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The theory of collective correlations in nuclei is formulated for giant resonances interacting with surface 
vibrations. The giant dipole states are treated in the particle-hole framework, while the surface vibrations 
are described by the collective model. Consequently, this treatment of nuclear structure goes beyond both 
the common particle-hole model (including its various improvements which take ground-state correlations 
into account) and the pure collective model. The interaction between giant resonances and surface degrees 
OE freedom as known from the dynamic collective theory is formulated in the particle-hole language. There- 
fore, the theory contains the particle-hole structures and the most important "collective intermediate" 
structures of giant resonances. Detailed calculations are performed for 12C, 28Si, and "Ni. A good detailed 
agreement between theory and experiment is obtained for all these nuclei, although only BONi is in the 
region where one would expect the theory to work well (50<A <110). 

I. INTRODUCTION structures, because both levels correspond to different 

C OLLECTIVE nuclear states have been investigated 
quite extensively during the past ten years within 

the framework of the collective model, as well as in 
terms of various nlicroscopic approaches.' While the 
former model has the advantage of being lucid, the 
latter has the advantage of being more detailed in that 
special shell-model features are more fully described 
microscopically. 

However, in the comparison of the theoretical results 
with the experimental y-absorption cross sections, 
evidently neither of these approaches is complete. I n  
fact, the particle-hole calculations for light and heavy 
magic nuclei explain only gross features of giant reso- 
nances, such as the existence of one or two states shifted 
up in energy which carry an appreciable Part of the di- 
pole streilgtl-i. We may call this the doorway structure. 
For nearly all nuclei, however, i t  is known that the giant 
resonances show much additional structure. Such struc- 
ture may be divided into two groups: (a) the main 
substructure, which we call collective intermediate 
structure-bv this we mean that the eiant resonance " 
splits into three, four, or more main distinct resonances 
because of their interaction with other collective degrees 
of freedom such as the surface vibrations; (b) o i  top 
of this collective structure, we may find a small sub- 
structure which we call noncollective structure. 

I n  160, for example, the two main resonances a t  22 
and 24.0 MeV (see Fig. 1) are in this sense doorway 
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1p-lh configurations. Their main subs~ructure, i.e., the 
peak a t  22 MeV and the resonance a t  23 MeV, as well 
as the three peaks between 24.0 and 26.5 MeV, are 
collective intermediate structures. The re~i la in in~ non- - 
collective fine structure is small for the total y-absorp- 
tion cross section but stands out more clearly in re- 
actions like (p,y). 

One may summarize the success of the various theo- 
retical approaches as follows: The particle-hole model 
has been successful in explaining the doorway structure. 
The calculations of Elliot and Flowers and others2-5 
explained just this kind of giant-resonance structure. 
The dynamic collective the~r)i,~-lO on the other hand, 
ex~lains the collective intermediate structure for 
medium and heavy nuclei. This has been shown in an 
exciting development, both in theory and experiment, 
during the last few years."-l3 

I t  therefore seems to be worthwhile and, in fact, 
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necessary to combine the collective and the particle-hole 
approach in order to describe both the doorway and the 
collective structure. The main purpose of this paper is 
to develop such a theory. 

A fern. words should be said to answer the question 
which immediately Comes to mind a t  this Stage : Would 
not a particle-hole calculation, if performed in the full 
Hilbert space, i.e., a diagonalization in the basis of 
many-particle-many-hole configurations, contain every- 
thing? Of Course, i t  would. In  the first place, however. 
i t  is not satisfying to obtain results from the diagonali- 
zation of a giant matrix, and a more physical approach 
seems necessary to get insight into the structure and 
the dynamics of the nucleus. Secondly, even if one 
would like to do so, it is impossible to carry out such 
calculations because of the tremendous number of 
many-particle-many-hole configurations that would 
have to be included. (See, for example, the work of 
Boeker.14) 

