Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[Bis(3-phenyl-1*H*-pyrazol-1-yl)methyl]benzene-1,2-diol

Florian Blasberg, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 14 September 2011; accepted 16 September 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.007 Å; R factor = 0.069; wR factor = 0.121; data-to-parameter ratio = 12.2.

The title compound, $C_{25}H_{20}N_4O_2$, is a ditopic *ortho*-hydroquinone-based bis(pyrazol-1-yl)methane ligand. The dihedral angles between the planes of the pyrazole rings and their attached phenyl rings are 17.4 (3) and 5.9 (4)°. The pyrazole rings make a dihedral angle of 87.84 (16)°. One of the two hydroxy groups forms an intramolecular hydrogen bond to the other hydroxy group, whereas the second is involved in an intermolecular O—H···N hydrogen bond. As a result of these intermolecular hydrogen bonds, helical chains running along the *b* axis are formed.

Related literature

For the synthesis, structural characterization and coordination behavior of ditopic *ortho*-hydroquinone-based bis(pyrazol-1-yl)methane ligands, see: Blasberg *et al.* (2011).

Experimental

Crystal data

$C_{25}H_{20}N_4O_2$	V = 1962.3 (7) Å ³
$M_r = 408.45$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 13.493 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 5.6288 (11) Å	T = 173 K
c = 26.309 (5) Å	$0.40 \times 0.15 \times 0.10 \text{ mm}$
$\beta = 100.87 \ (3)^{\circ}$	
Data collection	
Stoe IPDS II two-circle	3450 independent reflections
	1434 reflections with $I > 2\sigma(I)$
16343 measured reflections	$R_{\rm int} = 0.111$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.069$	282 parameters
$w\overline{R}(F^2) = 0.12\overline{1}$	H-atom parameters constrained

Table 1

S = 0.82

3450 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O23−H23···O24	0.84	2.21	2.646 (5)	113
$O24 - H24 \cdots N12^{i}$	0.84	2.08	2.853 (5)	153
6	. 1 . 1	. 1		

 $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.27 \text{ e } \text{\AA}^{-3}$

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2261).

References

Blasberg, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). J. Organomet. Chem. doi:10.1016/j.jorganchem.2011.08.002.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2011). E67, o2741 [doi:10.1107/S1600536811037949]

4-[Bis(3-phenyl-1*H*-pyrazol-1-yl)methyl]benzene-1,2-diol

F. Blasberg, H.-W. Lerner and M. Bolte

Comment

Very recently we have reported on the synthesis, structural characterization, and coordination behavior of ditopic *ortho*hydroquinone-based bis(pyrazol-1-yl)methane ligands (Blasberg *et al.*, 2011). In this report, we have already noted *ortho*- $(OH)_2C_6H_3$ -4-CH(3-Phpz)₂, but metric parameters will be discussed here. The bis(pyrazol-1-yl)methane derivative (I) was prepared in a three-step one-pot procedure as shown in Fig. 1.

The dihedral angles between the planes of the pyrazol rings and the attached phenyl rings are 20.9 (3)° and 5.9 (4)°. One of the two hydroxy groups forms an intramolecular hydrogen bond to the other hydroxy group, whereas the second one is involved in an intermolecular O—H···N hydrogen bond. As a result of these intermolecular hydrogen bonds, helical chains running along the *b* axis are formed.

