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Quasimolecular resonance structures in the "C-"C system are studied in the framework of the coupled 
channel fomalism in the energy range E,,,, = 5-14 MeV. The influence of the coupling of the first excited 
2+ state in "C On the resonance structures is investigated by choosing various types of coupling potentials. 
The intermediate structures in the reflection and transition coeficients and cross sections can be interpreted 
with the double resonance mechanism. 

REACTIONS ''C ("C , "C), quasimolecular s t a t e s  , coupling potentials, 
coupled channel calculations for U ( B ) .  I 

In 1960 structure of nonstatistical origin in the 
'2C-12C cross  section near the Coulomb barrier 
was discovered by Bromley et a l . ,  -' who first  
introduced the concept of nuclear molecular states. 
The resonances observed were explained by 
Bromley et  ul.,' Vogt and McMar~us,~ and Davis4 
a s  states in a quasimolecular potential. Consid- 
erably later, resonances below the Coulomb 
barr ier  were observed by Patterson et  
Mazarakis and S t e p h e n ~ , ~  and Spinka and Winkler.' 
Recently, Erb et U L . , ~  looking for  the transitions 
to low-lying states of "Ne, have found resonance 
states at E,,,  = 7.71 and 9.84 MeV in the 1ZC('2, U)- 
''Ne* reaction. This Same reaction and the reac- 
tion 12~('2C,p)23Na* were measured by Basrak 
et al.,' who detected several resonances in the 
energy range E,,,, = 7-10 MeV. Both reactions 
were also investigated by Voit et ul., los" and the 
reaction '2C('2C,p)23~a* by Cosman et  ul." who 
summarized the known resonances a s  a rotational 
band of quasimolecular states in the 2 4 ~ g  system. 
Fletcher e t  al.13 and Eberhard et al.14 could identify 
resonances in the reaction 12C(12C, 'Be)160 between 
E,., = 11-20 MeV. Further recent experimental 
results on resonances a re  listed in Refs. 2, 15-17, 
and 37. 

Davis4 was one of the first  to suggest that the 
intermediate structure in the 12C-'2C elastic ex- 
citation function may be due to resonances in a 
quasimolecular nucleus-nucleus potential. He as- 
sumed that the quasimolecular states can be ex- 
cited directly. An indirect excitation of the poten- 
tial states via the inelastic excitation of the first 

excited "C state at 4.43 MeV was proposed by 
Imanishi" to explain the resonance states near the 
Coulomb barrier.  In Ref. 19, Scheid, Greiner, 
and Lemmer have introduced the double resonance 
mechanism in order to interpret the intermediate 
s t p c t u r e  of the excitation function above the 
Coulomb barrier a s  caused by the inelastic excita- 
tion of quasibound states in the molecular potential 
well. In the double resonance model the elastic 
and inelastic partial waves of the relative nucleus - 
nucleus motion resonate simultaneously with their 
corresponding virtual and quasibound molecular 
potential states. In that process a sufficiently 
large transition strength is generated to create 
intermediate structure in the excitation function. 
This structure, with widths of 0.1-0.5 MeV, i s  
superimposed over the gross structure (widths of 
2 MeV) which is due to the direct excitation of 
virtual potential states. 

In Ref. 20 Park, Scheid, and Greiner have found 
a molecular-type adiabatic potential for the ''C- 
"C system. The quasibound states of this potential 
reproduce some of the prominent resonances ob- 
served in the total reaction cross  section and y- 

ray yield of the "C-"C reaction at sub-Coulomb 
barrier energies. Similar interpretations of the 
resonance structures in the '2C-'60 system were 
made earlier  by Nagorcka and ~ewton."  In this 
paper we apply the potential of Ref. 20, which was 
adapted to the sub-Coulomb 12C-'2C resonances, 
for  the explanation of the resonances above the 
Coulomb barr ier  up to E„ = 14 MeV. As shown 
by Fink, Scheid, and GreinerZ2 the coupling of the 
f i rs t  excited 2' state in ''C leads to intermediate 
structure above the Coulomb barr ier  in the cross  
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sections. Therefore, in this paper we also couple 
the f irst  excited 2' state to the elastic channel 
and obtain intermediate structure in the cross  sec- 
tions at energies at which the conditions for  the 
double resonance effect a r e  fulfilled. 

Similar calculations were done by Kondo, Mat- 
suse,  and Abe2%ho solved the coupled equations 
by a variational method, assuming the inelastic 
channels a s  closed channels, so  that their calcula- 
ted results (especially widths) a r e  not certain at  
higher energies. Coupled channel calculations for 
E,,„, 2 20 MeV have recently been carried out by 
T a n i m ~ r a , ' ~  who s t resses  the importance of the 
mutual excitation of the ''C nuclei at these energies. 