We now come to the specific contents of this paper. 
In  Sec. I1 we give a microscopic outline of the idea of 
the collective correlations. The various structures 
introduced above in a somewhat phenomenological way 
are depicted by graphs. Also, an interpretation of the 
interaction of the giant resonances with other collective 
degrees of freedom in terms of the many-particle-niany- 
hole configiiration matrix is given there. Section I11 con- 
tains a brief review of the dynamic collective theory, 
which is necessary for the understanding and explicit 
formulation of the idea of collective correlations, pre- 
sented in Sec. IV. The conlplete Hamiltonian containing 
collective correlations is discussed in Sec. V, which also 

14 E. Boeker, W. M. De Mujnick, and C. C. Jonker, in Comptes 
Rendus du Congrds Zntevnational de Physipue Nuclinire, edited by 
P. Gungenberger (Centre National de la Recherche Scientifique, 
Paris, 1964), Vol. 11, p. 405. 
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FIG. 3. The interaction of a collective Ip-lh state (giant dipole 
resonance) with a collective more-particle-more-hole state [(giant 
tlipole)+ (surface quadrupole phonon)]. 

contains the classification of the basis states and the 
setup of the configuration matrix. Finally, in Sec. VI, 
we compare detailed calculations with experiments and 
discuss the various results. 

11. MICROSCOPIC DESCRIPTION OF 
COLLECTIVE CORRELATIONS 

All collective modes contain a large amount of single- 
particle excitation, i.e., they are predominantly linear 
combinations of states which differ from the grounti 
state in the state of one particle only. I n  other words, 
they are essentially lp-liz excitations. This must 
necessarily be so because they have large electro- 
magnetic transition probabilities to the ground state 
and the transition Operator is a sum of one-body 
Operators. In terms of graphs these lp-lh components 
of collective states are thus represented by single 
(Lsausages" which inay go backward as well as forward 
(Fig. 2). In  such chains each particle and its hole 
Partner are coupled to the spin and parity of the collec- 
tive state, e.g., 1- for the dipole state, 2+ for surface 
oscillations. I t  has been shown earlier6-l0 that giant 
resonance states and surface states are strongly coupled. 
The reason for this is the coherent structure of the 
collective states. Assuming that the niatrix elements 
between the various p-h states have the Same sign (e.g., 
as in a schematic model), one immediately gets the 
strong correlations which are predicted by the collective 
theory.15 Such a state would be depicted in graphs like 
Fig. 3. The sausages a t  the right-hand side represent 
the surface vibration consisting of lp-llz, 2p-212, etc., 
components which is coupled with a particle-hole 
excitation to 1-. The strong wave lines in Fig. 3 repre- 
sent the strong coupling between these particular 1- 
collective states. The configurations corresponding to 
the region of Fig. 3, where two sausages are present, do 
not have multipole moments to the ground state. The 
transition strength of such a state is thus decreased 
and reappears a t  the state which, in the limit of small 

tVe are very grateful to C. A. Levirison for bringiiig this to 
our attention. 
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FIG. 4. The interaction of a collective Ip-llz state with a non- 
collective more-particle-more-hole configuration. The difference 
from the graph in Fig. 3 is the weak interaction of the left-hand 
and right-hand bubbles. 

coupling, consists of a surface quantum in addition to 
the dipole state. 

Tlie graph of Fig. 3 has to be distinguished from a 
graph as shown in Fig. 4. The latter represents the 
coupling of the giant resonance to a noncollective 2f 
state, which is indicated simply by dashed connections 
between the coupled (2+-1-) bubbles and the pure 1- 
chain. 

Since the matrix elements between the 1- and the 
collective (2+-1-) states of Fig. 3 are very strong, such 
graphs lead to the main structure of the giant resonances 
(the collective intermediate structure), while graphs as 
shown in Fig. 4 give only noncollective fine structure. 
Ac mentioned earlier, the latter shows up in experiments 
as small additional substructure of the main collective 
structure. The lp-lh or doorway structure is given by 
different graphs of the type shown in Fig. 2. We are 
therefore led to the hierarchy shown in Fig. 5 .  The 
strong matrix elements between the two (or in general 
more) collective chains in Fig. 3 represent the collective 
correlations. The two collective states interact strongly, 
and these correlations lead to the collective intermediate 
structure. 