Experimental

Neat 3-phenylpyrazole (2.00 g, 13.87 mmol) was added to NaH (0.33 g, 13.87 mmol) suspended in THF (60 ml) at r.t. After 30 min SOCl₂ (0.50 ml, 0.83 g, 6.94 mmol) was added in one portion and the resulting mixture stirred at r.t. for 5 min. After 3,4-dihydroxybenzaldehyde (0.96 g, 6.94 mmol) and pyridine (5.60 ml, 4.78 g, 60.40 mmol) were added, the reaction mixture was kept at reflux temperature for 16 h. H₂O (50 ml) was added and the aqueous phase extracted into CH₂Cl₂ (3×50 ml). The combined organic extracts were washed with brine, dried (MgSO₄), filtered, and the filtrate was evaporated to dryness in vacuo. The crude product was purified by column chromatography (silica gel; CHCl₃/EtOAc 1:1) and all product-containing fractions were concentrated by rotary evaporation at 40°C to ca. half of the original volume. Upon cooling to r.t. colorless crystals of the title compound precipitated, which were isolated by filtration and washed with Et₂O. Yield: 1.53 g (54%). Single crystals suitable for X-ray diffraction were obtained by repeatedly dissolving the compound in refluxing MeCN and letting the clear colorless solution cool to room temperature. After three cycles needles of sufficient size were obtained. R</f = 0.63 (silica gel, CHCl₃/EtOAc 1:1). ¹H NMR (400.1 MHz, d₆-DMSO) δ = 6.48 (dd, ³J_{HH} = 8.3, ${}^{4}J_{HH} = 2.0, 1 \text{ H}; \text{HQ}-\text{H6}), 6.66 \text{ (d, } {}^{4}J_{HH} = 2.0, 1 \text{ H}; \text{HQ}-\text{H2}), 6.76 \text{ (d, } {}^{3}J_{HH} = 8.3, 1 \text{ H}; \text{HQ}-\text{H5}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HQ}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text{ (d, } {}^{3}J_{HH} = 2.5, 1 \text{ H}; \text{HC}-\text{H6}), 6.84 \text$ 2 H; pz-H4), 7.31 (m, 2 H; Ph—H4), 7.41 (m, 4 H; Ph—H3), 7.82 (m, 4 H; Ph—H2), 7.91 (s, 1H, CH), 7.94 (d, ³J_{HH} = 2.5, 2 H; pz-H5), 9.15 (bs, 2 H; OH). ¹³C NMR (100.6 MHz, d₆-DMSO) δ = 76.7 (Cpz₂), 103.5 (pz-C4), 114.4 (HQ-C2), 115.5 (HQ-C5), 118.2 (HQ-C6), 125.3 (Ph-C2), 127.2 (HQ-C1), 127.8 (Ph-C4), 128.7 (Ph-C3), 131.9 (pz-C5), 132.8 (Ph—C1), 145.3, 146.1 (HQ—C3,4), 151.0 (pz-C3). ESI-MS: m/z (%) 263 (67) [M—Phpz]⁻, 408 (100) [M—H]⁻. Anal. Calcd (%) for C₂₅H₂₀N₄O₂ (408.45): C 73.51, H 4.94, N 13.72. Found: C 73.22, H 4.86, N 13.67.

Refinement

All H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters $[U(H) = 1.2 U_{eq}(C) \text{ or } U(H) = 1.5 U_{eq}(O, C_{methyl})]$ using a riding model with O—H = 0.84 Å, C—H(aromatic) = 0.95Å or C—H(methine) = 1.00 Å, respectively. The H—O—C—C torsions angles of the hydroxy groups were refined.

Figures

Fig. 1. Synthesis and numbering scheme of *ortho*-hydroquinone-based bis(pyrazol-1-yl)methane ligand (I). (*a*) (i) NaH, THF, 30 min; (ii) SOCl₂, THF, 5 min; (iii) 3,4-dihydroxy-benzaldehyde, pyridine, THF, reflux, over night.

Fig. 2. Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level.

4-[Bis(3-phenyl-1*H*-pyrazol-1-yl)methyl]benzene-1,2-diol

$C_{25}H_{20}N_4O_2$	F(000) = 856
$M_r = 408.45$	$D_{\rm x} = 1.383 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2882 reflections
<i>a</i> = 13.493 (3) Å	$\theta = 3.7 - 25.8^{\circ}$
b = 5.6288 (11) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 26.309 (5) Å	T = 173 K
$\beta = 100.87 \ (3)^{\circ}$	Needle, colourless
$V = 1962.3 (7) \text{ Å}^3$	$0.40\times0.15\times0.10\ mm$
7 - 1	