The aim of this paper i s  to study systematically 
the effects of the coupling on the reflection and 
transition coefficients. In Secs. I1 and I11 we dis-  
cuss the model applied for  the '"-"C scattering 
and various possible methods for deriving coupling 
potentials. The analysis of the reflection and 
transition coefficients and their interpretation in 
tne framework of the double resonance mechanism 

coordinates for  the intrinsic degrees of freedom 
of the individual nuclei), and of the intrinsic 
Hamiltonians H, of the separated nuclei. The in- 
teraction between the nuclei can be divided up into 
the average optical potential U(Y), depending on 
the internuclear distance only, and into multipole 
potentials which couple the intrinsic degrees of 
freedom with the relative motion: 

The scattering problem H$=E+ is solved with 
channel wave functions expressed in the eigen- 
states of the separated nuclei: 

with the eigensolutions X„ of H,(L): 

is given in Sec. IV. Finally, insec. Vwe compare H,(i)xrv(i) = E ~ X I , ~  Ci) . (3b) 
and analy ze the obtained results with the experi- 

Here, we have characterized the levels of the mentally observed c ross  sections and resonances. 
s e ~ a r a t e d  nuclei simpiv by their spin since we 

11. COUPLED EQUATIONS 
- -  - 

restr ict  further consideration only to the ground 
The scattering and inelastic excitation of two state and the f i rs t  2' state in 12C. The scattering 

identical niiclei, e.g., "C nuclei, i s  described by wave functions, having total angular momentum I 
the following ~arni l tonian~ ' :  and projection il1, a r e  given by 

H = T ( ? )  + W ( ? ,  1 ,2 )  + H,(1) + H0(2). (1) 
P I . M =  C R~I1r2J(~)l~'YiQ1~I1I2~(l~2)1,P1. (4) 

The Hamiltonian consists of the kinetic energy T 1f112 J 

of the relative motion, of the interaction W be- The radial functions solve the system of coupled 
tween the two nuclei (where 1 and 2 abbreviate the differential equationsZ2: 

The asymptotic form of the relative wave function The calculation of the S matrix elements and the 
can be expressed with ingoing and outgoing Cou- formulas for  the differential c ross  sections a r e  
lomb functions J, 0 and the S matrix elements discussed in great detail in Ref. 22. 
Sixo:  

R:I1 5 ,(Y) =JK(r)öKK, -OK(r)SiKO > 

K = ( Z I ~ ~ ~ J ) .  (6) 

When only the single excitation of 12C to the f i rs t  
2' state i s  considered, we have two coupled 
channels for  1 = 0 and four coupled channels for  
I = 2 ,4 , .  . . with the channel quantum numbers: 

[ = I ,  I , = O ,  I,=O, J = O ;  

[ = I - 2 , I , I + Z ,  1 1 = 2 ,  1 ,=0,  J = 2 .  (7) 

111. POTENTIALS 

A. Optical potential 

The direct potential U(r) in Eq. (2) consists of 
a real  and imaginary part. The real  part of the 
''C + ''C potential i s  taken from Ref. 20 and was 
determined there by fitting the position and spacing 
of the observed sub-Coulomb resonances in the 
total c ross  section. In that procedure the real  
potential was varied between the limiting case of 
an adiabatic and a sudden potential. As shown in 
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L.B. 

( c ) Bands in the [luasirnolecular "C- '?C Potential 

FIG. 1. (a) Effective quasimolecular 1 2 ~ - ' 2 ~  potential from Ref. 20.  The centrifugal potentials are  added for even 
angular momenta. @) Bound, quasibound (full lines), and virtual (dashed lines) states in this potential. The positions 
of the corresponding Coulomb barriers are  shown by wavy lines. (C) The resonance states arranged in rotational bands. 
The resonance states of the quasimolecular potential without intrinsic excitation are  drawn by heavy lines. The states 
with the single and simultaneous excitation of the 2+ (4.43 MeV) state in I2c are degenerate as indicated by their angu- 
lar momenta. The states a re  listed in Table I. 
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Fig. l ( a )  the real  potential i s  an adiabatic potential 
of molecular type with a potential minimum of 
-14 MeV at r = 3 f m. The bound and quasibound 
states (solid lines) and virtual states (dashed lines) 
of the potential a r e  presented in Fig. l(b). 