Note that this hierarchy of essentially three different 
types of structure is different from the usual one where 
the classification is according to 1p-lh, 2p-2h, etc., 
configurations. The first of these, the P-h configurations, 
are identical with the doorway structure. The collective 
and noncollective configurations, however, are compli- 

19 -. 1h coilecfire i n l c i m c  - non c o l l r c l , v ~  
ldmiwoy r t ruc lurcJ  d i o l s  r f rucfurc  r f r u c t u r c  

J;IG. 5. Schematic representation of doorway Ip-lh, collective 
intermediate, and noncollective structure. 
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FIG. 6. The total configuration matrix of the 
particle-hole Hamiltonian. 

cated superpositions of lp-lh, 2p-2h, 3p-3h, etc., con- 
figurations. They are only classified according to the 
magnitude of their coupling strength to the doorway 
16-lh structure. 

Now let us look at  the complete configuration matrix 
of the particle-hole Hamiltonian and interpret the 
hierarchy of Fig. 5 in terms of the configuration matrix. 
In Fig. 6 the total configuration matrix is shown 
schematically. In ordinary p-h calculations, only the 
lp-lh siibmatrix is considered. The higher confi, vura- 
tions are completely neglected. In fact, taking all the 
higher configurations into account increases eitremely 
the size of the matrix. For 160, Boeker14 estimated about 
500 2p-2h states up to 3tw excitation energy. Neverthe- 
less, we can perform the following Gedankenexperiment: 
Suppose we prediagonalize the 2p-2h, 3p-3h, etc., part 
of the matrix and denote the resulting states by cpl, cpz, 
(PS, etc. The pi's are complicated superpositions of 
many-particle-many-hole configurations, and the total 
configuration matrix is shown schematically in Fig. 7 .  
There now occur only matrix elements between the 
states cpi and the lp-lh states and, of course, within the 
lp-lh submatrix. Some of these matrix elements are 
very strong and are indicated by large crosses in Fig. 7. 
Such states 9, (in Fig. 7 they are 9 2  and cp4) are identi- 
fied with collective states which correspond, for example, 
to the region in Fig. 3 where two bubble chains exist. 
The other states cpl, q3, pS in Fig. 7) correspond to the 
Same region in Fig. 4. The only difference is that the 
former are collective ones with strong matrix elements 
to the 19-lh states giving the main structure of the 
giant resonance, while the latter are of noncollective 
type and have only weak coupling with the lp-lh sub- 
space. Therefore, we are interested nlainly in the 
collective states (Fig. 3). We can not treat thein with 
all their microscopic structure. This would irnply that 
we are able to prediagonalize the 2p-2h, 3p-3h, etc., 
subspace. We will describe these states in the collective 
model, i.e., as states where lp-lh configurations are 
coupled to surface phonons. Of course, there arises 
imrnediately the difficulty of finding the strong matrix 
elements of these states to the 1p-112 submatrix (Fig. 7 ) .  
This problem will be solved in Sec. IV, where we 
"translate" the interaction between dipole states and 
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FIG. 7. Configuration matrix after prediagonalizatioii 
of the 2p-2h, 3p-312, etc., subspace. 

lp-lh 

surface vibrations obtained in the collective model into 
the particle-hole language. 

111. REVIEW OF THE DYNAMIC 
COLLECTIVE THEORY 

fp-lh V, n Y. yr 

The dynamic collective theory for spherical nuclei8-l0 
investigates the following Hamiltonian : 

1p-1h 

H=Hquad+Hdip+Hdip quad 1 

where 
(1) 

x X X X X 

describes the nuclear surface vibrations in the harmonic 
approximation. This is, of Course, no restriction, and it 
is straightforward to include anharmonic terms as well. 
The operator aE21 is the tensor of rank 2 and positive 
parity for the surface quadrupole collective variables. 
The dipole Part of (1) is 

Hdip= -3flB1[01[ll X&[']][0] -~flcl[a[l] Xa['l][o] , (3) 

where a['] is the tensor of rank 1 and negative parity 
describing the collective variables of the giant dipole 
resonances. The giant resonances are considered as 
fluctuations of the proton and neutron densities, 
P, (T, t )  arid P, (r,t), 

where incompressibility of nuclear matter is assumed. 
For dipole Buctuations, one has 

