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With the use of the cranking formula, the coordinate-dependent mass parameters of 
the kinetic-energy operator in fission processes and heavy-ion collisions are calculated 
in the two-center oscillator model. It is  shown that the reduced mass and also the clas- 
sical moment of inertia are obtained for large separations of the fragments. For small 
separations, however, the mass parameter for the motion of the centers of mass of the 
fragments is  larger than the reduced mass by an order of magnitude. 

The double-center shell  model developed during 
the l a s t  few y e a r ~ l - ~  has been successful in de- 
scribing fission phenomena as well as heavy-ion 
scattering. However, up to now the variation of 
the inertial  pa ramete r s  in th is  model has  not 
been studied. In fact, the discussion of fission 
in previous work has  been confined to  the map- 
ping of potential energy surfaces,  and the t reat -  
ment of heavy-ion scattering has  been carr ied 
out under the assumption of a constant reduced 
mass .  

In this paper we show that the inertial  parame-  
ters Change very rapidly, particularly when the 
two fragments o r  ions have a large overlap. 
Thus the fission l ifetimes and the c r o s s  sections 
for  heavy-ion scattering at high energies will be 
strongly affected. 

The effect of a variable m a s s  has  been studied 
by Hofmann and Dietrich4 in  a one-dimensional 

model using several  phenomenological fo rms  for  
the mass  variation. Similarly Updegraff and On- 
ley5 have included this effect in  a three-dimen- 
sional case  in  thei r  description of photofission in  
the dynamic collective model. 

Griffin6 has  s t ressed  the importance of the Lan- 
dau-Zener7 effect of level crossing on the m a s s  
pa ramete r s  and estimated that the m a s s e s  should 
be higher than the reduced m a s s  by at leas t  a n  
order  of magnitude. A s imi la r  conclusion has  
been reached by Sobiczewski et a1.' in  the case  
of ß vibrations and in recent  unpublished w01-k.~ 
The advantage of the double-center shell  model 
used in  the present  calculations is its ability to 
descr ibe  the complete fission p rocess  to the 
stage of two separated fragments and, further- 
more, its applicability t o  heavy-ion scattering. 
In this no'te we res t r i c t  ourselves to  the symme- 
t r i c  double-center oscil lator which is described 
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by two variables: the coordinate R,  which is 
half the separation of the centers of the two po- 
t e n t i a l ~ ,  and ß, which describes the deformation 
of the two fragments.lS3 As illustrated in Fig. 1, 
ß is given by the ratio of the two principal axes 
of the equipotential surface. Thus j3 l e ss  than, 
equal to, o r  greater  than 1 refers  to an oblate, 
spherical, o r  prolate shape, respectively. In 
our calculation we used the Same potential and 
parameters  a s  given by Scharnweber, Greiner, 
and M ~ s e l . ~  We allow for the rotation of the sys- 
tem by including two angles 0 and cp, describing 
the orientation of the axis of symmetry. To sec- 
ond order  in velocities, the classical kinetic en- 
ergy will then have the form 

T =$B„$ + B ~ ~ E Z ~  + $ B ~  b2 
+$I($ + sin2ecj2), (1) 

where the inertial parameters  a r e  functions of 
the coordinates R and j3. We calculate the iner- 
tial parameters  with the cranking modellolll 
which gives, for two collective coordinates x and 
y ,  the mass  

and similarly for the moment of inertia, I. Here 
10) denotes the BCS ground state, Iij) is a two- 
quasiparticle state, and E i  and E, a r e  the quasi- 
particle energies. 

The two collective coordinates R and ß, al- 
though they describe somewhat restricted shapes, 
should give the main features of fission. The ini- 
t ial  stage of fission is expected to be mainly a ß 
deformation, while the coordinate R allows one 
to describe the fission process  even up to the fi- 
nal stage of separation of the two fragments. At 

FIG. 1. Shape of the potential in the two-center shell 
model. 

large deformations these two coordinates clearly 
describe different shapes. However, even a t  
small  deformations these coordinates a r e  never 
equivalent in that the shape given by smal l  values 
of R contains all  even multipoles (i.e., to f i r s t  
order  in R all  even multipole moments a r e  pres-  
ent), while in the limit of small  ß only the quad- 
rupole moment is nonzero. We note that a re -  
moval of our restriction to cylindrically symme- 
t r ic  shapes will modify Eq. (1) by introducing 
three different moments of inertia. In high-ener- 
gy heavy-ion scattering the restriction to quad- 
ratic t e rms  in the velocity may not be very good, 
and fourth- and higher-order t e r m s  need to be 
studied. They correspond to a velocity depen- 
dence of the variable mass .  

Figure 2 shows the calculated mass  parame- 
t e r s  plotted against R for oblate and prolate 
shapes for 2iiU. AS expected, the mass  B„ ap- 
proaches the reduced mass  for large separation 
[two curves in Fig. 2(a)]. One can in fact easily 
show analytically that the double-center oscilla- 
tor  used here  produces asymptotlcally the cor- 
rect  reduced mass.  Below the scission point, 
however, the effective mass  becomes consider- 
ably larger  than the reduced mass  and shows 
strong fluctuations due to the variation of the 
ground-state pairing structure, i.e., the varia- 
tion of the BCS occupation probabilities V < .  This 
was f i r s t  pointed out by Belyaev.l0 Beyond the 
scission point, however, the occupation probabil- 
i t ies  become constant, and the mass  is solely de- 
termined by the variation of the single-particle 
wave functions with deformation. The latter con- 
tribution gives r i se  to a smooth background and 
approaches the reduced mass.  