The imaginary part of the optical potential U(r) 
i s  chosen the Same a s  in Ref. 20 and has Woods- 
Saxon form with surface absorption: 

W (r) = 
W,expl(r - b ) / u ]  

(1 + exp[(r - b)/u]I2 ' 

The parameters a r e  taken a s  u = 0.6 fm and b 
= 2(12)"3r0 (r, = 1.35 fm),  whereas W, is varied. 
The strength W, can be set to Zero in the inelastic 
channels to simulate an angular-momentum-depen- 
dent imaginary potential. The idea behind that 
procedure is discussed in Refs. 22 and 25. The 
gross and intermediate structures in the Cross 
sections of ''C + ''C, 12C + 160, and 160 + 160 a r e  
caused by grazing partial waves which resonate 
nearly unabsorbed with the resonances in the quasi- 
molecular nucleus-nucleus potential. These quasi- 
molecular resonance states,  with high angular mo- 
menta, lie near the yrast  line of the compound 
system and, therefore, have only a small  over- 
lap with the states of the compound nucleus. Since 
the inelastic channels a r e  mainly excited via the 
grazing partial waves, the inelastic partial waves 
feel only a small  absorption potential which can be 
set  to Zero in f irst  approximation. 

B. Coupling potentials 

The coupling potentials in Eqs. (2) depend sen- 
sitively on models for  the scattering process and 
a r e  not so well known a s  the direct potential U(r). 
Since the transition potentials a r e  functions of the 

intrinsic coordinates of the two colliding nuclei, 
we assume that the intrinsic structure of the ''C 
nuclei can be described by multipole deformation 
coordinates ak2' of their density distributions 
and shapes. For separated nuclei the nuclear 
density distributions and shapes a r e  given by 

The coordinates r i ,  S i ,  a r e  measured with respect 
to the centers of the nuclei i = l , 2 .  R is the spher- 
ical radius. 

The transition potentials depend strongly on the 
nuclear density distribution and shape of the over- 
lapping nuclei. Various methods may be used in 
order  to extrapolate the definition of the multi- , 

pole deformation coordinates into the interaction 
region. The simplest method is the folding 
procedure in which the densities of the nuclei a r e  
added up in the interaction region. In that case,  
which we denote a s  sudden approach, the asymp- 
totic definition of the multipole coordinates can 
be kept also in the interaction r e g i ~ n . ' ~  In the 
adiabatic approach the definition of the multipole 
coordinates has to be taken a s  Y-dependent a s  
pointed out in Ref. 26. 

Independent of the definition of the multipole 
coordinates in the interaction region, the transi- 
tion potential in Eq. (2) can be expanded in powers 
of the multipole deformation coordinates. Up to 
second order we find the general form for  identi- 
ca l  nuclei: 

Since the interaction potential in Eq. (1) vanishes 
asymptotically, the transition potentials I,, JLl L ,  
and KL1 L2L approach Zero for large internuclear 
separations. The matrix elements of QL in Eq. 
(5) contain the reduced matrix elements (I,lla,lll,) 
of the multipole coordinates which can be related 
to the experimental electromagnetic transition 
probabilities o r  calculated in the framework of 
nuclear model, e.g., by applying the rotator model 
for  'T in Ref. 18. In our calculations, where we 
study the excitation of the f i rs t  2+ state in "C, 
we only take the transition matrix element to the 
f i r s t  2' state into account using the following rela- 

tion with the experimental B(E2) value: 

with B[E2,2+(4.43 MeV) - g.s.]= 8.453 e2fm4 from 
Ref. 27. 

The diagonal reduced matrix element (2'11a, 112') 
measures the quadrupole moment of the f i rs t  2' 
state and is not included in the present calcula- 
tions. It would lead to additional diagonal poten- 
t ials  in the inelastic channels in the coupled equa- 
tions (5) with the effect that the undisturbed poten- 
t ial  resonances would have different positions in 
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FIG. 2. (a) Radial dependence of three different types 
of the coupling potentials. The coupling potential (1) 
(full line) i s  the derivative form of the real  potential 
V ( r )  of Fig. l (a) .  The coupling potential (2) corresponds 
to a 6 force between the two "C nuclei with strength ff 
= - 60 MeV and 2R = 7.5 and 8.5 fm (dashed lines). The 
corresponding real potential i s  shown in Fig. 2(b). The 
coupling potential (3) i s  calculated with the two-body 
potential given in Eq. (15) which i s  composed of two 
terms of Yukawa form with V i = -  1061 MeV fm,  V 2  
=400 MeVfm, p1=0.6 fm, and p2=1.2 fm, r0=1.35 fm 
(dotted-dashed lines). (b) Comparison of the rea l  poten- 
tial of Fig. 1 (a) (solid line) with potentials calculated 
with a 6 force (dashed lines) and with Yukawa potentials 
(dotted-dashed line). The parameters of the potentials 
fitted on the potential of Fig. l ( a )  a r e  ,given above. 

the various inelastic channels. 
Restricting the expansion of Q„ in Eq. (10) to 

the f i r s t  o rde r  t e r m s  in a „ ,  we have examined 
three different types of transition potentials [,(Y), 
which a r e  assumed a s  real. Then Eq. (10) is sim- 
plif ied : 