Data collection

Stoe IPDS II two-circle diffractometer	1434 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.111$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$
ω scans	$h = -16 \rightarrow 16$
16343 measured reflections	$k = -6 \rightarrow 6$
3450 independent reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.069$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.121$	H-atom parameters constrained
<i>S</i> = 0.82	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.003P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3450 reflections	$(\Delta/\sigma)_{max} < 0.001$
282 parameters	$\Delta \rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Experimental.;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.6081 (3)	0.2494 (7)	0.30782 (15)	0.0162 (10)
C1	0.5052 (4)	0.2507 (9)	0.31608 (19)	0.0199 (12)
H1	0.4873	0.0847	0.3245	0.024*
N2	0.6784 (3)	0.1200 (7)	0.34051 (15)	0.0181 (9)
C3	0.7672 (4)	0.1933 (8)	0.33129 (19)	0.0189 (12)
C4	0.7529 (4)	0.3725 (8)	0.29212 (19)	0.0216 (12)
H4	0.8037	0.4530	0.2782	0.026*
C5	0.6523 (4)	0.4033 (9)	0.27902 (19)	0.0224 (12)
H5	0.6184	0.5127	0.2542	0.027*
N11	0.4994 (3)	0.4008 (7)	0.36107 (14)	0.0171 (9)
N12	0.4236 (3)	0.3584 (6)	0.38778 (15)	0.0165 (10)
C13	0.4318 (4)	0.5389 (8)	0.42204 (18)	0.0171 (12)
C14	0.5103 (4)	0.6909 (8)	0.4161 (2)	0.0214 (12)
H14	0.5308	0.8302	0.4356	0.026*
C15	0.5517 (4)	0.6011 (9)	0.37699 (19)	0.0239 (12)
H15	0.6064	0.6659	0.3635	0.029*
C21	0.4313 (4)	0.3296 (8)	0.26841 (19)	0.0179 (12)

C22	0.4107 (4)	0.1733 (8)	0.22619 (19)	0.0209 (12)
H22	0.4464	0.0273	0.2272	0.025*
C23	0.3402 (4)	0.2291 (9)	0.1838 (2)	0.0214 (12)
O23	0.3195 (3)	0.0753 (6)	0.14321 (13)	0.0287 (9)
H23	0.2640	0.1116	0.1245	0.043*
C24	0.2880 (4)	0.4488 (8)	0.18097 (19)	0.0168 (11)
O24	0.2181 (3)	0.4800 (6)	0.13669 (13)	0.0237 (9)
H24	0.1816	0.5976	0.1402	0.036*
C25	0.3102 (4)	0.6034 (8)	0.22209 (18)	0.0196 (12)
H25	0.2768	0.7525	0.2206	0.024*
C26	0.3800 (4)	0.5442 (8)	0.26527 (19)	0.0193 (12)
H26	0.3935	0.6523	0.2935	0.023*
C31	0.8626 (4)	0.0957 (8)	0.36075 (19)	0.0190 (11)
C32	0.9534 (4)	0.2161 (8)	0.3623 (2)	0.0238 (13)
H32	0.9540	0.3577	0.3427	0.029*
C33	1.0414 (4)	0.1348 (9)	0.3913 (2)	0.0312 (14)
H33	1.1021	0.2212	0.3919	0.037*
C34	1.0433 (4)	-0.0750 (10)	0.4203 (2)	0.0317 (14)
H34	1.1042	-0.1318	0.4409	0.038*
C35	0.9530 (5)	-0.1962 (9)	0.4177 (2)	0.0332 (15)
H35	0.9531	-0.3406	0.4364	0.040*
C36	0.8634 (4)	-0.1155 (9)	0.38900 (19)	0.0249 (13)
H36	0.8027	-0.2021	0.3884	0.030*
C41	0.3634 (4)	0.5541 (8)	0.45945 (19)	0.0176 (12)
C42	0.3673 (4)	0.7591 (9)	0.4918 (2)	0.0263 (13)
H42	0.4139	0.8830	0.4891	0.032*
C43	0.3040 (4)	0.7773 (9)	0.5268 (2)	0.0272 (14)
H43	0.3078	0.9133	0.5485	0.033*
C44	0.2345 (4)	0.6001 (9)	0.53102 (19)	0.0239 (12)
H44	0.1905	0.6154	0.5551	0.029*
C45	0.2296 (4)	0.4007 (9)	0.49981 (19)	0.0248 (12)
H45	0.1820	0.2790	0.5023	0.030*
C46	0.2950 (4)	0.3786 (8)	0.46467 (19)	0.0223 (12)
H46	0.2922	0.2396	0.4440	0.027*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.019 (3)	0.014 (2)	0.016 (2)	-0.0032 (19)	0.0029 (19)	0.0009 (17)
C1	0.019 (3)	0.021 (3)	0.021 (3)	-0.001 (2)	0.006 (2)	-0.003 (2)
N2	0.019 (2)	0.017 (2)	0.019 (2)	-0.0002 (19)	0.0042 (19)	-0.0018 (18)
C3	0.019 (3)	0.016 (2)	0.022 (3)	0.000 (2)	0.005 (2)	-0.004 (2)
C4	0.016 (3)	0.026 (3)	0.025 (3)	-0.002 (2)	0.010 (2)	0.001 (2)
C5	0.031 (3)	0.018 (3)	0.019 (3)	-0.003 (2)	0.004 (2)	0.004 (2)
N11	0.019 (2)	0.019 (2)	0.016 (2)	-0.005 (2)	0.0077 (19)	-0.0038 (18)
N12	0.021 (3)	0.014 (2)	0.014 (2)	0.0026 (18)	0.0023 (19)	-0.0035 (17)
C13	0.018 (3)	0.019 (3)	0.013 (3)	-0.002 (2)	0.000 (2)	0.002 (2)
C14	0.022 (3)	0.019 (3)	0.023 (3)	-0.005 (2)	0.004 (2)	-0.012 (2)

