, Finland, 2 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland,

3 Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, 4 Botanic Garden, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland

Abstract

Temporal variation in the detectability of a species can bias estimates of relative abundance if not handled correctly. For
example, when effort varies in space and/or time it becomes necessary to take variation in detectability into account when
data are analyzed. We demonstrate the importance of incorporating seasonality into the analysis of data with unequal
sample sizes due to lost traps at a particular density of a species. A case study of count data was simulated using a spring-
active carabid beetle. Traps were ‘lost’ randomly during high beetle activity in high abundance sites and during low beetle
activity in low abundance sites. Five different models were fitted to datasets with different levels of loss. If sample sizes were
unequal and a seasonality variable was not included in models that assumed the number of individuals was log-normally
distributed, the models severely under- or overestimated the true effect size. Results did not improve when seasonality and
number of trapping days were included in these models as offset terms, but only performed well when the response
variable was specified as following a negative binomial distribution. Finally, if seasonal variation of a species is unknown,
which is often the case, seasonality can be added as a free factor, resulting in well-performing negative binomial models.
Based on these results we recommend (a) add sampling effort (number of trapping days in our example) to the models as
an offset term, (b) if precise information is available on seasonal variation in detectability of a study object, add seasonality
to the models as an offset term; (c) if information on seasonal variation in detectability is inadequate, add seasonality as a
free factor; and (d) specify the response variable of count data as following a negative binomial or over-dispersed Poisson
distribution.
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Introduction

A major aspect of measuring biodiversity is simply estimating

the abundance of different species, whether as the actual

number in an area or measuring relative abundance, so that

different areas can be compared. Many biodiversity surveys use

the latter approach by trapping or observing individuals in an

area. These surveys and monitoring programs must incorporate

two major sources of variation when sampling biological

organisms: spatial variation and detectability [1]. This paper

deals with the latter. Simple analyses will assume that

detectability is the same, but for most organisms, detectability

varies over time due to variation in seasonal or diurnal activity

[2–8]. For example, bark-foraging birds prefer to forage in

woodland interior habitat and on large diameter trees during

the breeding season, but not during the non-breeding season

[9], small orb-weaving spiders build their webs early in the

evening while larger spiders put up their webs throughout the

night [10], and many European carabid beetles are active in

either the spring or autumn, but others are active throughout

the snow-free period [11–12]. Detectability can even vary for

plants, which may remain below the soil surface for part of

their annual cycle with most biomass in the roots, or may be

present only as small rosettes outside the flowering period.

Irrespective of the kind of abundance (true, relative, activity-

density or other indices) reflected by the data (see [13]), seasonal

variation in detectability can cause biases in the analysis of data

and the subsequent interpretation, so either the collection of data

or its analysis needs to control for it [14]. One way of avoiding this

problem is to only sample organisms when the probability of

observing individuals is constant. For example, the cover of an

early spring flower can be measured only in early spring. Or, if the

behavior and detectability of a species is influenced by the

weather, observations could be made only during certain weather

conditions (e.g., only collecting butterflies on sunny days). When

conducting field studies, however, it is not always possible to

control for this variation in detectability. Often sampling periods

need to be long enough to collect a sufficient number of individuals

in order to make meaningful inferences about populations. If this is

the case, variation in the probability of observing individuals has to

be controlled for at the data processing level, i.e. statistically.

Methods exist to estimate detectability in the field, e.g. distance

sampling and mark-recapture studies [13,15,16], but these are not

appropriate for many organisms, and often it is enough to estimate
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relative abundance (e.g. to compare different habitat types), as it is

not possible to carry out the extra work needed to estimate

detectability directly.

Another problem related to the collection of ecological field

data is that sample sizes may vary from one time or place to the

next. Even with the best-prepared field experiments, ecologists are

often faced with unbalanced designs. Designs may be unavoidably

unbalanced from the start, for example because an investigator

cannot make simultaneous observations at multiple localities and is

consequently forced to sample different sites at different times.