The three different types of coupling potentials 
I,@) a r e  studied in detail in Refs. 22 and 28-30. 
Here, we only state the main results: 

(1) The usual form of the transition potential i s  
obtained by expanding the potential V(Y) = ReU(r) in 
a Taylor s e r i e s  with respect to multipole deforma- 
tion coordinates. The result is independent of the 
L value of the multipole deformation: 

The potential i s  depicted in  Fig. 2(a). The value of 
R i s  about the radius of the colliding nuclei and 
chosen a s  R = 4.25 fm. Such a potential was initi- 
ally used in the treatment of a-part icle scattering 
by deformed nuclei3' and la te r  in  the coupled chan- 
nel  calculations fo r  the '2C-'2C system by Garvey, 
Smith, and ~ i e b e r t "  and by Imanishi.18 

(2) In Ref. 22 a rea l  transition potential was ob- 
tained by applying the folding procedure. It was 
assumed that a 6 force of strength V, acts  between 
two equal nuclei with homogeneous densities p, 
and with surfaces given by Eq. (9). The rea l  and 
transition potentials result a s  

with LY = vop0%n/3R3. 
Figure 2(a) shows the transition potential I, cal- 

culated according to Eq. (14b) with the radii R 
= 7.5 and 8.5 fm  and the strength a =  -60 MeV 
which was obtained by fitting the rea l  potential 
V(Y) in Fig. l ( a )  with the potential given in Eq. 
(14a) [see Fig. 2(b)]. In such a simple procedure 
we cannot describe Coulomb-nuclear interference 
effects since the potential (14a) produces only the 
nuclear part  of the nucleus-nucleus interaction. 

(3) As discussed in Refs. 22 and 30 and also by 
Krappe and ~ i x , ~ '  analytic expressions fo r  the po- 
t e n t i a l ~  can be obtained in the folding procedure 
when homogeneous density distributions a r e  folded 
with two-body potentials of Yukawa type. In Fig. 
2(b) we have fitted the rea l  potential of Fig. l ( a )  
with a potential in which two two-body potentials 
of Yukawa type were  folded in the homogeneous 
sphericai density distributions of two 'T nuclei 
with the density P,= 3/(4nr,3) (Y, = 1.35 fm). The 
two-body potential has  the form: 

Here, F, and F, a r e  measured f rom the centers  
of the 12C nuclei and F i s  the internuclear separa-  
tion. The fitted parameters result  a s  V, = -1061 
MeVfm, V,=400 MeVfm, p1=0.6  fm,  and p I  
= 1.2 fm. With this parameter  se t  we calculate 
the transition potential I,(Y) according to the ana- 
lytic method outlined in Ref. 22. The resulting 
coupling potential is shown in Fig. 2(a). 

The coupling potentials differ considerably 
f rom one another in the interior  region. Near the 
overlapping nuclear surface region the coupling 
potentials (2) and (3) have a s imi lar  radial depen- 
dence whereas the potential (1) increases much 
more steeply. 

We use  r ea l  coupling potentials since the cou- 
pling to excited states in heavy ion scattering 
happens mainly in the touching region of the two 
nuclei, especially a t  low bombarding energies, 
where only a few direct  reaction channels a r e  
usually Open. The '2C-'2C scattering i s  an example 
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in which there exist very few Open direct reac- 
tion channels. 

IV. ANALYSIS OF THE RESONANCES 

in the following we illustrate information about 
quasimolecular resonances which can be obtained 
from coupled channel calculations. It is useful to 
consider the absolute values of the S matrix ele- 
ments instead of excitation functions in which the 
effects of resonances a r e  partly averaged out. 

In the low energy region (E,,,, -C 14 MeV) with 
which the present work is primarily concerned, 
the simultaneous excitation of both target and 
projectile 12C nuclei is only possible by exciting 
deep-lying quasibound states in the relative mo- 
tion, in which case the transmission coefficients 
a r e  nearly zero. Only smaller effects in the 
elastic S matrix elements a r e  caused by the simul- 
taneous excitation for E,., G 14 MeV. Therefore, 
in the present calculations we restrict  ourselves 
to the single excitation of the first  2' state at 
4.43 MeV in either the ''C target o r  the ''C pro- 
jectile. 

As pointed out in connection with Eq. (7), four 
channels have to be coupled for each total angular 
momentum I. Therefore, the matrix Sk, 1 is of 
dimension 4 X 4. Using the abbreviation K = ( I ,  I „ 
I „  J) we introduce the Square of the S matrix ele- 
ment of the elastic channel a s  the reflection coef- 
ficient 

We denote the Squares of the transition matrix 
elements from the elastic channel to the inelastic 
channels a s  transition coefficients, defined as 

Since the inelastic Cross section for the excitation 
of the 2' state i s  proportional to resonances 
in the transition coefficients lead to resonances in 
the inelastic excitation function. 

