Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bromido(2,4,6-trimethylphenyl)mercury(II)

Frank Meyer-Wegner, Hans-Wolfram Lerner, Tanja Sinke and Michael Bolte*

Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 6 March 2012; accepted 8 March 2012

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.025 ; w R$ factor $=0.057$; data-to-parameter ratio $=17.1$.

Molecules of the title compound, $\left[\operatorname{HgBr}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)\right]$, are located on a crystallographic twofold rotation axis. Due to the molecular symmetry, the $\mathrm{Hg}^{\text {II }}$ atom is linearly coordinated by the ipso-C of the mesityl group and the Br atom. In the crystal, molecules lie in planes parallel to (001).

Related literature

For dimesityl-mercury, see: Hayashi et al. (2011). For the synthesis of $\mathrm{Hg}[\mathrm{Mes}]_{2}$, see: Hübner et al. (2010).

Experimental

Crystal data
$\left[\operatorname{HgBr}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)\right]$
$M_{r}=399.68$
Monoclinic, C2/c
$a=10.0459$ (8) \AA
$b=15.3072$ (13) A
$c=8.1517$ (7) A
$\beta=126.912$ (5) ${ }^{\circ}$

Data collection

Stoe IPDS II two-circle
diffractometer
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing,
1995)
$T_{\text {min }}=0.107, T_{\text {max }}=0.595$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025 \quad 55$ parameters
$w R\left(F^{2}\right)=0.057$
H -atom parameters constrained
$S=1.05$
942 reflections

$$
\begin{aligned}
& V=1002.27(14) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=19.28 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& 0.21 \times 0.10 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

6756 measured reflections 942 independent reflections 892 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.103$
$\Delta \rho_{\text {max }}=1.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e}^{-3}$

Data collection: $X-A R E A$ (Stoe \& Cie, 2001); cell refinement: X $A R E A$; data reduction: $X-R E D 32 ;$ program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5065).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Hayashi, M., Bolte, M., Wagner, M. \& Lerner, H.-W. (2011). Z. Anorg. Allg. Chem. 637, 646-649.
Hübner, A., Bernert, T., Sänger, I., Alig, E., Bolte, M., Fink, L., Wagner, M. \& Lerner, H.-W. (2010). Dalton Trans. 39, 7528-7533.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2001). X - A REA and X-RED32. Stoe \& Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2012). E68, m424 [doi:10.1107/S1600536812010392]

Bromido(2,4,6-trimethylphenyl)mercury(II)

Frank Meyer-Wegner, Hans-Wolfram Lerner, Tanja Sinke and Michael Bolte

Comment

Very recently we have shown that $\mathrm{Hg}[\mathrm{Mes}]_{2}$ could be synthesized when HgCl_{2} was treated with two equivalents of Li[Mes] (Hübner et al., 2010) in thf at ambient temperature (Hayashi et al., 2011). In addition, we have investigated the reaction of $\mathrm{Hg}[\mathrm{Mes}]_{2}$ with BBr_{3} (Hayashi et al., 2011). In this paper we report the structure of the analogous Grignard compound $\mathrm{Hg}[\mathrm{Mes}] \mathrm{Br}$ which was obtained from the 1 : 1 reaction of $\mathrm{Hg}[\mathrm{Mes}]_{2}$ with BBr_{3}.

Molecules of the title compound are located on a crystallographic twofold rotation axis with half a molecule in the asymmetric unit. Due to the molecular symmetry, the Hg centre is linearly coordinated by the ipso-C of the mesityl group and the Br atom. The $\mathrm{Hg}-\mathrm{C}$ bond [2.053 (7) \AA] is slightly shorter than that in dimesityl mercury [2.080 (6) \AA] (Hübner et al., 2010).

In the crystal, the molecules lie in planes parallel to (001). In a plane, the molecules are oriented parallel to each other with the $\mathrm{Hg} — \mathrm{Br}$ vectors pointing in the same direction. The shortest intermolecular $\mathrm{Hg} \cdots \mathrm{Br}$ contact is 4.1270 (4) \AA and the shortest intermolecular $\mathrm{Hg} \cdots \mathrm{Hg}$ contact is 5.1078 (4) \AA (symmetry operator for equivalent atoms: $1-x, 1-y, 1-z$).