C15	0.020 (3)	0.022 (3)	0.027 (3)	-0.006 (2)	-0.001 (2)	0.002 (2)
C21	0.015 (3)	0.023 (3)	0.018 (3)	-0.002 (2)	0.008 (2)	0.000 (2)
C22	0.027 (3)	0.015 (2)	0.021 (3)	-0.002 (2)	0.006 (3)	-0.006 (2)
C23	0.021 (3)	0.020 (3)	0.024 (3)	-0.005 (2)	0.005 (2)	-0.009 (2)
O23	0.032 (2)	0.024 (2)	0.025 (2)	0.0058 (18)	-0.0061 (18)	-0.0090 (17)
C24	0.009 (3)	0.020 (3)	0.023 (3)	0.005 (2)	0.005 (2)	0.002 (2)
O24	0.026 (2)	0.0201 (19)	0.022 (2)	0.0082 (16)	-0.0056 (17)	-0.0014 (14)
C25	0.018 (3)	0.016 (2)	0.024 (3)	0.002 (2)	0.000 (2)	0.001 (2)
C26	0.020 (3)	0.017 (3)	0.024 (3)	-0.002 (2)	0.011 (2)	-0.008 (2)
C31	0.020 (3)	0.020 (2)	0.018 (3)	-0.005 (2)	0.008 (2)	-0.007 (2)
C32	0.025 (3)	0.021 (3)	0.025 (3)	-0.010 (2)	0.004 (3)	0.005 (2)
C33	0.020 (3)	0.036 (3)	0.038 (4)	-0.007 (3)	0.008 (3)	0.000 (3)
C34	0.022 (3)	0.037 (3)	0.034 (3)	0.012 (3)	0.002 (3)	0.006 (3)
C35	0.034 (4)	0.027 (3)	0.039 (4)	0.003 (3)	0.007 (3)	0.012 (3)
C36	0.024 (3)	0.020 (3)	0.029 (3)	-0.002 (2)	0.003 (3)	-0.001 (2)
C41	0.020 (3)	0.014 (3)	0.019 (3)	-0.001 (2)	0.001 (2)	-0.002 (2)
C42	0.032 (3)	0.022 (3)	0.027 (3)	-0.001 (3)	0.008 (3)	-0.002 (2)
C43	0.032 (4)	0.025 (3)	0.027 (3)	0.001 (3)	0.012 (3)	-0.010 (2)
C44	0.030 (3)	0.026 (3)	0.017 (3)	0.002 (3)	0.008 (2)	-0.002 (2)
C45	0.026 (3)	0.028 (3)	0.022 (3)	-0.006 (3)	0.010 (2)	0.003 (3)
C46	0.027 (3)	0.016 (2)	0.024 (3)	-0.005 (2)	0.003 (2)	-0.006 (2)

Geometric parameters (Å, °)