A. Reflection coefficient without coupling 

Figure 3 presents the reflection coefficient for  
the optical potential U ( r ) ,  with the real  part  a s  
drawn in Fig. l (a)  and the imaginary part as given 
in Eq. (8) with W o =  -1.5 MeV. In the case that the 
imaginary part is set to zero, the resultant reflec- 
tion coefficient would be one. Large absorption 
happens at the position of the resonances of the 
real  potential. Around the resonance energy the 
relative wave function has a large amplitude in- 
side the potential well which considerably enhances 

FIG. 3.  The reflection coefficients I r l  z /  = jeZi6 C / .  They 
a r e  computed with the  rea l  potential of Fig. l ( a )  and the 
imagulary potential of Eq. (8) with Wo= - 1.5 MeV. The 
positions of the potential resonances  a r e  drawn above 
the minima in  the reflection coefficients. 

the absorption since the absorption i s  proportional 
to the expectation value of the imaginary potential 
with the relative wave function. Therefore, we 
fix the position of the resonances (E,,,. > 5 MeV) 
by the minima in the reflection coefficient (see 
Fig. 3). The resonance energies a r e  listed in Fig. 
l(b) and Table I and a r e  distinguished a s  bound, 
quasibound, and virtual states according to 
whether they lie under o r  above their correspond- 
ing Coulomb barriers.  

Table I and Fig. l (c)  give an overview of the 
energies and angular momenta of all  possible 
resonances which can be generated from the reso- 
nances of the real  potential when the single and 
simultaneous excitations of the first  2' state in 
"C a r e  coupled to the relative motion. The reso- 
nance energies a r e  obtained by adding the excita- 
tion energies to the resonance energies of the real 
potential. They become shifted by the coupling po- 
tential which also removes the degeneracy because 
of i t s  angular momentum dependence. 

B. Relation between the reflection and transition coefficients 

in Fig. 4 the full set  of the coefficients U, is 
drawn for the choice of the coupling potential of 
type 2 with a =  -60 MeV and 2 R  = 7.5 fm. The 
strength of the imaginary potential is set  equal to 
Wo = -1.5 MeV in all channels. In Table I1 we com- 
pare the minima in the reflection coefficient and 
the maxima in the transition coefficients with the 
unshifted resonances of Table I and Fig. l(c). The 
correspondence between the unshifted resonances 
and the maxima in the transition coefficients can 
easily be resolved because the total and orbital 
angular momentum of the maxima a re  known for 
each transition coefficient. On the contrary the 
minima in the reflection coefficient a re  specified 
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TABLE I. Position of the unshifted resonances in the "c-'~c system. The f i rs t  two columns 
give the energy and angular momenta of the resonances of the ' 2 ~ - ' 2 ~  system where the '?C 
nuclei a r e  in the ground state (g.s.) o r  one of the "C nuclei o r  both a r e  excited to the f i rs t  2' 
state a t  4.43 MeV. In the third and fourth columns we have listed the energy and state of the 
intrinsic excitation of the I2c nuclei. The last  three columns state the energy, angular mo- 
mentum, and type of the resonance in the radial motion of the nuclei (B =bound, QB -quasi- 
bound, V =virtual) .  The energies of the "C +"C resonances in column 1 a r e  obtained by add- 
ing columns 3 and 5. The angular momenta in column 2 result  by vector addition of the a n y -  
la r  momentum in column 6 and of the angular momentum of the intrinsic excitation of the "C 
nuclei. The resonance states a r e  depicted in Figs.  1b) and l ( c ) .  

Excited bound, quasibound, and 
Position of the Intrinsic excitation virtual state of the 

resonance of the "C + '?C system "C + 1 2 ~  potential 
Energy Angular Excitation Energy Angular 
(MeV) momentum energy State (MeV) momentum State 

only by the total angular momentum and, therefore, 
no unique classification of the minima can be 
reached unless the transition coefficients a r e  
analyzed. 

The results shown in Fig. 4 a r e  an illustrative 
example for the double resonance mechanism sug- 
gested in Ref. 19. The double resonance mechan- 
ism explains the enhancement of certain transition 
coefficients by the effect that for certain energies 
and total angular momenta a virtual orbital state 
in the elastic channel and a quasibound state in an 
inelastic channel a r e  simultaneously resonating. 