Samples may also become lost during the observation period, e.g.

traps may be lost or broken or observers are unable to carry out all

the observations required. If the experimental design is unbal-

anced, and, equally importantly, if the study organism varies in

detectability over time (e.g., seasonal variation in activity),

sampling effort may not be comparable between treatments.

Simply stated, if samples are lost at different times during the field

period (a common feature of studies in urban environments for

example, see also [17]), pooling and standardizing the remaining

samples over the whole field period may produce gross over- and

underestimates of abundance and its variation, at least for species

that are abundant or easily detectable only during some part of the

season.

In this paper we evaluate the effects of varying detectability and

sampling effort on the statistical analyses of count data. We also

show the merits of modeling the response variable as following a

negative binomial distribution [18], compared to often-used

Gaussian equivalents. Briefly, ecological field data often consist

of counts (i.e. discrete, such as number of individuals or species in

a patch, number of offspring, or number of parasites per host),

which are typically heteroscedastic (i.e. the variance varies across

samples). Rather than transforming the data, which may not

always work [19] – as with many zeroes the residuals must be

skewed [20] and thus the assumption of normality is suspect – a

preferable strategy would be to use models developed for count

data. A Poisson distribution will be a reasonable starting

assumption, but for most ecological data (see [8]) the clumped,

or aggregated nature of the measurement variable (e.g. individuals

of a species), inflates the sample variance over what a Poisson

distribution would assume [21]. There are several approaches to

overcoming this; adding an over-dispersion term [22], using a

quasi-likelihood model [22,23], or using another distribution that

incorporates extra variation, e.g. the negative binomial distribu-

tion [18,19].

Materials and Methods

We based our simulation on the activity of Pterostichus

oblongopunctatus F., a ground beetle species (Carabidae) that

occurs in our study sites in Finland, but stress that the methods

discussed can be applied to a wide range of ecological data.

These beetles are often collected using pitfall traps, and

sampling is usually continuous from early May to the end of

September. P. oblongopunctatus is a spring-active beetle, so its

abundance and resultant detectability decreases during the

trapping period. Previously collected field data [24–29] show

that approximately 25% of the individuals of P. oblongopunctatus

are collected during the first 20 days of sampling (trapping of

beetles usually starts in the first or second week of May),

followed by 49%, 13%, 9% and 4% during the subsequent 20-

day periods over a 100-day continuous sampling period: we

interpret this variation in proportions caught as variation in

activity.

We fitted a model to field data from catches of P. oblongopunctatus

[26]: time period, replicate plot and trap were used as random

effects, with the response assumed to be quasi-Poisson with a log

link function. This is equivalent to assuming that the random

effects were log-normally distributed. The estimated standard

deviations were 0.14 and 0.30 for site and trap respectively, and

the mean catch was set to the average mean over the whole season

(see first row in Table 1).

From this set of parameters, we created several sets of simulated

data. For each we simulated three treatments, each measured in

five replicate plots, each with four pitfall traps. The second and

third treatments had means two and four times that of the first

treatment respectively (see last row in Table 2). The cumulative

expected catch over the sampling period was divided between five

time intervals as specified by the percentages above (i.e. 25, 49, 13,

9, 4) (columns in Table 2). The expected catch was then equally

split between the five replicates and four traps per replicate. The

300 simulated data points (5 Time intervals 63 Treatments 65

Replicates 64 Traps) were generated from a Poisson log-normal

distribution. By varying the parameters (mean estimated catch, site

variance, trap variance), seven conditions were created for

evaluation, with the mean catch being that set for the first

treatment (Table 1). The ‘Field Data’ condition parameters were

chosen to represent the baseline, i.e. representing the catches

found in the field, and then to explore the effects of variation from

this in the mean catch (‘Low Mean’ and ‘High Mean’), and in

different combinations of replicate site and trap variances (‘Low

Site, Low Trap Variances’, etc.) (Table 1). For each of the seven

Table 1. Parameters used in data simulations.