Experimental

In a round bottom flask $\mathrm{Hg}[\mathrm{Mes}]_{2}(0.21 \mathrm{~g}, 0.48 \mathrm{mmol})$ in 40 ml benzene was treated with one equivalent of $\mathrm{BBr}_{3}(0.046$ $\mathrm{ml}, 120 \mathrm{mg}, 0.48 \mathrm{mmol}$) at ambient temperature. Single crystals of the title compound $\mathrm{Hg}[\mathrm{Mes}] \mathrm{Br}$ were obtained from a benzene solution after 2 days at 281 K . Yield $50 \mathrm{mg}(26 \%) .{ }^{1} \mathrm{H}$ NMR ($300.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.00(\mathrm{~m}, 2 \mathrm{H}$, meta- Ph), 2.47 (br., 6 H , ortho-Me), 2.34 (br., 3 H , para-Me). ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=154.1$ (ipso-Mes), 141.6 (ortho-Mes), 139.3 (para-Mes), 128.0 (meta-Mes), 25.8 (ortho-Me), 20.9 (para-Me). $\mathrm{EI}^{+} \mathrm{m} / z$ (\%): 396.1 (20.0) 397.1 (32.0) 398.1 (64.0) 399.1 (60.0) 400.1 (100.0) 401.1 (32.0) 402.1 (68.0) 403.1 (6.0) 404.1 (12.0) [$M]^{+}$, calcd. for $[M]^{+}$ 396.1 (30.8) 397.1 (54.4) 398.1 (100.0) 399.1 (93.1) 400.1 (95.5) 401.1 (45.8) 402.1 (25.5) 403.1 (11.0) 404.1 (20.9).

Refinement

H atoms were refined using a riding model, with methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$ and aromatic $\mathrm{C}-\mathrm{H}=0.95 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl-H or $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic-H. The methyl groups were allowed to rotate but not to tip. The methyl group in para position of the phenyl ring is disordered over two equally occupied positions.

Computing details

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$ (Stoe \& Cie, 2001); data reduction: X-RED32 (Stoe \& Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only one set of the H atoms of the disordered methyl group is shown. Unlabelled atoms are related by the symmetry operation $1-x, y, 3 / 2-z$.

Figure 2
Packing diagram of the title compound viewed onto the $b c$ plane. H atoms omitted for clarity.

Bromido(2,4,6-trimethylphenyl)mercury(II)

Crystal data

$\left[\operatorname{HgBr}\left(\mathrm{C}_{9} \mathrm{H}_{11}\right)\right]$
$F(000)=720$
$M_{r}=399.68$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$D_{\mathrm{x}}=2.649 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$a=10.0459$ (8) \AA
$b=15.3072(13) \AA$
$\theta=4.1-25.9^{\circ}$
$\mu=19.28 \mathrm{~mm}^{-1}$
$c=8.1517$ (7) \AA
$\beta=126.912(5)^{\circ}$
$V=1002.27(14) \AA^{3}$
$Z=4$
$T=173 \mathrm{~K}$
Needle, colourless
$0.21 \times 0.10 \times 0.03 \mathrm{~mm}$

Data collection

Stoe IPDS II two-circle diffractometer
Radiation source: Genix 3D I μ S microfocus Xray source
Genix 3D multilayer optics monochromator
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
$T_{\text {min }}=0.107, T_{\text {max }}=0.595$

> 6756 measured reflections
> 942 independent reflections
> 892 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.103$
> $\theta_{\max }=25.6^{\circ}, \theta_{\min }=4.1^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-18 \rightarrow 18$
> $l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.057$
$S=1.05$
942 reflections
55 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.024 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.19 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e} \AA^{-3}$