Quasibound states can only be excited with suffi- 
cient strength if the feeding partial wave of the 
elastic channel has an enhanced amplitude inside 
the potential well. This condition is fulfilled for 
elastic partial waves which resonate, in addition, 
with a virtual state of the molecular-type real  po- 
tential. For the appearance of the double reso- 
nance effect it is necessary that the difference in 
energy and angular momentum between the reso- 
nating virtual and quasibound orbital states can be 
matched with the excitation energy and angular 
momentum of the intrinsic nuclear states, i.e., 
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FIG. 4. The reflection coefficients ql  and the transition coefficients n2,3,4 a s  defined in Eqs. (16a) and (l6b). The 
transition coefficients q2,3 ,4  belong to the transitions from the elastic channel to the excited channels with I = I  - 2,  I, 
I+ 2,  respectively. The coupling potential used i s  of type 2 with a = - 60 MeV and 2 R  = 7.5 fm and is  depicted in Fig. 
2(a). The strength of the imaginary potential i s  set  equal to Wo=- 1.5 MeV in all  channels. 

FIG. 5 .  The elastic excitation function (da,l /dQ)/(d~mtt/dQ) at 8,-,-= 90" for "C-"C scattering. The experimental 
data a r c  represented by the crosses  and a r e  taken f rom Ref. 7 for E,., s 7.5 MeV and from Ref. 34 for E,, ,  
2 6.5 MeV. The theoretical excitation functions a r e  computed with the type 2 coupling potential with (Y=-60 MeV and 
2 ~ =  8.5 fm for various strengths Wo of the imaginary potential. The following choices a r e  made: (i) Wo=-1.5 MeV in 
the elastic and inelastic channels (solid line); (ii) Wo= W„=-1.5 MeV in the elastic and Wo= Wiml=O in the inelastic 
channels (dotted-dashed line); (iii) W,, = -0.5 and W,,1= 0 (dashed line). 
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inelostlc Cross sectlon tion coefficients a r e  produced by the eiastic par- 
tial waves resonating with the virtual states of 
group 2. A wide valley appears in the reflection 
coefficient between 8 and 11 MeV in which the in- 
elastic resonances a r e  embedded. Analyzing the 
transition coefficients we find that the states of 
group 1 a r e  most strongly excited in the inelastic 
channels between 10 and 11 MeV. As shown in 
Figs. l(b) and l (c)  the energy difference between 
two following molecular states with the Same angu- 
lar  momentum is of the order of 5-6 MeV, and, 
therefore, the ''C excitation energy of 4.43 MeV 
matches the energy difference for a double reso- 
nance event in a l l  cases where the orbital states 

I NO[ v+oe in the elastic channel have a width of about 1-2 
15 1 5 Y e V  MeV. 

--- 1 5  il M e l  The same effects a s  discussed for the states of 
----- 05 0 Meb group 2 a re  repeated in the energy range between 

E x p  d3to 
13 and 16 MeV by the orbital states of group 3 

+ Pol:e 01 01 acting a s  doorway states for inelastic excitations. 
The molecular states excited in the inelastic 
channels a r e  the states of group 2 and, in addition, 

E „ ( M ~ V )  - - the state with I= 8 at 8.89 MeV. Since the states of 
/I F 13 14 group 2 already Lie above their corresponding 

FIG. 6. The 90" differential cross section for the ex- 
citation of the first 2' state in the ' 2 ~ - ' 2 ~  scattering. 
The experimental data are  represented by the crosses 
and taken from Ref. 34. The theoretical cross sections 
are computed with the Same choices of parameters as 
used for the elastic excitation function in Fig. 5. The 
following strengths W o  of the imaginary potential a re  
chosen: (i) W,,= Wim1= - 1.5 MeV (solid line); (ii) W„ 
=- 1.5 MeV, W„,= 0 (dotted-dashed line); (iii) Wel 
=- 0 .5  MeV, W„,= 0 (dashed line). 

of the 2' (4.43 MeV) state of ''C in our calculations. 
In the investigated energy range between 5 and 

14 MeV three distinguishable groups of molecular 
states in the elastic channel lead to double reso- 
nance effects, namely the states [see Figs. l(b),  
l (c) ,  and Table I]: 

1. I =  2,0 at  5.68, 6.27 MeV; 

2. I = 6 , 4 ,  2 ,0  at 9.34, 10.18, 11.22, 12.00 MeV; 

3. I = 10,8 ,6  at 13.91, 14.70, 16.18 MeV. 

These three groups can be clearly observed in 
Figs. 3 and 4. The first group around 6 MeV 
shows effects in the reflection coefficients only 
since the relative kinetic energy in the inelastic 
channels i s  too low to permit an appreciable 
amount of the flux to tunnel through the barriers.  
Although the orbital states of group 1 a re  quasi- 
bound, their widths a re  wide enough (see Fig. 3) 
to overlap with inelastic resonance states. 