Name Mean* Site Variance Trap Variance Results

Field Data 1.47 0.142 0.302 Figs. 1, 2

Low Mean 1.47/5 0.142 0.302 Fig. 3 & Supporting Information S2

High Mean 561.47 0.142 0.302 Fig. 3 & Supporting Information S2

Low Site, Low Trap Variances 1.47 0.142/5 0.302/5 Fig. 3 & Supporting Information S2

Low Site, High Trap Variances 1.47 0.142/5 560.302 Fig. 3 & Supporting Information S2

High Site, Low Trap Variances 1.47 560.142 0.302/5 Fig. 3 & Supporting Information S2

High Site, High Trap Variances 1.47 560.142 560.302 Fig. 3 & Supporting Information S2

‘Field Data’ parameters of P. oblongopunctatus are from [26]. By varying the mean estimated catch and variance at the treatment site and trap levels, six additional
conditions were created for evaluation. The last column lists the locations of the results.
*means of Treatment 1.
doi:10.1371/journal.pone.0040923.t001

Analysing Unbalanced Data in Seasonal Organisms
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sets of parameters (line entries in Table 1), we simulated 100

datasets.

To create an unbalanced design, these 100 datasets per

condition were manipulated to mimic trap loss at a particular

activity period of the beetles. We simulated trap loss for two

Table 2. Created carabid beetle abundance datasets.

Treatment level 1 Treatment level 2 Treatment level 3

Time Interval 1 7.4 14.7 29.4

Time Interval 2 14.4 28.8 57.6

Time Interval 3 3.8 7.6 15.3

Time Interval 4 2.6 5.3 10.6

Time Interval 5 1.2 2.4 4.7

Total number of individuals 29.4 (average catch: 1.47
individuals/trap)

58.8 (average catch: 2.94
individuals/trap)

117.6 (average catch: 5.88
individuals/trap)

Values present the average total catch per treatment per time interval. The datasets were created using seasonal data collected on P. oblongopunctatus (see text). Each
treatment consisted of five replicates, with four traps per replicate (60 traps in total). The traps were visited five times (20 days intervals), resulting in 300 trapping
events in the dataset. The whole procedure was repeated 100 times to create 100 carabid abundance datasets. Treatment levels 2 and 3, Time Intervals 1 and 2 (‘‘High
catch loss’’) and Treatment levels 1 and 2, Time Intervals 4 and 5 (‘‘Low catch loss’’) represent the cells from where traps were randomly lost (see text).
doi:10.1371/journal.pone.0040923.t002

Figure 1. Predicted catch after trap losses at high activity in high-abundance treatments. Box and whisker plots of the effect sizes
(predicted catch) of the analyses performed with five models for original parameters estimated from data on Pterostichus oblongopunctatus
abundances, and trap loss at high activity in treatments 2 and 3. The black horizontal lines represent the simulated (i.e. true) total abundances per
treatment (3 treatments) without trap loss. The x-axis represents the three Treatment levels with five states of trap loss per treatment (from no loss to
20% loss across the whole design). Since no trap losses occurred at the low-abundance treatment (treatment 1), losses were zero for the first five box
and whisker plots. The last panel represents the mean bias of the models against trap loss (see Fig. 3).
doi:10.1371/journal.pone.0040923.g001

Analysing Unbalanced Data in Seasonal Organisms
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opposing cases: during high beetle activity in high abundance sites

(‘‘High catch loss’’), and during low beetle activity in low

abundance sites (‘‘Low catch loss’’) (Table 2). We expected the

traditional standardization techniques (see below) to underestimate

the number of individuals, as compared to datasets with no losses,

in the first case and overestimate in the second, both examples

leading to underestimates in the effect size. While other trap loss

scenarios could have been used as examples to highlight problems

associated with unequal sample sizes, the ones chosen represent

two clear cases of situations described in the upper right and lower

left panel in Table 2.