Here F is a normalization constant, Ro is the nuclear 
ecluilibri~m radius, and ko is the wave number of the 
dipole oscillations. The time dependence is contained 
in ar']. The interaction of giant dipole resonances and 
surface degrees of freedom is16 

Haipqusd=Ki [ [ a [ ' ] X a [ 1 ] ] [ 2 ] X a [ 2 ] ] [ 0 ]  
+K20[LY[11 Xa['l][Ol[a[21 ~ ~ I 2 1 ] [ 0 1  

- -- 
+ K 2 2 [ [ o 1 ~ ~ 1 X a [ ~ 1 ] [ ~ 1 X [ a [ ~ 1 X a [ ~ 1 ] [ ~ 1 ] [ ~ l ,  (6) 

lB T. Urbas and W. Greiner, Z. Physik 196, 44 (1966). 

where the coupling constants K1, KZO, and Kfz have 
been calculated in the hydrodynamic model16: 

Cl is the Same parameter as in (3) and can be expressed 
in terms of the a s p m e t r y  energy parameter K of the 
Bethe-Weizsäcker mass formula, 

The Hamiltonian (1) is diagonalized in the basis which 
is constructed by coupling one dipole phonon17 and N 
quadrupole phonons to 1-; 

Here NI= 1 and N z < N  are the number of dipole and 
q~~adrupole phonons, respectively. The corresponding 
angular mornenta are 11= 1 and 12, zi is the seniority 
quantum nu~nber and a denotes additional quantum 
numbers of the surface phonon states. 

The dipole operator is easily obtained as 

D = ) n( r ) r l [ l l d r ,  
nucleus 

and is explicitly given by 

where 

and Ro is the nuclear radius. Later we will need the 
inverse of ( l l ) ,  i.e., 

The results of the dynamic collective theory for medium 
and heavy nuclei show tl-iat the main structure of the 
giant resonances is given by the strong coupling of 
giant resonances to surface v i b r a t i o n ~ , " ~ ~ , ~ ~  the matrix 
elements being of the order of 2 MeV. In fact, if we 
neglect the dipole-quadrupole coupling we are led to 
only one single 1- state with dipole strength. This 
occiirs because the collective model describes only the 
dominant dipole state and neglects all the other lp-lh 
states with less dipole strength. For example, the 
22-MeV giant resonance in 0 1 6  is to be identiiied with 
the one-dipole-phonon state of the collective model. 
The 24.5-MeV giant resonance is an additional lp-lh 
configuration which has no corresponding state in the 
collective model. It is therefore necessary to extend 
the Hamiltonian (1) along the lines suggested in Sec. 11. 
This will be done in the following section. 

l7 The three-dipole phonon states are treated by perturbation 
theory. 
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IV. SEMIMICROSCOPIC FORMULATION OF variables cr[21, i.e., 
COLLECTIVE CORRELATIONS 

$jm=$~rn(T,CY) =$jrn(~,O)f a$jrn/aa I a=@. 
The dipole giant resonances obviously interact very 

strongly with surface vibrations. Therefore, the most 
important states leading to collective intermediate 
structure for the giant resonances will be such nuclear 
states where a (lp-lh)l- configuration is coupled to 
surface excitations. T5'e still describe the latter in the 
collective model, i.e., in the phonon approximation, for 
simplicity.18 I t  seems, therefore, most natural to 
generalize the Hamiltonian (1) in the following waylg: 

(a) Hdip is replaced by HPh(l); 

Hdip J Hph(') , (12) 

where Hph(l) stands for the particle-hole Hamiltonian 
in the (lp- lh)' subspace (see Fig. 7). 