The largest effects in the reflection and transi- 

P - - L 8 -  1: '? + 

E c m  ( M e L )  

FIG. 7. Dependence of the reflection coefficients 
1 on the type of the coupling potential. The strength 
of the imaginary potential i s  chosen as W,=- 1.5 MeV 
in all channels. The coupling potentials a re  (a) tlie de- 
rivative type; @) the 6-force type with a = - 60 MeV, 
2 R  = 8.5 fm; (C) the Yukawa-potential type with Vi 
=-I061  MeVfm, p1=0.6 fm, V2=400 MeVfm, p2=1.2 
fm. The coupling potentials are  depicted in E'ig. 2(a). 
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.i L L - -  ' L P. 

4 ,  

't E e :o 12 qh 
E,,,,( MeV ) 

FIG. 8. Dependence of the reflection coefficients 
on thc strength a of the coupling potential of type 2. 
The parameters a r e  ZR= 8.5 fm and W,=- 1.5 MeV in 
all channels. With growing coupling strength the re- 
sonance minima become more prominent. 

In all the examples presented in the following the 
Same strength W, of the imaginary potential i s  
used for the elastic and inelastic channels. 

I .  Dependence on the shape of  the couplingpotential 

In Fig. 7 the reflection coefficients a re  drawn 
for the three different choices of the coupling po- 
t e n t i a l ~  discussed in Sec. I11 B and shown in Fig. 
2(a). The coupling potential of type 1 produces 
the largest coupling effects, since the strength of 
this potential is the largest of the coupling poten- 
t ials  considered, which i s  obvious from Fig. 2(a). 
The different radial shapes of the coupling poten- 
tials a r e  responsible for the resonances beingdif- 
ferently exhibited in the reflection coefficients. 
We note also that the positions of the resonances 
a r e  slightly shifted for  different coupling potentials. 

2. Dependence on the strength of the coupling potential 

Figure 8 shows the variation of the reflection 
coefficient a s  a function of the coupling strength 
a: for the coupling potential of type 2. The case of 
no coupling (a = 0) is also depicted in Fig. 3 .  Two 
effects should be remarked: With increasing 

barriers,  the peaks in the transition coefficients 
a r e  broadened more than at lower energies. 

In Figs. 5 and 6 the elastic and inelastic 90" 
cross  sections a r e  presented for  various choices 
of the strength W, of the imaginary potential in 
the elastic and inelastic channels. In Fig. 5 one 
notes three distinguishable groups of resonances 
around 6, 8-10, and 12-14 MeV. With the increas- 
ing strength of the imaginary potential the reso- 
nances get smeared out. The inelastic cross  sec- 
tion in Fig. 6 reveals the resonance structures in 
the transition coefficients around 10 and 13-14 
MeV. In Table I1 we have listed the resonances 
in the inelastic 90" cross  section obtained with 
the coupled channel calculations. 

From Figs. 5 and 6 i t  becomes obvious that the 
resonance structures of the cross  sections a re  
sensitively influenced by the strength of the imag- 
inary potential (see also Fig. 9). 

C. Dependence of the reflection coefficient on the coupling 
and imaginary potential 

In this section we discuss the dependence of 
the reflection coefficient on various parameters. 

FIG. 9. Dependence of the reflection coefficients 
lo,l on the strength of the imaginary potential Wo= Wel 
= WI,, which is  chosen the Same in all  channels. The 
coupling potential i s  of type 2 with cu = - 60 MeV and 
ZR = 8.5 fm. In the case of Wo= 0 the absorption in the 
reflection coefficient i s  solely caused by the coupling 
of the f i rs t  2' state in I2c. 
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coupling strength the resonances become more 
and more prominent and the positions of the reso- 
nances a r e  shifted. 

3. Dependence on  the strerrgrh of the iniagirrary po~ent ia l  

In Fig. 9 the strength of the imaginary potential 
i s  varied. Since the imaginary potential is sur- 
face-peaked, and the quasimolecular resonances 
a r e  localized more inside the potential well, the 
imaginary potential used does not destroy the 
resonance structure in the reflection coefficients. 
The imaginary potential i s  weakly absorbing, a s  
can be recognized by the reflection coefficients in 
Fig. 3 which do not deviate much from one in the 
energy range between 10 and 14 MeV. Volurne- 
absorbing imaginary potentials lead to reflection 
coefficients which f a l l  above 15 MeV to Zero a s  
shown in Ref. 22. The curves for the Zero imagin- 
ary potential in Fig. 9 clearly reveal the absorption 
in the elastic channel which is caused by the direct 
coupling of the inelastic continuum channels. 