Special details

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Hg1	0.5000	$0.600559(17)$	0.7500	$0.03814(13)$	
Br1	0.5000	$0.44177(5)$	0.7500	$0.0531(3)$	
C1	0.5000	$0.7347(5)$	0.7500	$0.0336(15)$	
C2	$0.6166(6)$	$0.7798(4)$	$0.7414(7)$	$0.0331(10)$	
C3	$0.6142(7)$	$0.8712(4)$	$0.7429(8)$	$0.0375(12)$	
H3	0.6940	0.9024	0.7389	0.045^{*}	$0.0369(18)$
C4	0.5000	$0.9178(5)$	0.7500	$0.0422(13)$	
C5	$0.7411(7)$	$0.7320(4)$	$0.7278(9)$	0.063^{*}	
H5A	0.7982	0.6875	0.8359	0.063^{*}	
H5B	0.8229	0.7736	0.7453	0.063^{*}	$0.048(2)$
H5C	0.6831	0.7037	0.5933	0.073^{*}	0.50
C6	0.5000	$1.0155(5)$	0.7500	0.073^{*}	0.50
H6A	0.6116	1.0368	0.8599	0.073^{*}	0.50
H6B	0.4202	1.0368	0.7726		
H6C	0.4682	1.0368	0.6175		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.03770(18)$	$0.02853(18)$	$0.0464(2)$	0.000	$0.02430(15)$	0.000
Br 1	$0.0503(5)$	$0.0291(5)$	$0.0834(7)$	0.000	$0.0419(5)$	0.000
C 1	$0.038(4)$	$0.029(3)$	$0.032(4)$	0.000	$0.020(3)$	0.000
C 2	$0.030(2)$	$0.038(3)$	$0.026(2)$	$-0.001(2)$	$0.014(2)$	$-0.003(2)$
C 3	$0.037(3)$	$0.038(3)$	$0.034(3)$	$-0.007(2)$	$0.019(2)$	$-0.004(2)$
C 4	$0.043(4)$	$0.021(3)$	$0.032(4)$	0.000	$0.014(3)$	0.000
C 5	$0.038(3)$	$0.045(3)$	$0.044(3)$	$-0.003(2)$	$0.025(3)$	$-0.001(2)$
C 6	$0.060(6)$	$0.033(4)$	$0.045(5)$	0.000	$0.028(4)$	0.000

Geometric parameters ($\mathcal{A}^{\circ}{ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{C} 1$	2.053 (7)	$\mathrm{C} 4-\mathrm{C} 3{ }^{\text {i }}$	1.381 (7)
$\mathrm{Hg} 1-\mathrm{Br} 1$	2.4307 (8)	C4-C6	1.495 (10)
$\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	1.397 (6)	C5-H5A	0.9800
C1-C2	1.397 (6)	C5-H5B	0.9800
C2-C3	1.400 (8)	C5-H5C	0.9800
C2-C5	1.510 (7)	C6-H6A	0.9800
C3-C4	1.381 (7)	C6-H6B	0.9800
C3-H3	0.9500	C6-H6C	0.9800
$\mathrm{C} 1-\mathrm{Hg} 1-\mathrm{Br} 1$	180.000 (1)	C2-C5-H5A	109.5
$\mathrm{C} 2{ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 2$	120.8 (7)	C2-C5-H5B	109.5
$\mathrm{C} 2 \mathrm{i}-\mathrm{C} 1-\mathrm{Hg} 1$	119.6 (3)	H5A-C5-H5B	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Hg} 1$	119.6 (3)	C2-C5-H5C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	118.3 (5)	H5A-C5-H5C	109.5
C1-C2-C5	121.4 (5)	H5B-C5-H5C	109.5
C3-C2-C5	120.3 (5)	C4-C6-H6A	109.5
C4-C3-C2	122.4 (5)	C4-C6-H6B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.8	H6A-C6-H6B	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	118.8	C4-C6-H6C	109.5
C3-C4-C3 ${ }^{\text {i }}$	117.8 (7)	H6A-C6-H6C	109.5
C3-C4-C6	121.1 (3)	H6B-C6- H 6 C	109.5
C3 ${ }^{\text {i }}$ - 4 - C 6	121.1 (3)		
C2- ${ }^{\text {i }} 1-\mathrm{C} 2-\mathrm{C} 3$	0.4 (3)	C1-C2-C3-C4	-0.8 (7)
$\mathrm{Hg} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.6 (3)	C5-C2-C3-C4	178.4 (4)
C2- 2 C1- $22-\mathrm{C} 5$	-178.8(5)	C2-C3-C4-C3 ${ }^{\text {i }}$	0.4 (4)
Hg1-C1-C2-C5	1.2 (5)	C2-C3-C4-C6	-179.6 (4)

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