(b) The interaction (6) between surface vibrations 
and the dipole states has to be interpreted in the particle- 
hole language. This is achieved by the requirement that 
the dipole operators in the two pictures are the same, i.e., 

Deoll[ll = , 
where 

Inserting (13) and (11) in (6), we obtain for the 
interaction 

where 

Here K is the sqmmetry energy constant of the Bethe- 
Weizsäcker mass formula. The renormalization of the 
coupling constants ICl, lizo, and R 2 2  occurring in (6) 
to the values ~ 1 ,  K Z O ,  and ~ 2 2  in Eq. (16) is due to the 
second term of (11). The physical origin of this addi- 
tional term in (11) is cluite interesting. I t  takes into 
account the change of the single-particle functions 
(computed in a spherical well) due to the dynamic sur- 
face vibrations. In  fact, tlie potential well is oscillating 
abovt a spherical equilibrium value. The single- 
particle functions $„ depend, therefore, on the surface 

l8 .4t least in medium and heavy nuclei these 2+ states are very 
complicated superpositions of various many-particle-many-hole 
states. 

l9 D. Drechsel, J. B. Seaborn, and W. Greiner, Phys. Rev. 
Lqtters 17, 488 (1966). 

The term proportional to CY leads to a similar term in the 
transition charges v(r , t )  given by the collective model 
( 5 ) .  Therefore, by keeping the second term of (11) we 
take into account additional corrections for the single- 
particle wave functions due to the dynamic deformation 
of the shell-model potential. 

The full semimicroscopic Hamiltonian for giant 
resonances is now 

Hx,h,quad describes the strong matrix elements shown in 
Fig. 7 between the collective many-particle-many-hole 
configurations and the lp-liz states. Formally, i t  has the 
structure of an additional two-body force between the 
particle-hole states which, however, depends on the 
surface collective coordinates ar21. This interaction leads 
to the collective correlations between the giant resonances ., 
and the surface vibrations. 

Expressed in microscopic terminology, the matrix 
elernints between two states are large if these two states 
are essentially coherent superpositions of lp-lh con- 
figurations or products of such superpositions, i.e., if 
they are collective states. Therefore, the matrix ele- 
ments shown in Figs. 3 and 4 are essentially propor- 
tional to the dipole moment in the initial state and the 
dipole and quadrupole moments in the intermediate 
state. Thus they are strong only in the case of Fig. 3. 

V. DIAGONALIZATION OF THE INTERACTION 
BETWEEN THE (I@-lh)' STATES 

The eigenstates and eigenvalues of the Hamiltonian 
(17) are found by diagonalization of the energy matrix. 
The basis for the matrix is formed by the pure (lp-lh) 
states with 0, 1, 2, etc., phonons excited: 

where j, I ,  and n are, respectively, the total-angular- 
momentum, orbital-angular-momentum, and radial 
quantum nurnbers of the single-particle states. The 
lp-lh configuration is coupled to the intermediate 
angular momentum J. N stands for the number of 
phonons, v for the seniority, and 1 for the angular 
momentum of the phonon wave function. The total spin 
of the states considered is unity, and their parity is 
negative. 

For numerical reasons we found i t  useful to pre- 
diagonalize the lp-lh subspace with the residual inter- 
action i n c l ~ d e d . ~ ~  This gives the gross distribution of 
the dipole strength (doorway structure). We then take 
into account the collective correlations, Hph,quad. Since 
the matrix elements of the collective correlations (15) 
between two states are essentially proportional to the 

20 J. B. Seaborn, D. Drechsel, and W. Greiner, Z. Physik 202, 
32 (1967). 
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product of the dipole strengths of the states involved, can keep the matrix which is to be diagonalized rela- 
we are allowed to omit such prediagonalized lp- lh  tively small. 
states which are far off the giant resonance and carry The matrix elements of the three terms of Hph,quad 
only a small amount of dipole strength. In this way we between the basis states are 

1 I 1' J' 
( J ;  I X [ D p X D p 1 ] 2 0  1 J  1 )  - - ) J + +  ) ( J 1  i[Dphlll X D , , ~ [ ~ ~ ] [ ~ I J ) ( ~ ' / ~ [ ? I  J ) ,  (19) 

\/5 2 J  1 

where K= 0 or 2. The reduced matrix elements of the surface quadrupole amplitudes ar21 are given in detail else- 
where.'O The reduced matrix elements of the dipole operators are 

( . ~ ; 4 1 /  [ D ~ ~ [ ~ I  XDph[il][K1 1 1  J ~ ? ) =  +i1i2i3i4j1j2j3j13kYI 

Il l s  1 r11 & 
Ii L L' 