We used four levels of loss, randomly ‘losing’ 18.75%, 37.5%,

56.25% or 75% of the traps during the first and second time

intervals in Treatments 2 and 3 for the high catch case, and the

same percentages during the fourth and fifth time intervals in

Treatments 1 and 2 (Table 2). This equates to 15, 30, 45 and 60 of

the 80 data points lost from these four cells (2 Intervals 62

Treatments), resulting in five situations for comparison; full

datasets (no losses), and datasets 5% Loss, 10% Loss, 15% Loss

and 20% Loss. These percentages refer to the % number of traps

lost in the whole design.

The following five analyses were performed on these datasets;

1. Traditional standardization, Normal model. This procedure is

common in the carabid beetle literature [26,30], see also [31]. The

catch is usually standardized to 100 trapping days, and analyzed at

the replicate level (i.e. summed over the four traps and the five

time intervals). In our worked example, each replicate was

expected to be actively collecting beetles for 400 trap days over

the season (4 traps 620 days per time interval 65 time intervals).

The total catch of a replicate was standardized to 100 days by

dividing the catch by the number of trap days (400 if no traps were

lost) and multiplying by 100. In the event of losing a trap from a

replicate, the total catch of the replicate was corrected (i.e. stan-

dardized) by dividing by the number of trap days of the traps that

were recovered (i.e. not lost) and multiplying by 100. As is evident

from this procedure, seasonal activity is not taken into account.

This standardization procedure resulted in five values (repli-

cates) per Treatment. The data were log transformed to normalize

the errors and the model was simply (see [32] for notation):

ln(Abundance+1) , Treatment. The response variable was

defined as following a normal (Gaussian) error distribution and

the Treatment factor had three levels. Predictions were calculated

as log(em-1), where m is the log(expected abundance +1) from the

model.

2. Known seasonality, Normal model. If seasonal activity throughout

the trapping period is known (from a priori knowledge, see above),

the seasonal activity of the time interval and the number of traps

operational during each time interval can be included into the

Figure 2. Predicted catch after trap losses at low activity in low-abundance treatments. Box and whisker plots of the effect sizes
(predicted catch) of the analyses performed with five models for original parameters estimated from data on Pterostichus oblongopunctatus
abundances, and trap loss at low activity in treatments 1 and 2. Since no trap losses occurred at the high-abundance treatment (treatment 3), losses
were zero for the last five box and whisker plots. See Figs. 1 and 3 for more details.
doi:10.1371/journal.pone.0040923.g002
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model as offset terms. An offset is a term to be added to a linear

predictor, such as in a generalized linear model, with a known

coefficient ‘19 rather than an estimated coefficient. Here again, the

data were log transformed to approach approximate normality,

and because of this transformation, we log transformed the offsets

to gain a relationship where, statistically, the doubling of an offset

variable value resulted in the doubling in the predicted catch

(calculated from the model). The model in R was: ln(Abundance

+1) , Treatment + offset(ln(percent per Time interval)) +
offset(ln(no. traps)). The response variable was defined as following

a normal (Gaussian) error distribution and the Treatment factor

had three levels. The percent per Time interval was the expected

catch percentages from a priori knowledge of the activity of

P. oblongopunctatus (25%, 49%, 13%, 9% and 4%) and no. traps was

4 if none of the four traps per replicate per time interval was lost, 3

if one of the traps was lost, etc.

3. Unknown seasonality, Normal model. For many species the activity

throughout the observation period is not known. When this is the

case, the seasonality term in the models can be added as a factor –

in our example with five levels (5 time intervals). The model in R

was: ln(Abundance +1) , Treatment + Time interval + off-

set(ln(no. traps)). The response variable was modeled following a

normal distribution and the Treatment factor had three levels.

Time interval was a fixed effect factor with five levels (resulting

from five visits to empty the traps), and no. traps was as above.

4. Known seasonality, Negative Binomial model. This procedure was

the same as number two above, except that the response variable,

Abundance, was modeled following a negative binomial distribu-

tion. Note that this is not the same model as was used to generate

the data, as the data were simulated from a Poisson log-normal

distribution, although there may be little difference between the

estimates [19].