The mass  parameter BRR is the mass  in t e r m s  
of the coordinates R and ß of the double-center 
shell model, and should be used in connection 
with the potential-energy surfaces V(R, ß) calcu- 
lated in that model. It should be kept in mind, 
however, that the coordinate R &es noZ coincide 
with the distance p between the centers of mass  
of the two fragments. In fact, this distance in- 
c reases  much slower than R below the scission 
point and only asymptotically do the two distances 
coincide. In general 

B ~ ~ = B R R ( ~ R / ~ P ) ~ ,  (3)  

where 

P = A  i ( i  11 z 11 i)Vi2, 

with the BCS occupation probabilities Vi2. The 
resulting mass  B„ i s  considerably l a rger  than 
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FIG. 2. Mass parameters  in  units of nucleon mass  
M a s  functions of the separation R of the fragments for  

= 0.6 (dashed line) and ß = 1.2 (solid line). The verti- 
cal lines give the scission points R„ for the two val- 
ues of ß; R„ =1.2 ( ~ / 2 ) ' / ~ ß ' / ~ .  The masses Bpp shown 
in (b) a r e  related to  B, by Eq. (3). (Note that all  
masses a r e  finite a t  the origin.) 

B„ as  may be Seen in Fig. 2(b). This demon- 
s trates  the striking coordinate dependence of the 
mass parameters and shows that great care must 
be taken in comparing masses calculated in dif- 
ferent coordinates (models). B„ is in good agree- 
ment with the experimental value given by Bjarn- 
h01m.~ 

The mass parameters BB8 a re  given in Fig. 2(c). 
They show fluctuations about a value higher than 
the irrotational value by a factor of about 5-10. 
For large R the mass BBB reaches a constant val- 
ue, twice the mass parameter for ß vibrations in 
the individual fragments, because the two-center 
model describes simultaneous ß vibrations in 
both fragments. Tlie interference term BBR 

R,X i fml 
FIG. 3. Illustration of the coordinate transformation 

Eq. (5) on the moment of inertia,  I ,  and the potential 
V ,  a s  a function of the separation R and the stretched 
coordinate X along the path ß = 0.6. V' is defined in 
Eq. (6a). 

shown in Fig; 2(d) approaches Zero past the scis- 
sion point, where the motion in R and 0 becomes 
decoupled. Finally, the moment of inertia, I, 
given in Fig. 3(a) may be written a s  the sum of 
two terms, one describing the rotation of the two 
potential centers and the other describing the ro- 
tation of the two fragments about their centers. 
For smal.1 values of R,  the moment of inertia ap- 
proaches that of the latter term. For large sep- 
arations the f i rs t  term dominates and approaches 
the value MAR2 [Fig. 3(a)] with M the mass  of a 
nucleon and A the mass-number insert.  

For applications to fission o r  heavy-ion colli- 
sion, the four-dimensional problem of Eq. (1) 
may be reduced to three dimensions by choosing 
one particular fission (reaction) path ß =ß(R). 
Using the prescription of Pauli and Podolsky" 20 
quantize Eq. (I),  we obtain the Schrödinger equa- 
tion 

where B = BRR + ( d ß / d R ) ~ , ~ + ( d ' ß / d ~ ~ ) ~ ~ ~ .  This 
expression may be simplified by techniques which 
a r e  a combination of the methods of Refs. 4 and 
5. We replace the wave function $ by (MA/I)~'~@ 
and change to a new coordinate basis  by the trans- 
formation 
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Equation (4) then becomes collaboration. 

E2 a 2  
(6) 
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Equation (6) i s  the Schrödinger equation for a 
system with mass MA, constant except for the 
variable moment of inertia and the additional po- 
tential produced by the quantization procedure. 
Further, because of the simple form of the vol- 
ume element, the effects of the variable inertia 
parameters a r e  now completely contained in the 
potential energy. In order to illustrate this, Fig. 
3 shows the effect of the above transformation 
for the path ß = 0.6 (not the fission path !). The 
additional potential in Eq. (6) does not change the 
potential appreciably. The main effect of the 
stretching transformation (5) i s  an increase of 
the width of the potential barr ier .  Calculations 
a r e  in to obtain mass parameters not 
only in the P-R plane but also to include the 
asymmetric case. 
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In addition to  the  qua r t e t  excitations between ma jo r  osci l la tor  she l l s  ( intershell  quar te t  
s ta tes) ,  we propose quar te t  excitations within a shell  ( intrashell  quar te t  s ta tes) .  A pheno- 
menological qua r t e t  shell  model is devised to  predic t  the  energies  of t hese  s ta tes .  Evi- 
dence f o r  such excitations i s  a l so  found in  a microscopic  multiconfiguration Hxrtree-Fock 
calculation. 

Within the last year theoreticall-3 and experi- correlated particles from one major oscillator 
evidence has been accumulating for the shell to another (hereafter referred to a s  inter- 

existence of weakly interacting quartets consist- shell quartet states). We feel that in addition to 
ing of four strongly correlated particles, two pro- the existence of intershell quartet states there 
tons and two neutrons, in nuclei. The quartet can be low-lying states originating from the ex- 
states predicted by Arima, Gillet, and Ginocchiol citation of quartets in the Same major shell (here- 
a r e  assumed to result  f rom the excitation of four after referred to a s  intrashell quartet states). 