X C (-)"+"(X+ I) (2L'+l) (LS+ 1) 
T,L' ,I' 1 S J' J ] I J 2  L L' l4  K 11112 I. S $ ::/[: J J  L ' S  J ' ,  ;\Rl3Rz4]. (21) 

Here the indices 1 and 3 correspond to holes and the 
indices 2 and 4 to particles and Si= (21i+1)'I2. The 
radial integrals Rif are given by 

Evidently the direct term is essentially the product of 
the dipole moments of the particle-hole states. This is, 
of course, in complete analogy to the results of the 
collective m ~ d e l . ~ J ~  The direct tenn exists only for 
the case where both l p - lh  configurations are coupled to 
J= 1 and negative parity. The second term of (21) is 
an exchange term. The two particles and two holes 
are separately coupled to a 1- state. This terrn vanishes 
for double magic nuclei, provided that 3tzw and higher 
excitations are discarded. For nonmagic nuclei, the 
exchange term niixes (lp-1h)l- states with ( l ~ - l h ) ~ -  and 
( 1 p - V ~ ) ~ -  states. The latter ones are, of course, always 
coupled with vibrational wave functions to total 
angular momentum and parity 1-. In practical calcula- 

tions, however, this effect turned out to be small be- 
cause of recoupling coefficients. Neglecting the exchange 
term, the matrix element between the two lp-lh con- 
figurations will be proportional to the geometric mean 
of the dipole strength in the two states. Thus the mixing 
between a pure particle-hole state and its first vibra- 
tional satellite (i.e., the Same lp- lh  state with one 
surface phonon excited) is proportional to the dipole 
strength of the pure lp- lh  configuration. The situation 
is, however, much more complex than in the dynamic 
collective theory. Even in the case without collective 
correlations, we now have niore Ip-liz states, with some 
dipole strength. Superimposed on these we have a 
spectr~ml of one or more additional phonons. 

In the present calculations we have used harrilonic 
oscillator wave functions for the radial wave functions 
Rnl. Once we have obtained the eigenvalues E, and 
corresporiding eigenvectors by diagonalization in the 
configuration space consisting of (Ip-1h)"- states and 
up-to-N-phonon states, the integrated photoabsorption 
Cross section a, is given by 
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FIG. 8. Photoabsorption cross section of 12C. The experimeiltal 
points give the total photoabsorption cross section; the dashed 
line gives the (-y,no) cross section at  90' in arbitrary units. The 
dipole strengths are calculrtted with collective correlations. 

where ai are the amplitudes of the pure 1p-112 states 
(i.e., no phonon excited) in the eigenstate / n). 

VI. RESULTS AND DISCUSSIBN 

In this section we present the results obtained for 
12C, 28Si, and 60Ni and compare them with experimental 
data. We approximate the low-energy spectrum of these 
nuclei by the phonon spectrum of a harinonic oscillator, 
i.e., we neglect the strong anharmonic terms which 
split the two-phonon triplet. 

In  the case of Siz8 it might even be worthwhile to 
repeat the calculations using a deformed basis. Never- 
theless, i t  seems interesting to test the present theory 
also for light nuclei, although the model seems to be 
more justified in the case of medium heavy nuclei. I t  is 
necessary to say a few words on the parameters entering 
the calculations. First of all, there are the parameters 
B2 and C2 of the harmonic quadrupole oscillator (2). 
These are taken from the low-energy spectrum. The 
first excited 2' state of an even-even vibrational nu- 
cleus is interpreted as the one-phonon state of the har- 
monic surface vibrations. Consequently, its energy is 
given by kwz=)z(C~/Bz)~/~=E(2+), and the transi- 
tion probability to the ground state B(E2) ßo2=5h,/ 
(2Bzw2). From both relations one can easily compute Bq 
and C2. The quantity Po2 is the Square of the effective 
vibrational amplitudes, Po= ((0 I C ,  anTa, 1 0))u2. I t  

FIG. 10. Rcsults of a particle-hole calculation with collective 
correlations compared with the experimental absorption cross 
section. 

characterizes the "softness" of the quadrupole vibra- 
tions. The symrnetry energy parameter of the Bethe- 
Weizsäcker inass formula is taken to be K =  20 MeV 
for all nuclei. The nucleon-nucleon force is of the form 

In actual calculations we use the exchange mixture 
determined by Gillet5 for "T. Therefore, there is only 
one free parameter, the strength V0 of the residual 
force, which is adjusted so that the energy of the maiii 
giant resonance agrees with experiment. We now discuss 
the results of our calculation for specific nuclei. 