N1—C5	1.360 (6)	C24—C25	1.377 (7)
N1—N2	1.364 (5)	O24—H24	0.8400
N1—C1	1.445 (7)	C25—C26	1.373 (7)
C1—N11	1.468 (6)	С25—Н25	0.9500
C1—C21	1.515 (6)	C26—H26	0.9500
С1—Н1	1.0000	C31—C32	1.394 (7)
N2—C3	1.333 (7)	C31—C36	1.401 (7)
C3—C4	1.429 (7)	C32—C33	1.364 (7)
C3—C31	1.477 (7)	С32—Н32	0.9500
C4—C5	1.348 (7)	C33—C34	1.403 (7)
C4—H4	0.9500	С33—Н33	0.9500
С5—Н5	0.9500	C34—C35	1.387 (8)
N11—C15	1.354 (6)	C34—H34	0.9500
N11—N12	1.367 (6)	C35—C36	1.376 (7)
N12—C13	1.349 (6)	С35—Н35	0.9500
C13—C14	1.392 (7)	С36—Н36	0.9500
C13—C41	1.473 (7)	C41—C46	1.376 (7)
C14—C15	1.358 (7)	C41—C42	1.430 (7)
C14—H14	0.9500	C42—C43	1.373 (7)
C15—H15	0.9500	C42—H42	0.9500
C21—C26	1.386 (6)	C43—C44	1.388 (7)
C21—C22	1.403 (6)	C43—H43	0.9500
C22—C23	1.360 (7)	C44—C45	1.385 (7)
С22—Н22	0.9500	C44—H44	0.9500
C23—O23	1.362 (6)	C45—C46	1.398 (8)

C23—C24	1.418 (6)	C45—H45	0.9500
O23—H23	0.8400	C46—H46	0.9500
C24—O24	1.365 (6)		
C5—N1—N2	111.4 (4)	C25—C24—C23	118.6 (4)
C5—N1—C1	128.0 (4)	C24—O24—H24	109.5
N2—N1—C1	118.7 (4)	C26—C25—C24	120.7 (5)
N1—C1—N11	108.8 (4)	C26—C25—H25	119.7
N1—C1—C21	112.2 (4)	C24—C25—H25	119.7
N11—C1—C21	111.8 (4)	C25—C26—C21	121.2 (4)
N1—C1—H1	107.9	C25—C26—H26	119.4
N11—C1—H1	107.9	C21—C26—H26	119.4
C21—C1—H1	107.9	C32—C31—C36	118.6 (5)
C3—N2—N1	105.2 (4)	C32—C31—C3	120.5 (4)
N2—C3—C4	110.2 (5)	C36—C31—C3	120.8 (5)
N2—C3—C31	120.9 (4)	C33—C32—C31	121.4 (5)
C4—C3—C31	128.8 (5)	C33—C32—H32	119.3
C5—C4—C3	105.5 (5)	C31—C32—H32	119.3
C5—C4—H4	127.2	C32—C33—C34	120.7 (5)
C3—C4—H4	127.2	C32—C33—H33	119.6
C4—C5—N1	107.6 (4)	C34—C33—H33	119.6
С4—С5—Н5	126.2	C35—C34—C33	117.5 (5)
N1—C5—H5	126.2	C35—C34—H34	121.3
C15—N11—N12	112.5 (4)	C33—C34—H34	121.3
C15—N11—C1	128.7 (4)	C36—C35—C34	122.6 (5)
N12—N11—C1	118.2 (4)	С36—С35—Н35	118.7
C13—N12—N11	103.7 (4)	C34—C35—H35	118.7
N12—C13—C14	110.9 (5)	C35—C36—C31	119.2 (5)
N12—C13—C41	120.5 (4)	C35—C36—H36	120.4
C14—C13—C41	1287(4)	C31—C36—H36	120.4
C15-C14-C13	106 7 (4)	C46-C41-C42	118 1 (5)
C15—C14—H14	126.7	C46—C41—C13	122.8 (4)
C13—C14—H14	126.7	C42-C41-C13	119.1 (5)
N11-C15-C14	106.2 (5)	C43—C42—C41	120.1 (5)
N11—C15—H15	126.9	C43—C42—H42	119.9
C14—C15—H15	126.9	C41—C42—H42	119.9
$C_{26} - C_{21} - C_{22}$	118.5 (5)	C42-C43-C44	121.0 (5)
C26—C21—C1	123.3 (4)	C42—C43—H43	119.5
C_{22} — C_{21} — C_{1}	118.2 (4)	C44—C43—H43	119.5
C_{23} C_{22} C_{21}	120.5 (5)	C45—C44—C43	119 5 (5)
C23—C22—H22	119 7	C45—C44—H44	120.3
C21—C22—H22	119.7	C43—C44—H44	120.3
$C_{22} - C_{23} - C_{23}$	120 3 (5)	C44—C45—C46	1199(5)
$C_{22} = C_{23} = C_{24}$	120.6 (4)	C44—C45—H45	120.0
023—C23—C24	119.1 (4)	C46—C45—H45	120.0
C23—O23—H23	109.5	C41—C46—C45	121.4 (5)
024—C24—C25	127.0 (4)	C41—C46—H46	119.3
024—C24—C23	114.4 (4)	C45—C46—H46	119.3
C5 N1 C1 N11		$C^{22} = C^{23} = C^{24} = C^{24}$	-178.0 (5)
CJ-INI-CI-INII	00.4 (3)	022 - 023 - 024 - 024	1/0.7 (3)