5. Unknown seasonality, Negative Binomial model. This procedure was

the same as number three above, except that the response variable,

Abundance, was modeled following a negative binomial distribu-

tion.

Model results were compared to the simulated values by

calculating the mean bias of the treatment means, on the log scale.

These were averaged over the simulations and summed over the

three treatments. Ideally the bias should be close to zero: this

means that the method will, on average, return the true value,

whereas a positive bias would suggest that the method overesti-

mates the effect, and a negative bias suggests underestimation.

All simulations and analyses were carried out in the R statistical

program, version 2.9.1 [33], using the MASS [34] and lme4 [35]

packages (see Supporting Information S1).

Results

Our main results are as expected; 1) unequal sample sizes lead

to over- or underestimates in the effect size if seasonality is not

taken into account in data that have a seasonal pattern, and 2)

negative binomial models return more accurate estimates of effect

sizes than normal models (Figs. 1, 2) (see also [19]).

Estimates of the means for the simulations based on the field

data with losses during high activity periods are plotted in Fig. 1,

and with losses during low activity periods in Fig. 2. Trap losses

affected all normal models, with biases in both directions and

changes in the bias as sample sizes became more unbalanced. The

traditional standardization method underestimated the catch when

trap losses occurred during high activity periods, and overesti-

mated the catch when trap losses occurred during low activity

periods (Figs. 1, 2). In contrast, the negative binomial methods

consistently give the same estimate when samples are lost with only

a decrease in precision, and have the lowest bias. Generally, there

was little effect of unequal sample sizes on variation in the negative

binomial model estimates, a pattern that is repeated with the

simulations from the other six sets of parameters (see Table 1 and

Supporting Information S2). It is thus enough in what follows to

examine the mean bias.

Figure 3. Mean bias of the models. Plots of mean bias of the
models against trap loss for models with different mean abundances
and variances in abundance (see rows 2–7 in Table 1).
doi:10.1371/journal.pone.0040923.g003
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The effects of changing the mean estimated catch and variation

between sites and traps (see Table 1 for details) are shown in Fig. 3.

At low estimated mean catch, the bias is positive and negative for

the normal models, while close to zero for the negative binomial

models. Bias is low for all models when the mean estimated catch

is high. Qualitatively, the effects of changing trap loss were similar

for all combinations of site and trap variances used, with the

traditional standardization techniques often being highly suscep-

tible to unequal sample sizes. Generally, the negative binomial

models have a small negative bias.

Discussion

The statistical evaluation of data forms an integral part of most

quantitative research. Quite alarmingly, however, it seems that a

substantial proportion of statistical tests reported in the literature

are incorrectly applied [36]. We showed that a standardization

technique used frequently in the carabid beetle literature [30,37],

as well as in studies on other organisms [31], may seriously bias the

estimates of the true treatment effect. Both underestimates and

overestimates are possible.

The effects of unequal sample sizes are clear: for example

sample losses during high activity in high abundance treatments

underestimates the effect size when using the traditional method

and the same holds true for losses during low activity in low

abundance treatments, as predicted. Logically, overestimates of

the effect size can be expected with data losses in low abundance

treatments during high detectability periods as well as high

abundance treatments during low detectability periods.

We also observed a bias in the negative binomial estimates,

particularly when site variation was high. However, this was

generally smaller than for the normal models, and not affected by

unequal sample size. It is worth noting that the data were simulated

using a log-normal distribution, so the fitted model was actually

incorrect. Models assuming a quasi-Poisson distribution gave a very

similar bias to the negative binomial models (data not shown), but

this is not always the case. The key issue here is the relationship

between the mean and variance of the distribution, which can be

examined as a part of model checking [23]: there will certainly be

times when the log-normal provides a better fit to the data.