A. Giant Resonance Structure of laC 

The low-energy spectrum of 12C shows a 2f state at  
4.43 MeV. Recent electron-scattering experiments give 
B(E2) = 44 fm4 and a transition radius of about 3.3 fm; 
thus ßo is about 0.43.21 For the nucleon-nucleoil force, a 
Gaussian shape with a strength Vo= -35 MeV has 
been used. The two-phonon states of the surface vibra- 
tions can probably be identified with the 7.65-MeV 
Of state and a 2+ state in the 10-MeV region. Thus it 
seems worthwhile to interpret Cl2 as a vibrator. The 
splitting of the 7.65- and 10-MeV states indicates that 
the contribution of anharmonic terms is appreciable. 
They are, however, neglected in the present treatment. 

The results are shown in Fig. 8 together with the 

FIG. 9. Photoabsorption cross section of Cl2. The experimental FIG. 11. Results of a particle-hole calculation with collective 
points give the total photoabsorption cross section; the dashed correlations compared with the (Y,%) and (Y,$,) cross sections. 
line gives the (y,n~) cross section at  90° in arbitrary units. The 
dipole strengths are calculated in the usual lp-lh model. F. Gudden (private communication). 
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FIG. 12. Results of a particle-hole calculation with collective 
correlations compared with cross section. 

experimental data of the total photoabsorption cross 
section and the (y,no) cross s e c t i ~ n . l , ~ ~  The do~ible peak 
a t  22 and 23 MeV is ex~lained bv the theory. as is the 
strong state at  25.5 k e ~ .  ~ o k e v e r ,  t h e  bredicted 
energy of the latter state is about 1 MeV too low, al- 
though its strength is in agreement with the experi- 
ments. Possibly the anharmonic terms of the collective 
potential, which are neglected in the present calcula- 
tions, are responsible for this discrepancy. Attention 
should also be given to the minor states a t  18 and 28.5 
MeV, which also seem to be indicated in experiments. 
For comparison with older calculations, Q-e show the 
results of a pure lp-liz calculation in Fig. 9. 

B. Giant Resonance Structure of "Si 

In 28Si, the first excited 2+ state lies at  1.78 MeV. The 
effective vibrational amplitude ßo=0.40 is known from 
Coulomb excitation. Again, we approxiniate tlie low- 
energy spectrum by the harmonic surface vibrator. 
This seems to be a very crude approximation, since 28Si 
more closely resembles a deformed nucleus. However, 
at  least for the lp-liz Part of the calculations, it has 
turned out that calculations with a deformed basisZ3 
do not give an appreciable improvement on calculations 
with a spherical b a ~ i s . ~ ~  The theoretical results are ob- 
tained with a strength of the residual force Vo= -60 
MeV. The particle-hole configurations and energies are 
the Same as those of Bolen and E i ~ e n b e r g . ~ ~  The results 
of the calculation, together with various experimental 
data, are shown in Figs. 10-12. One notices that all 
major resonances in the experiments may be explained 

FIG. 13. Results of a I$-111 calculation compared 
with the (p,yo) cross section. 

nearly quantitatively as collective intermediate struc- 
ture. Especially in the (?,PO) and ( p , ~ , )  data, however, 
there is also an indication of noncollective structure. For 
exainple, the major peaks in the (p,yo) cross section a t  
18.2, 18.8, 19.6, 20.4, 21.3, 21.9, and 22.7 MeV are 
typical for collective intermediate structure. All the fine 
structure around these resonances is interpreted as non- 
collective substructure (see Fig. 5 ) .  Some disagreement 
in the energy position of the 15.2- and 16.2-MeV states 
is probably due to inaccurate particle-hole energies for - 
the states involved. 