N2—N1—C1—N11	74.6 (5)	O23—C23—C24—O24	1.8 (7)
C5—N1—C1—C21	35.9 (6)	C22—C23—C24—C25	-0.2 (8)
N2—N1—C1—C21	-161.0 (4)	O23—C23—C24—C25	-179.6 (5)
C5—N1—N2—C3	-0.7 (5)	O24—C24—C25—C26	177.4 (5)
C1—N1—N2—C3	-166.4 (4)	C23—C24—C25—C26	-1.1 (8)
N1—N2—C3—C4	0.1 (5)	C24—C25—C26—C21	1.0 (8)
N1—N2—C3—C31	178.5 (4)	C22—C21—C26—C25	0.4 (8)
N2-C3-C4-C5	0.6 (6)	C1—C21—C26—C25	-176.9 (5)
C31—C3—C4—C5	-177.7 (5)	N2—C3—C31—C32	-161.3 (5)
C3—C4—C5—N1	-1.0 (6)	C4—C3—C31—C32	16.8 (8)
N2—N1—C5—C4	1.1 (5)	N2-C3-C31-C36	16.7 (7)
C1—N1—C5—C4	165.2 (4)	C4—C3—C31—C36	-165.2 (5)
N1-C1-N11-C15	34.3 (6)	C36—C31—C32—C33	-1.3 (8)
C21—C1—N11—C15	-90.2 (6)	C3—C31—C32—C33	176.8 (5)
N1-C1-N11-N12	-155.2 (4)	C31—C32—C33—C34	0.6 (9)
C21—C1—N11—N12	80.2 (5)	C32—C33—C34—C35	0.7 (9)
C15—N11—N12—C13	-1.2 (5)	C33—C34—C35—C36	-1.4 (9)
C1—N11—N12—C13	-173.1 (4)	C34—C35—C36—C31	0.7 (9)
N11-N12-C13-C14	0.7 (5)	C32—C31—C36—C35	0.6 (8)
N11—N12—C13—C41	-178.6 (4)	C3—C31—C36—C35	-177.4 (5)
N12-C13-C14-C15	0.0 (6)	N12-C13-C41-C46	5.9 (7)
C41—C13—C14—C15	179.3 (5)	C14—C13—C41—C46	-173.3 (5)
N12—N11—C15—C14	1.2 (5)	N12-C13-C41-C42	-173.9 (4)
C1-N11-C15-C14	172.1 (5)	C14—C13—C41—C42	6.8 (8)
C13-C14-C15-N11	-0.7 (5)	C46—C41—C42—C43	-0.1 (8)
N1-C1-C21-C26	-110.4 (6)	C13—C41—C42—C43	179.7 (5)
N11—C1—C21—C26	12.2 (7)	C41—C42—C43—C44	-0.8 (8)
N1-C1-C21-C22	72.2 (6)	C42—C43—C44—C45	0.7 (8)
N11—C1—C21—C22	-165.1 (5)	C43—C44—C45—C46	0.4 (8)
C26—C21—C22—C23	-1.7 (8)	C42—C41—C46—C45	1.2 (7)
C1—C21—C22—C23	175.8 (5)	C13—C41—C46—C45	-178.6 (5)
C21—C22—C23—O23	-179.1 (5)	C44—C45—C46—C41	-1.4 (8)
C21—C22—C23—C24	1.6 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O23—H23…O24	0.84	2.21	2.646 (5)	113.
O24—H24…N12 ⁱ	0.84	2.08	2.853 (5)	153.
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$.				

Fig. 2