V. RESULTS AND CONCLUSIONS 

Many of the resonances observed in the '2C-12C 
system can be interpreted a s  single particle shape 
resonances in an effective ' 2 ~ - 1 Z C  potential. In 
Table I1 we have listed the experimental reso- 
nances observed in various reactions: the mea- 
surement of the y yield of the '2C-'2C reaction by 
Spinka et aL7; the '2C(12C, ( Y ) ~ ' N ~ *  reaction popula- 
ting low-lying levels of ''Ne by Erb et ~ 1 . ) ~  Basrak 
et ul.,' and Voit et al."; the 12C('2C,p)23~a* reac- 
tion by Basrak et al.'; and the measurement of 
the 'Be+ 160 exit channel by Fletcher et a1.13 and 
Eberhardt el al.14 Comparing the calculated reso- 
nances in the reflection coefficient and their angu- 
lar  momenta with the experimental resonances we 
conclude that the applied quasimolecular potential 
and the coupling of the first  2' state of 12C a r e  
sufficient to give a semiquantitative explanation 
of the observed resonances. 

It should be noted that the positions of the reso- 
nances depend quite sensitively on the real  poten- 
tial and excitation energies of the "C nucleus. 
The positions are  nearly unaffected by special 
assumptions about the imaginary potential and the 
coupling potentials. Therefore, a classification 
of the observed resonances in terms of the molecu- 
l a r  resonances fixes, with some accuracy, the 
shape d the real  potential. For a quantitative 
comparison with experiment a-transfer channels 
and channels to higher excited states in ''C 
also have to be coupled into the investigated chan- 
nels. 

A systematic study of the energy dependence 
of the reflection and transition coefficients and 

their dependence on the coupling and iinaginary 
potential a re  useful in the determination of the 
character of the resonances in the calculated cross  
sections. The widths and shapes of the resonances 
in the reflection and transition coefficients a re  
not yet directly comparable with experimental 
data. But extended phase shift analyses of the 
experimental data for various reaction channels 
a s  done for the elastic '2C-'2C and '"-'W scat- 
tering by Voit and Helb33 would be a valuable tool 
for obtaining more precise data about the reso- 
nances, which may be directly used for compari- 
son with coupled channel calculations. 

In Figs. 5 and 6 we compare the calculated elas- 
tic and inelastic "C-'T cross  sections for b ,  „, 
= 90" with the experimental data of Spinka r t  ul.' 
and Pelte et ~ 1 . ~ ~  Whereas the refleclion coeffi- 
cients always reveal finer resonance structures, 
the resonance structures become partly smeared 
but with an increasing imaginary potential in the 
calculated cross  sections. Intermediate resonance 
structures in the experimental cross sections have 
two different origins: They may be caused by 
compound elastic statistical f l u c t ~ a t i o n s ~ ~  o r  by 
inelastic excitations and a-transfer reactions 
which both couple very strongly to the elastic 
channels. In the ''C-'% system most of the inter- 
mediate structure, especially the resonance struc- 
ture near the Coulomb barrier,  i s  of nonstatistical 
origin. The appearance of intermediate structure 
in the "C-"C system i s  closely linked with the 
surface transparency of the grazing partial waves. 
The surface transparency i s  caused by the fact 
that grazing partial waves have only a small over- 
lap with the compound states of the amalgamated 
24Mg ~ y s t e m . ~ ~ , ~ ~  Therefore, a more accurate 
imaginary potential depends on the total angular 
momentum of the system and lets the grazing par- 
tial waves remain unabsorbed. The unabsorbed 
partial waves generate the gross structures in 
the cross  sections and play the role of doorway 
states for the double resonance mechanism in 
which intermediate structure i s  p r ~ d u c e d . ~ "  

To obtain a more quantitative agreement be- 
tween the nleasured and calculated cross sections 
three nontrivial improvements have to be con- 
sidered: (a) The angular momentum and energy 
dependence of the imaginary potential has to be 
improved in the framework of the theories worked 
out in Refs. 22 and 25. The imaginary potential 
is the key for the understanding of the appearance 
of gross and intermediate structures. (b) The 
direct and coupling potentials have to be consis- 
tently calculated in the adiabatic approximation by 
use of the two-center shell model and the Struc- 
tinsky-renormalization p r ~ c e d u r e . ' ~  (C) 'rhe a- 
transfer channel has to be coupled to the elastic 
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channel. This last problem is numerically difficult 
to handle since the <r transfer generates nonlocal 
transition potentials caused by recoil and nonortho- 
gonality e f f e ~ t s . ~ ~  

It may be noted that our interpretation of the 
resonance structures in the cross  sections a s  
resonance states in the quasimolecular potential 
depends on whether a double resonance excitation 
i s  possible o r  not. The double resonance mechan- 
ism leads to effects which have sufficient strength 
to give r ise  to intermediate structures in the cross  

sections. The discussion of the reflection and 
transition coefficients in Sec. IV shows the impor- 
tance of the double resonance mechanism in gen- 
erating intermediate structures. 
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