I n  Fig. 13, the comparison of the experimental data 
with a pure particle-hole calculation is s h o ~ v n . ~ ~  The 
peaks at  19.4, 20.1, and 21.6 MeV represent what is 
called the lp-1iz or doorway structure in Fig. 5. The 
comparison of these results with the calculations shown 
in Figs. 10-12 clearly indicates the hierarchy of nuclear 
structures (lp-lh doorway, collective intermediate, and 
noncollective structure) as well as the improvement in 
the agreenlent between theory and experiment obtained 
by the inclusion of collective correlations. 

Finally, we show in Fig. 14 the results for different 
numbers of surface phonons taken into account. The 
full lines indicate the dipole strengths if four phonons 
are considered and the dashed lines those for six 
phonons. I t  is very satisfactory that the states below 
25 MeV are not appreciably affected by this change, in 
view of the fact that recent particle-hole calculations 

zuSi .? 

I 

I FIG. 14. The influence of higher 
quadrupole phonons is shown. The 

I 
levels indicated by full lines are 
obtained from a calculation where 
four phonons are included; those 
indicated by dashed lines were ob- 
tained with siu phonons. 
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FIG. 15. Relative dipole strengths of eigenstates of GONi with 
collective correlations. The experimental points are from the (r,n) 
measurements of Ref. 26. 

have shown that the "more-phonon states" are usually 
only poor approxi~nations.~~ 

C. Giant Resonance Structure of 60Ni 

The parameters for the collective quadrupole oscil- 
lator of GOXi areß0=0.21 and hwz= 1.33 MeV. They are, 
again, taken from the low-energy spectrum. 

The relative strengths of the dipole states obtained 
from the diagonalization of the energy matrix are 
presented in Figs. 15-17. Also, for comparison, the 
experimental (Y,?$) cross ~ e c t i o n ~ ~  for natural nickel 
(68% jsNi and 26% 60Ni) is shown. Of Course, the 
calculated strengths should be compared with the total 
absorption cross section for the pure A=60 isotope. 

FIG. 16. Dipole strengths of states obtained in the usual particle- 
hole caicula~ion (i.e., uithout collective correlations). 

25 A. Tokunaga, M. Yamamura, and T .  Marumori, O n  Appli- 
cability of tlze Random-Plzase Approxi~~zat ivn  to tlze Collective 
Excitation in Spl~evical Nz4clei (Kyoto Uiiiversity, Japan), Parts 
I and 11. 

26 G. Baciu, G. C. Bonazzola, B. Minetti, C. Molino, L. 
Pasqualini, and G. Piragino, Nucl. Phys. 67, 178 (1965). 

FIG. 17. Relative strengths of dipole states given 
by the dynamic coliective theory. 

This is uarticularlv true for nickel inasmuch as the 
( y , ~ )  cross section is expected to be of the Same order of 
magnitude as the (y,n) cross section. 

Until now, however, no such measurements have 
been reported. Nevertheless, the number of strong dipole 
states predicted for 60Ni, their energies, and their 
relative strengths are in strikingly good agreement with 
the available experimental data. Illoreover, it is re- 
markable that somuch structure can be nearly quantita- 
tively accounted for with only one adjustable param- 
eter, namely, the strength V0 of the nucleon-nucleon 
force. The results of the pure lp-lh calculation (i.e., 
without collective correlations) are given in Fig. 16. 
Figure 17 shows the results of the dynamic collective 
theory (the giant resonances are treated in the collective 
model). Comparison of Figs. 15-17 indicates that the 
Special features contained in Fig. 16 and Fig. 17  (pure 
particle-hole structure and pure collective structure, 
respectively) are also present in Fig. 15. Thus, the 
extension of the dynamic collective theory introduces 
additional structure in the giant resonance, in agree- 
ment with experiinent, and at the Same time preserves 
the general features of the collective theory as well as 
those of the pure particle-hole description. The merely 
semiquantitative agreement between theory and experi- 
ment indicates, however, that further improvements of 
the theory are necessary. One of the most important 
corrections to the present theory of collective correla- 
tions are the ground-state correlations. They will be 
especially important for closed-subshell nuclei. 
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