With an unbalanced design in space and time, the main findings

and recommendations of this paper are as follows. If the

observation period includes time intervals with different detect-

ability of the focal research object, we recommend that data

collected at each time interval should not be merged (see e.g.,

[38]). When analyzing the data, the researcher has two options: (a)

if reliable prior information is available on how detectability of the

research object varies (e.g. seasonal activity of the species), the

expected percentage of occurrences (e.g. % catch) for each time

interval, and the length of the sampling interval (e.g. the number

of days a trap was operational during each interval) should be

added to the model as offset terms; or (b) if no reliable information

is available on the variation in detectability, the time intervals

should be added to the model as a factor, and the observational

effort during each time interval as an offset term.

If sampling is done simultaneously at different sites and

sampling effort is the same (e.g., the design is balanced and no

samples are lost) throughout the observation period, seasonal

variation is not important when data are analyzed. However, this

scenario is quite uncommon. Traps cannot be placed at all sites at

exactly the same time, survey sampling cannot be performed

simultaneously, and data are lost through unforeseen events.

Consequently, an unbiased method is needed to standardize across

the data. Here we show that detectability (in our example

seasonality), included either as a percentage variable or as a free

factor in negative binomial statistical models, considerably

improved the accuracy of the results, even with a loss of up to

20% of the data points.

In the example used here, the often-used traditional standard-

ization procedure seriously mis-estimated the effect even without

trap loss, and could seriously underestimate the effect size with

trap loss. For example, at 20% loss the estimated mean number of

beetle individuals collected at Treatment 2 was only 20% higher

than that of Treatment 1 (it should have been 100% higher), and

for Treatment 3 it was only 60% higher than Treatment 1 (it

should have been 400% higher) (Fig. 1).

The distribution of many, if not most biological count data (for

example number of individuals) is typically lumpy, with more

variation than if everything was random. There are several

approaches to incorporating this into models, here we used the

negative binomial distribution [18,39,40], but other approaches

are also possible [23]. We recommend that one of these methods

be used to model the variation in response variable when the

researcher suspects aggregation of the count variable at the scale

of the study [21]. Which method is most appropriate will depend

on the form of heteroscedasticity in the data, i.e. how the variance

in the residuals changes with the mean.

Often during statistical analyses, scientists either ignore the

assumptions of the data (e.g. normality, independent observations

and homoscedasticity), transform the data without checking

whether the transformation adequately corrected the problem,

or use non-parametric tests without realizing that these tests also

have various assumptions [18,41]. The ANOVA procedure is

quite robust, even when assumptions of normality and homoge-

neity of variance are violated considerably, but it seems logically

better to use a statistical model that is appropriate for the data

being analyzed, such as the negative binomial model for clumped

counts data [18].

Most commercial statistical packages include options to define

the error distribution as Gaussian, Poisson or negative binomial, as

well as others. Little mathematical knowledge is required to run

these analyses [32], the ecologist needs to have a basic knowledge

of statistics, and the assumptions and workings of various

distributions. These details are discussed in many statistical

textbooks [42,43], but are often not implemented. The challenge

is to identify, and to correct, flaws in field methods (such as

seasonal activity and its effects on population estimates if sampling

designs are unbalanced), and to interpret statistical results in a

biologically meaningful way.

Supporting Information

Supporting Information S1 R code used in this study.

(PDF)

Supporting Information S2 Box and whisker plots of the
effect sizes (predicted catch) of the analyses performed
on the manipulated data (low and high means, low and
high treatment site and trap variance, see Table 1). The

black horizontal lines represent the simulated (i.e. true) total

abundances per treatment without trap loss. The x-axis represents

the three Treatment levels with five conditions per treatment (from

no loss to 20% loss). Figs. S1–S6 are for trap losses at ‘‘High catch

loss’’ (see Table 2). Figs. S7–S12 are for trap losses at ‘‘Low catch

loss’’ (see Table 2). Figs. S13–S18 are for ‘‘Random trap losses’’.

The last panel in each figure represents the mean bias of the

models against trap loss (see Fig. 3 in the manuscript for

explanations).

(PDF)
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